WO2022035272A1 - Electrolyte and secondary battery comprising same - Google Patents

Electrolyte and secondary battery comprising same Download PDF

Info

Publication number
WO2022035272A1
WO2022035272A1 PCT/KR2021/010781 KR2021010781W WO2022035272A1 WO 2022035272 A1 WO2022035272 A1 WO 2022035272A1 KR 2021010781 W KR2021010781 W KR 2021010781W WO 2022035272 A1 WO2022035272 A1 WO 2022035272A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
secondary battery
lithium
additive
carbonate
Prior art date
Application number
PCT/KR2021/010781
Other languages
French (fr)
Korean (ko)
Inventor
윤종철
정명훈
최지영
장민정
한지성
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210100410A external-priority patent/KR102537722B1/en
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Publication of WO2022035272A1 publication Critical patent/WO2022035272A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte and a secondary battery including the same, and more particularly, to an electrolyte for a battery that can improve battery charging efficiency and output, enable long-term storage, and increase capacity retention at high temperatures will be.
  • Lithium secondary batteries enable smooth movement of lithium ions by putting an electrolyte between the positive and negative electrodes, and the use of electrical energy by the method in which electricity is generated or consumed by redox reactions following insertion and desorption from the positive and negative electrodes. make it easy
  • an object of the present invention is to provide an electrolyte of a novel composition and a secondary battery including the same.
  • Another object of the present invention is to provide a secondary battery having reduced charging resistance, improved output of the battery, improved recovery capacity at high temperature, so that long-term storage is possible, and excellent life retention rate at high temperature.
  • the present invention includes an organic solvent, a lithium salt, a first additive and a second additive, and the first additive includes phosphorus pentoxide.
  • the second additive is vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, lithium difluorobis(oxalato)phosphate, 1,3-propanesultone, ethylene sulfate, succinonitrile and vinylethylene carbonate. It provides an electrolyte comprising at least one selected from the group consisting of.
  • the present invention also provides a secondary battery comprising the electrolyte.
  • the electrolyte according to the present invention When the electrolyte according to the present invention is applied as an electrolyte of a secondary battery, charging efficiency and output can be improved due to low charging resistance, and there is an effect of providing a secondary battery having excellent long-term lifespan and capacity retention even when left at high temperature.
  • the electrolyte of the present invention includes an organic solvent, a lithium salt, a first additive and a second additive, and the first additive includes phosphorus pentoxide.
  • the second additive is vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, lithium difluorobis(oxalato)phosphate, 1,3-propanesultone, ethylene sulfate, succinonitrile and vinylethylene carbonate. It is characterized in that it contains at least one selected from the group consisting of, in this case, the charging resistance is reduced to improve the output of the battery, the recovery capacity at high temperature is improved, so that long-term storage is possible, and the lifespan maintenance rate at high temperature is improved It has an excellent effect.
  • the electrolyte of the present invention includes an organic solvent, a lithium salt, and a first additive, wherein the first additive includes phosphorus pentoxide, wherein the phosphorus pentoxide is 0.01 to 5% by weight based on 100% by weight of the total electrolyte
  • the charging resistance is reduced to improve the battery output, the recovery capacity at high temperature is improved, so that long-term storage is possible, and there is an excellent effect of maintaining a lifespan at a high temperature.
  • the electrolyte solution of the present invention includes, for example, two or more electrolyte solution additives, specifically, a first additive containing phosphorus pentoxide, and vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, lithium difluorobis ( oxalato) phosphate, 1,3-propane sultone, ethylene sulfate, succinonitrile, and a second additive comprising at least one selected from the group consisting of vinyl ethylene carbonate, and in this case, the above-described battery output improvement effect , there is an advantage in that the high temperature recovery capacity improvement effect and the high temperature life retention improvement effect are excellent.
  • a first additive containing phosphorus pentoxide, and vinylene carbonate fluoroethylene carbonate
  • lithium difluorophosphate lithium difluorobis ( oxalato) phosphate
  • 1,3-propane sultone 1,3-propane sultone
  • the first additive is, for example, 0.01 to 10% by weight, preferably 0.01 to 5% by weight, more preferably 0.02 to 2% by weight, even more preferably 0.03 to 10% by weight based on 100% by weight of the total electrolyte solution. It may be included in an amount of 1 wt%, more preferably 0.05 to 0.5 wt%, and within this range, the desired effect can be sufficiently obtained without deterioration of battery characteristics.
  • the first additive may further include one or more selected from the group consisting of methanesulfonic acid, sulfuric acid, and phosphoric acid, for example, and in this case, a synergistic effect is obtained due to the interaction of phosphorus pentoxide with methanesulfonic acid, sulfuric acid or phosphoric acid. Therefore, there is an advantage that the battery performance improvement effect is more excellent.
  • the first additive may be in the form of a solution in which phosphorus pentoxide is dissolved in methanesulfonic acid as a preferred example, and as a specific example, 1 to 20% by weight of phosphorus pentoxide and 80 to methanesulfonic acid based on 100% by weight of the first additive 99% by weight, preferably 2 to 15% by weight of phosphorus pentoxide and 85 to 98% by weight of methanesulfonic acid, More preferably, 5 to 13% by weight of phosphorus pentoxide and 87 to 95% by weight of methanesulfonic acid, even more preferably 8 to 12% by weight of phosphorus pentoxide and 88 to 92% by weight of methanesulfonic acid, in this case Since compatibility with the electrolyte is excellent, manufacturing efficiency can be further improved, and there is an advantage in that the battery output improvement effect is more excellent.
  • the first additive includes 1 to 20% by weight of phosphorus pentoxide and 80 to 99% by weight of methanesulfonate, more preferably 2 to 15% by weight of phosphorus pentoxide and 85% by weight of methanesulfonate, in a total of 100% by weight of the first additive.
  • the methanesulfonate may be, for example, an alkali metal salt of methanesulfonic acid, and the alkali metal may be preferably lithium, sodium, or potassium, and more preferably lithium, in this case, without deterioration of other physical properties. There is an advantage that the battery performance improvement effect is more excellent.
  • the content of the phosphorus pentoxide contained in the electrolyte is, for example, 0.01 to 5% by weight, preferably 0.02 to 3% by weight, more preferably 0.03 to 1% by weight, even more preferably based on 100% by weight of the total electrolyte. It may be 0.05 to 0.5% by weight, and in a preferred embodiment, 0.05 to 0.1% by weight, and within this range, the desired effect can be sufficiently obtained without lowering other physical properties.
  • the first additive may be added to the electrolyte of the secondary battery to form a stable film on the electrode.
  • the capacity retention rate is improved by preventing the structural collapse of the electrode active material of the positive electrode and the negative electrode at a high temperature, thereby extending the life of the battery.
  • the second additive may be included, for example, in an amount of 0.01 to 5% by weight based on 100% by weight of the total electrolyte solution, preferably 0.1 to 4% by weight, more preferably 0.2 to 3.5% by weight , even more preferably It may be included in an amount of 0.3 to 2.5% by weight, more preferably 0.5 to 2.0% by weight, and within this range, the battery output improvement effect and battery life improvement effect can be sufficiently obtained without deterioration of battery characteristics.
  • the second additive may be included in an amount of 0.01 to 5% by weight, preferably 0.1 to 4.5% by weight, more preferably 0.5 to 4% by weight, based on 100% by weight of the total electrolyte solution, within this range.
  • the second additive is vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, lithium difluorobis(oxalato)phosphate, 1,3-propanesultone, ethylene sulfate, succinonitrile and vinylethylene carbonate.
  • Including one or more selected from the group consisting of, as a preferred example, may include two or more, in this case, there is an advantage in that the battery performance improvement effect is more excellent due to the synergistic action between the additives.
  • the second additive may include one or two selected from the group consisting of vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, and 1,3-propanesultone.
  • the additives There is an advantage in that the battery performance improvement effect is more excellent due to a synergistic action between them.
  • the second additive may further include at least one selected from the group consisting of, for example, lithium tetrafluoro oxalato phosphate and lithium trioxalato phosphate, and in this case, further improvement of low-temperature characteristics and cycle characteristics of the battery effect can be provided.
  • the organic solvent is, for example, ethylene carbonate (EC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), propylene carbonate (PC), dipropyl carbonate (DPC), butylene carbonate, methyl It may include two or more selected from the group consisting of propyl carbonate, ethylpropyl carbonate, methyl propionate (MP), ethyl propionate (EP), and propyl propionate (PP), and in this case, the ionic conductivity of the electrolyte , viscosity, etc. are easy to control, so there is an advantage in that the effect of improving battery performance is more excellent.
  • the organic solvent is a specific example by mixing an organic solvent of high dielectric constant having high ionic conductivity and a low-viscosity organic solvent that can be adjusted so that the viscosity of the solvent has an appropriate viscosity to be applied to the battery so as to increase the charging and discharging performance of the battery.
  • It can be used as a mixed solvent, and more specifically, EC and/or PC can be used as an example of the organic solvent of high dielectric constant, and as an example of the low-viscosity organic solvent, from the group consisting of EMC, DMC and DEC
  • EMC EMC
  • DMC low-viscosity organic solvent
  • the high dielectric constant and low viscosity organic solvent is preferably mixed in a volume ratio of 2:8 to 8:2. More specifically, it may be a ternary mixed solvent of EC and/or PC, and EMC and DEC, and the ratio of EC and/or PC:EMC:DEC may be 3:3 to 5:2 to 4.
  • the organic solvent contains water
  • lithium ions in the electrolyte may be hydrolyzed, so the water content in the organic solvent is preferably controlled to be 150 ppm or less, preferably 100 ppm or less.
  • the electrolyte may include at least one selected from the group consisting of LiPF 6 and LiFSI, for example as a lithium salt, and in this case, lithium ions are smoothly supplied to the battery, so that the battery performance is excellent.
  • the electrolyte is, for example, a lithium salt LiF 4 , LiCl, LiBr, LiI, LiClO 4 , LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li and (CF 3 SO 2 ) 2
  • LiF 4 LiCl, LiBr, LiI, LiClO 4 , LiB 10 Cl 10
  • LiCF 3 SO 3 LiCF 3 CO 2
  • LiAsF 6 , LiSbF 6 , LiAlCl 4 CH 3 SO 3 Li, CF 3 SO 3 Li and (CF 3 SO 2 ) 2
  • At least one selected from the group consisting of NLi may be further included, and in this case, lithium ions may be more smoothly supplied.
  • the lithium salt When the lithium salt is dissolved in the electrolyte, the lithium salt functions as a source of lithium ions in the lithium secondary battery, and may promote movement of lithium ions between the positive electrode and the negative electrode. Accordingly, the lithium salt is preferably included in a concentration of about 0.6 mol% to 2 mol% of the electrolyte. If the concentration of the lithium salt is less than 0.6 mol%, the conductivity of the electrolyte may be lowered, and thus electrolyte performance may be deteriorated. Considering the conductivity of the electrolyte and the mobility of lithium ions, the lithium salt may be included in the electrolyte in an amount of preferably 0.7 mol% to 1.6 mol%, more preferably 0.8 mol% to 1.5 mol%.
  • an additive hereinafter referred to as other additives .
  • Preferred examples of the other additive component include Succinic anhydride, Tetravinyl silane, Hexamethylenetetramine, 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether, 1,2-bis((difluorophosphaneyl)oxy)ethane, 1 ,3,6-Hexanetricarbonitrile, 1-Ethyl-3-methylimidazolium dicyanamide, Trimethoxyboroxine, Lithium Bis(oxaleto)borate, Lithium DiFluro(Oxalato) Borate, Tris(trimethylsilyl) borate, Lithium Tetrafluoroborate, Triisopropyl borate, Difluoromethyl)phosphonate Tris(trimethylsilyl) Phosphite, Tripropagyl phosphate, 2,4,8,10-Tetraoxa-3,9-dithiaspiro[5.5]undecane 3,3,9,9-
  • the other additives may be preferably included in an amount of 0.3 to 1.5 wt%, preferably 0.5 to 1.2 wt%, based on the total weight of the electrolyte, and in this case, it is preferable in terms of the effect of improving the low-temperature characteristics and cycle characteristics of the battery.
  • the secondary battery of the present invention has a negative electrode and a positive electrode.
  • a separator interposed between the cathode and the anode, and the electrolyte.
  • the positive electrode may be prepared by, for example, mixing a positive electrode active material, a binder, and optionally a conductive agent to prepare a composition for forming a positive electrode active material layer, and then applying it to a positive electrode current collector such as aluminum foil.
  • the positive active material may be, for example, a conventional NCM (lithium nickel manganese cobalt oxide) positive active material used in lithium secondary batteries, preferably of the formula Li[NixCo 1-xy Mn y ]O 2 (where 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5) may be a lithium composite metal oxide in the form, a specific example may be LiNiMnCoO 2 , but is not limited thereto.
  • NCM lithium nickel manganese cobalt oxide
  • Variables x and y of the formula Li[NixCo 1-xy Mn y ]O 2 of the lithium composite metal oxide are, for example, 0.0001 ⁇ x ⁇ 0.5, 0.0001 ⁇ y ⁇ 0.5, or 0.001 ⁇ x ⁇ 0.3, 0.001 ⁇ y ⁇ 0.3 can be
  • a compound capable of reversible intercalation and de-intercalation of lithium (a lithiated intercalation compound) may be used.
  • the negative electrode may be prepared by, for example, mixing a negative electrode active material, a binder, and optionally a conductive agent to prepare a composition for forming the negative electrode active material layer, and then applying it to a negative electrode current collector such as copper foil.
  • anode active material for example, a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • the negative active material may be carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon.
  • a metal compound capable of alloying with lithium, or a composite including a metal compound and a carbonaceous material may be used as the negative electrode active material, and may be graphite, for example.
  • metal alloyable with lithium for example, at least one of Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • the negative active material in view of high stability, any one or more selected from the group consisting of crystalline carbon, amorphous carbon, carbon composite material, lithium metal, and an alloy containing lithium may be used.
  • the battery charging resistance measured by the Hybrid Pulse Power Characterization (HPPC) method the output characteristics, and a high temperature of 45° C. or higher compared to the case where only the conventional electrolyte solution additive is added.
  • the HPPC charging resistance value measured at 60° C. may be 50 m ⁇ or less, preferably 48 m ⁇ or less, more preferably 45 m ⁇ or less, and most preferably 43 m ⁇ or less. there is.
  • the secondary battery may have a recovery capacity of 805 mAh or more at 60°C, preferably 810 mAh or more, and more preferably 815 mAh or more.
  • the lifetime maintenance efficiency at 45° C. of the secondary battery may be 80% or more, preferably 85% or more, and more preferably 87% or more.
  • the HPPC charging resistance value measured at 60° C. may be expressed as a resistance value of the battery measured after the secondary battery is left in a fully charged state at 60° C. for 5 hours.
  • the recovery capacity at 60° C. is a specific example.
  • the secondary battery is charged and discharged at room temperature (25° C.), the initial discharge capacity is measured, charged again under the same conditions, stored at 60° C. for 4 weeks, and then at room temperature again. It can be expressed as the measured residual capacity when discharged.
  • the secondary battery is repeatedly charged and discharged at 45° C. for 300 cycles, and the discharge capacity after 300 cycles of the initial discharge capacity can be expressed as a percentage (%) value.
  • the HPPC charging resistance value can be measured by a method specified in the document “Battery test manual for plug-in hybrid electric vehicles,” (2010, Idaho National Laboratory for the US Department of Energy.) It is an important indicator of battery characteristics such as battery output.
  • the charging resistance is a resistance value measured during charging of the battery, and the lower the charging resistance, the less energy loss, the charging speed may be increased, and the output of the battery may be improved.
  • the secondary battery of the present invention exhibits a low HPPC charging resistance value as described above, and thus has excellent charging speed and output, and is suitable for use as, for example, an automobile battery.
  • the recovery capacity indicates the capacity preservation characteristics of a battery left for a long time, and the discharged electric capacity when the battery left for a long time is discharged to the final discharge voltage, and the discharged battery after recharging the discharged battery to the final discharge voltage.
  • Each of the discharged electric capacity when discharged up to was measured, and the two capacity values were compared.
  • the higher the recovery capacity the smaller the amount of natural discharge due to battery preservation (storage), which means that the battery can be stored for a long time. This is a very important characteristic in a battery.
  • the electrolyte solution additive of the present invention is added to the electrolyte solution, the recovery capacity is improved by 5 to 20% compared to when only the conventional additive is used, so that it can be stored for a longer period of time with a single charge.
  • the battery of the present invention when used as a battery for an electric vehicle, output improvement, which becomes important depending on the size of the vehicle, and climate change, low temperature and Performance improvement at high temperature can be achieved, thereby exhibiting excellent performance as an automobile battery.
  • the electrolyte additive according to the embodiments of the present invention and the electrolyte containing the same are applied to a secondary battery, the charging resistance, output, recovery capacity and life efficiency are improved, and it is found that it is suitable for use as a secondary battery for automobiles. can
  • Example 1 0.05 wt% of the P 2 O 5 compound, 0.5 wt% of methanesulfonic acid, and 1.0 wt% of vinylene carbonate were added as electrolyte additives. .
  • Example 1 as an electrolyte additive, 0.05 wt% of a P 2 O 5 compound, 0.5 wt% of methanesulfonic acid, and 1.0 wt% of fluoroethylene carbonate were added as in Example 1, except that did
  • Example 1 as an electrolyte additive, 0.05 wt% of a P 2 O 5 compound, 0.5 wt% of methanesulfonic acid, and 1.0 wt% of 1,3-propane sultone were added. It was carried out in the same manner as in Example 1.
  • Example 1 0.1 wt% of the P 2 O 5 compound, 1.0 wt% of methanesulfonic acid, and 1.0 wt% of vinylene carbonate were added as electrolyte additives.
  • Example 1 the P 2 O 5 compound as an electrolyte additive 0.1% by weight, 1.0% by weight of methanesulfonic acid, and 1.0% by weight of lithium difluorophosphate was carried out in the same manner as in Example 1, except that it was added.
  • Example 1 it was carried out in the same manner as in Example 1, except that 0.05 wt% of the P 2 O 5 compound and 0.5 wt% of methanesulfonic acid were added as electrolyte additives.
  • Example 1 0.1 wt% of the P 2 O 5 compound and 1.0 wt% of methanesulfonic acid were added as electrolyte additives, and the same as in Example 1 was performed.
  • Example 1 it was carried out in the same manner as in Example 1, except that 1.0% by weight of lithium difluorophosphate was added as an electrolyte additive.
  • Example 1 it was carried out in the same manner as in Example 1, except that 1.0% by weight of lithium difluorophosphate and 1.0% by weight of vinylene carbonate were added as electrolyte additives.
  • Example 1 it was carried out in the same manner as in Example 1, except that 1.0% by weight of lithium difluorophosphate, 1.0% by weight of vinylene carbonate, and 1.0% by weight of methanesulfonic acid were added as electrolyte additives.
  • the positive electrode mixture slurry was applied to an aluminum (Al) thin film as a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then a positive electrode was manufactured by performing a roll press.
  • the negative electrode mixture slurry was applied to a 10 ⁇ m-thick copper (Cu) thin film as a negative electrode current collector, dried to prepare a negative electrode, and then roll press was performed to prepare a negative electrode.
  • the measured voltage value, the charge/discharge current value corresponding to the C-rate, the amount of change in current ( ⁇ I), and the amount of change in the discharge voltage ( ⁇ V) , charge voltage change amount ( ⁇ V), discharge resistance, and charge resistance were measured, and the resistance value was calculated using the slope value obtained from the current and voltage change amount by briefly flowing the charge/discharge current for each C-rate for a certain period of time.
  • the charging conditions were a constant current of 1.0C and a voltage of 4.2V, until the charging current became 1/10C.
  • Discharge conditions were performed by charging and discharging by discharging up to 3.0V at a constant current of 1.0C, and then the discharge capacity was measured.
  • the secondary battery was charged with a constant current at 45° C. with a current of 1C rate until the voltage reached 4.20V (vs. Li), and then cut-off at a current of 0.05C while maintaining 4.20V in the constant voltage mode. did Then, it was discharged at a constant current of 1C rate until the voltage reached 3.0V (vs. Li) during discharge (1st cycle). The above cycle was repeated 300 times and the average value thereof was calculated.
  • the charging resistance is 39.3 to 42.8 m ⁇
  • the high temperature recovery capacity is 816.3 to 830.6 mAh
  • the high temperature life efficiency is
  • the charging resistance is at least about 10 m ⁇ higher than in Examples 1 to 6, and the high temperature recovery capacity is at least about 11 mAh lower, The high-temperature lifetime efficiency was at least about 2% lower.
  • the electrolyte of the present invention has the effect of improving the charging efficiency and output of the secondary battery, and improving the long-term storage efficiency and capacity retention rate at high temperatures.

