WO2022034837A1 - Layered resin product, and transparent substrate material and transparent protective material using same - Google Patents

Layered resin product, and transparent substrate material and transparent protective material using same Download PDF

Info

Publication number
WO2022034837A1
WO2022034837A1 PCT/JP2021/028875 JP2021028875W WO2022034837A1 WO 2022034837 A1 WO2022034837 A1 WO 2022034837A1 JP 2021028875 W JP2021028875 W JP 2021028875W WO 2022034837 A1 WO2022034837 A1 WO 2022034837A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
hot press
thermoplastic resin
molded body
Prior art date
Application number
PCT/JP2021/028875
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 平林
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202180055993.0A priority Critical patent/CN116034032A/en
Priority to JP2022542819A priority patent/JPWO2022034837A1/ja
Publication of WO2022034837A1 publication Critical patent/WO2022034837A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a resin laminate used as a transparent substrate material or a protective material. More specifically, the present invention relates to a resin laminate having excellent thermoformability at a low temperature and having a good appearance that suppresses the generation of interference fringes.
  • Acrylic resin has excellent surface hardness, transparency, scratch resistance and weather resistance.
  • the polycarbonate resin has excellent impact resistance and the like.
  • the laminate having the acrylic resin layer and the polycarbonate resin layer is excellent in surface hardness, transparency, scratch resistance, weather resistance, impact resistance, etc., and is excellent in automobile parts, home appliances, electronic devices, and portable information terminals. It is used for the display window of.
  • thermoforming such as vacuum forming and compressed air forming on the front plate of display devices.
  • a laminate having an acrylic resin layer and a polycarbonate resin layer has been attempted to be applied to a front plate from the above-mentioned excellent performance aspects.
  • the laminate having the acrylic resin layer and the polycarbonate resin layer is heat-molded, it is necessary to heat the sheet to a temperature at which the polycarbonate resin is sufficiently stretched, which causes excessive heat to be applied to the acrylic resin. Peeling may occur at the interface between the acrylic resin layer and the polycarbonate resin layer, and the surface may be whitened or cracks may occur.
  • the molding temperature is lowered in order to suppress the occurrence of whitening and cracks, "springback" that does not reproduce the shape of the mold may occur.
  • Patent Document 1 discloses a molding resin sheet of a polycarbonate resin having a specific terminal group and an acrylic resin as a molding resin sheet suitable for thermoforming such as vacuum forming and pneumatic molding. Such a resin sheet is suppressed from whitening and cracking during bending by thermoforming. However, when the surface of the acrylic resin layer of the resin sheet is hard coated, there is a problem that cracks occur during bending in thermoforming.
  • Patent Document 2 discloses a laminate of a styrene-maleic anhydride copolymer, an alloy layer of a methacrylic resin, and a polycarbonate resin layer for thermoforming at a temperature of 160 ° C. Such a laminate does not cause any problems when thermoformed at a temperature of 160 ° C. However, when the resin laminate having the styrene-maleic anhydride copolymer and the hard coat layer on the surface of the alloy layer of the methacrylic resin is thermoformed at a temperature of 160 ° C., cracks are formed in the bent portion of the resin laminate. There was a problem that it occurred.
  • An object of the present invention is to provide a resin laminate having excellent thermoformability at low temperature and having a good appearance to suppress the generation of interference fringes.
  • the present inventors have completed the present invention as a result of repeated diligent studies to solve the above problems. Specifically, the present invention is as follows.
  • a layer containing a thermoplastic resin (B) is provided on at least one surface of a layer containing a polycarbonate resin (A), and a hard coat layer is provided on at least one surface of the layer containing the thermoplastic resin (B). It is a resin laminate having The polycarbonate resin (A) has a glass transition temperature of 115 ° C to 140 ° C, and has a glass transition temperature of 115 ° C to 140 ° C.
  • the thermoplastic resin (B) contains a methacrylic resin (C) and a styrene copolymer (D), and the total content of the methacrylic resin (C) and the styrene copolymer (D) is based on 100 parts by mass.
  • the content of the methacrylic resin (C) is 15 to 70 parts by mass, and the content of the styrene copolymer (D) is 85 to 30 parts by mass.
  • the styrene copolymer (D) is a copolymer containing 68 to 84% by mass of a vinyl aromatic monomer unit (d1) and 16 to 32% by mass of a cyclic acid anhydride monomer unit (d2).
  • the weight average molecular weight is 50,000 to 130,000.
  • This resin laminate does not cause cracks or springback in the bent portion after thermoforming at a mold temperature of 120 ° C. with a heat press machine of 50 mmR.
  • thermoplastic resin (B) is a polymer alloy of the methacrylic resin (C) and the styrene copolymer (D). .. [4] The resin laminate according to any one of the above [1] to [3], wherein the vinyl aromatic monomer unit (d1) contained in the styrene copolymer (D) is styrene.
  • the polycarbonate-based resin (A) has a terminal structure derived from a monovalent phenol represented by the following general formula (1) and a structural unit derived from a divalent phenol, and has the above-mentioned [1] to [1] to [ 5] The resin laminate according to any one of.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms
  • R 2 to R 5 are carbons which may have a hydrogen, a halogen or a substituent, respectively.
  • the thickness of the layer containing the thermoplastic resin (B) is 10 to 250 ⁇ m, and the total thickness of the resin laminate is in the range of 0.4 to 4.0 mm.
  • the resin laminate according to any one of the above [1] to [10] is a thermoformed body obtained by thermoforming.
  • a front plate for a car navigation system, an OA device, or a portable electronic device which comprises the resin laminate according to any one of the above [1] to [12] or the thermoformed body according to the above [11].
  • a method for producing a thermoformed body which comprises a step of hot bending a resin laminate at a mold temperature of 100 ° C. to 135 ° C.
  • the resin laminate has a layer containing a thermoplastic resin (B) on at least one surface of a layer containing a polycarbonate resin (A), and is on at least one side surface of the layer containing the thermoplastic resin (B).
  • the polycarbonate resin (A) has a glass transition temperature of 115 ° C to 140 ° C, and has a glass transition temperature of 115 ° C to 140 ° C.
  • the thermoplastic resin (B) contains a methacrylic resin (C) and a styrene copolymer (D), and the total content of the methacrylic resin (C) and the styrene copolymer (D) is based on 100 parts by mass.
  • the content of the methacrylic resin (C) is 15 to 70 parts by mass, and the content of the styrene copolymer (D) is 85 to 30 parts by mass.
  • the styrene copolymer (D) is a copolymer containing 68 to 84% by mass of a vinyl aromatic monomer unit (d1) and 16 to 32% by mass of a cyclic acid anhydride monomer unit (d2). This is the production method, wherein the weight average molecular weight is 50,000 to 130,000.
  • the resin laminate of the present invention can be obtained as a molded product having a good appearance by suppressing the occurrence of whitening and cracks during thermoforming.
  • the resin laminate can be used as a transparent substrate material or a transparent protective material.
  • portable display devices such as mobile phone terminals, portable electronic play equipment, mobile information terminals, and mobile PCs
  • stationary display devices such as notebook PCs, desktop PC LCD monitors, car navigation LCD monitors, and LCD TVs. In, for example, it can be suitably used as a front plate for protecting these devices.
  • the polycarbonate-based resin (A) used in the present invention is a polycarbonate-based resin (A) containing a polycarbonate resin as a main component.
  • “having a polycarbonate resin as a main component” means that the content of the polycarbonate resin exceeds 50% by mass.
  • the polycarbonate resin (A) preferably contains 75% by mass or more of the polycarbonate resin, more preferably 90% by mass or more of the polycarbonate resin, and further preferably substantially composed of the polycarbonate resin. ..
  • the polycarbonate resin (A) contains a carbonic acid ester bond in the molecular main chain.
  • R contains an aliphatic group, an aromatic group, or both an aliphatic group and an aromatic group, and further has a linear structure or a branched structure. Is not particularly limited as long as it contains), but it is particularly preferable to use a polycarbonate containing the structural unit of the following formula (2). By using such polycarbonate, a resin laminate having excellent impact resistance can be obtained.
  • the polycarbonate resin (A) is preferably synthesized by using a monohydric phenol represented by the following general formula (1) as a terminal terminator.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
  • R 2 to R 5 represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms, which may have hydrogen, halogen, or a substituent, respectively, and the substituents are halogen and 1 carbon dioxide group. It is an alkyl group of up to 20 or an aryl group having 6 to 12 carbon atoms.
  • the monohydric phenol of the general formula (1) is more preferably a monohydric phenol represented by the following general formula (3).
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
  • the carbon number of R 1 in the general formula (1) or the general formula (3) is within a specific numerical range. Specifically, as the upper limit of the number of carbon atoms of R 1 , 36 is preferable, 22 is more preferable, and 18 is particularly preferable. Further, as the lower limit of the number of carbon atoms of R 1 , 8 is preferable, and 12 is more preferable.
  • one or both of the parahydroxybenzoic acid hexadecyl ester and the parahydroxybenzoic acid 2-hexyldecyl ester are terminated. It is particularly preferable to use it as an agent.
  • a monohydric phenol (terminal terminator) having an alkyl group having 16 carbon atoms is used as R 1 in the general formula (1) or the general formula (3), the glass transition temperature, melt fluidity, moldability, and the like. It has excellent draw-down resistance and solvent solubility of monohydric phenol during production of a polycarbonate resin, and is particularly preferable as a terminal terminator used in the polycarbonate resin used in the present invention.
  • the carbon number of R1 in the general formula (1) or the general formula (3) is increased too much, the organic solvent solubility of the monohydric phenol (terminal terminator) tends to decrease, and the polycarbonate resin is manufactured. Productivity may decrease.
  • the carbon number of R 1 is 36 or less, the productivity is high and the economy is good in producing the polycarbonate resin.
  • the monohydric phenol is particularly excellent in organic solvent solubility, and can greatly increase the productivity in producing the polycarbonate resin and also improve the economic efficiency. If the carbon number of R 1 in the general formula (1) or the general formula (3) is too small, the glass transition temperature of the polycarbonate resin does not become a sufficiently low value, and the thermoformability may deteriorate.
  • the polyester resin may contain terephthalic acid as a main component as the dicarboxylic acid component, and may contain a dicarboxylic acid component other than terephthalic acid.
  • a glycol component containing 20 to 40 (molar ratio, 100 in total) of 1,4-cyclohexanedimethanol with ethylene glycol 80 to 60 (molar ratio) as the main component and a dicarboxylic acid component are polycondensed.
  • a polyester resin, so-called "PETG” is preferable.
  • the polycarbonate-based resin (A) may contain a polyester carbonate-based resin having an ester bond and a carbonate bond in the polymer skeleton.
  • the weight average molecular weight of the polycarbonate resin (A) affects the impact resistance and molding conditions of the resin laminate. That is, if the weight average molecular weight is too small, the impact resistance of the resin laminate is lowered, which is not preferable. If the weight average molecular weight is too high, an excessive heat source may be required when laminating the layer containing the polycarbonate resin (A), which is not preferable. Further, since a high temperature is required depending on the molding method, the polycarbonate resin (A) is exposed to a high temperature, which may adversely affect its thermal stability.
  • the weight average molecular weight of the polycarbonate resin (A) is preferably 10,000 to 75,000, more preferably 15,000 to 60,000. More preferably, it is 20,000 to 50,000.
  • the weight average molecular weight of the polycarbonate resin (A) can be measured based on the description in paragraphs 0061 to 0064 of JP-A-2007-179018. The details of the measurement method are shown below.
  • the relationship between the elution time and the molecular weight of polycarbonate (PC) is obtained by a universal calibration method and used as a calibration curve. Then, the elution curve (chromatogram) of PC is measured under the same conditions as in the case of the calibration curve, and each average molecular weight is obtained from the elution time (molecular weight) and the peak area (molecular number) of the elution time. Assuming that the number of molecules of the molecular weight Mi is Ni, the weight average molecular weight is expressed as follows. The following formula was used as the conversion formula.
  • MPC 0.47822MPS 1.01470 MPC indicates the molecular weight of PC, and MPS indicates the molecular weight of PS.
  • the glass transition temperature of the polycarbonate resin (A) used in the present invention is preferably 115 to 140 ° C, more preferably 115 to 135 ° C, further preferably 115 ° C to 130 ° C, and particularly preferably 115 ° C or higher and lower than 130 ° C. preferable.
  • the glass transition temperature of the polycarbonate resin (A) in the present specification is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter and calculated at the intersection of the baseline and the tangent at the inflection. It is the temperature at the time of.
  • the melt flow rate of the polycarbonate resin (A) is preferably in the range of 1 to 30 g / 10 minutes, more preferably in the range of 8 to 20 g / 10 minutes, and in the range of 11 to 15 g / 10 minutes. It is even more preferable to have it. When the melt flow rate is in the range of 1 to 30 g / 10 minutes, the stability of heat melt molding is good.
  • the melt flow rate of the polycarbonate resin (A) in the present specification is measured using a melt indexer under the conditions of a temperature of 300 ° C. and a load of 1.2 kg.
  • the method for producing the polycarbonate resin (A) used in the present invention can be appropriately selected depending on the monomer used, such as a known phosgene method (interfacial polymerization method) or transesterification method (melting method).
  • thermoplastic resin (B) used in the present invention contains a methacrylic resin (C) and a styrene copolymer (D). Each component will be described below.
  • thermoplastic resin (B) examples include a resin containing a structural unit derived from a methacrylic acid ester monomer.
  • Examples of the methacrylic acid ester monomer of the methacrylic acid resin (C) include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and tert-butyl methacrylate.
  • Alkyl methacrylate esters such as pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate; 1-methylcyclopentyl methacrylate, cyclohexyl methacrylate, cyclomethacrylate.
  • Cycloalkyl esters of methacrylic acid such as heptyl, cyclooctyl methacrylate, tricyclo methacrylate [5.2.1.02,6] deca-8-yl; aryl methacrylate esters such as phenyl methacrylate; methacrylics such as benzyl methacrylate.
  • Examples thereof include acid aralkyl esters, and from the viewpoint of availability, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and tert-butyl methacrylate are preferable. , Methyl methacrylate is most preferred.
  • the methacrylic resin (C) preferably contains 80% by mass or more of structural units derived from the methacrylic acid ester monomer, more preferably 90% by mass or more, and 95% by mass. It is more preferable to contain% or more.
  • the methacrylic resin (C) contains 80% by mass or more of structural units derived from the methacrylic acid ester monomer, the compatibility with the styrene copolymer (D) is good, which is preferable.
  • the structural unit derived from the methacrylic acid ester monomer is less than 80% by mass, it may become cloudy without being compatible with the styrene copolymer (D).
  • the methacrylic resin (C) may contain a structural unit derived from a monomer other than the methacrylic acid ester.
  • examples of such other monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, hexyl acrylate, and 2 acrylate.
  • the lower limit of the syndiotacticity (rr) of the triplet display of the methacrylic resin (C) is preferably 50 mol% or more, more preferably 51% mol or more, and 52% mol or more. Is even more preferable. When the lower limit of the content of such a structure is 50 mol% or more, the heat resistance is excellent.
  • syndiotacticity (rr) of the triplet display (hereinafter, may be simply referred to as “syngiotacticity (rr)”) is a chain of three consecutive structural units (triplet, triad). ) Has two chains (double element, diad), both of which are racemic (denoted as rr). In the chain of structural units (double element, diad) in the polymer molecule, those having the same configuration are referred to as meso, and the opposite ones are referred to as racemo, which are referred to as m and r, respectively.
  • the weight average molecular weight of the methacrylic resin (C) is determined by the ease of mixing (dispersing) with the styrene copolymer (D) and the ease of producing these thermoplastic resins (B). That is, if the weight average molecular weight of the methacrylic resin (C) is too large, the difference in melt viscosity with the styrene copolymer (D) becomes too large, so that the mixture (dispersion) of the two becomes poor and the thermoplastic resin (B) ) May deteriorate in transparency, or stable melt-kneading cannot be continued.
  • the weight average molecular weight of the methacrylic resin (C) is preferably in the range of 50,000 to 700,000, more preferably in the range of 60,000 to 500,000. More preferably, it is in the range of 70,000 to 200,000.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the glass transition temperature of the methacrylic resin (C) is preferably 100 ° C. or higher, more preferably 105 ° C. or higher, and even more preferably 108 ° C. or higher. When the glass transition temperature is 100 ° C. or higher, the resin laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment.
  • the glass transition temperature of the methacrylic resin (C) in the present specification is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter and calculated at the intersection of the baseline and the tangent at the inflection. The temperature of the time.
  • the melt flow rate of the methacrylic resin (C) is preferably in the range of 1 to 10 g / 10 minutes.
  • the lower limit of the melt flow rate is more preferably 1.2 g / 10 minutes or more, and further preferably 1.5 g / 10 minutes.
  • the upper limit of the melt flow rate is more preferably 7.0 g / 10 minutes or less, and further preferably 4.0 g / 10 minutes or less.
  • the melt flow rate of the methacrylic resin (C) in the present specification is a value measured using a melt indexer at a temperature of 230 ° C. under a load of 3.8 kg.
  • the styrene copolymer (D) contained in the thermoplastic resin (B) according to the present invention contains a vinyl aromatic monomer unit (d1) and a cyclic acid anhydride monomer unit (d2), and has a vinyl fragrance.
  • the total ratio of the group monomer unit (d1) and the cyclic acid anhydride monomer unit (d2) is 92 to 100% by mass with respect to the total of all the monomer units in the styrene copolymer (D). It is characterized by being.
  • the vinyl aromatic monomer unit (d1) of the styrene copolymer (D) is not particularly limited, and any known aromatic vinyl monomer can be used, but it is easy to obtain. From the viewpoint, styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like can be mentioned. Of these, styrene is particularly preferable from the viewpoint of compatibility. Two or more kinds of these aromatic vinyl monomers may be mixed.
  • Examples of the cyclic acid anhydride monomer unit (d2) of the styrene copolymer (D) include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, which are compatible with acrylic resins.
  • Maleic anhydride is preferable from the viewpoint of. Two or more kinds of these unsaturated dicarboxylic acid anhydride monomers may be mixed.
  • the total ratio of the vinyl aromatic monomer unit (d1) and the cyclic acid anhydride monomer unit (d2) is the styrene copolymer (d). It is 92 to 100% by mass, preferably 95 to 100% by mass, and more preferably 98 to 100% by mass with respect to the total of all the monomer units in D). That is, the styrene copolymer (D) contains the vinyl aromatic monomer unit (d1) and the cyclic acid anhydride monomer in a range of 8% by mass or less with respect to the total of all the monomer units. It may contain a monomer unit other than the unit (d2).
  • Examples of the monomer unit other than the vinyl aromatic monomer unit (d1) and the cyclic acid anhydride monomer unit (d2) include a methacrylic acid ester monomer unit and an N-substituted maleimide unit.
  • the body etc. can be mentioned.
  • Examples of the methacrylic acid ester monomer unit in the styrene copolymer (D) include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and tert methacrylate.
  • -Alkyl methacrylate esters such as butyl, pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate; 1-methylcyclopentyl methacrylate, cyclohexyl methacrylate, Cycloalkyl methacrylate esters such as cycloheptyl methacrylate, cyclooctyl methacrylate, tricyclo methacrylate [5.2.1.02,6] deca-8-yl; aryl methacrylate esters such as phenyl methacrylate; benzyl methacrylate Examples thereof include methacrylic acid aralkyl esters such as, and methyl methacrylate is preferable from the viewpoint of compatibility with methacrylic acid.
  • N-substituted maleimide monomer in the styrene copolymer (D) examples include N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, and N-methoxy.
  • N-arylmaleimide such as phenylmaleimide, N-carboxyphenylmaleimide, N-nitrophenylmaleimide, and N-tribromophenylmaleimide, and N-phenylmaleimide is preferable from the viewpoint of compatibility with methacrylic resin. Two or more kinds of these N-substituted maleimide monomers may be mixed.
  • the ratio of the vinyl aromatic monomer unit (d1) is 68 to 84% by mass, preferably 70 to 82% by mass, based on the total of all the monomer units in the styrene copolymer (D). It is more preferably 74 to 80% by mass, and further preferably 76 to 79% by mass.
  • the ratio of the cyclic acid anhydride monomer unit (d2) is 16 to 32% by mass, preferably 18 to 30% by mass, based on the total of all the monomer units in the styrene copolymer (D). %, More preferably 20 to 26% by mass, still more preferably 21 to 24% by mass.
  • the ratio of the vinyl aromatic monomer unit (d1) to the total of all the monomer units in the styrene copolymer (D) is other than 68 to 84% by mass, the phase with the methacrylic resin (C). Poor solubility. Further, when the ratio of the cyclic acid anhydride monomer unit (d2) to the total of all the monomer units in the styrene copolymer (D) is other than 16 to 32% by mass, the methacrylic resin (C) and the methacrylic resin (C) are used. The compatibility of the product becomes worse.
  • the weight average molecular weight of the styrene copolymer (D) is preferably 50,000 to 130,000, more preferably 55,000 to 100,000 from the viewpoint of thermoformability at low temperature. , 60,000 to 90,000 is particularly preferable.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the glass transition temperature of the styrene copolymer (D) is preferably in the range of 120 to 190 ° C, more preferably in the range of 130 to 170 ° C.
  • the resin laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment.
  • the temperature is 190 ° C. or lower, the workability is excellent such as continuous heat shaping by a mirror surface roll or a shaping roll, or batch type heat shaping by a mirror surface mold or a shaping die.
  • the glass transition temperature of the styrene copolymer (D) in the present specification is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter, and is at the intersection of the baseline and the tangent at the inflection. It is the temperature at the time of calculation.
  • the melt flow rate of the styrene copolymer (D) is preferably in the range of 1 to 10 g / 10 minutes, more preferably in the range of 3 to 8 g / 10 minutes, and 4 to 7 g / 10 minutes. Is even more preferable. When the melt flow rate is in the range of 1 to 10 g / 10 minutes, the stability of heat melt molding is good.
  • the melt flow rate of the styrene copolymer (D) in the present specification is a value measured using a melt indexer at a temperature of 230 ° C. under a load of 3.8 kg.
  • the method for producing the styrene copolymer (D) is not particularly limited, but a known solution polymerization method, bulk polymerization method, suspension polymerization method, or the like can be appropriately selected.
  • the styrene copolymer (D) is a binary copolymer containing a vinyl aromatic monomer unit (d1) and a cyclic acid anhydride monomer unit (d2), or a multiple copolymer.
  • the methacrylic resin (C) in combination, the hardness is higher than when only the styrene copolymer (D) is used, and the resin is superior in thermoformability as compared with the case where only the methacrylic resin (C) is used. A laminate is obtained.
  • the mass ratio of the methacrylic resin (C) to the styrene copolymer (D) is based on 100 parts by mass of the total content of the methacrylic resin (C) and the styrene copolymer (D).
  • the amount of the styrene copolymer (D) is preferably 85 to 30 parts by mass with respect to 15 to 70 parts by mass of the methacrylic resin (C). More preferably, the styrene copolymer (D) is 80 to 35 parts by mass with respect to 20 to 65 parts by mass of the methacrylic resin (C), and more preferably 20 to 55 parts by mass of the methacrylic resin (C).
  • the amount of the styrene copolymer (D) is 80 to 45 parts by mass with respect to parts by mass.
  • the thermoplastic resin (B) has excellent heat resistance, high refractive index, excellent thermoformability at low temperature, and good appearance while maintaining transparency.
  • the glass transition temperature of the thermoplastic resin (B) is preferably in the range of 120 to 165 ° C, more preferably in the range of 120 to 155 ° C.
  • the resin laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment.
  • the temperature is 165 ° C. or lower, the workability is excellent such as continuous heat shaping by a mirror surface roll or a shaping roll, or batch type heat shaping by a mirror surface mold or a shaping die.
  • the glass transition temperature of the thermoplastic resin (B) in the present specification is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter and calculated at the intersection of the baseline and the tangent at the inflection. It is the temperature at the time of.
  • the melt flow rate of the thermoplastic resin (B) is preferably in the range of 1 to 10 g / 10 minutes, more preferably in the range of 1.5 to 7 g / 10 minutes, and in the range of 2 to 5 g / 10 minutes. It is more preferable to have. When the melt flow rate is in the range of 1 to 10 g / 10 minutes, the stability of heat melt molding is good.
  • the melt flow rate of the thermoplastic resin (B) in the present specification is a value measured using a melt indexer at a temperature of 230 ° C. under a load of 3.8 kg.
  • the method for producing the thermoplastic resin (B) is not particularly limited, and necessary components are mixed in advance using a mixer such as a tumbler, a Henschel mixer, or a super mixer, and then a Banbury mixer.
  • a mixer such as a tumbler, a Henschel mixer, or a super mixer, and then a Banbury mixer.
  • a known method such as melt-kneading with a machine such as a roll, a brabender, a single-screw extruder, a twin-screw extruder, or a pressure kneader can be applied.
  • the glass transition temperature of the thermoplastic resin (B) used in the present invention is relatively high and the difference from the glass transition temperature of the polycarbonate resin (A) is small, the polycarbonate resin is used during hot press molding or hot bending. Even when the temperature approaches the glass transition temperature of (A), there is an advantage that there is little problem that the layer containing the thermoplastic resin (B) has an appearance defect.
  • the difference between the glass transition temperature of the polycarbonate resin (A) and the glass transition temperature of the thermoplastic resin (B) is preferably in the range of 0 to 15 ° C, more preferably in the range of 0 to 10 ° C. ..
  • a further layer may be present between the hardcourt layer according to the present invention and the layer containing the thermoplastic resin (B), but preferably the hardcoat layer is the surface of the layer containing the thermoplastic resin (B) or the surface of the layer containing the thermoplastic resin (B). It is laminated on both sides.
  • the hard coat layer is preferably an acrylic hard coat.
  • acrylic hardcoat means a coating film formed by polymerizing a monomer or oligomer or prepolymer containing a (meth) acryloyl group as a polymerization group to form a crosslinked structure.
  • the composition of the acrylic hard coat preferably contains 2 to 98% by mass of the (meth) acrylic monomer, 2 to 98% by mass of the (meth) acrylic oligomer, and 0 to 15% by mass of the surface modifier. It is preferable to contain 0.001 to 7 parts by mass of the photopolymerization initiator with respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer and the surface modifier.
  • the hard coat layer more preferably contains 5 to 50% by mass of the (meth) acrylic monomer, 50 to 95% by mass of the (meth) acrylic oligomer, and 1 to 10% by mass of the surface modifier, and is particularly preferable. , 20-40% by mass of (meth) acrylic monomer, 60-80% by mass of (meth) acrylic oligomer and 2-5% by mass of surface modifier.
  • the amount of the photopolymerization initiator is more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer and the surface modifier. It is particularly preferably 0.1 to 3 parts by mass.
  • the (meth) acrylic monomer can be used as long as the (meth) acryloyl group is present as a functional group in the molecule, and may be a monofunctional monomer, a bifunctional monomer, or a trifunctional or higher functional monomer.
  • the monofunctional monomer include (meth) acrylic acid and (meth) acrylic acid ester, and specific examples of bifunctional and / or trifunctional or higher (meth) acrylic monomers include diethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate.
  • the (meth) acrylic oligomer a bifunctional or higher polyfunctional urethane (meth) acrylate oligomer [hereinafter, also referred to as a polyfunctional urethane (meth) acrylate oligomer], a bifunctional or higher polyfunctional polyester (meth) acrylate oligomer [hereinafter, , Also referred to as polyfunctional polyester (meth) acrylate oligomer], bifunctional or higher functional epoxy (meth) acrylate oligomer [hereinafter, also referred to as polyfunctional epoxy (meth) acrylate oligomer] and the like.
  • the hardcoat layer may contain one or more (meth) acrylic oligomers.
  • polyfunctional urethane (meth) acrylate oligomer a urethanization reaction product of a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule and a polyisocyanate; polyols are polyisocyanates. Examples thereof include a urethanization reaction product of an isocyanate compound obtained by reacting with and a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule.
  • Examples of the (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule used in the urethanization reaction include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • 2-Hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycerindi (meth) acrylate, trimerol propandi (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta Examples include (meth) acrylate.
  • the polyisocyanate used in the urethanization reaction includes hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and diisocyanate obtained by hydrogenating aromatic isocyanates among these diisocyanates.
  • diisocyanate such as hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate
  • di or tri polyisocyanate such as triphenylmethane triisocyanate, dimethylene triphenyl triisocyanate, or polyisocyanate obtained by increasing the amount of diisocyanate.
  • polyols used in the urethanization reaction in addition to aromatic, aliphatic and alicyclic polyols, polyester polyols, polyether polyols and the like are generally used.
  • aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, ethylene glycol, propylene glycol, trimethylolethane, trimethylolpropane, dimethylolheptan, and di. Examples thereof include trimethylolpropionic acid, dimethylolbutylionic acid, glycerin, hydrogenated bisphenol A and the like.
  • polyester polyol examples include those obtained by the dehydration condensation reaction between the above-mentioned polyols and the polycarboxylic acid.
  • specific examples of the polycarboxylic acid include succinic acid, adipic acid, maleic acid, trimellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrous.
  • examples of the polyether polyols include the above-mentioned polyols or polyoxyalkylene-modified polyols obtained by reacting phenols with alkylene oxides.
  • the polyfunctional polyester (meth) acrylate oligomer is obtained by a dehydration condensation reaction using (meth) acrylic acid, a polycarboxylic acid and a polyol.
  • the polycarboxylic acid used in the dehydration condensation reaction include succinic acid, adipic acid, maleic acid, itaconic acid, trimellitic acid, pyromellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrous.
  • the polyols used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimethylolheptan, dimethylolpropionic acid, and dimethylol.
  • Examples thereof include butyionic acid, trimethylolpropane, trimethylolpropane, pentaerythritol, and dipentaerythritol.
  • the polyfunctional epoxy (meth) acrylate oligomer is obtained by an addition reaction between polyglycidyl ether and (meth) acrylic acid.
  • the polyglycidyl ether include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
  • the surface modifier used in the present invention changes the surface performance of a hard coat layer such as a leveling agent, an antistatic agent, a surfactant, a water-repellent oil-repellent agent, inorganic particles, and organic particles.
  • a leveling agent include polyether-modified polyalkylsiloxane, polyether-modified siloxane, polyester-modified hydroxyl group-containing polyalkylsiloxane, polyether-modified polydimethylsiloxane having an alkyl group, modified polyether, silicon-modified acrylic and the like.
  • antistatic agent examples include glycerin fatty acid ester monoglyceride, glycerin fatty acid ester organic acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, cationic surfactant, anionic surfactant and the like.
  • examples of the inorganic particles include silica particles, alumina particles, zirconia particles, silicon particles, silver particles, and glass particles.
  • organic particles include acrylic particles and silicon particles.
  • surfactant and the water- and oil-repellent agent examples include a fluorine-containing surfactant such as a fluorine-containing group / lipophilic group-containing oligomer and a fluorine-containing group / hydrophilic group / lipophilic group / UV-reactive group-containing oligomer. And water and oil repellents.
  • the hard coat layer may contain a photopolymerization initiator.
  • the photopolymerization initiator refers to a photoradical generator.
  • Examples of the monofunctional photopolymerization initiator that can be used in the present invention include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone [Darocure 2959: manufactured by Merck]; ⁇ -hydroxy. - ⁇ , ⁇ '-Dimethylacetophenone [Darocure 1173: manufactured by Merck]; Acetphenone-based initiators such as methoxyacetophenone, 2,2'-dimethoxy-2-phenylacetophenone [Irgacure-651], 1-hydroxy-cyclohexylphenylketone.
  • Benzoin ether-based initiators such as benzoin ethyl ether and benzoin isopropyl ether; other examples include halogenated ketones, acylphosphinoxides, and acylphosphonates.
  • the method for forming the hard coat layer is not particularly limited, but for example, it can be formed by applying a hard coat liquid on a layer located below the hard coat layer and then photopolymerizing it.
  • the method of applying the hard coat liquid (polymerizable composition) is not particularly limited, and a known method can be used. For example, spin coating method, dip method, spray method, slide coating method, bar coating method, roll coating method, gravure coating method, meniscus coating method, flexographic printing method, screen printing method, beat coating method, handling method and the like can be mentioned. ..
  • a lamp having a light emission distribution with a light wavelength of 420 nm or less is used, and examples thereof include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, and a black light lamp. , Microwave-excited mercury lamp, metal halide lamp, etc.
