WO2022097677A1 - Manufacturing method for bend forming product of resin sheet, and bend forming product - Google Patents

Manufacturing method for bend forming product of resin sheet, and bend forming product Download PDF

Info

Publication number
WO2022097677A1
WO2022097677A1 PCT/JP2021/040578 JP2021040578W WO2022097677A1 WO 2022097677 A1 WO2022097677 A1 WO 2022097677A1 JP 2021040578 W JP2021040578 W JP 2021040578W WO 2022097677 A1 WO2022097677 A1 WO 2022097677A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
mass
meth
base material
Prior art date
Application number
PCT/JP2021/040578
Other languages
French (fr)
Japanese (ja)
Inventor
敦大 鴇田
健太 野中
雅登 高崎
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202180074515.4A priority Critical patent/CN116761709A/en
Priority to JP2022560808A priority patent/JPWO2022097677A1/ja
Publication of WO2022097677A1 publication Critical patent/WO2022097677A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/04Bending or folding of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material

Definitions

  • the present invention relates to a method for manufacturing a bent molded product of a resin sheet and a bent molded product.
  • Resin molded bodies are used for automobile interior parts such as instrument covers, home appliances, OA equipment, personal computers, housings of small portable equipment, touch panel type display surfaces such as mobile phone terminals, and the like.
  • the resin molded body used for such an application is manufactured by molding a molding resin sheet.
  • Patent Document 1 describes a step of attaching a predetermined protective film to at least one surface of a polycarbonate resin laminate having a polycarbonate resin sheet or a polycarbonate resin layer as a base material, a step of shaping by cutting or punching, and a step of shaping while heating.
  • An invention relating to a method for producing a polycarbonate resin molded body including a step of bending is described.
  • Patent Document 1 describes that the polycarbonate resin molding obtained by the above method is used for antiglare products or protective products.
  • the method obtained by hot-bending a polycarbonate resin sheet can apply functionality typified by a hard coat function, a polarization function, etc. to the sheet in advance before the hot-bending process. It is described that it is more productive than performing the same treatment after processing and is preferably used.
  • Patent Document 2 states that a film provided with an ultraviolet (UV) curable hard coat layer is decoratively molded and then cured by UV irradiation. A decorative film to which a hard coat layer is applied by a method is described.
  • UV ultraviolet
  • Patent Document 3 describes a molded product made of a polycarbonate resin produced by an injection press molding method, which is subjected to a hard coat treatment by a dip coat method and has a hardness layer on both surfaces.
  • the present invention provides a method for producing a bent molded product that does not warp and has an excellent appearance.
  • the present inventors have conducted diligent research to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by removing the end portion having a warp, and the present invention has been completed. That is, the present invention is, for example, as follows.
  • the resin sheet has the high hardness resin layer on one surface of the base material layer and a hard coat layer on the other surface of the base material layer.
  • the high hardness resin is The following general formula (1): (In the formula, R 1 is a hydrogen atom or a methyl group, and R 2 is an alkyl group having 1 to 18 carbon atoms.)
  • Resin (B1) which is a copolymer containing an aliphatic vinyl constituent unit (b) represented by.
  • Resin (B2) which is a copolymer containing 6 to 77% by mass of (meth) acrylic acid ester constituent unit, 15 to 71% by mass of styrene constituent unit, and 8 to 23% by mass of unsaturated dicarboxylic acid constituent unit;
  • Resin (B4) which is a copolymer containing 5 to 20% by mass of a styrene constituent unit, 60 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit; And a resin (B5) which is a copolymer containing 50 to 95% by mass of styrene constituent units and 5 to 50% by mass of unsaturated dicarboxylic acid units;
  • the production method according to ⁇ 3> or ⁇ 4> above which comprises at least one selected from the group consisting of.
  • the resin (B3) has the following general formula (6):
  • ⁇ 7> A bent molded product manufactured by the manufacturing method according to any one of ⁇ 1> to ⁇ 6> above.
  • a method for manufacturing a bent molded product that does not warp and has an excellent appearance.
  • the method for producing a bent molded product according to the present invention includes a bending molding step of bending a resin sheet to obtain a bent molded body including an end having a warp, and a removing step of removing the end having the warp. including.
  • FIGS. 1 and 2 show a perspective view and a front view of a bent molded body having warpage at both ends, respectively.
  • the bend-molded article 1 of FIGS. 1 and 2 is obtained by hot-bending a resin sheet (80 mm ⁇ 170 mm, thickness: 2 mm) made of a base material layer of a polycarbonate resin by using a 50 mmR aluminum upper and lower mold. ..
  • the bent molded body 1 has ends 11 and 12 having a warp. As a result, the appearance of the bent molded product is distorted.
  • the end portions 11 and 12 having the warp have the warp over the entire end side.
  • the warped ends 11 and 12 are removed. As a result, it is possible to manufacture a bent molded product that does not warp and has an excellent appearance.
  • the bending molding step includes bending and molding a resin sheet to obtain a bent molded body including an end having a warp.
  • the resin sheet is not particularly limited, but preferably contains a thermoplastic resin that can be bent and molded by heat.
  • thermoplastic resin is not particularly limited, but is not particularly limited, but is a polycarbonate (PC) resin, a polyester resin (polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polyethylene naphthalate (PEN) resin, polybutylene naphthalate (PBN).
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • Resin, etc. Polyethylene resin, Polyurethane resin, Acrylic resin (methacrylic resin, Acrylic resin), Polyethylene resin (Polyethylene (PE) resin, Polyethylene (PP) resin, Polyvinyl chloride (PVC) resin, Polytetrafluoroethylene ( Examples thereof include polyethylene) resins, etc.), polystyrene resins, triacetyl cellulose-based resins, copolymers containing at least one monomer constituting these resins, and the like.
  • PE Polyethylene
  • PP Polyethylene
  • PVC Polyvinyl chloride
  • Polytetrafluoroethylene examples thereof include polyethylene) resins, etc.
  • polystyrene resins triacetyl cellulose-based resins, copolymers containing at least one monomer constituting these resins, and the like.
  • the resin sheet preferably contains a polycarbonate (PC) resin, a polyester resin, an acrylic resin, a polyolefin resin, and a copolymer containing at least one monomer constituting these resins from the viewpoint of high transparency.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • methacrylic resin acrylic resin
  • PVC polyvinyl chloride
  • copolymer containing at least one monomer constituting these resins are more preferable.
  • the above-mentioned thermoplastic resin may be used alone or in combination of two or more.
  • the resin sheet contains a polycarbonate resin
  • the resin sheet contains a polycarbonate resin
  • the resin sheet has a base material layer containing the polycarbonate resin.
  • the resin sheet may further have a high hardness resin layer, a hard coat layer, and the like.
  • the resin sheet when the resin sheet includes a base material layer and a high hardness resin layer, the resin sheet has a two-layer structure (base material) including a base material layer and a high hardness resin layer arranged on the base material layer.
  • Base material including a base material layer and a high hardness resin layer arranged on the base material layer.
  • Layer-high hardness resin layer a first high hardness resin layer, a base material layer arranged on the first high hardness resin layer, and a base material layer arranged on the base material layer. It may have a three-layer structure including a second high-hardness resin layer (first high-hardness resin layer-base material layer-second high-hardness resin layer).
  • the resin sheet when the resin sheet includes a base material layer and a hard coat layer, the resin sheet has a two-layer structure (base material) including a base material layer and a hard coat layer arranged on the base material layer. Layer-hardcourt layer), a first hardcoat layer, a substrate layer arranged on the first hardcoat layer, and a second substrate layer arranged on the substrate layer. It may have a three-layer structure including a hard coat layer (first hard coat layer-base material layer-second hard coat layer).
  • the resin sheet when the resin sheet includes a base material layer, a high hardness resin layer, and a hard coat layer, the base material layer, the high hardness resin layer arranged on the base material layer, and the high hardness. It may have a three-layer structure (base material layer-high hardness resin layer-hard coat layer) including a hard coat layer arranged on the resin layer, or may be arranged on the hard coat layer and the hard coat layer. It may have a three-layer structure (hard coat layer-base material layer-high hardness resin layer) including the base material layer and the high hardness resin layer arranged on the base material layer.
  • the resin sheet includes a first hard coat layer, a base material layer arranged on the first hard coat layer, a high hardness resin layer arranged on the base material layer, and the high hardness resin. It may have a four-layer structure (first hard coat layer-base material layer-high hardness resin layer-second hard coat layer) including a second hard coat layer arranged on the layer, or a first. 1. High hardness resin layer, a base material layer arranged on the first high hardness resin layer, a second high hardness resin layer arranged on the base material layer, and the second high hardness. It may have a four-layer structure (first high-hardness resin layer-base material layer-second high-hardness resin layer-hard coat layer) including a hard coat layer arranged on the resin layer.
  • the resin sheet includes a first hard coat layer, a first high hardness resin layer arranged on the first hard coat layer, and a group arranged on the first high hardness resin layer.
  • the resin sheet preferably has a high hardness resin layer containing a high hardness resin on at least one surface of the base material layer containing the polycarbonate resin, and the high hardness on one surface of the base material layer. It is more preferable to have a resin layer and a hard coat layer on the other surface of the base material layer.
  • hard coat layer-base material layer-high hardness resin layer first high hardness resin layer-base material layer-second high hardness resin layer-hard coat layer, first hard coat layer-base material layer- Having a structure of a high hardness resin layer-a second hard coat layer, a first hard coat layer-a first high hardness resin layer-a base material layer-a second high hardness resin layer-a second hard coat layer.
  • a base material layer-a high hardness resin layer a base material layer-a high hardness resin layer-a hard coat layer, a first high hardness resin layer-a base material layer-a second high hardness resin layer-a hard coat layer. It is more preferable to have a structure of a first hard coat layer-a first high hardness resin layer-a base material layer-a second high hardness resin layer-a second hard coat layer.
  • a further layer may be present between the base material layer and the high hardness resin layer, and between the high hardness resin layer and the hard coat layer.
  • the further layer is not particularly limited, and examples thereof include an adhesive layer and a primer layer.
  • the base material layer contains a polycarbonate resin (a1).
  • the base material layer may further contain other resins, additives and the like.
  • Polycarbonate resin (a1) The polycarbonate resin (a1) has a carbonic acid ester bond in the main chain of the molecule, that is,-[OR-OCO] -unit (where R is an aliphatic group, an aromatic group, or an aliphatic group and aroma. It may contain both of the group groups, and may have a linear structure or a branched structure), but is not particularly limited, but an aromatic polycarbonate resin is preferable. In particular, it is preferable to use a polycarbonate resin containing the structural unit of the following formula (3a).
  • an aromatic polycarbonate resin for example, Iupiron S-2000, Iupiron S-1000, Iupiron E-2000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.
  • Iupiron S-2000, Iupiron S-1000, Iupiron E-2000 manufactured by Mitsubishi Engineering Plastics Co., Ltd.
  • a polycarbonate resin to which a monohydric phenol as represented by the following general formula (3) is added as a terminal terminator has also been used. Also in the present invention, the polycarbonate resin to which the terminal terminator is added can be used as described above.
  • R 5 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms; even if R 6 independently has a hydrogen atom, a halogen atom, and a substituent.
  • the "alkyl group” and the “alkenyl group” may be linear or branched, and may have a substituent.
  • the monohydric phenol represented by the general formula (3) is preferably represented by the following general formula (4).
  • R 5 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
  • the carbon number of R5 in the general formula ( 3 ) or the general formula (4) is within a specific numerical range. Specifically, as the upper limit of the number of carbon atoms of R5 , 36 is preferable, 22 is more preferable, and 18 is particularly preferable. Further, as the lower limit of the number of carbon atoms of R5, 8 is preferable, and 12 is more preferable.
  • the solubility of the monohydric phenol (terminal terminator) in the organic solvent tends to be high, and the polycarbonate resin is manufactured. It is preferable because the productivity of the above is high.
  • the productivity is high and the economy is good in producing the polycarbonate resin.
  • the monovalent phenol is particularly excellent in organic solvent solubility, and can greatly increase the productivity in producing the polycarbonate resin and also improve the economic efficiency.
  • the polycarbonate resin using such a monovalent phenol include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company).
  • the glass transition point of the polycarbonate resin does not become too high, and the polycarbonate resin has suitable thermoformability. preferable.
  • either or both of the parahydroxybenzoic acid hexadecyl ester and the parahydroxybenzoic acid 2-hexyldecyl ester shall be used as the terminal terminator. Is particularly preferable.
  • the weight average molecular weight of the polycarbonate resin (a1) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000, and further preferably 20,000 to 65,000. preferable.
  • the weight average molecular weight of the polycarbonate resin (a1) is 15,000 or more, the impact resistance can be increased, which is preferable.
  • the weight average molecular weight is 75,000 or less, the base material layer can be formed with a small heat source, and the thermal stability can be maintained even when the molding conditions become high temperature, which is preferable.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the Tg of the polycarbonate resin (a1) is preferably 90 to 190 ° C, more preferably 100 to 170 ° C, and even more preferably 110 to 150 ° C.
  • the Tg of the polycarbonate resin (a1) can be controlled by appropriately adjusting the type and combination of the constituent units of the polycarbonate resin (a1), the weight average molecular weight, and the like.
  • the glass transition point is a temperature calculated by the midpoint method measured at a sample of 10 mg and a temperature rise rate of 10 ° C./min using a differential scanning calorimetry device.
  • the polycarbonate resin (a1) contained in the base material layer may be used alone or in combination of two or more.
  • the content of the polycarbonate resin (a1) in the base material layer is preferably 75 to 100% by mass, more preferably 90 to 100% by mass, and 100% by mass with respect to the total mass of the base material layer. % Is particularly preferable. When the content of the polycarbonate resin is 75% or more, the impact resistance can be further improved, which is preferable.
  • Resins include, but are not limited to, polyester resins and the like.
  • the polyester resin preferably contains mainly terephthalic acid as a dicarboxylic acid component, and may contain a dicarboxylic acid component other than terephthalic acid.
  • a polyester resin obtained by polycondensing a glycol component containing 20 to 40 mol% (total 100 mol%) of 1,4-cyclohexanedimethanol with 80 to 60 mol% of ethylene glycol as the main component. ) Is preferable.
  • the other resins may be used alone or in combination of two or more.
  • the content is preferably 0 to 25% by mass, more preferably 0 to 10% by mass, based on the total mass of the base material layer.
  • additives those usually used in the resin sheet can be used. Specifically, such as antioxidants, anticolorants, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers and inorganic fillers. Reinforcement materials and the like can be mentioned. These additives may be used alone or in combination of two or more.
  • the amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and particularly preferably 0 to 5% by mass with respect to the total mass of the base material layer. ..
  • the method of mixing the additive and the resin is not particularly limited, and a method of compounding the entire amount, a method of dry-blending the masterbatch, a method of dry-blending the entire amount, and the like can be used.
  • the thickness of the base material layer is preferably 0.3 to 10 mm, more preferably 0.3 to 5 mm, and even more preferably 0.3 to 3.5 mm.
  • the high-hardness resin layer contains a high-hardness resin.
  • the high hardness resin is a resin having a hardness higher than that of the polycarbonate resin used as a base material, and has a pencil hardness of HB or higher, preferably HB to 3H, more preferably H to 3H, and even more preferably. It means 2H to 3H resin.
  • the pencil hardness of the high-hardness resin layer is the result of evaluation by a pencil scratch hardness test based on JIS K 5600-5-4: 1999.
  • the hardness of the hard coat anti-glare layer is gradually increased at an angle of 45 degrees and a load of 750 g, and the pencil is pressed against the surface, and the hardness of the hardest pencil that does not cause scratches is evaluated as the pencil hardness.
  • High-hardness resin is not particularly limited, but preferably contains at least one selected from the group consisting of resins (B1) to (B5).
  • the resin (B1) has a copolymer weight including a (meth) acrylic acid ester structural unit (a) represented by the general formula (1) and an aliphatic vinyl structural unit (b) represented by the general formula (2). It is a coalescence. At this time, the resin (B1) may further have other structural units.
  • (meth) acrylic means methacrylic and / or acrylic.
  • R 1 is a hydrogen atom or a methyl group, preferably a methyl group.
  • R 2 is an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group, a cyclohexyl group and an isobornyl group. Of these, R 2 is preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is a (meth) acrylic acid ester structural unit, and R 1 is a methyl group.
  • the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is a methyl methacrylate structural unit.
  • the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) may contain only one type or two or more types in the resin (B1).
  • R 3 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • R4 is a cyclohexyl group which may be substituted with a hydrocarbon group having 1 to 4 carbon atoms, and is preferably a cyclohexyl group having no substituent.
  • the aliphatic vinyl structural unit (b) represented by the general formula (2) is a vinyl cyclohexane structural unit.
  • the aliphatic vinyl constituent unit (b) represented by the general formula (2) may contain only one type or two or more types in the resin (B1).
  • hydrocarbon group may be linear, branched or cyclic, or may have a substituent.
  • the other structural unit is not particularly limited, but after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, the aromatic double bond derived from the aromatic vinyl monomer is hydrogenated to form the resin (B1).
  • the aromatic double bond derived from the aromatic vinyl monomer is hydrogenated to form the resin (B1).
  • Examples thereof include structural units derived from aromatic vinyl monomers containing non-hydrogenated aromatic double bonds, which are generated in the process of producing the above.
  • Specific other structural units include styrene structural units.
  • the other constituent units may contain only one type in the resin (B1) or may contain two or more types.
  • the total content of the (meth) acrylic acid ester constituent unit (a) and the aliphatic vinyl constituent unit (b) is preferably 90 to 100 mol% with respect to all the constituent units of the resin (B1), and more. It is preferably 95 to 100 mol%, and particularly preferably 98 to 100 mol%.
  • the content of the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is preferably 65 to 80 mol% with respect to all the structural units of the resin (B1), more preferably. It is 70 to 80 mol%.
  • the ratio of the (meth) acrylic acid ester structural unit (a) is 65 mol% or more, it is preferable because a resin layer having excellent adhesion to the base material layer and surface hardness can be obtained.
  • the ratio of the (meth) acrylic acid ester structural unit (a) is 80 mol% or less, warpage due to water absorption of the resin sheet is unlikely to occur, which is preferable.
  • the content of the aliphatic vinyl constituent unit (b) represented by the general formula (2) is preferably 20 to 35 mol%, more preferably 20 with respect to all the constituent units of the resin (B1). ⁇ 30 mol%.
  • the content of the aliphatic vinyl constituent unit (b) is 20 mol% or more, warping under high temperature and high humidity can be prevented, which is preferable.
  • the content of the aliphatic vinyl constituent unit (b) is 35 mol% or less, peeling at the interface with the substrate can be prevented, which is preferable.
  • the content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and 2 mol% or less with respect to all the constituent units of the resin (B1). Is particularly preferred.
  • the "copolymer” may have any structure of a random copolymer, a block copolymer, and an alternate copolymer.
  • the weight average molecular weight of the resin (B1) is not particularly limited, but is preferably 50,000 to 400,000, more preferably 70,000 to 300,000 from the viewpoint of strength and moldability. ..
  • the glass transition point of the resin (B1) is preferably 110 to 140 ° C, more preferably 110 to 135 ° C, and particularly preferably 110 to 130 ° C.
  • the resin sheet is less likely to be deformed or cracked in a thermal environment or a moist thermal environment, which is preferable.
  • the temperature is 140 ° C. or lower, it is preferable because it is excellent in processability when it is formed by continuous heat shaping by a mirror surface roll or a shaping roll or by batch type heat shaping by a mirror surface mold or a shaping die.
  • the resin (B1) examples include Optimus 7500 and 6000 (manufactured by Mitsubishi Gas Chemical Company).
  • the above-mentioned resin (B1) may be used alone or in combination of two or more.
  • the structural unit represented by the general formula (1) (R 1 and R 2 are both methyl groups; methyl methacrylate) is 75 mol%, and the structural unit represented by the general formula (2) ( A polycarbonate resin (B1) which is a copolymer containing 25 mol% of R 3 is a hydrogen atom and R 4 is a cyclohexyl group; vinyl cyclohexane) is used, and the polycarbonate resin (a1) contains a constituent unit of the general formula (3a). It is particularly preferable to use a resin and use a monovalent phenol represented by the general formula ( 4 ) (R5 has 8 to 22 carbon atoms) as a terminal terminator.
  • the method for producing the resin (B1) is not particularly limited, but after polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, an aromatic derived from the aromatic vinyl monomer is used. Those obtained by hydrogenating the double bond are suitable.
  • the aromatic vinyl monomer is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, p-hydroxystyrene, alkoxystyrene, chlorostyrene, and derivatives thereof. Of these, the aromatic vinyl monomer is preferably styrene.
  • a known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, and for example, it can be produced by a bulk polymerization method, a solution polymerization method, or the like.
  • the bulk polymerization method is carried out by continuously supplying a monomer composition containing the above-mentioned monomer and a polymerization initiator to a complete mixing tank and continuously polymerizing at 100 to 180 ° C.
  • the monomer composition may contain a chain transfer agent, if necessary.
  • the polymerization initiator is not particularly limited, but is t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di (t-).
  • the chain transfer agent is not particularly limited, and examples thereof include ⁇ -methylstyrene dimer.
  • Examples of the solvent used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane; ester solvents such as ethyl acetate and methyl isobutyrate, and ketone solvents such as acetone and methyl ethyl ketone; tetrahydrofuran, Ether-based solvents such as dioxane; alcohol-based solvents such as methanol and isopropanol can be mentioned. These solvents may be used alone or in combination of two or more.
  • hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane
  • ester solvents such as ethyl acetate and methyl isobutyrate
  • ketone solvents such as acetone and methyl ethyl ketone
  • tetrahydrofuran Ether-based solvents such as dio
  • the solvent used for the hydrogenation reaction to hydrogenate the aromatic double bond derived from the aromatic vinyl monomer after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer is the same as the above polymerization solvent. May be different.
  • hydrocarbon solvents such as cyclohexane and methylcyclohexane
  • ester solvents such as ethyl acetate and methyl isobutyrate
  • ketone solvents such as acetone and methyl ethyl ketone
  • ether solvents such as tetrahydrofuran and dioxane
  • alcohol solvents such as methanol and isopropanol. Examples include solvents.
  • the method of hydrogenation is not particularly limited, and a known method can be used. For example, it can be carried out by a batch method or a continuous flow method at a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. When the reaction temperature is 60 ° C. or higher, the reaction time does not take too long, which is preferable. On the other hand, when the reaction temperature is 250 ° C. or lower, side reactions such as cleavage of molecular chains and hydrogenation of ester sites do not occur or hardly occur, which is preferable.
  • Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium, or oxides, salts, or complex compounds of these metals, and carbon, alumina, silica, silica-alumina, and diatomaceous earth. Examples thereof include a solid catalyst carried on a porous carrier such as.
  • the unhydrogenation rate of the aromatic double bond contained in the structural unit derived from the aromatic vinyl monomer is preferably less than 30%, more preferably less than 10%, and less than 5%. Is even more preferable.
  • the dehydrogenation rate is less than 30%, a resin having excellent transparency can be obtained, which is preferable.
  • the structural unit of the unhydrogenated portion can be another structural unit in the resin (B1).
  • the resin (B2) is a copolymer containing 6 to 77% by mass of the (meth) acrylic acid ester constituent unit, 15 to 71% by mass of the styrene constituent unit, and 8 to 23% by mass of the unsaturated dicarboxylic acid constituent unit. .. At this time, the resin (B2) may further have other structural units.
  • the (meth) acrylic acid ester monomer constituting the (meth) acrylic acid ester structural unit in the resin (B2) is not particularly limited, but is acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate. , 2Ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and the like.
  • the (meth) acrylic acid ester monomer is preferably methyl methacrylate.
  • the above-mentioned (meth) acrylic acid ester monomer may be contained alone as a (meth) acrylic acid ester constituent unit, or may be contained in combination of two or more kinds.
  • the content of the (meth) acrylic acid ester constituent unit is 6 to 77% by mass, preferably 20 to 70% by mass, based on the total mass of the resin (B2).
  • the styrene constituent unit in the resin (B2) is not particularly limited, and any known styrene-based monomer can be used.
  • the styrene monomer include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like from the viewpoint of availability.
  • the styrene monomer is preferably styrene from the viewpoint of compatibility.
  • the above-mentioned styrene monomer may be contained alone as a styrene constituent unit, or may be contained in combination of two or more kinds.
  • the content of the styrene constituent unit is 15 to 71% by mass, preferably 20 to 66% by mass, based on the total mass of the resin (B2).
  • the unsaturated dicarboxylic acid anhydride monomer constituting the unsaturated dicarboxylic acid constituent unit in the resin (B2) is not particularly limited, and examples thereof include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid. Will be. Of these, the unsaturated dicarboxylic acid anhydride monomer is preferably maleic anhydride from the viewpoint of compatibility with the styrene-based monomer.
  • the unsaturated dicarboxylic acid anhydride monomer described above may be contained alone as an unsaturated dicarboxylic acid constituent unit, or may be contained in combination of two or more.
  • the content of the unsaturated dicarboxylic acid constituent unit is 8 to 23% by mass, preferably 10 to 23% by mass, based on the total mass of the resin (B2).
  • Examples of other structural units in the resin (B2) include N-phenylmaleimide and the like.
  • the content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and more preferably 2 mol% or less, based on all the constituent units of the resin (B2). Especially preferable.
  • the total content of the above-mentioned (meth) acrylic acid ester constituent unit, styrene constituent unit, and unsaturated dicarboxylic acid constituent unit is preferably 90 to 100 mol% with respect to all the constituent units of the resin (B2). It is more preferably 95 to 100 mol%, and particularly preferably 98 to 100 mol%.
  • the weight average molecular weight of the resin (B2) is not particularly limited, but is preferably 50,000 to 300,000, more preferably 80,000 to 200,000.
  • the glass transition point of the resin (B2) is preferably 90 to 150 ° C, more preferably 100 to 150 ° C, and particularly preferably 115 to 150 ° C.
  • the resin (B2) include Regisphi R100, R200, R310 (manufactured by Denka), Delpet 980N (manufactured by Asahi Kasei), hp55 (manufactured by Daicel Evonik) and the like.
  • the above-mentioned resin (B2) may be used alone or in combination of two or more.
  • the resin (B2) is used as the high hardness resin
  • the polycarbonate resin containing the structural unit of the general formula (3a) as the polycarbonate resin (a1).
  • a monovalent phenol represented by the general formula ( 4 ) (R5 has 8 to 22 carbon atoms) as the terminal terminator.
  • Examples of such a polycarbonate resin include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company) and Iupiron E-2000 (manufactured by Mitsubishi Engineering Plastics).
  • a copolymer (R100, R200, or R100, R200, or) composed of methyl methacrylate constituent unit 6 to 26% by mass, styrene constituent unit 55 to 21% by mass, and maleic anhydride constituent unit 15 to 23% by mass.
  • the resin (B2) of R310; manufactured by Denka) it is preferable to use the Iupizeta T-1380 as the polycarbonate resin (a1).
  • the method for producing the resin (B2) is not particularly limited, and examples thereof include a massive polymerization method and a solution polymerization method.
  • the resin (B3) is a polymer containing the structural unit (c) represented by the general formula (5). At this time, it is preferable that the polymer further contains the structural unit (d) represented by the general formula (6). Further, the resin (B3) may further contain other structural units.
  • the content of the structural unit (c) represented by the general formula (5) is preferably 50 to 100 mol%, preferably 60 to 100 mol%, based on all the structural units of the resin (B3). Is more preferable, and 70 to 100 mol% is particularly preferable.
  • the content of the structural unit (d) represented by the general formula (6) is preferably 0 to 50 mol%, preferably 0 to 40 mol%, based on all the structural units of the resin (B3). Is more preferable, and 0 to 30 mol% is particularly preferable.
  • Examples of the other structural unit in the resin (B3) include a structural unit represented by the following formula (3a).
  • the content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and more preferably 2 mol% or less, based on all the constituent units of the resin (B3). Especially preferable.
  • the total content of the constituent unit (c) and the constituent unit (d) is preferably 90 to 100 mol%, more preferably 95 to 100 mol%, based on the total constituent units of the resin (B3). It is preferably 98 to 100 mol%, more preferably 98 to 100 mol%.
  • the weight average molecular weight of the resin (B3) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000, and particularly preferably 25,000 to 65,000.
  • the glass transition point of the resin (B3) is preferably 105 to 150 ° C, more preferably 110 to 140 ° C, and particularly preferably 110 to 135 ° C.
  • the resin (B3) examples include Iupiron KH3410UR, KH3520UR, KS3410UR (manufactured by Mitsubishi Engineering Plastics Co., Ltd.) and the like.
  • the above-mentioned resin (B3) may be used alone or in combination of two or more.
  • the resin (B3) is used as the high hardness resin
  • the polycarbonate resin containing the structural unit of the general formula (3a) as the polycarbonate resin (a1).
  • a monovalent phenol represented by the general formula ( 4 ) (R5 has 8 to 22 carbon atoms) as the terminal terminator.
  • Examples of such a polycarbonate resin include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company).
  • Iupiron KS3410UR manufactured by Mitsubishi Engineering Plastics
  • Iupizeta T-1380 manufactured by Mitsubishi Gas Chemical Company
  • the resin (B3) is used as the high hardness resin, it is preferable to include a resin other than the resins (B1) to (B6).
  • a resin other than the resins (B1) to (B6) a resin containing the constituent unit (d) without containing the constituent unit (c) is preferable, and a resin consisting only of the constituent unit (d) is more preferable.
  • aromatic polycarbonate resins for example, Iupylon S-2000, Iupylon S-1000, Iupylon E-2000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.
  • aromatic polycarbonate resins for example, Iupylon S-2000, Iupylon S-1000, Iupylon E-2000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.
  • the resin (B3) is preferably 45% by mass or more, more preferably 55% by mass, based on the total resin contained in the high hardness resin layer. It is included in the above ratio.
  • the method for producing the resin (B3) is not particularly limited, but the resin (B3) can be produced by the same method as the above-mentioned method for producing the polycarbonate resin (a1) except that bisphenol C is used as the monomer.
  • the resin (B4) is a copolymer containing 5 to 20% by mass of a styrene constituent unit, 60 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit. be.
  • the resin (B4) may further contain other structural units.
  • the styrene constituent unit in the resin (B4) is not particularly limited, and any known styrene-based monomer can be used.
  • the styrene monomer include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like from the viewpoint of availability.
  • the styrene monomer is preferably styrene from the viewpoint of compatibility.
  • the above-mentioned styrene monomer may be contained alone as a styrene constituent unit, or may be contained in combination of two or more kinds.
  • the content of the styrene constituent unit is 5 to 20% by mass, preferably 5 to 15% by mass, and more preferably 5 to 10% by mass with respect to the total mass of the resin (B4).
  • the (meth) acrylic acid ester monomer constituting the (meth) acrylic acid ester structural unit in the resin (B4) is not particularly limited, but is acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate. , 2Ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and the like.
  • the (meth) acrylic acid ester monomer is preferably methyl methacrylate.
  • the above-mentioned (meth) acrylic acid ester monomer may be contained alone as a (meth) acrylic acid ester constituent unit, or may be contained in combination of two or more kinds.