Abstract

The present invention relates to an electrolyte and a secondary battery comprising same, and, more specifically, to an electrolyte and a secondary battery comprising same, which comprise an organic solvent, a lithium salt, a first additive, and a second additive, wherein the first additive comprises phosphorus pentoxide. According to the present invention, there is an effect of providing a secondary battery which can have improved charging efficiency and output due to low charging resistance and has an excellent long-term lifespan and high-temperature capacity retention.

Description

전해액 및 이를 포함하는 이차전지Electrolyte and secondary battery comprising same
본 발명은 전해액 및 이를 포함하는 이차전지에 관한 것으로, 보다 상세하게는 전지의 충전 효율 및 출력을 향상시킬 수 있고, 장기 보관이 가능하며, 고온에서의 용량 유지율을 증가시킬 수 있는 전지용 전해액에 관한 것이다.The present invention relates to an electrolyte and a secondary battery including the same, and more particularly, to an electrolyte for a battery that can improve battery charging efficiency and output, enable long-term storage, and increase capacity retention at high temperatures will be.
리튬 이차 전지는 양극 및 음극 사이에 전해액을 넣어 리튬이온의 원활한 이동을 가능하게 하며, 양극 및 음극에서 삽입 및 탈리에 따른 산화 환원반응에 의해 전기가 생성 또는 소비되는 방식에 의하여 전기 에너지의 이용을 용이하게 한다.Lithium secondary batteries enable smooth movement of lithium ions by putting an electrolyte between the positive and negative electrodes, and the use of electrical energy by the method in which electricity is generated or consumed by redox reactions following insertion and desorption from the positive and negative electrodes. make it easy
한편, 최근 전 세계적으로 환경 규제가 강화되는 등 환경에 대한 관심이 커지면서 대기 오염의 주 원인 중 하나인 화석 연료 차량을 대체할 수 있는 친환경 자동차에 대한 관심 역시 증가됨에 따라 국내/외 전지 업계에서는 자동차용 전지 개발이 활발히 진행되고 있다.On the other hand, as interest in the environment is growing, such as tightening environmental regulations around the world, interest in eco-friendly vehicles that can replace fossil fuel vehicles, one of the main causes of air pollution, is also increasing. Battery development is actively progressing.
전지를 자동차에 사용하기 위해서는, 전지의 출력 및 용량이 대폭 증가되어야 할 뿐만 아니라 날씨 변화 등의 사용 환경에 맞춰 고온 및 저온에서의 출력 개선 및 저항 증가 문제를 해결해야 하며, 자동차가 계절을 가리지 않고 야외에서 사용되는 것을 감안하여, 다양한 환경에서 장기간 충전 및 용량 유지율이 개선된 전지를 개발할 필요가 있다.In order to use a battery in a vehicle, not only the output and capacity of the battery must be significantly increased, but also the problem of output improvement and resistance increase at high and low temperatures must be solved in accordance with the usage environment such as weather changes. In consideration of outdoor use, there is a need to develop a battery with improved long-term charging and capacity retention in various environments.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
일본 공개특허 2008-300126 AJapanese Patent Application Laid-Open No. 2008-300126 A
한국 등록특허 10-1586199 B1Korean Patent Registration 10-1586199 B1
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 신규 조성의 전해액 및 이를 포함하는 이차전지를 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, an object of the present invention is to provide an electrolyte of a novel composition and a secondary battery including the same.
또한 본 발명은 충전 저항이 감소되어 전지의 출력이 향상되고, 고온에서의 회복 용량이 향상되어 장기 보관이 가능하며, 고온에서의 수명 유지율이 우수한 이차전지를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a secondary battery having reduced charging resistance, improved output of the battery, improved recovery capacity at high temperature, so that long-term storage is possible, and excellent life retention rate at high temperature.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can all be achieved by the present invention described below.
상기의 목적을 달성하기 위하여, 본 발명은 유기용매, 리튬염, 제1 첨가제 및 제2 첨가제를 포함하며, 상기 제1 첨가제는 오산화인을 포함하고. 상기 제2 첨가제는 비닐렌 카보네이트, 플루오로에틸렌 카보네이트, 리튬 디플루오로포스페이트, 리튬 디플루오로비스(옥살라토)포스페이트, 1,3-프로판설톤, 에틸렌설페이트, 석시노나이트릴 및 비닐에틸렌카보네이트로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전해액을 제공한다.In order to achieve the above object, the present invention includes an organic solvent, a lithium salt, a first additive and a second additive, and the first additive includes phosphorus pentoxide. The second additive is vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, lithium difluorobis(oxalato)phosphate, 1,3-propanesultone, ethylene sulfate, succinonitrile and vinylethylene carbonate. It provides an electrolyte comprising at least one selected from the group consisting of.
또한 본 발명은 상기 전해액을 포함하는 것을 특징으로 하는 이차전지를 제공한다.The present invention also provides a secondary battery comprising the electrolyte.
본 발명에 따른 전해액은 이차전지의 전해액으로 적용하는 경우, 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 고온에 방치되어도 장기 수명 및 용량 유지율이 우수한 이차전지를 제공하는 효과가 있다.When the electrolyte according to the present invention is applied as an electrolyte of a secondary battery, charging efficiency and output can be improved due to low charging resistance, and there is an effect of providing a secondary battery having excellent long-term lifespan and capacity retention even when left at high temperature.
이하 본 발명에 대하여 상세하게 설명하지만, 본 발명은 이에 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
본 발명의 전해액은 유기용매, 리튬염, 제1 첨가제 및 제2 첨가제를 포함하며, 상기 제1 첨가제는 오산화인을 포함하고. 상기 제2 첨가제는 비닐렌 카보네이트, 플루오로에틸렌 카보네이트, 리튬 디플루오로포스페이트, 리튬 디플루오로비스(옥살라토)포스페이트, 1,3-프로판설톤, 에틸렌설페이트, 석시노나이트릴 및 비닐에틸렌카보네이트로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하며, 이 경우 충전 저항이 감소되어 전지의 출력이 향상되고, 고온에서의 회복 용량이 향상되어 장기 보관이 가능하며, 고온에서의 수명 유지율이 우수한 효과가 있다.The electrolyte of the present invention includes an organic solvent, a lithium salt, a first additive and a second additive, and the first additive includes phosphorus pentoxide. The second additive is vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, lithium difluorobis(oxalato)phosphate, 1,3-propanesultone, ethylene sulfate, succinonitrile and vinylethylene carbonate. It is characterized in that it contains at least one selected from the group consisting of, in this case, the charging resistance is reduced to improve the output of the battery, the recovery capacity at high temperature is improved, so that long-term storage is possible, and the lifespan maintenance rate at high temperature is improved It has an excellent effect.
본 발명의 전해액은 다른 일례로 유기용매, 리튬염, 제1 첨가제를 포함하며, 상기 제1 첨가제는 오산화인을 포함하되, 상기 오산화인은 상기 전해액 총 100 중량%를 기준으로 0.01 내지 5 중량%로 포함하는 것을 특징으로 하며, 이 경우 충전 저항이 감소되어 전지의 출력이 향상되고, 고온에서의 회복 용량이 향상되어 장기 보관이 가능하며, 고온에서의 수명 유지율이 우수한 효과가 있다.As another example, the electrolyte of the present invention includes an organic solvent, a lithium salt, and a first additive, wherein the first additive includes phosphorus pentoxide, wherein the phosphorus pentoxide is 0.01 to 5% by weight based on 100% by weight of the total electrolyte In this case, the charging resistance is reduced to improve the battery output, the recovery capacity at high temperature is improved, so that long-term storage is possible, and there is an excellent effect of maintaining a lifespan at a high temperature.
본 발명의 전해액은 일례로 2종 이상의 전해액 첨가제를 포함하며, 구체적으로는 오산화인을 포함하는 제1 첨가제, 및 비닐렌 카보네이트, 플루오로에틸렌 카보네이트, 리튬 디플루오로포스페이트, 리튬 디플루오로비스(옥살라토)포스페이트, 1,3-프로판설톤, 에틸렌설페이트, 석시노나이트릴 및 비닐에틸렌카보네이트로 이루어진 군에서 선택된 1종 이상을 포함하는 제2 첨가제를 포함하고, 이 경우 상술한 전지 출력 향상 효과, 고온 회복 용량 향상 효과 및 고온 수명 유지율 향상 효과가 우수한 이점이 있다.The electrolyte solution of the present invention includes, for example, two or more electrolyte solution additives, specifically, a first additive containing phosphorus pentoxide, and vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, lithium difluorobis ( oxalato) phosphate, 1,3-propane sultone, ethylene sulfate, succinonitrile, and a second additive comprising at least one selected from the group consisting of vinyl ethylene carbonate, and in this case, the above-described battery output improvement effect , there is an advantage in that the high temperature recovery capacity improvement effect and the high temperature life retention improvement effect are excellent.
상기 제1 첨가제는 일례로 상기 전해액 총 100 중량%를 기준으로 0.01 내지 10 중량%, 바람직하게는 0.01 내지 5 중량%, 보다 바람직하게는 0.02 내지 2 중량%, 보다 더욱 바람직하게는 0.03 내지 1 중량%, 보다 더더욱 바람직하게는 0.05 내지 0.5 중량%로 포함될 수 있으며 이 범위 내에서 전지 특성의 저하 없이 원하는 효과를 충분히 얻을 수 있다.The first additive is, for example, 0.01 to 10% by weight, preferably 0.01 to 5% by weight, more preferably 0.02 to 2% by weight, even more preferably 0.03 to 10% by weight based on 100% by weight of the total electrolyte solution. It may be included in an amount of 1 wt%, more preferably 0.05 to 0.5 wt%, and within this range, the desired effect can be sufficiently obtained without deterioration of battery characteristics.
상기 제1 첨가제는 일례로 메탄설폰산, 황산 및 인산으로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있으며, 이 경우 오산화인과 메탄설폰산, 황산 또는 인산의 상호 작용으로 인해 상승 효과를 얻을 수 있어 전지 성능 개선 효과가 보다 뛰어난 이점이 있다.The first additive may further include one or more selected from the group consisting of methanesulfonic acid, sulfuric acid, and phosphoric acid, for example, and in this case, a synergistic effect is obtained due to the interaction of phosphorus pentoxide with methanesulfonic acid, sulfuric acid or phosphoric acid. Therefore, there is an advantage that the battery performance improvement effect is more excellent.