  • high-pressure mercury lamps or metal halide lamps efficiently emit light in the active wavelength region of the initiator, and heat short-wavelength light or reaction compositions that reduce the viscoelastic properties of the obtained polymer by cross-linking. It is preferable because it does not emit a large amount of long-wavelength light that causes evaporation.
  • the irradiation intensity of the lamp is a factor that influences the degree of polymerization of the obtained polymer, and is appropriately controlled for each performance of the target product.
  • the illuminance is preferably in the range of 0.1 to 300 mW / cm 2 .
  • the photopolymerization reaction is inhibited by oxygen in the air or oxygen dissolved in the reactive composition. Therefore, it is desirable to carry out light irradiation using a method that can eliminate the reaction inhibition due to oxygen.
  • One such method is to cover the reactive composition with a film made of polyethylene terephthalate or Teflon to cut off contact with oxygen and irradiate the reactive composition with light through the film. Further, the composition may be irradiated with light through a light-transmitting window in an inert atmosphere in which oxygen is replaced with an inert gas such as nitrogen gas or carbon dioxide gas.
  • the air velocity of the inert gas is preferably 1 m / sec or less as a relative velocity with respect to the laminate coated with the hard coat liquid moving under the atmosphere of the inert gas. It is more preferably 0.1 m / sec or less.
  • the coated surface may be pretreated for the purpose of improving the adhesion of the hard coat layer.
  • Known treatment examples include sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
  • the hard coat layer preferably has a pencil hardness of 2H or more when irradiated with ultraviolet rays using a metal halide lamp having an irradiation output of UV light (254 nm) of 20 mW / cm 2 .
  • the film thickness of the hard coat layer is preferably 1 ⁇ m or more and 40 ⁇ m or less, and more preferably 2 ⁇ m or more and 10 ⁇ m or less. Sufficient hardness can be obtained when the film thickness is 1 ⁇ m or more. Further, when the film thickness is 40 ⁇ m or less, it is possible to suppress the occurrence of cracks during bending.
  • the film thickness of the hard coat layer can be measured by observing the cross section with a microscope or the like and actually measuring the film thickness from the coating film interface to the surface.
  • the resin laminate of the present invention is not particularly limited, but is preferably Haze ⁇ 1.0%, more preferably Haze ⁇ 0.8%, and particularly preferably Haze ⁇ 0.7%. If Haze exceeds 1.0%, the resin laminate may appear whitish visually.
  • the thickness of the layer containing the thermoplastic resin (B) affects the surface hardness and impact resistance of the resin laminate. That is, if the thickness of the layer containing the thermoplastic resin (B) is too thin, the surface hardness becomes low, which is not preferable. If the thickness of the layer containing the thermoplastic resin (B) is too large, the impact resistance deteriorates, which is not preferable.
  • the thickness of the layer containing the thermoplastic resin (B) is preferably 10 to 250 ⁇ m, more preferably 20 to 200 ⁇ m. More preferably, it is 30 to 150 ⁇ m.
  • the total thickness of the layer containing the polycarbonate resin (A), the layer containing the thermoplastic resin (B), and the hard coat layer is too thin or too thick, molding is difficult.
  • the total thickness of the resin laminate is preferably 0.4 to 4.0 mm, more preferably 0.5 to 3.5 mm, and even more preferably 0.5 to 3.0 mm.
  • the difference in refractive index between the polycarbonate resin (A) and the thermoplastic resin (B) is preferably in the range of 0 to 0.07, more preferably in the range of 0 to 0.06. It is more preferably in the range of 0 to 0.05.
  • the difference in refractive index between the polycarbonate resin (A) and the thermoplastic resin (B) is larger than 0.07, the reflected light intensity at the interface between the layer containing the polycarbonate resin (A) and the layer containing the thermoplastic resin (B). Is large, and problems such as interference fringes may occur.
  • the resin laminate of the present invention may be subjected to any one or more of anti-fingerprint treatment, anti-reflection treatment, anti-fouling treatment, anti-static treatment, weather resistance treatment and anti-glare treatment on one or both sides thereof.
  • the methods of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment are not particularly limited, and known methods can be used. For example, a method of applying a reflection-reducing paint, a method of depositing a dielectric thin film, a method of applying an antistatic paint, and the like can be mentioned.
  • the layer containing the polycarbonate resin (A) forming the base material layer and / or the layer containing the thermoplastic resin (B) forming the surface layer may contain components other than the above-mentioned main components. ..
  • an ultraviolet absorber can be mixed and used in the layer containing the polycarbonate resin (A), the layer containing the thermoplastic resin (B), and / or the hard coat layer.
  • the hard coat layer may contain an ultraviolet absorber. If the content of the UV absorber is too high, depending on the molding method, the excess UV absorber may be scattered due to the high temperature, which may contaminate the molding environment and cause a problem. From this, the content ratio of the ultraviolet absorber is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, still more preferably 0 to 1% by mass.
  • Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, and 2-hydroxy.
  • -4-octadecyloxybenzophenone 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, etc.
  • Benzophenone UV absorber 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-3) -T-butyl-5-Methylphenyl) benzotriazole, (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol and other benzotriazole-based ultraviolet absorbers, salicylic acid Phenyl, benzoate-based UV absorbers such as 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, bis (2,2,6,6-tetramethylpiperidine-4) -Il) Hinderdamine-based ultraviolet absorbers such as sebacate, 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6
  • various additives other than the above-mentioned ultraviolet absorber are added to the layer containing the polycarbonate resin (A) forming the base material layer and / or the layer containing the thermoplastic resin (B) forming the surface layer.
  • Such additives include, for example, antioxidants, anticolorants, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers and the like. Reinforcing materials such as inorganic fillers can be mentioned.
  • the mixing method is not particularly limited, and a method of total compounding, a method of dry blending the masterbatch, a method of total dry blending, and the like can be used.
  • the materials of the layer containing the polycarbonate resin (A), the layer containing the thermoplastic resin (B), and the hard coat layer in the present invention are filtered. It is preferable that the plastic is filtered and purified by. By purifying or laminating through a filter, it is possible to obtain a resin laminate having few appearance defects such as foreign substances and defects.
  • the filtration method is not particularly limited, and melt filtration, solution filtration, or a combination thereof can be used.
  • the filter medium of the filter is not particularly limited, but is a non-woven fabric of polypropylene, cotton, polyester, viscose rayon or glass fiber or roving yarn roll, phenol resin impregnated cellulose, metal fiber non-woven fabric sintered body, metal powder sintered body, breaker plate, etc. Alternatively, any combination of these can be used. In particular, considering heat resistance, durability, and pressure resistance, a type obtained by sintering a metal fiber non-woven fabric is preferable.
  • the filtration accuracy is 50 ⁇ m or less, preferably 30 ⁇ m or less, and more preferably 10 ⁇ m or less for the polycarbonate resin (A) and the thermoplastic resin (B). Further, the filtration accuracy of the hard coat agent is 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 2 ⁇ m or less because it is applied to the outermost surface layer of the resin laminate.
  • the polymer filter used for the thermoplastic resin melt filtration is classified into a leaf disc filter, a candle filter, a pack disc filter, a cylindrical filter and the like according to its structure, and a leaf disc filter having a large effective filtration area is particularly suitable.
  • the thermal bending process of the resin laminate of the present invention is not particularly limited.
  • "heat press molding” in which convex (male) and concave (female) molds are attached to a press machine and the heat-softened laminated sheet is sandwiched between the two molds, and the heat-softened laminated sheet and convex type “Vacuum forming” that makes the laminated sheet adhere to the mold by putting the (male type) mold in a vacuum state and finishes it in the desired shape.
  • vacuum forming in which a laminated sheet is brought into close contact with a mold by applying a large pressure to finish it in a desired shape.
  • thermoformed body> When a laminated sheet using a conventional polycarbonate resin (for example, Iupiron S-2000, Iupiron S-1000, Iupiron E-2000, which is commercially available from Mitsubishi Engineering Plastics Co., Ltd.) is heat-press molded, the temperature is 135 to 145 ° C. It is necessary to heat the sheet until the polycarbonate resin is sufficiently stretched underneath, and as a result, excessive heat is applied to the thermoplastic resin, resulting in peeling at the interface between the thermoplastic resin layer and the polycarbonate resin layer. , The surface may be whitened or cracks may occur. Further, when the sheet is heated to 160 ° C., the surface may be mellow or scratches on the mold may be transferred. On the other hand, in order to suppress thermoforming defects, when hot press molding is performed at a low temperature of 100 ° C to 135 ° C, the shape of the mold is not reproduced and the shape of the mold returns to a flat shape. May occur.
  • a conventional polycarbonate resin for example, I
  • the resin laminate of the embodiment of the present invention uses a specific polycarbonate-based resin (A), it springs back even when it is thermoformed at a low temperature of 100 ° C to 135 ° C. Can be obtained, and a thermoformed body having excellent designability at a low temperature can be obtained.
  • a resin laminate having a layer containing a thermoplastic resin on a layer containing a polycarbonate resin and having a hard coat layer on the surface of the layer containing the thermoplastic resin is heat-pressed at a low temperature of 100 ° C to 135 ° C. When molding is performed, cracks may occur in the bent portion of the resin laminate.
  • the resin laminate of the embodiment of the present invention uses a specific thermoplastic resin (B), it is a resin laminate having a hard coat layer on the surface of the layer containing the thermoplastic resin (B). Even when hot press molding is performed at a low temperature of 100 ° C. to 135 ° C., cracks do not occur in the bent portion of the resin laminate, and a thermoformed body having excellent designability at a low temperature can be obtained.
  • the molded product of the embodiment (for example, a thermoformed product) is a molded product containing the resin laminate of the present invention containing various preferable forms and configurations described above. There are no restrictions on the shape, pattern, color, dimensions, etc. of the molded product, and it may be set arbitrarily according to the intended use.
  • the resin laminate and the thermoformed body of the embodiment are excellent in thermoforming property at a low temperature (for example, 100 to 135 ° C.), and can suppress the generation of interference fringes. Therefore, it is suitably used as a transparent substrate material, a transparent protective material, and the like.
  • portable display devices such as mobile phone terminals, portable electronic play equipment, mobile information terminals, and mobile PCs
  • stationary display devices such as notebook PCs, desktop PC LCD monitors, car navigation LCD monitors, and LCD TVs.
  • a transparent substrate material such as, and a transparent protective material (for example, a front plate).
  • a touch panel front protective plate that requires high design, a front for a car navigation system, an OA device, or a portable electronic device. It is suitably used as a face plate.
  • ⁇ Glass transition temperature> A differential scanning calorimetry device DSC6200 manufactured by Seiko Instruments Inc. was used. Nitrogen 30 ml / min. Under circulation, 10 ° C./min. The temperature was raised from 30 ° C to 200 ° C, and then 50 ° C / min. The temperature was lowered from 200 ° C to 30 ° C, and the temperature was changed to 10 ° C / min. The temperature was raised from 30 ° C to 200 ° C. The intersection of the baseline and the tangent at the inflection in the second temperature rise was used as the glass transition temperature.
  • a test piece was prepared by an injection molding machine and cut into a length of 40 mm, a width of 10 mm, and a thickness of 3 mm.
  • the refractive index of this sample was measured with a multi-wavelength Abbe refractometer DR-M2 manufactured by Atago Co., Ltd.
  • the measurement temperature was 20 ° C.
  • the measurement wavelength was 589 nm
  • monobromonaphthalene was used as the intermediate solution.
  • Total light transmittance> The total light transmittance of the resin laminate was measured according to JIS K7361-1 using a reflection / transmittance meter HR-100 (manufactured by Murakami Color Technology Laboratory Co., Ltd.).
  • ⁇ Haze> The haze of the resin laminate was measured according to JIS K7136 using a reflection / transmittance meter HR-100 (manufactured by Murakami Color Technology Laboratory Co., Ltd.).
  • ⁇ Pencil hardness> In accordance with JIS K 5600-5-4, the hardness of the surface of the hard coat layer on the layer containing the thermoplastic resin (B) near the center of the resin laminate is gradually increased at an angle of 45 degrees and a load of 750 g. The hardness of the hardest pencil that did not cause scars was evaluated as the pencil hardness.
  • ⁇ Interference fringes> A black tape (black vinyl tape model number 117BLA manufactured by 3M Japan Co., Ltd.) is attached to the layer side containing the polycarbonate resin (A) or the layer side containing the thermoplastic resin (B) of the resin laminate, and the thermoplastic resin (B) is attached. ) was illuminated with a three-wavelength fluorescent lamp (Technica Inverter Light 60 AL-60231), and interference fringes were evaluated. The pass / fail judgment of the interference fringes was made according to the following criteria, and ⁇ was judged as a pass. ⁇ : Interference fringes are not visible or interference fringes appear weak ⁇ : Interference fringes appear strong
  • ⁇ Hot press molding processability> A convex type (male type) and a concave type (female type) in which a 1 mmt resin laminate bends to 50 mmR were produced.
  • the resin laminate is preheated at 90 ° C. for 1 minute before molding, placed on a mold so that the surface of the hard coat is convex, pressed at a mold temperature of 80 ° C., 120 ° C. or 160 ° C. for 3 minutes, and naturally. By cooling, a hot press molded product was produced.
  • H-1 the materials shown below are used, but the material is not limited thereto.
  • Synthesis Example 2 [Manufacturing of Polycarbonate Resin (A-1) Pellet] To 57.2 kg of 9 w / w% sodium hydroxide aqueous solution, 7.1 kg (31.14 mol) of bisphenol A (hereinafter referred to as BPA) manufactured by Nippon Steel Sumitomo Chemical Co., Ltd. and 30 g of hydrosulfite are added and dissolved. did. 40 kg of dichloromethane was added thereto, and 4.33 kg of phosgene was blown over 30 minutes while keeping the solution temperature in the range of 15 ° C. to 25 ° C. with stirring.
  • BPA bisphenol A
  • the polymerization solution was separated into an aqueous phase and an organic phase, the organic phase was neutralized with phosphoric acid, and washing with pure water was repeated until the pH of the washing solution became neutral.
  • a polycarbonate resin powder was obtained by evaporating and distilling off an organic solvent from this purified polycarbonate resin solution.
  • the obtained polycarbonate resin powder was melt-kneaded at a cylinder temperature of 260 ° C. using a twin-screw extruder having a screw diameter of 35 mm, extruded into strands, and pelletized with a pelletizer.
  • Weight average molecular weight of polycarbonate resin (A-1) 29,000, glass transition temperature: 127 ° C, temperature 300 ° C, melt flow rate under 1.2 kg load: 12.1 g / 10 minutes, refractive index 1.59 Met.
  • thermoplastic resin (B-1) 25 parts by mass of methacrylic resin (C-1) and 75 parts by mass of styrene copolymer (D-1), for a total of 100 parts by mass, 500 ppm of phosphorus-based additive PEP-36 (manufactured by ADEKA Co., Ltd.), And stearate monoglyceride (product name: H-100, manufactured by Riken Vitamin Co., Ltd.) 0.2% by mass, mixed with a blender for 20 minutes, and then a twin-screw extruder with a screw diameter of 26 mm equipped with a polymer filter with a mesh opening of 10 ⁇ m.
  • PEP-36 phosphorus-based additive
  • stearate monoglyceride product name: H-100, manufactured by Riken Vitamin Co., Ltd.
  • thermoplastic resin (B-1) (Made by Toshiba Machinery Co., Ltd., TEM-26SS, L / D ⁇ 40) was melt-kneaded at a cylinder temperature of 240 ° C., extruded into strands, and pelletized with a pelletizer.
  • the pellets of the thermoplastic resin (B-1) could be stably produced.
  • the pellets of the thermoplastic resin (B-1) had an appearance: ⁇ (transparent), a glass transition temperature: 134 ° C., and a refractive index of 1.56.
  • thermoplastic resin (B-2) 50 parts by mass of methacrylic resin (C-1) and 50 parts by mass of styrene copolymer (D-1), for a total of 100 parts by mass, phosphorus-based additive PEP-36 500 ppm, and stearic acid monoglyceride 0. 2% by mass was added, and the mixture and pelletization were carried out in the same manner as in Production Example 1.
  • the pellets of the thermoplastic resin (B-2) could be stably produced.
  • the pellets of the thermoplastic resin (B-2) had an appearance: ⁇ (transparent), a glass transition temperature of 122 ° C., and a refractive index of 1.54.
  • thermoplastic resin (G-7) Manufacturing of pellets of thermoplastic resin (G-7)
  • E-1 100 parts by mass of the styrene copolymer (E-1)
  • 500 ppm of the phosphorus-based additive PEP-36 and 0.2% by mass of stearic acid monoglyceride were added, and the mixture was mixed and pelletized in the same manner as in Production Example 1. rice field.
  • the pellets of the thermoplastic resin (G-7) could be stably produced.
  • the pellets of the thermoplastic resin (G-7) had an appearance: ⁇ (transparent), a glass transition temperature: 150 ° C., and a refractive index of 1.58.
  • thermoplastic resin (G-8) 25 parts by mass of methacrylic resin (C-1) and 75 parts by mass of styrene copolymer (E-2), for a total of 100 parts by mass, phosphorus-based additive PEP-36 500 ppm, and stearic acid monoglyceride 0. 2% by mass was added, and the mixture and pelletization were carried out in the same manner as in Production Example 1.
  • the pellets of the thermoplastic resin (G-8) could be stably produced.
  • the pellets of the thermoplastic resin (G-8) had an appearance: ⁇ (semi-transparent).
  • Example 1 Manufacturing of resin laminate (I-1)] Each is a multi-layer extruder having a single-screw extruder with a shaft diameter of 32 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all extruders, and a 650 mm wide T-die connected to the feed block.
  • a resin laminate was molded using a multi-layer extruder with a multi-manifold die coupled to the extruder.
  • the thermoplastic resin (B-1) obtained in Production Example 1 was continuously introduced into a single-screw extruder having a shaft diameter of 32 mm, and extruded under the conditions of a cylinder temperature of 240 ° C.
  • the polycarbonate resin (A-1) obtained in Synthesis Example 2 was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded at a cylinder temperature of 280 ° C. and a discharge rate of 31.8 kg / h.
  • the feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a thermoplastic resin (B-1) and a polycarbonate resin (A-1) were introduced and laminated at a temperature of 270 ° C.
  • a resin laminate of (B-1) and a polycarbonate resin (A-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate was 1000 ⁇ m, and the thickness of the surface layer (layer containing the thermoplastic resin (B)) was 60 ⁇ m.
  • thermoplastic resin (B-1) of the resin laminate obtained above 60 parts by mass of a hexafunctional urethane acrylate oligomer (product name: U6HA, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), PEG200 # diacrylate.
  • the thickness of the hard coat layer (H-1) was 6 ⁇ m.
  • This resin laminate (I-1) has a total light transmittance of 90.8%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • hot press molding is performed at a mold temperature of 80 ° C.
  • the appearance of the hot press molded body
  • the crack in the bent portion of the hot press molded body
  • the springback of the hot press molded body ⁇ .
  • hot press molding is performed at a mold temperature of 120 ° C.
  • the appearance of the hot press molded body is ⁇
  • the crack in the bent portion of the hot press molded body is ⁇
  • the springback of the hot press molded body is ⁇ .
  • hot press molding was performed at a mold temperature of 160 ° C.
  • the appearance of the hot press molded body was ⁇
  • the crack in the bent portion of the hot press molded body was ⁇
  • the springback of the hot press molded body was ⁇
  • Example 2 [Manufacturing of resin laminate (I-2)] With the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (B-2) was used instead of the thermoplastic resin (B-1). A resin laminate (I-2) of a thermoplastic resin (B-2) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (I-2) was 1006 ⁇ m, the surface layer (B-2) thickness was 60 ⁇ m, and the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (I-2) has a total light transmittance of 90.8%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • Comparative Example 1 Manufacturing of resin laminate (J-1)] With the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-1) was used instead of the thermoplastic resin (B-1). A resin laminate (J-1) of a thermoplastic resin (G-1) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-1) was 1006 ⁇ m, the surface layer (G-1) thickness was 60 ⁇ m, and the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-1) has a total light transmittance of 91.0%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • Comparative Example 2 Manufacturing of resin laminate (J-2)] With the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-2) was used instead of the thermoplastic resin (B-1). A resin laminate (J-2) of a thermoplastic resin (G-2) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-2) was 1006 ⁇ m, the surface layer (G-2) thickness was 60 ⁇ m, and the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-2) has a total light transmittance of 90.9%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • Comparative Example 3 Manufacturing of resin laminate (J-3)
  • the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-3) was used instead of the thermoplastic resin (B-1).
  • a resin laminate (J-3) of a thermoplastic resin (G-3) and a polycarbonate resin (A-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (J-3) was 1006 ⁇ m
  • the thickness of the surface layer (G-3) was 60 ⁇ m
  • the thickness of the hard coat layer (H-1) was 6 ⁇ m.
  • This resin laminate (J-3) has a total light transmittance of 91.2%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • hot press molding is performed at a mold temperature of 80 ° C.
  • the appearance of the hot press molded body
  • the crack in the bent portion of the hot press molded body
  • the springback of the hot press molded body ⁇ .
  • hot press molding is performed at a mold temperature of 120 ° C.
  • the appearance of the hot press molded body is ⁇
  • the crack in the bent portion of the hot press molded body is ⁇
  • the springback of the hot press molded body is ⁇ .
  • hot press molding was performed at a mold temperature of 160 ° C.
  • the appearance of the hot press molded body was ⁇
  • the crack in the bent portion of the hot press molded body was ⁇
  • the springback of the hot press molded body was ⁇ .
  • Comparative Example 4 Manufacturing of resin laminate (J-4)
  • the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-4) was used instead of the thermoplastic resin (B-1).
  • a resin laminate (J-4) of a thermoplastic resin (G-4) and a polycarbonate resin (A-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (J-4) was 1006 ⁇ m
  • the thickness of the surface layer (G-4) was 60 ⁇ m
  • the thickness of the hard coat layer (H-1) was 6 ⁇ m.
  • This resin laminate (J-4) has a total light transmittance of 91.2%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • hot press molding is performed at a mold temperature of 80 ° C.
  • the appearance of the hot press molded body
  • the crack in the bent portion of the hot press molded body
  • the springback of the hot press molded body ⁇ .
  • hot press molding is performed at a mold temperature of 120 ° C.
  • the appearance of the hot press molded body is ⁇
  • the crack in the bent portion of the hot press molded body is ⁇
  • the springback of the hot press molded body is ⁇ .
  • hot press molding was performed at a mold temperature of 160 ° C.
  • the appearance of the hot press molded body was ⁇
  • the crack in the bent portion of the hot press molded body was ⁇
  • the springback of the hot press molded body was ⁇ .
  • Comparative Example 5 Manufacturing of resin laminate (J-5)
  • the hard coat layer (H-1) heat is the same as that of the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-5) is used instead of the thermoplastic resin (B-1).
  • a resin laminate (J-5) of a plastic resin (G-5) and a polycarbonate resin (A-1) were obtained.
  • the total thickness of the central portion of the obtained resin laminate (J-5) was 1006 ⁇ m
  • the surface layer (G-5) thickness was 60 ⁇ m
  • the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-5) has a total light transmittance of 91.4%, a haze: 0.3%, a pencil hardness of 3H, and an interference fringe: ⁇ .
  • hot press molding is performed at a mold temperature of 80 ° C.
  • the appearance of the hot press molded body
  • the crack in the bent portion of the hot press molded body
  • the springback of the hot press molded body ⁇ .
  • hot press molding is performed at a mold temperature of 120 ° C.
  • the appearance of the hot press molded body is ⁇
  • the crack in the bent portion of the hot press molded body is ⁇
  • the springback of the hot press molded body is ⁇ .
  • hot press molding was performed at a mold temperature of 160 ° C.
  • the appearance of the hot press molded body was ⁇
  • the crack in the bent portion of the hot press molded body was ⁇
  • the springback of the hot press molded body was ⁇ .
  • Comparative Example 7 Manufacturing of resin laminate (J-7)
  • the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-7) was used instead of the thermoplastic resin (B-1).
  • a resin laminate (J-7) of a thermoplastic resin (G-7) and a polycarbonate resin (A-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (J-7) was 1006 ⁇ m
  • the surface layer (G-7) thickness was 60 ⁇ m
  • the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-7) has a total light transmittance of 90.6%, Haze: 0.2%, pencil hardness: H, and interference fringes: ⁇ .
  • Comparative Example 8 Manufacturing of resin laminate (J-8)
  • Polycarbonate resin (F-1) is used instead of polycarbonate resin (A-1), and it is cooled while transferring the mirror surface with three mirror finishing rolls at temperatures of 130 ° C, 140 ° C, and 185 ° C from the upstream side.
  • the hard coat layer (H-1), the thermoplastic resin (B-1), and the polycarbonate-based resin (F-1) are used in the same manner as in the resin laminate (I-1) of Example 1 except that the resin laminate (I-1) is changed to.
  • a resin laminate (J-8) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (J-8) was 1006 ⁇ m, the surface layer (B-1) thickness was 60 ⁇ m, and the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-8) has a total light transmittance of 90.8%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • Comparative Example 9 Manufacturing of resin laminate (J-9)
  • the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (B-2) was used instead of the thermoplastic resin (B-1).
  • a resin laminate (J-9) of a thermoplastic resin (B-2) and a polycarbonate resin (F-1) was obtained.
  • the total thickness of the central portion of the obtained resin laminate (J-9) was 1006 ⁇ m
  • the surface layer (B-2) thickness was 60 ⁇ m
  • the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-9) has a total light transmittance of 90.8%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • Comparative Example 10 Manufacturing of resin laminate (J-10)] With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-1) was used instead of the thermoplastic resin (B-1). A resin laminate (J-10) of a thermoplastic resin (G-1) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-10) was 1006 ⁇ m, the surface layer (G-1) thickness was 60 ⁇ m, and the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-10) has a total light transmittance of 91.0%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • Comparative Example 11 Manufacturing of resin laminate (J-11)] With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-2) was used instead of the thermoplastic resin (B-1). A resin laminate (J-11) of a thermoplastic resin (G-2) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-11) was 1006 ⁇ m, the surface layer (G-2) thickness was 60 ⁇ m, and the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-11) has a total light transmittance of 90.9%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • Comparative Example 12 Manufacturing of resin laminate (J-12)] With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-3) was used instead of the thermoplastic resin (B-1). A resin laminate (J-12) of a thermoplastic resin (G-3) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-12) was 1006 ⁇ m, the surface layer (G-3) thickness was 60 ⁇ m, and the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-12) has a total light transmittance of 91.2%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • Comparative Example 13 Manufacturing of Resin Laminated Body (J-13)] With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-4) was used instead of the thermoplastic resin (B-1). A resin laminate (J-13) of a thermoplastic resin (G-4) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-13) was 1006 ⁇ m, the thickness of the surface layer (G-4) was 60 ⁇ m, and the thickness of the hard coat layer (H-1) was 6 ⁇ m.
  • This resin laminate (J-13) has a total light transmittance of 91.2%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: ⁇ .
  • hot press molding is performed at a mold temperature of 80 ° C.
  • the appearance of the hot press molded body
  • the crack in the bent portion of the hot press molded body
  • the springback of the hot press molded body ⁇ .
  • hot press molding is performed at a mold temperature of 120 ° C.
  • the appearance of the hot press molded body is ⁇
  • the crack in the bent portion of the hot press molded body is ⁇
  • the springback of the hot press molded body is ⁇ .
  • hot press molding was performed at a mold temperature of 160 ° C.
  • the appearance of the hot press molded body was ⁇
  • the crack in the bent portion of the hot press molded body was ⁇
  • the springback of the hot press molded body was ⁇ .
  • Comparative Example 14 Manufacturing of resin laminate (J-14)] With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-5) was used instead of the thermoplastic resin (B-1). A resin laminate (J-14) of a thermoplastic resin (G-5) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-14) was 1006 ⁇ m, the surface layer (G-5) thickness was 60 ⁇ m, and the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-14) has a total light transmittance of 91.4%, a haze: 0.3%, a pencil hardness of 3H, and an interference fringe: ⁇ .
  • hot press molding is performed at a mold temperature of 80 ° C.
  • the appearance of the hot press molded body
  • the crack in the bent portion of the hot press molded body
  • the springback of the hot press molded body ⁇ .
  • hot press molding is performed at a mold temperature of 120 ° C.
  • the appearance of the hot press molded body is ⁇
  • the crack in the bent portion of the hot press molded body is ⁇
  • the springback of the hot press molded body is ⁇ .
  • hot press molding was performed at a mold temperature of 160 ° C.
  • the appearance of the hot press molded body was ⁇
  • the crack in the bent portion of the hot press molded body was ⁇
  • the springback of the hot press molded body was ⁇ .
  • Comparative Example 15 Manufacturing of resin laminate (J-15)] With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-6) was used instead of the thermoplastic resin (B-1). A resin laminate (J-15) of a thermoplastic resin (G-6) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-15) was 1006 ⁇ m, the surface layer (G-6) thickness was 60 ⁇ m, and the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-15) has a total light transmittance of 90.5%, Haze: 0.2%, pencil hardness: H, and interference fringes: ⁇ .
  • Comparative Example 16 Manufacturing of resin laminate (J-16)] With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-7) was used instead of the thermoplastic resin (B-1). A resin laminate (J-16) of a thermoplastic resin (G-7) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-16) was 1006 ⁇ m, the surface layer (G-7) thickness was 60 ⁇ m, and the hard coat layer (H-1) thickness was 6 ⁇ m.
  • This resin laminate (J-7) has a total light transmittance of 90.6%, Haze: 0.2%, pencil hardness: H, and interference fringes: ⁇ .
  • Production Examples 1 and 2 in which a specific methacrylic resin (C) and a specific styrene copolymer (D) are blended and specific production examples 1 and 2 are specified. Comparing with the production comparative example 5 of the methacrylic resin (C) alone, the refractive index was higher in the production examples 1 and 2. Further, Production Examples 1 and 2 were blended with a specific methacrylic resin (C) and a styrene copolymer (E-2, E-3) other than the specific styrene copolymer (D) in a specific mass ratio. Comparing with Production Comparative Examples 8 to 11, Production Examples 1 and 2 were more transparent and had a better appearance.
  • the resin laminate after hard coat coating is blended with a specific methacrylic resin (C) and a specific styrene copolymer (D) at a specific ratio, and pelletized with a high refractive index.
  • Examples 1 and 2 in which the thermoplastic resin (B) and the polycarbonate resin (A) are laminated and have a hard coat on one side surface of the thermoplastic resin (B), and a specific methacrylic resin (C) and a specific styrene.
  • the copolymer (D) is blended at a ratio other than a specific ratio, the pelletized thermoplastic resin (G) and the polycarbonate resin (A) are laminated, and a hard coat is applied to one side surface of the thermoplastic resin (G).
  • the resin laminates of Examples 1 and 2 suppressed cracks in the bent portion of the hot press molded body at a mold temperature of 120 ° C.
  • the thermoplastic resin (G) obtained by blending Examples 1 and 2 with a specific methacrylic resin (C) and a styrene copolymer (E-1) having a specific weight average molecular weight in a specific ratio and pelletizing them.
  • the polycarbonate resin (A) are laminated, and when compared with Comparative Examples 2 to 3 having a hard coat on one side surface of the thermoplastic resin (G), the resin laminates of Examples 1 and 2 are better. Cracks in the bent portion of the hot press molded product at a mold temperature of 120 ° C.
  • thermoplastic resin (G) obtained by pelletizing a specific methacrylic resin (C) alone and a specific polycarbonate resin (A) are laminated, and a hard coat is provided on one side of the thermoplastic resin (G). Comparing with No. 5, the resin laminates of Examples 1 and 2 suppressed cracks in the bent portion of the hot press molded product at a mold temperature of 120 ° C.
  • thermoplastic resin (G) obtained by pelletizing a specific styrene copolymer (D) alone and a specific polycarbonate resin (A) are laminated to form a thermoplastic resin (G).
  • the resin laminates of Examples 1 and 2 had higher pencil hardness and suppressed cracks in the bent portion of the hot press molded body.
  • Examples 1 and 2 are blended with a specific methacrylic resin (C) and a specific styrene copolymer (D) in a specific ratio, and pelletized into a thermoplastic resin (B) and a polycarbonate resin (F).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention is capable of providing a layered resin product which has a layer containing a thermoplastic resin (B) on at least one surface of a layer containing a polycarbonate-based resin (A), and in which a hard coat layer is present on at least one surface of the layer containing a thermoplastic resin (B). The polycarbonate-based resin layer (A) has a glass transition temperature of 115-140ºC. The thermoplastic resin (B) contains a methacrylic resin (C) and a styrene copolymer (D). Relative to a total of 100 parts by mass of the methacrylic resin (C) and the styrene copolymer (D), the content of the methacrylic resin (C) is 15-70 parts by mass and the content of the styrene copolymer (D) is 85-30 parts by mass. The styrene copolymer (D) is a copolymer which contains 68-84 mass% of a vinyl aromatic monomer unit (d1) and 16-32 mass% of a cyclic acid anhydride monomer unit (d2) and which has a weight average molecular weight of 50,000-130,000. After carrying out heat molding to a size of 50 mmR using a hot pressing machine at a mold temperature of 120ºC, cracking and spring back do not occur in a curved portion.