  • the content of the (meth) acrylic acid ester constituent unit is 60 to 90% by mass, preferably 70 to 90% by mass, and preferably 80 to 90% by mass with respect to the total mass of the resin (B4). Is more preferable.
  • the N-substituted maleimide constituent unit in the resin (B4) includes N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, N-methoxyphenylmaleimide, and N.
  • Examples thereof include structural units derived from N-arylmaleimide such as -carboxyphenylmaleimide, N-nitrophenylmaleimide, and N-tribromophenylmaleimide. Of these, a structural unit derived from N-phenylmaleimide is preferable from the viewpoint of compatibility with the acrylic resin.
  • the structural unit derived from the above-mentioned N-substituted maleimide may be contained alone as the N-substituted maleimide structural unit, or may be contained in combination of two or more.
  • the content of the N-substituted maleimide constituent unit is 5 to 20% by mass, preferably 5 to 15% by mass, and 5 to 10% by mass with respect to the total mass of the resin (B4). Is more preferable.
  • Examples of the other structural unit include a (meth) acrylic acid ester structural unit represented by the general formula (1), an aliphatic vinyl structural unit represented by the general formula (2), and the like.
  • the general formula (1) and the general formula (2) are the same as those of the resin (B1) described above.
  • the content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and more preferably 2 mol% or less, based on all the constituent units of the resin (B4). Especially preferable.
  • the total content of the styrene constituent unit, the (meth) acrylic acid ester constituent unit, and the N-substituted maleimide constituent unit is preferably 90 to 100 mol% with respect to the total constituent unit of the resin (B4). It is more preferably 95 to 100 mol%, and even more preferably 98 to 100 mol%.
  • the weight average molecular weight of the resin (B4) is preferably 50,000 to 250,000, more preferably 100,000 to 200,000.
  • the glass transition point of the resin (B4) is preferably 110 to 150 ° C, more preferably 115 to 140 ° C, and particularly preferably 115 to 135 ° C.
  • the resin (B4) examples include Delpet PM120N (manufactured by Asahi Kasei Corporation).
  • the above-mentioned resin (B4) may be used alone or in combination of two or more.
  • the resin (B4) is used as the high hardness resin, it is preferable to use the polycarbonate resin containing the structural unit of the general formula (3a) as the polycarbonate resin (a1). Further, it is particularly preferable to use a monovalent phenol represented by the general formula ( 4 ) (R5 has 8 to 22 carbon atoms) as the terminal terminator.
  • a polycarbonate resin include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company).
  • the resin (B4) Delpet PM-120N composed of 7% styrene constituent unit, 86% (meth) acrylic acid ester constituent unit, and 7% N-substituted maleimide constituent unit is used, and the polycarbonate resin (a1) is used. It is preferable to use Iupizeta T-1380 as the above.
  • the method for producing the resin (B4) is not particularly limited, but it can be produced by solution polymerization, bulk polymerization, or the like.
  • the resin (B5) is a copolymer containing 50 to 95% by mass of a styrene constituent unit and 5 to 50% by mass of an unsaturated dicarboxylic acid constituent unit. Further, the resin (B5) may further contain other structural units.
  • the styrene constituent unit the styrene-based monomer described in the resin (B4) can be used.
  • these styrene constituent units may be used alone or in combination of two or more.
  • the content of the styrene constituent unit is preferably 50 to 95% by mass, more preferably 60 to 90% by mass, and 65 to 87% by mass with respect to the total mass of the resin (B5). Is even more preferable.
  • Examples of the unsaturated dicarboxylic acid anhydride monomer constituting the unsaturated dicarboxylic acid constituent unit include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid. Of these, maleic anhydride is preferable from the viewpoint of compatibility with the styrene-based monomer.
  • the unsaturated dicarboxylic acid anhydride monomer described above may be used alone or in combination of two or more.
  • the content of the unsaturated dicarboxylic acid constituent unit is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and 13 to 35% by mass with respect to the total mass of the resin (B5). Is more preferable.
  • Examples of the other structural units include a structural unit derived from the following general formula (1), a structural unit derived from the general formula (2), and the like.
  • R 1 and R 2 are the same as above.
  • R 3 and R 4 are the same as above.
  • the content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and more preferably 2 mol% or less, based on all the constituent units of the resin (B5). More preferred.
  • the total content of the styrene constituent unit and the unsaturated dicarboxylic acid constituent unit is preferably 10 to 90 mol%, more preferably 20 to 85 mol%, based on all the constituent units of the resin (B5). , 30-80 mol%, more preferably.
  • the weight average molecular weight of the resin (B5) is preferably 50,000 to 250,000, more preferably 100,000 to 200,000.
  • the glass transition point of the resin (B5) is preferably 110 to 150 ° C, more preferably 115 to 140 ° C, and particularly preferably 115 to 137 ° C.
  • resin (B5) examples include XIBOND140 and XIBOND160 (manufactured by Polyscope).
  • the above-mentioned resin (B5) may be used alone or in combination of two or more.
  • the resin (B5) is used as the high hardness resin
  • the polycarbonate resin containing the structural unit of the general formula (3a) is used as the polycarbonate resin (a1).
  • a monovalent phenol represented by the general formula ( 4 ) (R5 has 8 to 22 carbon atoms) is particularly preferable.
  • Examples of such a polycarbonate resin include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company).
  • the method for producing the resin (B5) is not particularly limited, but it can be produced by solution polymerization, bulk polymerization, or the like.
  • At least one selected from the group consisting of the above-mentioned resins (B1) to (B6) may be contained as an alloy.
  • alloys are not particularly limited, but are two types of resin (B1) alloy, two types of resin (B2) alloy, two types of resin (B3) alloy, and two types of resin (B4). Alloy, alloy of two kinds of resin (B5), alloy of resin (B1) and resin (B2), alloy of resin (B2) and resin (B4), resin (B2) and other high-hardness resin Examples thereof include an alloy, an alloy of a resin (B2) and an acrylic resin, and an alloy of a resin (B5) and an acrylic resin.
  • Examples of the other high-hardness resin include methyl methacrylate-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, and the like.
  • acrylic resin examples include polymethyl methacrylate, a copolymer of methyl methacrylate and methyl acrylate, or ethyl acrylate.
  • commercially available products include Acrypet (manufactured by Mitsubishi Chemical Corporation), Sumipex (manufactured by Sumitomo Chemical Corporation), Parapet (manufactured by Kuraray Co., Ltd.) and the like.
  • alloys of resins having a higher glass transition temperature When using two types of resin alloys, it is preferable to use alloys of resins having a higher glass transition temperature.
  • the above alloy may be used alone or in combination of two or more.
  • the alloy manufacturing method is not particularly limited, and examples thereof include a method of melt-kneading at a cylinder temperature of 240 ° C. using a twin-screw extruder having a screw diameter of 26 mm, extruding into strands, and pelletizing with a pelletizer.
  • the high-hardness resin and alloy contained in the high-hardness resin layer may be one type or two or more types, and when two or more types are selected from the resins (B1) to (B5) and alloys, It can be selected from the same or different categories, and may further contain high hardness resins other than the resins (B1) to (B5).
  • the content of the high-hardness resin in the high-hardness resin layer is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and 100% by mass with respect to the total mass of the high-hardness resin layer. % Is particularly preferable.
  • the high hardness resin layer may contain a resin other than the high hardness resin.
  • the other resin include methyl methacrylate-styrene copolymer, polymethyl methacrylate, polystyrene, polycarbonate, cycloolefin (co) polymer resin, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, and various other resins. Examples include polymers. These other resins may be used alone or in combination of two or more.
  • the content of the other resin is preferably 35% by mass or less, more preferably 25% by mass or less, and particularly preferably 10% by mass or less, based on the total mass of the high hardness resin layer. ..
  • the high hardness resin layer may contain additives and the like. As the additive, those described above can be used.
  • the thickness of the high hardness resin layer is preferably 10 to 250 ⁇ m, more preferably 30 to 200 ⁇ m, and particularly preferably 60 to 150 ⁇ m.
  • the thickness of the high hardness resin layer is 10 ⁇ m or more, the surface hardness is high, which is preferable.
  • the thickness of the high hardness resin layer is 250 ⁇ m or less, the impact resistance is high, which is preferable.
  • Laminating the high-hardness resin layer on the base material layer As described above, a further layer may exist between the base material layer and the high-hardness resin layer, but here, the high-hardness resin layer is placed on the base material layer. The case of laminating the above will be described.
  • the method of laminating the high-hardness resin layer on the base material layer is not particularly limited, and is a method of superimposing the individually formed base material layer and the high-hardness resin layer and heat-pressing both of them; the individually formed base.
  • the coextrusion method is not particularly limited.
  • a high-hardness resin layer is placed on one side of a base material layer with a feed block, extruded into a sheet shape with a T-die, and then cooled while passing through a molding roll to form a desired laminate.
  • a high-hardness resin layer is arranged on one side of the base material layer in the multi-manifold die, extruded into a sheet shape, and then cooled while passing through a molding roll to form a desired laminated body. ..
  • the above method can be used in the same manner when the high hardness resin layer is laminated on a layer other than the base material layer.
  • the total thickness of the base material layer and the high hardness resin layer is preferably 0.5 to 3.5 mm, more preferably 0.5 to 3.0 mm, and even more preferably 1.2 to 3.0 mm.
  • the total thickness is 0.5 mm or more, the rigidity of the sheet can be maintained, which is preferable.
  • the total thickness is 3.5 mm or less, it is preferable because it is possible to prevent the sensitivity of the touch sensor from deteriorating when the touch panel is installed under the sheet.
  • the ratio of the thickness of the base material layer to the total thickness of the base material layer and the high hardness resin layer is preferably 75% to 99%, more preferably 80 to 99%, and particularly preferably 85 to 99%. be. Within the above range, both hardness and impact resistance can be achieved.
  • Hardcoat layer The hardcoat layer is not particularly limited, but is preferably produced by using an acrylic hardcoat. At this time, it is more preferable to treat the hard coat layer with anti-glare treatment.
  • acrylic hard coat means a coating film which formed a crosslinked structure by polymerizing a monomer or oligomer or a prepolymer containing a (meth) acryloyl group as a polymerization group.
  • the composition of the acrylic hard coat preferably contains a (meth) acrylic monomer, a (meth) acrylic oligomer, and a surface modifier.
  • the acrylic hard coat may further contain a photopolymerization initiator.
  • the photopolymerization initiator refers to a photoradical generator.
  • the content of the (meth) acrylic monomer is preferably 2 to 98% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. It is more preferably to 50% by mass, and even more preferably 20 to 40% by mass.
  • the content of the (meth) acrylic oligomer is preferably 2 to 98% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. , 50 to 94% by mass, more preferably 60 to 78% by mass.
  • the content of the surface modifier is preferably 0 to 15% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. It is more preferably to 10% by mass, and even more preferably 2 to 5% by mass.
  • the content of the photopolymerizer is 0. With respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. It is preferably 001 to 7 parts by mass, more preferably 0.01 to 5 parts by mass, and even more preferably 0.1 to 3 parts by mass.
  • the (meth) acrylic monomer can be used as long as the (meth) acryloyl group is present as a functional group in the molecule.
  • Specific examples thereof include monofunctional monomers, bifunctional monomers, and trifunctional or higher functional monomers.
  • Examples of the monofunctional monomer include (meth) acrylic acid and (meth) acrylic acid ester.
  • bifunctional and / or trifunctional or higher (meth) acrylic monomer examples include diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate.
  • 1,6-Hexanediol di (meth) acrylate bisphenol A diglycidyl ether di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl glycol diacrylate hydroxypivalate, neopentyl glycol di (meth) acrylate, 1,4-Butanediol diacrylate, 1,3-butylene glycol di (meth) acrylate, dicyclopentanyldi (meth) acrylate, polyethylene glycol diacrylate, 1,4-butanediol oligo acrylate, neopentyl glycol oligo acrylate , 1,6-hexanediol oligo acrylate, trimethylol propanetri (meth) acrylate, trimethylol propane ethoxytri (meth) acrylate, trimethylol propanepropoxytri (meth) acrylate, pentaerythritol
  • the hard coat layer may contain one type or two or more types of (meth) acrylic monomers.
  • (Meta) Acrylic Oligomer As the (meth) acrylic oligomer, a bifunctional or higher functional urethane (meth) acrylate oligomer (hereinafter, also referred to as a polyfunctional urethane (meth) acrylate oligomer) or a bifunctional or higher polyfunctional polyester (hereinafter, also referred to as a polyfunctional urethane (meth) acrylate oligomer).
  • a bifunctional or higher functional urethane (meth) acrylate oligomer hereinafter, also referred to as a polyfunctional urethane (meth) acrylate oligomer
  • a bifunctional or higher polyfunctional polyester hereinafter, also referred to as a polyfunctional urethane (meth) acrylate oligomer
  • Examples thereof include a polyfunctional polyester (meth) acrylate oligomer (hereinafter, also referred to as a polyfunctional polyester (meth) acrylate oligomer), a bifunctional or higher functional epoxy (meth) acrylate oligomer (hereinafter, also referred to as a polyfunctional epoxy (meth) acrylate oligomer), and the like.
  • a polyfunctional polyester (meth) acrylate oligomer hereinafter, also referred to as a polyfunctional polyester (meth) acrylate oligomer
  • a bifunctional or higher functional epoxy (meth) acrylate oligomer hereinafter, also referred to as a polyfunctional epoxy (meth) acrylate oligomer
  • polyfunctional urethane (meth) acrylate oligomer a urethanization reaction product of a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule and a polyisocyanate; polyols are poly.
  • examples thereof include a urethanization reaction product of an isocyanate compound obtained by reacting with isocyanate and a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule.
  • Examples of the (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule used in the urethanization reaction include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • 2-Hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycerindi (meth) acrylate, trimerol propandi (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta Examples include (meth) acrylate.
  • the polyisocyanate used in the urethanization reaction includes hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and diisocyanate obtained by hydrogenating aromatic isocyanates among these diisocyanates.
  • diisocyanate such as hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate
  • di or tri polyisocyanate such as triphenylmethane triisocyanate, dimethylene triphenyl triisocyanate, or polyisocyanate obtained by increasing the amount of diisocyanate.
  • polyols used in the urethanization reaction in addition to aromatic, aliphatic and alicyclic polyols, polyester polyols, polyether polyols and the like are generally used.
  • aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, ethylene glycol, propylene glycol, trimethylolethane, trimethylolpropane, dimethylolheptan, and di.
  • examples thereof include trimethylolpropionic acid, dimethylolbutyrian acid, glycerin, hydrogenated bisphenol A and the like.
  • polyester polyol examples include those obtained by a dehydration condensation reaction between the above-mentioned polyols and a polycarboxylic acid.
  • polycarboxylic acid examples include succinic acid, adipic acid, maleic acid, trimellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrous.
  • polyether polyol examples include polyalkylene glycols, the above-mentioned polyols, or polyoxyalkylene-modified polyols obtained by reacting phenols with alkylene oxides.
  • the polyfunctional polyester (meth) acrylate oligomer is obtained by a dehydration condensation reaction using (meth) acrylic acid, a polycarboxylic acid and a polyol.
  • the polycarboxylic acid used in the dehydration condensation reaction include succinic acid, adipic acid, maleic acid, itaconic acid, trimellitic acid, pyromellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrous.
  • the polyols used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimethylolheptan, dimethylolpropionic acid, and dimethylol.
  • Examples thereof include butyionic acid, trimethylolpropane, trimethylolpropane, pentaerythritol, and dipentaerythritol.
  • the polyfunctional epoxy (meth) acrylate oligomer is obtained by an addition reaction between polyglycidyl ether and (meth) acrylic acid.
  • the polyglycidyl ether include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
  • the hard coat layer may contain one type or two or more types of (meth) acrylic oligomers.
  • Surface modifiers change the surface performance of hardcourt layers such as leveling agents, antistatic agents, surfactants, water and oil repellents, inorganic particles, and organic particles.
  • leveling agent examples include polyether-modified polyalkylsiloxane, polyether-modified siloxane, polyester-modified hydroxyl group-containing polyalkylsiloxane, polyether-modified polydimethylsiloxane having an alkyl group, modified polyether, silicon-modified acrylic and the like. ..
  • antistatic agent examples include glycerin fatty acid ester monoglyceride, glycerin fatty acid ester organic acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, cationic surfactant, and anionic surfactant.
  • surfactant and the water- and oil-repellent agent examples include fluorine-containing surfactants, lipophilic group-containing oligomers, fluorine-containing groups, hydrophilic groups, lipophilic groups, UV-reactive group-containing oligomers, and other fluorine-containing surfactants.
  • fluorine-containing surfactants examples include activators and water and oil repellents.
  • examples of the inorganic particles include silica particles, alumina particles, zirconia particles, silicon particles, silver particles, and glass particles.
  • organic particles examples include acrylic particles and silicon particles.
  • the hard coat layer may contain one type or two or more types of surface modifiers.
  • Photopolymerization Initiator examples include a monofunctional photopolymerization initiator. Specifically, 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone [Darocure 2959: manufactured by Merck]; ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone [Darocure 1173: Merck].
  • Acetphenone-based initiators such as methoxyacetophenone, 2,2'-dimethoxy-2-phenylacetophenone [Irgacure-651], 1-hydroxy-cyclohexylphenylketone; benzoin ether-based initiators such as benzoin ethyl ether and benzoin isopropyl ether started.
  • Agents In addition, halogenated ketones, acylphosphinoxides, acylphosphonates and the like can be exemplified.
  • These photopolymerization initiators may be used alone or in combination of two or more.
  • the method of forming the hard coat layer is not particularly limited, but for example, a hard coat liquid is applied on a layer located under the hard coat layer (for example, a high hardness resin layer) and then photopolymerized.
  • a hard coat liquid is applied on a layer located under the hard coat layer (for example, a high hardness resin layer) and then photopolymerized.
  • the method of applying the hard coat liquid (polymerizable composition) is not particularly limited, and a known method can be used. For example, spin coating method, dip method, spray method, slide coating method, bar coating method, roll coating method, gravure coating method, meniscus coating method, flexographic printing method, screen printing method, beat coating method, handling method and the like can be mentioned. ..
  • a lamp having a light emission distribution with a light wavelength of 420 nm or less is used.
  • Examples thereof include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, and the like.
  • high-pressure mercury lamps or metal halide lamps efficiently emit light in the active wavelength region of the initiator, and heat short-wavelength light or reaction compositions that reduce the viscoelastic properties of the obtained polymer by cross-linking. It is preferable because it does not emit a large amount of long-wavelength light that causes evaporation.
  • the irradiation intensity of the lamp is a factor that influences the degree of polymerization of the obtained polymer, and is appropriately controlled for each performance of the target product.
  • the illuminance is preferably in the range of 0.1 to 300 mW / cm 2 .
  • the photopolymerization reaction is inhibited by oxygen in the air or oxygen dissolved in the reactive composition. Therefore, it is desirable to carry out light irradiation using a method that can eliminate the reaction inhibition due to oxygen.
  • One such method is to cover the reactive composition with a film made of polyethylene terephthalate or Teflon to cut off contact with oxygen and irradiate the reactive composition with light through the film. Further, the composition may be irradiated with light through a light-transmitting window in an inert atmosphere in which oxygen is replaced with an inert gas such as nitrogen gas or carbon dioxide gas.
  • the air velocity of the inert gas is preferably 1 m / sec or less as a relative velocity with respect to the laminate coated with the hard coat liquid moving under the atmosphere of the inert gas. It is more preferably 0.1 m / sec or less.
  • the coated surface may be pretreated for the purpose of improving the adhesion of the hard coat layer.
  • Known treatment examples include a sandblast method, a solvent treatment method, a corona discharge treatment method, a chromic acid treatment method, a flame treatment method, a hot air treatment method, an ozone treatment method, an ultraviolet treatment method, and a primer treatment method using a resin composition. Can be mentioned.
  • the method of anti-glare treatment is not particularly limited, and examples thereof include a method using an anti-glare type.
  • a high-hardness resin layer, a coating film obtained by applying a reactive composition, and an anti-glare type are laminated in this order.
  • a method of photopolymerizing the reactive composition to demold the antiglare type can be mentioned.
  • the photopolymer (hardcoat layer) of the reactive composition has a shape that reflects the rough surface of the antiglare type on the contact surface with the antiglare type.
  • the antiglare type material is not particularly limited as long as it transmits UV light, and glass, a transparent resin, or the like is used.
  • anti-glare treatment examples include a method of adding particles to the reactive composition, a method of treating the surface of the obtained hard coat layer, and the like.
  • the degree of anti-glare treatment of the hard coat layer can be adjusted by controlling the type of anti-glare type used (surface haze, thickness, etc.), the amount of particles to be added, and the like.
  • the hard coat layer may be further modified.
  • any one or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment can be applied.
  • These treatment methods are not particularly limited, and known methods can be used.
  • a method of applying a reflection-reducing paint, a method of depositing a dielectric thin film, a method of applying an antistatic paint, and the like can be mentioned.
  • the film thickness of the hardcoat layer is preferably 1 to 40 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the film thickness of the hard coat layer can be measured by observing the cross section with a microscope or the like and actually measuring the film thickness from the coating film interface to the surface.
  • the surface roughness (Ra) of the hard coat layer is preferably 0.01 ⁇ m or more, more preferably 0.01 to 0.5 ⁇ m, and even more preferably 0.02 to 0.3 ⁇ m.
  • the surface roughness (Ra) of the hard coat layer is 0.01 ⁇ m or more, it is preferable because external light can be scattered by the uneven shape of the surface to prevent deterioration of visibility due to reflection of external light and reflection of an image.
  • the surface roughness (Ra) of the hard coat layer adopts the value obtained by calculating the center line average roughness (Ra) by the method specified in JIS-B-0601-1994.
  • the bending molding method is not particularly limited, but a method in which the resin sheet is heated to soften it and then bent is preferable.
  • the bending molding includes linear bending, R bending, hot press molding and the like.
  • the heating method is not particularly limited, and examples thereof include a pipe heater, a thermal infrared heater, a non-contact double-sided heating sandwich heater, drying in a dryer, and an electric furnace. These heating methods may be used alone or in combination of two or more.
  • the heating region may be a part (partial heating) of the resin sheet or the whole (whole heating).
  • partial heating it is preferable from the viewpoint of being able to bend with a small bending radius (bending R), low cost, and the like.
  • full surface heating it is preferable from the viewpoints that it can be bent and molded into various shapes, that it is less likely to warp, and that it is less likely to crack.
  • the softening temperature varies depending on the resin sheet used, but is preferably a softening point of ⁇ 50 ° C. of the resin constituting the base material layer (the resin having the highest content when two or more resins are contained), and is softened. It is more preferable that the point is ⁇ 30 ° C.
  • the softening temperature is preferably 100 to 150 ° C, more preferably 110 to 140 ° C.
  • the bending method does not have to use a mold, or a mold may be used.
  • the method of bending is preferably a method using a mold.
  • the mold may be a single-sided mold or an uneven (male-female) double-sided mold, but from the viewpoint of obtaining a highly accurate bent-molded product, it may be an uneven (male-female) double-sided mold. preferable.
  • the shape of the mold is not particularly limited and can be appropriately designed according to the shape of the obtained bent molded product.
  • L-type, V-type, U-type, P-type, O-type, Z-type and the like can be mentioned.
  • the material of the mold is not particularly limited, and examples thereof include wood molds; alloy molds such as die steel, aluminum, aluminum alloys, zinc alloys, and bismuth alloys; ceramic molds and the like. These materials may be used alone or in combination of two or more.
  • the heating temperature varies depending on the resin sheet used, but is preferably a softening point of ⁇ 50 ° C. of the resin constituting the base material layer (the resin having the highest content when two or more resins are contained), and is softened. It is more preferable that the point is ⁇ 30 ° C.
  • the heating temperature is preferably 100 to 150 ° C, more preferably 110 to 140 ° C.
  • the heating time varies depending on the heating region, heating temperature, presence / absence of mold, shape of mold, etc., but is preferably 10 seconds to 1 hour, more preferably 1 minute to 30 minutes, and 3 minutes to 15 minutes. Is more preferable.
  • the bent part includes an end having a warp.
  • non-uniform stress compressive stress on the inside of bending, tensile stress on the outside of bending
  • stress due to non-uniform cooling can occur on the resin sheet during bending.
  • the resin sheet has a plurality of layers (for example, a base material layer-a high hardness resin layer-a hard coat layer)
  • stress may occur between the layers because the materials constituting each layer are different. As a result, warpage may occur at the ends of the bent part.
  • warp means an unintended deformation caused by bending molding.
  • the "end portion” means at least a part of an end edge (hereinafter, also referred to as “end edge”) in contact with the bending line (bending center) in the bent molded body.
  • the "end having a warp” means a region of the end having a warp.
  • the "end having a warp” can be understood as the end having a warp.
  • FIG. 3 is a perspective view of a bent molded body obtained by bending into a V shape.
  • the bent molded body 3 is bent and molded into a V shape along the bending line 30.
  • at least a part of the end sides 31 and 32 in contact with the bending line 30 is an "end portion".
  • the region becomes the "end having the warp”.
  • all the end sides 31 are end portions having a warp (ends having a warp).
  • FIG. 4 is a perspective view of a bent molded body obtained by bending and molding into an L shape.
  • the bend-molded body 4 is bent and molded into an L shape along the bending line (bending center) 40.
  • at least a part of the end sides 41 and 42 in contact with the bending line is an "end portion".
  • the region becomes the "end having the warp”.
  • all the end sides 41 are end portions having a warp (ends having a warp).
  • the bent molded product may have warpage at both ends, or may have warpage at only one end.
  • FIG. 5 is a perspective view of a bent-molded body having a V-shaped bend-molded removal region.
  • the bent molded body 5 is bent and molded into a V shape along the bending line 50.
  • the bend-molded body 5 is designed to be larger than the finally manufactured bend-molded product. Specifically, it has removal regions 54 and 55 extending in the direction of the bending line (bending center) 50.
  • the removal areas 54 and 55 are arranged at both ends, and warpage occurs at the end sides 51 and 52 of the removal areas 54 and 55.
  • the resin sheet including the first removing region, the main body region, and the second removing region is bent and molded to form the first removing region and the first removing region. It is preferable that the step is to obtain a bent molded product including an end portion in which at least one of the second removal regions has a warp.
  • the removal step involves removing the warped edges.
  • the removal removes only the warped end when a warp is formed on a part of the end edge, and removes the warped end edge when the warp is formed on all the end edges. Even if a warp is formed on a part of the end edge (a warp is formed on a part of the end edge), not only the end portion having the warp but also the entire end edge is removed. good. Of these, from the viewpoint of productivity, it is preferable that the removing step includes removing the edge having a warp.
  • the removing step preferably includes removing the end portion having no warp, and more preferably includes removing the end portion having no warp.
  • the removal method is not particularly limited, and a known method can be appropriately adopted.
  • a small cutting machine FANUC Robodrill
  • FANUC Robodrill FANUC Robodrill
  • the removal region is not particularly limited, but at least the end portion having a warp is preferably removed, and it is more preferable to remove the end portion having a warp.
  • the bent molded product contains a removal region, it is preferable to remove the removal region.
  • bent molded product manufactured by the above-mentioned manufacturing method.
  • the bent molded product has no warp and is excellent in appearance.
  • Bent molded products are suitably used for automobile interior parts such as instrument covers, home appliances, OA equipment, personal computers, housings of small portable equipment, touch panel type display surfaces such as mobile phone terminals, and the like.
  • Example 1 A resin sheet having a structure of a base material layer-a high hardness resin layer-a hard coat layer was bent and molded.
  • a high hardness resin (B2) (methyl methacrylate constituent unit: 21% by mass, styrene constituent unit: 64% by mass, and maleic anhydride constituent unit: 15% by mass) are used in a single shaft extruder having a shaft diameter of 35 mm.
  • a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge speed of 83.0 kg / h.
  • the extruded high-hardness resin and polycarbonate resin were introduced into a feed block equipped with two types of two-layer distribution pins, and the high-hardness resin and polycarbonate resin were laminated at a temperature of 240 ° C. Further, it is introduced into a T-die having a temperature of 240 ° C., extruded into a sheet, and cooled and stretched from the upstream side with three mirror-finishing rolls having temperatures of 120 ° C., 130 ° C., and 190 ° C. while transferring the mirror surface to achieve high hardness.
  • a laminate of a resin layer and a base material layer was obtained. The draw ratio was 1.3 times.
  • the thickness of the obtained laminate was 2 mm, and the thickness of the high hardness resin layer was 60 ⁇ m near the center.
  • a hard coat layer was formed on the high hardness resin layer side of the laminate (base material layer-high hardness resin layer) obtained above.
  • the material of the hard coat layer is as follows.
  • U6HA 6-functional urethane acrylate oligomer (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 60% by mass
  • 4EG-A PEG200 # diacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) 35% by mass
  • ⁇ RS-90 Fluorine-containing group, hydrophilic group, lipophilic group, UV-reactive group-containing oligomer (manufactured by DIC Co., Ltd.) 5% by mass with respect to 100 parts by mass of the mixture.
  • -Photopolymerization initiator 1 part by mass of I-184 (manufactured by BASF [compound name: 1-hydroxy-cyclohexylphenyl ketone]).
  • the above material was applied to the high hardness resin layer of the laminated body with a bar coater, and a glass plate having a haze of 10% and a thickness of 2 mm was placed over the layer.
  • a metal halide lamp (20 mW / cm 2 ) was applied from the top of the glass plate for 5 seconds to cure the hard coat, and the hard coat layer was adhered. Then, by peeling off the glass plate, a resin sheet having a structure of a base material layer-a high hardness resin layer-a hard coat layer was produced.
  • the film thickness of the hard coat layer was 6 ⁇ m.
  • the produced resin sheet was cut into a rectangle of 80 mm ⁇ 170 mm and installed between the upper and lower molds made of 50 mmR aluminum.
  • the upper and lower molds were closed with a force of 0.6 MPa to perform thermal bending molding of the resin sheet.
  • the temperature of the upper and lower molds made of aluminum was 124 ° C.
  • the mold closing time was 5 minutes. It should be noted that warpage occurred at both ends of the obtained bent molded product.
  • Polycarbonate resin (Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company, Inc.)) is continuously introduced using a single-layer extruder with a single-screw shaft diameter of 65 mm, and the conditions are a cylinder temperature of 280 ° C. and a discharge rate of 83.0 kg / h. Extruded with.
  • the extruded polycarbonate resin is introduced into a T-die having a temperature of 280 ° C., extruded into a sheet, and cooled and stretched while transferring the mirror surface with three mirror-finishing rolls having temperatures of 120 ° C., 130 ° C., and 190 ° C. from the upstream side.
  • a resin sheet made of a base material layer of a polycarbonate resin was produced.
  • the draw ratio was 1.17 times.
  • the thickness of the obtained resin sheet was 2 mm.
  • a resin sheet (base material layer-high hardness resin) in which a 6 mm thick hard coat layer is laminated on the high hardness resin layer side of a 2 mm thick laminate (base material layer-high hardness resin layer) by the same method as in Example 1. Layer-hard coat layer) was prepared.
  • Bending molding was performed in the same manner as in Example 1 except that the produced resin sheet was cut into a rectangle of 60 mm ⁇ 170 mm. It should be noted that warpage occurred at both ends of the obtained bent molded product.
  • Bending molding was performed in the same manner as in Example 1 except that the produced resin sheet was cut into a rectangle of 60 mm ⁇ 170 mm. It should be noted that warpage occurred at both ends of the obtained bent molded product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