상기 제1 첨가제는 바람직한 일례로 오산화인이 메탄설폰산에 용해된 용액 형태일 수 있으며, 구체적인 일례로 상기 제1 첨가제 총 100 중량%를 기준으로 오산화인 1 내지 20 중량% 및 메탄설폰산 80 내지 99 중량%, 바람직하게는 오산화인 2 내지 15 중량% 및 메탄설폰산 85 내지 98 중량%, 보다 바람직하게는 오산화인 5 내지 13 중량% 및 메탄설폰산 87 내지 95 중량%, 보다 더욱 바람직하게는 오산화인 8 내지 12 중량% 및 메탄설폰산 88 내지 92 중량%를 포함할 수 있고, 이 경우 전해액에 대한 상용성이 우수하여 제조 효율이 보다 향상될 수 있고 전지 출력 향상 효과가 보다 우수한 이점이 있다.The first additive may be in the form of a solution in which phosphorus pentoxide is dissolved in methanesulfonic acid as a preferred example, and as a specific example, 1 to 20% by weight of phosphorus pentoxide and 80 to methanesulfonic acid based on 100% by weight of the first additive 99% by weight, preferably 2 to 15% by weight of phosphorus pentoxide and 85 to 98% by weight of methanesulfonic acid, More preferably, 5 to 13% by weight of phosphorus pentoxide and 87 to 95% by weight of methanesulfonic acid, even more preferably 8 to 12% by weight of phosphorus pentoxide and 88 to 92% by weight of methanesulfonic acid, in this case Since compatibility with the electrolyte is excellent, manufacturing efficiency can be further improved, and there is an advantage in that the battery output improvement effect is more excellent.
상기 제1 첨가제는 다른 일례로 상기 제1 첨가제 총 100 중량% 중에 오산화인 1 내지 20 중량% 및 메탄설포네이트 80 내지 99 중량%, 보다 바람직하게는 오산화인 2 내지 15 중량% 및 메탄설포네이트 85 내지 98 중량%, 보다 바람직하게는 오산화인 5 내지 13 중량% 및 메탄설포네이트 87 내지 95 중량%, 보다 더욱 바람직하게는 오산화인 8 내지 12 중량% 및 메탄설포네이트 88 내지 92 중량%를 포함할 수 있고, 이 경우 오산화인 및 메탄설포네이트의 상호 작용으로 인해 상승 효과를 얻을 수 있어 전지 성능 개선 효과가 보다 뛰어난 이점이 있다.In another example, the first additive includes 1 to 20% by weight of phosphorus pentoxide and 80 to 99% by weight of methanesulfonate, more preferably 2 to 15% by weight of phosphorus pentoxide and 85% by weight of methanesulfonate, in a total of 100% by weight of the first additive. to 98% by weight, more preferably 5 to 13% by weight of phosphorus pentoxide and 87 to 95% by weight of methanesulfonate, even more preferably 8 to 12% by weight of phosphorus pentoxide and 88 to 92% by weight of methanesulfonate In this case, a synergistic effect can be obtained due to the interaction of phosphorus pentoxide and methanesulfonate, so that the battery performance improvement effect is more excellent.
상기 메탄설포네이트는 일례로 메탄설폰산의 알칼리 금속염일 수 있고, 상기 알칼리 금속은 바람직하게는 리튬, 나트륨, 또는 칼륨일 수 있고, 보다 바람직하게는 리튬일 수 있으며, 이 경우 다른 물성의 저하 없이 전지 성능 개선 효과가 보다 뛰어난 이점이 있다.The methanesulfonate may be, for example, an alkali metal salt of methanesulfonic acid, and the alkali metal may be preferably lithium, sodium, or potassium, and more preferably lithium, in this case, without deterioration of other physical properties. There is an advantage that the battery performance improvement effect is more excellent.
상기 전해액 중에 포함되는 상기 오산화인의 함량은 일례로 상기 전해액 총 100 중량%를 기준으로 0.01 내지 5 중량%, 바람직하게는 0.02 내지 3 중량%, 보다 바람직하게는 0.03 내지 1 중량%, 보다 더욱 바람직하게는 0.05 내지 0.5 중량%, 바람직한 일 실시예로 0.05 내지 0.1 중량%일 수 있으며, 이 범위 내에서 다른 물성의 저하 없이 원하는 효과를 충분히 얻을 수 있다.The content of the phosphorus pentoxide contained in the electrolyte is, for example, 0.01 to 5% by weight, preferably 0.02 to 3% by weight, more preferably 0.03 to 1% by weight, even more preferably based on 100% by weight of the total electrolyte. It may be 0.05 to 0.5% by weight, and in a preferred embodiment, 0.05 to 0.1% by weight, and within this range, the desired effect can be sufficiently obtained without lowering other physical properties.
상기 제1 첨가제는, 이차전지의 전해액에 첨가되어 전극에 안정한 피막을 형성할 수 있다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서의 분해가 억제되어 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 전지의 수명이 연장되는 효과가 있다.The first additive may be added to the electrolyte of the secondary battery to form a stable film on the electrode. At this time, it is possible to prevent the decomposition of the electrolyte due to the stability of the film, and thereby cycle characteristics can be improved, and in particular, the decomposition at high temperature is suppressed, and as the conventional electrode film is decomposed at high temperature, the high temperature storage property is lower than that of the conventional electrode film. There is an excellent effect of greatly improving the storability. In addition, since the increase in resistance is prevented, charging efficiency and output are improved, and gas generation due to a chemical reaction inside the battery is also suppressed, so that the safety of the battery can be improved. In addition, the capacity retention rate is improved by preventing the structural collapse of the electrode active material of the positive electrode and the negative electrode at a high temperature, thereby extending the life of the battery.
상기 제2 첨가제는 일례로 상기 전해액 총 100 중량%를 기준으로 0.01 내지 5 중량%로 포함될 수 있고, 바람직하게는 0.1 내지 4 중량%, 보다 바람직하게는 0.2 내지 3.5 중량%, 보다 더욱 바람직하게는 0.3 내지 2.5 중량%, 보다 더더욱 바람직하게는 0.5 내지 2.0 중량%로 포함될 수 있으며, 이 범위 내에서 전지 특성의 저하 없이 전지 출력 향상 효과 및 전지 수명 향상 효과를 충분히 얻을 수 있다.The second additive may be included, for example, in an amount of 0.01 to 5% by weight based on 100% by weight of the total electrolyte solution, preferably 0.1 to 4% by weight, more preferably 0.2 to 3.5% by weight , even more preferably It may be included in an amount of 0.3 to 2.5% by weight, more preferably 0.5 to 2.0% by weight, and within this range, the battery output improvement effect and battery life improvement effect can be sufficiently obtained without deterioration of battery characteristics.
상기 제2 첨가제는 다른 일례로 상기 전해액 총 100 중량%를 기준으로 0.01 내지 5 중량%, 바람직하게는 0.1 내지 4.5 중량%, 보다 바람직하게는 0.5 내지 4 중량%로 포함될 수 있고, 이 범위 내에서 전지 특성의 저하 없이 전지 출력 향상 효과 및 전지 수명 향상 효과를 충분히 얻을 수 있다.As another example, the second additive may be included in an amount of 0.01 to 5% by weight, preferably 0.1 to 4.5% by weight, more preferably 0.5 to 4% by weight, based on 100% by weight of the total electrolyte solution, within this range The effect of improving battery output and improving battery life can be sufficiently obtained without deterioration of battery characteristics.
상기 제2 첨가제는 비닐렌 카보네이트, 플루오로에틸렌 카보네이트, 리튬 디플루오로포스페이트, 리튬 디플루오로비스(옥살라토)포스페이트, 1,3-프로판설톤, 에틸렌설페이트, 석시노나이트릴 및 비닐에틸렌카보네이트로 이루어진 군에서 선택된 1종 이상을 포함하고, 바람직한 일례로는 2 종 이상을 포함할 수 있으며, 이 경우 첨가제들 사이의 상승 작용으로 전지 성능 개선 효과가 보다 우수한 이점이 있다.The second additive is vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, lithium difluorobis(oxalato)phosphate, 1,3-propanesultone, ethylene sulfate, succinonitrile and vinylethylene carbonate. Including one or more selected from the group consisting of, as a preferred example, may include two or more, in this case, there is an advantage in that the battery performance improvement effect is more excellent due to the synergistic action between the additives.
상기 제2 첨가제는 바람직한 일례로 비닐렌 카보네이트, 플루오로에틸렌 카보네이트, 리튬 디플루오로포스페이트, 및 1,3-프로판설톤으로 이루어진 군에서 선택된 1종 또는 2 종을 포함할 수 있으며, 이 경우 첨가제들 사이의 상승 작용으로 전지 성능 개선 효과가 보다 뛰어난 이점이 있다.As a preferred example, the second additive may include one or two selected from the group consisting of vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, and 1,3-propanesultone. In this case, the additives There is an advantage in that the battery performance improvement effect is more excellent due to a synergistic action between them.
상기 제2 첨가제는 일례로 리튬 테트라플루오로 옥살라토 포스페이트 및 리튬 트리옥살라토 포스페이트로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있고, 이 경우 더욱 뛰어난 전지의 저온 특성 및 사이클 특성의 개선 효과를 제공할 수 있다.The second additive may further include at least one selected from the group consisting of, for example, lithium tetrafluoro oxalato phosphate and lithium trioxalato phosphate, and in this case, further improvement of low-temperature characteristics and cycle characteristics of the battery effect can be provided.
상기 유기용매는 일례로 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 프로필렌 카보네이트(PC), 디프로필 카보네이트(DPC), 부틸렌 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP) 및 프로필 프로피오네이트(PP)로 이루어진 군에서 선택된 2종 이상을 포함할 수 있고, 이 경우 전해액의 이온전도도, 점도 등을 제어하기 용이하여 전지 성능을 개선하는 효과가 보다 우수한 이점이 있다.The organic solvent is, for example, ethylene carbonate (EC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), propylene carbonate (PC), dipropyl carbonate (DPC), butylene carbonate, methyl It may include two or more selected from the group consisting of propyl carbonate, ethylpropyl carbonate, methyl propionate (MP), ethyl propionate (EP), and propyl propionate (PP), and in this case, the ionic conductivity of the electrolyte , viscosity, etc. are easy to control, so there is an advantage in that the effect of improving battery performance is more excellent.
상기 유기용매는 구체적인 일례로 전지의 충방전 성능을 높일 수 있도록 높은 이온전도도를 갖는 고유전율의 유기용매 및 용매의 점도가 전지에 적용하기에 적절한 점도를 갖도록 조절할 수 있는 저점도 유기용매를 혼합하여 혼합 용매로 사용할 수 있으며, 보다 구체적으로는 상기 고유전율의 유기용매로는 일례로 EC 및/또는 PC 등을 사용할 수 있고, 상기 저점도 유기용매로는 일례로 EMC, DMC 및 DEC로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 상기 고유전율 및 저점도 유기용매는 2:8 내지 8:2의 부피비로 혼합하여 사용하는 것이 바람직하다. 보다 구체적으로는, EC 및/또는 PC와, EMC 및 DEC의 3원 혼합 용매일 수 있으며, EC 및/또는 PC : EMC : DEC의 비율은 3 : 3 내지 5 : 2 내지 4일 수 있다.The organic solvent is a specific example by mixing an organic solvent of high dielectric constant having high ionic conductivity and a low-viscosity organic solvent that can be adjusted so that the viscosity of the solvent has an appropriate viscosity to be applied to the battery so as to increase the charging and discharging performance of the battery. It can be used as a mixed solvent, and more specifically, EC and/or PC can be used as an example of the organic solvent of high dielectric constant, and as an example of the low-viscosity organic solvent, from the group consisting of EMC, DMC and DEC One or more selected types may be used. The high dielectric constant and low viscosity organic solvent is preferably mixed in a volume ratio of 2:8 to 8:2. More specifically, it may be a ternary mixed solvent of EC and/or PC, and EMC and DEC, and the ratio of EC and/or PC:EMC:DEC may be 3:3 to 5:2 to 4.
