WO2022032866A1 - 一种适应多工况的脱硫废水零排放处理方法及*** - Google Patents

一种适应多工况的脱硫废水零排放处理方法及*** Download PDF

Info

Publication number
WO2022032866A1
WO2022032866A1 PCT/CN2020/122579 CN2020122579W WO2022032866A1 WO 2022032866 A1 WO2022032866 A1 WO 2022032866A1 CN 2020122579 W CN2020122579 W CN 2020122579W WO 2022032866 A1 WO2022032866 A1 WO 2022032866A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
flue gas
tower
tank
desulfurization
Prior art date
Application number
PCT/CN2020/122579
Other languages
English (en)
French (fr)
Inventor
丹慧杰
余福胜
牛拥军
牛国平
何育东
雷鸣
王定帮
王少亮
李楠
郭浩然
吴晓龙
宦宣州
李兴华
孟令海
余昭
何仰朋
王韶晖
邹乔
张方庚
刘海培
赵彩虹
杨博
Original Assignee
西安西热锅炉环保工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安西热锅炉环保工程有限公司 filed Critical 西安西热锅炉环保工程有限公司
Priority to JP2022600111U priority Critical patent/JP3243690U/ja
Publication of WO2022032866A1 publication Critical patent/WO2022032866A1/zh
Priority to US17/902,933 priority patent/US20230017568A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/267Separation of sediment aided by centrifugal force or centripetal force by using a cyclone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/36Water and air preheating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/608Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/30Halogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/50Sorption with semi-dry devices, e.g. with slurries