This bend forming product of a resin sheet suppresses upward warpage of an end of a bent portion. This is made possible by cutting the end of the bent portion of the bend forming product of the resin sheet.

Description

樹脂シートの曲げ成形品の製造方法および曲げ成形品Manufacturing method of bent molded product of resin sheet and bent molded product
 本発明は、樹脂シートの曲げ成形品の製造方法および曲げ成形品に関する。 The present invention relates to a method for manufacturing a bent molded product of a resin sheet and a bent molded product.
 計器カバーなどの自動車内装品や家電、OA機器、パーソナルコンピュータ、小型携帯機器の筐体や、携帯電話端末等のタッチパネル型表示面等に樹脂成形体が用いられている。このような用途に使用される樹脂成形体は、成形用樹脂シートを成形して製造される。 Resin molded bodies are used for automobile interior parts such as instrument covers, home appliances, OA equipment, personal computers, housings of small portable equipment, touch panel type display surfaces such as mobile phone terminals, and the like. The resin molded body used for such an application is manufactured by molding a molding resin sheet.
 前記成形用樹脂シートは、従来、用途に応じて適切な形状に成形される。例えば、特許文献1には、ポリカーボネート樹脂シートまたはポリカーボネート樹脂層を基材に形成したポリカーボネート樹脂積層体の少なくとも片面に所定の保護フィルムを貼り合わせる工程、裁断または打ち抜きにより形状加工する工程、加熱しながら曲げ加工する工程、を含むポリカーボネート樹脂成形体の製造方法に係る発明が記載されている。特許文献1には、前記方法で得られたポリカーボネート樹脂成形は防眩製品または防護製品に使用されることが記載されている。 Conventionally, the molding resin sheet is molded into an appropriate shape according to the application. For example, Patent Document 1 describes a step of attaching a predetermined protective film to at least one surface of a polycarbonate resin laminate having a polycarbonate resin sheet or a polycarbonate resin layer as a base material, a step of shaping by cutting or punching, and a step of shaping while heating. An invention relating to a method for producing a polycarbonate resin molded body including a step of bending is described. Patent Document 1 describes that the polycarbonate resin molding obtained by the above method is used for antiglare products or protective products.
 特許文献1には、ポリカーボネート樹脂シートを熱曲げ加工することによって得る方法は、熱曲げ加工前にハードコート機能や偏光機能などに代表される機能性を予めシートに施すことが可能であるため、加工後に同様の処理を行うよりも生産性が高く好んで用いられることが記載されている。 According to Patent Document 1, the method obtained by hot-bending a polycarbonate resin sheet can apply functionality typified by a hard coat function, a polarization function, etc. to the sheet in advance before the hot-bending process. It is described that it is more productive than performing the same treatment after processing and is preferably used.
 なお、予め機能性が施された成形用樹脂シートとして、特許文献2には、紫外線(UV)硬化型のハードコート層を設けたフィルムを加飾成形し、その後UV照射することで硬化させる硬化方式によりハードコート層を付与した加飾用フィルムが記載されている。 In addition, as a resin sheet for molding to which functionality has been given in advance, Patent Document 2 states that a film provided with an ultraviolet (UV) curable hard coat layer is decoratively molded and then cured by UV irradiation. A decorative film to which a hard coat layer is applied by a method is described.
 また、特許文献3には、射出プレス成形法により製造されたポリカーボネート樹脂からなる成形品に、ハードコート処理をディップコート法で施し、硬度層を両表面に有する成形品が記載されている。 Further, Patent Document 3 describes a molded product made of a polycarbonate resin produced by an injection press molding method, which is subjected to a hard coat treatment by a dip coat method and has a hardness layer on both surfaces.
特開2011-110879号公報Japanese Unexamined Patent Publication No. 2011-110879 特開2012-51247号公報Japanese Unexamined Patent Publication No. 2012-51247 特開2004-35609号公報Japanese Unexamined Patent Publication No. 2004-35569
 上述の通り、樹脂シートの成形方法において曲げ成形は生産性が高く有用であるものの、曲げ成形体の端部に反りが生じる場合があることが判明した。その結果、得られる曲げ成形品の外観が歪んでしまうことがある。 As described above, although bending molding is highly productive and useful in the method of molding a resin sheet, it has been found that the end portion of the bent molded body may be warped. As a result, the appearance of the obtained bent molded product may be distorted.
 そこで、本発明は、反りがなく外観に優れる曲げ成形品を製造する方法を提供する。 Therefore, the present invention provides a method for producing a bent molded product that does not warp and has an excellent appearance.
 本発明者らは、上記課題を解決するべく鋭意研究を行った。その結果、反りを有する端部を除去することで上記課題が解決されうることを見出し、本発明を完成させるに至った。すなわち、本発明は、例えば以下の通りである。 The present inventors have conducted diligent research to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by removing the end portion having a warp, and the present invention has been completed. That is, the present invention is, for example, as follows.
 <1>樹脂シートを曲げ成形して、反りを有する端部を含む曲げ成形体を得る曲げ成形工程と、
 前記反りを有する端部を除去する除去工程と、
を含む、曲げ成形品の製造方法。
 <2>前記樹脂シートが、ポリカーボネート樹脂を含む、上記<1>に記載の製造方法。
 <3>前記樹脂シートが、ポリカーボネート樹脂を含む基材層の少なくとも一方の面に、高硬度樹脂を含む高硬度樹脂層を有する、上記<2>に記載の製造方法。
 <4>前記樹脂シートが、前記基材層の一方の面に前記高硬度樹脂層を有し、前記基材層の他方の面にハードコート層を有する、上記<3>に記載の製造方法。
 <5>前記高硬度樹脂が、
 下記一般式(1):
Figure JPOXMLDOC01-appb-C000005
(式中、Rは水素原子またはメチル基であり、Rは炭素数1~18のアルキル基である。)
で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2):
Figure JPOXMLDOC01-appb-C000006
(式中、Rは水素原子またはメチル基であり、Rは炭素数1~4の炭化水素基で置換されていてもよいシクロヘキシル基である。)
で表される脂肪族ビニル構成単位(b)とを含む共重合体である樹脂(B1);
 (メタ)アクリル酸エステル構成単位を6~77質量%、スチレン構成単位を15~71質量%、および不飽和ジカルボン酸構成単位を8~23質量%含む共重合体である樹脂(B2);
 下記一般式(5):
Figure JPOXMLDOC01-appb-C000007
で表される構成単位(c)を含む重合体である樹脂(B3);
 スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を60~90質量%、およびN-置換型マレイミド構成単位を5~20質量%含む共重合体である樹脂(B4);および
 スチレン構成単位を50~95質量%、不飽和ジカルボン酸単位を5~50質量%含む共重合体である樹脂(B5);
からなる群から選択される少なくとも1つを含む、上記<3>または<4>に記載の製造方法。
 <6>前記樹脂(B3)が、下記一般式(6):
Figure JPOXMLDOC01-appb-C000008
で表される構成単位(d)をさらに含む共重合体である、上記<5>に記載の製造方法。
 <7>上記<1>~<6>のいずれかに記載の製造方法により製造された、曲げ成形品。
<1> A bending molding step of bending a resin sheet to obtain a bending molded body including an end having a warp.
The removal step of removing the warped end and
A method for manufacturing a bent molded product, including.
<2> The production method according to <1> above, wherein the resin sheet contains a polycarbonate resin.
<3> The production method according to <2> above, wherein the resin sheet has a high hardness resin layer containing a high hardness resin on at least one surface of the base material layer containing a polycarbonate resin.
<4> The production method according to <3>, wherein the resin sheet has the high hardness resin layer on one surface of the base material layer and a hard coat layer on the other surface of the base material layer. ..
<5> The high hardness resin is
The following general formula (1):
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 1 is a hydrogen atom or a methyl group, and R 2 is an alkyl group having 1 to 18 carbon atoms.)
The (meth) acrylic acid ester structural unit (a) represented by and the following general formula (2):
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 3 is a hydrogen atom or a methyl group, and R 4 is a cyclohexyl group which may be substituted with a hydrocarbon group having 1 to 4 carbon atoms.)
Resin (B1) which is a copolymer containing an aliphatic vinyl constituent unit (b) represented by.
Resin (B2) which is a copolymer containing 6 to 77% by mass of (meth) acrylic acid ester constituent unit, 15 to 71% by mass of styrene constituent unit, and 8 to 23% by mass of unsaturated dicarboxylic acid constituent unit;
The following general formula (5):
Figure JPOXMLDOC01-appb-C000007
Resin (B3) which is a polymer containing the structural unit (c) represented by.
Resin (B4) which is a copolymer containing 5 to 20% by mass of a styrene constituent unit, 60 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit; And a resin (B5) which is a copolymer containing 50 to 95% by mass of styrene constituent units and 5 to 50% by mass of unsaturated dicarboxylic acid units;
The production method according to <3> or <4> above, which comprises at least one selected from the group consisting of.
<6> The resin (B3) has the following general formula (6):
Figure JPOXMLDOC01-appb-C000008
The production method according to <5> above, which is a copolymer further containing the structural unit (d) represented by.
<7> A bent molded product manufactured by the manufacturing method according to any one of <1> to <6> above.
 本発明によれば、反りがなく外観に優れる曲げ成形品の製造方法等が提供される。 According to the present invention, there is provided a method for manufacturing a bent molded product that does not warp and has an excellent appearance.
両端部が反りを有する曲げ成形体の斜視図である。It is a perspective view of the bending molded body which both ends have a warp. 両端部が反りを有する曲げ成形体の正面図である。It is a front view of the bent molded body which both ends have a warp. V型に曲げ成形をした曲げ成形体の斜視図である。It is a perspective view of the bending-molded body which was bent-molded into a V shape. L型に曲げ成形をした曲げ成形体の斜視図である。It is a perspective view of the bending-molded body which was bent-molded into an L shape. V型に曲げ成形をした除去用領域を有する曲げ成形体の斜視図である。It is a perspective view of the bending-molded body which has the removal area which was bent-molded into a V shape.
 以下、本発明について詳細に説明するが、本発明は実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行うことができる。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the examples and the like, and can be changed to any method as long as the contents of the present invention are not significantly deviated.
 <曲げ成形品の製造方法>
 本発明に係る曲げ成形品の製造方法は、樹脂シートを曲げ成形して、反りを有する端部を含む曲げ成形体を得る曲げ成形工程と、前記反りを有する端部を除去する除去工程と、を含む。
<Manufacturing method of bent molded products>
The method for producing a bent molded product according to the present invention includes a bending molding step of bending a resin sheet to obtain a bent molded body including an end having a warp, and a removing step of removing the end having the warp. including.
 上述の通り、樹脂シートを曲げ成形すると、曲げ成形に伴って発生する応力等により、曲げ成形体の端部に反りが生じる場合がある。例えば、図1および図2には、それぞれ両端部が反りを有する曲げ成形体の斜視図および正面図を示す。 As described above, when the resin sheet is bent and molded, the end portion of the bent molded body may be warped due to the stress generated by the bending and molding. For example, FIGS. 1 and 2 show a perspective view and a front view of a bent molded body having warpage at both ends, respectively.
 図1および図2の曲げ成形体1は、ポリカーボネート樹脂の基材層からなる樹脂シート(80mm×170mm、厚み:2mm)を50mmRのアルミニウム製の上下型を用いて熱曲げ成形をして得られる。曲げ成形体1は、反りを有する端部11および12を有している。その結果、曲げ成形体の外観が歪んでいる。なお、図1および図2によれば、前記反りを有する端部11および12は、端辺全体にわたって反りを有している。 The bend-molded article 1 of FIGS. 1 and 2 is obtained by hot-bending a resin sheet (80 mm × 170 mm, thickness: 2 mm) made of a base material layer of a polycarbonate resin by using a 50 mmR aluminum upper and lower mold. .. The bent molded body 1 has ends 11 and 12 having a warp. As a result, the appearance of the bent molded product is distorted. In addition, according to FIGS. 1 and 2, the end portions 11 and 12 having the warp have the warp over the entire end side.
 これに対し、本発明では、反りを有する端部11および12を除去する。これにより、反りがなく外観に優れる曲げ成形品を製造することができる。 On the other hand, in the present invention, the warped ends 11 and 12 are removed. As a result, it is possible to manufacture a bent molded product that does not warp and has an excellent appearance.
 [曲げ成形工程]
 曲げ成形工程は、樹脂シートを曲げ成形して、反りを有する端部を含む曲げ成形体を得ることを含む。
[Bending molding process]
The bending molding step includes bending and molding a resin sheet to obtain a bent molded body including an end having a warp.
 (樹脂シート)
 樹脂シートは、特に制限されないが、熱によって曲げ成形が可能となる熱可塑性樹脂を含むことが好ましい。
(Resin sheet)
The resin sheet is not particularly limited, but preferably contains a thermoplastic resin that can be bent and molded by heat.
 前記熱可塑性樹脂としては、特に制限されないが、ポリカーボネート(PC)樹脂、ポリエステル樹脂(ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリブチレンナフタレート(PBN)樹脂等)、ポリアミド樹脂、ポリウレタン樹脂、アクリル系樹脂(メタクリル樹脂、アクリル樹脂)、ポリオレフィン樹脂(ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂等)、ポリスチレン樹脂、トリアセチルセルロース系樹脂、これらの樹脂を構成するモノマーを少なくとも1つ含む共重合体等が挙げられる。 The thermoplastic resin is not particularly limited, but is not particularly limited, but is a polycarbonate (PC) resin, a polyester resin (polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polyethylene naphthalate (PEN) resin, polybutylene naphthalate (PBN). ) Resin, etc.), Polyethylene resin, Polyurethane resin, Acrylic resin (methacrylic resin, Acrylic resin), Polyethylene resin (Polyethylene (PE) resin, Polyethylene (PP) resin, Polyvinyl chloride (PVC) resin, Polytetrafluoroethylene ( Examples thereof include polyethylene) resins, etc.), polystyrene resins, triacetyl cellulose-based resins, copolymers containing at least one monomer constituting these resins, and the like.
 これらのうち、樹脂シートは、透明性が高い観点から、ポリカーボネート(PC)樹脂、ポリエステル樹脂、アクリル樹脂、ポリオレフィン樹脂、これらの樹脂を構成するモノマーを少なくとも1つ含む共重合体を含むことが好ましく、ポリカーボネート(PC)樹脂、ポリエチレンテレフタレート(PET)樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル(PVC)樹脂、これらの樹脂を構成するモノマーを少なくとも1つ含む共重合体を含むことがより好ましく、ポリカーボネート(PC)樹脂を含むことがさらに好ましい。なお、前記樹脂シートにおいて、上述の熱可塑性樹脂は単独で用いても、2種以上を組み合わせて用いてもよい。 Of these, the resin sheet preferably contains a polycarbonate (PC) resin, a polyester resin, an acrylic resin, a polyolefin resin, and a copolymer containing at least one monomer constituting these resins from the viewpoint of high transparency. , Polycarbonate (PC) resin, polyethylene terephthalate (PET) resin, methacrylic resin, acrylic resin, polyvinyl chloride (PVC) resin, and a copolymer containing at least one monomer constituting these resins are more preferable. It is more preferable to contain a polycarbonate (PC) resin. In the resin sheet, the above-mentioned thermoplastic resin may be used alone or in combination of two or more.
 以下、樹脂シートがポリカーボネート樹脂を含む好ましい形態について詳細に説明する。 Hereinafter, a preferable form in which the resin sheet contains a polycarbonate resin will be described in detail.
 樹脂シートがポリカーボネート樹脂を含む場合、樹脂シートは、ポリカーボネート樹脂を含む基材層を有する。樹脂シートは、高硬度樹脂層、ハードコート層等をさらに有していてもよい。なお、曲げ成形に用いる樹脂シートに高硬度樹脂層、ハードコート層等の機能層を予め設けることで、これらをあわせて曲げ成形することができる。これにより、曲げ成形後の加工と比べて、均一な機能層を曲面に形成できる、生産性が高くなる等の利点を有する。 When the resin sheet contains a polycarbonate resin, the resin sheet has a base material layer containing the polycarbonate resin. The resin sheet may further have a high hardness resin layer, a hard coat layer, and the like. By providing a functional layer such as a high hardness resin layer and a hard coat layer in advance on the resin sheet used for bending molding, it is possible to perform bending molding together. This has advantages such as being able to form a uniform functional layer on a curved surface and increasing productivity as compared with processing after bending molding.
 一実施形態において、樹脂シートが基材層および高硬度樹脂層を含む場合、樹脂シートは、基材層と前記基材層上に配置された高硬度樹脂層とを含む2層構造(基材層-高硬度樹脂層)であってもよいし、第1の高硬度樹脂層と、前記第1の高硬度樹脂層上に配置された基材層と、前記基材層上に配置された第2の高硬度樹脂層とを含む3層構造(第1の高硬度樹脂層-基材層-第2の高硬度樹脂層)であってもよい。 In one embodiment, when the resin sheet includes a base material layer and a high hardness resin layer, the resin sheet has a two-layer structure (base material) including a base material layer and a high hardness resin layer arranged on the base material layer. Layer-high hardness resin layer), a first high hardness resin layer, a base material layer arranged on the first high hardness resin layer, and a base material layer arranged on the base material layer. It may have a three-layer structure including a second high-hardness resin layer (first high-hardness resin layer-base material layer-second high-hardness resin layer).
 別の一実施形態において、樹脂シートが基材層およびハードコート層を含む場合、樹脂シートは、基材層と前記基材層上に配置されたハードコート層とを含む2層構造(基材層-ハードコート層)であってもよいし、第1のハードコート層と、前記第1のハードコート層上に配置された基材層と、前記基材層上に配置された第2のハードコート層とを含む3層構造(第1のハードコート層-基材層-第2のハードコート層)であってもよい。 In another embodiment, when the resin sheet includes a base material layer and a hard coat layer, the resin sheet has a two-layer structure (base material) including a base material layer and a hard coat layer arranged on the base material layer. Layer-hardcourt layer), a first hardcoat layer, a substrate layer arranged on the first hardcoat layer, and a second substrate layer arranged on the substrate layer. It may have a three-layer structure including a hard coat layer (first hard coat layer-base material layer-second hard coat layer).
 別の一実施形態において、樹脂シートが基材層、高硬度樹脂層、およびハードコート層を含む場合、基材層と、前記基材層上に配置された高硬度樹脂層と、前記高硬度樹脂層上に配置されたハードコート層とを含む3層構造(基材層-高硬度樹脂層-ハードコート層)であってもよいし、ハードコート層と、前記ハードコート層上に配置された基材層と、前記基材層上に配置された高硬度樹脂層とを含む3層構造(ハードコート層-基材層-高硬度樹脂層)であってもよい。また、樹脂シートは、第1のハードコート層と、前記第1のハードコート層上に配置された基材層と、前記基材層上に配置された高硬度樹脂層と、前記高硬度樹脂層上に配置された第2のハードコート層とを含む4層構造(第1のハードコート層-基材層-高硬度樹脂層-第2のハードコート層)であってもよいし、第1の高硬度樹脂層と、前記第1の高硬度樹脂層上に配置された基材層と、前記基材層上に配置された第2の高硬度樹脂層と、前記第2の高硬度樹脂層上に配置されたハードコート層とを含む4層構造(第1の高硬度樹脂層-基材層-第2の高硬度樹脂層-ハードコート層)であってもよい。また、前記樹脂シートは、第1のハードコート層と、前記第1のハードコート層上に配置された第1の高硬度樹脂層と、前記第1の高硬度樹脂層上に配置された基材層と、記基材層上に配置された第2の高硬度樹脂層と、前記第2の高硬度樹脂層上に配置された第2のハードコート層とを含む5層構造(第1のハードコート層-第1の高硬度樹脂層-基材層-第2の高硬度樹脂層-第2のハードコート層)であってもよい。 In another embodiment, when the resin sheet includes a base material layer, a high hardness resin layer, and a hard coat layer, the base material layer, the high hardness resin layer arranged on the base material layer, and the high hardness. It may have a three-layer structure (base material layer-high hardness resin layer-hard coat layer) including a hard coat layer arranged on the resin layer, or may be arranged on the hard coat layer and the hard coat layer. It may have a three-layer structure (hard coat layer-base material layer-high hardness resin layer) including the base material layer and the high hardness resin layer arranged on the base material layer. Further, the resin sheet includes a first hard coat layer, a base material layer arranged on the first hard coat layer, a high hardness resin layer arranged on the base material layer, and the high hardness resin. It may have a four-layer structure (first hard coat layer-base material layer-high hardness resin layer-second hard coat layer) including a second hard coat layer arranged on the layer, or a first. 1. High hardness resin layer, a base material layer arranged on the first high hardness resin layer, a second high hardness resin layer arranged on the base material layer, and the second high hardness. It may have a four-layer structure (first high-hardness resin layer-base material layer-second high-hardness resin layer-hard coat layer) including a hard coat layer arranged on the resin layer. Further, the resin sheet includes a first hard coat layer, a first high hardness resin layer arranged on the first hard coat layer, and a group arranged on the first high hardness resin layer. A five-layer structure (first) including a material layer, a second high-hardness resin layer arranged on the base material layer, and a second hard coat layer arranged on the second high-hardness resin layer. Hard coat layer-first high hardness resin layer-base material layer-second high hardness resin layer-second hard coat layer).
 上述のうち、樹脂シートとしては、ポリカーボネート樹脂を含む基材層の少なくとも一方の面に、高硬度樹脂を含む高硬度樹脂層を有することが好ましく、前記基材層の一方の面に前記高硬度樹脂層を有し、前記基材層の他方の面にハードコート層を有することがより好ましい。 Among the above, the resin sheet preferably has a high hardness resin layer containing a high hardness resin on at least one surface of the base material layer containing the polycarbonate resin, and the high hardness on one surface of the base material layer. It is more preferable to have a resin layer and a hard coat layer on the other surface of the base material layer.
 また、別の一実施形態によれば、基材層、基材層-高硬度樹脂層、基材層-高硬度樹脂層-ハードコート層、ハードコート層-基材層-高硬度樹脂層、第1の高硬度樹脂層-基材層-第2の高硬度樹脂層、第1のハードコート層-基材層-第2のハードコート層、第1の高硬度樹脂層-基材層-第2の高硬度樹脂層-ハードコート層、第1のハードコート層-基材層-高硬度樹脂層-第2のハードコート層、第1のハードコート層-第1の高硬度樹脂層-基材層-第2の高硬度樹脂層-第2のハードコート層の構造を有することが好ましく、基材層、基材層-高硬度樹脂層、基材層-高硬度樹脂層-ハードコート層、ハードコート層-基材層-高硬度樹脂層、第1の高硬度樹脂層-基材層-第2の高硬度樹脂層-ハードコート層、第1のハードコート層-基材層-高硬度樹脂層-第2のハードコート層、第1のハードコート層-第1の高硬度樹脂層-基材層-第2の高硬度樹脂層-第2のハードコート層の構造を有することがよりに好ましく、基材層-高硬度樹脂層、基材層-高硬度樹脂層-ハードコート層、第1の高硬度樹脂層-基材層-第2の高硬度樹脂層-ハードコート層、第1のハードコート層-第1の高硬度樹脂層-基材層-第2の高硬度樹脂層-第2のハードコート層の構造を有することがさら好ましい。 Further, according to another embodiment, a base material layer, a base material layer-a high hardness resin layer, a base material layer-a high hardness resin layer-a hard coat layer, a hard coat layer-a base material layer-a high hardness resin layer, First high-hardness resin layer-base material layer-second high-hardness resin layer, first hard coat layer-base material layer-second hard coat layer, first high-hardness resin layer-base material layer- Second high hardness resin layer-hard coat layer, first hard coat layer-base material layer-high hardness resin layer-second hard coat layer, first hard coat layer-first high hardness resin layer- It is preferable to have a structure of a base material layer-a second high hardness resin layer-a second hard coat layer, and a base material layer, a base material layer-a high hardness resin layer, and a base material layer-a high hardness resin layer-a hard coat. Layer, hard coat layer-base material layer-high hardness resin layer, first high hardness resin layer-base material layer-second high hardness resin layer-hard coat layer, first hard coat layer-base material layer- Having a structure of a high hardness resin layer-a second hard coat layer, a first hard coat layer-a first high hardness resin layer-a base material layer-a second high hardness resin layer-a second hard coat layer. Is more preferable, a base material layer-a high hardness resin layer, a base material layer-a high hardness resin layer-a hard coat layer, a first high hardness resin layer-a base material layer-a second high hardness resin layer-a hard coat layer. It is more preferable to have a structure of a first hard coat layer-a first high hardness resin layer-a base material layer-a second high hardness resin layer-a second hard coat layer.
 なお、基材層と高硬度樹脂層との間、高硬度樹脂層とハードコート層との間には、それぞれさらなる層が存在していてもよい。さらなる層としては、特に限定されるものではないが、接着剤層、プライマー層等が挙げられる。 Further, a further layer may be present between the base material layer and the high hardness resin layer, and between the high hardness resin layer and the hard coat layer. The further layer is not particularly limited, and examples thereof include an adhesive layer and a primer layer.
 以下、前記樹脂シートの各構成部材について説明する。 Hereinafter, each component of the resin sheet will be described.
 基材層
 基材層は、ポリカーボネート樹脂(a1)を含む。基材層は、他の樹脂、添加剤等をさらに含んでいてもよい。
Base material layer The base material layer contains a polycarbonate resin (a1). The base material layer may further contain other resins, additives and the like.
 ポリカーボネート樹脂(a1)
 ポリカーボネート樹脂(a1)としては、分子主鎖中に炭酸エステル結合、即ち、-[O-R-OCO]-単位(ここで、Rは、脂肪族基、芳香族基、または脂肪族基と芳香族基の双方を含んでいてもよく、直鎖構造であっても分岐構造であってもよい)を含むものであれば特に限定されるものではないが、芳香族ポリカーボネート樹脂であることが好ましく、特に下記式(3a)の構成単位を含むポリカーボネート樹脂を使用することが好ましい。
Polycarbonate resin (a1)
The polycarbonate resin (a1) has a carbonic acid ester bond in the main chain of the molecule, that is,-[OR-OCO] -unit (where R is an aliphatic group, an aromatic group, or an aliphatic group and aroma. It may contain both of the group groups, and may have a linear structure or a branched structure), but is not particularly limited, but an aromatic polycarbonate resin is preferable. In particular, it is preferable to use a polycarbonate resin containing the structural unit of the following formula (3a).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 具体的には、ポリカーボネート樹脂(a1)として、芳香族ポリカーボネート樹脂(例えば、ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000;三菱エンジニアリングプラスチックス社製)等が使用可能である。 Specifically, as the polycarbonate resin (a1), an aromatic polycarbonate resin (for example, Iupiron S-2000, Iupiron S-1000, Iupiron E-2000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.) can be used.
 このようなポリカーボネート樹脂を使用することで、耐衝撃性により優れた樹脂シートを得ることができる。 By using such a polycarbonate resin, it is possible to obtain a resin sheet having better impact resistance.
 近年、ポリカーボネート樹脂のガラス転移点を制御する目的で、下記一般式(3)で表されるような1価フェノールを末端停止剤として付加したポリカーボネート樹脂も使用されている。本発明においても、このように末端停止剤を付加したポリカーボネート樹脂を使用することができる。 In recent years, for the purpose of controlling the glass transition point of the polycarbonate resin, a polycarbonate resin to which a monohydric phenol as represented by the following general formula (3) is added as a terminal terminator has also been used. Also in the present invention, the polycarbonate resin to which the terminal terminator is added can be used as described above.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、Rは、炭素数8~36のアルキル基、または炭素数8~36のアルケニル基を表し;Rはそれぞれ独立して、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~20のアルキル基、または炭素数6~12のアリール基を表し;nは0~4の整数であり;ここで、前記置換基は、ハロゲン、炭素数1~20のアルキル基、または炭素数6~12のアリール基である。なお、本明細書において、「アルキル基」および「アルケニル基」は、直鎖状であっても分岐鎖状であってもよく、置換基を有していてもよい。 In the formula, R 5 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms; even if R 6 independently has a hydrogen atom, a halogen atom, and a substituent. A good alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms; n is an integer of 0 to 4; where the substituent is a halogen, an alkyl group having 1 to 20 carbon atoms. , Or an aryl group having 6 to 12 carbon atoms. In the present specification, the "alkyl group" and the "alkenyl group" may be linear or branched, and may have a substituent.
 一般式(3)で表される1価フェノールは、下記一般式(4)で表されるものであることが好ましい。 The monohydric phenol represented by the general formula (3) is preferably represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式中、Rは、炭素数8~36のアルキル基または炭素数8~36のアルケニル基を表す。 In the formula, R 5 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
 一般式(3)または一般式(4)におけるRの炭素数は、特定の数値範囲内であることがより好ましい。具体的には、Rの炭素数の上限値として36が好ましく、22がより好ましく、18が特に好ましい。また、Rの炭素数の下限値として、8が好ましく、12がより好ましい。 It is more preferable that the carbon number of R5 in the general formula ( 3 ) or the general formula (4) is within a specific numerical range. Specifically, as the upper limit of the number of carbon atoms of R5 , 36 is preferable, 22 is more preferable, and 18 is particularly preferable. Further, as the lower limit of the number of carbon atoms of R5, 8 is preferable, and 12 is more preferable.