상기 유기용매는 수분을 포함하는 경우, 전해액 중 리튬 이온이 가수분해될 수 있으므로, 유기용매 중 수분은 150 ppm 이하, 바람직하게는 100 ppm 이하로 통제되는 것이 바람직하다.When the organic solvent contains water, lithium ions in the electrolyte may be hydrolyzed, so the water content in the organic solvent is preferably controlled to be 150 ppm or less, preferably 100 ppm or less.
상기 전해액은 리튬염으로 일례로 LiPF6 및 LiFSI로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 이 경우 전지의 리튬 이온 공급이 원활이 이루어져 전지 성능이 우수한 이점이 있다.The electrolyte may include at least one selected from the group consisting of LiPF 6 and LiFSI, for example as a lithium salt, and in this case, lithium ions are smoothly supplied to the battery, so that the battery performance is excellent.
상기 전해액은 일례로 리튬염으로 LiF4, LiCl, LiBr, LiI, LiClO4, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li 및 (CF3SO2)2NLi로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있으며, 이 경우 리튬 이온의 공급이 보다 원활할 수 있다.The electrolyte is, for example, a lithium salt LiF 4 , LiCl, LiBr, LiI, LiClO 4 , LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li and (CF 3 SO 2 ) 2 At least one selected from the group consisting of NLi may be further included, and in this case, lithium ions may be more smoothly supplied.
상기 리튬염을 전해액에 용해시키면, 상기 리튬염은 리튬 이차 전지 내에서 리튬 이온의 공급원으로 기능하고, 양극과 음극 간의 리튬 이온의 이동을 촉진할 수 있다. 이에 따라, 상기 리튬염은 상기 전해액 중 대략 0.6 mol% 내지 2 mol%의 농도로 포함되는 것이 바람직하다. 상기 리튬염의 농도가 0.6 mol% 미만인 경우 전해질의 전도도가 낮아져 전해질 성능이 떨어질 수 있고, 2 mol%를 초과하는 경우 전해질의 점도가 증가하여 리튬 이온의 이동성이 낮아질 수 있다. 이와 같은 전해질의 전도도 및 리튬 이온의 이동성을 고려하면, 상기 리튬염은 상기 전해액 내에서 바람직하게는 0.7 mol% 내지 1.6 mol%, 더욱 바람직하게는 0.8 mol% 내지 1.5 mol%로 포함될 수 있다.When the lithium salt is dissolved in the electrolyte, the lithium salt functions as a source of lithium ions in the lithium secondary battery, and may promote movement of lithium ions between the positive electrode and the negative electrode. Accordingly, the lithium salt is preferably included in a concentration of about 0.6 mol% to 2 mol% of the electrolyte. If the concentration of the lithium salt is less than 0.6 mol%, the conductivity of the electrolyte may be lowered, and thus electrolyte performance may be deteriorated. Considering the conductivity of the electrolyte and the mobility of lithium ions, the lithium salt may be included in the electrolyte in an amount of preferably 0.7 mol% to 1.6 mol%, more preferably 0.8 mol% to 1.5 mol%.
본 발명의 전해액은 일례로 상기 제1 및 제2 첨가제 외에도, 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 일반적으로 전해액에 사용될 수 있는 첨가제(이하, 기타 첨가제라 함)를 더 포함할 수 있다.The electrolyte of the present invention, for example, in addition to the first and second additives, an additive (hereinafter referred to as other additives ) may be further included.
상기 기타 첨가제 성분으로서 바람직한 구체예로는 Succinic anhydride, Tetravinyl silane, Hexamethylenetetramine, 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether, 1,2-bis((difluorophosphaneyl)oxy)ethane, 1,3,6-Hexanetricarbonitrile, 1-Ethyl-3-methylimidazolium dicyanamide, Trimethoxyboroxine, Lithium Bis(oxaleto)borate, Lithium DiFluro(Oxalato) Borate, Tris(trimethylsilyl) borate, Lithium Tetrafluoroborate, Triisopropyl borate, Diethyl (difluoromethyl)phosphonate, Tris(trimethylsilyl) Phosphite, Tripropagyl phosphate, 2,4,8,10-Tetraoxa-3,9-dithiaspiro[5.5]undecane 3,3,9,9-tetraoxide, Dimethyl sulfate, Ethylene dimethanesulfonate, methylene methyl disulfonate, Lithium bis(fluorosulfonyl)imide, 3-Fluoro-1,3-propansulton, 1-propene-1,3-sultone, 1,3-propylene sulfate, 1,4-Butane sultone, Sulfolene, Biphenyl, Cyclo Hexyl Benzene, 4-Fluorotoluene, Triphenyl phosphate, Fluoro benzene 및 2-fluoro-biphenyl로 이루어진 군으로부터 선택된 1종 이상일 수 있다. Preferred examples of the other additive component include Succinic anhydride, Tetravinyl silane, Hexamethylenetetramine, 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether, 1,2-bis((difluorophosphaneyl)oxy)ethane, 1 ,3,6-Hexanetricarbonitrile, 1-Ethyl-3-methylimidazolium dicyanamide, Trimethoxyboroxine, Lithium Bis(oxaleto)borate, Lithium DiFluro(Oxalato) Borate, Tris(trimethylsilyl) borate, Lithium Tetrafluoroborate, Triisopropyl borate, Difluoromethyl)phosphonate Tris(trimethylsilyl) Phosphite, Tripropagyl phosphate, 2,4,8,10-Tetraoxa-3,9-dithiaspiro[5.5]undecane 3,3,9,9-tetraoxide, Dimethyl sulfate, Ethylene dimethanesulfonate, methylene methyl disulfonate, Lithium bis (fluorosulfonyl)imide, 3-Fluoro-1,3-propansulton, 1-propene-1,3-sultone, 1,3-propylene sulfate, 1,4-Butane sultone, Sulfolene, Biphenyl, Cyclo Hexyl Benzene, 4-Fluorotoluene , Triphenyl phosphate, Fluoro benzene, and may be at least one selected from the group consisting of 2-fluoro-biphenyl.
상기 기타 첨가제는 바람직하게는 전해액 총 중량에 0.3 내지 1.5 중량%, 바람직하게는 0.5 내지 1.2 중량%로 포함될 수 있고, 이 경우 전지의 저온 특성 및 사이클 특성의 개선 효과 측면에서 바람직하다.The other additives may be preferably included in an amount of 0.3 to 1.5 wt%, preferably 0.5 to 1.2 wt%, based on the total weight of the electrolyte, and in this case, it is preferable in terms of the effect of improving the low-temperature characteristics and cycle characteristics of the battery.
본 발명의 이차전지는 음극, 양극. 상기 음극과 양극 사이에 개재된 분리막, 및 상기 전해액을 포함하는 것을 특징으로 한다.The secondary battery of the present invention has a negative electrode and a positive electrode. A separator interposed between the cathode and the anode, and the electrolyte.
상기 양극은 일례로 양극 활물질, 바인더 및 선택적으로 도전제를 혼합하여 양극 활물질층 형성용 조성물을 제조한 후, 이를 알루미늄 호일 등의 양극 전류 집전체에 도포하여 제조할 수 있다.The positive electrode may be prepared by, for example, mixing a positive electrode active material, a binder, and optionally a conductive agent to prepare a composition for forming a positive electrode active material layer, and then applying it to a positive electrode current collector such as aluminum foil.
상기 양극 활물질은 일례로 리튬 이차전지에 사용되는 통상의 NCM(리튬 니켈 망간 코발트 산화물) 양극 활물질을 사용할 수 있고, 바람직하게는 화학식 Li[NixCo1-x-yMny]O2(여기서 0<x<0.5, 0<y<0.5) 형태의 리튬 복합금속 산화물일 수 있으며, 구체적인 예로 LiNiMnCoO2일 수 있으나 이에 제한되는 것은 아니다.The positive active material may be, for example, a conventional NCM (lithium nickel manganese cobalt oxide) positive active material used in lithium secondary batteries, preferably of the formula Li[NixCo 1-xy Mn y ]O 2 (where 0<x< 0.5, 0<y<0.5) may be a lithium composite metal oxide in the form, a specific example may be LiNiMnCoO 2 , but is not limited thereto.
상기 리튬 복합금속 산화물의 화학식 Li[NixCo1-x-yMny]O2의 변수 x, y는 일례로 0.0001<x<0.5, 0.0001<y<0.5, 또는 0.001<x<0.3, 0.001<y<0.3일 수 있다.Variables x and y of the formula Li[NixCo 1-xy Mn y ]O 2 of the lithium composite metal oxide are, for example, 0.0001<x<0.5, 0.0001<y<0.5, or 0.001<x<0.3, 0.001<y<0.3 can be
상기 양극 활물질은 다른 예로 리튬의 가역적인 인터칼레이션(intercalation) 및 디인터칼레이션(de intercalation)이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다.As another example of the positive active material, a compound capable of reversible intercalation and de-intercalation of lithium (a lithiated intercalation compound) may be used.
상기 화합물 중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 LiCoO2, LiMnO2, LiMn2O4, LiNiO2,LiNixMn(1-x)O2(단, 0<x<1), 및 LiM1xM2yO2(단, 0≤x≤1, 0≤y≤1, 0≤x+y≤1, M1 및 M2는 각각 독립적으로 Al, Sr, Mg 및 La로 이루어진 군에서 선택된 어느 하나이다)로 이루어진 군에서 선택되는 1종 이상이 바람직하다.Among the above compounds, LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi x Mn (1-x) O 2 (provided that 0<x<1), and LiM1 x M2 y O 2 (provided that 0≤x≤1, 0≤y≤1, 0≤x+y≤1, M1 and M2 are each independently any one selected from the group consisting of Al, Sr, Mg and La ), preferably at least one selected from the group consisting of.
상기 음극은 일례로 음극 활물질, 바인더 및 선택적으로 도전제를 혼합하여 음극 활물질층 형성용 조성물을 제조한 후, 이를 구리 포일 등의 음극 전류 집전체에 도포하여 제조할 수 있다.The negative electrode may be prepared by, for example, mixing a negative electrode active material, a binder, and optionally a conductive agent to prepare a composition for forming the negative electrode active material layer, and then applying it to a negative electrode current collector such as copper foil.
상기 음극 활물질로는 일례로 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다.As the anode active material, for example, a compound capable of reversible intercalation and deintercalation of lithium may be used.
상기 음극 활물질의 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료일 수 있다. 또한, 상기 탄소질 재료 이외에, 리튬과 합금화가 가능한 금속질 화합물, 또는 금속질 화합물과 탄소질 재료를 포함하는 복합물도 음극 활물질로 사용할 수 있고, 일례로 그라파이트(graphite)일 수 있다.Specific examples of the negative active material may be carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon. In addition, in addition to the carbonaceous material, a metal compound capable of alloying with lithium, or a composite including a metal compound and a carbonaceous material may be used as the negative electrode active material, and may be graphite, for example.
상기 리튬과 합금화가 가능한 금속으로는, 일례로 Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 중 적어도 어느 하나가 사용될 수 있다.As the metal alloyable with lithium, for example, at least one of Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy may be used.
또한, 상기 음극 활물질로서 금속 리튬 박막을 사용할 수도 있다. 상기 음극 활물질로는 안정성이 높다는 면에서 결정질 탄소, 비결정질 탄소, 탄소 복합체, 리튬 금속 및 리튬을 포함하는 합금으로 이루어진 군에서 선택된 어느 하나 이상을 사용할 수 있다.In addition, a metal lithium thin film may be used as the negative electrode active material. As the negative active material, in view of high stability, any one or more selected from the group consisting of crystalline carbon, amorphous carbon, carbon composite material, lithium metal, and an alloy containing lithium may be used.