Definitions

  • the invention belongs to the technical field of wastewater treatment of wet flue gas desulfurization systems, and relates to a zero-discharge treatment method and system for desulfurization wastewater that is adaptable to multiple working conditions.
  • the wet flue gas desulfurization process is widely used in the technical field of flue gas pollutant treatment.
  • the sulfur dioxide SO2 in the flue gas is absorbed by the alkaline absorbent in the desulfurization absorption tower to form a desulfurized gypsum slurry, and the gypsum slurry passes through the gypsum cyclone and gypsum. After the dehydrator removes most of the water, it becomes gypsum solid and shipped out for resource utilization.
  • the acidic pollutants such as hydrogen chloride HCl in the flue gas are absorbed together in the desulfurization absorption tower, and exist in the desulfurization slurry in the form of chloride ions Cl- .
  • the discharge amount of desulfurization wastewater is closely related to the concentration of HCl in flue gas, the concentration of Cl- in process water, and the boiler load.
  • the desulfurization wastewater is separated from the desulfurization slurry. and so on. Due to the wide range of fuel sources for boilers, fuels from different origins are often used, and slight changes in sulfur and chlorine elements in the fuel will cause different concentrations of SO 2 and HCl in the flue gas produced by combustion. Under different operating conditions of the boiler, the required Since the amount of desulfurization wastewater discharged and the amount of slurry produced are different, the desulfurization wastewater treatment system should adjust the desulfurization wastewater intake source and treatment process in time to ensure the low energy consumption operation of the desulfurization wastewater treatment system.
  • the traditional desulfurization wastewater treatment system generally separates the desulfurization absorption tower slurry through a gypsum cyclone, and the overflow slurry of the gypsum cyclone is separated by a wastewater cyclone, and the wastewater cyclone with a solid content of about 2-3% overflows.
  • the flow slurry is used as the source of desulfurization wastewater, and then processed through the triple box process of dosing, sedimentation, and flocculation, and the supernatant is discharged outside the plant. Due to the high solid content in the overflow of the wastewater cyclone, the subsequent wastewater treatment system has many failures and high operating costs, and the wastewater needs to be discharged to the outside of the plant to cause a certain environmental pollution.
  • the waste water concentration tower uses the waste heat of the low-temperature flue gas to evaporate the waste water, which basically has no effect on the boiler efficiency, but the power consumption of the waste water concentration booster fan and the waste water concentration circulation pump is relatively high.
  • the waste water drying tower extracts the high temperature flue gas before the air preheater to dry the waste water, which will reduce the heat of the flue gas recovered by the air preheater and affect the efficiency of the boiler. Therefore, the amount of waste water entering the drying tower should be minimized.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide a method and system for zero-discharge treatment of desulfurization wastewater that can adapt to multiple operating conditions.
  • the method and system can adapt to the treatment of various flue gas components, and have high reliability. And the characteristics of energy saving and economy.
  • the present invention adopts the following technical solutions to realize:
  • the zero-discharge treatment method for desulfurization wastewater adapted to multiple working conditions according to the present invention comprises the following steps:
  • the high-temperature flue gas generated by the boiler recovers heat through the economizer and air preheater, and then enters the dust collector for dust removal, and then enters the desulfurization absorption tower to remove acid pollutants, and finally is discharged through the chimney.
  • the gypsum produced by the desulfurization absorption tower The slurry enters the gypsum cyclone for separation, wherein the separated overflow slurry enters the filtrate water tank, and the separated underflow slurry enters the gypsum dehydrator for dehydration treatment.
  • the moisture in the slurry in the gypsum dehydrator is dehydrated by After the filter cloth is filtered, it enters the gas-liquid separation tank for gas-liquid separation, and the separated hydrophobicity enters the waste water collection tank;
  • the hydrophobicity collected by the wastewater collection tank is divided into There are two paths.
  • One path of excess water is sent to the desulfurization absorption tower through the filtrate water tank, and the other path is sent to the waste water drying tower through the spray water tank.
  • the water in the waste water drying tower is evaporated to dryness, so that the water in the water is evaporated into the flue gas, and the flue gas output by the waste water drying tower enters the dust collector for dust removal treatment;
  • the concentration of HCl in the flue gas is greater than or equal to the preset HCl concentration value, and the concentration ratio of SO 2 to HCl in the flue gas is greater than or equal to the preset ratio, the amount of desulfurization wastewater required to be discharged and the amount of gypsum slurry produced are large, and the current gas-liquid
  • the amount of hydrophobicity output from the separation tank is greater than or equal to the amount of desulfurization wastewater required to be discharged
  • part of the hydrophobicity in the wastewater collection tank is sent to the wastewater concentration tower, and the remaining wastewater in the wastewater collection tank is sent to the filtrate water tank, and then sent to the desulfurization absorption tower
  • the flue gas output by the dust collector is drawn out and sent to the wastewater concentration tower for countercurrent contact with the desulfurization wastewater in the wastewater concentration tower, so that the desulfurization wastewater in the wastewater concentration tower is reduced and its solid content is increased.
  • the flue gas in the waste water concentration tower is treated by the demister and then enters the desulfurization absorption tower.
  • the slurry at the bottom of the waste water concentration tower enters the thick stock box, and the slurry in the thick stock box is clarified by the clarifier and then enters the spray water tank. Then enter the waste water drying tower for evaporation to dryness;
  • the concentration of HCl in the flue gas is greater than or equal to the preset HCl concentration value, and the concentration ratio of SO 2 to HCl in the flue gas is less than the preset ratio, the amount of desulfurization wastewater required to be discharged is large, and the amount of hydrophobicity output from the gas-liquid separation tank is less than
  • the amount of desulfurization wastewater to be discharged is required, all the hydrophobicity in the wastewater collection tank is sent to the wastewater concentration tower, and then part of the slurry in the filtrate water tank is sent to the thick slurry tank, and the two parts of the slurry are evaporated in the wastewater concentration tower. After reducing and concentrating, it enters the clarifier. The supernatant in the clarifier enters the spray water tank, and then sends it to the waste water drying tower for evaporation and drying.
  • the preset HCl concentration value is determined according to the Cl ⁇ concentration of the process water, the boiler load, etc., and is preferably 7-13 ppm.
  • the concentration of HCl in the flue gas is less than the preset value, the amount of desulfurization wastewater is small; when the concentration of HCl in the flue gas is greater than or equal to the preset value, the amount of desulfurization wastewater is large.
  • the preset ratio of the concentration ratio of SO to HCl in the flue gas is determined according to the Cl concentration of the process water, the boiler load, the operating conditions of the gypsum cyclone, the gypsum dehydrator and the gas-liquid separation tank, etc. 20-30.
  • the amount of hydrophobicity output by the gas-liquid separation tank is greater than or equal to the amount of desulfurization wastewater required to be discharged; when the concentration ratio of SO 2 and HCl in the flue gas is less than the preset value
  • the amount of hydrophobicity output by the gas-liquid separation tank is less than the amount of desulfurization wastewater required to be discharged.
  • the high temperature flue gas sent into the waste water drying tower and extracted is taken from the boiler economizer and before the air preheater.
  • the salts formed by evaporating the waste water to dryness in the waste water drying tower enter the dust collector along with the flue gas to be collected.
  • the water drain in the waste water collection tank enters the waste water concentration tower as the flushing water of the mist eliminator.
  • the wastewater is clarified and conditioned in the clarifier.
  • the multi-working-condition zero-discharge treatment system for desulfurization wastewater includes a boiler, a dust collector, a desulfurization absorption tower, a chimney, a gypsum cyclone, a filtrate water tank, a gypsum dehydrator, a gas-liquid separation tank, a wastewater collection tank, and a wastewater Concentration tower, thick pulp box, clarifier, spray water tank and waste water drying tower;
  • tail flue of the boiler There are economizers and air preheaters in the tail flue of the boiler along the direction of the flue gas flow.