Description

樹脂積層体並びにそれを用いた透明基板材料及び透明保護材料Resin laminate and transparent substrate material and transparent protective material using it
 本発明は、透明な基板材料や保護材料に使用される樹脂積層体に関する。より詳しくは、低温での熱成形性に優れ、且つ、干渉縞の発生を抑制する外観良好な樹脂積層体に関する。 The present invention relates to a resin laminate used as a transparent substrate material or a protective material. More specifically, the present invention relates to a resin laminate having excellent thermoformability at a low temperature and having a good appearance that suppresses the generation of interference fringes.
 アクリル樹脂は表面硬度、透明性、耐擦傷性および耐候性などに優れる。一方、ポリカーボネート樹脂は耐衝撃性などに優れる。このことからアクリル樹脂層とポリカーボネート樹脂層とを有する積層体は、表面硬度、透明性、耐擦傷性、耐候性および耐衝撃性などに優れ、自動車部品、家電製品、電子機器および携帯型情報端末の表示窓に用いられている。 Acrylic resin has excellent surface hardness, transparency, scratch resistance and weather resistance. On the other hand, the polycarbonate resin has excellent impact resistance and the like. For this reason, the laminate having the acrylic resin layer and the polycarbonate resin layer is excellent in surface hardness, transparency, scratch resistance, weather resistance, impact resistance, etc., and is excellent in automobile parts, home appliances, electronic devices, and portable information terminals. It is used for the display window of.
 近年、デザインニーズの多様化に伴い、ディスプレイデバイスの前面板などにも真空成形や圧空成形などの熱成形によってデザイン性を高めた製品が求められている。アクリル樹脂層とポリカーボネート樹脂層とを有する積層体は、上記のような優れた性能面から前面板への適用が試みられている。しかし、アクリル樹脂層とポリカーボネート樹脂層とを有する積層体を熱成形すると、ポリカーボネート樹脂が十分に伸びる温度までシートを加熱する必要があり、アクリル樹脂に対して過剰な熱を加えることとなるため、アクリル樹脂層とポリカーボネート樹脂層との界面に剥離が生じて、表面が白化したり、クラックが生じたりすることがある。一方、白化・クラックの発生を抑制するために、成形温度を低くすると金型の形状を再現しない「スプリングバック」が生じることがある。 In recent years, with the diversification of design needs, there is a demand for products with improved design by thermoforming such as vacuum forming and compressed air forming on the front plate of display devices. A laminate having an acrylic resin layer and a polycarbonate resin layer has been attempted to be applied to a front plate from the above-mentioned excellent performance aspects. However, when the laminate having the acrylic resin layer and the polycarbonate resin layer is heat-molded, it is necessary to heat the sheet to a temperature at which the polycarbonate resin is sufficiently stretched, which causes excessive heat to be applied to the acrylic resin. Peeling may occur at the interface between the acrylic resin layer and the polycarbonate resin layer, and the surface may be whitened or cracks may occur. On the other hand, if the molding temperature is lowered in order to suppress the occurrence of whitening and cracks, "springback" that does not reproduce the shape of the mold may occur.
 特許文献1には、真空成形や圧空成形など熱成形するのに好適な成形用樹脂シートとして、特定の末端基を有するポリカーボネート樹脂とアクリル系樹脂との成形用樹脂シートが開示されている。かかる樹脂シートは、熱成形での曲げ加工時に白化・クラックの発生が抑制される。しかし、かかる樹脂シートのアクリル系樹脂層の表面にハードコートすると、熱成形での曲げ加工時にクラックが発生するという問題があった。 Patent Document 1 discloses a molding resin sheet of a polycarbonate resin having a specific terminal group and an acrylic resin as a molding resin sheet suitable for thermoforming such as vacuum forming and pneumatic molding. Such a resin sheet is suppressed from whitening and cracking during bending by thermoforming. However, when the surface of the acrylic resin layer of the resin sheet is hard coated, there is a problem that cracks occur during bending in thermoforming.
 特許文献2には、160℃温度下で熱成形するのにスチレン-無水マレイン酸共重合体とメタクリル樹脂のアロイ層とポリカーボネート樹脂層との積層体が開示されている。かかる積層体は160℃温度下で熱成形する場合は不具合を生じない。しかし、かかる積層体のスチレン-無水マレイン酸共重合体とメタクリル樹脂のアロイ層の表面にハードコート層を有する樹脂積層体は、160℃温度下で熱成形すると樹脂積層体の曲げ部分にクラックが発生するという問題があった。 Patent Document 2 discloses a laminate of a styrene-maleic anhydride copolymer, an alloy layer of a methacrylic resin, and a polycarbonate resin layer for thermoforming at a temperature of 160 ° C. Such a laminate does not cause any problems when thermoformed at a temperature of 160 ° C. However, when the resin laminate having the styrene-maleic anhydride copolymer and the hard coat layer on the surface of the alloy layer of the methacrylic resin is thermoformed at a temperature of 160 ° C., cracks are formed in the bent portion of the resin laminate. There was a problem that it occurred.
国際公開第2016/060100号公報International Publication No. 2016/060100 国際公開第2015/133530号公報International Publication No. 2015/133530
 本発明は、低温での熱成形性に優れ、且つ、干渉縞の発生を抑制する外観良好な樹脂積層体を提供することを課題とする。 An object of the present invention is to provide a resin laminate having excellent thermoformability at low temperature and having a good appearance to suppress the generation of interference fringes.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、本発明を完成させた。具体的には、本発明は以下の通りである。 The present inventors have completed the present invention as a result of repeated diligent studies to solve the above problems. Specifically, the present invention is as follows.
[1]ポリカーボネート系樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有し、該熱可塑性樹脂(B)を含む層の少なくとも片側表面にハードコート層を有する樹脂積層体であって、
 前記ポリカーボネート系樹脂(A)はガラス転移温度が115℃~140℃であり、
 前記熱可塑性樹脂(B)がメタクリル樹脂(C)とスチレン共重合体(D)とを含有し、前記メタクリル樹脂(C)及びスチレン共重合体(D)の含有量の合計100質量部を基準として、前記メタクリル樹脂(C)の含有量は15~70質量部であり、前記スチレン共重合体(D)の含有量は85~30質量部であり、
 前記スチレン共重合体(D)がビニル芳香族単量体単位(d1)を68~84質量%と、環状酸無水物単量体単位(d2)を16~32質量%とを含む共重合体であり、重量平均分子量が50,000~130,000であり、
 金型温度120℃の熱プレス機で50mmRの熱成形した後に、曲げ部分のクラック及びスプリングバックが発生しない、前記樹脂積層体である。
[2]前記ポリカーボネート系樹脂(A)のガラス転移温度と前記熱可塑性樹脂(B)のガラス転移温度との差が、0~15℃の範囲である、上記[1]に記載の樹脂積層体である。
[3]前記熱可塑性樹脂(B)が、前記メタクリル樹脂(C)と前記スチレン共重合体(D)とのポリマーアロイである、上記[1]または[2]に記載の樹脂積層体である。
[4]前記スチレン共重合体(D)に含まれるビニル芳香族単量体単位(d1)が、スチレンである、上記[1]~[3]のいずれかに記載の樹脂積層体である。
[5]前記スチレン共重合体(D)に含まれる環状酸無水物単量体単位(d2)が、無水マレイン酸である、上記[1]~[4]のいずれかに記載の樹脂積層体である。
[6]前記ポリカーボネート系樹脂(A)は下記一般式(1)で表される1価フェノールから誘導される末端構造と2価フェノールから誘導される構成単位とを有する、上記[1]~[5]のいずれかに記載の樹脂積層体である。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、炭素数8~36のアルキル基、又は炭素数8~36のアルケニル基を表し、R~Rはそれぞれ水素、ハロゲン、又は置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、前記置換基は、ハロゲン、炭素数1~20のアルキル基、又は炭素数6~12のアリール基である。)
[7]前記熱可塑性樹脂(B)を含む層の厚さが10~250μmであり、前記樹脂積層体の全体厚みが0.4~4.0mmの範囲である、上記[1]~[6]のいずれかに記載の樹脂積層体である。
[8]前記ポリカーボネート系樹脂(A)を含む層、前記熱可塑性樹脂(B)を含む層、および、前記ハードコート層の少なくとも一層が紫外線吸収剤を含有する、上記[1]~[7]のいずれかに記載の樹脂積層体である。
[9]前記ハードコート層がアクリル系ハードコートである、上記[1]~[8]のいずれかに記載の樹脂積層体である。
[10]前記樹脂積層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理および防汚処理の少なくとも一つが施されてなる、上記[1]~[9]のいずれかに記載の樹脂積層体である。
[11]上記[1]~[10]のいずれかに記載の樹脂積層体を熱曲げ加工された熱成形体である。
[12]上記[1]~[10]のいずれかに記載の樹脂積層体、または上記[11]に記載の熱成形体を含む、透明基板材料である。
[13]上記[1]~[10]のいずれかに記載の樹脂積層体、または上記[11]に記載の熱成形体を含む、透明保護材料である。
[14]上記[1]~[10]のいずれかに記載の樹脂積層体、または上記[11]に記載の熱成形体を含む、タッチパネル前面保護板である。
[15]上記[1]~[12]のいずれかに記載の樹脂積層体、または上記[11]に記載の熱成形体を含む、カーナビ用、OA機器用または携帯電子機器用の前面板である。
[16]樹脂積層体を100℃~135℃の金型温度で熱曲げ加工する工程を含む熱成形体の製造方法であって、
 前記樹脂積層体が、ポリカーボネート系樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有し、該熱可塑性樹脂(B)を含む層の少なくとも片側表面にハードコート層を有し、
 前記ポリカーボネート系樹脂(A)はガラス転移温度が115℃~140℃であり、
 前記熱可塑性樹脂(B)がメタクリル樹脂(C)とスチレン共重合体(D)とを含有し、前記メタクリル樹脂(C)及びスチレン共重合体(D)の含有量の合計100質量部を基準として、前記メタクリル樹脂(C)の含有量は15~70質量部であり、前記スチレン共重合体(D)の含有量は85~30質量部であり、
 前記スチレン共重合体(D)がビニル芳香族単量体単位(d1)を68~84質量%と、環状酸無水物単量体単位(d2)を16~32質量%とを含む共重合体であり、重量平均分子量が50,000~130,000である、前記製造方法である。
[1] A layer containing a thermoplastic resin (B) is provided on at least one surface of a layer containing a polycarbonate resin (A), and a hard coat layer is provided on at least one surface of the layer containing the thermoplastic resin (B). It is a resin laminate having
The polycarbonate resin (A) has a glass transition temperature of 115 ° C to 140 ° C, and has a glass transition temperature of 115 ° C to 140 ° C.
The thermoplastic resin (B) contains a methacrylic resin (C) and a styrene copolymer (D), and the total content of the methacrylic resin (C) and the styrene copolymer (D) is based on 100 parts by mass. The content of the methacrylic resin (C) is 15 to 70 parts by mass, and the content of the styrene copolymer (D) is 85 to 30 parts by mass.
The styrene copolymer (D) is a copolymer containing 68 to 84% by mass of a vinyl aromatic monomer unit (d1) and 16 to 32% by mass of a cyclic acid anhydride monomer unit (d2). The weight average molecular weight is 50,000 to 130,000.
This resin laminate does not cause cracks or springback in the bent portion after thermoforming at a mold temperature of 120 ° C. with a heat press machine of 50 mmR.
[2] The resin laminate according to the above [1], wherein the difference between the glass transition temperature of the polycarbonate resin (A) and the glass transition temperature of the thermoplastic resin (B) is in the range of 0 to 15 ° C. Is.
[3] The resin laminate according to the above [1] or [2], wherein the thermoplastic resin (B) is a polymer alloy of the methacrylic resin (C) and the styrene copolymer (D). ..
[4] The resin laminate according to any one of the above [1] to [3], wherein the vinyl aromatic monomer unit (d1) contained in the styrene copolymer (D) is styrene.
[5] The resin laminate according to any one of the above [1] to [4], wherein the cyclic acid anhydride monomer unit (d2) contained in the styrene copolymer (D) is maleic anhydride. Is.
[6] The polycarbonate-based resin (A) has a terminal structure derived from a monovalent phenol represented by the following general formula (1) and a structural unit derived from a divalent phenol, and has the above-mentioned [1] to [1] to [ 5] The resin laminate according to any one of.
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms, and R 2 to R 5 are carbons which may have a hydrogen, a halogen or a substituent, respectively. Represents an alkyl group having a number of 1 to 20 or an aryl group having 6 to 12 carbon atoms, and the substituent is a halogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
[7] The thickness of the layer containing the thermoplastic resin (B) is 10 to 250 μm, and the total thickness of the resin laminate is in the range of 0.4 to 4.0 mm. ] Is the resin laminate according to any one of.
[8] The above [1] to [7], wherein at least one layer of the polycarbonate resin (A), the layer containing the thermoplastic resin (B), and the hard coat layer contains an ultraviolet absorber. The resin laminate according to any one of.
[9] The resin laminate according to any one of [1] to [8] above, wherein the hard coat layer is an acrylic hard coat.
[10] The above [1] to the above-mentioned [1] to which at least one of fingerprint resistance treatment, antireflection treatment, antiglare treatment, weather resistance treatment, antistatic treatment and antifouling treatment is applied to one side or both sides of the resin laminate. [9] The resin laminate according to any one of [9].
[11] The resin laminate according to any one of the above [1] to [10] is a thermoformed body obtained by thermoforming.
[12] A transparent substrate material containing the resin laminate according to any one of the above [1] to [10] or the thermoformed body according to the above [11].
[13] A transparent protective material containing the resin laminate according to any one of the above [1] to [10] or the thermoformed body according to the above [11].
[14] A touch panel front surface protective plate including the resin laminate according to any one of the above [1] to [10] or the thermoformed body according to the above [11].
[15] A front plate for a car navigation system, an OA device, or a portable electronic device, which comprises the resin laminate according to any one of the above [1] to [12] or the thermoformed body according to the above [11]. be.
[16] A method for producing a thermoformed body, which comprises a step of hot bending a resin laminate at a mold temperature of 100 ° C. to 135 ° C.
The resin laminate has a layer containing a thermoplastic resin (B) on at least one surface of a layer containing a polycarbonate resin (A), and is on at least one side surface of the layer containing the thermoplastic resin (B). Has a hard coat layer,
The polycarbonate resin (A) has a glass transition temperature of 115 ° C to 140 ° C, and has a glass transition temperature of 115 ° C to 140 ° C.
The thermoplastic resin (B) contains a methacrylic resin (C) and a styrene copolymer (D), and the total content of the methacrylic resin (C) and the styrene copolymer (D) is based on 100 parts by mass. The content of the methacrylic resin (C) is 15 to 70 parts by mass, and the content of the styrene copolymer (D) is 85 to 30 parts by mass.
The styrene copolymer (D) is a copolymer containing 68 to 84% by mass of a vinyl aromatic monomer unit (d1) and 16 to 32% by mass of a cyclic acid anhydride monomer unit (d2). This is the production method, wherein the weight average molecular weight is 50,000 to 130,000.
 本発明によれば、低温での熱成形に優れ、かつ、干渉縞の発生を抑制した熱成形品を成形可能である樹脂積層体が提供される。すなわち、本発明の樹脂積層体は、熱成形時の白化・クラックの発生が抑制され、良好な外観を有する成形品が得られる。
 該樹脂積層体は透明基板材料や透明保護材料として用いることができる。具体的には携帯電話端末、携帯型電子遊具、携帯情報端末、モバイルPCといった携帯型のディスプレイデバイスや、ノート型PC、デスクトップ型PC液晶モニター、カーナビ液晶モニター、液晶テレビといった設置型のディスプレイデバイスなどにおいて、例えばこれらの機器を保護する前面板として、好適に使用することができる。
INDUSTRIAL APPLICABILITY According to the present invention, there is provided a resin laminate that is excellent in thermoforming at a low temperature and can form a thermoformed product in which the generation of interference fringes is suppressed. That is, the resin laminate of the present invention can be obtained as a molded product having a good appearance by suppressing the occurrence of whitening and cracks during thermoforming.
The resin laminate can be used as a transparent substrate material or a transparent protective material. Specifically, portable display devices such as mobile phone terminals, portable electronic play equipment, mobile information terminals, and mobile PCs, and stationary display devices such as notebook PCs, desktop PC LCD monitors, car navigation LCD monitors, and LCD TVs. In, for example, it can be suitably used as a front plate for protecting these devices.
 以下、本発明について製造例や実施例等を例示して詳細に説明するが、本発明は例示される製造例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行うこともできる。 Hereinafter, the present invention will be described in detail by exemplifying manufacturing examples, examples, etc., but the present invention is not limited to the exemplified manufacturing examples, examples, etc., and does not significantly deviate from the contents of the present invention. If so, it can be changed to any method.
 <ポリカーボネート系樹脂(A)>
 本発明に使用されるポリカーボネート系樹脂(A)は、ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)である。ここで、「ポリカーボネート樹脂を主成分とする」とは、ポリカーボネート樹脂の含有量が50質量%を超えることを意味する。ポリカーボネート系樹脂(A)は、75質量%以上のポリカーボネート樹脂を含んでいるのが好ましく、90質量%以上のポリカーボネート樹脂を含んでいるのがより好ましく、実質的にポリカーボネート樹脂からなるのがさらに好ましい。ポリカーボネート系樹脂(A)は分子主鎖中に炭酸エステル結合を含む。即ち、-[O-R-OCO]-単位(式中、Rが脂肪族基、芳香族基、又は脂肪族基と芳香族基の双方を含むもの、さらに直鎖構造あるいは分岐構造を持つものを示す)を含むものであれば特に限定されるものではないが、特に下記式(2)の構造単位を含むポリカーボネートを使用することが好ましい。このようなポリカーボネートを使用することで、耐衝撃性に優れた樹脂積層体を得ることができる。
Figure JPOXMLDOC01-appb-C000003
<Polycarbonate resin (A)>
The polycarbonate-based resin (A) used in the present invention is a polycarbonate-based resin (A) containing a polycarbonate resin as a main component. Here, "having a polycarbonate resin as a main component" means that the content of the polycarbonate resin exceeds 50% by mass. The polycarbonate resin (A) preferably contains 75% by mass or more of the polycarbonate resin, more preferably 90% by mass or more of the polycarbonate resin, and further preferably substantially composed of the polycarbonate resin. .. The polycarbonate resin (A) contains a carbonic acid ester bond in the molecular main chain. That is,-[OR-OCO] -unit (in the formula, R contains an aliphatic group, an aromatic group, or both an aliphatic group and an aromatic group, and further has a linear structure or a branched structure. Is not particularly limited as long as it contains), but it is particularly preferable to use a polycarbonate containing the structural unit of the following formula (2). By using such polycarbonate, a resin laminate having excellent impact resistance can be obtained.
Figure JPOXMLDOC01-appb-C000003
 ポリカーボネート系樹脂(A)は、下記一般式(1)で表わされる1価フェノールを末端停止剤として用いて合成することが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは、炭素数8~36のアルキル基、又は炭素数8~36のアルケニル基を表し、
 R~Rはそれぞれ水素、ハロゲン、又は置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、前記置換基は、ハロゲン、炭素数1~20のアルキル基、又は炭素数6~12のアリール基である。)
The polycarbonate resin (A) is preferably synthesized by using a monohydric phenol represented by the following general formula (1) as a terminal terminator.
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
R 2 to R 5 represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms, which may have hydrogen, halogen, or a substituent, respectively, and the substituents are halogen and 1 carbon dioxide group. It is an alkyl group of up to 20 or an aryl group having 6 to 12 carbon atoms. )
 一般式(1)の1価フェノールは、下記一般式(3)で表される1価フェノールであることがより好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、炭素数8~36のアルキル基、又は、炭素数8~36のアルケニル基を表す。)
The monohydric phenol of the general formula (1) is more preferably a monohydric phenol represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.)
 一般式(1)又は一般式(3)におけるRの炭素数は特定の数値範囲内であることがより好ましい。具体的には、Rの炭素数の上限値として36が好ましく、22がより好ましく、18が特に好ましい。また、Rの炭素数の下限値として、8が好ましく、12がより好ましい。 It is more preferable that the carbon number of R 1 in the general formula (1) or the general formula (3) is within a specific numerical range. Specifically, as the upper limit of the number of carbon atoms of R 1 , 36 is preferable, 22 is more preferable, and 18 is particularly preferable. Further, as the lower limit of the number of carbon atoms of R 1 , 8 is preferable, and 12 is more preferable.
 一般式(1)又は一般式(3)で示される1価フェノール(末端停止剤)の中でも、パラヒドロキシ安息香酸ヘキサデシルエステル、パラヒドロキシ安息香酸2-ヘキシルデシルエステルのいずれかもしくは両方を末端停止剤として使用することが特に好ましい。 Among the monovalent phenols (termination agents) represented by the general formula (1) or the general formula (3), one or both of the parahydroxybenzoic acid hexadecyl ester and the parahydroxybenzoic acid 2-hexyldecyl ester are terminated. It is particularly preferable to use it as an agent.
 一般式(1)又は一般式(3)におけるRとして、例えば、炭素数16のアルキル基を有する1価フェノール(末端停止剤)を使用した場合、ガラス転移温度、溶融流動性、成形性、耐ドローダウン性、ポリカーボネート樹脂製造時の1価フェノールの溶剤溶解性が優れており、本発明に用いるポリカーボネート樹脂に使用する末端停止剤として、特に好ましい。 When, for example, a monohydric phenol (terminal terminator) having an alkyl group having 16 carbon atoms is used as R 1 in the general formula (1) or the general formula (3), the glass transition temperature, melt fluidity, moldability, and the like. It has excellent draw-down resistance and solvent solubility of monohydric phenol during production of a polycarbonate resin, and is particularly preferable as a terminal terminator used in the polycarbonate resin used in the present invention.
 一方、一般式(1)又は一般式(3)におけるRの炭素数が増加しすぎると、1価フェノール(末端停止剤)の有機溶剤溶解性が低下する傾向があり、ポリカーボネート樹脂製造時の生産性が低下することがある。
 一例として、Rの炭素数が36以下であれば、ポリカーボネート樹脂を製造するにあたって生産性が高く、経済性も良い。Rの炭素数が22以下であれば、1価フェノールは、特に有機溶剤溶解性に優れており、ポリカーボネート樹脂を製造するにあたって生産性を非常に高くすることができ、経済性も向上する。
 一般式(1)又は一般式(3)におけるRの炭素数が小さすぎると、ポリカーボネート樹脂のガラス転移温度が十分に低い値とはならず、熱成形性が低下することがある。
On the other hand, if the carbon number of R1 in the general formula (1) or the general formula (3) is increased too much, the organic solvent solubility of the monohydric phenol (terminal terminator) tends to decrease, and the polycarbonate resin is manufactured. Productivity may decrease.
As an example, when the carbon number of R 1 is 36 or less, the productivity is high and the economy is good in producing the polycarbonate resin. When the number of carbon atoms of R 1 is 22 or less, the monohydric phenol is particularly excellent in organic solvent solubility, and can greatly increase the productivity in producing the polycarbonate resin and also improve the economic efficiency.
If the carbon number of R 1 in the general formula (1) or the general formula (3) is too small, the glass transition temperature of the polycarbonate resin does not become a sufficiently low value, and the thermoformability may deteriorate.
 ポリカーボネート系樹脂(A)に含まれる他の樹脂としては、ポリエステル系樹脂がある。ポリエステル系樹脂は、ジカルボン酸成分として、テレフタル酸を主成分として含んでいればよく、テレフタル酸以外のジカルボン酸成分を含んでいてもよい。例えば、主成分であるエチレングリコール80~60(モル比率)に対して1,4-シクロヘキサンジメタノールを20~40(モル比率、合計100)含むグリコール成分とジカルボン酸成分とが重縮合してなるポリエステル系樹脂、所謂「PETG」が好ましい。また、ポリカーボネート系樹脂(A)には、エステル結合とカーボネート結合をポリマー骨格中に有するポリエステルカーボネート系樹脂が含まれていてもよい。 As another resin contained in the polycarbonate resin (A), there is a polyester resin. The polyester resin may contain terephthalic acid as a main component as the dicarboxylic acid component, and may contain a dicarboxylic acid component other than terephthalic acid. For example, a glycol component containing 20 to 40 (molar ratio, 100 in total) of 1,4-cyclohexanedimethanol with ethylene glycol 80 to 60 (molar ratio) as the main component and a dicarboxylic acid component are polycondensed. A polyester resin, so-called "PETG", is preferable. Further, the polycarbonate-based resin (A) may contain a polyester carbonate-based resin having an ester bond and a carbonate bond in the polymer skeleton.
 本発明において、ポリカーボネート系樹脂(A)の重量平均分子量は、樹脂積層体の耐衝撃性および成形条件に影響する。つまり、重量平均分子量が小さすぎる場合は、樹脂積層体の耐衝撃性が低下するので好ましくない。重量平均分子量が高すぎる場合は、ポリカーボネート系樹脂(A)を含む層を積層させる時に過剰な熱源を必要とする場合があり、好ましくない。また、成形法によっては高い温度が必要になるので、ポリカーボネート系樹脂(A)が高温にさらされることになり、その熱安定性に悪影響を及ぼすことがある。ポリカーボネート系樹脂(A)の重量平均分子量は、10,000~75,000が好ましく、15,000~60,000がより好ましい。さらに好ましくは20,000~50,000である。 In the present invention, the weight average molecular weight of the polycarbonate resin (A) affects the impact resistance and molding conditions of the resin laminate. That is, if the weight average molecular weight is too small, the impact resistance of the resin laminate is lowered, which is not preferable. If the weight average molecular weight is too high, an excessive heat source may be required when laminating the layer containing the polycarbonate resin (A), which is not preferable. Further, since a high temperature is required depending on the molding method, the polycarbonate resin (A) is exposed to a high temperature, which may adversely affect its thermal stability. The weight average molecular weight of the polycarbonate resin (A) is preferably 10,000 to 75,000, more preferably 15,000 to 60,000. More preferably, it is 20,000 to 50,000.
<ポリカーボネート系樹脂(A)の重量平均分子量の測定法>
 ポリカーボネート系樹脂(A)の重量平均分子量は、特開2007-179018号公報の段落0061~0064の記載に基づいて測定することができる。測定法の詳細を以下に示す。
Figure JPOXMLDOC01-appb-T000006
<Measurement method of weight average molecular weight of polycarbonate resin (A)>
The weight average molecular weight of the polycarbonate resin (A) can be measured based on the description in paragraphs 0061 to 0064 of JP-A-2007-179018. The details of the measurement method are shown below.
Figure JPOXMLDOC01-appb-T000006
 標準ポリマーとしてポリスチレン(PS)を使用して測定を行った後、ユニバーサルキャリブレーション法により、溶出時間とポリカーボネート(PC)の分子量との関係を求めて検量線とする。そして、PCの溶出曲線(クロマトグラム)を検量線の場合と同一の条件で測定し、溶出時間(分子量)とその溶出時間のピーク面積(分子数)とから各平均分子量を求める。分子量Miの分子数をNiとすると、重量平均分子量は、以下のように表される。また換算式は以下の式を使用した。
(重量平均分子量)
Mw=Σ(NiMi)/Σ(NiMi)
(換算式)
MPC=0.47822MPS1.01470
なお、MPCはPCの分子量、MPSはPSの分子量を示す。
After measuring using polystyrene (PS) as a standard polymer, the relationship between the elution time and the molecular weight of polycarbonate (PC) is obtained by a universal calibration method and used as a calibration curve. Then, the elution curve (chromatogram) of PC is measured under the same conditions as in the case of the calibration curve, and each average molecular weight is obtained from the elution time (molecular weight) and the peak area (molecular number) of the elution time. Assuming that the number of molecules of the molecular weight Mi is Ni, the weight average molecular weight is expressed as follows. The following formula was used as the conversion formula.
(Weight average molecular weight)
Mw = Σ (NiMi 2 ) / Σ (NiMi)
(Conversion formula)
MPC = 0.47822MPS 1.01470
MPC indicates the molecular weight of PC, and MPS indicates the molecular weight of PS.
 本発明に使用されるポリカーボネート系樹脂(A)のガラス転移温度は、115~140℃が好ましく、115~135℃がより好ましく、115℃~130℃がさらに好ましく、115℃以上130℃未満が特に好ましい。なお、本明細書におけるポリカーボネート系樹脂(A)のガラス転移温度とは、示差走査熱量計を用い、昇温速度10℃/分で測定し、ベースラインと変曲点での接線の交点で算出したときの温度である。 The glass transition temperature of the polycarbonate resin (A) used in the present invention is preferably 115 to 140 ° C, more preferably 115 to 135 ° C, further preferably 115 ° C to 130 ° C, and particularly preferably 115 ° C or higher and lower than 130 ° C. preferable. The glass transition temperature of the polycarbonate resin (A) in the present specification is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter and calculated at the intersection of the baseline and the tangent at the inflection. It is the temperature at the time of.
 前記ポリカーボネート系樹脂(A)のメルトフローレイトは1~30g/10分の範囲であるのが好ましく、8~20g/10分の範囲であるのがより好ましく、11~15g/10分の範囲であるのがさらに好ましい。メルトフローレイトが1~30g/10分の範囲にあると、加熱溶融成形の安定性が良好である。なお、本明細書におけるポリカーボネート系樹脂(A)のメルトフローレイトとは、メルトインデクサーを用いて、温度300℃、1.2kg荷重下の条件で測定したものである。 The melt flow rate of the polycarbonate resin (A) is preferably in the range of 1 to 30 g / 10 minutes, more preferably in the range of 8 to 20 g / 10 minutes, and in the range of 11 to 15 g / 10 minutes. It is even more preferable to have it. When the melt flow rate is in the range of 1 to 30 g / 10 minutes, the stability of heat melt molding is good. The melt flow rate of the polycarbonate resin (A) in the present specification is measured using a melt indexer under the conditions of a temperature of 300 ° C. and a load of 1.2 kg.
 本発明に使用されるポリカーボネート系樹脂(A)の製造方法は、公知のホスゲン法(界面重合法)、エステル交換法(溶融法)等、使用するモノマーにより適宜選択できる。 The method for producing the polycarbonate resin (A) used in the present invention can be appropriately selected depending on the monomer used, such as a known phosgene method (interfacial polymerization method) or transesterification method (melting method).
<熱可塑性樹脂(B)>
 本発明に使用される熱可塑性樹脂(B)は、メタクリル樹脂(C)とスチレン共重合体(D)とを含む。それぞれの構成要素について以下に説明する。
<Thermoplastic resin (B)>
The thermoplastic resin (B) used in the present invention contains a methacrylic resin (C) and a styrene copolymer (D). Each component will be described below.
<メタクリル樹脂(C)>
 本発明による熱可塑性樹脂(B)に含まれるメタクリル樹脂(C)は、メタクリル酸エステル単量体に由来する構造単位を含む樹脂が挙げられる。
<Methyl resin (C)>
Examples of the methacrylic resin (C) contained in the thermoplastic resin (B) according to the present invention include a resin containing a structural unit derived from a methacrylic acid ester monomer.
 前記メタクリル樹脂(C)のメタクリル酸エステル単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸ペンチル、メタクリル酸ヘキシル、メタクリル酸ヘプチル、メタクリル酸2-エチルヘキシル、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ドデシルなどのメタクリル酸アルキルエステル;メタクリル酸1-メチルシクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロヘプチル、メタクリル酸シクロオクチル、メタクリル酸トリシクロ[5.2.1.02,6]デカ-8-イルなどのメタクリル酸シクロアルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸ベンジルなどのメタクリル酸アラルキルエステルなどが挙げられ、入手性の観点から、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、およびメタクリル酸tert-ブチルが好ましく、メタクリル酸メチルが最も好ましい。 Examples of the methacrylic acid ester monomer of the methacrylic acid resin (C) include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and tert-butyl methacrylate. Alkyl methacrylate esters such as pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate; 1-methylcyclopentyl methacrylate, cyclohexyl methacrylate, cyclomethacrylate. Cycloalkyl esters of methacrylic acid such as heptyl, cyclooctyl methacrylate, tricyclo methacrylate [5.2.1.02,6] deca-8-yl; aryl methacrylate esters such as phenyl methacrylate; methacrylics such as benzyl methacrylate. Examples thereof include acid aralkyl esters, and from the viewpoint of availability, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and tert-butyl methacrylate are preferable. , Methyl methacrylate is most preferred.