본 발명의 이차전지는, 상기 제1 및 제2 첨가제를 첨가함으로써, 종래의 전해액 첨가제만을 첨가하였을 때에 비하여 HPPC(Hybrid Pulse Power Characterization)법에 의해 측정되는 전지 충전 저항, 출력 특성, 45℃ 이상의 고온에서 용량 회복 특성 및 수명 특성 등 전지 특성 개선 효과가 더욱 향상되는 효과가 있다.In the secondary battery of the present invention, when the first and second additives are added, the battery charging resistance measured by the Hybrid Pulse Power Characterization (HPPC) method, the output characteristics, and a high temperature of 45° C. or higher compared to the case where only the conventional electrolyte solution additive is added There is an effect that the effect of improving battery characteristics such as capacity recovery characteristics and lifespan characteristics is further improved.
구체적인 일례로, 본 발명의 이차전지는, 60℃에서 측정된 HPPC 충전 저항 값이 50 mΩ 이하일 수 있고, 바람직하게는 48 mΩ 이하, 더욱 바람직하게는 45 mΩ 이하, 가장 바람직하게는 43 mΩ 이하일 수 있다. 또한, 상기 이차전지는 60℃에서 회복 용량이 805 mAh 이상, 바람직하게는 810 mAh 이상, 더욱 바람직하게는 815 mAh 이상일 수 있다. 상기 이차전지의 45℃에서 수명 유지 효율은 80% 이상일 수 있고, 바람직하게는 85% 이상, 더욱 바람직하게는 87% 이상일 수 있다.As a specific example, in the secondary battery of the present invention, the HPPC charging resistance value measured at 60° C. may be 50 mΩ or less, preferably 48 mΩ or less, more preferably 45 mΩ or less, and most preferably 43 mΩ or less. there is. In addition, the secondary battery may have a recovery capacity of 805 mAh or more at 60°C, preferably 810 mAh or more, and more preferably 815 mAh or more. The lifetime maintenance efficiency at 45° C. of the secondary battery may be 80% or more, preferably 85% or more, and more preferably 87% or more.
상기 60℃에서 측정된 HPPC 충전 저항 값은 구체적인 일례로 상기 이차전지를 완충된 상태로 60℃에서 5시간 동안 방치한 후 측정된 전지의 저항값으로 나타낼 수 있다.As a specific example, the HPPC charging resistance value measured at 60° C. may be expressed as a resistance value of the battery measured after the secondary battery is left in a fully charged state at 60° C. for 5 hours.
상기 60℃에서의 회복 용량은 구체적인 일례로 상기 이차전지를 상온(25℃)에서 충방전시켜 초기 방전용량을 측정하고 다시 동일한 조건으로 충전시킨 다음, 60℃에서 4주간 보관한 후, 다시 상온에서 방전시켰을 때 측정된 잔존 용량으로 나타낼 수 있다.The recovery capacity at 60° C. is a specific example. The secondary battery is charged and discharged at room temperature (25° C.), the initial discharge capacity is measured, charged again under the same conditions, stored at 60° C. for 4 weeks, and then at room temperature again. It can be expressed as the measured residual capacity when discharged.
상기 45℃에서 수명 유지 효율 구체적인 일례로 상기 이차전지를 45℃에서 충전 및 방전을 300 사이클 반복하여, 초기 방전용량에 대한 300 사이클 반복 후의 방전용량을 퍼센티지(%) 값으로 나타낼 수 있다.As a specific example of the lifetime maintenance efficiency at 45° C., the secondary battery is repeatedly charged and discharged at 45° C. for 300 cycles, and the discharge capacity after 300 cycles of the initial discharge capacity can be expressed as a percentage (%) value.
본 기재에서, HPPC 충전 저항 값은, “Battery test manual for plug-in hybrid electric vehicles,” (2010, Idaho National Laboratory for the U.S. Department of Energy.) 문헌에서 규정된 방식에 의해 측정될 수 있는 것으로, 전지 출력 등 전지의 특성을 나타내는 중요한 지표이다. 또한 충전 저항이란, 전지의 충전 시 측정되는 저항 값으로, 충전 저항이 낮을수록 에너지 손실이 적어, 충전 속도가 빨라질 수 있고, 전지의 출력이 향상될 수 있다. 본 발명의 이차전지는 HPPC 충전 저항 값이 상기와 같이 낮게 나타나 충전 속도 및 출력이 우수하여, 예를 들어 자동차용 전지로 사용하기에 적합하다.In this description, the HPPC charging resistance value can be measured by a method specified in the document “Battery test manual for plug-in hybrid electric vehicles,” (2010, Idaho National Laboratory for the US Department of Energy.) It is an important indicator of battery characteristics such as battery output. In addition, the charging resistance is a resistance value measured during charging of the battery, and the lower the charging resistance, the less energy loss, the charging speed may be increased, and the output of the battery may be improved. The secondary battery of the present invention exhibits a low HPPC charging resistance value as described above, and thus has excellent charging speed and output, and is suitable for use as, for example, an automobile battery.
본 기재에서, 회복 용량은 장시간 방치된 전지의 용량 보존 특성을 나타내는 것으로, 장 시간 방치된 전지를 방전종지전압까지 방전시켰을 때의 방전된 전기 용량과, 상기 방전된 전지를 재충전시키고 다시 방전종지전압까지 방전시켰을 때의 방전된 전기 용량을 각각 측정하여, 상기 두 용량 값을 비교한 것이다. 회복 용량이 높을수록 전지 보존(저장)에 의한 자연 방전량이 적어, 전지의 장기간 보존이 가능함을 의미하며, 특히 전지의 보존 온도가 높을수록 자연 방전 속도가 빨라지므로, 고온에서의 회복 용량이 자동차용 전지에서 매우 중요한 특성이다. 본 발명의 전해액 첨가제를 전해액에 첨가하는 경우, 종래의 첨가제만을 사용했을 때 보다 회복 용량이 5 내지 20% 향상되어, 한 번의 충전으로 더욱 장기간 보관이 가능한 효과가 있다.In the present description, the recovery capacity indicates the capacity preservation characteristics of a battery left for a long time, and the discharged electric capacity when the battery left for a long time is discharged to the final discharge voltage, and the discharged battery after recharging the discharged battery to the final discharge voltage. Each of the discharged electric capacity when discharged up to was measured, and the two capacity values were compared. The higher the recovery capacity, the smaller the amount of natural discharge due to battery preservation (storage), which means that the battery can be stored for a long time. This is a very important characteristic in a battery. When the electrolyte solution additive of the present invention is added to the electrolyte solution, the recovery capacity is improved by 5 to 20% compared to when only the conventional additive is used, so that it can be stored for a longer period of time with a single charge.
따라서, 본 발명의 전지가 전기 자동차용 전지로 사용되는 경우, 자동차의 크기에 따라 중요해지는 출력 개선과, 기후 변화, 운전 중 또는 주차 시에 대부분 일광에 그대로 노출되는 자동차의 특성 상 문제되는 저온 및 고온에서의 성능 개선이 이루어져, 자동차 전지로서 우수한 성능을 나타낼 수 있다.Therefore, when the battery of the present invention is used as a battery for an electric vehicle, output improvement, which becomes important depending on the size of the vehicle, and climate change, low temperature and Performance improvement at high temperature can be achieved, thereby exhibiting excellent performance as an automobile battery.
따라서, 본 발명의 실시예들에 따른 전해액 첨가제, 이를 포함하는 전해액을 이차전지에 적용하는 경우, 충전 저항, 출력, 회복 용량 및 수명 효율이 개선되어, 자동차용 이차전지로 사용하기에 적합한 것을 알 수 있다.Therefore, when the electrolyte additive according to the embodiments of the present invention and the electrolyte containing the same are applied to a secondary battery, the charging resistance, output, recovery capacity and life efficiency are improved, and it is found that it is suitable for use as a secondary battery for automobiles. can
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are presented to help the understanding of the present invention, but the following examples are merely illustrative of the present invention, and it will be apparent to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention, It goes without saying that such variations and modifications fall within the scope of the appended claims.
[실시예 : 전지용 전해액의 제조][Example: Preparation of electrolyte solution for batteries]
실시예 1Example 1
유기용매로는 EC : EMC : DEC = 3:4:3의 부피비를 갖는 카보네이트계 혼합용매를 사용하고, 리튬염으로는 LiPF6을 1.15 M의 농도로 포함하는 용액에, 전해액 첨가제로 오산화인(P2O5 화합물) 0.05 중량%, 메탄설폰산(Methane sulfonic acid) 0.5 중량% 및 리튬 디플루오로포스페이트(lithium difluorophosphate) 1.0 중량%를 첨가하여 전해액을 제조하였다.As an organic solvent, a carbonate-based mixed solvent having a volume ratio of EC: EMC: DEC = 3:4:3 is used, and as a lithium salt, a solution containing LiPF 6 at a concentration of 1.15 M, phosphorus pentoxide as an electrolyte additive ( P 2 O 5 compound) 0.05% by weight, methane sulfonic acid (Methane sulfonic acid) 0.5% by weight, and lithium difluorophosphate (lithium difluorophosphate) 1.0% by weight were added to prepare an electrolyte solution.
실시예 2Example 2
상기 실시예 1에서, 전해액 첨가제로 P2O5 화합물 0.05 중량%, 메탄설폰산 0.5 중량% 및 비닐렌 카보네이트(Vinylene carbonate) 1.0 중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.In Example 1, 0.05 wt% of the P 2 O 5 compound, 0.5 wt% of methanesulfonic acid, and 1.0 wt% of vinylene carbonate were added as electrolyte additives. .
실시예 3Example 3
상기 실시예 1에서, 전해액 첨가제로 P2O5 화합물 0.05 중량%, 메탄설폰산 0.5 중량% 및 플루오로에틸렌 카보네이트(Fluoroethylene carbonate) 1.0 중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.In Example 1, as an electrolyte additive, 0.05 wt% of a P 2 O 5 compound, 0.5 wt% of methanesulfonic acid, and 1.0 wt% of fluoroethylene carbonate were added as in Example 1, except that did
실시예 4Example 4
상기 실시예 1에서, 전해액 첨가제로 P2O5 화합물 0.05 중량%, 메탄설폰산 0.5 중량% 및 1,3-프로판설톤(1,3-propane sultone) 1.0 중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.In Example 1, as an electrolyte additive, 0.05 wt% of a P 2 O 5 compound, 0.5 wt% of methanesulfonic acid, and 1.0 wt% of 1,3-propane sultone were added. It was carried out in the same manner as in Example 1.
실시예 5Example 5
상기 실시예 1에서, 전해액 첨가제로 P2O5 화합물 0.1 중량%, 메탄설폰산 1.0 중량% 및 비닐렌 카보네이트 1.0 중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.In Example 1, 0.1 wt% of the P 2 O 5 compound, 1.0 wt% of methanesulfonic acid, and 1.0 wt% of vinylene carbonate were added as electrolyte additives.
실시예 6Example 6
상기 실시예 1에서, 전해액 첨가제로 P2O5 화합물 0.1 중량%, 메탄설폰산 1.0 중량% 및 리튬 디플루오로포스페이트 1.0 중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.In Example 1, the P 2 O 5 compound as an electrolyte additive 0.1% by weight, 1.0% by weight of methanesulfonic acid, and 1.0% by weight of lithium difluorophosphate was carried out in the same manner as in Example 1, except that it was added.
비교예 1Comparative Example 1
상기 실시예 1에서, 전해액 첨가제로 P2O5 화합물 0.05 중량%, 메탄설폰산 0.5 중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.In Example 1, it was carried out in the same manner as in Example 1, except that 0.05 wt% of the P 2 O 5 compound and 0.5 wt% of methanesulfonic acid were added as electrolyte additives.
비교예 2Comparative Example 2
상기 실시예 1에서, 전해액 첨가제로 P2O5 화합물을 0.1 중량% 및 메탄설폰산 1.0 중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.In Example 1, 0.1 wt% of the P 2 O 5 compound and 1.0 wt% of methanesulfonic acid were added as electrolyte additives, and the same as in Example 1 was performed.