  • the tail flue of the boiler and the bottom outlet of the waste water drying tower are connected with the inlet of the dust collector, and the outlet of the dust collector is connected with the waste water concentration tower.
  • the flue gas inlet is connected with the flue gas inlet of the desulfurization absorption tower, the flue gas outlet of the wastewater concentration tower is connected with the flue gas inlet of the desulfurization absorption tower, the flue gas outlet of the desulfurization absorption tower is connected with the chimney, and the bottom slurry of the desulfurization absorption tower
  • the discharge port is communicated with the inlet of the gypsum cyclone through the gypsum discharge pump, the overflow slurry outlet of the gypsum cyclone is communicated with the inlet of the filtrate water tank, and the underflow slurry outlet of the gypsum cyclone is communicated with the inlet of the gypsum dehydrator;
  • the suction outlet of the gypsum dehydrator is connected with the inlet of the gas-liquid separation tank, the exhaust port of the gas-liquid separation tank is connected with the vacuum pump, the drain port of the gas-liquid separation tank is connected with the inlet of the waste water collection box, and the outlet of the waste water collection box is connected
  • the waste water conveying pump is connected with the flushing water inlet of the mist eliminator in the waste water concentration tower, the inlet of the spray water tank and the inlet of the filtrate water tank.
  • the outlet of the filtrate water tank is connected to the slurry return port of the desulfurization absorption tower and the inlet of the thick slurry tank through the filtrate water pump. connected;
  • the bottom outlet of the wastewater concentration tower is communicated with the inlet of the thick stock box, the outlet of the thick stock box is communicated with the inlet of the spray layer in the wastewater concentration tower and the inlet of the clarifier, and the outlet of the supernatant of the clarifier is connected with the inlet of the spray water tank
  • the outlet of the spray water tank is connected with the inlet of the waste water drying tower through the spray water pump, and the exhaust gas port is opened on the tail flue of the boiler. between the air preheater.
  • the outlet of the dust collector is divided into two paths by the induced draft fan, one of which is connected with the flue gas inlet of the desulfurization absorption tower, and the other is connected with the flue gas inlet of the wastewater concentration tower via the waste water concentration booster fan.
  • the outlet of the thick stock box is communicated with the spray layer in the waste water concentration tower through the circulating pump, and the outlet of the thick stock box is communicated with the inlet of the clarifier through the thick stock pump.
  • the present invention has the following beneficial effects:
  • the multi-working-condition zero-discharge treatment method and system for desulfurization wastewater according to the present invention do not provide wastewater purification treatment equipment such as wastewater cyclones and triple boxes during specific operations, the system is simple, the equipment failure is less, and gas-liquid is preferred.
  • the hydrophobicity of the separation tank is used as the source of desulfurization wastewater, and the solid content of the hydrophobicity of the gas-liquid separation tank is as low as 0.5%. requirements, the follow-up processing method is more flexible.
  • the concentration of HCl in the flue gas is low, the amount of desulfurization wastewater required to be discharged is small, and the collected hydrophobicity of the gas-liquid separation tank is directly transported to the spray water tank for subsequent drying, eliminating the waste water concentration process, and at the same time taking gas-liquid separation
  • the hydrophobicity of the tank is used as the source of desulfurization wastewater, and its solid content is low, which can save the process of wastewater clarification, and the system reliability is high.
  • the concentration of HCl in the flue gas is high, the amount of desulfurization wastewater required to be discharged is relatively large.
  • the wastewater is first concentrated and reduced by using low-temperature flue gas, and then evaporated to dryness by using high-temperature flue gas, which utilizes the waste heat resources of low-temperature flue gas. , the overall energy consumption of the system is low.
  • the concentration of SO 2 in the flue gas is also relatively high, the hydrophobicity of the gas-liquid separation tank meets the requirements of wastewater discharge.
  • the hydrophobicity of the gas-liquid separation tank is used as the source of desulfurization wastewater, and the solid content of desulfurization wastewater is low.
  • the wastewater concentration tower, clarifier and wastewater drying tower have high operational reliability.
  • the drainage of the gas-liquid separation tank with low solid content can be used as the flushing water of the mist eliminator. It is not necessary to introduce process water to flush the mist eliminator, so as to avoid the increase of the required evaporation water due to the additional increase of the influent of the wastewater concentration tower. Lower energy consumption of the system.
  • the hydrophobicity of the gas-liquid separation tank is smaller than the amount of desulfurization wastewater required to be discharged, and the two will be introduced from the wastewater collection tank and the filtrate water tank.
  • the desulfurization wastewater from the two routes is separated into the wastewater concentration tower and the thick slurry tank, which not only ensures sufficient desulfurization wastewater discharge, but also avoids the premature mixing of the two water sources, which may cause hydrophobicity to the gas-liquid separation tank with low solid content. Pollution, to ensure that the drainage of the gas-liquid separation tank can be used as the flushing water of the demister of the concentration tower.
  • the present invention has strong adaptability to flue gas components, proposes different zero-discharge treatment of desulfurization wastewater for different flue gas components, and can ensure high reliability and energy saving of the system under different working conditions.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • a layer/element when referred to as being "on" another layer/element, it can be directly on the other layer/element or intervening layers/elements may be present therebetween. element.
  • a layer/element when a layer/element is “on” another layer/element in one orientation, then when the orientation is reversed, the layer/element can be "under” the other layer/element.
  • the zero-discharge treatment system for desulfurization wastewater which is adaptable to multiple working conditions, includes a boiler 1, a dust collector 4, a desulfurization absorption tower 6, a chimney 7, a gypsum cyclone 9, a filtrate water tank 13, and a gypsum dehydrator 10.
  • gas-liquid separation tank 11 gas-liquid separation tank 11, waste water collection tank 15, waste water concentration tower 18, thick pulp box 22, clarifier 24, spray water tank 25 and waste water drying tower 27;
  • the coal generator 2 and the air preheater 3, the tail flue of the boiler 1 and the bottom outlet of the waste water drying tower 27 are all connected with the inlet of the dust collector 4, and the outlet of the dust collector 4 is connected with the flue gas inlet of the waste water concentration tower 18 and the desulfurization absorption
  • the flue gas inlet of the tower 6 is communicated with, the flue gas outlet of the waste water concentration tower 18 is communicated with the flue gas inlet of the desulfurization absorption tower 6, the flue gas outlet of the desulfurization absorption tower 6 is communicated with the chimney 7, and the bottom slurry of the desulfurization absorption tower 6 is communicated.
  • the discharge port is communicated with the inlet of the gypsum cyclone 9 through the gypsum discharge pump 8, the overflow slurry outlet of the gypsum cyclone 9 is communicated with the inlet of the filtrate water tank 13, and the underflow slurry outlet of the gypsum cyclone 9 is communicated with the gypsum dehydrator.
  • the inlet of 10 is connected; the suction outlet of the gypsum dehydrator 10 is connected with the inlet of the gas-liquid separation tank 11, the exhaust port of the gas-liquid separation tank 11 is connected with the vacuum pump 12, and the drain port of the gas-liquid separation tank 11 is connected with the waste water collection.
  • the inlet of the tank 15 is communicated, and the outlet of the waste water collection box 15 is communicated with the flushing water inlet of the mist eliminator 19 in the waste water concentration tower 18, the inlet of the spray water tank 25 and the inlet of the filtrate water tank 13 through the waste water conveying pump.
  • the outlet is communicated with the slurry return port of the desulfurization absorption tower 6 and the inlet of the thick stock box 22 through the filtrate water pump 14; the bottom outlet of the waste water concentration tower 18 is communicated with the inlet of the thick stock box 22, and the outlet of the thick stock box 22 is connected with the wastewater concentration In the tower 18, the entrance of the spray layer 20 is communicated with the entrance of the clarifier 24, the supernatant liquid outlet of the clarifier 24 is communicated with the entrance of the spray water tank 25, and the outlet of the spray water tank 25 is connected with the waste water drying tower 27 through the spray water pump 26.
