WO2022030573A1 - セルロースアセテート樹脂組成物 - Google Patents

セルロースアセテート樹脂組成物 Download PDF

Info

Publication number
WO2022030573A1
WO2022030573A1 PCT/JP2021/029071 JP2021029071W WO2022030573A1 WO 2022030573 A1 WO2022030573 A1 WO 2022030573A1 JP 2021029071 W JP2021029071 W JP 2021029071W WO 2022030573 A1 WO2022030573 A1 WO 2022030573A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose acetate
resin composition
less
molecular weight
plasticizer
Prior art date
Application number
PCT/JP2021/029071
Other languages
English (en)
French (fr)
Inventor
匡章 楠本
貴史 川崎
暁浩 樋口
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN202180038763.3A priority Critical patent/CN115698160B/zh
Priority to EP21852175.5A priority patent/EP4194491A4/en
Priority to JP2022541721A priority patent/JPWO2022030573A1/ja
Publication of WO2022030573A1 publication Critical patent/WO2022030573A1/ja
Priority to US18/106,507 priority patent/US20230192993A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present disclosure relates to a cellulose acetate resin composition.
  • the present disclosure relates to a cellulose acetate resin composition used for melt molding.
  • Cellulose acetate has biodegradability and is known to be decomposed by activated sludge. Due to growing interest in the global environment, biodegradable films and sheets are required.
  • Cellulose acetate has poor thermal meltability due to hydrogen bonds caused by the hydroxyl groups remaining in the molecular chain.
  • the higher the total degree of acetyl substitution of cellulose acetate the higher the crystallinity, and therefore the solubility and meltability tend to decrease.
  • Various methods for forming a sheet or a film of cellulose acetate by melt film formation have been studied.
  • Patent Document 1 discloses a biodegradable sheet comprising an acetate composition containing cellulose acetate and polyoxyethylene glycol.
  • Patent Document 2 discloses a biodegradable film or sheet containing cellulose acetate having an acetyl group substitution degree of 2.3 to 2.7 and a biodegradable plasticizer as main element components.
  • This plasticizer includes (1) a compound represented by (1) H 5 C 3 (OH) 3-n (OOCCH 3 ) n (0 ⁇ n ⁇ 3), and (2) glycerin alkylate and ethylene glycol alkylate.
  • It is selected from the group consisting of polyethylene glycol alkylate having 5 or less ethylene repeating units, an aliphatic monocarboxylic acid alkyl ester, an aliphatic dicarboxylic acid alkyl ester, and an aliphatic tricarboxylic acid alkyl ester.
  • Patent Document 3 a cellulose acetate having a weight average molecular weight of 100 to 250,000 and an average substitution degree of 1.0 to 2.5 and a plasticizer having an average molecular weight of 300 or more are melted and mixed, and the glass transition temperature is 200 ° C.
  • a cellulose acetate-based resin composition containing the above-mentioned regions has been proposed.
  • Patent Document 4 discloses a water-soluble cellulose acetate-based resin composition containing cellulose acetate having a total acetyl substitution degree of 0.5 to 1.0 and a water-soluble organic additive.
  • Patent Document 5 describes a composition and a film containing 1-45% of cellulose acetate having an acetyl substitution degree of 1.5-2.8 and triethylene glycol or the like as a plasticizer.
  • Patent Document 6 discloses a composition and a film containing cellulose acetate having an acetyl substitution degree of 2.0-2.6 and a plasticizer.
  • Patent Document 7 discloses a compound in which the terminal of an oxyalkylene group is alkylated or acylated as a plasticizer for a cellulose acetate resin.
  • Patent Documents 1-3 All of the compositions disclosed in Patent Documents 1-3 are melt-molded at a temperature exceeding 200 ° C. to obtain a sheet having a thickness of more than 100 ⁇ m. If the melting temperature exceeds 200 ° C., there is a problem that coloring occurs due to thermal decomposition of cellulose acetate.
  • the resin composition of Patent Document 4 is melt-spun at a temperature of less than 200 ° C., and cellulose acetate having a low degree of substitution is used in this resin composition.
  • melt molding is performed at a temperature of less than 200 ° C., but cellulose acetate acetate having a low molecular weight is used in this composition.
  • Patent Document 6 a special plasticizer having an aromatic ring, which may have an impact on the environment, is used.