비교예 3Comparative Example 3
상기 실시예 1에서, 전해액 첨가제로 리튬 디플루오로포스페이트 1.0 중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.In Example 1, it was carried out in the same manner as in Example 1, except that 1.0% by weight of lithium difluorophosphate was added as an electrolyte additive.
비교예 4Comparative Example 4
상기 실시예 1에서, 전해액 첨가제로 리튬 디플루오로포스페이트 1.0 중량% 및 비닐렌 카보네이트 1.0 중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.In Example 1, it was carried out in the same manner as in Example 1, except that 1.0% by weight of lithium difluorophosphate and 1.0% by weight of vinylene carbonate were added as electrolyte additives.
비교예 5Comparative Example 5
상기 실시예 1에서, 전해액 첨가제로 리튬 디플루오로포스페이트 1.0 중량%, 비닐렌 카보네이트 1.0 중량% 및 메탄설폰산 1.0 중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.In Example 1, it was carried out in the same manner as in Example 1, except that 1.0% by weight of lithium difluorophosphate, 1.0% by weight of vinylene carbonate, and 1.0% by weight of methanesulfonic acid were added as electrolyte additives.
전지의 제조manufacture of batteries
양극 활물질로서 Li(Ni0.5Co0.2Mn0.3)O2 92 중량%, 도전제로 카본 블랙(carbon black) 4 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 4 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.Li (Ni 0.5 Co 0.2 Mn 0.3 )O 2 92 wt% as a positive active material, 4 wt% of carbon black as a conductive material, and 4 wt% of polyvinylidene fluoride (PVdF) as a binder N-methyl- as a solvent It was added to 2-pyrrolidone (NMP) to prepare a positive electrode mixture slurry. The positive electrode mixture slurry was applied to an aluminum (Al) thin film as a positive electrode current collector having a thickness of about 20 μm, dried to prepare a positive electrode, and then a positive electrode was manufactured by performing a roll press.
음극 활물질로는 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.Carbon powder as an anode active material, PVdF as a binder, and carbon black as a conductive agent in 96 wt%, 3 wt%, and 1 wt%, respectively, were added to NMP as a solvent to prepare an anode mixture slurry. The negative electrode mixture slurry was applied to a 10 μm-thick copper (Cu) thin film as a negative electrode current collector, dried to prepare a negative electrode, and then roll press was performed to prepare a negative electrode.
상기와 같이 제조된 양극과 음극을 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막과 함께 통상적인 방법으로 파우치형 전지를 제작 후, 상기 실시예 1 내지 6 및 비교예 1 내지 5에서 제조된 전해액을 주액하여 리튬 이차 전지의 제조를 완성하였다.After preparing a pouch-type battery in a conventional manner with a separator consisting of three layers of polypropylene/polyethylene/polypropylene (PP/PE/PP) for the positive and negative electrodes prepared as described above, Examples 1 to 6 and Comparative Examples Preparation of the lithium secondary battery was completed by injecting the electrolyte solution prepared in steps 1 to 5.
시험예test example
상기에서 제조된 각 이차전지의 성능을 평가하기 위해 하기의 방법으로 성능을 평가하였으며, 그 결과를 하기 표 1에 정리하여 나타내었다In order to evaluate the performance of each secondary battery prepared above, the performance was evaluated by the following method, and the results are summarized in Table 1 below.
[HPPC 충전 저항 평가][HPPC charging resistance evaluation]
"Battery test manual for plug-in hybrid electric vehicles," (2010, Idaho National Laboratory for the U.S. Department of Energy.) 문헌에서 규정된 방식에 의해 측정하였다.It was measured by the method prescribed in the document "Battery test manual for plug-in hybrid electric vehicles," (2010, Idaho National Laboratory for the U.S. Department of Energy.).
SOC 100%로 완충시킨 상태의 이차전지를 60℃에서 5시간 동안 방치한 후, 측정 전압값, C-rate에 해당하는 충방전 전류값, 전류 변화량(△I), 방전 전압 변화량(△V), 충전 전압 변화량(△V), 방전 저항, 충전 저항을 측정하여, C-rate별로 충방전 전류를 일정 시간동안 짧게 흘려주어 전류 및 전압 변화량으로 얻은 기울기값으로 저항값을 계산하였다.After leaving the secondary battery in a 100% SOC buffered state at 60°C for 5 hours, the measured voltage value, the charge/discharge current value corresponding to the C-rate, the amount of change in current (ΔI), and the amount of change in the discharge voltage (ΔV) , charge voltage change amount (ΔV), discharge resistance, and charge resistance were measured, and the resistance value was calculated using the slope value obtained from the current and voltage change amount by briefly flowing the charge/discharge current for each C-rate for a certain period of time.
[고온 회복 용량 평가][High temperature recovery capacity evaluation]
충전 조건은 정전류 1.0C 및 전압 4.2V에서 충전전류가 1/10C가 될 때까지 충전하였다. 방전 조건은 1.0C의 정전류로 3.0V까지 방전에 의해 충방전을 시행한 후, 방전용량을 측정하였다.The charging conditions were a constant current of 1.0C and a voltage of 4.2V, until the charging current became 1/10C. Discharge conditions were performed by charging and discharging by discharging up to 3.0V at a constant current of 1.0C, and then the discharge capacity was measured.
동일한 충방전 조건으로 충전 후 60℃의 항온조에서 4주간 보관 후, 25℃의 실온 조건에서 방전 전압 3V까지 방전시킨 후 잔존 용량을 측정하였다. 이후 동일한 충방전 조건으로 100회 실시 후 회복 용량을 측정하여 이의 평균 값을 계산하였다.After charging under the same charging and discharging conditions, it was stored in a constant temperature bath at 60°C for 4 weeks, and then discharged to a discharge voltage of 3V at room temperature at 25°C, and the remaining capacity was measured. After performing 100 times under the same charge/discharge conditions, the recovery capacity was measured and the average value thereof was calculated.
[고온 수명 평가] [High temperature life evaluation]
상기 이차전지를 45℃에서 1C rate의 전류로 전압이 4.20V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.20V를 유지하면서 0.05C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 3.0V(vs. Li)에 이를 때까지 1C rate의 정전류로 방전하였다(1st 사이클). 상기와 같은 사이클을 300회 반복하여 이의 평균 값을 계산하였다The secondary battery was charged with a constant current at 45° C. with a current of 1C rate until the voltage reached 4.20V (vs. Li), and then cut-off at a current of 0.05C while maintaining 4.20V in the constant voltage mode. did Then, it was discharged at a constant current of 1C rate until the voltage reached 3.0V (vs. Li) during discharge (1st cycle). The above cycle was repeated 300 times and the average value thereof was calculated.
구분division 첨가제(중량%)Additives (wt%) HPPC 충전저항HPPC charging resistor
(mΩ)(mΩ)
회복 용량recovery capacity
(mAh)(mAh)
수명 효율Life Efficiency
(%)(%)
제1 첨가제first additive 제2 첨가제second additive
실시예 1Example 1 P2O5
(0.05)
P 2 O 5
(0.05)
Methane sulfonic acid
(0.5)
Methane sulfonic acid
(0.5)
lithium difluorophosphate
(1.0)
lithium difluorophosphate
(1.0)
41.141.1 816.3816.3 88.188.1
실시예 2Example 2 P2O5
(0.05)
P 2 O 5
(0.05)
Methane sulfonic acid
(0.5)
Methane sulfonic acid
(0.5)
Vinylene carbonate
(1.0)
Vinylene carbonate
(1.0)
42.842.8 825.6825.6 88.588.5
실시예 3Example 3 P2O5
(0.05)
P 2 O 5
(0.05)
Methane sulfonic acid
(0.5)
Methane sulfonic acid
(0.5)
Fluoroethylene carbonate
(1.0)
Fluoroethylene carbonate
(1.0)
40.340.3 826.4826.4 88.888.8
실시예 4Example 4 P2O5
(0.05)
P 2 O 5
(0.05)
Methane sulfonic acid
(0.5)
Methane sulfonic acid
(0.5)
1,3-propane sultone
(1.0)
1,3-propane sultone
(1.0)
42.842.8 836.5836.5 87.987.9
실시예 5Example 5 P2O5
(0.1)
P 2 O 5
(0.1)
Methane sulfonic acid
(1.0)
Methane sulfonic acid
(1.0)
Vinylene carbonate
(1.0)
Vinylene carbonate
(1.0)
39.339.3 832.5832.5 89.189.1
실시예 6Example 6 P2O5
(0.1)
P 2 O 5
(0.1)
Methane sulfonic acid
(1.0)
Methane sulfonic acid
(1.0)
lithium difluorophosphate
(1.0)
lithium difluorophosphate
(1.0)
41.041.0 830.6830.6 86.386.3
비교예 1Comparative Example 1 P2O5
(0.05)
P 2 O 5
(0.05)
Methane sulfonic acid
(0.5)
Methane sulfonic acid
(0.5)
-- 52.652.6 749.3749.3 81.381.3
비교예 2Comparative Example 2 P2O5
(0.1)
P 2 O 5
(0.1)
Methane sulfonic acid
(1.0)
Methane sulfonic acid
(1.0)
-- 58.458.4 723.8723.8 80.680.6
비교예 3Comparative Example 3 -- -- lithium difluorophosphate
(1.0)
lithium difluorophosphate
(1.0)
65.765.7 780.5780.5 84.284.2
비교예 4Comparative Example 4 -- -- lithium difluorophosphate (1.0)
Vinylene carbonate (1.0)
lithium difluorophosphate (1.0)
Vinylene carbonate (1.0)
53.353.3 805.1805.1 82.482.4
비교예 5Comparative Example 5 -- Methane sulfonic acid
(1.0)
Methane sulfonic acid
(1.0)
lithium difluorophosphate (1.0)
Vinylene carbonate (1.0)
lithium difluorophosphate (1.0)
Vinylene carbonate (1.0)
70.570.5 764.2764.2 80.580.5
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1 내지 6의 전해액을 포함하는 이차전지의 경우, 충전저항은 39.3 내지 42.8 mΩ이고, 고온 회복 용량은 816.3 내지 830.6 mAh이며, 고온 수명 효율은 86.3 내지 89.1%로 나타난 반면, 본 발명을 벗어나는 비교예 1 내지 5의 경우에는 상기 실시예 1 내지 6에 비하여 충전저항은 최소 약 10 mΩ 이상 높고, 고온 회복 용량은 최소 약 11 mAh 이상 낮으며, 고온 수명 효율은 최소 약 2% 이상 낮게 나타났다.As shown in Table 1, in the case of the secondary batteries including the electrolytes of Examples 1 to 6 according to the present invention, the charging resistance is 39.3 to 42.8 mΩ, the high temperature recovery capacity is 816.3 to 830.6 mAh, and the high temperature life efficiency is On the other hand, in the case of Comparative Examples 1 to 5 outside the present invention, the charging resistance is at least about 10 mΩ higher than in Examples 1 to 6, and the high temperature recovery capacity is at least about 11 mAh lower, The high-temperature lifetime efficiency was at least about 2% lower.
따라서, 본 발명의 전해액은 이차전지의 충전 효율 및 출력을 향상시키고, 고온에서 장기 보관 효율 및 용량 유지율을 개선시키는 효과가 있음을 확인할 수 있었다.Therefore, it was confirmed that the electrolyte of the present invention has the effect of improving the charging efficiency and output of the secondary battery, and improving the long-term storage efficiency and capacity retention rate at high temperatures.