  • the inlets are connected, and the tail flue of the boiler 1 is provided with a smoke outlet, wherein the smoke outlet is communicated with the smoke inlet of the waste water drying tower 27, and the smoke outlet is located between the economizer 2 and the air preheater 3.
  • the outlet of the dust collector 4 is divided into two paths by the induced draft fan 5, one of which is connected to the flue gas inlet of the desulfurization absorption tower 6, and the other is connected to the flue gas inlet of the wastewater concentration tower 18 via the waste water concentration booster fan 17.
  • the outlet of the thick stock box 22 is communicated with the spray layer 20 in the wastewater concentration tower 18 through the circulating pump 21, and the outlet of the thick stock box 22 is communicated with the inlet of the clarifier 24 through the thick stock pump 23;
  • the spray water pump 26 communicates with the inlet at the top of the waste water drying tower 27 .
  • the zero-discharge treatment method for desulfurization wastewater adapted to multiple working conditions according to the present invention is as follows:
  • the boiler 1 uses fuels from three origins A, B, and C, respectively, and the Cl ⁇ concentration in the process water entering the desulfurization system is 150 mg/L.
  • the high-temperature flue gas generated by the boiler 1 recovers heat through the economizer 2 and the air preheater 3.
  • the flue gas temperature drops to about 90°C and then enters the dust collector 4 for dust removal, and then is transported to the desulfurization absorption tower 6 through the induced draft fan 5.
  • Acid pollutants such as sulfur dioxide SO 2 and hydrogen chloride HCl are removed, and the flue gas temperature is further reduced to about 50 °C and then discharged from the chimney 7 .
  • the gypsum slurry produced by the desulfurization absorption tower 6 is transported to the gypsum cyclone 9 by the gypsum discharge pump 8 for separation, wherein the separated overflow slurry with a solid content of about 5% enters the filtrate water tank 13,
  • the underflow slurry with a solid content of about 50% enters the gypsum dehydrator 10, and through the suction of the vacuum pump 12, the moisture in the slurry in the gypsum dehydrator 10 is filtered through the filter cloth of the dehydrator, and then enters the gas-liquid with the suctioned air.
  • the separation tank 11 about 0.5% of the hydrophobic water with solid content is separated into the waste water collection tank 15 .
  • the concentration of HCl in the flue gas is 7ppm
  • the concentration of SO 2 is 750ppm
  • the amount of flue gas at the entrance of the desulfurization absorption tower 6 is 2,960,069 m 3 /h (standard state)
  • the amount of desulfurization wastewater required to be discharged is 2.7m 3 /h
  • the water-repellent amount of the gas-liquid separation tank 11 is 11.5m 3 /h
  • the 2.7m 3 /h of water collected in the waste water collection tank 15 is directly transported to the spray water tank 25 through the waste water pump 16, and then sprayed
  • the water pump 26 is transported to the waste water drying tower 27, and the high temperature flue gas at about 350°C before the air preheater 3 is extracted to evaporate the desulfurization waste water in the waste water drying tower 27, and the extracted flue gas volume is 27000 m 3 /h (standard state), moisture content After evaporation, the flue gas enters the dust collector 4, and the salts
  • the amount of desulfurization wastewater required to be discharged is small, and the collected hydrophobicity output from the gas-liquid separation tank 11 is directly transported to the spray water tank 25 for drying.
  • the system structure is relatively simple without the wastewater concentration process; and the hydrophobic output from the gas-liquid separation tank 11 is used as the source of desulfurization wastewater, and its solid content is as low as 0.5%, which can save the process of wastewater clarification and conditioning; It not only saves energy, but also has high system reliability.
  • the concentration of HCl in the flue gas is 18.5ppm
  • the concentration of SO 2 is 1250ppm
  • the amount of flue gas at the entrance of the desulfurization absorption tower 6 is 2826051m 3 /h (standard state)
  • the desulfurization required to be discharged The amount of waste water is 6.0 m 3 /h
  • the amount of water drainage of the gas-liquid separation tank 11 is 18.0 m 3 /h
  • the drainage of 6.0 m 3 /h collected by the waste water collection box 15 is transported by the waste water delivery pump 16 as the The flushing water enters the waste water concentration tower 18 ; the excess 12 m 3 /h in the waste water collection tank 15 is transported to the filtrate water tank 13 , and then returned to the desulfurization absorption tower 6 through the filtrate water pump 14 .
  • the desulfurization wastewater is transported by the circulating pump 21 to the spray layer 20 in the wastewater concentration tower 18 and sprayed out in the form of droplets.
  • the low-temperature boiler flue gas at about 90°C is drawn out from the induced draft fan 5 and enters the wastewater concentration tower 18.
  • the gas volume is 190000m 3 /h (standard state), and is transported to the wastewater concentration tower 18 through the wastewater concentration booster fan 17, and is in countercurrent contact with the sprayed desulfurization wastewater droplets, and part of the moisture in the droplets enters the flue gas through evaporation.
  • the amount of desulfurization wastewater is reduced to 2.0 m 3 /h, and the solid content is increased, and then enters into the thick stock tank 22, and is transported to the clarifier 24 by the thick stock pump 23 for clarification and conditioning, and the clarifier 24
  • the supernatant liquid flows into the spray water tank 25 by itself, and then is transported to the waste water drying tower 27 by the spray water pump 26 and evaporated to dryness.
  • the flue gas contacted with the droplets in the wastewater concentration tower 18 not only contains the evaporated water vapor, but also carries part of the desulfurization wastewater droplets.
  • the droplets are collected by the mist eliminator 19, and the flue gas output from the top of the wastewater concentration tower 18 enters the desulfurization process.
  • the amount of desulfurization wastewater required to be discharged is relatively large.
  • the wastewater is first concentrated and reduced by using low-temperature flue gas at about 90°C, and then evaporated to dryness by using high-temperature flue gas at about 350°C. Waste heat resources, the overall system energy consumption is low.
  • the amount of hydrophobicity output by the gas-liquid separation tank 11 meets the requirements for the discharge of waste water, and the hydrophobicity output from the gas-liquid separation tank 11 is used as the source of desulfurization wastewater.
  • the solid content of the desulfurization wastewater is low. and the waste water drying tower 27, etc.
  • the drain with low solid content can be used as the flushing water of the mist eliminator 19, without introducing process water to flush the mist eliminator 19, to avoid the additional increase in the inflow of the wastewater concentration tower 18.
  • the amount of evaporated water required is increased to maintain a low energy consumption of the system.
  • the concentration of HCl in the flue gas is 30.0 ppm
  • the concentration of SO 2 is 590 ppm
  • the amount of flue gas at the entrance of the desulfurization absorption tower 6 is 2,826,933 m 3 /h (standard state)
  • the amount of desulfurization wastewater required to be discharged is 9.5m 3 /h
  • the water-repellent amount of the gas-liquid separation tank 11 is 8.9m 3 /h
  • the water-repellent amount of the gas-liquid separation tank 11 is smaller than the required amount of desulfurization wastewater to be discharged
  • the drain water is all transported to the waste water concentration tower 18 by the waste water delivery pump 16 as the flushing water of the mist eliminator 19; 0.6m 3 /h of slurry is drawn from the filtrate water tank 13 and sent to the thick stock tank 22 by the filtrate water pump 14 , the two parts of the slurry are evaporated, reduced,
  • the hydrophobic amount of the gas-liquid separation tank 11 is smaller than the amount of desulfurization wastewater required to be discharged, and the two routes of desulfurization wastewater introduced from the wastewater collection tank 15 and the filtrate water tank 13 are respectively led to the wastewater concentration tower 18 and the thick slurry.
  • the tank 22 it not only ensures sufficient desulfurization wastewater discharge, but also avoids the hydrophobic pollution of the gas-liquid separation tank 11 with low solid content caused by the premature mixing of the two water sources, and ensures that the hydrophobicity of the gas-liquid separation tank 11 can be used as a Rinse water for mist eliminator 19.
  • the invention has strong adaptability to flue gas components, proposes different zero-discharge treatment methods for desulfurization wastewater for different flue gas components, and can ensure high reliability and energy-saving and economical operation of the system under different working conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种适应多工况的脱硫废水零排放处理方法及***,锅炉(1)尾部烟道及废水干燥塔(27)的底部出口均与除尘器(4)的入口连通,除尘器(4)的出口与废水浓缩塔(18)及脱硫吸收塔(6)的烟气入口连通,废水浓缩塔(18)与脱硫吸收塔(6)相连通,脱硫吸收塔(6)与烟囱(7)相连通,脱硫吸收塔(6)与石膏旋流器(9)连通,石膏旋流器(9)与滤液水箱(13)连通,石膏旋流器(9)与石膏脱水机(10)连通;石膏脱水机(10)与气液分离罐(11)连通,气液分离罐(11)与废水收集箱(15)连通,废水收集箱(15)与废水浓缩塔(18)中除雾器(19)、喷雾水箱(25)及滤液水箱(13)连通,滤液水箱(13)与脱硫吸收塔(6)及浓浆箱(22)连通;喷雾水箱(25)与废水干燥塔(27)连通,锅炉(1)的尾部烟道抽烟气口与废水干燥塔(27)的烟气入口相连通。该***及方法能够适应多种烟气成分的处理,具有可靠性高及节能经济的特点。