  • Patent Document 7 does not refer to the details of cellulose acetate, and does not provide a plasticizer particularly suitable for thinning cellulose acetate.
  • the resin composition containing cellulose acetate having a relatively high degree of substitution does not have sufficient melt fluidity at a temperature lower than 200 ° C., and also lacks the extensibility and bending flexibility of the melt. Therefore, it is particularly difficult to make a thin film having a thickness of 100 ⁇ m or less. Further, although there is a demand for further improvement in the strength of the molded product, it has not been easy to apply the high molecular weight cellulose acetate, which is expected to increase the melt viscosity, especially in the melt forming film.
  • An object of the present disclosure is to provide a cellulose acetate resin composition capable of forming a film at a melting temperature of less than 200 ° C.
  • the cellulose acetate composition according to the present disclosure contains a cellulose acetate having a total acetyl substitution degree of 1.9 or more and 2.6 or less, and a plasticizer.
  • This cellulose acetate has a number average molecular weight Mn of 45,000 or more and a weight average molecular weight Mw of 70,000 or more.
  • This plasticizer (1) An ether-based plasticizer in which at least one terminal hydroxyl group of the polyalkylene glycol is etherified, the degree of polymerization of the polyalkylene glycol is 3 or more and less than 10, and the terminal group does not contain an aromatic ring, and (2).
  • At least one terminal hydroxyl group of the polyalkylene glycol is esterified, the degree of polymerization of the polyalkylene glycol is 3 or more and less than 10, and the terminal group thereof is selected from an ester-based plasticizer containing no aromatic ring.
  • the total content of the plasticizer in the entire resin composition is 5% by weight or more and 50% by weight or less.
  • this polyalkylene glycol has an alkyleneoxy group having 2 or more and 4 or less carbon atoms as a repeating unit.
  • the ether substituent of the ether-based plasticizer is a hydrocarbon group having a molecular weight of 150 or less.
  • the hydrocarbon group is an alkyl group.
  • the ester-based plasticizer is a polyalkylene glycol esterified with a carboxylic acid having a molecular weight of 150 or less.
  • the carboxylic acid is a saturated fatty acid.
  • the molecular weight distribution Mw / Mn of cellulose acetate exceeds 1.7.
  • the film according to the present disclosure is obtained by using any of the above-mentioned resin compositions.
  • the thickness of this film is 10 ⁇ m or more and 150 ⁇ m or less.
  • the cellulose acetate resin composition according to the present disclosure has high melt fluidity in a temperature range of less than 200 ° C., it can be easily thinned and a film having excellent strength can be obtained. Further, according to this resin composition, since the film can be formed at a temperature sufficiently lower than the thermal decomposition temperature of cellulose acetate, coloring is suppressed. Further, since this resin composition has a high melt tension, it can be applied to inflation film formation.
  • XY indicating the range means “X or more and Y or less”.
  • ppm means "weight ppm”.
  • the cellulose acetate resin composition according to the present disclosure contains cellulose acetate and a plasticizer.
  • Cellulose acetate has a total acetyl substitution degree of 1.9 or more and 2.6 or less, a number average molecular weight Mn of 45,000 or more, and a weight average molecular weight Mw of 70,000 or more.
  • the plasticizer is (1) An ether-based plasticizer in which at least one terminal hydroxyl group of the polyalkylene glycol is etherified, the degree of polymerization of the polyalkylene glycol is 3 or more and less than 10, and the terminal group does not contain an aromatic ring, and (2).
  • At least one terminal hydroxyl group of the polyalkylene glycol is esterified, and the degree of polymerization of the polyalkylene glycol is 3 or more and less than 10, and the plasticizer is selected from ester-based plasticizers having no aromatic ring at the terminal group. Or 2 or more.
  • This resin composition contains a plasticizer in which at least one of the hydroxyl groups at the end of the polyalkylene glycol is etherified or esterified.
  • the compatibility between this plasticizer and cellulose acetate having a total acetyl substitution degree of 1.9 or more and 2.6 or less, a number average molecular weight Mn of 45,000 or more, and a weight average molecular weight Mw of 70,000 or more is ,expensive.
  • the resin composition containing this plasticizer can be melt-molded at a temperature lower than the thermal decomposition temperature of cellulose acetate, specifically, less than 200 ° C., and coloring due to the decomposed product can be avoided.