Claims (13)

  1. 유기용매;organic solvents;
    리튬염;lithium salt;
    제1 첨가제; 및a first additive; and
    제2 첨가제;를 포함하며,a second additive;
    상기 제1 첨가제는 오산화인을 포함하고.and the first additive includes phosphorus pentoxide.
    상기 제2 첨가제는 비닐렌 카보네이트, 플루오로에틸렌 카보네이트, 리튬 디플루오로포스페이트, 리튬 디플루오로비스(옥살라토)포스페이트, 1,3-프로판설톤, 에틸렌설페이트, 석시노나이트릴 및 비닐에틸렌카보네이트로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전해액.The second additive is vinylene carbonate, fluoroethylene carbonate, lithium difluorophosphate, lithium difluorobis(oxalato)phosphate, 1,3-propanesultone, ethylene sulfate, succinonitrile and vinylethylene carbonate. Electrolyte solution comprising at least one selected from the group consisting of.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제1 첨가제는 상기 전해액 총 100 중량%를 기준으로 0.01 내지 10 중량%로 포함되는 것을 특징으로 하는 전지용 전해액. The first additive is an electrolyte for a battery, characterized in that it is included in an amount of 0.01 to 10% by weight based on 100% by weight of the total electrolyte.
  3. 제1항에 있어서,According to claim 1,
    상기 제1 첨가제는 메탄설폰산, 황산 및 인산으로 이루어진 군에서 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 전해액.The first additive is an electrolyte solution, characterized in that it further comprises at least one selected from the group consisting of methanesulfonic acid, sulfuric acid and phosphoric acid.
  4. 제1항에 있어서,According to claim 1,
    상기 제2 첨가제는 상기 전해액 총 100 중량%를 기준으로 0.01 내지 5 중량%로 포함되는 것을 특징으로 하는 전지용 전해액.The second additive is an electrolyte for a battery, characterized in that it is included in an amount of 0.01 to 5% by weight based on 100% by weight of the total electrolyte.
  5. 제1항에 있어서,According to claim 1,
    상기 유기용매는 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 프로필렌 카보네이트(PC), 디프로필 카보네이트(DPC), 부틸렌 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP) 및 프로필 프로피오네이트(PP)로 이루어진 군에서 선택된 2종 이상을 포함하는 것을 특징으로 하는 전해액.The organic solvent is ethylene carbonate (EC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), propylene carbonate (PC), dipropyl carbonate (DPC), butylene carbonate, methylpropyl carbonate , ethyl propyl carbonate, methyl propionate (MP), ethyl propionate (EP) and propyl propionate (PP) characterized in that it comprises two or more selected from the group consisting of.
  6. 제1항에 있어서,According to claim 1,
    상기 리튬염은 LiPF6 및 LiFSI로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전해액.The lithium salt is an electrolyte solution comprising at least one selected from the group consisting of LiPF 6 and LiFSI.
  7. 제1항에 있어서,According to claim 1,
    상기 전해액은 리튬염으로 LiF4, LiCl, LiBr, LiI, LiClO4, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li 및 (CF3SO2)2NLi로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전해액.The electrolyte is a lithium salt LiF 4 , LiCl, LiBr, LiI, LiClO 4 , LiB 10 Cl 10 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li and (CF 3 SO 2 ) 2 Electrolytic solution comprising at least one selected from the group consisting of NLi.
  8. 제1항에 있어서,According to claim 1,
    상기 제2 첨가제는 리튬 테트라플루오로 옥살라토 포스페이트 및 리튬 트리옥살라토 포스페이트로 이루어진 군에서 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 전해액.The second additive is an electrolyte solution, characterized in that it further comprises at least one selected from the group consisting of lithium tetrafluoro oxalato phosphate and lithium trioxalato phosphate.
  9. 음극, 양극, 상기 음극과 양극 사이에 개재된 분리막 및 전해액을 포함하는 이차전지로서,A secondary battery comprising a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte,
    상기 전해액은 제1항 내지 제8항 중 어느 한 항의 전해액인 것을 특징으로 하는 이차전지.The electrolyte is a secondary battery, characterized in that the electrolyte of any one of claims 1 to 8.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 이차전지는, 60℃에서 HPPC 충전 저항 값이 50 mΩ 이하인 것을 특징으로 하는 리튬 이차전지.The secondary battery is a lithium secondary battery, characterized in that the HPPC charge resistance value of 50 mΩ or less at 60 ℃.
  11. 제9항에 있어서,10. The method of claim 9,
    상기 이차전지는, 60℃에서 회복용량이 805 mAh 이상인 것을 특징으로 하는 리튬 이차전지.The secondary battery is a lithium secondary battery, characterized in that the recovery capacity is 805 mAh or more at 60 ℃.
  12. 제9항에 있어서,10. The method of claim 9,
    상기 이차전지는, 45℃에서 수명 유지 효율이 80% 이상인 것을 특징으로 하는 리튬 이차전지.The secondary battery, a lithium secondary battery, characterized in that the lifespan efficiency at 45 ℃ 80% or more.
  13. 제9항에 있어서,10. The method of claim 9,
    상기 이차전지는 자동차용 전지인 것을 특징으로 하는 리튬 이차전지.The secondary battery is a lithium secondary battery, characterized in that the battery for automobiles.
PCT/KR2021/010781 2020-08-13 2021-08-13 Electrolyte and secondary battery comprising same WO2022035272A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200101997 2020-08-13
KR10-2020-0101997 2020-08-13
KR1020210100410A KR102537722B1 (en) 2020-08-13 2021-07-30 Electrolyte Solution And Secondary Battery Comprising The Same
KR10-2021-0100410 2021-07-30