Description

一种适应多工况的脱硫废水零排放处理方法及*** 【技术领域】
本发明属于湿法烟气脱硫***废水处理技术领域,涉及一种适应多工况的脱硫废水零排放处理方法及***。
【背景技术】
湿法烟气脱硫工艺广泛应用于烟气污染物治理技术领域,烟气中的二氧化硫SO 2在脱硫吸收塔中被碱性吸收剂吸收,形成脱硫石膏浆液,石膏浆液经过石膏旋流器和石膏脱水机去除其中的大部分水分后,变为石膏固体外运进行资源化利用。烟气中的氯化氢HCl等酸性污染物在脱硫吸收塔中一并被吸收,以氯离子Cl -的形式存在于脱硫浆液中,Cl -与脱硫吸收塔中的其它物质很难生成沉淀物,无法形成固体从浆液中排出,再加上进入***的工艺水所携带的Cl -等,导致脱硫浆液中的Cl -浓度越来越高。过高的Cl -浓度会影响脱硫***性能、造成设备腐蚀等,因此,要求将一定量的脱硫浆液作为废水排出脱硫***外,以达到排出Cl -的目的,维持脱硫浆液中的Cl -浓度在设计允许的范围内。
脱硫废水的排放量与烟气中的HCl浓度、工艺水的Cl -浓度、锅炉负荷等密切相关,脱硫废水从脱硫浆液中分离出来,脱硫浆液的产生量与烟气中SO 2浓度、锅炉负荷等相关。由于锅炉的燃料来源广泛,经常燃用不同产地的燃料,燃料中硫元素和氯元素的略微变化都会使燃烧产生的烟气中SO 2、HCl浓度不同,在锅炉在不同运行工况下,要求的脱硫废水排放量和浆液产生量不同,脱硫废水处理***应当及时调整脱硫废水取水来源和处理工艺,方能保证脱硫废水处理***的低能耗运行。
传统的脱硫废水处理***一般是将脱硫吸收塔浆液通过石膏旋流器分离,石膏旋流器的溢流浆液再通过废水旋流器分离,含固量约2-3%的废水旋流器溢流浆液作为脱硫废水来源,再通过加药、沉淀、絮凝等三联箱工艺处理,上清液排出厂外。该方案由于废水旋流器溢流含固量较高,后续废水处理***的故障较多、运行成本也较高,而且需要向厂外排废水存在一定的环境污染。
随着环保要求越来越严格,许多工厂不允许向厂外排脱硫废水,排出脱硫***外的废水必须在厂内进行处理,实现脱硫废水零排放。利用锅炉烟气余热进行浓缩、干燥废水是有效的废水零排放处理方法,使脱硫废水中的水分蒸发进入到烟气中,废水中的离子在水分蒸干后结晶为固态的盐类,混入锅炉飞灰中,一起被除尘器收集排出***外。在该***中,废水浓缩塔利用低温烟气的废热来蒸发废水,对锅炉效率基本不产生影响,但废水浓缩增压风机和废水浓缩循环泵的电耗较高,当要求废水浓缩塔蒸发的水量不大时,增加了每吨废水的处理成本。废水干燥塔抽取空预器前的高温烟气来干燥废水,会减少空预器回收的烟气热量,对锅炉效率产生影响,因此应尽量减少进入干燥塔的废水量,当废水量较大时应先进行浓缩减量处理;而且废水干燥塔中脱硫废水的雾化粒径很小,要求进入干燥塔的废水含固量较低,否则容易出现设备磨损、结垢、堵塞等问题。因此,虽然利用烟气余热浓缩、干燥废水实现了脱硫废水零排放,但需要根据水量和水质的变化及时调整工艺流程,才能实现脱硫废水零排放***的低能耗稳定运行。
虽然公开号为CN102343207A的中国发明专利说明书中提到了一种《湿法烟气脱硫废水处理***取水模式》,提出脱硫废水取自气液分离罐疏水,然后进入后续的加药和澄清浓缩处理。但其考虑的运行工况不够全面,当烟气中SO 2浓度不高时,气液分离罐疏水量较小,会造成脱硫废水来源不足的问题;而且本说明 书中的脱硫废水后续进行加药和澄清浓缩处理,并未实现脱硫废水零排放,对取水水量和水质的要求不及脱硫废水零排放严格。
【发明内容】
本发明的目的在于克服上述现有技术的缺点,提供了一种适应多工况的脱硫废水零排放处理方法及***,该方法及***能够适应多种烟气成分的处理,且具有可靠性高及节能经济的特点。
为达到上述目的,本发明采用以下技术方案予以实现:
本发明所述的适应多工况的脱硫废水零排放处理方法包括以下步骤:
锅炉产生的高温烟气经省煤器及空预器回收热量,再进入到除尘器中进行除尘,然后进入到脱硫吸收塔中脱除酸性污染物,最后经烟囱排出,脱硫吸收塔产生的石膏浆液进入到石膏旋流器中进行分离,其中,分离出来的溢流浆液进入到滤液水箱中,分离出来的底流浆液进入到石膏脱水机中进行脱水处理,石膏脱水机内浆液中的水分通过脱水机滤布过滤后进入到气液分离罐中进行气液分离,其中,分离出来的疏水进入到废水收集箱中;
当烟气中HCl浓度小于预设HCl浓度值,要求排放的脱硫废水量较小,且当前气液分离罐输出的疏水量高于要求排放的脱硫废水量时,废水收集箱收集的疏水分为两路,一路多余的疏水经滤液水箱后进入到脱硫吸收塔中,另一路经喷雾水箱送入废水干燥塔中,同时通过抽烟气口抽取高温烟气送入废水干燥塔中,通过高温烟气对废水干燥塔中的疏水进行蒸干处理,使得疏水中的水分蒸发进入到烟气中,废水干燥塔输出的烟气进入到除尘器中进行除尘处理;
当烟气中HCl浓度大于等于预设HCl浓度值,烟气中SO 2与HCl的浓度比大于等于预设比值,此时要求排放的脱硫废水量及产生的石膏浆液量较大,当前 气液分离罐输出的疏水量大于等于要求排放的脱硫废水量时,则将废水收集箱中的部分疏水送入废水浓缩塔,废水收集箱中的剩余废水送入滤液水箱中,然后送入脱硫吸收塔中,于此同时,将除尘器输出的烟气引出一路送入废水浓缩塔中与废水浓缩塔中的脱硫废水进行逆流接触,使得废水浓缩塔中的脱硫废水减量,并增加其固含量,废水浓缩塔中的烟气经除雾器处理后进入到脱硫吸收塔中,废水浓缩塔底部的浆液进入到浓浆箱中,浓浆箱中的浆液经澄清器澄清后进入到喷雾水箱中,然后再进入到废水干燥塔中进行蒸干处理;
当烟气中HCl浓度大于等于预设HCl浓度值,烟气中的SO 2与HCl的浓度比小于预设比值,此时要求排放的脱硫废水量较大,气液分离罐输出的疏水量小于要求排放的脱硫废水量时,则将废水收集箱中的疏水全部输送至废水浓缩塔中,然后将滤液水箱中的部分浆液送入浓浆箱中,这两部分浆液在废水浓缩塔中蒸发、减量及浓缩,然后进入到澄清器中,澄清器中的上清液进入到喷雾水箱中,然后送入废水干燥塔中蒸干处理。
在上述步骤中,预设HCl浓度值根据工艺水的Cl -浓度、锅炉负荷等确定,优选为7-13ppm。当烟气中HCl浓度小于该预设值时,脱硫废水量较小;当烟气中HCl浓度大于等于该预设值时,脱硫废水量较大。
在上述步骤中,烟气中SO 2与HCl的浓度比预设比值根据工艺水的Cl -浓度、锅炉负荷、石膏旋流器、石膏脱水机及气液分离罐的运行工况等确定,优选为20-30。当烟气中SO 2与HCl的浓度比大于等于该预设值时,气液分离罐输出的疏水量大于等于要求排放的脱硫废水量;当烟气中SO 2与HCl的浓度比小于该预设值时,气液分离罐输出的疏水量小于要求排放的脱硫废水量。
在上述步骤中,送入废水干燥塔中所抽取的高温烟气取自锅炉省煤器后、空 预器前。
在上述步骤中,在废水干燥塔中废水被蒸干形成的盐类随烟气进入到除尘器中被收集。
在上述步骤中,废水收集箱中的疏水作为除雾器冲洗水进入到废水浓缩塔中。
在上述步骤中,废水在澄清器中进行澄清和调质处理。
本发明所述的适应多工况的脱硫废水零排放处理***包括锅炉、除尘器、脱硫吸收塔、烟囱、石膏旋流器、滤液水箱、石膏脱水机、气液分离罐、废水收集箱、废水浓缩塔、浓浆箱、澄清器、喷雾水箱及废水干燥塔;
锅炉的尾部烟道内沿烟气流向方向设置有省煤器及空预器,锅炉的尾部烟道及废水干燥塔的底部出口均与除尘器的入口相连通,除尘器的出口与废水浓缩塔的烟气入口及脱硫吸收塔的烟气入口相连通,废水浓缩塔的烟气出口与脱硫吸收塔的烟气入口相连通,脱硫吸收塔的烟气出口与烟囱相连通,脱硫吸收塔的底部浆液排放口经石膏排出泵与石膏旋流器的入口相连通,石膏旋流器的溢流浆液出口与滤液水箱的入口相连通,石膏旋流器的底流浆液出口与石膏脱水机的入口相连通;
石膏脱水机的抽气出口与气液分离罐的入口相连通,气液分离罐的排气口与真空泵相连,气液分离罐的疏水口与废水收集箱的入口相连通,废水收集箱的出口经废水输送泵与废水浓缩塔中除雾器的冲洗水入口、喷雾水箱的入口及滤液水箱的入口相连通,滤液水箱的出口经滤液水泵与脱硫吸收塔的浆液回流口及浓浆箱的入口相连通;
废水浓缩塔的底部出口与浓浆箱的入口相连通,浓浆箱的出口与废水浓缩塔中喷淋层的入口及澄清器的入口相连通,澄清器的上清液出口与喷雾水箱的入口 相连通,喷雾水箱的出口经喷雾水泵与废水干燥塔的入口相连通,锅炉的尾部烟道上开设有抽烟气口,其中,抽烟气口与废水干燥塔的烟气入口相连通,抽烟气口位于省煤器与空预器之间。
除尘器的出口经引风机后分为两路,其中一路与脱硫吸收塔的烟气入口相连通,另一路经废水浓缩增压风机与废水浓缩塔的烟气入口相连通。
浓浆箱的出口经循环泵与废水浓缩塔中的喷淋层相连通,浓浆箱的出口经浓浆泵与澄清器的入口相连通。
与现有技术相比,本发明具有以下有益效果:
本发明所述的适应多工况的脱硫废水零排放处理方法及***在具体操作时,不设废水旋流器及三联箱等废水净化处理设备,***简单,设备故障少,同时优先采用气液分离罐的疏水作为脱硫废水来源,气液分离罐的疏水的含固量低至0.5%,该水质条件既满足废水浓缩塔除雾器冲洗的要求,也满足废水干燥塔对来水含固量的要求,后续处理方式较为灵活。
另外,当烟气中HCl浓度较低时,要求排放的脱硫废水量小,收集的气液分离罐的疏水直接输送至喷雾水箱中进行后续干燥,省去了废水浓缩过程,同时取气液分离罐的疏水作为脱硫废水来源,其含固量低,可以省去废水澄清的过程,***可靠性较高。
另外,当烟气中HCl浓度较高时,要求排放的脱硫废水量较大,将废水先利用低温烟气进行浓缩减量,再利用高温烟气进行蒸干,利用了低温烟气的废热资源,***整体能耗低,当烟气中SO 2浓度也比较高时,气液分离罐的疏水量满足废水排放量要求,取气液分离罐的疏水作为脱硫废水来源,脱硫废水含固量低,废水浓缩塔、澄清器及废水干燥塔等运行可靠性较高。而且低含固量的气液分离 罐的疏水可以作为除雾器的冲洗水,不用引入工艺水来冲洗除雾器,避免额外增加废水浓缩塔的进水量而导致要求的蒸发水量增加,以维持***较低的能耗。