  • this resin composition has a low melt viscosity in a temperature range of less than 200 ° C. Therefore, even when the die lip is narrowed and the thin film is ejected in the melt extrusion method, the viscosity with respect to the melt does not increase more than necessary, and a suitable film formation is possible.
  • the plasticizer in which the terminal hydroxyl group is etherified or esterified at the time of melting exhibits an action of improving the entanglement between the molecular chains of cellulose acetate.
  • the action of this plasticizer improves the melt tension without excessively increasing the melt viscosity. Therefore, the film after melt extrusion can be further stretched to form a thin film.
  • the MI value (190 ° C., 5 kg) of the resin composition of the present disclosure is preferably 6.0 or more, preferably 7.5 or more, and more preferably 9.0 or more. ..
  • the MI value is measured in accordance with the description of JIS K7210-1 "Plastic-How to obtain melt mass flow rate (MFR) and melt volume flow rate (MVR) of thermoplastics-Part 1: Standard test method". To.
  • the plasticizer contained in the resin composition according to the present disclosure at least one of the terminal hydroxyl groups of the polyalkylene glycol is etherified or esterified.
  • the plasticizer is etherified or esterified with an aromatic ring-free functional group.
  • this plasticizer does not contain an aromatic ring at the end group. According to this plasticizer, there is little adverse effect on the environment caused by aromatic compounds.
  • Polyalkylene glycol has an alkyleneoxy group as a repeating unit.
  • the alkyleneoxy group which is a repeating unit, preferably has 2 or more carbon atoms, and from the viewpoint of excellent compatibility with cellulose acetate, this carbon number is preferably 4 or less.
  • Examples of such an alkyleneoxy group include an ethyleneoxy group, a propyleneoxy group, and a butyleneoxy group.
  • the number of repeating units (hereinafter referred to as the degree of polymerization) in the polyalkylene glycol is 3 or more, preferably 4 or more.
  • the degree of polymerization of the polyalkylene glycol is less than 10, preferably 9 or less, and more preferably 8 or less.
  • the preferred ether substituent is a linear, branched or cyclic hydrocarbon group.
  • An aliphatic hydrocarbon group is preferable, and a saturated aliphatic hydrocarbon group (alkyl group) is more preferable.
  • the molecular weight of this hydrocarbon group is preferably 150 or less, more preferably 140 or less, still more preferably 100 or less.
  • the number average degree of polymerization of the ether-based plasticizer is preferably 10 or less, more preferably 8 or less. From the viewpoint of high melt fluidity, an ether-based plasticizer having a number average degree of polymerization of 3 or more is preferable.
  • the number average degree of polymerization of the ether-based plasticizer is calculated from the number average molecular weight measured by size exclusion chromatography (GPC) using polystyrene as a standard substance.
  • ether-based plasticizer used in the resin composition of the present disclosure include triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol monomethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, polyethylene glycol monomethyl ether and the like. Can be mentioned. Further, examples thereof include monomethyl ether, monoethyl ether and dimethyl ether of polyethylene glycol having a degree of polymerization of 3 or more and less than 10, and monomethyl ether, monoethyl ether and dimethyl ether of polypropylene glycol having a degree of polymerization of 3 or more and less than 10.
  • the number average degree of polymerization of the ester-based plasticizer in which at least one terminal hydroxyl group of the polyalkylene glycol is esterified is 2 or more. From the viewpoint of suppressing volatilization at the time of melting and improving the melting tension, the number average degree of polymerization of the ester-based plasticizer is more preferably 3 or more. From the viewpoint of excellent compatibility with cellulose acetate, an ester-based plasticizer having a number average degree of polymerization of 10 or less is preferable.
  • the number average degree of polymerization of the ester-based plasticizer is calculated from the number average molecular weight measured by size exclusion chromatography (GPC) using polystyrene as a standard substance.
  • an ester-based plasticizer in which at least one terminal hydroxyl group of the polyalkylene glycol is esterified with a carboxylic acid having a molecular weight of 150 or less, more preferably 130 or less is preferable.
  • the preferred carboxylic acid is an aliphatic carboxylic acid (fatty acid). It may be a saturated fatty acid or an unsaturated fatty acid. Preferably, it is an ester-based plasticizer esterified with saturated fatty acids.
  • the content of the plasticizer in the resin composition of the present disclosure is appropriately adjusted according to the type of the plasticizer, the physical properties of the cellulose acetate, and the like.