 また耐熱性の観点から、上記メタクリル樹脂(C)は、メタクリル酸エステル単量体に由来する構造単位を80質量%以上含有することが好ましく、90質量%以上含有することがより好ましく、95質量%以上含有することがさらに好ましい。メタクリル樹脂(C)が、メタクリル酸エステル単量体に由来する構造単位を80質量%以上含有すると、スチレン共重合体(D)との相溶性が良好となり好ましい。一方、メタクリル酸エステル単量体に由来する構造単位が80質量%未満であると、スチレン共重合体(D)と相溶せずに白濁してしまうことがある。 From the viewpoint of heat resistance, the methacrylic resin (C) preferably contains 80% by mass or more of structural units derived from the methacrylic acid ester monomer, more preferably 90% by mass or more, and 95% by mass. It is more preferable to contain% or more. When the methacrylic resin (C) contains 80% by mass or more of structural units derived from the methacrylic acid ester monomer, the compatibility with the styrene copolymer (D) is good, which is preferable. On the other hand, if the structural unit derived from the methacrylic acid ester monomer is less than 80% by mass, it may become cloudy without being compatible with the styrene copolymer (D).
 また、前記メタクリル樹脂(C)は、メタクリル酸エステル以外の他の単量体に由来する構造単位を含んでいてもよい。かかる他の単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ノニル、アクリル酸デシル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、アクリル酸シクロヘキシル、アクリル酸2-メトキシエチル、アクリル酸3-メトキシブチル、アクリル酸トリフルオロメチル、アクリル酸トリフルオロエチル、アクリル酸ペンタフルオロエチル、アクリル酸グリシジル、アクリル酸アリル、アクリル酸フェニル、アクリル酸トルイル、アクリル酸ベンジル、アクリル酸イソボルニル、アクリル酸3-ジメチルアミノエチルなどのアクリル酸エステルが挙げられ、入手性の観点から、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル等のアクリル酸エステルが好ましく、アクリル酸メチルおよびアクリル酸エチルがより好ましく、アクリル酸メチルが最も好ましい。メタクリル樹脂(C)におけるこれら他の単量体に由来する構造単位の含有量は、合計で20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。 Further, the methacrylic resin (C) may contain a structural unit derived from a monomer other than the methacrylic acid ester. Examples of such other monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, hexyl acrylate, and 2 acrylate. -Ethylhexyl, nonyl acrylate, decyl acrylate, dodecyl acrylate, stearyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, cyclohexyl acrylate, 2-methoxyethyl acrylate , 3-methoxybutyl acrylate, trifluoromethyl acrylate, trifluoroethyl acrylate, pentafluoroethyl acrylate, glycidyl acrylate, allyl acrylate, phenyl acrylate, toluyl acrylate, benzyl acrylate, isobornyl acrylate, Acrylic acid esters such as 3-dimethylaminoethyl acrylate can be mentioned, and from the viewpoint of availability, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, Acrylic acid esters such as tert-butyl acrylate are preferable, methyl acrylate and ethyl acrylate are more preferable, and methyl acrylate is most preferable. The total content of the structural units derived from these other monomers in the methacrylic resin (C) is preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less.
 メタクリル樹脂(C)は、三連子表示のシンジオタクティシティ(rr)の下限が、50モル%以上であることが好ましく、51%モル以上であることがより好ましく、52%モル以上であることがさらに好ましい。かかる構造の含有量の下限値が50モル%以上であることで耐熱性に優れるものとなる。  The lower limit of the syndiotacticity (rr) of the triplet display of the methacrylic resin (C) is preferably 50 mol% or more, more preferably 51% mol or more, and 52% mol or more. Is even more preferable. When the lower limit of the content of such a structure is 50 mol% or more, the heat resistance is excellent. The
 ここで、三連子表示のシンジオタクティシティ(rr)(以下、単に「シンジオタクティシティ(rr)」と称することがある。)は連続する3つの構造単位の連鎖(3連子、triad)が有する2つの連鎖(2連子、diad)が、ともにラセモ(rrと表記する)である割合である。なお、ポリマー分子中の構造単位の連鎖(2連子、diad)において立体配置が同じものをメソ(meso)、逆のものをラセモ(racemo)と称し、それぞれm、rと表記する。
 メタクリル樹脂(C)のシンジオタクティシティ(rr)(%)は、重水素化クロロホルム中、30℃で、1H-NMRスペクトルを測定し、そのスペクトルからテトラメチルシラン(TMS)を0ppmとした際の、0.6~0.95ppmの領域の面積(X)と0.6~1.35ppmの領域の面積(Y)とを計測し、式:(X/Y)×100にて算出することができる。
Here, the syndiotacticity (rr) of the triplet display (hereinafter, may be simply referred to as "syngiotacticity (rr)") is a chain of three consecutive structural units (triplet, triad). ) Has two chains (double element, diad), both of which are racemic (denoted as rr). In the chain of structural units (double element, diad) in the polymer molecule, those having the same configuration are referred to as meso, and the opposite ones are referred to as racemo, which are referred to as m and r, respectively.
For the syndiotacticity (rr) (%) of the methacrylic resin (C), 1 H-NMR spectrum was measured at 30 ° C. in deuterated chloroform, and tetramethylsilane (TMS) was set to 0 ppm from the spectrum. The area (X) in the region of 0.6 to 0.95 ppm and the area (Y) in the region of 0.6 to 1.35 ppm are measured and calculated by the formula: (X / Y) × 100. be able to.
  前記メタクリル樹脂(C)の重量平均分子量は、スチレン共重合体(D)との混合(分散)のしやすさ、およびこれらの熱可塑性樹脂(B)の製造の容易さで決定される。つまり、メタクリル樹脂(C)の重量平均分子量が大きすぎるとスチレン共重合体(D)との溶融粘度差が大きくなりすぎる為に、両者の混合(分散)が悪くなって前記熱可塑性樹脂(B)の透明性が悪化する、あるいは安定した溶融混練が継続できないといった不具合が起こり得る。逆に、メタクリル樹脂(C)の重量平均分子量が小さすぎると、熱可塑性樹脂(B)の強度が低下するので、樹脂積層体の耐衝撃性が低下するといった問題が発生し得る。メタクリル樹脂(C)の重量平均分子量は、50,000~700,000の範囲が好ましく、60,000~500,000の範囲がより好ましい。さらに好ましくは70,000~200,000の範囲である。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the methacrylic resin (C) is determined by the ease of mixing (dispersing) with the styrene copolymer (D) and the ease of producing these thermoplastic resins (B). That is, if the weight average molecular weight of the methacrylic resin (C) is too large, the difference in melt viscosity with the styrene copolymer (D) becomes too large, so that the mixture (dispersion) of the two becomes poor and the thermoplastic resin (B) ) May deteriorate in transparency, or stable melt-kneading cannot be continued. On the contrary, if the weight average molecular weight of the methacrylic resin (C) is too small, the strength of the thermoplastic resin (B) is lowered, which may cause a problem that the impact resistance of the resin laminate is lowered. The weight average molecular weight of the methacrylic resin (C) is preferably in the range of 50,000 to 700,000, more preferably in the range of 60,000 to 500,000. More preferably, it is in the range of 70,000 to 200,000. The weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
 前記メタクリル樹脂(C)のガラス転移温度は、100℃以上であることが好ましく、105℃以上であることがより好ましく、108℃以上であることがさらに好ましい。かかるガラス転移温度が100℃以上であることで、本発明で提供される樹脂積層体が熱環境において変形や割れを生じることが少ない。なお、本明細書におけるメタクリル樹脂(C)のガラス転移温度とは、示差走査熱量計を用い、昇温速度10℃/分で測定し、ベースラインと変曲点での接線の交点で算出したときの温度である。 The glass transition temperature of the methacrylic resin (C) is preferably 100 ° C. or higher, more preferably 105 ° C. or higher, and even more preferably 108 ° C. or higher. When the glass transition temperature is 100 ° C. or higher, the resin laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment. The glass transition temperature of the methacrylic resin (C) in the present specification is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter and calculated at the intersection of the baseline and the tangent at the inflection. The temperature of the time.
 前記メタクリル樹脂(C)のメルトフローレイトは1~10 g/10分の範囲であることが好ましい。かかるメルトフローレイトの下限値は1.2g/10分以上であることがより好ましく、1.5g/10分であることがさらに好ましい。また、かかるメルトフローレイトの上限値は7.0g/10分以下であることがより好ましく、4.0g/10分以下であることがさらに好ましい。メルトフローレイトが1~10g/10分の範囲にあると、加熱溶融成形の安定性が良好である。なお、本明細書におけるメタクリル樹脂(C)のメルトフローレイトとは 、メルトインデクサーを用いて、温度230℃、3.8kg荷重下で測定した値である。 The melt flow rate of the methacrylic resin (C) is preferably in the range of 1 to 10 g / 10 minutes. The lower limit of the melt flow rate is more preferably 1.2 g / 10 minutes or more, and further preferably 1.5 g / 10 minutes. Further, the upper limit of the melt flow rate is more preferably 7.0 g / 10 minutes or less, and further preferably 4.0 g / 10 minutes or less. When the melt flow rate is in the range of 1 to 10 g / 10 minutes, the stability of heat melt molding is good. The melt flow rate of the methacrylic resin (C) in the present specification is a value measured using a melt indexer at a temperature of 230 ° C. under a load of 3.8 kg.
<スチレン共重合体(D)>
 本発明による熱可塑性樹脂(B)に含まれるスチレン共重合体(D)は、ビニル芳香族単量体単位(d1)と、環状酸無水物単量体単位(d2)とを含み、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)との合計割合が前記スチレン共重合体(D)中の全単量体単位の合計に対して92~100質量%であることを特徴とするものである。
<Styrene copolymer (D)>
The styrene copolymer (D) contained in the thermoplastic resin (B) according to the present invention contains a vinyl aromatic monomer unit (d1) and a cyclic acid anhydride monomer unit (d2), and has a vinyl fragrance. The total ratio of the group monomer unit (d1) and the cyclic acid anhydride monomer unit (d2) is 92 to 100% by mass with respect to the total of all the monomer units in the styrene copolymer (D). It is characterized by being.
 前記スチレン共重合体(D)の前記ビニル芳香族単量体単位(d1)としては、特に限定されず、任意の公知の芳香族ビニル単量体を用いる事が出来るが、入手の容易性の観点から、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらの芳香族ビニル単量体は2種以上を混合してもよい。 The vinyl aromatic monomer unit (d1) of the styrene copolymer (D) is not particularly limited, and any known aromatic vinyl monomer can be used, but it is easy to obtain. From the viewpoint, styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like can be mentioned. Of these, styrene is particularly preferable from the viewpoint of compatibility. Two or more kinds of these aromatic vinyl monomers may be mixed.
 前記スチレン共重合体(D)の前記環状酸無水物単量体単位(d2)としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられ、アクリル樹脂との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物単量体は2種以上を混合してもよい。 Examples of the cyclic acid anhydride monomer unit (d2) of the styrene copolymer (D) include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, which are compatible with acrylic resins. Maleic anhydride is preferable from the viewpoint of. Two or more kinds of these unsaturated dicarboxylic acid anhydride monomers may be mixed.
 本発明で用いる前記スチレン共重合体(D)において、前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)との合計割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して92~100質量%であり、好ましくは95~100質量%であり、より好ましくは98~100質量%である。
 すなわち、前記スチレン共重合体(D)は、全単量体単位の合計に対して8質量%以下の範囲で、前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)以外の単量体単位を含有していてもよい。前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)以外の単量体単位としては、例えば、メタクリル酸エステル単量体単位、N-置換型マレイミド単量体などが挙げられる。
 スチレン共重合体(D)中のメタクリル酸エステル単量体単位としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸ペンチル、メタクリル酸ヘキシル、メタクリル酸ヘプチル、メタクリル酸2-エチルヘキシル、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ドデシルなどのメタクリル酸アルキルエステル;メタクリル酸1-メチルシクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロヘプチル、メタクリル酸シクロオクチル、メタクリル酸トリシクロ[5.2.1.02,6]デカ-8-イルなどのメタクリル酸シクロアルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸ベンジルなどのメタクリル酸アラルキルエステルなどが挙げられ、メタクリル樹脂との相溶性の観点からメタクリル酸メチルが好ましい。これらのメタクリル酸エステル単量体は2種以上を混合してもよい。
 スチレン共重合体(D)中のN-置換型マレイミド単量体としては、N-フェニルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ニトロフェニルマレイミド、N-トリブロモフェニルマレイミドなどのN-アリールマレイミド等が挙げられ、メタクリル樹脂との相溶性の観点からN-フェニルマレイミドが好ましい。これらのN-置換型マレイミド単量体は2種以上を混合してもよい。
In the styrene copolymer (D) used in the present invention, the total ratio of the vinyl aromatic monomer unit (d1) and the cyclic acid anhydride monomer unit (d2) is the styrene copolymer (d). It is 92 to 100% by mass, preferably 95 to 100% by mass, and more preferably 98 to 100% by mass with respect to the total of all the monomer units in D).
That is, the styrene copolymer (D) contains the vinyl aromatic monomer unit (d1) and the cyclic acid anhydride monomer in a range of 8% by mass or less with respect to the total of all the monomer units. It may contain a monomer unit other than the unit (d2). Examples of the monomer unit other than the vinyl aromatic monomer unit (d1) and the cyclic acid anhydride monomer unit (d2) include a methacrylic acid ester monomer unit and an N-substituted maleimide unit. The body etc. can be mentioned.
Examples of the methacrylic acid ester monomer unit in the styrene copolymer (D) include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, and tert methacrylate. -Alkyl methacrylate esters such as butyl, pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, dodecyl methacrylate; 1-methylcyclopentyl methacrylate, cyclohexyl methacrylate, Cycloalkyl methacrylate esters such as cycloheptyl methacrylate, cyclooctyl methacrylate, tricyclo methacrylate [5.2.1.02,6] deca-8-yl; aryl methacrylate esters such as phenyl methacrylate; benzyl methacrylate Examples thereof include methacrylic acid aralkyl esters such as, and methyl methacrylate is preferable from the viewpoint of compatibility with methacrylic acid. Two or more kinds of these methacrylic acid ester monomers may be mixed.
Examples of the N-substituted maleimide monomer in the styrene copolymer (D) include N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, and N-methoxy. Examples thereof include N-arylmaleimide such as phenylmaleimide, N-carboxyphenylmaleimide, N-nitrophenylmaleimide, and N-tribromophenylmaleimide, and N-phenylmaleimide is preferable from the viewpoint of compatibility with methacrylic resin. Two or more kinds of these N-substituted maleimide monomers may be mixed.
 前記ビニル芳香族単量体単位(d1)の割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して68~84質量%であり、好ましくは70~82質量%であり、より好ましくは74~80質量%であり、さらに好ましくは、76~79質量%である。前記環状酸無水物単量体単位(d2)の割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して16~32質量%であり、好ましくは18~30質量%であり、より好ましくは20~26質量%であり、さらに好ましくは、21~24質量%である。
 前記スチレン共重合体(D)中の全単量体単位の合計に対する前記ビニル芳香族単量体単位(d1)の割合が68~84質量%以外であると、メタクリル樹脂(C)との相溶性が悪くなる。また、スチレン共重合体(D)中の全単量体単位の合計に対する前記環状酸無水物単量体単位(d2)の割合が16~32質量%以外であると、メタクリル樹脂(C)との相溶性が悪くなる。
The ratio of the vinyl aromatic monomer unit (d1) is 68 to 84% by mass, preferably 70 to 82% by mass, based on the total of all the monomer units in the styrene copolymer (D). It is more preferably 74 to 80% by mass, and further preferably 76 to 79% by mass. The ratio of the cyclic acid anhydride monomer unit (d2) is 16 to 32% by mass, preferably 18 to 30% by mass, based on the total of all the monomer units in the styrene copolymer (D). %, More preferably 20 to 26% by mass, still more preferably 21 to 24% by mass.
When the ratio of the vinyl aromatic monomer unit (d1) to the total of all the monomer units in the styrene copolymer (D) is other than 68 to 84% by mass, the phase with the methacrylic resin (C). Poor solubility. Further, when the ratio of the cyclic acid anhydride monomer unit (d2) to the total of all the monomer units in the styrene copolymer (D) is other than 16 to 32% by mass, the methacrylic resin (C) and the methacrylic resin (C) are used. The compatibility of the product becomes worse.
 前記スチレン共重合体(D)の重量平均分子量は、低温での熱成形性の観点から、50,000~130,000であることが好ましく、55,000~100,000であることがより好ましく、60,000~90,000であることが特に好ましい。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the styrene copolymer (D) is preferably 50,000 to 130,000, more preferably 55,000 to 100,000 from the viewpoint of thermoformability at low temperature. , 60,000 to 90,000 is particularly preferable. The weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
 前記スチレン共重合体(D)のガラス転移温度は、120~190℃の範囲であることが好ましく、130~170℃の範囲であることがさらに好ましい。ガラス転移温度が120℃以上であることにより本発明で提供される樹脂積層体が熱環境において変形や割れを生じることが少ない。また、190℃以下であることにより鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形などの加工性に優れる。なお、本明細書におけるスチレン共重合体(D)のガラス転移温度とは、示差走査熱量計を用い、昇温速度10℃/分で測定し、ベースラインと変曲点での接線の交点で算出したときの温度である。 The glass transition temperature of the styrene copolymer (D) is preferably in the range of 120 to 190 ° C, more preferably in the range of 130 to 170 ° C. When the glass transition temperature is 120 ° C. or higher, the resin laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment. Further, when the temperature is 190 ° C. or lower, the workability is excellent such as continuous heat shaping by a mirror surface roll or a shaping roll, or batch type heat shaping by a mirror surface mold or a shaping die. The glass transition temperature of the styrene copolymer (D) in the present specification is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter, and is at the intersection of the baseline and the tangent at the inflection. It is the temperature at the time of calculation.
 前記スチレン共重合体(D)のメルトフローレイトは1~10g/10分の範囲であることが好ましく、3~8g/10分の範囲であることがより好ましく、4~7g/10分であることがさらに好ましい。メルトフローレイトが1~10g/10分の範囲にあると、加熱溶融成形の安定性が良好である。なお、本明細書におけるスチレン共重合体(D)のメルトフローレイトとは 、メルトインデクサーを用いて、温度230℃、3.8kg荷重下で測定した値である。 The melt flow rate of the styrene copolymer (D) is preferably in the range of 1 to 10 g / 10 minutes, more preferably in the range of 3 to 8 g / 10 minutes, and 4 to 7 g / 10 minutes. Is even more preferable. When the melt flow rate is in the range of 1 to 10 g / 10 minutes, the stability of heat melt molding is good. The melt flow rate of the styrene copolymer (D) in the present specification is a value measured using a melt indexer at a temperature of 230 ° C. under a load of 3.8 kg.
 前記スチレン共重合体(D)の製造方法は、特に限定されないが、公知の溶液重合法、塊状重合法、懸濁重合法等、適宜選択できる。 The method for producing the styrene copolymer (D) is not particularly limited, but a known solution polymerization method, bulk polymerization method, suspension polymerization method, or the like can be appropriately selected.
 前記スチレン共重合体(D)は、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)とを含む二元共重合体、または、多元共重合体であるが、メタクリル樹脂(C)を組み合わせて用いることで、スチレン共重合体(D)のみを用いた場合よりも硬度が高く、メタクリル樹脂(C)のみを用いた場合よりも熱成形性に優れた樹脂積層体が得られる。 Although the styrene copolymer (D) is a binary copolymer containing a vinyl aromatic monomer unit (d1) and a cyclic acid anhydride monomer unit (d2), or a multiple copolymer. By using the methacrylic resin (C) in combination, the hardness is higher than when only the styrene copolymer (D) is used, and the resin is superior in thermoformability as compared with the case where only the methacrylic resin (C) is used. A laminate is obtained.
 本発明において、前記メタクリル樹脂(C)と前記スチレン共重合体(D)の質量比は、メタクリル樹脂(C)とスチレン共重合体(D)との含有量の合計100質量部を基準として、前記メタクリル樹脂(C)が15~70質量部に対して前記スチレン共重合体(D)が85~30質量部であることが好ましい。より好ましくは、前記メタクリル樹脂(C)が20~65質量部に対して前記スチレン共重合体(D)が80~35質量部であり、更に好ましくは、前記メタクリル樹脂(C)が20~55質量部に対して前記スチレン共重合体(D)が80~45質量部である。この質量比内にすることにより、透明性を維持しつつ、耐熱性に優れ、屈折率が高く、低温での熱成形性に優れ、且つ、外観良好な優れた熱可塑性樹脂(B)となる。 In the present invention, the mass ratio of the methacrylic resin (C) to the styrene copolymer (D) is based on 100 parts by mass of the total content of the methacrylic resin (C) and the styrene copolymer (D). The amount of the styrene copolymer (D) is preferably 85 to 30 parts by mass with respect to 15 to 70 parts by mass of the methacrylic resin (C). More preferably, the styrene copolymer (D) is 80 to 35 parts by mass with respect to 20 to 65 parts by mass of the methacrylic resin (C), and more preferably 20 to 55 parts by mass of the methacrylic resin (C). The amount of the styrene copolymer (D) is 80 to 45 parts by mass with respect to parts by mass. By keeping the mass ratio within this range, the thermoplastic resin (B) has excellent heat resistance, high refractive index, excellent thermoformability at low temperature, and good appearance while maintaining transparency.
 前記熱可塑性樹脂(B)のガラス転移温度は、120~165℃の範囲であることが好ましく、120~155℃の範囲であることがさらに好ましい。ガラス転移温度が120℃以上であることにより本発明で提供される樹脂積層体が熱環境において変形や割れを生じることが少ない。また、165℃以下であることにより鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形などの加工性に優れる。なお、本明細書における熱可塑性樹脂(B)のガラス転移温度とは、示差走査熱量計を用い、昇温速度10℃/分で測定し、ベースラインと変曲点での接線の交点で算出したときの温度である。 The glass transition temperature of the thermoplastic resin (B) is preferably in the range of 120 to 165 ° C, more preferably in the range of 120 to 155 ° C. When the glass transition temperature is 120 ° C. or higher, the resin laminate provided in the present invention is less likely to be deformed or cracked in a thermal environment. Further, when the temperature is 165 ° C. or lower, the workability is excellent such as continuous heat shaping by a mirror surface roll or a shaping roll, or batch type heat shaping by a mirror surface mold or a shaping die. The glass transition temperature of the thermoplastic resin (B) in the present specification is measured at a heating rate of 10 ° C./min using a differential scanning calorimeter and calculated at the intersection of the baseline and the tangent at the inflection. It is the temperature at the time of.
 前記熱可塑性樹脂(B)のメルトフローレイトは1~10g/10分の範囲であることが好ましく、1.5~7g/10分の範囲であることがより好ましく、2~5g/10分であることがさらに好ましい。メルトフローレイトが1~10g/10分の範囲にあると、加熱溶融成形の安定性が良好である。なお、本明細書における熱可塑性樹脂(B)のメルトフローレイトとは 、メルトインデクサーを用いて、温度230℃、3.8kg荷重下で測定した値である。 The melt flow rate of the thermoplastic resin (B) is preferably in the range of 1 to 10 g / 10 minutes, more preferably in the range of 1.5 to 7 g / 10 minutes, and in the range of 2 to 5 g / 10 minutes. It is more preferable to have. When the melt flow rate is in the range of 1 to 10 g / 10 minutes, the stability of heat melt molding is good. The melt flow rate of the thermoplastic resin (B) in the present specification is a value measured using a melt indexer at a temperature of 230 ° C. under a load of 3.8 kg.
 本発明において、熱可塑性樹脂(B)の製造方法には特に制限はなく、必要な成分を、例えばタンブラーやヘンシェルミキサー、スーパーミキサーなどの混合機を用いて予め混合しておき、その後、バンバリーミキサー、ロール、ブラベンダー、単軸押出機、二軸押出機、加圧ニーダーなどの機械で溶融混練するといった公知の方法が適用できる。 In the present invention, the method for producing the thermoplastic resin (B) is not particularly limited, and necessary components are mixed in advance using a mixer such as a tumbler, a Henschel mixer, or a super mixer, and then a Banbury mixer. , A known method such as melt-kneading with a machine such as a roll, a brabender, a single-screw extruder, a twin-screw extruder, or a pressure kneader can be applied.
 本発明に使用される熱可塑性樹脂(B)のガラス転移温度は比較的高く、前記ポリカーボネート系樹脂(A)のガラス転移温度との差が少ないため、熱プレス成形や熱曲げ加工時にポリカーボネート系樹脂(A)のガラス転移温度に近づけても、熱可塑性樹脂(B)を含む層に外観不良が発生するという問題が少ないというメリットがある。ポリカーボネート系樹脂(A)のガラス転移温度と熱可塑性樹脂(B)のガラス転移温度との差は、0~15℃の範囲であることが好ましく、0~10℃の範囲であることがより好ましい。 Since the glass transition temperature of the thermoplastic resin (B) used in the present invention is relatively high and the difference from the glass transition temperature of the polycarbonate resin (A) is small, the polycarbonate resin is used during hot press molding or hot bending. Even when the temperature approaches the glass transition temperature of (A), there is an advantage that there is little problem that the layer containing the thermoplastic resin (B) has an appearance defect. The difference between the glass transition temperature of the polycarbonate resin (A) and the glass transition temperature of the thermoplastic resin (B) is preferably in the range of 0 to 15 ° C, more preferably in the range of 0 to 10 ° C. ..
<ハードコート層>
 本発明によるハードコート層と熱可塑性樹脂(B)を含む層との間にさらなる層が存在していてもよいが、好ましくは、ハードコート層は熱可塑性樹脂(B)を含む層の表面又は両面に積層される。ハードコート層は、アクリル系ハードコートであることが好ましい。本明細書において、「アクリル系ハードコート」とは、重合基として(メタ)アクリロイル基を含有するモノマーまたはオリゴマーまたはプレポリマーを重合して架橋構造を形成した塗膜を意味する。アクリル系ハードコートの組成としては、(メタ)アクリル系モノマー2~98質量%、(メタ)アクリル系オリゴマー2~98質量%および表面改質剤0~15質量%を含むことが好ましく、さらに、(メタ)アクリル系モノマーと(メタ)アクリル系オリゴマーと表面改質剤との総和100質量部に対して、0.001~7質量部の光重合開始剤を含むことが好ましい。
<Hard coat layer>
A further layer may be present between the hardcourt layer according to the present invention and the layer containing the thermoplastic resin (B), but preferably the hardcoat layer is the surface of the layer containing the thermoplastic resin (B) or the surface of the layer containing the thermoplastic resin (B). It is laminated on both sides. The hard coat layer is preferably an acrylic hard coat. As used herein, the term "acrylic hardcoat" means a coating film formed by polymerizing a monomer or oligomer or prepolymer containing a (meth) acryloyl group as a polymerization group to form a crosslinked structure. The composition of the acrylic hard coat preferably contains 2 to 98% by mass of the (meth) acrylic monomer, 2 to 98% by mass of the (meth) acrylic oligomer, and 0 to 15% by mass of the surface modifier. It is preferable to contain 0.001 to 7 parts by mass of the photopolymerization initiator with respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer and the surface modifier.
 ハードコート層は、より好ましくは、(メタ)アクリル系モノマーを5~50質量%、(メタ)アクリル系オリゴマーを50~95質量%および表面改質剤を1~10質量%含み、特に好ましくは、(メタ)アクリル系モノマーを20~40質量%、(メタ)アクリル系オリゴマーを60~80質量%および表面改質剤を2~5質量%含む。
 光重合開始剤の量は、(メタ)アクリル系モノマーと(メタ)アクリル系オリゴマーと表面改質剤との総和100質量部に対して、0.01~5質量部であることがより好ましく、0.1~3質量部であることが特に好ましい。
The hard coat layer more preferably contains 5 to 50% by mass of the (meth) acrylic monomer, 50 to 95% by mass of the (meth) acrylic oligomer, and 1 to 10% by mass of the surface modifier, and is particularly preferable. , 20-40% by mass of (meth) acrylic monomer, 60-80% by mass of (meth) acrylic oligomer and 2-5% by mass of surface modifier.
The amount of the photopolymerization initiator is more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer and the surface modifier. It is particularly preferably 0.1 to 3 parts by mass.
 (メタ)アクリル系モノマーとしては、分子内に(メタ)アクリロイル基が官能基として存在するものであれば使用でき、1官能モノマー、2官能モノマー、または3官能以上のモノマーであってよい。
 1官能モノマーとしては(メタ)アクリル酸、(メタ)アクリル酸エステルが例示でき、2官能および/または3官能以上の(メタ)アクリル系モノマーの具体例としては、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ポリエチレングリコールジアクリレート、1,4-ブタンジオールオリゴアクリレート、ネオペンチルグリコールオリゴアクリレート、1,6-ヘキサンジオールオリゴアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリルプロポキシトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパンエチレンオキシド付加物トリアクリレート、グリセリンプロピレンオキシド付加物トリアクリレート、ペンタエリスリトールテトラアクリレート等が例示できる。
 ハードコート層は、(メタ)アクリル系モノマーを1種類または2種類以上含んでいてよい。
The (meth) acrylic monomer can be used as long as the (meth) acryloyl group is present as a functional group in the molecule, and may be a monofunctional monomer, a bifunctional monomer, or a trifunctional or higher functional monomer.
Examples of the monofunctional monomer include (meth) acrylic acid and (meth) acrylic acid ester, and specific examples of bifunctional and / or trifunctional or higher (meth) acrylic monomers include diethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate. Propylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, tetraethylene glycol di (meth) acrylate, hydroxy Neopentyl glycol diacrylate, neopentyl glycol di (meth) acrylate, 1,4-butanediol diacrylate, 1,3-butylene glycol di (meth) acrylate, dicyclopentanyldi (meth) acrylate, polyethylene glycol Diacrylate, 1,4-butanediol oligo acrylate, neopentyl glycol oligo acrylate, 1,6-hexanediol oligo acrylate, trimethylol propanetri (meth) acrylate, trimethylol propaneethoxytri (meth) acrylate, trimethylol propanepropoxy Tri (meth) acrylate, pentaerythritol tri (meth) acrylate, glyceryl propoxytri (meth) acrylate, trimethylolpropane trimethacrylate, trimethylolpropaneethylene oxide adduct triacrylate, glycerin propylene oxide adduct triacrylate, pentaerythritol tetraacrylate, etc. Can be exemplified.
The hard coat layer may contain one or more (meth) acrylic monomers.
 (メタ)アクリル系オリゴマーとしては、2官能以上の多官能ウレタン(メタ)アクリレートオリゴマー〔以下、多官能ウレタン(メタ)アクリレートオリゴマーともいう〕、2官能以上の多官能ポリエステル(メタ)アクリレートオリゴマー〔以下、多官能ポリエステル(メタ)アクリレートオリゴマーともいう〕、2官能以上の多官能エポキシ(メタ)アクリレートオリゴマー〔以下、多官能エポキシ(メタ)アクリレートオリゴマーともいう〕などが挙げられる。ハードコート層は、(メタ)アクリル系オリゴマーを1種類または2種類以上含んでいてよい。
 多官能ウレタン(メタ)アクリレートオリゴマーとしては、1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとポリイソシアネートとのウレタン化反応生成物;ポリオール類をポリイソシアネートと反応させて得られるイソシアネート化合物と1分子中に少なくとも1個以上の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとのウレタン化反応生成物等が挙げられる。
As the (meth) acrylic oligomer, a bifunctional or higher polyfunctional urethane (meth) acrylate oligomer [hereinafter, also referred to as a polyfunctional urethane (meth) acrylate oligomer], a bifunctional or higher polyfunctional polyester (meth) acrylate oligomer [hereinafter, , Also referred to as polyfunctional polyester (meth) acrylate oligomer], bifunctional or higher functional epoxy (meth) acrylate oligomer [hereinafter, also referred to as polyfunctional epoxy (meth) acrylate oligomer] and the like. The hardcoat layer may contain one or more (meth) acrylic oligomers.