另外,当烟气中HCl浓度较高,但烟气中SO 2浓度比较低时,气液分离罐的疏水量比要求排放的脱硫废水量小,则将从废水收集箱和滤液水箱中引入两路脱硫废水,并分别引至废水浓缩塔和浓浆箱中,既保证了足够的脱硫废水排放量,也避免了两路水源过早混合造成对低含固量的气液分离罐的疏水的污染,保证气液分离罐的疏水可以作为浓缩塔除雾器的冲洗水。
最后需要说明的是,本发明对烟气成分的适应性强,对于不同的烟气成分提出不同的脱硫废水零排放处理不同,在不同工况下均能够保证***的高可靠性和节能性。
【附图说明】
图1为本发明的结构示意图。
其中,1-锅炉、2-省煤器、3-空预器、4-除尘器、5-引风机、6-脱硫吸收塔、7-烟囱、8-石膏排出泵、9-石膏旋流器、10-石膏脱水机、11-气液分离罐、12-真空泵、13-滤液水箱、14-滤液水泵、15-废水收集箱、16-废水输送泵、17-废水浓缩增压风机、18-废水浓缩塔、19-除雾器、20-喷淋层、21-循环泵、22-浓浆箱、23-浓浆泵、24-澄清器、25-喷雾水箱、26-喷雾水泵、27-废水干燥塔。
【具体实施方式】
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,不是全部的实施例,而并非要限制本发明公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免 不必要的混淆本发明公开的概念。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
在附图中示出了根据本发明公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
本发明公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
参考图1,本发明所述的适应多工况的脱硫废水零排放处理***包括锅炉1、 除尘器4、脱硫吸收塔6、烟囱7、石膏旋流器9、滤液水箱13、石膏脱水机10、气液分离罐11、废水收集箱15、废水浓缩塔18、浓浆箱22、澄清器24、喷雾水箱25及及废水干燥塔27;锅炉1的尾部烟道内沿烟气流向方向设置有省煤器2及空预器3,锅炉1的尾部烟道及废水干燥塔27的底部出口均与除尘器4的入口相连通,除尘器4的出口与废水浓缩塔18的烟气入口及脱硫吸收塔6的烟气入口相连通,废水浓缩塔18的烟气出口与脱硫吸收塔6的烟气入口相连通,脱硫吸收塔6的烟气出口与烟囱7相连通,脱硫吸收塔6的底部浆液排放口经石膏排出泵8与石膏旋流器9的入口相连通,石膏旋流器9的溢流浆液出口与滤液水箱13的入口相连通,石膏旋流器9的底流浆液出口与石膏脱水机10的入口相连通;石膏脱水机10的抽气出口与气液分离罐11的入口相连通,气液分离罐11的排气口与真空泵12相连,气液分离罐11的疏水口与废水收集箱15的入口相连通,废水收集箱15的出口经废水输送泵与废水浓缩塔18中除雾器19的冲洗水入口、喷雾水箱25的入口及滤液水箱13的入口相连通,滤液水箱13的出口经滤液水泵14与脱硫吸收塔6的浆液回流口及浓浆箱22的入口相连通;废水浓缩塔18的底部出口与浓浆箱22的入口相连通,浓浆箱22的出口与废水浓缩塔18中喷淋层20的入口及澄清器24的入口相连通,澄清器24的上清液出口与喷雾水箱25的入口相连通,喷雾水箱25的出口经喷雾水泵26与废水干燥塔27的入口相连通,锅炉1的尾部烟道上开设有抽烟气口,其中,抽烟气口与废水干燥塔27的烟气入口相连通,抽烟气口位于省煤器2与空预器3之间。
除尘器4的出口经引风机5后分为两路,其中一路与脱硫吸收塔6的烟气入口相连通,另一路经废水浓缩增压风机17与废水浓缩塔18的烟气入口相连通。
浓浆箱22的出口经循环泵21与废水浓缩塔18中的喷淋层20相连通,浓浆 箱22的出口经浓浆泵23与澄清器24的入口相连通;喷雾水箱25的出口经喷雾水泵26与废水干燥塔27顶部的入口相连通。
本发明所述的适应多工况的脱硫废水零排放处理方法如下:
在本实施例中,锅炉1分别采用甲、乙、丙三个产地的燃料,进入脱硫***的工艺水中Cl -浓度为150mg/L。
锅炉1产生的高温烟气经过省煤器2及空预器3回收热量,烟气温度降低至约90℃后进入到除尘器4中进行除尘,再经过引风机5输送至脱硫吸收塔6中脱除二氧化硫SO 2及氯化氢HCl等酸性污染物,烟气温度进一步降低至50℃左右后从烟囱7排放。
脱硫吸收塔6产生的石膏浆液通过石膏排出泵8输送至石膏旋流器9中进行分离,其中,分离出来的含固量约5%的溢流浆液进入到滤液水箱13中,分离出来的含固量约50%的底流浆液进入到石膏脱水机10中,通过真空泵12的抽吸作用,石膏脱水机10内浆液中的水分通过脱水机滤布过滤后,随抽吸的空气进入到气液分离罐11中,分离出的约0.5%含固量的疏水进入到废水收集箱15中。
当锅炉1燃用甲产地的燃料时,烟气中HCl浓度为7ppm,SO 2浓度为750ppm,脱硫吸收塔6入口的烟气量为2960069m 3/h(标态),要求排放的脱硫废水量为2.7m 3/h,气液分离罐11疏水量为11.5m 3/h,将废水收集箱15收集的2.7m 3/h的疏水通过废水输送泵16直接输送至喷雾水箱25,再通过喷雾水泵26输送至废水干燥塔27中,抽取空预器3前的约350℃高温烟气对废水干燥塔27中的脱硫废水进行蒸发,抽取烟气量为27000m 3/h(标态),水分蒸发后随烟气进入到除尘器4中,废水蒸干形成的盐类随烟气进入到除尘器4中被收集,废水收集箱15中多余的8.8m 3/h的疏水输送至滤液水箱13中,然后通过滤液水泵14返回至脱 硫吸收塔6中,在本实施例中,要求排放的脱硫废水量小,收集的气液分离罐11输出的疏水直接输送至喷雾水箱25中进行干燥,省去了废水浓缩过程,***结构较为简单;而且取气液分离罐11输出的疏水作为脱硫废水的来源,其含固量低至0.5%,可以省去废水澄清和调质的过程;在该工况下不仅节能、而且***可靠性高。
当锅炉1燃用乙产地的燃料时,烟气中HCl浓度为18.5ppm,SO 2的浓度为1250ppm,脱硫吸收塔6入口的烟气量为2826051m 3/h(标态),要求排放的脱硫废水量为6.0m 3/h,气液分离罐11的疏水量为18.0m 3/h,废水收集箱15收集的6.0m 3/h的疏水通过废水输送泵16输送,作为除雾器19的冲洗水进入到废水浓缩塔18中;废水收集箱15中多余的12m 3/h的疏水输送至滤液水箱13中,然后通过滤液水泵14返回脱硫吸收塔6中。脱硫废水在废水浓缩塔18中被循环泵21输送至喷淋层20以液滴形式喷射出来,同时约90℃的低温锅炉烟气从引风机5后引出进入到废水浓缩塔18中,取烟气量为190000m 3/h(标态),经废水浓缩增压风机17输送至废水浓缩塔18中,与喷射出的脱硫废水液滴逆流接触,液滴中的部分水分通过蒸发进入到烟气中,脱硫废水的量减小至2.0m 3/h,含固量增加,然后进入到浓浆箱22中,通过浓浆泵23输送至澄清器24中进行澄清和调质,澄清器24中的上清液自流进入喷雾水箱25中,然后通过喷雾水泵26输送至废水干燥塔27中蒸干,取约350℃的高温烟气20000m 3/h(标态)。废水浓缩塔18中与液滴接触后的烟气不仅含有蒸发进来的水蒸气,同时携带部分脱硫废水液滴,液滴被除雾器19收集,废水浓缩塔18顶部输出的烟气进入到脱硫吸收塔6中。在本实施例中,要求排放的脱硫废水量较大,将废水先利用约90℃的低温烟气进行浓缩减量,再利用约350℃的高温烟气进行蒸干,利用了低温烟气的 废热资源,***整体能耗低。在本实施例中,气液分离罐11输出的疏水量满足废水排放量要求,取气液分离罐11输出的疏水作为脱硫废水来源,脱硫废水含固量低,废水浓缩塔18、澄清器24及废水干燥塔27等运行可靠性高,而且低含固量的疏水可以作为除雾器19的冲洗水,不用引入工艺水来冲洗除雾器19,避免额外增加废水浓缩塔18的进水量导致要求的蒸发水量增加,以维持***较低的能耗。
当锅炉1燃用丙产地的燃料时,烟气中HCl浓度30.0ppm,SO 2浓度590ppm,脱硫吸收塔6入口的烟气量为2826933m 3/h(标态),要求排放的脱硫废水量为9.5m 3/h,气液分离罐11的疏水量为8.9m 3/h,气液分离罐11的疏水量比要求排放的脱硫废水量小,废水收集箱15中收集的8.9m 3/h的疏水通过废水输送泵16全部输送至废水浓缩塔18中,作为除雾器19的冲洗水;从滤液水箱13中引出0.6m 3/h的浆液,通过滤液水泵14输送至浓浆箱22中,这两部分浆液在废水浓缩塔18中被蒸发、减量、浓缩,抽取约90℃的低温烟气285000m 3/h(标态),将脱硫废水减量至3.5m 3/h,然后通过浓浆泵23输送至澄清器24中,澄清器24中的上清液自流进入喷雾水箱25中,通过喷雾水泵26输送至废水干燥塔27中蒸干,取约350℃的高温烟气35000m 3/h(标态)。在本实施例中,气液分离罐11的疏水量比要求排放的脱硫废水量小,将从废水收集箱15和滤液水箱13中引入的两路脱硫废水分别引至废水浓缩塔18和浓浆箱22中,既保证了足够的脱硫废水排放量,也避免了两路水源过早混合造成对低含固量的气液分离罐11的疏水污染,保证了气液分离罐11的疏水可以作为除雾器19的冲洗水。
本发明对烟气成分的适应性强,对于不同的烟气成分提出不同的脱硫废水零排放处理方法,在不同工况下均能够保证***的高可靠性及节能经济运行。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