 一般式(3)または一般式(4)におけるRの炭素数の上限値が適当であると、1価フェノール(末端停止剤)の有機溶剤溶解性が高くなる傾向があり、ポリカーボネート樹脂製造時の生産性が高くなることから好ましい。 If the upper limit of the carbon number of R5 in the general formula ( 3 ) or the general formula (4) is appropriate, the solubility of the monohydric phenol (terminal terminator) in the organic solvent tends to be high, and the polycarbonate resin is manufactured. It is preferable because the productivity of the above is high.
 一例として、Rの炭素数が36以下であれば、ポリカーボネート樹脂を製造するにあたって生産性が高く、経済性も良い。Rの炭素数が22以下であれば、1価フェノールは、特に有機溶剤溶解性に優れており、ポリカーボネート樹脂を製造するにあたって生産性を非常に高くすることができ、経済性も向上する。このような1価フェノールを使用したポリカーボネート樹脂としては、例えば、ユピゼータT-1380(三菱ガス化学製)等が挙げられる。 As an example, when the carbon number of R5 is 36 or less, the productivity is high and the economy is good in producing the polycarbonate resin. When the number of carbon atoms of R5 is 22 or less, the monovalent phenol is particularly excellent in organic solvent solubility, and can greatly increase the productivity in producing the polycarbonate resin and also improve the economic efficiency. Examples of the polycarbonate resin using such a monovalent phenol include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company).
 一般式(3)または一般式(4)におけるRの炭素数の下限値が適当であると、ポリカーボネート樹脂のガラス転移点が高すぎるということにならず、好適な熱成形性を有することから好ましい。 If the lower limit of the carbon number of R5 in the general formula ( 3 ) or the general formula (4) is appropriate, the glass transition point of the polycarbonate resin does not become too high, and the polycarbonate resin has suitable thermoformability. preferable.
 例えば、一般式(4)においてRが炭素数16のアルキル基である1価フェノールを末端停止剤として使用した場合、ガラス転移温度、溶融流動性、成形性、耐ドローダウン性等に優れたポリカーボネート樹脂を得ることができ、また、ポリカーボネート樹脂製造時の1価フェノールの溶剤溶解性にも優れるため、特に好ましい。 For example, when monohydric phenol in which R5 is an alkyl group having 16 carbon atoms is used as a terminal terminator in the general formula ( 4 ), it is excellent in glass transition temperature, melt fluidity, moldability, drawdown resistance and the like. It is particularly preferable because a polycarbonate resin can be obtained and the monohydric phenol has excellent solvent solubility during the production of the polycarbonate resin.
 一般式(3)または一般式(4)で示される1価フェノールの中でも、パラヒドロキシ安息香酸ヘキサデシルエステル、パラヒドロキシ安息香酸2-ヘキシルデシルエステルのいずれかもしくは両方を末端停止剤として使用することが特に好ましい。 Among the monovalent phenols represented by the general formula (3) or the general formula (4), either or both of the parahydroxybenzoic acid hexadecyl ester and the parahydroxybenzoic acid 2-hexyldecyl ester shall be used as the terminal terminator. Is particularly preferable.
 ポリカーボネート樹脂(a1)の重量平均分子量は、15,000~75,000であることが好ましく、20,000~70,000であることがより好ましく、20,000~65,000であることがさらに好ましい。ポリカーボネート樹脂(a1)の重量平均分子量が15,000以上であると、耐衝撃性が高くなりうることから好ましい。一方、重量平均分子量が75,000以下であると、基材層を少ない熱源で形成できる、成形条件が高温になった場合でも熱安定性が維持できることから好ましい。なお、本明細書において、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the polycarbonate resin (a1) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000, and further preferably 20,000 to 65,000. preferable. When the weight average molecular weight of the polycarbonate resin (a1) is 15,000 or more, the impact resistance can be increased, which is preferable. On the other hand, when the weight average molecular weight is 75,000 or less, the base material layer can be formed with a small heat source, and the thermal stability can be maintained even when the molding conditions become high temperature, which is preferable. In the present specification, the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
 ポリカーボネート樹脂(a1)のTgは90~190℃であることが好ましく、100~170℃であることがより好ましく、110~150℃であることがさらに好ましい。なお、ポリカーボネート樹脂(a1)のTgは、ポリカーボネート樹脂(a1)の構成単位の種類および組合せ、重量平均分子量等を適宜調整することで制御することができる。また、本明細書において、ガラス転移点とは、示差走査熱量測定装置を用いて、試料10mg、昇温速度10℃/分で測定し、中点法で算出した温度である。 The Tg of the polycarbonate resin (a1) is preferably 90 to 190 ° C, more preferably 100 to 170 ° C, and even more preferably 110 to 150 ° C. The Tg of the polycarbonate resin (a1) can be controlled by appropriately adjusting the type and combination of the constituent units of the polycarbonate resin (a1), the weight average molecular weight, and the like. Further, in the present specification, the glass transition point is a temperature calculated by the midpoint method measured at a sample of 10 mg and a temperature rise rate of 10 ° C./min using a differential scanning calorimetry device.
 基材層に含まれるポリカーボネート樹脂(a1)は、単独で用いても、2種以上を組み合わせて用いてもよい。 The polycarbonate resin (a1) contained in the base material layer may be used alone or in combination of two or more.
 基材層中のポリカーボネート樹脂(a1)の含有量は、基材層の全質量に対して、75~100質量%であることが好ましく、90~100質量%であることがより好ましく、100質量%であることが特に好ましい。ポリカーボネート樹脂の含有量が75%以上であると、耐衝撃性がより向上しうることから好ましい。 The content of the polycarbonate resin (a1) in the base material layer is preferably 75 to 100% by mass, more preferably 90 to 100% by mass, and 100% by mass with respect to the total mass of the base material layer. % Is particularly preferable. When the content of the polycarbonate resin is 75% or more, the impact resistance can be further improved, which is preferable.
 他の樹脂
 他の樹脂としては、特に制限されないが、ポリエステル樹脂等が挙げられる。
Other Resins Other resins include, but are not limited to, polyester resins and the like.
 ポリエステル樹脂は、ジカルボン酸成分として主にテレフタル酸を含んでいることが好ましく、テレフタル酸以外のジカルボン酸成分を含んでいてもよい。 The polyester resin preferably contains mainly terephthalic acid as a dicarboxylic acid component, and may contain a dicarboxylic acid component other than terephthalic acid.
 例えば、主成分であるエチレングリコール80~60モル%に対して1,4-シクロヘキサンジメタノールを20~40モル%(合計100モル%)含むグリコール成分が重縮合してなるポリエステル樹脂(所謂「PETG」)が好ましい。 For example, a polyester resin (so-called "PETG") obtained by polycondensing a glycol component containing 20 to 40 mol% (total 100 mol%) of 1,4-cyclohexanedimethanol with 80 to 60 mol% of ethylene glycol as the main component. ") Is preferable.
 なお、他の樹脂は単独で用いても、2種以上を組み合わせて用いてもよい。 The other resins may be used alone or in combination of two or more.
 他の樹脂を含む場合の含有量は、基材層の全質量に対して、0~25質量%であることが好ましく、0~10質量%であることがより好ましい。 When the other resin is contained, the content is preferably 0 to 25% by mass, more preferably 0 to 10% by mass, based on the total mass of the base material layer.
 添加剤
 添加剤としては、樹脂シートにおいて通常使用されるものを使用することができる。具体的には、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーのような強化材などが挙げられる。これらの添加剤は単独で用いても、2種以上を組み合わせて用いてもよい。
Additives As the additives, those usually used in the resin sheet can be used. Specifically, such as antioxidants, anticolorants, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers and inorganic fillers. Reinforcement materials and the like can be mentioned. These additives may be used alone or in combination of two or more.
 添加剤の量は、基材層の全質量に対して、0~10質量%であることが好ましく、0~7質量%であることがより好ましく、0~5質量%であることが特に好ましい。 The amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and particularly preferably 0 to 5% by mass with respect to the total mass of the base material layer. ..
 添加剤と樹脂を混合する方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。 The method of mixing the additive and the resin is not particularly limited, and a method of compounding the entire amount, a method of dry-blending the masterbatch, a method of dry-blending the entire amount, and the like can be used.
 基材層の厚み
 基材層の厚みは、0.3~10mmであることが好ましく、0.3~5mmであることがより好ましく、0.3~3.5mmであることがさらに好ましい。
Thickness of the base material layer The thickness of the base material layer is preferably 0.3 to 10 mm, more preferably 0.3 to 5 mm, and even more preferably 0.3 to 3.5 mm.
 高硬度樹脂層
 高硬度樹脂層は、高硬度樹脂を含む。その他、必要に応じて他の樹脂、添加剤等がさらに含まれていてもよい。なお、本明細書において、高硬度樹脂とは、基材となるポリカーボネート樹脂よりも硬度の高い樹脂であり、鉛筆硬度がHB以上、好ましくはHB~3H、より好ましくはH~3H、さらに好ましくは2H~3Hの樹脂を意味する。なお、高硬度樹脂層の鉛筆硬度は、JIS K 5600-5-4:1999に準拠した鉛筆ひっかき硬度試験にて評価した結果である。具体的には、ハードコートアンチグレア層の表面に対して角度45度、荷重750gで次第に硬度を増して鉛筆を押し付け、きず跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価する。
High-hardness resin layer The high-hardness resin layer contains a high-hardness resin. In addition, other resins, additives and the like may be further contained, if necessary. In the present specification, the high hardness resin is a resin having a hardness higher than that of the polycarbonate resin used as a base material, and has a pencil hardness of HB or higher, preferably HB to 3H, more preferably H to 3H, and even more preferably. It means 2H to 3H resin. The pencil hardness of the high-hardness resin layer is the result of evaluation by a pencil scratch hardness test based on JIS K 5600-5-4: 1999. Specifically, the hardness of the hard coat anti-glare layer is gradually increased at an angle of 45 degrees and a load of 750 g, and the pencil is pressed against the surface, and the hardness of the hardest pencil that does not cause scratches is evaluated as the pencil hardness.
 高硬度樹脂
 高硬度樹脂としては、特に制限されないが、樹脂(B1)~(B5)からなる群から選択される少なくとも1つを含むことが好ましい。
High-hardness resin The high-hardness resin is not particularly limited, but preferably contains at least one selected from the group consisting of resins (B1) to (B5).
 樹脂(B1)
 樹脂(B1)は、一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、一般式(2)で表される脂肪族ビニル構成単位(b)とを含む共重合体である。この際、前記樹脂(B1)は、他の構成単位をさらに有していてもよい。なお、本明細書において、(メタ)アクリルとは、メタクリルおよび/またはアクリルを示す。
Resin (B1)
The resin (B1) has a copolymer weight including a (meth) acrylic acid ester structural unit (a) represented by the general formula (1) and an aliphatic vinyl structural unit (b) represented by the general formula (2). It is a coalescence. At this time, the resin (B1) may further have other structural units. In addition, in this specification, (meth) acrylic means methacrylic and / or acrylic.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、Rは水素原子またはメチル基であり、好ましくはメチル基である。 In the formula, R 1 is a hydrogen atom or a methyl group, preferably a methyl group.
 またRは炭素数1~18のアルキル基であり、炭素数1~10のアルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましい。具体的にはメチル基、エチル基、ブチル基、ラウリル基、ステアリル基、シクロヘキシル基、イソボルニル基などが挙げられる。これらのうち、Rは、メチル基、エチル基であることが好ましく、メチル基であることがより好ましい。 Further, R 2 is an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group, a cyclohexyl group and an isobornyl group. Of these, R 2 is preferably a methyl group or an ethyl group, and more preferably a methyl group.
 なお、Rがメチル基、エチル基である場合、一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)は(メタ)アクリル酸エステル構成単位となり、Rがメチル基かつRがメチル基である場合、一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)はメタクリル酸メチル構成単位となる。 When R 2 is a methyl group or an ethyl group, the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is a (meth) acrylic acid ester structural unit, and R 1 is a methyl group. When R 2 is a methyl group, the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is a methyl methacrylate structural unit.
 一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)は、樹脂(B1)中に1種のみが含まれていても、2種以上含まれていてもよい。 The (meth) acrylic acid ester structural unit (a) represented by the general formula (1) may contain only one type or two or more types in the resin (B1).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、Rは水素原子またはメチル基であり、水素原子であることが好ましい。 In the formula, R 3 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
 Rは炭素数1~4の炭化水素基で置換されていてもよいシクロヘキシル基であり、置換基を有さないシクロヘキシル基であることが好ましい。 R4 is a cyclohexyl group which may be substituted with a hydrocarbon group having 1 to 4 carbon atoms, and is preferably a cyclohexyl group having no substituent.
 Rが水素原子であり、Rがシクロヘキシル基である場合、一般式(2)で表される脂肪族ビニル構成単位(b)はビニルシクロヘキサン構成単位となる。 When R 3 is a hydrogen atom and R 4 is a cyclohexyl group, the aliphatic vinyl structural unit (b) represented by the general formula (2) is a vinyl cyclohexane structural unit.
 一般式(2)で表される脂肪族ビニル構成単位(b)は、樹脂(B1)中に1種のみが含まれていても、2種以上含まれていてもよい。 The aliphatic vinyl constituent unit (b) represented by the general formula (2) may contain only one type or two or more types in the resin (B1).
 本明細書中において、「炭化水素基」は、直鎖状、分岐鎖状、環状のいずれであってもよく、置換基を有していてもよい。 In the present specification, the "hydrocarbon group" may be linear, branched or cyclic, or may have a substituent.
 前記他の構成単位としては、特に制限されないが、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを重合した後に該芳香族ビニルモノマー由来の芳香族二重結合を水素化して樹脂(B1)を製造する過程において生じる、水素化されていない芳香族二重結合を含む芳香族ビニルモノマー由来の構成単位などが挙げられる。具体的な他の構成単位としては、スチレン構成単位が挙げられる。 The other structural unit is not particularly limited, but after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, the aromatic double bond derived from the aromatic vinyl monomer is hydrogenated to form the resin (B1). Examples thereof include structural units derived from aromatic vinyl monomers containing non-hydrogenated aromatic double bonds, which are generated in the process of producing the above. Specific other structural units include styrene structural units.
 他の構成単位は、樹脂(B1)中に1種のみが含まれていても、2種以上含まれていてもよい。 The other constituent units may contain only one type in the resin (B1) or may contain two or more types.
 (メタ)アクリル酸エステル構成単位(a)と脂肪族ビニル構成単位(b)との合計含有量は、樹脂(B1)の全構成単位に対して、好ましくは90~100モル%であり、より好ましくは95~100モル%であり、特に好ましくは98~100モル%である。 The total content of the (meth) acrylic acid ester constituent unit (a) and the aliphatic vinyl constituent unit (b) is preferably 90 to 100 mol% with respect to all the constituent units of the resin (B1), and more. It is preferably 95 to 100 mol%, and particularly preferably 98 to 100 mol%.
 一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)の含有量は、樹脂(B1)の全構成単位に対して、好ましくは65~80モル%であり、より好ましくは70~80モル%である。前記(メタ)アクリル酸エステル構成単位(a)の割合が65モル%以上であると、基材層との密着性や表面硬度に優れた樹脂層を得ることができることから好ましい。一方、前記(メタ)アクリル酸エステル構成単位(a)の割合が80モル%以下であると、樹脂シートの吸水による反りが発生しづらいことから好ましい。 The content of the (meth) acrylic acid ester structural unit (a) represented by the general formula (1) is preferably 65 to 80 mol% with respect to all the structural units of the resin (B1), more preferably. It is 70 to 80 mol%. When the ratio of the (meth) acrylic acid ester structural unit (a) is 65 mol% or more, it is preferable because a resin layer having excellent adhesion to the base material layer and surface hardness can be obtained. On the other hand, when the ratio of the (meth) acrylic acid ester structural unit (a) is 80 mol% or less, warpage due to water absorption of the resin sheet is unlikely to occur, which is preferable.
 また、一般式(2)で表される脂肪族ビニル構成単位(b)の含有量は、樹脂(B1)の全構成単位に対して、好ましくは20~35モル%であり、より好ましくは20~30モル%である。脂肪族ビニル構成単位(b)の含有量が20モル%以上であると、高温高湿下でのそりを防ぐことができることから好ましい。一方、脂肪族ビニル構成単位(b)の含有量が35モル%以下であると、基材との界面での剥離を防ぐことができることから好ましい。 The content of the aliphatic vinyl constituent unit (b) represented by the general formula (2) is preferably 20 to 35 mol%, more preferably 20 with respect to all the constituent units of the resin (B1). ~ 30 mol%. When the content of the aliphatic vinyl constituent unit (b) is 20 mol% or more, warping under high temperature and high humidity can be prevented, which is preferable. On the other hand, when the content of the aliphatic vinyl constituent unit (b) is 35 mol% or less, peeling at the interface with the substrate can be prevented, which is preferable.
 さらに、他の構成単位の含有量は、樹脂(B1)の全構成単位に対して、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。 Further, the content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and 2 mol% or less with respect to all the constituent units of the resin (B1). Is particularly preferred.
 なお、本明細書において、「共重合体」は、ランダム共重合体、ブロック共重合体、および交互共重合体のいずれの構造であってもよい。 In the present specification, the "copolymer" may have any structure of a random copolymer, a block copolymer, and an alternate copolymer.
 樹脂(B1)の重量平均分子量は、特に制限はないが、強度および成型性の観点から、50,000~400,000であることが好ましく、70,000~300,000であることがより好ましい。 The weight average molecular weight of the resin (B1) is not particularly limited, but is preferably 50,000 to 400,000, more preferably 70,000 to 300,000 from the viewpoint of strength and moldability. ..
 樹脂(B1)のガラス転移点は、110~140℃であることが好ましく、110~135℃であることがより好ましく、110~130℃であることが特に好ましい。ガラス転移点が110℃以上であると、樹脂シートが熱環境あるいは湿熱環境において変形や割れを生じることが少ないことから好ましい。一方、140℃以下であると、鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形によって成形する場合に加工性に優れることから好ましい。 The glass transition point of the resin (B1) is preferably 110 to 140 ° C, more preferably 110 to 135 ° C, and particularly preferably 110 to 130 ° C. When the glass transition point is 110 ° C. or higher, the resin sheet is less likely to be deformed or cracked in a thermal environment or a moist thermal environment, which is preferable. On the other hand, when the temperature is 140 ° C. or lower, it is preferable because it is excellent in processability when it is formed by continuous heat shaping by a mirror surface roll or a shaping roll or by batch type heat shaping by a mirror surface mold or a shaping die.
 具体的な樹脂(B1)としては、オプティマス7500、6000(三菱ガス化学製)が挙げられる。なお上述した樹脂(B1)は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the resin (B1) include Optimus 7500 and 6000 (manufactured by Mitsubishi Gas Chemical Company). The above-mentioned resin (B1) may be used alone or in combination of two or more.
 高硬度樹脂として樹脂(B1)を使用する場合には、ポリカーボネート樹脂(a1)としてユピゼータT-1380(三菱ガス化学製)を使用することが好ましい。 When a resin (B1) is used as the high hardness resin, it is preferable to use Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company) as the polycarbonate resin (a1).
 また、高硬度樹脂として、一般式(1)で表される構成単位(R、Rがともにメチル基;メタクリル酸メチル)を75モル%、一般式(2)で表される構成単位(Rが水素原子、Rがシクロヘキシル基;ビニルシクロヘキサン)を25モル%含む共重合体である樹脂(B1)を使用し、ポリカーボネート樹脂(a1)として一般式(3a)の構成単位を含むポリカーボネート樹脂を使用し、末端停止剤として一般式(4)で表される1価フェノール(Rの炭素数が8~22)を使用する態様が特に好ましい。 Further, as the high hardness resin, the structural unit represented by the general formula (1) (R 1 and R 2 are both methyl groups; methyl methacrylate) is 75 mol%, and the structural unit represented by the general formula (2) ( A polycarbonate resin (B1) which is a copolymer containing 25 mol% of R 3 is a hydrogen atom and R 4 is a cyclohexyl group; vinyl cyclohexane) is used, and the polycarbonate resin (a1) contains a constituent unit of the general formula (3a). It is particularly preferable to use a resin and use a monovalent phenol represented by the general formula ( 4 ) (R5 has 8 to 22 carbon atoms) as a terminal terminator.
 樹脂(B1)の製造方法としては、特に限定されないが、少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを重合した後、該芳香族ビニルモノマー由来の芳香族二重結合を水素化して得られたものが好適である。 The method for producing the resin (B1) is not particularly limited, but after polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, an aromatic derived from the aromatic vinyl monomer is used. Those obtained by hydrogenating the double bond are suitable.
 前記芳香族ビニルモノマーとしては、特に制限されないが、スチレン、α-メチルスチレン、p-ヒドロキシスチレン、アルコキシスチレン、クロロスチレン、およびそれらの誘導体などが挙げられる。これらうち、芳香族ビニルモノマーはスチレンであることが好ましい。 The aromatic vinyl monomer is not particularly limited, and examples thereof include styrene, α-methylstyrene, p-hydroxystyrene, alkoxystyrene, chlorostyrene, and derivatives thereof. Of these, the aromatic vinyl monomer is preferably styrene.
 (メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーの重合には、公知の方法を用いることができるが、例えば、塊状重合法や溶液重合法などにより製造することができる。 A known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, and for example, it can be produced by a bulk polymerization method, a solution polymerization method, or the like.
 塊状重合法は、上記モノマーおよび重合開始剤を含むモノマー組成物を完全混合槽に連続的に供給し、100~180℃で連続重合する方法などにより行われる。上記モノマー組成物は、必要に応じて連鎖移動剤を含んでいてもよい。 The bulk polymerization method is carried out by continuously supplying a monomer composition containing the above-mentioned monomer and a polymerization initiator to a complete mixing tank and continuously polymerizing at 100 to 180 ° C. The monomer composition may contain a chain transfer agent, if necessary.
 前記重合開始剤としては、特に限定されないが、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、過酸化ベンゾイル、1,1-ジ(t-ヘキシルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン、t-ヘキシルプロポキシイソプロピルモノカーボネート、t-アミルパーオキシノルマルオクトエート、t-ブチルペルオキシイソプロピルモノカーボネート、ジ-t-ブチルパーオキサイド等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物が挙げられる。これらは単独でまたは2種以上を組み合わせて用いることができる。 The polymerization initiator is not particularly limited, but is t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di (t-). Hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, t-hexylpropoxyisopropylmonocarbonate, t-amyl Organic peroxides such as peroxynormal octate, t-butylperoxyisopropyl monocarbonate, di-t-butyl peroxide, 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methyl) Butylnitrile), 2,2'-azobis (2,4-dimethylvaleronitrile) and other azo compounds can be mentioned. These can be used alone or in combination of two or more.
 前記連鎖移動剤としては、特に限定されないが、例えば、α-メチルスチレンダイマーが挙げられる。 The chain transfer agent is not particularly limited, and examples thereof include α-methylstyrene dimer.
 溶液重合法に用いられる溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒;酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒;テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。これらの溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。 Examples of the solvent used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane; ester solvents such as ethyl acetate and methyl isobutyrate, and ketone solvents such as acetone and methyl ethyl ketone; tetrahydrofuran, Ether-based solvents such as dioxane; alcohol-based solvents such as methanol and isopropanol can be mentioned. These solvents may be used alone or in combination of two or more.
 (メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーを重合した後の芳香族ビニルモノマー由来の芳香族二重結合を水素化する水素化反応に用いられる溶媒は、上記の重合溶媒と同じであっても異なっていてもよい。例えば、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。 The solvent used for the hydrogenation reaction to hydrogenate the aromatic double bond derived from the aromatic vinyl monomer after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer is the same as the above polymerization solvent. May be different. For example, hydrocarbon solvents such as cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as tetrahydrofuran and dioxane, alcohol solvents such as methanol and isopropanol. Examples include solvents.
 水素化の方法は特に限定されず、公知の方法を用いることができる。例えば、水素圧力3~30MPa、反応温度60~250℃でバッチ式あるいは連続流通式で行うことができる。反応温度が60℃以上であると、反応時間がかかり過ぎることがないことから好ましい。一方、反応温度が250℃以下であると、分子鎖の切断やエステル部位の水素化等の副反応が起こらないまたはほとんど起こらないことから好ましい。 The method of hydrogenation is not particularly limited, and a known method can be used. For example, it can be carried out by a batch method or a continuous flow method at a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. When the reaction temperature is 60 ° C. or higher, the reaction time does not take too long, which is preferable. On the other hand, when the reaction temperature is 250 ° C. or lower, side reactions such as cleavage of molecular chains and hydrogenation of ester sites do not occur or hardly occur, which is preferable.
 水素化反応に用いられる触媒としては、例えば、ニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウムなどの金属またはそれら金属の酸化物、塩もしくは錯体化合物を、カーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土などの多孔性担体に担持した固体触媒などが挙げられる。 Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium, or oxides, salts, or complex compounds of these metals, and carbon, alumina, silica, silica-alumina, and diatomaceous earth. Examples thereof include a solid catalyst carried on a porous carrier such as.
 水素化反応により、芳香族ビニルモノマー由来の芳香族二重結合は、70%以上が水素化されることが好ましい。即ち、芳香族ビニルモノマー由来の構成単位中に含まれる芳香族二重結合の未水素化率は、30%未満であることが好ましく、10%未満であることがより好ましく、5%未満であることがさらに好ましい。未水素化率が30%未満であると、透明性に優れた樹脂を得ることができることから好ましい。なお、未水素化部分の構成単位は、樹脂(B1)における他の構成単位となりうる。 It is preferable that 70% or more of the aromatic double bond derived from the aromatic vinyl monomer is hydrogenated by the hydrogenation reaction. That is, the unhydrogenation rate of the aromatic double bond contained in the structural unit derived from the aromatic vinyl monomer is preferably less than 30%, more preferably less than 10%, and less than 5%. Is even more preferable. When the dehydrogenation rate is less than 30%, a resin having excellent transparency can be obtained, which is preferable. The structural unit of the unhydrogenated portion can be another structural unit in the resin (B1).
 樹脂(B2)
 樹脂(B2)は、(メタ)アクリル酸エステル構成単位を6~77質量%、スチレン構成単位を15~71質量%、および不飽和ジカルボン酸構成単位を8~23質量%含む共重合体である。この際、前記樹脂(B2)は、他の構成単位をさらに有していてもよい。
Resin (B2)
The resin (B2) is a copolymer containing 6 to 77% by mass of the (meth) acrylic acid ester constituent unit, 15 to 71% by mass of the styrene constituent unit, and 8 to 23% by mass of the unsaturated dicarboxylic acid constituent unit. .. At this time, the resin (B2) may further have other structural units.
 前記樹脂(B2)における(メタ)アクリル酸エステル構成単位を構成する(メタ)アクリル酸エステル単量体としては、特に制限されないが、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2エチルヘキシル等が挙げられる。これらのうち、(メタ)アクリル酸エステル単量体はメタクリル酸メチルであることが好ましい。上述の(メタ)アクリル酸エステル単量体は、(メタ)アクリル酸エステル構成単位として単独で含まれていても、2種以上を組み合わせて含まれていてもよい。 The (meth) acrylic acid ester monomer constituting the (meth) acrylic acid ester structural unit in the resin (B2) is not particularly limited, but is acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate. , 2Ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and the like. Of these, the (meth) acrylic acid ester monomer is preferably methyl methacrylate. The above-mentioned (meth) acrylic acid ester monomer may be contained alone as a (meth) acrylic acid ester constituent unit, or may be contained in combination of two or more kinds.
 (メタ)アクリル酸エステル構成単位の含有量は、樹脂(B2)の全質量に対して、6~77質量%であり、20~70質量%であることが好ましい。 The content of the (meth) acrylic acid ester constituent unit is 6 to 77% by mass, preferably 20 to 70% by mass, based on the total mass of the resin (B2).
 前記樹脂(B2)におけるスチレン構成単位としては、特に限定されず、任意の公知のスチレン系単量体を用いることができる。前記スチレン単量体としては、入手の容易性の観点から、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらのうち、相溶性の観点からスチレン単量体はスチレンであることが好ましい。上述のスチレン単量体は、スチレン構成単位として単独で含まれていても、2種以上を組み合わせて含まれていてもよい。 The styrene constituent unit in the resin (B2) is not particularly limited, and any known styrene-based monomer can be used. Examples of the styrene monomer include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like from the viewpoint of availability. Of these, the styrene monomer is preferably styrene from the viewpoint of compatibility. The above-mentioned styrene monomer may be contained alone as a styrene constituent unit, or may be contained in combination of two or more kinds.