Publications (1)

Publication Number Publication Date
WO2022035272A1 true WO2022035272A1 (en) 2022-02-17

Family

ID=80247235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010781 WO2022035272A1 (en) 2020-08-13 2021-08-13 Electrolyte and secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2022035272A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080633A1 (en) * 2021-11-05 2023-05-11 솔브레인 주식회사 Electrolyte and secondary battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050011213A (en) * 2003-07-22 2005-01-29 주식회사 엘지화학 The lithium secondary battery with the high temperature conservation-property improved
JP2005149786A (en) * 2003-11-12 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
US20070031734A1 (en) * 2005-08-02 2007-02-08 Jiang Fan Electrolyte additives for lithium metal and lithium ion rechargeable batteries
JP2016051600A (en) * 2014-08-29 2016-04-11 富山薬品工業株式会社 Nonaqueous electrolytic solution for power storage device
KR20200082557A (en) * 2018-12-31 2020-07-08 주식회사 엔켐 An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050011213A (en) * 2003-07-22 2005-01-29 주식회사 엘지화학 The lithium secondary battery with the high temperature conservation-property improved
JP2005149786A (en) * 2003-11-12 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
US20070031734A1 (en) * 2005-08-02 2007-02-08 Jiang Fan Electrolyte additives for lithium metal and lithium ion rechargeable batteries
JP2016051600A (en) * 2014-08-29 2016-04-11 富山薬品工業株式会社 Nonaqueous electrolytic solution for power storage device
KR20200082557A (en) * 2018-12-31 2020-07-08 주식회사 엔켐 An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080633A1 (en) * 2021-11-05 2023-05-11 솔브레인 주식회사 Electrolyte and secondary battery comprising same

Similar Documents

Publication Publication Date Title
WO2013165077A1 (en) Electrolyte additive, lithium secondary battery and non-aqueous electrolyte comprising additive
WO2013168882A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing same
WO2017010820A1 (en) Electrolyte additive for secondary battery, electrolyte comprising same, and secondary battery
WO2018097523A1 (en) Electrolyte solution for secondary battery and secondary battery comprising same
WO2015088052A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2015190705A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
KR20190101876A (en) Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same
WO2013137596A1 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery including same
US20200388878A1 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
KR20220000859A (en) Electrolyte Solution Additive, Electrolyte Solution For Battery And Secondary Battery Comprising The Same
KR20180050781A (en) Nonaqueous electrolytic solution and lithium secondary battery
WO2021261976A1 (en) Electrolyte additive, battery electrolyte comprising same, and secondary battery comprising same
WO2015093885A1 (en) Lithium secondary battery electrolyte and lithium secondary battery comprising same
WO2015037852A1 (en) Non-aqueous electrolyte solution and lithium secondary battery including same
KR20210001837A (en) Electrolyte Solution Additive, Electrolyte Solution For Battery And Secondary Battery Comprising The Same
WO2015088051A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20180050780A (en) Nonaqueous electrolytic solution and lithium secondary battery
KR20220000858A (en) Electrolyte Solution Additive, Electrolyte Solution For Battery And Secondary Battery Comprising The Same
WO2022035272A1 (en) Electrolyte and secondary battery comprising same
WO2024063189A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery
WO2024038942A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery including same, and lithium secondary battery including same
KR102605446B1 (en) Nonaqueous electrolytic solution and lithium secondary battery
WO2018097519A1 (en) Electrolyte solution for secondary battery and secondary battery comprising same
WO2022114930A1 (en) Non-aqueous electrolytic solution for lithium secondary battery and lithium secondary battery comprising same
WO2016208946A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21856278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21856278

Country of ref document: EP

Kind code of ref document: A1