  • the total content of the plasticizer is preferably 5% by weight or more, more preferably 10% by weight or more, and 15% by weight or more with respect to the entire resin composition. Is more preferable, and 20% by weight or more is particularly preferable.
  • the total content of the plasticizer is preferably 50% by weight or less, more preferably 45% by weight or less, further preferably 40% by weight or less, and particularly preferably 35% by weight or less.
  • the total content of the plasticizer in the resin composition of the present disclosure may be 10 to 45% by weight, 10 to 40% by weight, 10 to 35% by weight, and 15 to 50% by weight. %, 15-45% by weight, 15-40% by weight, 15-35% by weight, 20-50% by weight, 20-45% by weight. %, 20-40% by weight, 20-35% by weight.
  • the total amount is adjusted within the above-mentioned numerical range.
  • cellulose acetate having a total acetyl substitution degree (DS) of 1.9 or more and 2.6 or less is used.
  • the total degree of acetyl substitution of cellulose acetate is preferably 2.0 or more, more preferably 2.1 or more.
  • the total degree of acetyl substitution of cellulose acetate is preferably 2.56 or less, more preferably 2.50 or less, still more preferably 2.40 or less, still more preferably 2.30 or less. 2.26 or less is particularly preferable.
  • the total acetyl substitution degree of the cellulose acetate may be 1.9 to 2.56, 1.9 to 2.50, 1.9 to 2.40, and 1.9 to 2. It may be 30, 1.9 to 2.26, 2.0 to 2.6, 2.0 to 2.56, 2.0 to 2.50. It may be 2.0 to 2.40, 2.0 to 2.30, 2.0 to 2.26, and 2.1 to 2.6. It may be 2.1 to 2.56, 2.1 to 2.50, 2.1 to 2.40, 2.1 to 2.30, and so on. It may be 2.1 to 2.26.
  • the total acetyl substitution degree (sometimes referred to as the average degree of substitution) of cellulose acetate is the vinegarization degree AV obtained according to the measurement method of the vinegarization degree in ASTM: D-871-96 (test method such as cellulose acetate). Is calculated by the following equation. This is the most common way to determine the degree of substitution of cellulose acetate.
  • DS 162.14 x AV x 0.01 / (60.052-42.037 x AV x 0.01)
  • DS Total degree of acetyl substitution AV: Degree of vinegarization (%)
  • the method for measuring the degree of vinegarization (AV) is as follows.
  • AV (degree of vinegarization) (%) is calculated according to the following formula.
  • AV (%) (AB) x F x 1.201 / sample weight (g)
  • the resin composition of the present disclosure contains cellulose acetate having a number average molecular weight Mn of 45,000 or more and a weight average molecular weight Mw of 70,000 or more. According to the resin composition containing cellulose acetate having a number average molecular weight Mn and a weight average molecular weight Mw in this range, a molded product having high strength can be easily obtained by melt molding. From the viewpoint of improving the strength, the weight average molecular weight Mw of the cellulose acetate is preferably 80,000 or more, more preferably 90,000 or more, still more preferably 100,000 or more. The upper limit of the weight average molecular weight Mw is not particularly limited, but is preferably 250,000 or less, more preferably 240,000 or less, still more preferably 230,000 or less, from the viewpoint of easy melt molding.
  • the number average molecular weight Mn of cellulose acetate is preferably 50,000 or more, more preferably 55,000 or more, and even more preferably 60,000 or more.
  • the upper limit of the number average molecular weight Mn is not particularly limited, but from the viewpoint of easy melt molding, 125,000 or less is preferable, 120,000 or less is more preferable, and 115,000 or less is more preferable.
  • the molecular weight distribution of cellulose acetate is evaluated by the ratio (Mw / Mn) of the number average molecular weight Mn and the weight average molecular weight Mw.
  • the molecular weight distribution Mw / Mn of cellulose acetate is preferably 1.7 or more, more preferably 1.8 or more, further preferably 2.0 or more, and 2.1 or more. Is particularly preferable.
  • the molecular weight distribution Mw / Mn is preferably 3.5 or less, more preferably 3.2 or less, and even more preferably 3.0 or less.
  • Cellulose acetate is a semi-synthetic polymer obtained from cellulose as a raw material.
  • the maximum molecular weight of cellulose acetate is determined by the raw material cellulose.