 スチレン構成単位の含有量は、樹脂(B2)の全質量に対して、15~71質量%であり、20~66質量%であることが好ましい。 The content of the styrene constituent unit is 15 to 71% by mass, preferably 20 to 66% by mass, based on the total mass of the resin (B2).
 前記樹脂(B2)における不飽和ジカルボン酸構成単位を構成する不飽和ジカルボン酸無水物単量体としては、特に限定されないが、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられる。これらのうち、スチレン系単量体との相溶性の観点から、不飽和ジカルボン酸無水物単量体は無水マレイン酸であることが好ましい。上述の不飽和ジカルボン酸無水物単量体は、不飽和ジカルボン酸構成単位として単独で含まれていても、2種以上を組み合わせて含まれていてもよい。 The unsaturated dicarboxylic acid anhydride monomer constituting the unsaturated dicarboxylic acid constituent unit in the resin (B2) is not particularly limited, and examples thereof include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid. Will be. Of these, the unsaturated dicarboxylic acid anhydride monomer is preferably maleic anhydride from the viewpoint of compatibility with the styrene-based monomer. The unsaturated dicarboxylic acid anhydride monomer described above may be contained alone as an unsaturated dicarboxylic acid constituent unit, or may be contained in combination of two or more.
 不飽和ジカルボン酸構成単位の含有量は、樹脂(B2)の全質量に対して、8~23質量%であり、10~23質量%であることが好ましい。 The content of the unsaturated dicarboxylic acid constituent unit is 8 to 23% by mass, preferably 10 to 23% by mass, based on the total mass of the resin (B2).
 前記樹脂(B2)における他の構成単位としては、例えば、N-フェニルマレイミドなどが挙げられる。 Examples of other structural units in the resin (B2) include N-phenylmaleimide and the like.
 他の構成単位の含有量は、樹脂(B2)の全構成単位に対して、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。 The content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and more preferably 2 mol% or less, based on all the constituent units of the resin (B2). Especially preferable.
 上述の(メタ)アクリル酸エステル構成単位、スチレン構成単位、および不飽和ジカルボン酸構成単位の合計含有量は、樹脂(B2)の全構成単位に対して、好ましくは90~100モル%であり、より好ましくは95~100モル%であり、特に好ましくは98~100モル%である。 The total content of the above-mentioned (meth) acrylic acid ester constituent unit, styrene constituent unit, and unsaturated dicarboxylic acid constituent unit is preferably 90 to 100 mol% with respect to all the constituent units of the resin (B2). It is more preferably 95 to 100 mol%, and particularly preferably 98 to 100 mol%.
 樹脂(B2)の重量平均分子量は、特に制限はないが、50,000~300,000であることが好ましく、80,000~200,000であることがより好ましい。 The weight average molecular weight of the resin (B2) is not particularly limited, but is preferably 50,000 to 300,000, more preferably 80,000 to 200,000.
 樹脂(B2)のガラス転移点は、90~150℃であることが好ましく、100~150℃であることがより好ましく、115~150℃であることが特に好ましい。 The glass transition point of the resin (B2) is preferably 90 to 150 ° C, more preferably 100 to 150 ° C, and particularly preferably 115 to 150 ° C.
 具体的な樹脂(B2)としては、レジスファイ R100、R200、R310(デンカ製)、デルペット980N(旭化成製)、hw55(ダイセル・エボニック製)等が挙げられる。なお、上述した樹脂(B2)は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the resin (B2) include Regisphi R100, R200, R310 (manufactured by Denka), Delpet 980N (manufactured by Asahi Kasei), hp55 (manufactured by Daicel Evonik) and the like. The above-mentioned resin (B2) may be used alone or in combination of two or more.
 高硬度樹脂として樹脂(B2)を使用する場合には、ポリカーボネート樹脂(a1)として一般式(3a)の構成単位を含むポリカーボネート樹脂を使用する態様が好ましい。さらには、末端停止剤として一般式(4)で表される1価フェノール(Rの炭素数が8~22)を使用する態様が特に好ましい。このようなポリカーボネート樹脂としては、ユピゼータT-1380(三菱ガス化学製)、ユーピロンE-2000(三菱エンジニアリングプラスチックス製)等が挙げられる。 When the resin (B2) is used as the high hardness resin, it is preferable to use the polycarbonate resin containing the structural unit of the general formula (3a) as the polycarbonate resin (a1). Further, it is particularly preferable to use a monovalent phenol represented by the general formula ( 4 ) (R5 has 8 to 22 carbon atoms) as the terminal terminator. Examples of such a polycarbonate resin include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company) and Iupiron E-2000 (manufactured by Mitsubishi Engineering Plastics).
 また、高硬度樹脂として、メタクリル酸メチル構成単位6~26質量%、スチレン構成単位55~21質量%、無水マレイン酸構成単位15~23質量%で構成される共重合体(R100、R200、またはR310;デンカ製)の樹脂(B2)を使用する場合には、ポリカーボネート樹脂(a1)としてユピゼータT-1380を使用する態様が好ましい。 Further, as a high hardness resin, a copolymer (R100, R200, or R100, R200, or) composed of methyl methacrylate constituent unit 6 to 26% by mass, styrene constituent unit 55 to 21% by mass, and maleic anhydride constituent unit 15 to 23% by mass. When the resin (B2) of R310; manufactured by Denka) is used, it is preferable to use the Iupizeta T-1380 as the polycarbonate resin (a1).
 さらに、高硬度樹脂として、メタクリル酸メチル構成単位6質量%、スチレン71%、無水マレイン酸23%で構成される共重合体(R310;デンカ製)である樹脂(B2)を使用する場合には、ポリカーボネート樹脂(a1)としてユピゼータT-1380を使用する態様が特に好ましい。 Further, when a resin (B2) which is a copolymer (R310; manufactured by Denka) composed of 6% by mass of methyl methacrylate constituent unit, 71% styrene and 23% maleic anhydride is used as the high hardness resin. , The embodiment in which the Iupizeta T-1380 is used as the polycarbonate resin (a1) is particularly preferable.
 なお、樹脂(B2)の製造方法は、特に限定されないが、塊状重合法や溶液重合法が挙げられる。 The method for producing the resin (B2) is not particularly limited, and examples thereof include a massive polymerization method and a solution polymerization method.
 樹脂(B3)
 樹脂(B3)は、一般式(5)で表される構成単位(c)を含む重合体である。この際、前記重合体は、一般式(6)で表される構成単位(d)をさらに含むことが好ましい。また、前記樹脂(B3)は、他の構成単位をさらに含んでいてもよい。
Resin (B3)
The resin (B3) is a polymer containing the structural unit (c) represented by the general formula (5). At this time, it is preferable that the polymer further contains the structural unit (d) represented by the general formula (6). Further, the resin (B3) may further contain other structural units.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(5)で表される構成単位(c)の含有量は、樹脂(B3)の全構成単位に対して、50~100モル%であることが好ましく、60~100モル%であることがより好ましく、70~100モル%であることが特に好ましい。 The content of the structural unit (c) represented by the general formula (5) is preferably 50 to 100 mol%, preferably 60 to 100 mol%, based on all the structural units of the resin (B3). Is more preferable, and 70 to 100 mol% is particularly preferable.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(6)で表される構成単位(d)の含有量は、樹脂(B3)の全構成単位に対して、0~50モル%であることが好ましく、0~40モル%であることがより好ましく、0~30モル%であることが特に好ましい。 The content of the structural unit (d) represented by the general formula (6) is preferably 0 to 50 mol%, preferably 0 to 40 mol%, based on all the structural units of the resin (B3). Is more preferable, and 0 to 30 mol% is particularly preferable.
 前記樹脂(B3)における他の構成単位としては、例えば、下記式(3a)で表される構成単位が挙げられる。 Examples of the other structural unit in the resin (B3) include a structural unit represented by the following formula (3a).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 他の構成単位の含有量は、樹脂(B3)の全構成単位に対して、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。 The content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and more preferably 2 mol% or less, based on all the constituent units of the resin (B3). Especially preferable.
 構成単位(c)と構成単位(d)の合計含有量は、樹脂(B3)の全構成単位に対して、90~100モル%であることが好ましく、95~100モル%であることがより好ましく、98~100モル%であることがさらに好ましい。 The total content of the constituent unit (c) and the constituent unit (d) is preferably 90 to 100 mol%, more preferably 95 to 100 mol%, based on the total constituent units of the resin (B3). It is preferably 98 to 100 mol%, more preferably 98 to 100 mol%.
 樹脂(B3)の重量平均分子量は、15,000~75,000が好ましく、20,000~70,000がより好ましく、25,000~65,000が特に好ましい。 The weight average molecular weight of the resin (B3) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000, and particularly preferably 25,000 to 65,000.
 樹脂(B3)のガラス転移点は、105~150℃であることが好ましく、110~140℃であることがより好ましく、110~135℃であることが特に好ましい。 The glass transition point of the resin (B3) is preferably 105 to 150 ° C, more preferably 110 to 140 ° C, and particularly preferably 110 to 135 ° C.
 具体的な樹脂(B3)としては、ユーピロン KH3410UR、KH3520UR、KS3410UR(三菱エンジニアリングプラスチック社製)等が挙げられる。なお、上述した樹脂(B3)は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the resin (B3) include Iupiron KH3410UR, KH3520UR, KS3410UR (manufactured by Mitsubishi Engineering Plastics Co., Ltd.) and the like. The above-mentioned resin (B3) may be used alone or in combination of two or more.
 高硬度樹脂として樹脂(B3)を使用する場合には、ポリカーボネート樹脂(a1)として一般式(3a)の構成単位を含むポリカーボネート樹脂を使用する態様が好ましい。さらには、末端停止剤として一般式(4)で表される1価フェノール(Rの炭素数が8~22)を使用する態様が特に好ましい。このようなポリカーボネート樹脂としては、ユピゼータT-1380(三菱ガス化学製)が挙げられる。特に、樹脂(B3)としてユーピロンKS3410UR(三菱エンジニアリングプラスチックス製)を使用し、ポリカーボネート樹脂(a1)としてユピゼータT-1380(三菱ガス化学製)を使用することが好ましい。 When the resin (B3) is used as the high hardness resin, it is preferable to use the polycarbonate resin containing the structural unit of the general formula (3a) as the polycarbonate resin (a1). Further, it is particularly preferable to use a monovalent phenol represented by the general formula ( 4 ) (R5 has 8 to 22 carbon atoms) as the terminal terminator. Examples of such a polycarbonate resin include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company). In particular, it is preferable to use Iupiron KS3410UR (manufactured by Mitsubishi Engineering Plastics) as the resin (B3) and Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company) as the polycarbonate resin (a1).
 なお、高硬度樹脂として樹脂(B3)を使用する場合には、樹脂(B1)~(B6)以外の他の樹脂を含むことが好ましい。この際、前記樹脂(B1)~(B6)以外の他の樹脂としては、構成単位(c)を含まず構成単位(d)を含む樹脂が好ましく、構成単位(d)のみからなる樹脂がより好ましい。具体的には、芳香族ポリカーボネート樹脂(例えば、ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000;三菱エンジニアリングプラスチックス社製)等が使用可能である。 When the resin (B3) is used as the high hardness resin, it is preferable to include a resin other than the resins (B1) to (B6). At this time, as the resin other than the resins (B1) to (B6), a resin containing the constituent unit (d) without containing the constituent unit (c) is preferable, and a resin consisting only of the constituent unit (d) is more preferable. preferable. Specifically, aromatic polycarbonate resins (for example, Iupylon S-2000, Iupylon S-1000, Iupylon E-2000; manufactured by Mitsubishi Engineering Plastics Co., Ltd.) and the like can be used.
 前記樹脂(B1)~(B6)以外の他の樹脂を含む場合、樹脂(B3)は、高硬度樹脂層に含まれる全樹脂に対して、好ましくは45質量%以上、より好ましくは55質量%以上の割合で含まれる。 When a resin other than the resins (B1) to (B6) is contained, the resin (B3) is preferably 45% by mass or more, more preferably 55% by mass, based on the total resin contained in the high hardness resin layer. It is included in the above ratio.
 樹脂(B3)の製造方法は、特に限定されないが、モノマーとしてビスフェノールCを使用することを除いては、上述したポリカーボネート樹脂(a1)の製造方法と同様の方法で製造することができる。 The method for producing the resin (B3) is not particularly limited, but the resin (B3) can be produced by the same method as the above-mentioned method for producing the polycarbonate resin (a1) except that bisphenol C is used as the monomer.
 樹脂(B4)
 樹脂(B4)は、スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を60~90質量%、およびN-置換型マレイミド構成単位を5~20質量%含む共重合体である。なお、前記樹脂(B4)は、他の構成単位をさらに含んでいてもよい。
Resin (B4)
The resin (B4) is a copolymer containing 5 to 20% by mass of a styrene constituent unit, 60 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit. be. The resin (B4) may further contain other structural units.
 前記樹脂(B4)におけるスチレン構成単位としては、特に限定されず、任意の公知のスチレン系単量体を用いることができる。前記スチレン単量体としては、入手の容易性の観点から、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらのうち、相溶性の観点からスチレン単量体はスチレンであることが好ましい。上述のスチレン単量体は、スチレン構成単位として単独で含まれていても、2種以上を組み合わせて含まれていてもよい。 The styrene constituent unit in the resin (B4) is not particularly limited, and any known styrene-based monomer can be used. Examples of the styrene monomer include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, t-butylstyrene and the like from the viewpoint of availability. Of these, the styrene monomer is preferably styrene from the viewpoint of compatibility. The above-mentioned styrene monomer may be contained alone as a styrene constituent unit, or may be contained in combination of two or more kinds.
 スチレン構成単位の含有量は、樹脂(B4)の全質量に対して、5~20質量%であり、5~15質量%であることが好ましく、5~10質量%であることがより好ましい。 The content of the styrene constituent unit is 5 to 20% by mass, preferably 5 to 15% by mass, and more preferably 5 to 10% by mass with respect to the total mass of the resin (B4).
 前記樹脂(B4)における(メタ)アクリル酸エステル構成単位を構成する(メタ)アクリル酸エステル単量体としては、特に制限されないが、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2エチルヘキシル等が挙げられる。これらのうち、(メタ)アクリル酸エステル単量体はメタクリル酸メチルであることが好ましい。上述の(メタ)アクリル酸エステル単量体は、(メタ)アクリル酸エステル構成単位として単独で含まれていても、2種以上を組み合わせて含まれていてもよい。 The (meth) acrylic acid ester monomer constituting the (meth) acrylic acid ester structural unit in the resin (B4) is not particularly limited, but is acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate. , 2Ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate and the like. Of these, the (meth) acrylic acid ester monomer is preferably methyl methacrylate. The above-mentioned (meth) acrylic acid ester monomer may be contained alone as a (meth) acrylic acid ester constituent unit, or may be contained in combination of two or more kinds.
 (メタ)アクリル酸エステル構成単位の含有量は、樹脂(B4)の全質量に対して、60~90質量%であり、70~90質量%であることが好ましく、80~90質量%であることがより好ましい。 The content of the (meth) acrylic acid ester constituent unit is 60 to 90% by mass, preferably 70 to 90% by mass, and preferably 80 to 90% by mass with respect to the total mass of the resin (B4). Is more preferable.
 前記樹脂(B4)におけるN-置換型マレイミド構成単位としては、N-フェニルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ニトロフェニルマレイミド、N-トリブロモフェニルマレイミドなどのN-アリールマレイミド等に由来する構成単位が挙げられる。このうち、アクリル樹脂との相溶性の観点からN-フェニルマレイミドに由来する構成単位が好ましい。上述のN-置換型マレイミドに由来する構成単位は、N-置換型マレイミド構成単位として単独で含まれていても、2種以上を組み合わせて含まれていてもよい。 The N-substituted maleimide constituent unit in the resin (B4) includes N-phenylmaleimide, N-chlorophenylmaleimide, N-methylphenylmaleimide, N-naphthylmaleimide, N-hydroxyphenylmaleimide, N-methoxyphenylmaleimide, and N. Examples thereof include structural units derived from N-arylmaleimide such as -carboxyphenylmaleimide, N-nitrophenylmaleimide, and N-tribromophenylmaleimide. Of these, a structural unit derived from N-phenylmaleimide is preferable from the viewpoint of compatibility with the acrylic resin. The structural unit derived from the above-mentioned N-substituted maleimide may be contained alone as the N-substituted maleimide structural unit, or may be contained in combination of two or more.
 N-置換型マレイミド構成単位の含有量は、樹脂(B4)の全質量に対して、5~20質量%であり、5~15質量%であることが好ましく、5~10質量%であることがより好ましい。 The content of the N-substituted maleimide constituent unit is 5 to 20% by mass, preferably 5 to 15% by mass, and 5 to 10% by mass with respect to the total mass of the resin (B4). Is more preferable.
 前記他の構成単位としては、一般式(1)で表される(メタ)アクリル酸エステル構成単位と、一般式(2)で表される脂肪族ビニル構成単位等が挙げられる。この際、前記一般式(1)および前記一般式(2)は、上述した樹脂(B1)のものと同様である。 Examples of the other structural unit include a (meth) acrylic acid ester structural unit represented by the general formula (1), an aliphatic vinyl structural unit represented by the general formula (2), and the like. At this time, the general formula (1) and the general formula (2) are the same as those of the resin (B1) described above.
 他の構成単位の含有量は、樹脂(B4)の全構成単位に対して、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることが特に好ましい。 The content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and more preferably 2 mol% or less, based on all the constituent units of the resin (B4). Especially preferable.
 スチレン構成単位、(メタ)アクリル酸エステル構成単位、およびN-置換型マレイミド構成単位の合計含有量は、樹脂(B4)の全構成単位に対して、90~100モル%であることが好ましく、95~100モル%であることがより好ましく、98~100モル%であることがさらに好ましい。 The total content of the styrene constituent unit, the (meth) acrylic acid ester constituent unit, and the N-substituted maleimide constituent unit is preferably 90 to 100 mol% with respect to the total constituent unit of the resin (B4). It is more preferably 95 to 100 mol%, and even more preferably 98 to 100 mol%.
 樹脂(B4)の重量平均分子量は、50,000~250,000であることが好ましく、100,000~200,000がより好ましい。 The weight average molecular weight of the resin (B4) is preferably 50,000 to 250,000, more preferably 100,000 to 200,000.
 樹脂(B4)のガラス転移点は、110~150℃であることが好ましく、115~140℃であることがより好ましく、115~135℃であることが特に好ましい。 The glass transition point of the resin (B4) is preferably 110 to 150 ° C, more preferably 115 to 140 ° C, and particularly preferably 115 to 135 ° C.
 具体的な樹脂(B4)としては、デルペット PM120N(旭化成株式会社製)が挙げられる。なお、上述した樹脂(B4)は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the resin (B4) include Delpet PM120N (manufactured by Asahi Kasei Corporation). The above-mentioned resin (B4) may be used alone or in combination of two or more.
 高硬度樹脂として樹脂(B4)を使用する場合には、ポリカーボネート樹脂(a1)として一般式(3a)の構成単位を含むポリカーボネート樹脂を使用する態様が好ましい。さらには、末端停止剤として一般式(4)で表される1価フェノール(Rの炭素数が8~22)を使用する態様が特に好ましい。このようなポリカーボネート樹脂としては、ユピゼータT-1380(三菱ガス化学製)が挙げられる。特に、樹脂(B4)としてスチレン構成単位7%、(メタ)アクリル酸エステル構成単位86%、およびN-置換型マレイミド構成単位7%からなるデルペットPM-120Nを使用し、ポリカーボネート樹脂(a1)としてユピゼータT-1380を使用するのが好ましい。 When the resin (B4) is used as the high hardness resin, it is preferable to use the polycarbonate resin containing the structural unit of the general formula (3a) as the polycarbonate resin (a1). Further, it is particularly preferable to use a monovalent phenol represented by the general formula ( 4 ) (R5 has 8 to 22 carbon atoms) as the terminal terminator. Examples of such a polycarbonate resin include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company). In particular, as the resin (B4), Delpet PM-120N composed of 7% styrene constituent unit, 86% (meth) acrylic acid ester constituent unit, and 7% N-substituted maleimide constituent unit is used, and the polycarbonate resin (a1) is used. It is preferable to use Iupizeta T-1380 as the above.
 樹脂(B4)の製造方法は、特に限定されないが、溶液重合、塊状重合などによって製造することができる。 The method for producing the resin (B4) is not particularly limited, but it can be produced by solution polymerization, bulk polymerization, or the like.
 樹脂(B5)
 樹脂(B5)は、スチレン構成単位を50~95質量%、不飽和ジカルボン酸構成単位を5~50質量%含む共重合体である。また、前記樹脂(B5)は、他の構成単位をさらに含んでいてもよい。
Resin (B5)
The resin (B5) is a copolymer containing 50 to 95% by mass of a styrene constituent unit and 5 to 50% by mass of an unsaturated dicarboxylic acid constituent unit. Further, the resin (B5) may further contain other structural units.
 スチレン構成単位としては、樹脂(B4)で記載のスチレン系単量体を用いることができる。樹脂(B5)は、これらのスチレン構成単位を単独で用いても、2種以上を組み合わせて用いてもよい。 As the styrene constituent unit, the styrene-based monomer described in the resin (B4) can be used. As the resin (B5), these styrene constituent units may be used alone or in combination of two or more.
 スチレン構成単位の含有量は、樹脂(B5)の全質量に対して、50~95質量%であることが好ましく、60~90質量%であることがより好ましく、65~87質量%であることがさらに好ましい。 The content of the styrene constituent unit is preferably 50 to 95% by mass, more preferably 60 to 90% by mass, and 65 to 87% by mass with respect to the total mass of the resin (B5). Is even more preferable.
 不飽和ジカルボン酸構成単位を構成する不飽和ジカルボン酸無水物単量体としては、例えばマレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられる。これらのうち、スチレン系単量体との相溶性の観点から無水マレイン酸であることが好ましい。なお、上述の不飽和ジカルボン酸無水物単量体は単独で用いても、2種以上を組み合わせて用いてもよい。 Examples of the unsaturated dicarboxylic acid anhydride monomer constituting the unsaturated dicarboxylic acid constituent unit include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid. Of these, maleic anhydride is preferable from the viewpoint of compatibility with the styrene-based monomer. The unsaturated dicarboxylic acid anhydride monomer described above may be used alone or in combination of two or more.
 不飽和ジカルボン酸構成単位の含有量は、樹脂(B5)の全質量に対して、5~50質量%であることが好ましく、10~40質量%であることがより好ましく、13~35質量%であることがさらに好ましい。 The content of the unsaturated dicarboxylic acid constituent unit is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, and 13 to 35% by mass with respect to the total mass of the resin (B5). Is more preferable.
 前記他の構成単位としては、例えば、下記一般式(1)に由来する構成単位、一般式(2)に由来する構成単位などが挙げられる。 Examples of the other structural units include a structural unit derived from the following general formula (1), a structural unit derived from the general formula (2), and the like.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式中、RおよびRは上記と同様である。 In the formula, R 1 and R 2 are the same as above.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式中、RおよびRは上記と同様である。 In the formula, R 3 and R 4 are the same as above.
 その他の構成単位の含有量は、樹脂(B5)の全構成単位に対して、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、2モル%以下であることがさらに好ましい。 The content of the other constituent units is preferably 10 mol% or less, more preferably 5 mol% or less, and more preferably 2 mol% or less, based on all the constituent units of the resin (B5). More preferred.
 スチレン構成単位および不飽和ジカルボン酸構成単位の合計含有量は、樹脂(B5)の全構成単位に対して、10~90モル%であることが好ましく、20~85モル%であることがより好ましく、30~80モル%であることがさらに好ましい。 The total content of the styrene constituent unit and the unsaturated dicarboxylic acid constituent unit is preferably 10 to 90 mol%, more preferably 20 to 85 mol%, based on all the constituent units of the resin (B5). , 30-80 mol%, more preferably.
 樹脂(B5)の重量平均分子量は、50,000~250,000であることが好ましく、100,000~200,000がより好ましい。 The weight average molecular weight of the resin (B5) is preferably 50,000 to 250,000, more preferably 100,000 to 200,000.
 樹脂(B5)のガラス転移点は、110~150℃であることが好ましく、115~140℃であることがより好ましく、115~137℃であることが特に好ましい。 The glass transition point of the resin (B5) is preferably 110 to 150 ° C, more preferably 115 to 140 ° C, and particularly preferably 115 to 137 ° C.
 樹脂(B5)として、具体的には、XIBOND140、XIBOND160(ポリスコープ社製)が挙げられる。なお、上述した樹脂(B5)は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the resin (B5) include XIBOND140 and XIBOND160 (manufactured by Polyscope). The above-mentioned resin (B5) may be used alone or in combination of two or more.
 高硬度樹脂として樹脂(B5)を使用する場合には、ポリカーボネート樹脂(a1)として一般式(3a)の構成単位を含むポリカーボネート樹脂を使用する態様が好ましい。さらには、末端停止剤として一般式(4)で表される1価フェノール(Rの炭素数が8~22)を使用する態様が特に好ましい。このようなポリカーボネート樹脂としては、ユピゼータT-1380(三菱ガス化学製)が挙げられる。特に、樹脂(B5)としてスチレン構成単位78質量%、無水マレイン酸構成単位22質量%からなるXIBOND160とアクリル樹脂とのアロイを使用し、ポリカーボネート樹脂(a1)としてユピゼータT-1380を使用するのが好ましい。 When the resin (B5) is used as the high hardness resin, it is preferable to use the polycarbonate resin containing the structural unit of the general formula (3a) as the polycarbonate resin (a1). Further, it is particularly preferable to use a monovalent phenol represented by the general formula ( 4 ) (R5 has 8 to 22 carbon atoms) as the terminal terminator. Examples of such a polycarbonate resin include Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company). In particular, it is recommended to use an alloy of XIBOND160 composed of 78% by mass of a styrene constituent unit and 22% by mass of a maleic anhydride constituent unit as the resin (B5) and an acrylic resin, and to use Iupizeta T-1380 as the polycarbonate resin (a1). preferable.
 樹脂(B5)の製造方法は、特に限定されないが、溶液重合、塊状重合などによって製造することができる。 The method for producing the resin (B5) is not particularly limited, but it can be produced by solution polymerization, bulk polymerization, or the like.
 上述の樹脂(B1)~(B6)からなる群から選択される少なくとも1つは、アロイとして含有されていてもよい。 At least one selected from the group consisting of the above-mentioned resins (B1) to (B6) may be contained as an alloy.
 アロイの具体例としては、特に制限されないが、2種の樹脂(B1)のアロイ、2種の樹脂(B2)のアロイ、2種の樹脂(B3)のアロイ、2種の樹脂(B4)のアロイ、2種の樹脂(B5)のアロイ、樹脂(B1)と樹脂(B2)とのアロイ、樹脂(B2)と樹脂(B4)とのアロイ、樹脂(B2)と他の高硬度樹脂とのアロイ、樹脂(B2)とアクリル樹脂とのアロイ、樹脂(B5)とアクリル樹脂とのアロイ等が挙げられる。 Specific examples of the alloy are not particularly limited, but are two types of resin (B1) alloy, two types of resin (B2) alloy, two types of resin (B3) alloy, and two types of resin (B4). Alloy, alloy of two kinds of resin (B5), alloy of resin (B1) and resin (B2), alloy of resin (B2) and resin (B4), resin (B2) and other high-hardness resin Examples thereof include an alloy, an alloy of a resin (B2) and an acrylic resin, and an alloy of a resin (B5) and an acrylic resin.
 前記他の高硬度樹脂としては、メタクリル酸メチル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体等が挙げられる。 Examples of the other high-hardness resin include methyl methacrylate-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, and the like.
 前記アクリル樹脂としては、アクリル樹脂としてはポリメタクリル酸メチル、メタクリル酸メチルとアクリル酸メチルまたはアクリル酸エチルとの共重合体等が挙げられる。市販品としては、アクリペット(三菱ケミカル株式会社製)、スミペックス(住友化学株式会社製)、パラペット(株式会社クラレ製)等が挙げられる。 Examples of the acrylic resin include polymethyl methacrylate, a copolymer of methyl methacrylate and methyl acrylate, or ethyl acrylate. Examples of commercially available products include Acrypet (manufactured by Mitsubishi Chemical Corporation), Sumipex (manufactured by Sumitomo Chemical Corporation), Parapet (manufactured by Kuraray Co., Ltd.) and the like.
 2種の樹脂のアロイとする場合、よりガラス転移温度が高い樹脂同士のアロイとすることが好ましい。 When using two types of resin alloys, it is preferable to use alloys of resins having a higher glass transition temperature.
 なお、上述のアロイは単独で用いても、2種以上を組み合わせて用いてもよい。 The above alloy may be used alone or in combination of two or more.
 アロイの製造方法としては、特に制限されないが、スクリュー径26mmの2軸押出機を用い、シリンダー温度240℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化する方法等が挙げられる。 The alloy manufacturing method is not particularly limited, and examples thereof include a method of melt-kneading at a cylinder temperature of 240 ° C. using a twin-screw extruder having a screw diameter of 26 mm, extruding into strands, and pelletizing with a pelletizer.
 高硬度樹脂層に含まれる高硬度樹脂、アロイは、1種類であっても2種類以上であってもよく、樹脂(B1)~(B5)、およびアロイから2種類以上を選択する場合は、同じまたは異なるカテゴリーから選択することができ、さらに樹脂(B1)~(B5)以外の高硬度樹脂を含んでいてもよい。 The high-hardness resin and alloy contained in the high-hardness resin layer may be one type or two or more types, and when two or more types are selected from the resins (B1) to (B5) and alloys, It can be selected from the same or different categories, and may further contain high hardness resins other than the resins (B1) to (B5).