As the polyfunctional urethane (meth) acrylate oligomer, a urethanization reaction product of a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule and a polyisocyanate; polyols are polyisocyanates. Examples thereof include a urethanization reaction product of an isocyanate compound obtained by reacting with and a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule.
 ウレタン化反応に用いられる1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。 Examples of the (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule used in the urethanization reaction include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate. 2-Hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycerindi (meth) acrylate, trimerol propandi (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta Examples include (meth) acrylate.
 ウレタン化反応に用いられるポリイソシアネートとしては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのうち芳香族のイソシアネート類を水素添加して得られるジイソシアネート(例えば水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネートなどのジイソシアネート)、トリフェニルメタントリイソシアネート、ジメチレントリフェニルトリイソシアネートなどのジまたはトリのポリイソシアネート、あるいはジイソシアネートを多量化させて得られるポリイソシアネートが挙げられる。 The polyisocyanate used in the urethanization reaction includes hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and diisocyanate obtained by hydrogenating aromatic isocyanates among these diisocyanates. (For example, diisocyanate such as hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate), di or tri polyisocyanate such as triphenylmethane triisocyanate, dimethylene triphenyl triisocyanate, or polyisocyanate obtained by increasing the amount of diisocyanate. Can be mentioned.
 ウレタン化反応に用いられるポリオール類としては、一般的に芳香族、脂肪族および脂環式のポリオールのほか、ポリエステルポリオール、ポリエーテルポリオール等が使用される。通常、脂肪族および脂環式のポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、トリメチロールエタン、トリメチロールプロパン、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、グリセリン、水添ビスフェノールAなどが挙げられる。 As the polyols used in the urethanization reaction, in addition to aromatic, aliphatic and alicyclic polyols, polyester polyols, polyether polyols and the like are generally used. Usually, aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, ethylene glycol, propylene glycol, trimethylolethane, trimethylolpropane, dimethylolheptan, and di. Examples thereof include trimethylolpropionic acid, dimethylolbutylionic acid, glycerin, hydrogenated bisphenol A and the like.
 ポリエステルポリオールとしては、上述したポリオール類とポリカルボン酸との脱水縮合反応により得られるものが挙げられる。ポリカルボン酸の具体的な化合物としては、コハク酸、アジピン酸、マレイン酸、トリメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。また、ポリエーテルポリオールとしては、ポリアルキレングリコールのほか、上述したポリオール類またはフェノール類とアルキレンオキサイドとの反応により得られるポリオキシアルキレン変性ポリオールが挙げられる。 Examples of the polyester polyol include those obtained by the dehydration condensation reaction between the above-mentioned polyols and the polycarboxylic acid. Specific examples of the polycarboxylic acid include succinic acid, adipic acid, maleic acid, trimellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrous. In addition to polyalkylene glycols, examples of the polyether polyols include the above-mentioned polyols or polyoxyalkylene-modified polyols obtained by reacting phenols with alkylene oxides.
 また、多官能ポリエステル(メタ)アクリレートオリゴマーは、(メタ)アクリル酸、ポリカルボン酸およびポリオールを使用した脱水縮合反応により得られる。脱水縮合反応に用いられるポリカルボン酸としては、コハク酸、アジピン酸、マレイン酸、イタコン酸、トリメリット酸、ピロメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。また、脱水縮合反応に用いられるポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどが挙げられる。 Further, the polyfunctional polyester (meth) acrylate oligomer is obtained by a dehydration condensation reaction using (meth) acrylic acid, a polycarboxylic acid and a polyol. Examples of the polycarboxylic acid used in the dehydration condensation reaction include succinic acid, adipic acid, maleic acid, itaconic acid, trimellitic acid, pyromellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrous. The polyols used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimethylolheptan, dimethylolpropionic acid, and dimethylol. Examples thereof include butyionic acid, trimethylolpropane, trimethylolpropane, pentaerythritol, and dipentaerythritol.
 多官能エポキシ(メタ)アクリレートオリゴマーは、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得られる。ポリグリシジルエーテルとしては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルなどが挙げられる。 The polyfunctional epoxy (meth) acrylate oligomer is obtained by an addition reaction between polyglycidyl ether and (meth) acrylic acid. Examples of the polyglycidyl ether include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
 本発明で使用される表面改質剤とは、レベリング剤、帯電防止剤、界面活性剤、撥水撥油剤、無機粒子、有機粒子などのハードコート層の表面性能を変えるものである。
 レベリング剤としては、例えば、ポリエーテル変性ポリアルキルシロキサン、ポリエーテル変性シロキサン、ポリエステル変性水酸基含有ポリアルキルシロキサン、アルキル基を有するポリエーテル変性ポリジメチルシロキサン、変性ポリエーテル、シリコン変性アクリルなどが挙げられる。
The surface modifier used in the present invention changes the surface performance of a hard coat layer such as a leveling agent, an antistatic agent, a surfactant, a water-repellent oil-repellent agent, inorganic particles, and organic particles.
Examples of the leveling agent include polyether-modified polyalkylsiloxane, polyether-modified siloxane, polyester-modified hydroxyl group-containing polyalkylsiloxane, polyether-modified polydimethylsiloxane having an alkyl group, modified polyether, silicon-modified acrylic and the like.
 帯電防止剤としては、例えば、グリセリン脂肪酸エステルモノグリセライド、グリセリン脂肪酸エステル有機酸モノグリセライド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、陽イオン性界面活性剤、陰イオン性界面活性剤などが挙げられる。
 無機粒子としては、例えば、シリカ粒子、アルミナ粒子、ジルコニア粒子、シリコン粒子銀粒子、ガラス粒子などが挙げられる。
 有機粒子としては、例えば、アクリル粒子、シリコン粒子などが挙げられる。
 界面活性剤および撥水撥油剤としては、例えば、含フッ素基・親油性基含有オリゴマー、含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマーなどのフッ素を含有した界面活性剤および撥水撥油剤が挙げられる。
Examples of the antistatic agent include glycerin fatty acid ester monoglyceride, glycerin fatty acid ester organic acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, cationic surfactant, anionic surfactant and the like.
Examples of the inorganic particles include silica particles, alumina particles, zirconia particles, silicon particles, silver particles, and glass particles.
Examples of the organic particles include acrylic particles and silicon particles.
Examples of the surfactant and the water- and oil-repellent agent include a fluorine-containing surfactant such as a fluorine-containing group / lipophilic group-containing oligomer and a fluorine-containing group / hydrophilic group / lipophilic group / UV-reactive group-containing oligomer. And water and oil repellents.
 ハードコート層は、光重合開始剤を含んでいてよい。本明細書において、光重合開始剤とは光ラジカル発生剤を指す。 The hard coat layer may contain a photopolymerization initiator. As used herein, the photopolymerization initiator refers to a photoradical generator.
 本発明で使用することができる単官能光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン[ダロキュアー2959:メルク社製];α-ヒドロキシ-α,α'-ジメチルアセトフェノン[ダロキュアー1173:メルク社製];メトキシアセトフェノン、2,2'-ジメトキシ-2-フェニルアセトフェノン[イルガキュア-651]、1-ヒドロキシ-シクロヘキシルフェニルケトンなどのアセトフェノン系開始剤;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾインエーテル系開始剤;その他、ハロゲン化ケトン、アシルホスフィノキシド、アシルホスフォナートなどを例示することができる。 Examples of the monofunctional photopolymerization initiator that can be used in the present invention include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone [Darocure 2959: manufactured by Merck]; α-hydroxy. -Α, α'-Dimethylacetophenone [Darocure 1173: manufactured by Merck]; Acetphenone-based initiators such as methoxyacetophenone, 2,2'-dimethoxy-2-phenylacetophenone [Irgacure-651], 1-hydroxy-cyclohexylphenylketone. Benzoin ether-based initiators such as benzoin ethyl ether and benzoin isopropyl ether; other examples include halogenated ketones, acylphosphinoxides, and acylphosphonates.
 ハードコート層の形成方法は特に限定されないが、例えば、ハードコート層の下に位置する層上にハードコート液を塗布した後、光重合させることにより形成することができる。 The method for forming the hard coat layer is not particularly limited, but for example, it can be formed by applying a hard coat liquid on a layer located below the hard coat layer and then photopolymerizing it.
 ハードコート液(重合性組成物)を塗布する方法は特に限定されず、公知の方法を用いることができる。例えば、スピンコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、捌け法などが挙げられる。 The method of applying the hard coat liquid (polymerizable composition) is not particularly limited, and a known method can be used. For example, spin coating method, dip method, spray method, slide coating method, bar coating method, roll coating method, gravure coating method, meniscus coating method, flexographic printing method, screen printing method, beat coating method, handling method and the like can be mentioned. ..
 光重合における光照射に用いられるランプとしては、光波長420nm以下に発光分布を有するものが用いられ、その例としては低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが挙げられる。この中でも、高圧水銀灯またはメタルハライドランプは開始剤の活性波長領域の光を効率よく発光し、得られる高分子の粘弾性的性質を架橋により低下させるような短波長の光や、反応組成物を加熱蒸発させるような長波長の光を多く発光しないために好ましい。 As the lamp used for light irradiation in photopolymerization, a lamp having a light emission distribution with a light wavelength of 420 nm or less is used, and examples thereof include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, and a black light lamp. , Microwave-excited mercury lamp, metal halide lamp, etc. Among these, high-pressure mercury lamps or metal halide lamps efficiently emit light in the active wavelength region of the initiator, and heat short-wavelength light or reaction compositions that reduce the viscoelastic properties of the obtained polymer by cross-linking. It is preferable because it does not emit a large amount of long-wavelength light that causes evaporation.
 上記ランプの照射強度は、得られるポリマーの重合度を左右する因子であり、目的製品の性能毎に適宜制御される。通常のアセトフェノン基を有する開裂型の開始剤を配合した場合、照度は0.1~300mW/cmの範囲が好ましい。特に、メタルハライドランプを用いて、照度を10~40mW/cmとすることが好ましい。 The irradiation intensity of the lamp is a factor that influences the degree of polymerization of the obtained polymer, and is appropriately controlled for each performance of the target product. When a cleavage-type initiator having a normal acetophenone group is blended, the illuminance is preferably in the range of 0.1 to 300 mW / cm 2 . In particular, it is preferable to use a metal halide lamp and set the illuminance to 10 to 40 mW / cm 2 .
 光重合反応は、空気中の酸素または反応性組成物中に溶解する酸素により阻害される。そのため、光照射は酸素による反応阻害を消去し得る手法を用いて実施することが望ましい。そのような手法の1つとして、反応性組成物をポリエチレンテレフタレートやテフロン製のフィルムによって覆って酸素との接触を断ち、フィルムを通して光を反応性組成物へ照射する方法がある。また、窒素ガスや炭酸ガスのような不活性ガスにより酸素を置換したイナート雰囲気下で、光透過性の窓を通して組成物に光を照射してもよい。 The photopolymerization reaction is inhibited by oxygen in the air or oxygen dissolved in the reactive composition. Therefore, it is desirable to carry out light irradiation using a method that can eliminate the reaction inhibition due to oxygen. One such method is to cover the reactive composition with a film made of polyethylene terephthalate or Teflon to cut off contact with oxygen and irradiate the reactive composition with light through the film. Further, the composition may be irradiated with light through a light-transmitting window in an inert atmosphere in which oxygen is replaced with an inert gas such as nitrogen gas or carbon dioxide gas.
 光照射をイナート雰囲気下で行なう場合、その雰囲気酸素濃度を低レベルに保つために、常に一定量の不活性ガスが導入される。この不活性ガスの導入により、反応性組成物表面に気流が発生し、モノマー蒸発が起こる。モノマー蒸発のレベルを抑制するためには、不活性ガスの気流速度は、不活性ガス雰囲気下を移動するハードコート液が塗布された積層体に対する相対速度として1m/sec以下であることが好ましく、0.1m/sec以下であることがより好ましい。気流速度を上記範囲にすることにより、気流によるモノマー蒸発は実質的に抑えられる。 When light irradiation is performed in an inert atmosphere, a certain amount of inert gas is always introduced in order to keep the atmospheric oxygen concentration at a low level. Due to the introduction of this inert gas, an air flow is generated on the surface of the reactive composition, and monomer evaporation occurs. In order to suppress the level of monomer evaporation, the air velocity of the inert gas is preferably 1 m / sec or less as a relative velocity with respect to the laminate coated with the hard coat liquid moving under the atmosphere of the inert gas. It is more preferably 0.1 m / sec or less. By setting the airflow velocity in the above range, the monomer evaporation due to the airflow is substantially suppressed.
 ハードコート層の密着性を向上させる目的で、塗布面に前処理を行うことがある。処理例として、サンドブラスト法、溶剤処理法、コロナ放電処理法、クロム酸処理法、火炎処理法、熱風処理法、オゾン処理法、紫外線処理法、樹脂組成物によるプライマー処理法などの公知の方法が挙げられる。 The coated surface may be pretreated for the purpose of improving the adhesion of the hard coat layer. Known treatment examples include sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
 ハードコート層は、UV光(254nm)の照射出力が20mW/cmのメタルハライドランプを用いて紫外線照射した場合に、鉛筆硬度が2H以上であることが好ましい。 The hard coat layer preferably has a pencil hardness of 2H or more when irradiated with ultraviolet rays using a metal halide lamp having an irradiation output of UV light (254 nm) of 20 mW / cm 2 .
 ハードコート層の膜厚としては、1μm以上40μm以下が望ましく、2μm以上10μm以下がより望ましい。膜厚が1μm以上であることにより十分な硬度を得ることができる。また、膜厚が40μm以下であることにより、曲げ加工時のクラックの発生を抑制することができる。なお、ハードコート層の膜厚は、断面を顕微鏡等で観察し、塗膜界面から表面までを実測することにより測定可能である。 The film thickness of the hard coat layer is preferably 1 μm or more and 40 μm or less, and more preferably 2 μm or more and 10 μm or less. Sufficient hardness can be obtained when the film thickness is 1 μm or more. Further, when the film thickness is 40 μm or less, it is possible to suppress the occurrence of cracks during bending. The film thickness of the hard coat layer can be measured by observing the cross section with a microscope or the like and actually measuring the film thickness from the coating film interface to the surface.
<Haze>
 本発明の樹脂積層体は、特に制限はないが、Haze≦1.0%が好ましく、Haze≦0.8%がより好ましく、Haze≦0.7%が特に好ましい。Hazeが1.0%を超えると、目視で樹脂積層体が白っぽく見える場合がある。
<Haze>
The resin laminate of the present invention is not particularly limited, but is preferably Haze ≦ 1.0%, more preferably Haze ≦ 0.8%, and particularly preferably Haze ≦ 0.7%. If Haze exceeds 1.0%, the resin laminate may appear whitish visually.
<樹脂積層体>
 本発明において、熱可塑性樹脂(B)を含む層の厚さは、樹脂積層体の表面硬度や耐衝撃性に影響する。つまり、熱可塑性樹脂(B)を含む層の厚さが薄すぎると表面硬度が低くなり、好ましくない。熱可塑性樹脂(B)を含む層の厚さが大きすぎると耐衝撃性が悪くなり、好ましくない。熱可塑性樹脂(B)を含む層の厚さは10~250μmが好ましく、20~200μmがより好ましい。さらに好ましくは30~150μmである。
<Resin laminate>
In the present invention, the thickness of the layer containing the thermoplastic resin (B) affects the surface hardness and impact resistance of the resin laminate. That is, if the thickness of the layer containing the thermoplastic resin (B) is too thin, the surface hardness becomes low, which is not preferable. If the thickness of the layer containing the thermoplastic resin (B) is too large, the impact resistance deteriorates, which is not preferable. The thickness of the layer containing the thermoplastic resin (B) is preferably 10 to 250 μm, more preferably 20 to 200 μm. More preferably, it is 30 to 150 μm.
 本発明において、ポリカーボネート系樹脂(A)を含む層と熱可塑性樹脂(B)を含む層とハードコート層の合計厚みは、薄すぎても、厚すぎても成形が難しい。樹脂積層体の全体厚みは、好ましくは0.4~4.0mm、より好ましくは0.5~3.5mm、さらに好ましくは0.5~3.0mmである。 In the present invention, if the total thickness of the layer containing the polycarbonate resin (A), the layer containing the thermoplastic resin (B), and the hard coat layer is too thin or too thick, molding is difficult. The total thickness of the resin laminate is preferably 0.4 to 4.0 mm, more preferably 0.5 to 3.5 mm, and even more preferably 0.5 to 3.0 mm.
 本発明において、ポリカーボネート系樹脂(A)と熱可塑性樹脂(B)の屈折率差は、0~0.07の範囲であることが好ましく、0~0.06の範囲であることがより好ましく、0~0.05の範囲であることがさらに好ましい。ポリカーボネート系樹脂(A)と熱可塑性樹脂(B)の屈折率差が0.07より大きいと、ポリカーボネート系樹脂(A)を含む層/熱可塑性樹脂(B)を含む層の界面の反射光強度が大きく、干渉縞等の不具合が発生することがある。 In the present invention, the difference in refractive index between the polycarbonate resin (A) and the thermoplastic resin (B) is preferably in the range of 0 to 0.07, more preferably in the range of 0 to 0.06. It is more preferably in the range of 0 to 0.05. When the difference in refractive index between the polycarbonate resin (A) and the thermoplastic resin (B) is larger than 0.07, the reflected light intensity at the interface between the layer containing the polycarbonate resin (A) and the layer containing the thermoplastic resin (B). Is large, and problems such as interference fringes may occur.
 本発明の樹脂積層体には、その片面または両面に耐指紋処理、反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことができる。反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理の方法は、特に限定されず、公知の方法を用いることができる。例えば、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる。 The resin laminate of the present invention may be subjected to any one or more of anti-fingerprint treatment, anti-reflection treatment, anti-fouling treatment, anti-static treatment, weather resistance treatment and anti-glare treatment on one or both sides thereof. The methods of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment are not particularly limited, and known methods can be used. For example, a method of applying a reflection-reducing paint, a method of depositing a dielectric thin film, a method of applying an antistatic paint, and the like can be mentioned.
<任意の添加剤>
 本発明において、基材層を形成するポリカーボネート系樹脂(A)を含む層および/または表層を形成する熱可塑性樹脂(B)を含む層には、上述の主たる成分以外の成分を含めることができる。
<Any additive>
In the present invention, the layer containing the polycarbonate resin (A) forming the base material layer and / or the layer containing the thermoplastic resin (B) forming the surface layer may contain components other than the above-mentioned main components. ..
 例えば、ポリカーボネート系樹脂(A)を含む層、熱可塑性樹脂(B)を含む層および/またはハードコート層には、紫外線吸収剤を混合して使用することができる。なお、本発明においては、ハードコート層に紫外線吸収剤を含有させてもよい。紫外線吸収剤の含有量が多過ぎると、成形法によっては過剰な紫外線吸収剤が高い温度がかかることによって飛散し、成形環境を汚染するため不具合を起こすことがある。このことから紫外線吸収剤の含有割合は0~5質量%が好ましく、0~3質量%がより好ましく、さらに好ましくは0~1質量%である。紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシロキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)ベンゾトリアゾール、(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノールなどのベンゾトリアゾール系紫外線吸収剤、サリチル酸フェニル、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケートなどのヒンダードアミン系紫外線吸収剤、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジンなどのトリアジン系紫外線吸収剤、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]エチルメタクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]エチルアクリレート、3-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]プロピルメタクリレート、3-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]プロピルアクリレート、4-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]ブチルメタクリレート、4-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]ブチルアクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イルオキシ]エチルメタクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イルオキシ]エチルアクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルメタクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルアクリレート、4-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]ブチルメタクリレート、4-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]ブチルアクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルメタクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルアクリレート、2-(メタクリロイルオキシ)エチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5カルボキシレート、2-(アクリロイルオキシ)エチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート、4-(メタクリロイルオキシ)ブチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート、4-(アクリロイルオキシ)ブチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート等などのセサモール型ベンゾトリアゾール系紫外線吸収剤などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。 For example, an ultraviolet absorber can be mixed and used in the layer containing the polycarbonate resin (A), the layer containing the thermoplastic resin (B), and / or the hard coat layer. In the present invention, the hard coat layer may contain an ultraviolet absorber. If the content of the UV absorber is too high, depending on the molding method, the excess UV absorber may be scattered due to the high temperature, which may contaminate the molding environment and cause a problem. From this, the content ratio of the ultraviolet absorber is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, still more preferably 0 to 1% by mass. Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, and 2-hydroxy. -4-octadecyloxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, etc. Benzophenone UV absorber, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-3) -T-butyl-5-Methylphenyl) benzotriazole, (2H-benzotriazole-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol and other benzotriazole-based ultraviolet absorbers, salicylic acid Phenyl, benzoate-based UV absorbers such as 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, bis (2,2,6,6-tetramethylpiperidine-4) -Il) Hinderdamine-based ultraviolet absorbers such as sebacate, 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-) Hydroxy-4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-) Hydroxy-4-butoxyphenyl) 1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazine, 2, 4-Diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl) -1,3, Triazine-based ultraviolet absorbers such as 5-triazine, 2- [2- (6-hydroxybenzo [1,3] dioxol-5-yl) -2H-benzotriazole-5 -Il] ethyl methacrylate, 2- [2- (6-hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-yl] ethyl acrylate, 3- [2- (6-hydroxybenzo [1,3] Dioxotol-5-yl) -2H-benzotriazole-5-yl] propylmethacrylate, 3- [2- (6-hydroxybenzo [1,3] dioxotri-5-yl) -2H-benzotriazole -5-yl] propyl acrylate, 4- [2- (6-hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-yl] butyl methacrylate, 4- [2- (6--) Hydroxybenzo [1,3] dioxotri-5-yl) -2H-benzotriazole-5-yl] butyl acrylate, 2- [2- (6-hydroxybenzo [1,3] dioxotri-5-yl) -2H- Benzotriazole-5-yloxy] ethyl methacrylate, 2- [2- (6-hydroxybenzo [1,3] dioxol-5-yl) -2H-benzotriazole-5-yloxy] ethyl acrylate, 2- [3- { 2- (6-Hydroxybenzo [1,3] dioxotri-5-yl) -2H-benzotriazole-5-yl} propanoyloxy] ethyl methacrylate, 2- [3- {2- (6-hydroxybenzo [1] , 3] Dioxotol-5-yl) -2H-benzotriazole-5-yl} propanoyloxy] ethyl acrylate, 4- [3- {2- (6-hydroxybenzo [1,3] dioxotri-5-yl) -2H-benzotriazole-5-yl} propanoyloxy] butyl methacrylate, 4- [3- {2- (6-hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-yl) } Propanoyloxy] butyl acrylate, 2- [3- {2- (6-hydroxybenzo [1,3] dioxotri-5-yl) -2H-benzotriazole-5-yl} propanoyloxy] ethyl methacrylate, 2 -[3- {2- (6-Hydroxybenzo [1,3] dioxotri-5-yl) -2H-benzotriazole-5-yl} propanoyloxy] ethyl acrylate, 2- (methacryloyloxy) ethyl 2- ( 6-Hydroxybenzo [1,3] dioxol-5-yl) -2H-benzotriazole-5 carboxylate, 2- (acryloyloxy) ethyl 2- (6-Hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-carboxylate, 4- (methacryloyloxy) butyl 2- (6-hydroxybenzo [1,3] dioxotol- 5-yl) -2H-benzotriazole-5-carboxylate, 4- (acryloyloxy) butyl 2- (6-hydroxybenzo [1,3] dioxotol-5-yl) -2H-benzotriazole-5-carboxylate Examples thereof include sesamole-type benzotriazole-based ultraviolet absorbers. The mixing method is not particularly limited, and a method of total compounding, a method of dry blending the masterbatch, a method of total dry blending, and the like can be used.
 本発明において、基材層を形成するポリカーボネート系樹脂(A)を含む層および/または表層を形成する熱可塑性樹脂(B)を含む層には、上記紫外線吸収剤以外にも、各種添加剤を混合して使用することができる。そのような添加剤としては、例えば、抗酸化剤や抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーといった強化材などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。 In the present invention, various additives other than the above-mentioned ultraviolet absorber are added to the layer containing the polycarbonate resin (A) forming the base material layer and / or the layer containing the thermoplastic resin (B) forming the surface layer. Can be mixed and used. Such additives include, for example, antioxidants, anticolorants, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers and the like. Reinforcing materials such as inorganic fillers can be mentioned. The mixing method is not particularly limited, and a method of total compounding, a method of dry blending the masterbatch, a method of total dry blending, and the like can be used.
 本発明におけるポリカーボネート系樹脂(A)を含む層、熱可塑性樹脂(B)を含む層及びハードコート層の各材料、例えば、ポリカーボネート系樹脂(A)および熱可塑性樹脂(B)等は、フィルター処理によりろ過精製されることが好ましい。フィルターを通して精製あるいは積層する事により異物や欠点といった外観不良が少ない樹脂積層体を得ることが出来る。ろ過方法に特に制限はなく、溶融ろ過、溶液ろ過、あるいはその組み合わせ等を使うことが出来る。 The materials of the layer containing the polycarbonate resin (A), the layer containing the thermoplastic resin (B), and the hard coat layer in the present invention, for example, the polycarbonate resin (A) and the thermoplastic resin (B), are filtered. It is preferable that the plastic is filtered and purified by. By purifying or laminating through a filter, it is possible to obtain a resin laminate having few appearance defects such as foreign substances and defects. The filtration method is not particularly limited, and melt filtration, solution filtration, or a combination thereof can be used.
 使用するフィルターに特に制限はなく、公知のものが使用でき、各材料の使用温度、粘度、ろ過精度により適宜選ばれる。フィルターの濾材としては、特に限定されないがポリプロピレン、コットン、ポリエステル、ビスコースレイヨンやグラスファイバーの不織布あるいはロービングヤーン巻物、フェノール樹脂含浸セルロース、金属繊維不織布焼結体、金属粉末焼結体、ブレーカープレート、あるいはこれらの組み合わせなど、いずれも使用可能である。特に耐熱性や耐久性、耐圧力性を考えると金属繊維不織布を焼結したタイプが好ましい。 There are no particular restrictions on the filter used, known ones can be used, and they are appropriately selected according to the operating temperature, viscosity, and filtration accuracy of each material. The filter medium of the filter is not particularly limited, but is a non-woven fabric of polypropylene, cotton, polyester, viscose rayon or glass fiber or roving yarn roll, phenol resin impregnated cellulose, metal fiber non-woven fabric sintered body, metal powder sintered body, breaker plate, etc. Alternatively, any combination of these can be used. In particular, considering heat resistance, durability, and pressure resistance, a type obtained by sintering a metal fiber non-woven fabric is preferable.
 ろ過精度は、ポリカーボネート系樹脂(A)および熱可塑性樹脂(B)については、50μm以下、好ましくは30μm以下、さらに好ましくは10μm以下である。また、ハードコート剤のろ過精度は、樹脂積層体の最表層に塗布される事から、20μm以下、好ましくは10μm以下、さらに好ましくは2μm以下である。 The filtration accuracy is 50 μm or less, preferably 30 μm or less, and more preferably 10 μm or less for the polycarbonate resin (A) and the thermoplastic resin (B). Further, the filtration accuracy of the hard coat agent is 20 μm or less, preferably 10 μm or less, and more preferably 2 μm or less because it is applied to the outermost surface layer of the resin laminate.
 ポリカーボネート系樹脂(A)と熱可塑性樹脂(B)のろ過については、例えば熱可塑性樹脂溶融ろ過に用いられているポリマーフィルターを使うことが好ましい。ポリマーフィルターは、その構造によりリーフディスクフィルター、キャンドルフィルター、パックディスクフィルター、円筒型フィルターなどに分類されるが、特に有効ろ過面積が大きいリーフディスクフィルターが好適である。 For the filtration of the polycarbonate resin (A) and the thermoplastic resin (B), for example, it is preferable to use the polymer filter used for the thermoplastic resin melt filtration. The polymer filter is classified into a leaf disc filter, a candle filter, a pack disc filter, a cylindrical filter and the like according to its structure, and a leaf disc filter having a large effective filtration area is particularly suitable.
<熱曲げ加工>
 本発明の樹脂積層体の熱曲げ加工は、特に限定されない。例えば、プレス機に凸型(オス型)と凹型(メス型)の型を取り付け、加熱軟化させた積層シートをその2つの型で挟む「熱プレス成形」、加熱軟化させた積層シートと凸型(オス型)の型を真空状態にすることで積層シートを型に密着させ、望む形状に仕上げる「真空成形」、加熱軟化させた積層シートと凸型(オス型)の型を大気圧よりも大きな圧力を加えることで積層シートを型に密着させ、望む形状に仕上げる「圧空成形」がある。本発明の樹脂積層体は、低温(例えば100~135℃)で熱曲げ加工した場合であってもスプリングバックが発生しない熱成形体を得ることができる。
<Thermal bending>
The thermal bending process of the resin laminate of the present invention is not particularly limited. For example, "heat press molding" in which convex (male) and concave (female) molds are attached to a press machine and the heat-softened laminated sheet is sandwiched between the two molds, and the heat-softened laminated sheet and convex type "Vacuum forming" that makes the laminated sheet adhere to the mold by putting the (male type) mold in a vacuum state and finishes it in the desired shape. There is "vacuum forming" in which a laminated sheet is brought into close contact with a mold by applying a large pressure to finish it in a desired shape. With the resin laminate of the present invention, it is possible to obtain a thermoformed body in which springback does not occur even when heat bending is performed at a low temperature (for example, 100 to 135 ° C.).