  1. 一种适应多工况的脱硫废水零排放处理方法,其特征在于,包括以下步骤:
    锅炉(1)产生的高温烟气经省煤器(2)及空预器(3)回收热量,再进入到除尘器(4)中进行除尘,然后进入到脱硫吸收塔(6)中脱除酸性污染物,最后经烟囱(7)排出,脱硫吸收塔(6)产生的石膏浆液进入到石膏旋流器(9)中进行分离,其中,分离出来的溢流浆液进入到滤液水箱(13)中,分离出来的底流浆液进入到石膏脱水机(10)中进行脱水处理,石膏脱水机(10)内浆液中的水分通过脱水机滤布过滤后进入到气液分离罐(11)中进行气液分离,其中,分离出来的疏水进入到废水收集箱(15)中;
    当烟气中HCl浓度小于预设HCl浓度值,要求排放的脱硫废水量较小,且当前气液分离罐(11)输出的疏水量高于要求排放的脱硫废水量时,废水收集箱(15)收集的疏水分为两路,一路多余的疏水经滤液水箱(13)后进入到脱硫吸收塔(6)中,另一路经喷雾水箱(25)送入废水干燥塔(27)中,同时通过抽烟气口抽取高温烟气送入废水干燥塔(27)中,通过高温烟气对废水干燥塔(27)中的疏水进行蒸干处理,使得疏水中的水分蒸发进入到烟气中,废水干燥塔(27)输出的烟气进入到除尘器(4)中进行除尘处理;
    当烟气中HCl浓度大于等于预设HCl浓度值,烟气中SO 2与HCl的浓度比大于等于预设比值,此时要求排放的脱硫废水量及产生的石膏浆液量较大,当前气液分离罐(11)输出的疏水量大于等于要求排放的脱硫废水量时,则将废水收集箱(15)中的部分疏水送入废水浓缩塔(18)中,废水收集箱(15)中的剩余废水送入滤液水箱(13)中,然后送入脱硫吸收塔(6)中,于此同时,将除尘器(4)输出的烟气引出一路送入废水浓缩塔(18)中与废水浓缩塔(18)中的 脱硫废水进行逆流接触,使得废水浓缩塔(18)中的脱硫废水减量,并增加其固含量,废水浓缩塔(18)中的烟气经除雾器(19)处理后进入到脱硫吸收塔(6)中,废水浓缩塔(18)底部的浆液进入到浓浆箱(22)中,浓浆箱(22)中的浆液经澄清器(24)澄清后进入到喷雾水箱(25)中,然后再进入到废水干燥塔(27)中进行蒸干处理;
    当烟气中HCl浓度大于等于预设HCl浓度值,烟气中的SO 2与HCl的浓度比小于预设比值,此时要求排放的脱硫废水量较大,气液分离罐(11)输出的疏水量小于要求排放的脱硫废水量时,则将废水收集箱(15)中的疏水全部输送至废水浓缩塔(18)中,然后将滤液水箱(13)中的部分浆液送入浓浆箱(22)中,这两部分浆液在废水浓缩塔(18)中蒸发、减量及浓缩,然后进入到澄清器(24)中,澄清器(24)中的上清液进入到喷雾水箱(25)中,然后送入废水干燥塔(27)中蒸干处理。
  2. 根据权利要求1所述的适应多工况的脱硫废水零排放处理方法,其特征在于,预设HCl浓度值优选为7-13ppm。
  3. 根据权利要求1所述的适应多工况的脱硫废水零排放处理方法,其特征在于,烟气中SO 2与HCl的浓度比预设比值为20-30。
  4. 根据权利要求1所述的适应多工况的脱硫废水零排放处理方法,其特征在于,送入废水干燥塔(27)中所抽取的高温烟气取自锅炉省煤器(2)后及空预器(3)前。
  5. 根据权利要求1所述的适应多工况的脱硫废水零排放处理方法,其特征在于,在废水干燥塔(27)中废水被蒸干形成的盐类随烟气进入到除尘器(4)中被收集。
  6. 根据权利要求1所述的适应多工况的脱硫废水零排放处理方法,其特征在于,废水收集箱(15)中的疏水作为除雾器(19)冲洗水进入到废水浓缩塔(18)中。
  7. 根据权利要求1所述的适应多工况的脱硫废水零排放处理方法,其特征在于,废水在澄清器(24)中进行澄清和调质处理。
  8. 一种适应多工况的脱硫废水零排放处理***,其特征在于,包括锅炉(1)、除尘器(4)、脱硫吸收塔(6)、烟囱(7)、石膏旋流器(9)、滤液水箱(13)、石膏脱水机(10)、气液分离罐(11)、废水收集箱(15)、废水浓缩塔(18)、浓浆箱(22)、澄清器(24)、喷雾水箱(25)及废水干燥塔(27);
    锅炉(1)的尾部烟道内沿烟气流向方向设置有省煤器(2)及空预器(3),锅炉(1)的尾部烟道及废水干燥塔(27)的底部出口均与除尘器(4)的入口相连通,除尘器(4)的出口与废水浓缩塔(18)的烟气入口及脱硫吸收塔(6)的烟气入口相连通,废水浓缩塔(18)的烟气出口与脱硫吸收塔(6)的烟气入口相连通,脱硫吸收塔(6)的烟气出口与烟囱(7)相连通,脱硫吸收塔(6)的底部浆液排放口经石膏排出泵(8)与石膏旋流器(9)的入口相连通,石膏旋流器(9)的溢流浆液出口与滤液水箱(13)的入口相连通,石膏旋流器(9)的底流浆液出口与石膏脱水机(10)的入口相连通;
    石膏脱水机(10)的抽气出口与气液分离罐(11)的入口相连通,气液分离罐(11)的排气口与真空泵(12)相连,气液分离罐(11)的疏水口与废水收集箱(15)的入口相连通,废水收集箱(15)的出口经废水输送泵(16)与废水浓缩塔(18)中除雾器(19)的冲洗水入口、喷雾水箱(25)的入口及滤液水箱(13)的入口相连通,滤液水箱(13)的出口经滤液水泵(14)与脱硫吸收塔(6)的 浆液回流口及浓浆箱(22)的入口相连通;
    废水浓缩塔(18)的底部出口与浓浆箱(22)的入口相连通,浓浆箱(22)的出口与废水浓缩塔(18)中喷淋层(20)的入口及澄清器(24)的入口相连通,澄清器(24)的上清液出口与喷雾水箱(25)的入口相连通,喷雾水箱(25)的出口经喷雾水泵(26)与废水干燥塔(27)的入口相连通,锅炉(1)的尾部烟道上开设有抽烟气口,其中,抽烟气口与废水干燥塔(27)的烟气入口相连通,抽烟气口位于省煤器(2)与空预器(3)之间。
  9. 根据权利要求8所述的适应多工况的脱硫废水零排放处理***,其特征在于,除尘器(4)的出口经引风机(5)后分为两路,其中一路与脱硫吸收塔(6)的烟气入口相连通,另一路经废水浓缩增压风机(17)与废水浓缩塔(18)的烟气入口相连通。
  10. 根据权利要求8所述的适应多工况的脱硫废水零排放处理***,其特征在于,浓浆箱(22)的出口经循环泵(21)与废水浓缩塔(18)中的喷淋层(20)相连通,浓浆箱(22)的出口经浓浆泵(23)与澄清器(24)的入口相连通。
PCT/CN2020/122579 2020-08-14 2020-10-21 一种适应多工况的脱硫废水零排放处理方法及*** WO2022032866A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022600111U JP3243690U (ja) 2020-08-14 2020-10-21 多作動状態に適応する脱硫廃水ゼロ排出処理システム
US17/902,933 US20230017568A1 (en) 2020-08-14 2022-09-05 Method and system for zero discharge treatment of desulfurization wastewater suitable for multiple working conditions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010819367.1A CN111928286B (zh) 2020-08-14 2020-08-14 一种适应多工况的脱硫废水零排放处理方法及***
CN202010819367.1 2020-08-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/902,933 Continuation US20230017568A1 (en) 2020-08-14 2022-09-05 Method and system for zero discharge treatment of desulfurization wastewater suitable for multiple working conditions