 高硬度樹脂層中の高硬度樹脂の含有量は、高硬度樹脂層の全質量に対して、70~100質量%であることが好ましく、80~100質量%であることがより好ましく、100質量%であることが特に好ましい。 The content of the high-hardness resin in the high-hardness resin layer is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and 100% by mass with respect to the total mass of the high-hardness resin layer. % Is particularly preferable.
 他の樹脂
 高硬度樹脂層は、高硬度樹脂以外の他の樹脂を含んでいてもよい。前記他の樹脂としては、メタクリル酸メチル-スチレン共重合体、ポリメタクリル酸メチル、ポリスチレン、ポリカーボネート、シクロオレフィン(コ)ポリマー樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、各種エラストマーなどが挙げられる。これらの他の樹脂は単独で用いても、2種以上を組み合わせて用いてもよい。
Other Resin The high hardness resin layer may contain a resin other than the high hardness resin. Examples of the other resin include methyl methacrylate-styrene copolymer, polymethyl methacrylate, polystyrene, polycarbonate, cycloolefin (co) polymer resin, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, and various other resins. Examples include polymers. These other resins may be used alone or in combination of two or more.
 他の樹脂の含有量は、高硬度樹脂層の全質量に対して、35質量%以下であることが好ましく、25質量%以下であることがより好ましく、10質量%以下であることが特に好ましい。 The content of the other resin is preferably 35% by mass or less, more preferably 25% by mass or less, and particularly preferably 10% by mass or less, based on the total mass of the high hardness resin layer. ..
 添加剤
 高硬度樹脂層は、添加剤等を含んでいてもよい。当該添加剤としては、上述したものが用いられうる。
Additives The high hardness resin layer may contain additives and the like. As the additive, those described above can be used.
 高硬度樹脂層の厚み
 高硬度樹脂層の厚みは、好ましくは10~250μmであり、より好ましくは30~200μmであり、特に好ましくは60~150μmである。高硬度樹脂層の厚みが10μm以上であると、表面硬度が高くなることから好ましい。一方、高硬度樹脂層の厚みが250μm以下であると耐衝撃性が高くなることから好ましい。
Thickness of High Hardness Resin Layer The thickness of the high hardness resin layer is preferably 10 to 250 μm, more preferably 30 to 200 μm, and particularly preferably 60 to 150 μm. When the thickness of the high hardness resin layer is 10 μm or more, the surface hardness is high, which is preferable. On the other hand, when the thickness of the high hardness resin layer is 250 μm or less, the impact resistance is high, which is preferable.
 高硬度樹脂層の基材層への積層
 上述したとおり、基材層と高硬度樹脂層の間にはさらなる層が存在していてもよいが、ここでは、基材層上に高硬度樹脂層を積層する場合について説明する。
Laminating the high-hardness resin layer on the base material layer As described above, a further layer may exist between the base material layer and the high-hardness resin layer, but here, the high-hardness resin layer is placed on the base material layer. The case of laminating the above will be described.
 高硬度樹脂層を基材層に積層する方法としては、特に限定されず、個別に形成した基材層と高硬度樹脂層とを重ね合わせて、両者を加熱圧着する方法;個別に形成した基材層と高硬度樹脂層とを重ね合わせて、両者を接着剤によって接着する方法;基材層と高硬度樹脂層とを共押出成形する方法;予め形成しておいた高硬度樹脂層に、基材層をインモールド成形して一体化する方法等が挙げられる。これらのうち、製造コストや生産性の観点から、共押出成形する方法が好ましい。 The method of laminating the high-hardness resin layer on the base material layer is not particularly limited, and is a method of superimposing the individually formed base material layer and the high-hardness resin layer and heat-pressing both of them; the individually formed base. A method of superimposing a material layer and a high-hardness resin layer and adhering them together with an adhesive; a method of co-extruding a base material layer and a high-hardness resin layer; Examples thereof include a method in which the base material layer is in-molded and integrated. Of these, the coextrusion molding method is preferable from the viewpoint of manufacturing cost and productivity.
 共押出の方法は特に限定されない。例えば、フィードブロック方式では、フィードブロックで基材層の片面上に高硬度樹脂層を配置し、Tダイでシート状に押し出した後、成形ロールを通過させながら冷却して所望の積層体を形成する。また、マルチマニホールド方式では、マルチマニホールドダイ内で基材層の片面上に高硬度樹脂層を配置し、シート状に押し出した後、成形ロールを通過させながら冷却して所望の積層体を形成する。 The coextrusion method is not particularly limited. For example, in the feed block method, a high-hardness resin layer is placed on one side of a base material layer with a feed block, extruded into a sheet shape with a T-die, and then cooled while passing through a molding roll to form a desired laminate. do. Further, in the multi-manifold method, a high-hardness resin layer is arranged on one side of the base material layer in the multi-manifold die, extruded into a sheet shape, and then cooled while passing through a molding roll to form a desired laminated body. ..
 なお、上記方法は高硬度樹脂層を基材層以外の層に積層する場合にも同様の方法で積層することができる。 The above method can be used in the same manner when the high hardness resin layer is laminated on a layer other than the base material layer.
 基材層と高硬度樹脂層の合計厚みは、好ましくは0.5~3.5mm、より好ましくは0.5~3.0mm、さらに好ましくは1.2~3.0mmである。合計厚みが0.5mm以上であると、シートの剛性を保つことができることから好ましい。一方、合計厚みが3.5mm以下であると、シートの下にタッチパネルを設置する場合等にタッチセンサーの感度が悪くなるのを防ぐことができることから好ましい。 The total thickness of the base material layer and the high hardness resin layer is preferably 0.5 to 3.5 mm, more preferably 0.5 to 3.0 mm, and even more preferably 1.2 to 3.0 mm. When the total thickness is 0.5 mm or more, the rigidity of the sheet can be maintained, which is preferable. On the other hand, when the total thickness is 3.5 mm or less, it is preferable because it is possible to prevent the sensitivity of the touch sensor from deteriorating when the touch panel is installed under the sheet.
 基材層および高硬度樹脂層の合計厚みに占める基材層の厚みの割合は、好ましくは75%~99%であり、より好ましくは80~99%であり、特に好ましくは85~99%である。上記範囲とすることにより、硬度と耐衝撃性を両立できる。 The ratio of the thickness of the base material layer to the total thickness of the base material layer and the high hardness resin layer is preferably 75% to 99%, more preferably 80 to 99%, and particularly preferably 85 to 99%. be. Within the above range, both hardness and impact resistance can be achieved.
 ハードコート層
 ハードコート層は、特に制限されないが、アクリル系ハードコートを用いて作製することが好ましい。この際、ハードコート層にアンチグレア処理することがより好ましい。なお、本明細書において、「アクリル系ハードコート」とは、重合基として(メタ)アクリロイル基を含有するモノマーまたはオリゴマーまたはプレポリマーを重合して架橋構造を形成した塗膜を意味する。
Hardcoat layer The hardcoat layer is not particularly limited, but is preferably produced by using an acrylic hardcoat. At this time, it is more preferable to treat the hard coat layer with anti-glare treatment. In addition, in this specification, "acrylic hard coat" means a coating film which formed a crosslinked structure by polymerizing a monomer or oligomer or a prepolymer containing a (meth) acryloyl group as a polymerization group.
 アクリル系ハードコートの組成としては、(メタ)アクリル系モノマー、(メタ)アクリル系オリゴマー、および表面改質剤を含むことが好ましい。この際、アクリル系ハードコートは光重合開始剤をさらに含んでいてもよい。なお、本明細書において、光重合開始剤とは光ラジカル発生剤を指す。 The composition of the acrylic hard coat preferably contains a (meth) acrylic monomer, a (meth) acrylic oligomer, and a surface modifier. At this time, the acrylic hard coat may further contain a photopolymerization initiator. In the present specification, the photopolymerization initiator refers to a photoradical generator.
 (メタ)アクリル系モノマーの含有量としては、(メタ)アクリル系モノマー、(メタ)アクリル系オリゴマー、および表面改質剤の総質量に対して、2~98質量%であることが好ましく、5~50質量%であることがより好ましく、20~40質量%であることがさらに好ましい。 The content of the (meth) acrylic monomer is preferably 2 to 98% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. It is more preferably to 50% by mass, and even more preferably 20 to 40% by mass.
 また、(メタ)アクリル系オリゴマーの含有量としては、(メタ)アクリル系モノマー、(メタ)アクリル系オリゴマー、および表面改質剤の総質量に対して、2~98質量%であることが好ましく、50~94質量%であることがより好ましく、60~78質量%であることがさらに好ましい。 The content of the (meth) acrylic oligomer is preferably 2 to 98% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. , 50 to 94% by mass, more preferably 60 to 78% by mass.
 さらに、表面改質剤の含有量としては、(メタ)アクリル系モノマー、(メタ)アクリル系オリゴマー、および表面改質剤の総質量に対して、0~15質量%であることが好ましく、1~10質量%であることがより好ましく、2~5質量%であることがさらに好ましい。 Further, the content of the surface modifier is preferably 0 to 15% by mass with respect to the total mass of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. It is more preferably to 10% by mass, and even more preferably 2 to 5% by mass.
 また、光重合剤を含む場合には、前記光重合剤の含有量は、(メタ)アクリル系モノマー、(メタ)アクリル系オリゴマー、および表面改質剤の総和100質量部に対して、0.001~7質量部であることが好ましく、0.01~5質量部であることがより好ましく、0.1~3質量部であることがさらに好ましい。 When the photopolymerizer is contained, the content of the photopolymerizer is 0. With respect to 100 parts by mass of the total of the (meth) acrylic monomer, the (meth) acrylic oligomer, and the surface modifier. It is preferably 001 to 7 parts by mass, more preferably 0.01 to 5 parts by mass, and even more preferably 0.1 to 3 parts by mass.
 (メタ)アクリル系モノマー
 (メタ)アクリル系モノマーとしては、分子内に(メタ)アクリロイル基が官能基として存在するものであれば使用できる。具体的には、1官能モノマー、2官能モノマー、または3官能以上のモノマーが挙げられる。
The (meth) acrylic monomer can be used as long as the (meth) acryloyl group is present as a functional group in the molecule. Specific examples thereof include monofunctional monomers, bifunctional monomers, and trifunctional or higher functional monomers.
 1官能モノマーとしては(メタ)アクリル酸、(メタ)アクリル酸エステルが例示できる。 Examples of the monofunctional monomer include (meth) acrylic acid and (meth) acrylic acid ester.
 また、2官能および/または3官能以上の(メタ)アクリル系モノマーの具体例としては、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングルコールジ(メタ)アクリレート、トリプロピレングルコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ポリエチレングリコールジアクリレート、1,4-ブタンジオールオリゴアクリレート、ネオペンチルグリコールオリゴアクリレート、1,6-ヘキサンジオールオリゴアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリルプロポキシトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパンエチレンオキシド付加物トリアクリレート、グリセリンプロピレンオキシド付加物トリアクリレート、ペンタエリスリトールテトラアクリレート等が例示できる。 Specific examples of the bifunctional and / or trifunctional or higher (meth) acrylic monomer include diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate. 1,6-Hexanediol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl glycol diacrylate hydroxypivalate, neopentyl glycol di (meth) acrylate, 1,4-Butanediol diacrylate, 1,3-butylene glycol di (meth) acrylate, dicyclopentanyldi (meth) acrylate, polyethylene glycol diacrylate, 1,4-butanediol oligo acrylate, neopentyl glycol oligo acrylate , 1,6-hexanediol oligo acrylate, trimethylol propanetri (meth) acrylate, trimethylol propane ethoxytri (meth) acrylate, trimethylol propanepropoxytri (meth) acrylate, pentaerythritol tri (meth) acrylate, glyceryl propoxytri Examples thereof include (meth) acrylate, trimethylolpropane trimethacrylate, trimethylolpropaneethylene oxide adduct triacrylate, glycerin propylene oxide adduct triacrylate, and pentaerythritol tetraacrylate.
 ハードコート層は、(メタ)アクリル系モノマーを1種類または2種類以上含んでいてよい。 The hard coat layer may contain one type or two or more types of (meth) acrylic monomers.
 (メタ)アクリル系オリゴマー
 (メタ)アクリル系オリゴマーとしては、2官能以上の多官能ウレタン(メタ)アクリレートオリゴマー(以下、多官能ウレタン(メタ)アクリレートオリゴマーとも称する)、2官能以上の多官能ポリエステル(メタ)アクリレートオリゴマー(以下、多官能ポリエステル(メタ)アクリレートオリゴマーとも称する)、2官能以上の多官能エポキシ(メタ)アクリレートオリゴマー(以下、多官能エポキシ(メタ)アクリレートオリゴマーとも称する)等が挙げられる。
(Meta) Acrylic Oligomer As the (meth) acrylic oligomer, a bifunctional or higher functional urethane (meth) acrylate oligomer (hereinafter, also referred to as a polyfunctional urethane (meth) acrylate oligomer) or a bifunctional or higher polyfunctional polyester (hereinafter, also referred to as a polyfunctional urethane (meth) acrylate oligomer). Examples thereof include a polyfunctional polyester (meth) acrylate oligomer (hereinafter, also referred to as a polyfunctional polyester (meth) acrylate oligomer), a bifunctional or higher functional epoxy (meth) acrylate oligomer (hereinafter, also referred to as a polyfunctional epoxy (meth) acrylate oligomer), and the like.
 前記多官能ウレタン(メタ)アクリレートオリゴマーとしては、1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとポリイソシアネートとのウレタン化反応生成物;ポリオール類をポリイソシアネートと反応させて得られるイソシアネート化合物と1分子中に少なくとも1個以上の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとのウレタン化反応生成物等が挙げられる。 As the polyfunctional urethane (meth) acrylate oligomer, a urethanization reaction product of a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule and a polyisocyanate; polyols are poly. Examples thereof include a urethanization reaction product of an isocyanate compound obtained by reacting with isocyanate and a (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule.
 ウレタン化反応に用いられる1分子中に少なくとも1個の(メタ)アクリロイルオキシ基および水酸基を有する(メタ)アクリレートモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。 Examples of the (meth) acrylate monomer having at least one (meth) acryloyloxy group and a hydroxyl group in one molecule used in the urethanization reaction include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate. 2-Hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycerindi (meth) acrylate, trimerol propandi (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta Examples include (meth) acrylate.
 ウレタン化反応に用いられるポリイソシアネートとしては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのうち芳香族のイソシアネート類を水素添加して得られるジイソシアネート(例えば水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネートなどのジイソシアネート)、トリフェニルメタントリイソシアネート、ジメチレントリフェニルトリイソシアネートなどのジまたはトリのポリイソシアネート、あるいはジイソシアネートを多量化させて得られるポリイソシアネートが挙げられる。 The polyisocyanate used in the urethanization reaction includes hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and diisocyanate obtained by hydrogenating aromatic isocyanates among these diisocyanates. (For example, diisocyanate such as hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate), di or tri polyisocyanate such as triphenylmethane triisocyanate, dimethylene triphenyl triisocyanate, or polyisocyanate obtained by increasing the amount of diisocyanate. Can be mentioned.
 ウレタン化反応に用いられるポリオール類としては、一般的に芳香族、脂肪族および脂環式のポリオールのほか、ポリエステルポリオール、ポリエーテルポリオール等が使用される。 As the polyols used in the urethanization reaction, in addition to aromatic, aliphatic and alicyclic polyols, polyester polyols, polyether polyols and the like are generally used.
 通常、脂肪族および脂環式のポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、トリメチロールエタン、トリメチロールプロパン、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、グリセリン、水添ビスフェノールAなどが挙げられる。 Usually, aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, ethylene glycol, propylene glycol, trimethylolethane, trimethylolpropane, dimethylolheptan, and di. Examples thereof include trimethylolpropionic acid, dimethylolbutyrian acid, glycerin, hydrogenated bisphenol A and the like.
 ポリエステルポリオールとしては、上述したポリオール類とポリカルボン酸との脱水縮合反応により得られるものが挙げられる。ポリカルボン酸の具体的な化合物としては、コハク酸、アジピン酸、マレイン酸、トリメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。 Examples of the polyester polyol include those obtained by a dehydration condensation reaction between the above-mentioned polyols and a polycarboxylic acid. Specific examples of the polycarboxylic acid include succinic acid, adipic acid, maleic acid, trimellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrous.
 ポリエーテルポリオールとしては、ポリアルキレングリコールのほか、上述したポリオール類またはフェノール類とアルキレンオキサイドとの反応により得られるポリオキシアルキレン変性ポリオールが挙げられる。 Examples of the polyether polyol include polyalkylene glycols, the above-mentioned polyols, or polyoxyalkylene-modified polyols obtained by reacting phenols with alkylene oxides.
 前記多官能ポリエステル(メタ)アクリレートオリゴマーは、(メタ)アクリル酸、ポリカルボン酸およびポリオールを使用した脱水縮合反応により得られる。脱水縮合反応に用いられるポリカルボン酸としては、コハク酸、アジピン酸、マレイン酸、イタコン酸、トリメリット酸、ピロメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸などが挙げられる。これらのポリカルボン酸は、無水物であってもよい。また、脱水縮合反応に用いられるポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブチリオン酸、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどが挙げられる。 The polyfunctional polyester (meth) acrylate oligomer is obtained by a dehydration condensation reaction using (meth) acrylic acid, a polycarboxylic acid and a polyol. Examples of the polycarboxylic acid used in the dehydration condensation reaction include succinic acid, adipic acid, maleic acid, itaconic acid, trimellitic acid, pyromellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, and terephthalic acid. These polycarboxylic acids may be anhydrous. The polyols used in the dehydration condensation reaction include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, dimethylolheptan, dimethylolpropionic acid, and dimethylol. Examples thereof include butyionic acid, trimethylolpropane, trimethylolpropane, pentaerythritol, and dipentaerythritol.
 前記多官能エポキシ(メタ)アクリレートオリゴマーは、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得られる。ポリグリシジルエーテルとしては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルなどが挙げられる。 The polyfunctional epoxy (meth) acrylate oligomer is obtained by an addition reaction between polyglycidyl ether and (meth) acrylic acid. Examples of the polyglycidyl ether include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
 ハードコート層は、(メタ)アクリル系オリゴマーを1種類または2種類以上含んでいてよい。 The hard coat layer may contain one type or two or more types of (meth) acrylic oligomers.
 表面改質剤
 表面改質剤とは、レベリング剤、帯電防止剤、界面活性剤、撥水撥油剤、無機粒子、有機粒子などのハードコート層の表面性能を変えるものである。
Surface modifiers Surface modifiers change the surface performance of hardcourt layers such as leveling agents, antistatic agents, surfactants, water and oil repellents, inorganic particles, and organic particles.
 前記レベリング剤としては、例えば、ポリエーテル変性ポリアルキルシロキサン、ポリエーテル変性シロキサン、ポリエステル変性水酸基含有ポリアルキルシロキサン、アルキル基を有するポリエーテル変性ポリジメチルシロキサン、変性ポリエーテル、シリコン変性アクリルなどが挙げられる。 Examples of the leveling agent include polyether-modified polyalkylsiloxane, polyether-modified siloxane, polyester-modified hydroxyl group-containing polyalkylsiloxane, polyether-modified polydimethylsiloxane having an alkyl group, modified polyether, silicon-modified acrylic and the like. ..
 前記帯電防止剤としては、例えば、グリセリン脂肪酸エステルモノグリセライド、グリセリン脂肪酸エステル有機酸モノグリセライド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、陽イオン性界面活性剤、陰イオン性界面活性剤などが挙げられる。 Examples of the antistatic agent include glycerin fatty acid ester monoglyceride, glycerin fatty acid ester organic acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, cationic surfactant, and anionic surfactant.
 前記界面活性剤および前記撥水撥油剤としては、例えば、含フッ素基・親油性基含有オリゴマー、含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマーなどのフッ素を含有した界面活性剤および撥水撥油剤が挙げられる。 Examples of the surfactant and the water- and oil-repellent agent include fluorine-containing surfactants, lipophilic group-containing oligomers, fluorine-containing groups, hydrophilic groups, lipophilic groups, UV-reactive group-containing oligomers, and other fluorine-containing surfactants. Examples include activators and water and oil repellents.
 前記無機粒子としては、例えば、シリカ粒子、アルミナ粒子、ジルコニア粒子、シリコン粒子銀粒子、ガラス粒子などが挙げられる。 Examples of the inorganic particles include silica particles, alumina particles, zirconia particles, silicon particles, silver particles, and glass particles.
 前記有機粒子としては、例えば、アクリル粒子、シリコン粒子などが挙げられる。 Examples of the organic particles include acrylic particles and silicon particles.
 ハードコート層は、表面改質剤を1種類または2種類以上含んでいてよい。 The hard coat layer may contain one type or two or more types of surface modifiers.
 光重合開始剤
 光重合開始剤としては、単官能光重合開始剤が挙げられる。具体的には、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン[ダロキュアー2959:メルク社製];α-ヒドロキシ-α,α'-ジメチルアセトフェノン[ダロキュアー1173:メルク社製];メトキシアセトフェノン、2,2'-ジメトキシ-2-フェニルアセトフェノン[イルガキュア-651]、1-ヒドロキシ-シクロヘキシルフェニルケトンなどのアセトフェノン系開始剤;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾインエーテル系開始剤;その他、ハロゲン化ケトン、アシルホスフィノキシド、アシルホスフォナートなどを例示することができる。これらの光重合開始剤は単独で用いても、2種以上を組み合わせて用いてもよい。
Photopolymerization Initiator Examples of the photopolymerization initiator include a monofunctional photopolymerization initiator. Specifically, 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone [Darocure 2959: manufactured by Merck]; α-hydroxy-α, α'-dimethylacetophenone [Darocure 1173: Merck]. Made]; Acetphenone-based initiators such as methoxyacetophenone, 2,2'-dimethoxy-2-phenylacetophenone [Irgacure-651], 1-hydroxy-cyclohexylphenylketone; benzoin ether-based initiators such as benzoin ethyl ether and benzoin isopropyl ether started. Agents; In addition, halogenated ketones, acylphosphinoxides, acylphosphonates and the like can be exemplified. These photopolymerization initiators may be used alone or in combination of two or more.
 ハードコート層の形成方法
 ハードコート層の形成方法は特に限定されないが、例えば、ハードコート層の下に位置する層(例えば高硬度樹脂層)上にハードコート液を塗布した後、光重合させることにより形成することができる。
Method of Forming Hard Court Layer The method of forming the hard coat layer is not particularly limited, but for example, a hard coat liquid is applied on a layer located under the hard coat layer (for example, a high hardness resin layer) and then photopolymerized. Can be formed by
 ハードコート液(重合性組成物)を塗布する方法は特に限定されず、公知の方法を用いることができる。例えば、スピンコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、捌け法などが挙げられる。 The method of applying the hard coat liquid (polymerizable composition) is not particularly limited, and a known method can be used. For example, spin coating method, dip method, spray method, slide coating method, bar coating method, roll coating method, gravure coating method, meniscus coating method, flexographic printing method, screen printing method, beat coating method, handling method and the like can be mentioned. ..
 光重合における光照射に用いられるランプとしては、光波長420nm以下に発光分布を有するものが用いられる。その例としては低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが挙げられる。この中でも、高圧水銀灯またはメタルハライドランプは開始剤の活性波長領域の光を効率よく発光し、得られる高分子の粘弾性的性質を架橋により低下させるような短波長の光や、反応組成物を加熱蒸発させるような長波長の光を多く発光しないために好ましい。 As the lamp used for light irradiation in photopolymerization, a lamp having a light emission distribution with a light wavelength of 420 nm or less is used. Examples thereof include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, and the like. Among these, high-pressure mercury lamps or metal halide lamps efficiently emit light in the active wavelength region of the initiator, and heat short-wavelength light or reaction compositions that reduce the viscoelastic properties of the obtained polymer by cross-linking. It is preferable because it does not emit a large amount of long-wavelength light that causes evaporation.
 上記ランプの照射強度は、得られるポリマーの重合度を左右する因子であり、目的製品の性能毎に適宜制御される。通常のアセトフェノン基を有する開裂型の開始剤を配合した場合、照度は0.1~300mW/cmの範囲が好ましい。特に、メタルハライドランプを用いて、照度を10~40mW/cmとすることが好ましい。 The irradiation intensity of the lamp is a factor that influences the degree of polymerization of the obtained polymer, and is appropriately controlled for each performance of the target product. When a cleavage-type initiator having a normal acetophenone group is blended, the illuminance is preferably in the range of 0.1 to 300 mW / cm 2 . In particular, it is preferable to use a metal halide lamp and set the illuminance to 10 to 40 mW / cm 2 .
 光重合反応は、空気中の酸素または反応性組成物中に溶解する酸素により阻害される。そのため、光照射は酸素による反応阻害を消去し得る手法を用いて実施することが望ましい。そのような手法の1つとして、反応性組成物をポリエチレンテレフタレートやテフロン製のフィルムによって覆って酸素との接触を断ち、フィルムを通して光を反応性組成物へ照射する方法がある。また、窒素ガスや炭酸ガスのような不活性ガスにより酸素を置換したイナート雰囲気下で、光透過性の窓を通して組成物に光を照射してもよい。 The photopolymerization reaction is inhibited by oxygen in the air or oxygen dissolved in the reactive composition. Therefore, it is desirable to carry out light irradiation using a method that can eliminate the reaction inhibition due to oxygen. One such method is to cover the reactive composition with a film made of polyethylene terephthalate or Teflon to cut off contact with oxygen and irradiate the reactive composition with light through the film. Further, the composition may be irradiated with light through a light-transmitting window in an inert atmosphere in which oxygen is replaced with an inert gas such as nitrogen gas or carbon dioxide gas.
 光照射をイナート雰囲気下で行う場合、その雰囲気酸素濃度を低レベルに保つために、常に一定量の不活性ガスが導入される。この不活性ガスの導入により、反応性組成物表面に気流が発生し、モノマー蒸発が起こる。モノマー蒸発のレベルを抑制するためには、不活性ガスの気流速度は、不活性ガス雰囲気下を移動するハードコート液が塗布された積層体に対する相対速度として1m/sec以下であることが好ましく、0.1m/sec以下であることがより好ましい。気流速度を上記範囲にすることにより、気流によるモノマー蒸発は実質的に抑えられる。 When light irradiation is performed in an inert atmosphere, a certain amount of inert gas is always introduced in order to keep the atmospheric oxygen concentration at a low level. Due to the introduction of this inert gas, an air flow is generated on the surface of the reactive composition, and monomer evaporation occurs. In order to suppress the level of monomer evaporation, the air velocity of the inert gas is preferably 1 m / sec or less as a relative velocity with respect to the laminate coated with the hard coat liquid moving under the atmosphere of the inert gas. It is more preferably 0.1 m / sec or less. By setting the airflow velocity in the above range, the monomer evaporation due to the airflow is substantially suppressed.
 ハードコート層の密着性を向上させる目的で、塗布面に前処理を行うことがある。処理例として、サンドブラスト法、溶剤処理法、コロナ放電処理法、クロム酸処理法、火炎処理法、熱風処理法、オゾン処理法、紫外線処理法、樹脂組成物によるプライマー処理法などの公知の方法が挙げられる。 The coated surface may be pretreated for the purpose of improving the adhesion of the hard coat layer. Known treatment examples include a sandblast method, a solvent treatment method, a corona discharge treatment method, a chromic acid treatment method, a flame treatment method, a hot air treatment method, an ozone treatment method, an ultraviolet treatment method, and a primer treatment method using a resin composition. Can be mentioned.
 なお、ハードコート層にアンチグレア処理を行う場合、当該アンチグレア処理の方法としては、特に制限されないが、アンチグレア型を用いる方法が挙げられる。例えば、まず高硬度樹脂層と、反応性組成物を塗布して得られた塗膜と、アンチグレア型とをこの順に積層させる。次いで、反応性組成物を光重合し、アンチグレア型を脱型する方法が挙げられる。反応性組成物の光重合体(ハードコート層)は、アンチグレア型との接触面において、アンチグレア型の粗面が反映された形状を有することとなる。なお、アンチグレア型の材料は、UV光を透過するものであれば特に制限はなく、ガラス、透明樹脂等が用いられる。アンチグレア処理の他の方法として、反応性組成物に粒子を添加する方法、得られたハードコート層表面を処理する方法等が挙げられる。使用するアンチグレア型の種類(表面のヘーズ、厚さ等)、添加する粒子の添加量等を制御することで、ハードコート層のアンチグレア処理の程度を調整することができる。 When the hard coat layer is subjected to anti-glare treatment, the method of anti-glare treatment is not particularly limited, and examples thereof include a method using an anti-glare type. For example, first, a high-hardness resin layer, a coating film obtained by applying a reactive composition, and an anti-glare type are laminated in this order. Then, a method of photopolymerizing the reactive composition to demold the antiglare type can be mentioned. The photopolymer (hardcoat layer) of the reactive composition has a shape that reflects the rough surface of the antiglare type on the contact surface with the antiglare type. The antiglare type material is not particularly limited as long as it transmits UV light, and glass, a transparent resin, or the like is used. Other methods of anti-glare treatment include a method of adding particles to the reactive composition, a method of treating the surface of the obtained hard coat layer, and the like. The degree of anti-glare treatment of the hard coat layer can be adjusted by controlling the type of anti-glare type used (surface haze, thickness, etc.), the amount of particles to be added, and the like.