<熱成形体>
 従来のポリカーボネート樹脂(例えば、三菱エンジニアリングプラスチックス株式会社から市販されている、ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000)を使用した積層シートを熱プレス成形する場合、135~145℃下でポリカーボネート樹脂が十分に伸長するまでシートを加熱する必要があり、その結果、熱可塑性樹脂に対して過剰な熱が加わるため、熱可塑性樹脂層とポリカーボネート樹脂層との界面に剥離が生じて、表面が白化したり、クラックが生じたりする場合があった。また、160℃までシートを加熱すると、表面がメラメラしたり、金型のキズを転写する場合がある。一方、熱成形不良を抑制するために、100℃~135℃の低温での熱プレス成形を行うと金型の形状を再現せずに、金型の形状から平らに戻ろうとする「スプリングバック」が生じることがある。
<Thermoformed body>
When a laminated sheet using a conventional polycarbonate resin (for example, Iupiron S-2000, Iupiron S-1000, Iupiron E-2000, which is commercially available from Mitsubishi Engineering Plastics Co., Ltd.) is heat-press molded, the temperature is 135 to 145 ° C. It is necessary to heat the sheet until the polycarbonate resin is sufficiently stretched underneath, and as a result, excessive heat is applied to the thermoplastic resin, resulting in peeling at the interface between the thermoplastic resin layer and the polycarbonate resin layer. , The surface may be whitened or cracks may occur. Further, when the sheet is heated to 160 ° C., the surface may be mellow or scratches on the mold may be transferred. On the other hand, in order to suppress thermoforming defects, when hot press molding is performed at a low temperature of 100 ° C to 135 ° C, the shape of the mold is not reproduced and the shape of the mold returns to a flat shape. May occur.
 これに対して、本発明の実施形態の樹脂積層体は、特定のポリカーボネート系樹脂(A)を用いているため、100℃~135℃の低温で熱プレス成形した場合であっても、スプリングバックが発生せず、低温での意匠性に優れた熱成形体を得ることができる。 On the other hand, since the resin laminate of the embodiment of the present invention uses a specific polycarbonate-based resin (A), it springs back even when it is thermoformed at a low temperature of 100 ° C to 135 ° C. Can be obtained, and a thermoformed body having excellent designability at a low temperature can be obtained.
 また、ポリカーボネート樹脂を含む層上に熱可塑性樹脂を含む層を有し、該熱可塑性樹脂を含む層の表面にハードコート層を有する樹脂積層体を、100℃~135℃の低温での熱プレス成形を行うと、樹脂積層体の曲げ部分にクラックが生じることがある。 Further, a resin laminate having a layer containing a thermoplastic resin on a layer containing a polycarbonate resin and having a hard coat layer on the surface of the layer containing the thermoplastic resin is heat-pressed at a low temperature of 100 ° C to 135 ° C. When molding is performed, cracks may occur in the bent portion of the resin laminate.
 これに対して、本発明の実施形態の樹脂積層体は、特定の熱可塑性樹脂(B)を用いているため、熱可塑性樹脂(B)を含む層の表面にハードコート層を有する樹脂積層体を100℃~135℃の低温で熱プレス成形した場合であっても、樹脂積層体の曲げ部分にクラックが発生せず、低温での意匠性に優れた熱成形体を得ることができる。 On the other hand, since the resin laminate of the embodiment of the present invention uses a specific thermoplastic resin (B), it is a resin laminate having a hard coat layer on the surface of the layer containing the thermoplastic resin (B). Even when hot press molding is performed at a low temperature of 100 ° C. to 135 ° C., cracks do not occur in the bent portion of the resin laminate, and a thermoformed body having excellent designability at a low temperature can be obtained.
<用途>
 実施形態の成形品(例えば熱成形体)は、上述した各種の好ましい形態、構成を含む本発明の樹脂積層体を含む成形品である。成形品の形状、模様、色彩、寸法等に制限はなく、その用途に応じて任意に設定すればよい。
 実施形態の樹脂積層体、熱成形体は、低温(例えば100~135℃)での熱成形性に優れ、かつ、干渉縞の発生を抑制することができる。したがって、透明基板材料や透明保護材料などとして好適に用いられる。具体的には、携帯電話端末、携帯型電子遊具、携帯情報端末、モバイルPCといった携帯型のディスプレイデバイスや、ノート型PC、デスクトップ型PC液晶モニター、カーナビ液晶モニター、液晶テレビといった設置型のディスプレイデバイスなどの透明基板材料および透明保護材料(例えば、前面板)として使用することができ、中でも、高意匠性が要求されるタッチパネル前面保護板や、カーナビ用、OA機器用または携帯電子機器用の前面板として好適に用いられる。
<Use>
The molded product of the embodiment (for example, a thermoformed product) is a molded product containing the resin laminate of the present invention containing various preferable forms and configurations described above. There are no restrictions on the shape, pattern, color, dimensions, etc. of the molded product, and it may be set arbitrarily according to the intended use.
The resin laminate and the thermoformed body of the embodiment are excellent in thermoforming property at a low temperature (for example, 100 to 135 ° C.), and can suppress the generation of interference fringes. Therefore, it is suitably used as a transparent substrate material, a transparent protective material, and the like. Specifically, portable display devices such as mobile phone terminals, portable electronic play equipment, mobile information terminals, and mobile PCs, and stationary display devices such as notebook PCs, desktop PC LCD monitors, car navigation LCD monitors, and LCD TVs. It can be used as a transparent substrate material such as, and a transparent protective material (for example, a front plate). Among them, a touch panel front protective plate that requires high design, a front for a car navigation system, an OA device, or a portable electronic device. It is suitably used as a face plate.
 以下、実施例により本実施形態を更に詳細に説明するが、本実施形態はこれらの実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to these examples.
<スチレン共重合体中の単量体単位の組成比>
 日本電子(株)製  JNM-AL400を用いて、H-NMR及び13C-NMR(400MHz:溶媒はCDCl)の測定値から計算した。
<Composition ratio of monomer unit in styrene copolymer>
It was calculated from the measured values of 1 H-NMR and 13 C-NMR (400 MHz: solvent is CDCl 3 ) using JNM-AL400 manufactured by JEOL Ltd.
<ガラス転移温度>
 セイコーインスツルメンツ(株)製  示差走査熱量測定装置DSC6200を用いた。窒素30ml/min.流通下、10℃/min.で30℃から200℃まで昇温し、次に50℃/min.で200℃から30℃まで降温し、再度10℃/min.で30℃から200℃まで昇温した。2回目の昇温におけるベースラインと変曲点での接線の交点をガラス転移温度として用いた。
<Glass transition temperature>
A differential scanning calorimetry device DSC6200 manufactured by Seiko Instruments Inc. was used. Nitrogen 30 ml / min. Under circulation, 10 ° C./min. The temperature was raised from 30 ° C to 200 ° C, and then 50 ° C / min. The temperature was lowered from 200 ° C to 30 ° C, and the temperature was changed to 10 ° C / min. The temperature was raised from 30 ° C to 200 ° C. The intersection of the baseline and the tangent at the inflection in the second temperature rise was used as the glass transition temperature.
<ペレット外観>
 ペレット作製時、目視でペレット外観を評価した。下記の基準でペレット外観の合否判定を行い、〇を合格とした。
○:透明
×:半透明か、白濁
<Pellet appearance>
At the time of pellet preparation, the appearance of the pellet was visually evaluated. The pass / fail judgment of the appearance of the pellet was made according to the following criteria, and 〇 was judged as a pass.
○: Transparent ×: Translucent or cloudy
<屈折率>
 射出成型機で試験片を作製し、縦40mm、横10mm、厚さ3mmに切断した。この試料の屈折率を、(株)アタゴ製  多波長アッベ屈折計DR-M2で測定した。測定温度は20℃、測定波長は589nmであり、中間液にはモノブロモナフタレンを使用した。
<Refractive index>
A test piece was prepared by an injection molding machine and cut into a length of 40 mm, a width of 10 mm, and a thickness of 3 mm. The refractive index of this sample was measured with a multi-wavelength Abbe refractometer DR-M2 manufactured by Atago Co., Ltd. The measurement temperature was 20 ° C., the measurement wavelength was 589 nm, and monobromonaphthalene was used as the intermediate solution.
<全光線透過率>
 反射・透過率計HR-100型(株式会社村上色彩技術研究所製)を用いて樹脂積層体の全光線透過率をJIS K7361-1に準じて測定した。
<Total light transmittance>
The total light transmittance of the resin laminate was measured according to JIS K7361-1 using a reflection / transmittance meter HR-100 (manufactured by Murakami Color Technology Laboratory Co., Ltd.).
<Haze>
 反射・透過率計HR-100型(株式会社村上色彩技術研究所製)を用いて樹脂積層体のHazeをJIS K7136に準じて測定した。
<Haze>
The haze of the resin laminate was measured according to JIS K7136 using a reflection / transmittance meter HR-100 (manufactured by Murakami Color Technology Laboratory Co., Ltd.).
<鉛筆硬度>
 JIS K 5600-5-4に準拠し、樹脂積層体の中央付近の熱可塑性樹脂(B)を含む層上のハードコート層の表面に対して角度45度、荷重750gで表面に次第に硬度を増して鉛筆を押し付け、傷跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。
<Pencil hardness>
In accordance with JIS K 5600-5-4, the hardness of the surface of the hard coat layer on the layer containing the thermoplastic resin (B) near the center of the resin laminate is gradually increased at an angle of 45 degrees and a load of 750 g. The hardness of the hardest pencil that did not cause scars was evaluated as the pencil hardness.
<干渉縞>
 樹脂積層体のポリカーボネート系樹脂(A)を含む層側または熱可塑性樹脂(B)を含む層側に黒テープ(3Mジャパン(株)製 黒色ビニールテープ型番117BLA)を貼り付け、熱可塑性樹脂(B)を含む層の表面から三波長型蛍光ランプ((有)テクニカ インバータライト60 AL-60231)で照らし、干渉縞を評価した。下記の基準で干渉縞の合否判定を行い、〇を合格とした。
○:干渉縞が見えないか、干渉縞が弱く見える
×:干渉縞が強く見える
<Interference fringes>
A black tape (black vinyl tape model number 117BLA manufactured by 3M Japan Co., Ltd.) is attached to the layer side containing the polycarbonate resin (A) or the layer side containing the thermoplastic resin (B) of the resin laminate, and the thermoplastic resin (B) is attached. ) Was illuminated with a three-wavelength fluorescent lamp (Technica Inverter Light 60 AL-60231), and interference fringes were evaluated. The pass / fail judgment of the interference fringes was made according to the following criteria, and 〇 was judged as a pass.
○: Interference fringes are not visible or interference fringes appear weak ×: Interference fringes appear strong
<熱プレス成形加工性>
 1mmtの樹脂積層体が50mmRに曲がる凸型(オス型)と凹型(メス型)の型を作製した。樹脂積層体は成形前に90℃で1分間予備加熱し、ハードコート表面が凸になるように、金型に置き、金型温度80℃または120℃または160℃で3分間プレスを行い、自然冷却することにより、熱プレス成形体を作製した。
<Hot press molding processability>
A convex type (male type) and a concave type (female type) in which a 1 mmt resin laminate bends to 50 mmR were produced. The resin laminate is preheated at 90 ° C. for 1 minute before molding, placed on a mold so that the surface of the hard coat is convex, pressed at a mold temperature of 80 ° C., 120 ° C. or 160 ° C. for 3 minutes, and naturally. By cooling, a hot press molded product was produced.
<熱プレス成形体の外観>
 上記熱プレス成形体の外観を目視で評価した。下記の基準で熱プレス成形体の外観の合否判定を行い、〇を合格とした。
○:熱プレス成形体にメラメラ、金型キズが見えない
×:熱プレス成形体にメラメラ、金型キズが見える
<Appearance of hot press molded product>
The appearance of the hot press molded product was visually evaluated. The pass / fail judgment of the appearance of the hot press molded product was made according to the following criteria, and 〇 was judged as acceptable.
○: Mela Mela and mold scratches are not visible on the hot press molded product ×: Mela Mela and mold scratches are visible on the hot press molded product
<曲げ部分のクラック>
 上記熱プレス成形体の曲げ部分のクラックを目視で評価した。下記の基準で曲げ部分のクラックの合否判定を行い、〇を合格とした。
○:熱プレス成形体の曲げ部分にクラックが見えない
×:熱プレス成形体の曲げ部分にクラックが見える
<Crack in the bent part>
The cracks in the bent portion of the hot press molded product were visually evaluated. The pass / fail judgment of the crack in the bent part was made according to the following criteria, and 〇 was judged as a pass.
◯: No cracks can be seen in the bent part of the hot press molded body ×: Cracks can be seen in the bent part of the hot press molded body
<スプリングバック>
 上記熱プレス成形体を50mmRの円筒に沿わせて、下記の基準でスプリングバックの合否判定を行い、〇を合格とした。
○:円筒に沿う。(スプリングバック無し)
×:円筒に沿わない。(スプリングバック有り)
なお、「〇」は50±2mmR以内であり、「×」はそれ以外である。
<Spring back>
The hot press molded product was placed along a 50 mmR cylinder, and a pass / fail judgment of springback was performed according to the following criteria, and ◯ was regarded as acceptable.
◯: Along the cylinder. (No spring back)
×: Does not follow the cylinder. (With spring back)
In addition, "〇" is within 50 ± 2 mmR, and "x" is other than that.
 実施例のために、ポリカーボネート系樹脂(A-1)、熱可塑性樹脂(B-1)~(B-2)、メタクリル樹脂(C-1)、スチレン共重合体(D-1)及びハードコート(H-1)として、下記に示す材料を使用したが、これらに限定されるわけではない。一方、比較例のために、それぞれ下記に示すポリカーボネート系樹脂(F-1)、熱可塑性樹脂(G-1)~(G-11)、スチレン共重合体(E-1)~(E-3)を使用した。 Polycarbonate resin (A-1), thermoplastic resin (B-1) to (B-2), methacrylic resin (C-1), styrene copolymer (D-1) and hard coat for the examples. As (H-1), the materials shown below are used, but the material is not limited thereto. On the other hand, for comparative examples, the polycarbonate resins (F-1), thermoplastic resins (G-1) to (G-11), and styrene copolymers (E-1) to (E-3) shown below, respectively, are shown below. )It was used.
<メタクリル樹脂(C-1)、スチレン共重合体(D-1)、スチレン共重合体(E-1)~(E-2)及び、ポリカーボネート系樹脂(F-1)>
 メタクリル樹脂(C-1):アルケマ株式会社製ALTUGLAS(登録商標)V020(重量平均分子量:127,000、ガラス転移温度:109℃、温度230℃・3.8kg荷重下のメルトフローレイト:1.8g/10分、メタクリル酸メチル/アクリル酸メチル=96.1質量%/3.9質量%、屈折率1.49、mm/mr/rr=7.4モル%/37.4モル%/55.2モル%)
 スチレン共重合体(D-1):Polyscope社製XIRANSO23110((d1)/(d2)=スチレン/無水マレイン酸=78質量%/22質量%、重量平均分子量:74,300、ガラス転移温度:145℃、温度230℃・3.8kg荷重下のメルトフローレイト:5.9g/10分、屈折率1.58)
 スチレン共重合体(E-1):Polyscope社製XIRANSO26080((d1)/(d2)=スチレン/無水マレイン酸=75質量%/25質量%、重量平均分子量:47,600、ガラス転移温度:150℃、温度230℃・3.8kg荷重下のメルトフローレイト:8.3g/10分、屈折率1.58)
 スチレン共重合体(E-2):Polyscope社製XIBOND140((d1)/(d2)=スチレン/無水マレイン酸=85質量%/15質量%、重量平均分子量:134,000、ガラス転移温度:129℃、温度230℃・3.8kg荷重下のメルトフローレイト:6.9g/10分、屈折率1.59)
 スチレン共重合体(E-3):Polyscope社製XIBOND180((d1)/(d2)=スチレン/無水マレイン酸=67質量%/33質量%、重量平均分子量:50,100、ガラス転移温度:157℃、温度230℃・3.8kg荷重下のメルトフローレイト:1.0g/10分、屈折率1.59)
 ポリカーボネート系樹脂(F-1):三菱エンジニアリングプラスチックス株式会社製ユーピロンS-1000(重量平均分子量:33,000、ガラス転移温度:147℃、温度300℃・1.2kg荷重下のメルトフローレイト:7.5g/10分、屈折率1.59)
<Methyl resin (C-1), styrene copolymer (D-1), styrene copolymers (E-1) to (E-2), and polycarbonate resin (F-1)>
Acrylic resin (C-1): ALTUGLAS (registered trademark) V020 manufactured by Arkema Co., Ltd. (weight average molecular weight: 127,000, glass transition temperature: 109 ° C., temperature 230 ° C., melt flow rate under a load of 3.8 kg: 1. 8 g / 10 minutes, methyl methacrylate / methyl acrylate = 96.1% by mass / 3.9% by mass, refractive index 1.49, mm / mr / rr = 7.4 mol% / 37.4 mol% / 55 .2 mol%)
Styrene copolymer (D-1): XIRANSO 23110 manufactured by Polyscoppe ((d1) / (d2) = styrene / maleic anhydride = 78% by mass / 22% by mass, weight average molecular weight: 74,300, glass transition temperature: 145 Melt styrene under a load of ° C., temperature 230 ° C., 3.8 kg: 5.9 g / 10 minutes, refraction index 1.58)
Styrene copolymer (E-1): XIRANSO26080 manufactured by Polyscoppe ((d1) / (d2) = styrene / maleic anhydride = 75% by mass / 25% by mass, weight average molecular weight: 47,600, glass transition temperature: 150 Melt styrene under a load of ° C., temperature 230 ° C., 3.8 kg: 8.3 g / 10 minutes, refraction index 1.58)
Styrene copolymer (E-2): XIBOND140 manufactured by Polyscoppe ((d1) / (d2) = styrene / maleic anhydride = 85% by mass / 15% by mass, weight average molecular weight: 134,000, glass transition temperature: 129 Melt styrene under a load of ° C., temperature 230 ° C. and 3.8 kg: 6.9 g / 10 minutes, refraction index 1.59)
Styrene copolymer (E-3): XIBOND180 manufactured by Polyscoppe ((d1) / (d2) = styrene / maleic anhydride = 67% by mass / 33% by mass, weight average molecular weight: 50,100, glass transition temperature: 157. Melt styrene under a load of ° C., temperature 230 ° C. and 3.8 kg: 1.0 g / 10 minutes, refractive index 1.59)
Polycarbonate resin (F-1): Iupiron S-1000 manufactured by Mitsubishi Engineering Plastics Co., Ltd. (weight average molecular weight: 33,000, glass transition temperature: 147 ° C, temperature 300 ° C, melt flow rate under 1.2 kg load: 7.5 g / 10 minutes, refractive index 1.59)
<ポリカーボネート系樹脂(A-1)の合成>
合成例1 〔ポリカーボネート樹脂末端停止剤の合成〕
 有機化学ハンドブックP143~150に基づき、東京化成工業(株)製4-ヒドロキシ安息香酸と東京化成工業(株)製1-ヘキサデカノールを用いて脱水反応によるエステル化を行い、パラヒドロキシ安息香酸ヘキサデシルエステル(CEPB)を得た。
<Synthesis of Polycarbonate Resin (A-1)>
Synthesis Example 1 [Synthesis of Polycarbonate Resin Terminator]
Based on the Organic Chemistry Handbook P143-150, esterification by dehydration reaction was performed using 4-hydroxybenzoic acid manufactured by Tokyo Chemical Industry Co., Ltd. and 1-hexadecanol manufactured by Tokyo Chemical Industry Co., Ltd., and hexahydroxybenzoate parahydroxybenzoate. Decylester (CEBP) was obtained.
合成例2 〔ポリカーボネート系樹脂(A-1)ペレットの製造〕
 9w/w%の水酸化ナトリウム水溶液57.2kgに、新日鐵住友化学(株)製のビスフェノールA(以下、BPAという)7.1kg(31.14mol)とハイドロサルファイト30gとを加えて溶解した。これにジクロロメタン40kgを加え、撹拌しながら、溶液温度を15℃~25℃の範囲に保ちつつ、ホスゲン4.33kgを30分かけて吹き込んだ。ホスゲンの吹き込み終了後、9w/w%の水酸化ナトリウム水溶液6kg、ジクロロメタン11kg、及び末端停止剤としてのパラヒドロキシ安息香酸ヘキサデシルエステル(CEPB)443g(1.22mol)をメチレンクロライド10kgに溶解させた溶液を加え、激しく撹拌して乳化させた。さらにその後、重合触媒として10mlのトリエチルアミンを溶液に加え、約40分間重合させた。
 重合液を水相と有機相に分離し、有機相をリン酸で中和し、洗液のpHが中性になるまで純水で水洗を繰り返した。この精製されたポリカーボネート樹脂溶液から有機溶媒を蒸発留去することによりポリカーボネート樹脂粉末を得た。
 得られたポリカーボネート樹脂粉末を、スクリュー径35mmの2軸押出機を用い、シリンダー温度260℃で溶融混練して、ストランド状に押出してペレタイザーでペレット化した。
 ポリカーボネート系樹脂(A-1)の重量平均分子量:29,000、ガラス転移温度:127℃、温度300℃・1.2kg荷重下のメルトフローレイト:12.1g/10分、屈折率1.59であった。
Synthesis Example 2 [Manufacturing of Polycarbonate Resin (A-1) Pellet]
To 57.2 kg of 9 w / w% sodium hydroxide aqueous solution, 7.1 kg (31.14 mol) of bisphenol A (hereinafter referred to as BPA) manufactured by Nippon Steel Sumitomo Chemical Co., Ltd. and 30 g of hydrosulfite are added and dissolved. did. 40 kg of dichloromethane was added thereto, and 4.33 kg of phosgene was blown over 30 minutes while keeping the solution temperature in the range of 15 ° C. to 25 ° C. with stirring. After the injection of phosgene was completed, 6 kg of 9 w / w% sodium hydroxide aqueous solution, 11 kg of dichloromethane, and 443 g (1.22 mol) of parahydroxybenzoic acid hexadecyl ester (CEBP) as a terminal terminator were dissolved in 10 kg of methylene chloride. The solution was added and vigorously stirred to emulsify. After that, 10 ml of triethylamine was added to the solution as a polymerization catalyst, and the mixture was polymerized for about 40 minutes.
The polymerization solution was separated into an aqueous phase and an organic phase, the organic phase was neutralized with phosphoric acid, and washing with pure water was repeated until the pH of the washing solution became neutral. A polycarbonate resin powder was obtained by evaporating and distilling off an organic solvent from this purified polycarbonate resin solution.
The obtained polycarbonate resin powder was melt-kneaded at a cylinder temperature of 260 ° C. using a twin-screw extruder having a screw diameter of 35 mm, extruded into strands, and pelletized with a pelletizer.
Weight average molecular weight of polycarbonate resin (A-1): 29,000, glass transition temperature: 127 ° C, temperature 300 ° C, melt flow rate under 1.2 kg load: 12.1 g / 10 minutes, refractive index 1.59 Met.
製造例1〔熱可塑性樹脂(B-1)のペレット製造〕
 メタクリル樹脂(C-1)を25質量部と、スチレン共重合体(D-1)を75質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、ブレンダーで20分混合後、目開き10μmのポリマーフィルターを取り付けたスクリュー径26mmの2軸押出機(東芝機械株式会社製、TEM-26SS、L/D≒40)を用い、シリンダー温度240℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。熱可塑性樹脂(B-1)のペレットは安定して製造できた。
 熱可塑性樹脂(B-1)のペレットは外観:〇(透明)であり、ガラス転移温度:134℃、屈折率1.56であった。
Production Example 1 [Manufacturing of pellets of thermoplastic resin (B-1)]
25 parts by mass of methacrylic resin (C-1) and 75 parts by mass of styrene copolymer (D-1), for a total of 100 parts by mass, 500 ppm of phosphorus-based additive PEP-36 (manufactured by ADEKA Co., Ltd.), And stearate monoglyceride (product name: H-100, manufactured by Riken Vitamin Co., Ltd.) 0.2% by mass, mixed with a blender for 20 minutes, and then a twin-screw extruder with a screw diameter of 26 mm equipped with a polymer filter with a mesh opening of 10 μm. (Made by Toshiba Machinery Co., Ltd., TEM-26SS, L / D≈40) was melt-kneaded at a cylinder temperature of 240 ° C., extruded into strands, and pelletized with a pelletizer. The pellets of the thermoplastic resin (B-1) could be stably produced.
The pellets of the thermoplastic resin (B-1) had an appearance: 〇 (transparent), a glass transition temperature: 134 ° C., and a refractive index of 1.56.
製造例2〔熱可塑性樹脂(B-2)のペレット製造〕
 メタクリル樹脂(C-1)を50質量部と、スチレン共重合体(D-1)を50質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(B-2)のペレットは安定して製造できた。
 熱可塑性樹脂(B-2)のペレットは外観:〇(透明)であり、ガラス転移温度:122℃、屈折率1.54であった。
Production Example 2 [Manufacturing of pellets of thermoplastic resin (B-2)]
50 parts by mass of methacrylic resin (C-1) and 50 parts by mass of styrene copolymer (D-1), for a total of 100 parts by mass, phosphorus-based additive PEP-36 500 ppm, and stearic acid monoglyceride 0. 2% by mass was added, and the mixture and pelletization were carried out in the same manner as in Production Example 1. The pellets of the thermoplastic resin (B-2) could be stably produced.
The pellets of the thermoplastic resin (B-2) had an appearance: 〇 (transparent), a glass transition temperature of 122 ° C., and a refractive index of 1.54.
製造比較例1〔熱可塑性樹脂(G-1)のペレット製造〕
 メタクリル樹脂(C-1)を75質量部と、スチレン共重合体(D-1)を25質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(G-1)のペレットは安定して製造できた。
 熱可塑性樹脂(G-1)のペレットは外観:〇(透明)であり、ガラス転移温度:114℃、屈折率1.52であった。
Production Comparative Example 1 [Manufacturing of Pellet of Thermoplastic Resin (G-1)]
75 parts by mass of methacrylic resin (C-1) and 25 parts by mass of styrene copolymer (D-1) for a total of 100 parts by mass, phosphorus-based additive PEP-36 500 ppm, and stearic acid monoglyceride 0. 2% by mass was added, and the mixture and pelletization were carried out in the same manner as in Production Example 1. The pellets of the thermoplastic resin (G-1) could be stably produced.
The pellets of the thermoplastic resin (G-1) had an appearance: 〇 (transparent), a glass transition temperature of 114 ° C., and a refractive index of 1.52.
製造比較例2〔熱可塑性樹脂(G-2)のペレット製造〕
 メタクリル樹脂(C-1)を25質量部と、スチレン共重合体(E-1)を75質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(G-2)のペレットは安定して製造できた。
 熱可塑性樹脂(G-2)のペレットは外観:〇(透明)であり、ガラス転移温度:136℃、屈折率1.56であった。
Production Comparative Example 2 [Manufacturing of Pellet of Thermoplastic Resin (G-2)]
25 parts by mass of methacrylic resin (C-1) and 75 parts by mass of styrene copolymer (E-1), for a total of 100 parts by mass, phosphorus-based additive PEP-36 500 ppm, and stearic acid monoglyceride 0. 2% by mass was added, and the mixture and pelletization were carried out in the same manner as in Production Example 1. The pellets of the thermoplastic resin (G-2) could be stably produced.
The pellets of the thermoplastic resin (G-2) had an appearance: 〇 (transparent), a glass transition temperature of 136 ° C., and a refractive index of 1.56.
製造比較例3〔熱可塑性樹脂(G-3)のペレット製造〕
 メタクリル樹脂(C-1)を50質量部と、スチレン共重合体(E-1)を50質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(G-3)のペレットは安定して製造できた。
 熱可塑性樹脂(G-3)のペレットは外観:〇(透明)であり、ガラス転移温度:124℃、屈折率1.54であった。
Production Comparative Example 3 [Manufacturing of Pellet of Thermoplastic Resin (G-3)]
50 parts by mass of methacrylic resin (C-1) and 50 parts by mass of styrene copolymer (E-1), for a total of 100 parts by mass, phosphorus-based additive PEP-36 500 ppm, and stearic acid monoglyceride 0. 2% by mass was added, and the mixture and pelletization were carried out in the same manner as in Production Example 1. The pellets of the thermoplastic resin (G-3) could be stably produced.
The pellets of the thermoplastic resin (G-3) had an appearance: 〇 (transparent), a glass transition temperature of 124 ° C., and a refractive index of 1.54.
製造比較例4〔熱可塑性樹脂(G-4)のペレット製造〕
 メタクリル樹脂(C-1)を75質量部と、スチレン共重合体(E-1)を25質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(G-4)のペレットは安定して製造できた。
 熱可塑性樹脂(G-4)のペレットは外観:〇(透明)であり、ガラス転移温度:115℃、屈折率1.51であった。
Production Comparative Example 4 [Manufacturing of Pellet of Thermoplastic Resin (G-4)]
75 parts by mass of methacrylic resin (C-1) and 25 parts by mass of styrene copolymer (E-1) for a total of 100 parts by mass, phosphorus-based additive PEP-36 500 ppm, and stearic acid monoglyceride 0. 2% by mass was added, and the mixture and pelletization were carried out in the same manner as in Production Example 1. The pellets of the thermoplastic resin (G-4) could be stably produced.
The pellets of the thermoplastic resin (G-4) had an appearance: 〇 (transparent), a glass transition temperature of 115 ° C., and a refractive index of 1.51.
製造比較例5〔熱可塑性樹脂(G-5)のペレット製造〕
 メタクリル樹脂(C-1)を100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(G-5)のペレットは安定して製造できた。
 熱可塑性樹脂(G-5)のペレットは外観:〇(透明)であり、ガラス転移温度:109℃、屈折率1.49であった。
Production Comparative Example 5 [Manufacturing of Pellet of Thermoplastic Resin (G-5)]
Phosphorus additive PEP-36 500 ppm and stearic acid monoglyceride 0.2% by mass were added to 100 parts by mass of the methacrylic resin (C-1), and mixed and pelletized in the same manner as in Production Example 1. The pellets of the thermoplastic resin (G-5) could be stably produced.
The pellets of the thermoplastic resin (G-5) had an appearance: 〇 (transparent), a glass transition temperature of 109 ° C., and a refractive index of 1.49.
製造比較例6〔熱可塑性樹脂(G-6)のペレット製造〕
 スチレン共重合体(D-1)を100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(G-6)のペレットは安定して製造できた。
 熱可塑性樹脂(G-6)のペレットは外観:〇(透明)であり、ガラス転移温度:145℃、屈折率1.58であった。
Production Comparative Example 6 [Manufacturing of Pellet of Thermoplastic Resin (G-6)]
To 100 parts by mass of the styrene copolymer (D-1), 500 ppm of the phosphorus-based additive PEP-36 and 0.2% by mass of stearic acid monoglyceride were added, and the mixture was mixed and pelletized in the same manner as in Production Example 1. rice field. The pellets of the thermoplastic resin (G-6) could be stably produced.
The pellets of the thermoplastic resin (G-6) had an appearance: 〇 (transparent), a glass transition temperature of 145 ° C., and a refractive index of 1.58.
製造比較例7〔熱可塑性樹脂(G-7)のペレット製造〕
 スチレン共重合体(E-1)を100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(G-7)のペレットは安定して製造できた。
 熱可塑性樹脂(G-7)のペレットは外観:〇(透明)であり、ガラス転移温度:150℃、屈折率1.58であった。
Production Comparative Example 7 [Manufacturing of pellets of thermoplastic resin (G-7)]
To 100 parts by mass of the styrene copolymer (E-1), 500 ppm of the phosphorus-based additive PEP-36 and 0.2% by mass of stearic acid monoglyceride were added, and the mixture was mixed and pelletized in the same manner as in Production Example 1. rice field. The pellets of the thermoplastic resin (G-7) could be stably produced.
The pellets of the thermoplastic resin (G-7) had an appearance: 〇 (transparent), a glass transition temperature: 150 ° C., and a refractive index of 1.58.
製造比較例8〔熱可塑性樹脂(G-8)のペレット製造〕
 メタクリル樹脂(C-1)を25質量部と、スチレン共重合体(E-2)を75質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(G-8)のペレットは安定して製造できた。
 熱可塑性樹脂(G-8)のペレットは外観:×(半透明)であった。
Production Comparative Example 8 [Manufacturing of pellets of thermoplastic resin (G-8)]
25 parts by mass of methacrylic resin (C-1) and 75 parts by mass of styrene copolymer (E-2), for a total of 100 parts by mass, phosphorus-based additive PEP-36 500 ppm, and stearic acid monoglyceride 0. 2% by mass was added, and the mixture and pelletization were carried out in the same manner as in Production Example 1. The pellets of the thermoplastic resin (G-8) could be stably produced.
The pellets of the thermoplastic resin (G-8) had an appearance: × (semi-transparent).
製造比較例9〔熱可塑性樹脂(G-9)のペレット製造〕
 メタクリル樹脂(C-1)を50質量部と、スチレン共重合体(E-2)を50質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(G-9)のペレットは安定して製造できた。
 熱可塑性樹脂(G-9)のペレットは外観:×(半透明)であった。
Production Comparative Example 9 [Manufacturing of Pellet of Thermoplastic Resin (G-9)]
50 parts by mass of methacrylic resin (C-1) and 50 parts by mass of styrene copolymer (E-2), for a total of 100 parts by mass, phosphorus-based additive PEP-36 500 ppm, and stearic acid monoglyceride 0. 2% by mass was added, and the mixture and pelletization were carried out in the same manner as in Production Example 1. The pellets of the thermoplastic resin (G-9) could be stably produced.
The pellets of the thermoplastic resin (G-9) had an appearance: × (semi-transparent).
製造比較例10〔熱可塑性樹脂(G-10)のペレット製造〕
 メタクリル樹脂(C-1)を25質量部と、スチレン共重合体(E-2)を75質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(G-10)のペレットは安定して製造できた。