  • Cellulose acetate having a large molecular weight distribution Mw / Mn can be obtained by hydrolyzing in as short a time as possible in the production method described later. Further, by using cellulose having a different molecular weight as a raw material, cellulose acetate having a large molecular weight distribution Mw / Mn can be obtained. Furthermore, it is also possible to increase the molecular weight distribution Mw / Mn by mixing a plurality of cellulose acetate flakes having different median degrees of polymerization.
  • the molecular weight distribution Mw / Mn is approximately 3.5 or less, it can be obtained by adjusting the reaction conditions in the method for producing cellulose acetate described later.
  • a method of mixing a plurality of raw material celluloses or a method of mixing a plurality of cellulose acetate flakes is effective.
  • the molecular weight and molecular weight distribution of cellulose acetate can be determined by a known method. Specifically, the molecular weight and molecular weight distribution of cellulose acetate is determined by performing size exclusion chromatography (GPC) measurements under the following equipment and conditions (GPC-light scattering method).
  • GPC size exclusion chromatography
  • the viscosity average degree of polymerization (DPv) of the cellulose acetate used in the resin composition of the present disclosure is not particularly limited, but is preferably 10 or more and 400 or less.
  • a resin composition containing cellulose acetate having a viscosity average degree of polymerization in this range is excellent in melt moldability. From this viewpoint, the viscosity average degree of polymerization is more preferably 15 or more and 300 or less, and further preferably 20 or more and 200 or less.
  • the viscosity average degree of polymerization (DPv) is determined based on the limit viscosity number ([ ⁇ ], unit: cm 3 / g) of cellulose acetate.
  • the ultimate viscosity number ([ ⁇ ], unit: cm 3 / g) is determined according to JIS-K-7367-1 and ISO1628-1. Specifically, a sample solution using dimethyl sulfoxide (DMSO) as a solvent is prepared, and the logarithmic relative viscosity at 25 ° C. measured using a Uberode type viscometer of size 1C is divided by the concentration of the sample solution. Desired.
  • DMSO dimethyl sulfoxide
  • Viscosity average molecular weight (extreme viscosity number [ ⁇ ] /0.171) (1 / 0.61)
  • DS Viscosity Average Molecular Weight / (162.14 + 42.037 ⁇ DS)
  • DS is the above-mentioned total degree of acetyl substitution.
  • Cellulose acetate having a total acetyl substitution degree of 1.9 or more and 2.6 or less, a number average molecular weight of 45,000 or more and a weight average molecular weight of 70,000 or more can be produced by a known method for producing cellulose acetate.
  • Examples of such a production method include a so-called acetic acid method using acetic anhydride as a vinegarizing agent, acetic acid as a diluent, and sulfuric acid as a catalyst.
  • the basic steps of the acetic acid method are (1) a pretreatment step of dissolving and crushing a pulp raw material (dissolved pulp) having a relatively high ⁇ -cellulose content and then spraying and mixing acetic acid, and (2) anhydrous acetic acid.
  • the vinegaring step of reacting the pretreated pulp with (1) a mixed acid consisting of acetic acid and a vinegaring catalyst (for example, sulfuric acid) and (3) aging to hydrolyze cellulose acetate to obtain cellulose acetate having a desired degree of vinegaring. It comprises a step and (4) a post-treatment step of precipitating, separating, purifying, stabilizing, and drying cellulose acetic acid, which has been hydrolyzed, from the reaction solution.
  • the degree of total acetyl substitution can be adjusted by adjusting the conditions of the aging process (conditions such as time and temperature).
  • a cellulose acetate having a total acetyl substitution degree of 1.9 or more and 2.6 or less, a number average molecular weight of 45,000 or more and a weight average molecular weight of 70,000 or more is melt-kneaded with the above-mentioned plasticizer.
  • this resin composition is obtained by mixing cellulose acetate and a plasticizer and then melt-kneading. By mixing before melt-kneading, the plasticizer and cellulose acetate are more uniformly and quickly blended, and the obtained kneaded product is homogenized, so that a resin composition with improved melt fluidity and processing accuracy can be obtained. Be done.
  • a known mixer such as a Henschel mixer can be used for mixing the cellulose acetate and the plasticizer. It may be a dry mixture or a wet mixture.
  • the temperature inside the mixer is preferably a temperature at which the cellulose acetate does not melt, for example, 20 ° C. or higher and lower than 200 ° C.