 ハードコート層は、さらに修飾されてもよい。例えば、反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことができる。これらの処理方法は特に限定されず、公知の方法を用いることができる。例えば、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる。 The hard coat layer may be further modified. For example, any one or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment can be applied. These treatment methods are not particularly limited, and known methods can be used. For example, a method of applying a reflection-reducing paint, a method of depositing a dielectric thin film, a method of applying an antistatic paint, and the like can be mentioned.
 ハードコート層
 ハードコート層の膜厚としては、1~40μmであることが好ましく、2~10μmであることがより好ましい。ハードコート層の膜厚が1μm以上であると、十分な硬度を得ることができることから好ましい。一方、膜厚が40μm以下であると、曲げ加工時のクラックの発生を抑制することができることから好ましい。なお、ハードコート層の膜厚は、断面を顕微鏡等で観察し、塗膜界面から表面までを実測することにより測定可能である。
Hardcoat layer The film thickness of the hardcoat layer is preferably 1 to 40 μm, more preferably 2 to 10 μm. When the film thickness of the hard coat layer is 1 μm or more, sufficient hardness can be obtained, which is preferable. On the other hand, when the film thickness is 40 μm or less, it is preferable because the generation of cracks during bending can be suppressed. The film thickness of the hard coat layer can be measured by observing the cross section with a microscope or the like and actually measuring the film thickness from the coating film interface to the surface.
 ハードコート層の表面粗さ(Ra)は、0.01μm以上であることが好ましく、0.01~0.5μmであることがより好ましく、0.02~0.3μmであることがさらに好ましい。ハードコート層の表面粗さ(Ra)が0.01μm以上であると、表面の凹凸形状によって外光を散乱させて外光の反射や像の映り込みによる視認性の低下を防止できることから好ましい。なお、本明細書において、ハードコート層の表面粗さ(Ra)は、JIS-B-0601-1994に定める方法により中心線平均粗さ(Ra)を算出した値を採用する。 The surface roughness (Ra) of the hard coat layer is preferably 0.01 μm or more, more preferably 0.01 to 0.5 μm, and even more preferably 0.02 to 0.3 μm. When the surface roughness (Ra) of the hard coat layer is 0.01 μm or more, it is preferable because external light can be scattered by the uneven shape of the surface to prevent deterioration of visibility due to reflection of external light and reflection of an image. In this specification, the surface roughness (Ra) of the hard coat layer adopts the value obtained by calculating the center line average roughness (Ra) by the method specified in JIS-B-0601-1994.
 ハードコート層表面の鉛筆硬度は、2H以上であることが好ましく、2H~3Hであることがより好ましい。なお、ハードコート層の鉛筆硬度は、JIS K 5600-5-4:1999に準拠した鉛筆ひっかき硬度試験にて評価した結果である。具体的には、ハードコート層の表面に対して角度45度、荷重750gで次第に硬度を増して鉛筆を押し付け、きず跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価する。 The pencil hardness on the surface of the hard coat layer is preferably 2H or more, and more preferably 2H to 3H. The pencil hardness of the hard coat layer is the result of evaluation by a pencil scratch hardness test based on JIS K 5600-5-4: 1999. Specifically, the hardness is gradually increased against the surface of the hard coat layer at an angle of 45 degrees and a load of 750 g, and the pencil is pressed against the surface, and the hardness of the hardest pencil that does not cause a scratch mark is evaluated as the pencil hardness.
 (曲げ成形)
 曲げ成形の方法としては、特に制限されないが、樹脂シートが加熱して軟化させて、曲げ加工をする方法であることが好ましい。なお、曲げ成形には、直線曲げ、R曲げ、熱プレス成形等が含まれる。
(Bending molding)
The bending molding method is not particularly limited, but a method in which the resin sheet is heated to soften it and then bent is preferable. The bending molding includes linear bending, R bending, hot press molding and the like.
 加熱方法としては、特に制限されないが、パイプヒーター、熱赤外線ヒーター、非接触両面加熱サンドイッチヒーター、乾燥機中での乾燥、電気炉等が挙げられる。これらの加熱方法は、単独で用いても、2種以上を組み合わせて用いてもよい。 The heating method is not particularly limited, and examples thereof include a pipe heater, a thermal infrared heater, a non-contact double-sided heating sandwich heater, drying in a dryer, and an electric furnace. These heating methods may be used alone or in combination of two or more.
 加熱領域は、樹脂シートの一部(部分加熱)であってもよいし、全部(全面加熱)であってもよい。部分加熱の場合、小さい曲げ半径(曲げR)で曲げることができる、低コストである等の観点から好ましい。全面加熱の場合、多様な形状に曲げ成形できる、反りが生じにくい、割れが起こりにくい等の観点から好ましい。 The heating region may be a part (partial heating) of the resin sheet or the whole (whole heating). In the case of partial heating, it is preferable from the viewpoint of being able to bend with a small bending radius (bending R), low cost, and the like. In the case of full surface heating, it is preferable from the viewpoints that it can be bent and molded into various shapes, that it is less likely to warp, and that it is less likely to crack.
 軟化温度は、使用する樹脂シートによっても異なるが、基材層を構成する樹脂(2以上の樹脂を含む場合には含有率が最も高い樹脂)の軟化点±50℃であることが好ましく、軟化点±30℃であることがより好ましい。例えば、基材層にポリカーボネート樹脂を主に含むポリカーボネート樹脂シートである場合、軟化温度は、100~150℃であることが好ましく、110~140℃であることがより好ましい。 The softening temperature varies depending on the resin sheet used, but is preferably a softening point of ± 50 ° C. of the resin constituting the base material layer (the resin having the highest content when two or more resins are contained), and is softened. It is more preferable that the point is ± 30 ° C. For example, in the case of a polycarbonate resin sheet mainly containing a polycarbonate resin in the base material layer, the softening temperature is preferably 100 to 150 ° C, more preferably 110 to 140 ° C.
 曲げ加工の方法は型を使用しなくてもよいし、型を使用してもよい。 The bending method does not have to use a mold, or a mold may be used.
 型を使用しない場合には、樹脂シートの曲げ部分に溝加工等の切り込みを行い、加熱して曲げ加工を行う方法が挙げられる。 When the mold is not used, there is a method of making a notch such as grooving in the bent part of the resin sheet and heating it to perform the bending process.
 型を使用する場合は、樹脂シートを加熱し、型にあわせて曲げ加工する方法が挙げられる。 When using a mold, there is a method of heating the resin sheet and bending it according to the mold.
 これらのうち、曲げ加工の方法としては、型を使用する方法であることが好ましい。 Of these, the method of bending is preferably a method using a mold.
 型は、片面の型であっても、凸凹(雄雌)両面の型であってもよいが、高精度の曲げ成形品が得られる観点から、凸凹(雄雌)両面の型であることが好ましい。 The mold may be a single-sided mold or an uneven (male-female) double-sided mold, but from the viewpoint of obtaining a highly accurate bent-molded product, it may be an uneven (male-female) double-sided mold. preferable.
 型の形状は、特に制限されず、得られる曲げ成形品の形状に合わせ適宜設計されうる。例えば、L型、V型、U型、P型、O型、Z型等が挙げられる。 The shape of the mold is not particularly limited and can be appropriately designed according to the shape of the obtained bent molded product. For example, L-type, V-type, U-type, P-type, O-type, Z-type and the like can be mentioned.
 型の材質は、特に制限されず、木型;ダイス鋼、アルミニウム、アルミニウム合金、亜鉛合金、ビスマス合金等の合金型;セラミックス型等が挙げられる。これらの材質は単独で用いても、2種以上を組み合わせて用いてもよい。 The material of the mold is not particularly limited, and examples thereof include wood molds; alloy molds such as die steel, aluminum, aluminum alloys, zinc alloys, and bismuth alloys; ceramic molds and the like. These materials may be used alone or in combination of two or more.
 加熱温度は、使用する樹脂シートによっても異なるが、基材層を構成する樹脂(2以上の樹脂を含む場合には含有率が最も高い樹脂)の軟化点±50℃であることが好ましく、軟化点±30℃であることがより好ましい。例えば、基材層にポリカーボネート樹脂を主に含むポリカーボネート樹脂シートである場合、加熱温度は、100~150℃であることが好ましく、110~140℃であることがより好ましい。 The heating temperature varies depending on the resin sheet used, but is preferably a softening point of ± 50 ° C. of the resin constituting the base material layer (the resin having the highest content when two or more resins are contained), and is softened. It is more preferable that the point is ± 30 ° C. For example, in the case of a polycarbonate resin sheet mainly containing a polycarbonate resin in the base material layer, the heating temperature is preferably 100 to 150 ° C, more preferably 110 to 140 ° C.
 加熱時間は、加熱領域、加熱温度、型有無や型の形状等によっても異なるが、10秒~1時間であることが好ましく、1分~30分であることがより好ましく、3分~15分であることがさらに好ましい。 The heating time varies depending on the heating region, heating temperature, presence / absence of mold, shape of mold, etc., but is preferably 10 seconds to 1 hour, more preferably 1 minute to 30 minutes, and 3 minutes to 15 minutes. Is more preferable.
 通常、曲げ加工後、冷却し、これを型から取り出すことで曲げ成形体を得ることができる。 Normally, after bending, it is cooled and taken out from the mold to obtain a bent molded product.
 (曲げ成形体)
 曲げ成形体は、反りを有する端部を含む。
(Bending molded body)
The bent part includes an end having a warp.
 曲げ成形では、曲げ時に樹脂シートに不均一な応力(曲げの内側には圧縮応力、曲げの外側には引張応力)、不均一冷却による応力が生じうる。また、樹脂シートが複数の層を有する場合(例えば、基材層-高硬度樹脂層-ハードコート層)、各層において構成する材料が異なるため、層間においても応力が生じうる。その結果、曲げ成形体の端部に反りが生じうる。 In bending molding, non-uniform stress (compressive stress on the inside of bending, tensile stress on the outside of bending) and stress due to non-uniform cooling can occur on the resin sheet during bending. Further, when the resin sheet has a plurality of layers (for example, a base material layer-a high hardness resin layer-a hard coat layer), stress may occur between the layers because the materials constituting each layer are different. As a result, warpage may occur at the ends of the bent part.
 ここで、本明細書において、「反り」とは、曲げ成形によって生じる意図しない変形を意味する。また、「端部」とは、曲げ成形体において、折り曲げ線(曲げ中心)に接する端辺(以下、「端辺」とも称する)の少なくとも一部を意味する。そして、「反りを有する端部」とは、端部のうち反りを有する領域を意味する。なお、端辺すべてに反りを有する場合には、「反りを有する端部」は反りを有する端辺と理解することができる。 Here, in the present specification, "warp" means an unintended deformation caused by bending molding. Further, the "end portion" means at least a part of an end edge (hereinafter, also referred to as "end edge") in contact with the bending line (bending center) in the bent molded body. The "end having a warp" means a region of the end having a warp. In addition, when all the ends have a warp, the "end having a warp" can be understood as the end having a warp.
 例えば、図3は、V型に曲げ成形をした曲げ成形体の斜視図である。曲げ成形体3は、折り曲げ線30でV字に曲げ成形されている。ここで、折り曲げ線30に接している端辺31および32の少なくとも一部が「端部」である。例えば、端辺31の一部に反りを有している場合には、その領域が「反りを有する端部」となる。また、例えば、端辺31の全辺に反りを有している場合には、端辺31すべてが反りを有する端部(反りを有する端辺)となる。 For example, FIG. 3 is a perspective view of a bent molded body obtained by bending into a V shape. The bent molded body 3 is bent and molded into a V shape along the bending line 30. Here, at least a part of the end sides 31 and 32 in contact with the bending line 30 is an "end portion". For example, when a part of the end side 31 has a warp, the region becomes the "end having the warp". Further, for example, when all the end sides 31 have a warp, all the end sides 31 are end portions having a warp (ends having a warp).
 また、図4は、L型に曲げ成形をした曲げ成形体の斜視図である。曲げ成形体4は、折り曲げ線(曲げ中心)40でL字に曲げ成形されている。ここで、折り曲げ線に接している端辺41および42は、その少なくとも一部が「端部」である。例えば、端辺41の一部に反りを有している場合には、その領域が「反りを有する端部」となる。また、例えば、端辺41の全辺に反りを有している場合には、端辺41すべてが反りを有する端部(反りを有する端辺)となる。 Further, FIG. 4 is a perspective view of a bent molded body obtained by bending and molding into an L shape. The bend-molded body 4 is bent and molded into an L shape along the bending line (bending center) 40. Here, at least a part of the end sides 41 and 42 in contact with the bending line is an "end portion". For example, when a part of the end side 41 has a warp, the region becomes the "end having the warp". Further, for example, when all the end sides 41 have a warp, all the end sides 41 are end portions having a warp (ends having a warp).
 なお、曲げ成形体は、両端部に反りを有していてもよいし、一方の端部にのみ反りを有していてもよい。 The bent molded product may have warpage at both ends, or may have warpage at only one end.
 曲げ成形体の大きさは、用途等によって異なるが、曲げ成形体の反りが端部に生じること、および後述する除去工程を考慮して、除去用領域を設けておくことが好ましい。例えば、図5は、V型に曲げ成形をした除去用領域を有する曲げ成形体の斜視図である。曲げ成形体5は、折り曲げ線50でV字に曲げ成形されている。ここで、曲げ成形体5は最終的に製造される曲げ成形品よりも大きく設計されている。具体的には、折り曲げ線(曲げ中心)50の方向に延長された形で除去用領域54および55を有している。除去用領域54および55は、両端部に配置されており、反りは除去用領域54および55が有する端辺51および52に発生する。このため、後述する除去工程において、除去用領域54および55を除去することで、設計された通りの大きさを有する曲げ成形品を製造することができる。すなわち、好ましい一実施形態において、曲げ成形工程は、第1の除去用領域と、本体領域と、第2の除去用領域とを含む樹脂シートを曲げ成形して、前記第1の除去用領域および前記第2の除去用領域の少なくとも一方が反りを有する端部を含む曲げ成形体を得る工程であることが好ましい。 Although the size of the bent molded body varies depending on the intended use, it is preferable to provide a removing area in consideration of the fact that the bent molded body warps at the end and the removal step described later. For example, FIG. 5 is a perspective view of a bent-molded body having a V-shaped bend-molded removal region. The bent molded body 5 is bent and molded into a V shape along the bending line 50. Here, the bend-molded body 5 is designed to be larger than the finally manufactured bend-molded product. Specifically, it has removal regions 54 and 55 extending in the direction of the bending line (bending center) 50. The removal areas 54 and 55 are arranged at both ends, and warpage occurs at the end sides 51 and 52 of the removal areas 54 and 55. Therefore, by removing the removal areas 54 and 55 in the removal step described later, it is possible to manufacture a bent molded product having the designed size. That is, in a preferred embodiment, in the bending molding step, the resin sheet including the first removing region, the main body region, and the second removing region is bent and molded to form the first removing region and the first removing region. It is preferable that the step is to obtain a bent molded product including an end portion in which at least one of the second removal regions has a warp.
 [除去工程]
 除去工程は、反りを有する端部を除去することを含む。
[Removal process]
The removal step involves removing the warped edges.
 (除去)
 前記除去は、端辺の一部に反りが形成される場合には反りを有する端部のみを除去し、端辺全辺に反りを有する場合には反りを有する端辺を除去する。なお、端辺の一部に反りが形成される場合(端辺の一部に反りが形成される場合)であっても、反りを有する端部だけでなく、端辺すべてを除去してもよい。このうち、生産性の観点から、除去工程は、反りを有する端辺を除去することを含むことが好ましい。
(Removal)
The removal removes only the warped end when a warp is formed on a part of the end edge, and removes the warped end edge when the warp is formed on all the end edges. Even if a warp is formed on a part of the end edge (a warp is formed on a part of the end edge), not only the end portion having the warp but also the entire end edge is removed. good. Of these, from the viewpoint of productivity, it is preferable that the removing step includes removing the edge having a warp.
 なお、曲げ成形体の2つの端辺のうち一方の端辺にのみ反りを有する端部がある場合、得られる曲げ成形品の美観等の観点から、反りを有しない端部を除去してもよい。すなわち、一実施形態において、除去工程は、反りを有しない端部を除去することを含むことが好ましく、反りを有しない端辺を除去することを含むことがより好ましい。 If only one of the two ends of the bent molded product has an end having a warp, even if the end having no warp is removed from the viewpoint of the aesthetic appearance of the obtained bent molded product. good. That is, in one embodiment, the removing step preferably includes removing the end portion having no warp, and more preferably includes removing the end portion having no warp.
 前記除去方法としては、特に制限されず、公知の方法が適宜採用されうる。例えば、小型切削加工機(ファナック製ロボドリル)等が使用されうる。 The removal method is not particularly limited, and a known method can be appropriately adopted. For example, a small cutting machine (FANUC Robodrill) or the like can be used.
 除去領域としては、特に制限されないが、少なくとも反りを有する端部を除去することが好ましく、反りを有する端辺を除去することがより好ましい。なお、曲げ成形体が除去用領域を含む場合には、当該除去用領域を除去することが好ましい。 The removal region is not particularly limited, but at least the end portion having a warp is preferably removed, and it is more preferable to remove the end portion having a warp. When the bent molded product contains a removal region, it is preferable to remove the removal region.
 [曲げ成形品]
 本発明の一形態によれば、上述の製造方法により製造された曲げ成形品が提供される。当該曲げ成形品は、反りがなく外観に優れる。
[Bending molded product]
According to one embodiment of the present invention, a bent molded product manufactured by the above-mentioned manufacturing method is provided. The bent molded product has no warp and is excellent in appearance.
 曲げ成形品は、計器カバーなどの自動車内装品や家電、OA機器、パーソナルコンピュータ、小型携帯機器の筐体や、携帯電話端末等のタッチパネル型表示面等の用途に好適に使用される。 Bent molded products are suitably used for automobile interior parts such as instrument covers, home appliances, OA equipment, personal computers, housings of small portable equipment, touch panel type display surfaces such as mobile phone terminals, and the like.
 以下に本発明の実施例を示すが、本発明は実施例の態様に制限されるものではない。 Examples of the present invention are shown below, but the present invention is not limited to the embodiments of the examples.
 [実施例1]
 基材層-高硬度樹脂層-ハードコート層の構成を有する樹脂シートの曲げ成形を行った。
[Example 1]
A resin sheet having a structure of a base material layer-a high hardness resin layer-a hard coat layer was bent and molded.
 (樹脂シートの作製)
 軸径35mmの単軸押出機と、軸径65mmの単軸押出機と、各押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて、基材層と高硬度樹脂層からなる積層体を成形した。
(Preparation of resin sheet)
Using a multi-layer extruder having a single-screw extruder with a shaft diameter of 35 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to each extruder, and a T-die connected to the feed block. A laminate consisting of a material layer and a high-hardness resin layer was formed.
 具体的には、軸径35mmの単軸押出機に高硬度樹脂(B2)(メタクリル酸メチル構成単位:21質量%、スチレン構成単位:64質量%、および無水マレイン酸構成単位:15質量%の共重合体、レジスファイ R100(デンカ製))を連続的に導入し、シリンダ温度230℃、吐出速度2.6kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート樹脂(ユピゼータT-1380;三菱ガス化学製)を連続的に導入し、シリンダ温度240℃、吐出速度83.0kg/hの条件で押し出した。 Specifically, a high hardness resin (B2) (methyl methacrylate constituent unit: 21% by mass, styrene constituent unit: 64% by mass, and maleic anhydride constituent unit: 15% by mass) are used in a single shaft extruder having a shaft diameter of 35 mm. A copolymer, Regis Styrene R100 (manufactured by Denka), was continuously introduced and extruded under the conditions of a cylinder temperature of 230 ° C. and a discharge rate of 2.6 kg / h. Further, a polycarbonate resin (Iupizeta T-1380; manufactured by Mitsubishi Gas Chemical Company) was continuously introduced into a single-screw extruder having a shaft diameter of 65 mm, and extruded under the conditions of a cylinder temperature of 240 ° C. and a discharge speed of 83.0 kg / h.
 押し出された高硬度樹脂およびポリカーボネート樹脂を2種2層の分配ピンを備えたフィードブロックに導入し、240℃の温度で高硬度樹脂とポリカーボネート樹脂を積層した。さらにそれを温度240℃のTダイに導入してシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却延伸し、高硬度樹脂層と基材層との積層体を得た。延伸倍率は1.3倍であった。また、得られた積層体(基材層-高硬度樹脂層)の厚みは2mm、高硬度樹脂層の厚みは中央付近で60μmであった。 The extruded high-hardness resin and polycarbonate resin were introduced into a feed block equipped with two types of two-layer distribution pins, and the high-hardness resin and polycarbonate resin were laminated at a temperature of 240 ° C. Further, it is introduced into a T-die having a temperature of 240 ° C., extruded into a sheet, and cooled and stretched from the upstream side with three mirror-finishing rolls having temperatures of 120 ° C., 130 ° C., and 190 ° C. while transferring the mirror surface to achieve high hardness. A laminate of a resin layer and a base material layer was obtained. The draw ratio was 1.3 times. The thickness of the obtained laminate (base material layer-high hardness resin layer) was 2 mm, and the thickness of the high hardness resin layer was 60 μm near the center.
 上記で得られた積層体(基材層-高硬度樹脂層)の高硬度樹脂層側に、ハードコート層を形成した。ハードコート層の材料は、以下の通りである。 A hard coat layer was formed on the high hardness resin layer side of the laminate (base material layer-high hardness resin layer) obtained above. The material of the hard coat layer is as follows.
・U6HA:6官能ウレタンアクリレートオリゴマー(新中村化学工業株式会社製)60質量%、
・4EG-A:PEG200#ジアクリレート(共栄社化学株式会社製)35質量%、
および
・RS-90:含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマー(DIC株式会社製)5質量%の混合物100質量部に対して、
・光重合開始剤:I-184(BASF製〔化合物名:1-ヒドロキシ-シクロヘキシルフェニルケトン〕)を1質量部。
U6HA: 6-functional urethane acrylate oligomer (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 60% by mass,
4EG-A: PEG200 # diacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) 35% by mass,
And · RS-90: Fluorine-containing group, hydrophilic group, lipophilic group, UV-reactive group-containing oligomer (manufactured by DIC Co., Ltd.) 5% by mass with respect to 100 parts by mass of the mixture.
-Photopolymerization initiator: 1 part by mass of I-184 (manufactured by BASF [compound name: 1-hydroxy-cyclohexylphenyl ketone]).
 上記材料をバーコーターにて積層体の高硬度樹脂層に塗布し、その上からヘーズが10%の2mm厚のガラス板を被せた。ガラス板上からメタルハライドランプ(20mW/cm)を5秒間当ててハードコートを硬化させ、ハードコート層を付着させた。そして、ガラス板を剥離することで、基材層-高硬度樹脂層-ハードコート層の構成を有する樹脂シートを作製した。なお、ハードコート層の膜厚は6μmであった。 The above material was applied to the high hardness resin layer of the laminated body with a bar coater, and a glass plate having a haze of 10% and a thickness of 2 mm was placed over the layer. A metal halide lamp (20 mW / cm 2 ) was applied from the top of the glass plate for 5 seconds to cure the hard coat, and the hard coat layer was adhered. Then, by peeling off the glass plate, a resin sheet having a structure of a base material layer-a high hardness resin layer-a hard coat layer was produced. The film thickness of the hard coat layer was 6 μm.
 (曲げ成形工程)
 熱曲げ成形(R曲げ)を行った。
(Bending molding process)
Thermal bending (R bending) was performed.
 具体的には、作製した樹脂シートを80mm×170mmの長方形にカットし、50mmRのアルミニウム製の上下型の間に設置した。0.6MPaの力で上下型を閉じて樹脂シートの熱曲げ成形を行った。アルミニウム製の上下型の温度は124℃であった。また型閉じ時間は5分であった。なお、得られた上記曲げ成形体の両端部には反りが生じていた。 Specifically, the produced resin sheet was cut into a rectangle of 80 mm × 170 mm and installed between the upper and lower molds made of 50 mmR aluminum. The upper and lower molds were closed with a force of 0.6 MPa to perform thermal bending molding of the resin sheet. The temperature of the upper and lower molds made of aluminum was 124 ° C. The mold closing time was 5 minutes. It should be noted that warpage occurred at both ends of the obtained bent molded product.
 (除去工程)
 得られた曲げ成形体の反りを有する両端部を除去した。具体的には、50mmR部分の端部から10mmずつ内側をロボドリル(FUNAC製)にて切削し、60mm×170mm(全長)の曲げ成形品を製造した。
(Removal process)
Both ends of the obtained bent molded product having a warp were removed. Specifically, the inside of the 50 mmR portion was cut by 10 mm from the end with a ROBODRILL (manufactured by FANUC) to manufacture a bent molded product having a size of 60 mm × 170 mm (total length).
 [実施例2]
 基材層の構成を有する樹脂シートの曲げ成形を行った。
[Example 2]
Bending molding of the resin sheet having the composition of the base material layer was performed.
 (樹脂シートの作製)
 単軸の軸径65mmの単層押出装置を使用しポリカーボネート樹脂(ユピゼータT-1380(三菱ガス化学社製))を連続的に導入し、シリンダ温度280℃、吐出速度83.0kg/hの条件で押し出した。
(Preparation of resin sheet)
Polycarbonate resin (Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Company, Inc.)) is continuously introduced using a single-layer extruder with a single-screw shaft diameter of 65 mm, and the conditions are a cylinder temperature of 280 ° C. and a discharge rate of 83.0 kg / h. Extruded with.
 押し出された上記ポリカーボネート樹脂を温度280℃のTダイに導入してシート状に押し出し、上流側から温度120℃、130℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却延伸することで、ポリカーボネート樹脂の基材層からなる樹脂シートを作製した。延伸倍率は1.17倍であった。得られた樹脂シートの厚みは2mmであった。 The extruded polycarbonate resin is introduced into a T-die having a temperature of 280 ° C., extruded into a sheet, and cooled and stretched while transferring the mirror surface with three mirror-finishing rolls having temperatures of 120 ° C., 130 ° C., and 190 ° C. from the upstream side. By doing so, a resin sheet made of a base material layer of a polycarbonate resin was produced. The draw ratio was 1.17 times. The thickness of the obtained resin sheet was 2 mm.
 (曲げ成形工程および除去工程)
 実施例1と同様の方法で曲げ工程および除去工程を行った。
(Bending molding process and removal process)
The bending step and the removing step were carried out in the same manner as in Example 1.
 [比較例1]
 基材層-高硬度樹脂層の構成を有する樹脂シートの曲げ成形を行った。
[Comparative Example 1]
Bending molding of a resin sheet having a structure of a base material layer-a high hardness resin layer was performed.
 (樹脂シートの作製)
 実施例1と同様の方法で、2mm厚の積層体(基材層-高硬度樹脂層)の高硬度樹脂層側に6mm厚のハードコート層を積層した樹脂シート(基材層-高硬度樹脂層-ハードコート層)を作製した。
(Preparation of resin sheet)
A resin sheet (base material layer-high hardness resin) in which a 6 mm thick hard coat layer is laminated on the high hardness resin layer side of a 2 mm thick laminate (base material layer-high hardness resin layer) by the same method as in Example 1. Layer-hard coat layer) was prepared.
 (曲げ成形工程)
 作製した樹脂シートを60mm×170mmの長方形にカットしたことを除いては、実施例1と同様の方法で曲げ成形を行った。なお、得られた上記曲げ成形体の両端部には反りが生じていた。
(Bending molding process)
Bending molding was performed in the same manner as in Example 1 except that the produced resin sheet was cut into a rectangle of 60 mm × 170 mm. It should be noted that warpage occurred at both ends of the obtained bent molded product.
 [比較例2]
 基材層の構成を有する樹脂シートの曲げ成形を行った。
 (樹脂シートの作製)
 実施例2と同様の方法で2mm厚の樹脂シート(基材層)を作製した。
[Comparative Example 2]
Bending molding of the resin sheet having the composition of the base material layer was performed.
(Preparation of resin sheet)
A resin sheet (base material layer) having a thickness of 2 mm was produced by the same method as in Example 2.
 (曲げ成形工程)
 作製した樹脂シートを60mm×170mmの長方形にカットしたことを除いては、実施例1と同様の方法で曲げ成形を行った。なお、得られた上記曲げ成形体の両端部には反りが生じていた。
(Bending molding process)
Bending molding was performed in the same manner as in Example 1 except that the produced resin sheet was cut into a rectangle of 60 mm × 170 mm. It should be noted that warpage occurred at both ends of the obtained bent molded product.
 実施例1~2および比較例1~2で製造した曲げ成形品を目視で観察し、曲げ成形品の端部の反り上がりを評価した。得られた結果を下記表1に示す。 The bent-molded products produced in Examples 1 and 2 and Comparative Examples 1 and 2 were visually observed, and the warp of the end portion of the bent-molded product was evaluated. The obtained results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1の結果から、実施例1~2の曲げ成形品は、反りがなく外観に優れることが分かる。 From the results in Table 1, it can be seen that the bent molded products of Examples 1 and 2 have no warp and are excellent in appearance.
 1、3、4、5 曲げ成形体
 11、12 反りを有する端部
 30、40、50 折り曲げ線
 31、32、41、42、51、52 端辺
 54、55 除去用領域
1, 3, 4, 5 Bent molded body 11, 12 Ends with warp 30, 40, 50 Bend lines 31, 32, 41, 42, 51, 52 Edge edges 54, 55 Removal area