 熱可塑性樹脂(G-10)のペレットは外観:×(白濁)であった。
Production Comparative Example 10 [Manufacturing of Pellet of Thermoplastic Resin (G-10)]
25 parts by mass of methacrylic resin (C-1) and 75 parts by mass of styrene copolymer (E-2), for a total of 100 parts by mass, phosphorus-based additive PEP-36 500 ppm, and stearic acid monoglyceride 0. 2% by mass was added, and the mixture and pelletization were carried out in the same manner as in Production Example 1. The pellets of the thermoplastic resin (G-10) could be stably produced.
The pellets of the thermoplastic resin (G-10) had an appearance: × (white turbidity).
製造比較例11〔熱可塑性樹脂(G-11)のペレット製造〕
 メタクリル樹脂(C-1)を50質量部と、スチレン共重合体(E-2)を50質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1と同様に混合、ペレット化を行った。熱可塑性樹脂(G-11)のペレットは安定して製造できた。
 熱可塑性樹脂(G-11)のペレットは外観:×(白濁)であった。
Production Comparative Example 11 [Manufacturing of Pellet of Thermoplastic Resin (G-11)]
50 parts by mass of methacrylic resin (C-1) and 50 parts by mass of styrene copolymer (E-2), for a total of 100 parts by mass, phosphorus-based additive PEP-36 500 ppm, and stearic acid monoglyceride 0. 2% by mass was added, and the mixture and pelletization were carried out in the same manner as in Production Example 1. The pellets of the thermoplastic resin (G-11) could be stably produced.
The pellets of the thermoplastic resin (G-11) had an appearance: × (white turbidity).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
実施例1〔樹脂積層体(I-1)の製造〕
 軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結された650mm幅のTダイとを有する多層押出機に各押出機と連結したマルチマニホールドダイとを有する多層押出装置を用いて、樹脂積層体を成形した。軸径32mmの単軸押出機に製造例1で得た熱可塑性樹脂(B-1)を連続的に導入し、シリンダー温度240℃、吐出量を2.0kg/hの条件で押し出した。また、軸径65mmの単軸押出機に合成例2で得たポリカーボネート系樹脂(A-1)を連続的に導入し、シリンダー温度280℃、吐出量を31.8kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃にして熱可塑性樹脂(B-1)とポリカーボネート系樹脂(A-1)を導入し積層した。
 その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度110℃、105℃、165℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、熱可塑性樹脂(B-1)とポリカーボネート系樹脂(A-1)の樹脂積層体を得た。得られた樹脂積層体の中央部の全体厚みは1000μm、表層(熱可塑性樹脂(B)を含む層)の厚みは60μmであった。
 さらに、上記で得られた樹脂積層体の熱可塑性樹脂(B-1)の表面に、6官能ウレタンアクリレートオリゴマー(製品名:U6HA、新中村化学工業株式会社製)60質量部、PEG200#ジアクリレート(製品名:4EG-A、共栄社化学株式会社製)35質量部、および含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマー(製品名:RS-90、DIC株式会社製)5質量部の合計100質量部に対して、光重合開始剤(製品名:I-184〔化合物名:1-ヒドロキシ-シクロヘキシルフェニルケトン〕BASF株式会社製)を1質量%加えた塗料を、バーコーターにて塗布し、メタルハライドランプ(20mW/cm2)を5秒間当ててハードコートを硬化させ、樹脂積層体(I-1)を作製した。ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(I-1)は全光線透過率:90.8%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:〇であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Example 1 [Manufacturing of resin laminate (I-1)]
Each is a multi-layer extruder having a single-screw extruder with a shaft diameter of 32 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all extruders, and a 650 mm wide T-die connected to the feed block. A resin laminate was molded using a multi-layer extruder with a multi-manifold die coupled to the extruder. The thermoplastic resin (B-1) obtained in Production Example 1 was continuously introduced into a single-screw extruder having a shaft diameter of 32 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.0 kg / h. Further, the polycarbonate resin (A-1) obtained in Synthesis Example 2 was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded at a cylinder temperature of 280 ° C. and a discharge rate of 31.8 kg / h. The feed block connected to all extruders was equipped with two types and two layers of distribution pins, and a thermoplastic resin (B-1) and a polycarbonate resin (A-1) were introduced and laminated at a temperature of 270 ° C.
A T-die with a temperature of 270 ° C connected to the tip extrudes it into a sheet, and three mirror-finishing rolls with temperatures of 110 ° C, 105 ° C, and 165 ° C are used to cool the resin while transferring the mirror surface. A resin laminate of (B-1) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate was 1000 μm, and the thickness of the surface layer (layer containing the thermoplastic resin (B)) was 60 μm.
Further, on the surface of the thermoplastic resin (B-1) of the resin laminate obtained above, 60 parts by mass of a hexafunctional urethane acrylate oligomer (product name: U6HA, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), PEG200 # diacrylate. (Product name: 4EG-A, manufactured by Kyoeisha Chemical Co., Ltd.) 35 parts by mass, and oligomer containing fluorine-containing group, hydrophilic group, lipophilic group, UV reactive group (product name: RS-90, manufactured by DIC Corporation) A paint obtained by adding 1% by mass of a photopolymerization initiator (product name: I-184 [compound name: 1-hydroxy-cyclohexylphenylketone] manufactured by BASF Corporation) to a total of 100 parts by mass of 5 parts is added to the bar. The resin laminate (I-1) was prepared by applying with a coater and applying a metal halide lamp (20 mW / cm2) for 5 seconds to cure the hard coat. The thickness of the hard coat layer (H-1) was 6 μm.
This resin laminate (I-1) has a total light transmittance of 90.8%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is 〇, and the springback of the hot press molded body is 〇.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
実施例2〔樹脂積層体(I-2)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(B-2)を使用した以外は、実施例1の樹脂積層体(I-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(B-2)とポリカーボネート系樹脂(A-1)との樹脂積層体(I-2)を得た。得られた樹脂積層体(I-2)の中央部の全体厚みは1006μm、表層(B-2)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(I-2)は全光線透過率:90.8%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:〇であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Example 2 [Manufacturing of resin laminate (I-2)]
With the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (B-2) was used instead of the thermoplastic resin (B-1). A resin laminate (I-2) of a thermoplastic resin (B-2) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (I-2) was 1006 μm, the surface layer (B-2) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (I-2) has a total light transmittance of 90.8%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is 〇, and the springback of the hot press molded body is 〇.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例1〔樹脂積層体(J-1)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-1)を使用した以外は、実施例1の樹脂積層体(I-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-1)とポリカーボネート系樹脂(A-1)との樹脂積層体(J-1)を得た。得られた樹脂積層体(J-1)の中央部の全体厚みは1006μm、表層(G-1)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-1)は全光線透過率:91.0%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 1 [Manufacturing of resin laminate (J-1)]
With the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-1) was used instead of the thermoplastic resin (B-1). A resin laminate (J-1) of a thermoplastic resin (G-1) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-1) was 1006 μm, the surface layer (G-1) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-1) has a total light transmittance of 91.0%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is 〇.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例2〔樹脂積層体(J-2)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-2)を使用した以外は、実施例1の樹脂積層体(I-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-2)とポリカーボネート系樹脂(A-1)との樹脂積層体(J-2)を得た。得られた樹脂積層体(J-2)の中央部の全体厚みは1006μm、表層(G-2)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-2)は全光線透過率:90.9%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 2 [Manufacturing of resin laminate (J-2)]
With the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-2) was used instead of the thermoplastic resin (B-1). A resin laminate (J-2) of a thermoplastic resin (G-2) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-2) was 1006 μm, the surface layer (G-2) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-2) has a total light transmittance of 90.9%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is 〇.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例3〔樹脂積層体(J-3)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-3)を使用した以外は、実施例1の樹脂積層体(I-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-3)とポリカーボネート系樹脂(A-1)との樹脂積層体(J-3)を得た。得られた樹脂積層体(J-3)の中央部の全体厚みは1006μm、表層(G-3)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-3)は全光線透過率:91.2%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 3 [Manufacturing of resin laminate (J-3)]
With the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-3) was used instead of the thermoplastic resin (B-1). A resin laminate (J-3) of a thermoplastic resin (G-3) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-3) was 1006 μm, the thickness of the surface layer (G-3) was 60 μm, and the thickness of the hard coat layer (H-1) was 6 μm.
This resin laminate (J-3) has a total light transmittance of 91.2%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is 〇.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例4〔樹脂積層体(J-4)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-4)を使用した以外は、実施例1の樹脂積層体(I-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-4)とポリカーボネート系樹脂(A-1)との樹脂積層体(J-4)を得た。得られた樹脂積層体(J-4)の中央部の全体厚みは1006μm、表層(G-4)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-4)は全光線透過率:91.2%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 4 [Manufacturing of resin laminate (J-4)]
With the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-4) was used instead of the thermoplastic resin (B-1). A resin laminate (J-4) of a thermoplastic resin (G-4) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-4) was 1006 μm, the thickness of the surface layer (G-4) was 60 μm, and the thickness of the hard coat layer (H-1) was 6 μm.
This resin laminate (J-4) has a total light transmittance of 91.2%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is 〇.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例5〔樹脂積層体(J-5)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-5)を使用した以外は、実施例1の樹脂積層体(I-1)と同様にしてハードコート層(H-1)熱と可塑性樹脂(G-5)とポリカーボネート系樹脂(A-1)との樹脂積層体(J-5)を得た。得られた樹脂積層体(J-5)の中央部の全体厚みは1006μm、表層(G-5)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-5)は全光線透過率:91.4%、Haze:0.3%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 5 [Manufacturing of resin laminate (J-5)]
The hard coat layer (H-1) heat is the same as that of the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-5) is used instead of the thermoplastic resin (B-1). And a resin laminate (J-5) of a plastic resin (G-5) and a polycarbonate resin (A-1) were obtained. The total thickness of the central portion of the obtained resin laminate (J-5) was 1006 μm, the surface layer (G-5) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-5) has a total light transmittance of 91.4%, a haze: 0.3%, a pencil hardness of 3H, and an interference fringe: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is 〇.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例6〔樹脂積層体(J-6)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-6)を使用した以外は、実施例1の樹脂積層体(I-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-6)とポリカーボネート系樹脂(A-1)との樹脂積層体(J-6)を得た。得られた樹脂積層体(J-6)の中央部の全体厚みは1006μm、表層(G-6)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-6)は全光線透過率:90.5%、Haze:0.2%、鉛筆硬度:H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形加工性の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 6 [Manufacturing of resin laminate (J-6)]
With the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-6) was used instead of the thermoplastic resin (B-1). A resin laminate (J-6) of a thermoplastic resin (G-6) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-6) was 1006 μm, the surface layer (G-6) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-6) has a total light transmittance of 90.5%, Haze: 0.2%, pencil hardness: H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molding processability is ×, and the springback of the hot press molded body is 〇.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例7〔樹脂積層体(J-7)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-7)を使用した以外は、実施例1の樹脂積層体(I-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-7)とポリカーボネート系樹脂(A-1)との樹脂積層体(J-7)を得た。得られた樹脂積層体(J-7)の中央部の全体厚みは1006μm、表層(G-7)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-7)は全光線透過率:90.6%、Haze:0.2%、鉛筆硬度:H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 7 [Manufacturing of resin laminate (J-7)]
With the hard coat layer (H-1) in the same manner as the resin laminate (I-1) of Example 1 except that the thermoplastic resin (G-7) was used instead of the thermoplastic resin (B-1). A resin laminate (J-7) of a thermoplastic resin (G-7) and a polycarbonate resin (A-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-7) was 1006 μm, the surface layer (G-7) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-7) has a total light transmittance of 90.6%, Haze: 0.2%, pencil hardness: H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is 〇.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例8〔樹脂積層体(J-8)の製造〕
 ポリカーボネート系樹脂(A-1)の代わりにポリカーボネート系樹脂(F-1)を使用し、上流側から温度130℃、140℃、185℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却に変更した以外は、実施例1の樹脂積層体(I-1)と同様にしてハードコート層(H-1)と熱可塑性樹脂(B-1)とポリカーボネート系樹脂(F-1)との樹脂積層体(J-8)を得た。得られた樹脂積層体(J-8)の中央部の全体厚みは1006μm、表層(B-1)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-8)は全光線透過率:90.8%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 8 [Manufacturing of resin laminate (J-8)]
Polycarbonate resin (F-1) is used instead of polycarbonate resin (A-1), and it is cooled while transferring the mirror surface with three mirror finishing rolls at temperatures of 130 ° C, 140 ° C, and 185 ° C from the upstream side. The hard coat layer (H-1), the thermoplastic resin (B-1), and the polycarbonate-based resin (F-1) are used in the same manner as in the resin laminate (I-1) of Example 1 except that the resin laminate (I-1) is changed to. A resin laminate (J-8) was obtained. The total thickness of the central portion of the obtained resin laminate (J-8) was 1006 μm, the surface layer (B-1) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-8) has a total light transmittance of 90.8%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例9〔樹脂積層体(J-9)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(B-2)を使用した以外は、比較例8の樹脂積層体(J-8)と同様にしてハードコート層(H-1)と熱可塑性樹脂(B-2)とポリカーボネート系樹脂(F-1)との樹脂積層体(J-9)を得た。得られた樹脂積層体(J-9)の中央部の全体厚みは1006μm、表層(B-2)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-9)は全光線透過率:90.8%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 9 [Manufacturing of resin laminate (J-9)]
With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (B-2) was used instead of the thermoplastic resin (B-1). A resin laminate (J-9) of a thermoplastic resin (B-2) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-9) was 1006 μm, the surface layer (B-2) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-9) has a total light transmittance of 90.8%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例10〔樹脂積層体(J-10)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-1)を使用した以外は、比較例8の樹脂積層体(J-8)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-1)とポリカーボネート系樹脂(F-1)との樹脂積層体(J-10)を得た。得られた樹脂積層体(J-10)の中央部の全体厚みは1006μm、表層(G-1)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-10)は全光線透過率:91.0%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 10 [Manufacturing of resin laminate (J-10)]
With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-1) was used instead of the thermoplastic resin (B-1). A resin laminate (J-10) of a thermoplastic resin (G-1) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-10) was 1006 μm, the surface layer (G-1) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-10) has a total light transmittance of 91.0%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例11〔樹脂積層体(J-11)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-2)を使用した以外は、比較例8の樹脂積層体(J-8)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-2)とポリカーボネート系樹脂(F-1)との樹脂積層体(J-11)を得た。得られた樹脂積層体(J-11)の中央部の全体厚みは1006μm、表層(G-2)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-11)は全光線透過率:90.9%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 11 [Manufacturing of resin laminate (J-11)]
With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-2) was used instead of the thermoplastic resin (B-1). A resin laminate (J-11) of a thermoplastic resin (G-2) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-11) was 1006 μm, the surface layer (G-2) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-11) has a total light transmittance of 90.9%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例12〔樹脂積層体(J-12)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-3)を使用した以外は、比較例8の樹脂積層体(J-8)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-3)とポリカーボネート系樹脂(F-1)との樹脂積層体(J-12)を得た。得られた樹脂積層体(J-12)の中央部の全体厚みは1006μm、表層(G-3)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-12)は全光線透過率:91.2%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 12 [Manufacturing of resin laminate (J-12)]
With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-3) was used instead of the thermoplastic resin (B-1). A resin laminate (J-12) of a thermoplastic resin (G-3) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-12) was 1006 μm, the surface layer (G-3) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-12) has a total light transmittance of 91.2%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例13〔樹脂積層体(J-13)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-4)を使用した以外は、比較例8の樹脂積層体(J-8)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-4)とポリカーボネート系樹脂(F-1)との樹脂積層体(J-13)を得た。得られた樹脂積層体(J-13)の中央部の全体厚みは1006μm、表層(G-4)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-13)は全光線透過率:91.2%、Haze:0.2%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 13 [Manufacturing of Resin Laminated Body (J-13)]
With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-4) was used instead of the thermoplastic resin (B-1). A resin laminate (J-13) of a thermoplastic resin (G-4) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-13) was 1006 μm, the thickness of the surface layer (G-4) was 60 μm, and the thickness of the hard coat layer (H-1) was 6 μm.
This resin laminate (J-13) has a total light transmittance of 91.2%, Haze: 0.2%, pencil hardness: 3H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例14〔樹脂積層体(J-14)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-5)を使用した以外は、比較例8の樹脂積層体(J-8)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-5)とポリカーボネート系樹脂(F-1)との樹脂積層体(J-14)を得た。得られた樹脂積層体(J-14)の中央部の全体厚みは1006μm、表層(G-5)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-14)は全光線透過率:91.4%、Haze:0.3%、鉛筆硬度:3H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:〇、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 14 [Manufacturing of resin laminate (J-14)]
With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-5) was used instead of the thermoplastic resin (B-1). A resin laminate (J-14) of a thermoplastic resin (G-5) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-14) was 1006 μm, the surface layer (G-5) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-14) has a total light transmittance of 91.4%, a haze: 0.3%, a pencil hardness of 3H, and an interference fringe: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body: 〇, the crack in the bent portion of the hot press molded body: 〇, the springback of the hot press molded body: ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例15〔樹脂積層体(J-15)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-6)を使用した以外は、比較例8の樹脂積層体(J-8)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-6)とポリカーボネート系樹脂(F-1)との樹脂積層体(J-15)を得た。得られた樹脂積層体(J-15)の中央部の全体厚みは1006μm、表層(G-6)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-15)は全光線透過率:90.5%、Haze:0.2%、鉛筆硬度:H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 15 [Manufacturing of resin laminate (J-15)]
With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-6) was used instead of the thermoplastic resin (B-1). A resin laminate (J-15) of a thermoplastic resin (G-6) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-15) was 1006 μm, the surface layer (G-6) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-15) has a total light transmittance of 90.5%, Haze: 0.2%, pencil hardness: H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
比較例16〔樹脂積層体(J-16)の製造〕
 熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-7)を使用した以外は、比較例8の樹脂積層体(J-8)と同様にしてハードコート層(H-1)と熱可塑性樹脂(G-7)とポリカーボネート系樹脂(F-1)との樹脂積層体(J-16)を得た。得られた樹脂積層体(J-16)の中央部の全体厚みは1006μm、表層(G-7)厚みは60μm、ハードコート層(H-1)厚みは6μmであった。
 この樹脂積層体(J-7)は全光線透過率:90.6%、Haze:0.2%、鉛筆硬度:H、干渉縞:〇であり、
金型温度80℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度120℃で熱プレス成形をした場合、熱プレス成形体の外観:〇、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:×であり、
金型温度160℃で熱プレス成形をした場合、熱プレス成形体の外観:×、熱プレス成形体の曲げ部分のクラック:×、熱プレス成形体のスプリングバック:〇であった。
Comparative Example 16 [Manufacturing of resin laminate (J-16)]
With the hard coat layer (H-1) in the same manner as the resin laminate (J-8) of Comparative Example 8 except that the thermoplastic resin (G-7) was used instead of the thermoplastic resin (B-1). A resin laminate (J-16) of a thermoplastic resin (G-7) and a polycarbonate resin (F-1) was obtained. The total thickness of the central portion of the obtained resin laminate (J-16) was 1006 μm, the surface layer (G-7) thickness was 60 μm, and the hard coat layer (H-1) thickness was 6 μm.
This resin laminate (J-7) has a total light transmittance of 90.6%, Haze: 0.2%, pencil hardness: H, and interference fringes: 〇.
When hot press molding is performed at a mold temperature of 80 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding is performed at a mold temperature of 120 ° C., the appearance of the hot press molded body is 〇, the crack in the bent portion of the hot press molded body is ×, and the springback of the hot press molded body is ×.
When hot press molding was performed at a mold temperature of 160 ° C., the appearance of the hot press molded body was ×, the crack in the bent portion of the hot press molded body was ×, and the springback of the hot press molded body was 〇.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上のように、本発明の条件を満たすことで、低温での熱成形性に優れ、且つ、干渉縞の発生を抑制する外観良好な樹脂積層体を得ることができるという有利な効果を奏する。 As described above, by satisfying the conditions of the present invention, it is possible to obtain a resin laminate having excellent thermoformability at low temperature and having a good appearance that suppresses the generation of interference fringes, which is an advantageous effect.
 即ち、表2に示すように、ペレット化した熱可塑性樹脂(B)について、特定のメタクリル樹脂(C)と特定のスチレン共重合体(D)とをブレンドした製造例1~2と、特定のメタクリル樹脂(C)単体の製造比較例5とを比較すると、製造例1~2の方が、屈折率が高かった。
 また、製造例1~2と、特定のメタクリル樹脂(C)と特定のスチレン共重合体(D)以外のスチレン共重合体(E-2、E-3)とを特定の質量比でブレンドした製造比較例8~11とを比較すると、製造例1~2の方が透明で外観良好であった。
That is, as shown in Table 2, with respect to the pelletized thermoplastic resin (B), Production Examples 1 and 2 in which a specific methacrylic resin (C) and a specific styrene copolymer (D) are blended and specific production examples 1 and 2 are specified. Comparing with the production comparative example 5 of the methacrylic resin (C) alone, the refractive index was higher in the production examples 1 and 2.
Further, Production Examples 1 and 2 were blended with a specific methacrylic resin (C) and a styrene copolymer (E-2, E-3) other than the specific styrene copolymer (D) in a specific mass ratio. Comparing with Production Comparative Examples 8 to 11, Production Examples 1 and 2 were more transparent and had a better appearance.
 表3に示すように、ハードコート塗装後の樹脂積層体について、特定のメタクリル樹脂(C)と特定のスチレン共重合体(D)とを特定の比率でブレンドし、ペレット化した屈折率が高い熱可塑性樹脂(B)とポリカーボネート系樹脂(A)とを積層し、熱可塑性樹脂(B)の片側表面にハードコートを有する実施例1~2と、特定のメタクリル樹脂(C)と特定のスチレン共重合体(D)とを特定の比率以外でブレンドし、ペレット化した熱可塑性樹脂(G)とポリカーボネート系樹脂(A)とを積層し、熱可塑性樹脂(G)の片側表面にハードコートを有する比較例1とを比較すると、実施例1~2の樹脂積層体の方が、金型温度120℃での熱プレス成形体の曲げ部分のクラックを抑制していた。
 また、実施例1~2と、特定のメタクリル樹脂(C)と特定の重量平均分子量以外のスチレン共重合体(E-1)とを特定の比率でブレンドし、ペレット化した熱可塑性樹脂(G)とポリカーボネート系樹脂(A)とを積層し、熱可塑性樹脂(G)の片側表面にハードコートを有する比較例2~3とを比較すると、実施例1~2の樹脂積層体の方が、金型温度120℃での熱プレス成形体の曲げ部分のクラックを抑制していた。
 さらに、特定のメタクリル樹脂(C)単体をペレット化した熱可塑性樹脂(G)と特定のポリカーボネート系樹脂(A)とを積層し、熱可塑性樹脂(G)の片側表面にハードコートを有する比較例5とを比較すると、実施例1~2の樹脂積層体の方が、金型温度120℃での熱プレス成形体の曲げ部分のクラックを抑制していた。
As shown in Table 3, the resin laminate after hard coat coating is blended with a specific methacrylic resin (C) and a specific styrene copolymer (D) at a specific ratio, and pelletized with a high refractive index. Examples 1 and 2 in which the thermoplastic resin (B) and the polycarbonate resin (A) are laminated and have a hard coat on one side surface of the thermoplastic resin (B), and a specific methacrylic resin (C) and a specific styrene. The copolymer (D) is blended at a ratio other than a specific ratio, the pelletized thermoplastic resin (G) and the polycarbonate resin (A) are laminated, and a hard coat is applied to one side surface of the thermoplastic resin (G). Comparing with Comparative Example 1 having, the resin laminates of Examples 1 and 2 suppressed cracks in the bent portion of the hot press molded body at a mold temperature of 120 ° C.
Further, the thermoplastic resin (G) obtained by blending Examples 1 and 2 with a specific methacrylic resin (C) and a styrene copolymer (E-1) having a specific weight average molecular weight in a specific ratio and pelletizing them. ) And the polycarbonate resin (A) are laminated, and when compared with Comparative Examples 2 to 3 having a hard coat on one side surface of the thermoplastic resin (G), the resin laminates of Examples 1 and 2 are better. Cracks in the bent portion of the hot press molded product at a mold temperature of 120 ° C. were suppressed.
Further, a comparative example in which a thermoplastic resin (G) obtained by pelletizing a specific methacrylic resin (C) alone and a specific polycarbonate resin (A) are laminated, and a hard coat is provided on one side of the thermoplastic resin (G). Comparing with No. 5, the resin laminates of Examples 1 and 2 suppressed cracks in the bent portion of the hot press molded product at a mold temperature of 120 ° C.
 また、実施例1~2と、特定のスチレン共重合体(D)単体をペレット化した熱可塑性樹脂(G)と特定のポリカーボネート系樹脂(A)とを積層し、熱可塑性樹脂(G)の片側表面にハードコートを有する比較例6~7とを比較すると、実施例1~2の樹脂積層体の方が、鉛筆硬度が高く、熱プレス成形体の曲げ部分のクラックを抑制していた。
 さらに、実施例1~2と、特定のメタクリル樹脂(C)と特定のスチレン共重合体(D)とを特定の比率でブレンドし、ペレット化した熱可塑性樹脂(B)とポリカーボネート系樹脂(F)とを積層し、熱可塑性樹脂(B)の片側表面にハードコートを有する比較例8~9とを比較すると、実施例1~2の樹脂積層体の方が、金型温度120℃での熱プレス成形体のスプリングバックを抑制していた。
Further, in Examples 1 and 2, a thermoplastic resin (G) obtained by pelletizing a specific styrene copolymer (D) alone and a specific polycarbonate resin (A) are laminated to form a thermoplastic resin (G). Comparing with Comparative Examples 6 to 7 having a hard coat on one side surface, the resin laminates of Examples 1 and 2 had higher pencil hardness and suppressed cracks in the bent portion of the hot press molded body.
Further, Examples 1 and 2 are blended with a specific methacrylic resin (C) and a specific styrene copolymer (D) in a specific ratio, and pelletized into a thermoplastic resin (B) and a polycarbonate resin (F). ), And a comparison with Comparative Examples 8 to 9 having a hard coat on one side surface of the thermoplastic resin (B), the resin laminates of Examples 1 and 2 are at a mold temperature of 120 ° C. The springback of the hot press molded product was suppressed.
 また、実施例1~2において、金型温度が80℃では熱プレス成形体のスプリングバックが発生し、金型温度が160℃では熱プレス成形体の外観悪化及び曲げ部分でのクラックが発生していた。一方、金型温度が120℃では熱プレス成形体の外観、曲げ部分のクラック及びスプリングバックが良好であった。
 