  • An extruder such as a twin-screw extruder can be used for melt-kneading of cellulose acetate and a plasticizer, or for melt-kneading after mixing cellulose acetate and a plasticizer.
  • the kneading temperature (cylinder temperature) by the extruder is preferably 160 ° C. or higher and 230 ° C. or lower, and more preferably 170 ° C. or higher and 210 ° C. or lower.
  • the melting point of cellulose acetate depends on the degree of substitution, it is about 230 ° C to 280 ° C, which is close to the decomposition temperature of cellulose acetate. Therefore, it is usually difficult to melt-knead in this temperature range, but the resin composition of the present disclosure is disclosed. Then, since the plasticization temperature is lowered by the above-mentioned thermoplastic agent, a sufficiently uniform kneaded product can be obtained at a temperature of 230 ° C. or lower.
  • the kneading temperature also referred to as cylinder temperature
  • the kneading temperature may be 200 ° C.
  • the kneaded product may be extruded into a strand shape from a die attached to the tip of a twin-screw extruder and then hot-cut to form pellets.
  • the die temperature may be about 200 ° C. to 220 ° C.
  • the blending amount of the plasticizer with respect to the entire obtained resin composition is preferably 5% by weight or more and 50% by weight or less.
  • the total amount is preferably 5% by weight or more and 50% by weight or less.
  • a plasticizer other than the above-mentioned plasticizer may be added to this resin composition, and a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, a heat stabilizer, etc. may be added.
  • Known additives such as an optical property adjuster, a fluorescent whitening agent and a flame retardant may be blended.
  • the present disclosure relates to a film using the above-mentioned cellulose acetate resin composition.
  • the thickness of this film is preferably 150 ⁇ m or less, more preferably 10 ⁇ m or more and 150 ⁇ m or less, still more preferably 10 ⁇ m or more and 100 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 90 ⁇ m or less.
  • the thickness of the film can be reduced to 10 ⁇ m or more and 50 ⁇ m or less, and further to 10 ⁇ m or more and 30 ⁇ m or less, depending on the application.
  • the film obtained by using the resin composition of the present disclosure is excellent in marine biodegradability. It is preferable that 40% by weight or more of the organic carbon content is decomposed into CO 2 within 180 days in the ocean, 50% by weight or more is more preferable, and 60% by weight or more is particularly preferable. Ocean degradability can be measured by a method according to ASTM D6691.
  • the film of the present disclosure is produced by a melt film forming method without using a solvent and a plasticizer having a large environmental load. Specifically, this film is formed by heating and melting the resin composition of the present disclosure and extruding it from a press or a T-die.
  • the melting temperature is preferably 210 ° C. or lower, more preferably 200 ° C. or lower, and even more preferably 190 ° C. or lower. From the viewpoint of easy film formation, the preferable melting temperature is 160 ° C. or higher.
  • an unstretched film can be obtained by extruding the melt from a T-die onto a roll adjusted to a predetermined temperature and solidifying it using a known melt extruder.
  • the thickness of the film is adjusted by changing the melting temperature and the die lip. By increasing the roll speed after die extrusion, a thinner stretched film can be obtained.
  • the film of the present disclosure may be obtained by the inflation method.
  • the inflation method it is possible to form a film in the form of a tube.
  • a bag with a handle can be easily formed.
  • the resin composition of the present disclosure having excellent biodegradability and forming a film by an inflation method, a plastic shopping bag or a garbage bag having a low environmental load can be obtained.
  • the resin composition according to the present disclosure is, for example, a base material for tableware, packaging containers, trays, agricultural materials, fishing materials, OA parts, home appliance parts, automobile parts, daily miscellaneous goods, stationery and the like. Can be suitably used as.
  • As an agent 25 parts by weight of triethylene glycol diacetate (manufactured by TCI, molecular weight 234) is blended in a dry state, dried at 80 ° C. for 3 hours or more, and further stirred and mixed using a Henshell mixer to plasticize with cellulose acetate. A mixture with the agent was obtained.
  • the obtained mixture is supplied to a twin-screw extruder (manufactured by Ikegai Corp., trade name "PCM30", cylinder temperature: 210 ° C., die temperature: 210 ° C.), melt-kneaded, extruded and pelletized to form a kneaded product. did.