Claims (7)

  1.  樹脂シートを曲げ成形して、反りを有する端部を含む曲げ成形体を得る曲げ成形工程と、
     前記反りを有する端部を除去する除去工程と、
    を含む、曲げ成形品の製造方法。
    A bending molding process of bending a resin sheet to obtain a bending molded body including an end having a warp.
    The removal step of removing the warped end and
    A method for manufacturing a bent molded product, including.
  2.  前記樹脂シートが、ポリカーボネート樹脂を含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the resin sheet contains a polycarbonate resin.
  3.  前記樹脂シートが、ポリカーボネート樹脂を含む基材層の少なくとも一方の面に、高硬度樹脂を含む高硬度樹脂層を有する、請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the resin sheet has a high-hardness resin layer containing a high-hardness resin on at least one surface of the base material layer containing a polycarbonate resin.
  4.  前記樹脂シートが、前記基材層の一方の面に前記高硬度樹脂層を有し、前記基材層の他方の面にハードコート層を有する、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the resin sheet has the high hardness resin layer on one surface of the base material layer and a hard coat layer on the other surface of the base material layer.
  5.  前記高硬度樹脂が、
     下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子またはメチル基であり、Rは炭素数1~18のアルキル基である。)
    で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素原子またはメチル基であり、Rは炭素数1~4の炭化水素基で置換されていてもよいシクロヘキシル基である。)
    で表される脂肪族ビニル構成単位(b)とを含む共重合体である樹脂(B1);
     (メタ)アクリル酸エステル構成単位を6~77質量%、スチレン構成単位を15~71質量%、および不飽和ジカルボン酸構成単位を8~23質量%含む共重合体である樹脂(B2);
     下記一般式(5):
    Figure JPOXMLDOC01-appb-C000003
    で表される構成単位(c)を含む重合体である樹脂(B3);
     スチレン構成単位を5~20質量%、(メタ)アクリル酸エステル構成単位を60~90質量%、およびN-置換型マレイミド構成単位を5~20質量%含む共重合体である樹脂(B4);および
     スチレン構成単位を50~95質量%、不飽和ジカルボン酸単位を5~50質量%含む共重合体である樹脂(B5)
    からなる群から選択される少なくとも1つを含む、請求項3または4に記載の製造方法。
    The high hardness resin
    The following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 is a hydrogen atom or a methyl group, and R 2 is an alkyl group having 1 to 18 carbon atoms.)
    The (meth) acrylic acid ester structural unit (a) represented by and the following general formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 3 is a hydrogen atom or a methyl group, and R 4 is a cyclohexyl group which may be substituted with a hydrocarbon group having 1 to 4 carbon atoms.)
    Resin (B1) which is a copolymer containing an aliphatic vinyl constituent unit (b) represented by.
    Resin (B2) which is a copolymer containing 6 to 77% by mass of (meth) acrylic acid ester constituent unit, 15 to 71% by mass of styrene constituent unit, and 8 to 23% by mass of unsaturated dicarboxylic acid constituent unit;
    The following general formula (5):
    Figure JPOXMLDOC01-appb-C000003
    Resin (B3) which is a polymer containing the structural unit (c) represented by.
    Resin (B4) which is a copolymer containing 5 to 20% by mass of a styrene constituent unit, 60 to 90% by mass of a (meth) acrylic acid ester constituent unit, and 5 to 20% by mass of an N-substituted maleimide constituent unit; And a resin (B5) which is a copolymer containing 50 to 95% by mass of styrene constituent units and 5 to 50% by mass of unsaturated dicarboxylic acid units.
    The production method according to claim 3 or 4, which comprises at least one selected from the group consisting of.
  6.  前記樹脂(B3)が、下記一般式(6):
    Figure JPOXMLDOC01-appb-C000004
    で表される構成単位(d)をさらに含む共重合体である、請求項5に記載の製造方法。
    The resin (B3) has the following general formula (6):
    Figure JPOXMLDOC01-appb-C000004
    The production method according to claim 5, wherein the copolymer further comprises the structural unit (d) represented by.
  7.  請求項1~6のいずれか1項に記載の製造方法により製造された、曲げ成形品。
     
    A bent molded product manufactured by the manufacturing method according to any one of claims 1 to 6.
PCT/JP2021/040578 2020-11-09 2021-11-04 Manufacturing method for bend forming product of resin sheet, and bend forming product WO2022097677A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180074515.4A CN116761709A (en) 2020-11-09 2021-11-04 Method for producing curved molded article of resin sheet and curved molded article
JP2022560808A JPWO2022097677A1 (en) 2020-11-09 2021-11-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020186746 2020-11-09
JP2020-186746 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022097677A1 true WO2022097677A1 (en) 2022-05-12

Family

ID=81457104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040578 WO2022097677A1 (en) 2020-11-09 2021-11-04 Manufacturing method for bend forming product of resin sheet, and bend forming product

Country Status (4)

Country Link
JP (1) JPWO2022097677A1 (en)
CN (1) CN116761709A (en)
TW (1) TW202233392A (en)
WO (1) WO2022097677A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338277A (en) * 2003-05-16 2004-12-02 Araco Corp Method for bending plate-like molding
JP2005177790A (en) * 2003-12-17 2005-07-07 Nisshin Steel Co Ltd Method for bending metallic sheet
JP2009241109A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Bend-forming method of channel member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338277A (en) * 2003-05-16 2004-12-02 Araco Corp Method for bending plate-like molding
JP2005177790A (en) * 2003-12-17 2005-07-07 Nisshin Steel Co Ltd Method for bending metallic sheet
JP2009241109A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Bend-forming method of channel member

Also Published As

Publication number Publication date
TW202233392A (en) 2022-09-01
JPWO2022097677A1 (en) 2022-05-12
CN116761709A (en) 2023-09-15

Similar Documents

Publication Publication Date Title
JP7105784B2 (en) High-hardness molding resin sheet and molded products using the same
JP6883043B2 (en) Two-stage curable laminated board
JP7301063B2 (en) METHOD FOR MANUFACTURING POLYCARBONATE SHEET PRESS MOLDED BODY
EP3936303A1 (en) Resin sheet for high hardness molding and molded article using same
WO2022097677A1 (en) Manufacturing method for bend forming product of resin sheet, and bend forming product
WO2021193215A1 (en) Anti-glare laminate body
CN114174041A (en) Resin sheet for molding and molded article using same
WO2021166636A1 (en) Laminated resin sheet for molding, and molded article using same
WO2022091810A1 (en) Laminated resin sheet for molding, and molded article using same
JP7470597B2 (en) Transparent resin laminate, and transparent substrate material and transparent protective material using the same
WO2021033483A1 (en) Anti-glare layered body
JP2023110549A (en) Laminated resin sheet for molding, and molded article using the same
WO2021246295A1 (en) Resin sheet for molding and molded article using same
WO2024057985A1 (en) Anti-glare laminate and method for manufacturing same
WO2020203359A1 (en) Anti-glare laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560808

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180074515.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889230

Country of ref document: EP

Kind code of ref document: A1