Further, in Examples 1 and 2, when the mold temperature is 80 ° C., springback of the hot press molded body occurs, and when the mold temperature is 160 ° C., the appearance of the hot press molded body deteriorates and cracks occur at the bent portion. Was there. On the other hand, when the mold temperature was 120 ° C., the appearance of the hot press molded body, cracks in the bent portion and springback were good.

Claims (16)

  1.  ポリカーボネート系樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有し、該熱可塑性樹脂(B)を含む層の少なくとも片側表面にハードコート層を有する樹脂積層体であって、
     前記ポリカーボネート系樹脂(A)はガラス転移温度が115℃~140℃であり、
     前記熱可塑性樹脂(B)がメタクリル樹脂(C)とスチレン共重合体(D)とを含有し、前記メタクリル樹脂(C)及びスチレン共重合体(D)の含有量の合計100質量部を基準として、前記メタクリル樹脂(C)の含有量は15~70質量部であり、前記スチレン共重合体(D)の含有量は85~30質量部であり、
     前記スチレン共重合体(D)がビニル芳香族単量体単位(d1)を68~84質量%と、環状酸無水物単量体単位(d2)を16~32質量%とを含む共重合体であり、重量平均分子量が50,000~130,000であり、
     金型温度120℃の熱プレス機で50mmRの熱成形した後に、曲げ部分のクラック及びスプリングバックが発生しない、前記樹脂積層体。
    A resin having a layer containing a thermoplastic resin (B) on at least one surface of a layer containing a polycarbonate resin (A) and a hard coat layer on at least one surface of the layer containing the thermoplastic resin (B). It ’s a laminate,
    The polycarbonate resin (A) has a glass transition temperature of 115 ° C to 140 ° C, and has a glass transition temperature of 115 ° C to 140 ° C.
    The thermoplastic resin (B) contains a methacrylic resin (C) and a styrene copolymer (D), and the total content of the methacrylic resin (C) and the styrene copolymer (D) is based on 100 parts by mass. The content of the methacrylic resin (C) is 15 to 70 parts by mass, and the content of the styrene copolymer (D) is 85 to 30 parts by mass.
    The styrene copolymer (D) is a copolymer containing 68 to 84% by mass of a vinyl aromatic monomer unit (d1) and 16 to 32% by mass of a cyclic acid anhydride monomer unit (d2). The weight average molecular weight is 50,000 to 130,000.
    The resin laminate in which cracks and springbacks in the bent portion do not occur after thermoforming at a mold temperature of 120 ° C. with a heat press machine of 50 mmR.
  2.  前記ポリカーボネート系樹脂(A)のガラス転移温度と前記熱可塑性樹脂(B)のガラス転移温度との差が、0~15℃の範囲である、請求項1に記載の樹脂積層体。 The resin laminate according to claim 1, wherein the difference between the glass transition temperature of the polycarbonate resin (A) and the glass transition temperature of the thermoplastic resin (B) is in the range of 0 to 15 ° C.
  3.  前記熱可塑性樹脂(B)が、前記メタクリル樹脂(C)と前記スチレン共重合体(D)とのポリマーアロイである、請求項1または2に記載の樹脂積層体。 The resin laminate according to claim 1 or 2, wherein the thermoplastic resin (B) is a polymer alloy of the methacrylic resin (C) and the styrene copolymer (D).
  4.  前記スチレン共重合体(D)に含まれるビニル芳香族単量体単位(d1)が、スチレンである、請求項1~3のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 3, wherein the vinyl aromatic monomer unit (d1) contained in the styrene copolymer (D) is styrene.
  5.  前記スチレン共重合体(D)に含まれる環状酸無水物単量体単位(d2)が、無水マレイン酸である、請求項1~4のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 4, wherein the cyclic acid anhydride monomer unit (d2) contained in the styrene copolymer (D) is maleic anhydride.
  6.  前記ポリカーボネート系樹脂(A)は下記一般式(1)で表される1価フェノールから誘導される末端構造と2価フェノールから誘導される構成単位とを有する、請求項1~5のいずれかに記載の樹脂積層体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、炭素数8~36のアルキル基、又は炭素数8~36のアルケニル基を表し、R~Rはそれぞれ水素、ハロゲン、又は置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、前記置換基は、ハロゲン、炭素数1~20のアルキル基、又は炭素数6~12のアリール基である。)
    The polycarbonate resin (A) has a terminal structure derived from a monovalent phenol represented by the following general formula (1) and a structural unit derived from a divalent phenol, according to any one of claims 1 to 5. The resin laminate described.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms, and R 2 to R 5 are carbons which may have a hydrogen, a halogen or a substituent, respectively. Represents an alkyl group having a number of 1 to 20 or an aryl group having 6 to 12 carbon atoms, and the substituent is a halogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
  7.  前記熱可塑性樹脂(B)を含む層の厚さが10~250μmであり、前記樹脂積層体の全体厚みが0.4~4.0mmの範囲である、請求項1~6のいずれかに記載の樹脂積層体。 The invention according to any one of claims 1 to 6, wherein the thickness of the layer containing the thermoplastic resin (B) is 10 to 250 μm, and the total thickness of the resin laminate is in the range of 0.4 to 4.0 mm. Resin laminate.
  8.  前記ポリカーボネート系樹脂(A)を含む層、前記熱可塑性樹脂(B)を含む層、および、前記ハードコート層の少なくとも一層が紫外線吸収剤を含有する、請求項1~7のいずれかに記載の樹脂積層体。 The layer according to any one of claims 1 to 7, wherein at least one layer of the polycarbonate resin (A), the layer containing the thermoplastic resin (B), and the hard coat layer contains an ultraviolet absorber. Resin laminate.
  9.  前記ハードコート層がアクリル系ハードコートである、請求項1~8のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 1 to 8, wherein the hard coat layer is an acrylic hard coat.
  10.  前記樹脂積層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理および防汚処理の少なくとも一つが施されてなる、請求項1~9のいずれかに記載の樹脂積層体。 Any one of claims 1 to 9, wherein one or both sides of the resin laminate is subjected to at least one of anti-fingerprint treatment, anti-reflection treatment, anti-glare treatment, weather resistance treatment, anti-static treatment and anti-fouling treatment. The resin laminate according to the above.
  11.  請求項1~10のいずれかに記載の樹脂積層体を熱曲げ加工された熱成形体。 A thermoformed body obtained by thermoforming the resin laminate according to any one of claims 1 to 10.
  12.  請求項1~10のいずれかに記載の樹脂積層体、または請求項11に記載の熱成形体を含む、透明基板材料。 A transparent substrate material containing the resin laminate according to any one of claims 1 to 10 or the thermoformed body according to claim 11.
  13.  請求項1~10のいずれかに記載の樹脂積層体、または請求項11に記載の熱成形体を含む、透明保護材料。 A transparent protective material containing the resin laminate according to any one of claims 1 to 10 or the thermoformed body according to claim 11.
  14.  請求項1~10のいずれかに記載の樹脂積層体、または請求項11に記載の熱成形体を含む、タッチパネル前面保護板。 A touch panel front surface protective plate containing the resin laminate according to any one of claims 1 to 10 or the thermoformed body according to claim 11.
  15.  請求項1~10のいずれかに記載の樹脂積層体、または請求項11に記載の熱成形体を含む、カーナビ用、OA機器用または携帯電子機器用の前面板。 A front plate for a car navigation system, an OA device, or a portable electronic device, which comprises the resin laminate according to any one of claims 1 to 10 or the thermoformed body according to claim 11.
  16.  樹脂積層体を100℃~135℃の金型温度で熱曲げ加工する工程を含む熱成形体の製造方法であって、
     前記樹脂積層体が、ポリカーボネート系樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有し、該熱可塑性樹脂(B)を含む層の少なくとも片側表面にハードコート層を有し、
     前記ポリカーボネート系樹脂(A)はガラス転移温度が115℃~140℃であり、
     前記熱可塑性樹脂(B)がメタクリル樹脂(C)とスチレン共重合体(D)とを含有し、前記メタクリル樹脂(C)及びスチレン共重合体(D)の含有量の合計100質量部を基準として、前記メタクリル樹脂(C)の含有量は15~70質量部であり、前記スチレン共重合体(D)の含有量は85~30質量部であり、
     前記スチレン共重合体(D)がビニル芳香族単量体単位(d1)を68~84質量%と、環状酸無水物単量体単位(d2)を16~32質量%とを含む共重合体であり、重量平均分子量が50,000~130,000である、前記製造方法。
     
    A method for manufacturing a thermoformed body, which comprises a step of hot bending a resin laminate at a mold temperature of 100 ° C to 135 ° C.
    The resin laminate has a layer containing a thermoplastic resin (B) on at least one surface of a layer containing a polycarbonate resin (A), and is on at least one side surface of the layer containing the thermoplastic resin (B). Has a hard coat layer,
    The polycarbonate resin (A) has a glass transition temperature of 115 ° C to 140 ° C, and has a glass transition temperature of 115 ° C to 140 ° C.
    The thermoplastic resin (B) contains a methacrylic resin (C) and a styrene copolymer (D), and the total content of the methacrylic resin (C) and the styrene copolymer (D) is based on 100 parts by mass. The content of the methacrylic resin (C) is 15 to 70 parts by mass, and the content of the styrene copolymer (D) is 85 to 30 parts by mass.
    The styrene copolymer (D) is a copolymer containing 68 to 84% by mass of a vinyl aromatic monomer unit (d1) and 16 to 32% by mass of a cyclic acid anhydride monomer unit (d2). The production method, wherein the weight average molecular weight is 50,000 to 130,000.
PCT/JP2021/028875 2020-08-11 2021-08-04 Layered resin product, and transparent substrate material and transparent protective material using same WO2022034837A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180055993.0A CN116034032A (en) 2020-08-11 2021-08-04 Resin laminate, and transparent substrate material and transparent protective material using same
JP2022542819A JPWO2022034837A1 (en) 2020-08-11 2021-08-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020135859 2020-08-11
JP2020-135859 2020-08-11

Publications (1)

Publication Number Publication Date
WO2022034837A1 true WO2022034837A1 (en) 2022-02-17

Family

ID=80247891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028875 WO2022034837A1 (en) 2020-08-11 2021-08-04 Layered resin product, and transparent substrate material and transparent protective material using same

Country Status (4)

Country Link
JP (1) JPWO2022034837A1 (en)
CN (1) CN116034032A (en)
TW (1) TW202222581A (en)
WO (1) WO2022034837A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042727A1 (en) * 2014-09-18 2016-03-24 株式会社クラレ Process for producing extruded resin sheet, and extruded resin sheet
WO2019159890A1 (en) * 2018-02-13 2019-08-22 株式会社クラレ Multilayer sheet, method for producing same, and display with protective cover
JP2019136994A (en) * 2018-02-14 2019-08-22 三菱瓦斯化学株式会社 Resin laminate and resin molded body using the same
WO2020075619A1 (en) * 2018-10-11 2020-04-16 三菱瓦斯化学株式会社 Polycarbonate sheet press-formed body production method
WO2020241725A1 (en) * 2019-05-29 2020-12-03 株式会社クラレ Laminated body and manufacturing method therefor, and manufacturing method for molded body
WO2021014915A1 (en) * 2019-07-25 2021-01-28 三菱瓦斯化学株式会社 Transparent resin multilayer body, and transparent substrate material and transparent protective material each using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042727A1 (en) * 2014-09-18 2016-03-24 株式会社クラレ Process for producing extruded resin sheet, and extruded resin sheet
WO2019159890A1 (en) * 2018-02-13 2019-08-22 株式会社クラレ Multilayer sheet, method for producing same, and display with protective cover
JP2019136994A (en) * 2018-02-14 2019-08-22 三菱瓦斯化学株式会社 Resin laminate and resin molded body using the same
WO2020075619A1 (en) * 2018-10-11 2020-04-16 三菱瓦斯化学株式会社 Polycarbonate sheet press-formed body production method
WO2020241725A1 (en) * 2019-05-29 2020-12-03 株式会社クラレ Laminated body and manufacturing method therefor, and manufacturing method for molded body
WO2021014915A1 (en) * 2019-07-25 2021-01-28 三菱瓦斯化学株式会社 Transparent resin multilayer body, and transparent substrate material and transparent protective material each using same

Also Published As

Publication number Publication date
JPWO2022034837A1 (en) 2022-02-17
TW202222581A (en) 2022-06-16
CN116034032A (en) 2023-04-28

Similar Documents

Publication Publication Date Title
JP7105784B2 (en) High-hardness molding resin sheet and molded products using the same
CN109641436B (en) Two-stage curable laminate
JPWO2020075619A1 (en) Method for manufacturing a press-molded polycarbonate sheet
JP7265960B2 (en) Transparent resin laminate, transparent substrate material and transparent protective material using the same
WO2021014915A1 (en) Transparent resin multilayer body, and transparent substrate material and transparent protective material each using same
WO2020179524A1 (en) Resin sheet for high hardness molding and molded article using same
WO2022034837A1 (en) Layered resin product, and transparent substrate material and transparent protective material using same
JP7413071B2 (en) Transparent resin laminate, transparent substrate material and transparent protective material using the same
WO2021193215A1 (en) Anti-glare laminate body
JP7470597B2 (en) Transparent resin laminate, and transparent substrate material and transparent protective material using the same
JP7356304B2 (en) Resin laminates, transparent substrate materials containing the same, and transparent protective materials
WO2021029266A1 (en) Resin sheet for molding and molded article using same
WO2021241426A1 (en) Resin multilayer body
WO2021166636A1 (en) Laminated resin sheet for molding, and molded article using same
WO2022091810A1 (en) Laminated resin sheet for molding, and molded article using same
WO2021033483A1 (en) Anti-glare layered body
WO2022097677A1 (en) Manufacturing method for bend forming product of resin sheet, and bend forming product
JP2023110549A (en) Laminated resin sheet for molding, and molded article using the same
WO2024057985A1 (en) Anti-glare laminate and method for manufacturing same
WO2021246295A1 (en) Resin sheet for molding and molded article using same
WO2020203359A1 (en) Anti-glare laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855916

Country of ref document: EP

Kind code of ref document: A1