  • Examples 1-2 to 1-3 and Comparative Examples 1-1 to 1-6 A kneaded product was obtained in the same manner as in Example 1-1 except that the plasticizer was as shown in Table 1-2 below.
  • MFR measurement The MFR (g / 10min) of the kneaded product of Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-4, which were evaluated to have high plasticity, was used as JIS K7210-1 "Plastic-Melting of Thermoplastic Plastic". Measurement was performed at a temperature of 190 ° C. and a load of 5 kg according to the method described in "Methods for determining mass flow rate (MFR) and melt volume flow rate (MVR) -Part 1: Standard test method”. A melt indexer (manufactured by Toyo Seiki Co., Ltd.) was used for the measurement. The obtained results are shown in Table 1-2 below as MI values (190 ° C., 5 kg).
  • the obtained pellets were put into a melt extruder (two-screw extruder) controlled to the temperature shown in Table 3 below, and the melted resin composition was extruded from a T-die onto a roll to be unstretched. The film was extruded. The obtained film was colorless and transparent, and its thickness was 100 ⁇ m.
  • Examples 2-3, 2-4 and 2-9 to 2-12 and Comparative Examples 2-1 to 2-4 A film (colorless and transparent) having a thickness of 100 ⁇ m was obtained in the same manner as in Examples 2-1 and 2-2 except that the specifications of the cellulose acetate and the plasticizer were as shown in Tables 3 and 4 below.
  • Examples 2-5 to 2-8 and 2-13 to 2-16 The specifications of the cellulose acetate and the plasticizer are shown in Tables 3 and 4 below, and Table 3 below is the same as in Examples 2-1 and 2-2 except that the roll speed after extrusion from the T die is changed. A stretched film having the thickness shown in 1 was obtained.
  • Comparative Examples 2-5 to 2-8 the specifications of the cellulose acetate are shown in Table 4 below, and the thickness is 100 ⁇ m in the same manner as in Comparative Example 2-1 except that the temperature of the melt extruder is controlled to 210 ° C. A film (colorless and transparent) was obtained, but the workability was inferior due to the high melt viscosity. In Comparative Examples 2-6 and 2-8, an attempt was made to reduce the thickness of the film by changing the roll speed after extrusion from the T-die, but it was not practical because the obtained film had many chips.
  • the obtained mixture was supplied to a twin-screw extruder (manufactured by Ikegai Corp., trade name "PCM30", cylinder temperature: 170 ° C., die temperature: 170 ° C.), melt-kneaded and extruded to obtain pellets. These pellets are put into an inflation molding machine (die diameter 30 mm, lip width 1 mm) to obtain an inflation film having a thickness of 100 ⁇ m and a folding width of 80 mm at a Zone first half temperature of 170 ° C., a Zone second half temperature of 170 ° C., and a die temperature of 170 ° C. rice field. The film formation condition was good, and the obtained film was colorless and transparent.
  • PCM30 twin-screw extruder
  • Example 3-2 to 3-4 An inflation film having a thickness of 100 ⁇ m and a folding width of 80 mm was obtained in the same manner as in Example 3-1 except that the specifications of the cellulose acetate and the plasticizer were as shown in Table 5 below. In each case, the film-forming state was good, and the obtained film was colorless and transparent.
  • the resin compositions of Examples 1-1 to 1-3 have high plasticity and exhibit higher melt fluidity (MI value) than the resin compositions of Comparative Examples at a temperature of 190 ° C. I understand. Further, as shown in Table 3, in the resin compositions of Examples 2-1 to 2-16, good melt film formation was possible at a temperature of less than 200 ° C. Further, since the melt tension of the melt is high as in Examples 2-5 to 2-8 and 2-13 to 2-16, it was possible to stretch the melt to make it thinner than 100 ⁇ m. On the other hand, as shown in Table 4, it was difficult to form a film at a melting temperature of less than 200 ° C. with the resin compositions of Comparative Examples 2-1 to 2-4.
  • the resin composition of the example has a higher evaluation than the resin composition of the comparative example. From this evaluation result, the superiority of the present disclosure is clear.