Publications (1)

Publication Number Publication Date
WO2022032866A1 true WO2022032866A1 (zh) 2022-02-17

Family

ID=73311063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122579 WO2022032866A1 (zh) 2020-08-14 2020-10-21 一种适应多工况的脱硫废水零排放处理方法及***

Country Status (4)

Country Link
US (1) US20230017568A1 (zh)
JP (1) JP3243690U (zh)
CN (1) CN111928286B (zh)
WO (1) WO2022032866A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298625A (zh) * 2018-03-21 2018-07-20 张建东 一种烟气直接排放的废水浓缩液流化结晶干燥***和方法
CN117049718A (zh) * 2023-06-28 2023-11-14 北京清新环境技术股份有限公司 一种脱硫浆液氯离子脱除方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401930A (zh) * 2021-07-13 2021-09-17 洛阳燃新能源科技有限公司 一种燃煤电厂脱硫石膏增值、脱硫废水零排放综合处理设备及工艺
CN115925293A (zh) * 2023-01-09 2023-04-07 西安热工研究院有限公司 一种脱硫石膏真空脱水***及其工作方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080427A (en) * 1975-09-10 1978-03-21 Mitsubishi Jukogyo Kabushiki Kaisha Method of desulfurizing exhaust gases by wet lime-gypsum process
JPS53138975A (en) * 1977-05-11 1978-12-04 Ishikawajima Harima Heavy Ind Co Ltd Treating method for waste solution produced in wet desulfurization and denitration of exhaust gas
CN202170277U (zh) * 2011-08-24 2012-03-21 河南电力试验研究院 一种改进型的脱硫废水处理***
CN104707466A (zh) * 2015-03-30 2015-06-17 赵民 一种石灰石/石灰湿法脱硫水平衡节水节能***
EP2959959A1 (en) * 2013-02-25 2015-12-30 Mitsubishi Hitachi Power Systems, Ltd. Exhaust gas treatment system and exhaust gas treatment method
CN106277127A (zh) * 2016-10-14 2017-01-04 北京姚魏环保技术有限公司 一种泥水混合、两级蒸发处理脱硫废水的装置及方法
CN205973869U (zh) * 2016-08-30 2017-02-22 成都锐思环保技术股份有限公司 一种用烟气余热处理脱硫废水的***
CN107207286A (zh) * 2015-02-19 2017-09-26 三菱重工业株式会社 水处理***以及方法
CN109248558A (zh) * 2018-09-30 2019-01-22 庞博 一种除去二氧化硫气体的方法
CN111056584A (zh) * 2020-01-15 2020-04-24 山东神华山大能源环境有限公司 一种脱硫废水零排放处理***和方法
CN111233239A (zh) * 2020-02-17 2020-06-05 浙江天蓝环保技术股份有限公司 一种脱硫废水资源化利用的零排放工艺及***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2740533B2 (ja) * 1989-01-27 1998-04-15 バブコツク日立株式会社 湿式排ガス脱硫方法
US8585869B1 (en) * 2013-02-07 2013-11-19 Heartland Technology Partners Llc Multi-stage wastewater treatment system
CN105174584A (zh) * 2015-09-23 2015-12-23 中国大唐集团科学技术研究院有限公司西北分公司 一种脱硫废水零排放处理装置
CN106587231A (zh) * 2017-01-23 2017-04-26 麦克罗特技术无锡有限公司 Fgd废水零排放***
CN207933199U (zh) * 2017-11-28 2018-10-02 华电郑州机械设计研究院有限公司 —种梯级利用电厂烟气余热实现脱硫废水零排放的装置
CN109607907A (zh) * 2018-10-17 2019-04-12 北京国电龙源环保工程有限公司 一种脱硫废水多热源耦合处理***及处理方法
CN110723858A (zh) * 2019-11-22 2020-01-24 北京龙源环保工程有限公司 一种脱硫废水零排放处理***及处理工艺

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080427A (en) * 1975-09-10 1978-03-21 Mitsubishi Jukogyo Kabushiki Kaisha Method of desulfurizing exhaust gases by wet lime-gypsum process
JPS53138975A (en) * 1977-05-11 1978-12-04 Ishikawajima Harima Heavy Ind Co Ltd Treating method for waste solution produced in wet desulfurization and denitration of exhaust gas
CN202170277U (zh) * 2011-08-24 2012-03-21 河南电力试验研究院 一种改进型的脱硫废水处理***
EP2959959A1 (en) * 2013-02-25 2015-12-30 Mitsubishi Hitachi Power Systems, Ltd. Exhaust gas treatment system and exhaust gas treatment method
CN107207286A (zh) * 2015-02-19 2017-09-26 三菱重工业株式会社 水处理***以及方法
CN104707466A (zh) * 2015-03-30 2015-06-17 赵民 一种石灰石/石灰湿法脱硫水平衡节水节能***
CN205973869U (zh) * 2016-08-30 2017-02-22 成都锐思环保技术股份有限公司 一种用烟气余热处理脱硫废水的***
CN106277127A (zh) * 2016-10-14 2017-01-04 北京姚魏环保技术有限公司 一种泥水混合、两级蒸发处理脱硫废水的装置及方法
CN109248558A (zh) * 2018-09-30 2019-01-22 庞博 一种除去二氧化硫气体的方法
CN111056584A (zh) * 2020-01-15 2020-04-24 山东神华山大能源环境有限公司 一种脱硫废水零排放处理***和方法
CN111233239A (zh) * 2020-02-17 2020-06-05 浙江天蓝环保技术股份有限公司 一种脱硫废水资源化利用的零排放工艺及***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298625A (zh) * 2018-03-21 2018-07-20 张建东 一种烟气直接排放的废水浓缩液流化结晶干燥***和方法
CN108298625B (zh) * 2018-03-21 2023-07-14 张建东 一种烟气直接排放的废水浓缩液流化结晶干燥***和方法
CN117049718A (zh) * 2023-06-28 2023-11-14 北京清新环境技术股份有限公司 一种脱硫浆液氯离子脱除方法
CN117049718B (zh) * 2023-06-28 2024-04-09 北京清新环境技术股份有限公司 一种脱硫浆液氯离子脱除方法

Also Published As

Publication number Publication date
CN111928286B (zh) 2021-09-14
JP3243690U (ja) 2023-09-12
CN111928286A (zh) 2020-11-13
US20230017568A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2022032866A1 (zh) 一种适应多工况的脱硫废水零排放处理方法及***
CN106477794B (zh) 脱硫废水浓缩及烟气干燥综合处理的***与方法
CN102974185B (zh) 一种模块化集成脱除多种污染物的烟气净化***及方法
WO2020108135A1 (zh) 一种脱硫废水处理***及脱硫废水处理方法
CN105668669B (zh) 一种发电厂脱硫废水处理***及工艺
CN206652387U (zh) 一种可资源化的氨法脱硫装置
CN104874481A (zh) 一种用于半干法(cfb)废水零排放湿式静电除尘器
CN107892427A (zh) 一种燃煤电厂脱硫废水零排放处理***及方法
CN113501612A (zh) 一种节能环保型脱硫废水零排放处理***
CN106517628A (zh) 一种燃煤电厂脱硫废水零排放装置
CN216572432U (zh) 一种石灰石-石膏法烟气脱硫***
CN111252993A (zh) 一种利用烟气余热蒸发浓缩脱硫废水的***和方法
CN106039980B (zh) 一种高温烟气脱汞装置及工艺
CN107899408A (zh) 一种湿法与干法联合烟气脱硫***及脱硫方法
CN205156423U (zh) 废气净化及余热回收综合利用***
CN210171208U (zh) 一种电解铝烟气深度净化装置
CN208732818U (zh) 一种燃煤电厂脱硫废水零排放处理***
JPS6363248B2 (zh)
CN115893559A (zh) 一种脱硫废水零排放***及脱硫废水零排放工艺
CN106377994A (zh) 一种湿式钙基烟气脱硫***及其应用
CN206168213U (zh) 一种钙法催化裂化烟气脱硫除尘***
CN106422739B (zh) 一种钙法催化裂化烟气脱硫除尘***及应用
CN212532606U (zh) 一种利用烟气余热蒸发浓缩脱硫废水的***
CN212039830U (zh) 一种节能灵活可调节式石灰石-石膏湿法烟气脱硫***
CN212476173U (zh) 一种用于燃煤电厂脱硫废水零排放的处理***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022600111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949360

Country of ref document: EP

Kind code of ref document: A1