  • the resin composition described above can be applied to various fields using the melt film forming method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

このセルロースアセテート樹脂組成物は、アセチル総置換度が1.9以上2.6以下であるセルロースアセテートと、可塑剤とを含む。セルロースアセテートは、数平均分子量が45,000以上、重量平均分子量が70,000以上である。この可塑剤は、(1)ポリアルキレングリコールの少なくとも1つの末端水酸基がエーテル化されているエーテル系可塑剤、及び、(2)ポリアルキレングリコールの少なくとも1つの末端水酸基がエステル化されているエステル系可塑剤から選択される。エーテル系可塑剤(1)及びエステル系可塑剤(2)におけるポリアルキレングリコールの重合度は、3以上10未満である。この可塑剤は、末端基に芳香環を含まない。

Description

セルロースアセテート樹脂組成物
 本開示は、セルロースアセテート樹脂組成物に関する。詳細には、本開示は、溶融成形に用いるセルロースアセテート樹脂組成物に関する。
 セルロースアセテートは生分解性を有しており、活性汚泥により分解することが知られている。地球環境への関心の高まりから、生分解可能なフィルム及びシートが要望されている。
 セルロースアセテートは、分子鎖中に残存する水酸基に起因する水素結合により、熱溶融性が乏しい。セルロースアセテートのアセチル総置換度DSが低いほど、溶融温度が高くなる傾向にある。一方、セルロースアセテートのアセチル総置換度が高いほど、その結晶性が高くなるため、溶解性及び溶融性が低下する傾向にある。溶融製膜によりセルロースアセテートをシート又はフィルム化する方法が種々検討されている。
 特許文献1は、セルロースアセテートと、ポリオキシエチレングリコールとを含有するアセテート組成物からなる生分解性シートが開示されている。特許文献2には、アセチル基置換度が2.3~2.7の酢酸セルロ-スと生分解性可塑剤とを主要素成分とする生分解性フィルム又はシートが開示されている。この可塑剤は、(1)H(OH)3-n(OOCCH(0≦n≦3)で表される化合物及び(2)グリセリンアルキレ-ト、エチレングリコ-ルアルキレ-ト、エチレン繰り返し単位が5以下のポリエチレングリコ-ルアルキレ-ト、脂肪族モノカルボン酸アルキルエステル、脂肪族ジカルボン酸アルキルエステル、脂肪族トリカルボン酸アルキルエステルからなる群から選択されている。
 特許文献3では、重量平均分子量10~25万、平均置換度1.0~2.5のセルロースアセテートと、平均分子量300以上の可塑剤とを溶融、混合してなり、ガラス転移温度が200℃以上である領域を含むセルロースアセテート系樹脂組成物が提案されている。特許文献4は、アセチル総置換度が0.5~1.0である酢酸セルロース及び水溶性有機添加剤を含む水溶性酢酸セルロース系樹脂組成物を開示している。
 特許文献5には、アセチル置換度1.5-2.8のセルロースアセテートと、可塑剤としてトリエチレングリコール等を1-45%含む組成物及びフィルムが記載されている。特許文献6には、アセチル置換度2.0-2.6の酢酸セルロースと、可塑剤とを含む組成物及びフィルムが開示されている。特許文献7には、酢酸セルロース系樹脂用可塑剤として、オキシアルキレン基の末端がアルキル化又はアシル化された化合物が開示されている。
特開平8-53575号公報 特開2002-60545号公報 特開平11-255959号公報 特開2015-140432号公報 中国特許出願公開第11113872号明細書 特開2018-524463号公報 特開2007-77300号公報
 特許文献1-3が開示する組成物は、いずれも200℃を超える温度で溶融成形されて、厚み100μmを超えるシートが得られている。溶融温度200℃を超えると、セルロースアセテートの熱分解による着色が生じるという問題がある。特許文献4の樹脂組成物は、温度200℃未満で溶融紡糸されているが、この樹脂組成物には、低置換度の酢酸セルロースが使用されている。特許文献5の実施例では、温度200℃未満で溶融成形されているが、この組成物には分子量の低い酢酸セルロースアセテートが使用されている。特許文献6では、環境への影響が懸念される芳香環を有する特殊な可塑剤が使用されている。特許文献7はセルロースアセテートの詳細に言及しておらず、特にセルロースアセテートの薄膜化に適した可塑剤を提供するものではない。
 本開示者らの知見によれば、比較的置換度の高いセルロースアセテートを含む樹脂組成物では、200℃より低い温度における溶融流動性が充分ではなく、溶融物の伸び性や折り曲げ柔軟性も不足するため、特に、厚み100μm以下の薄膜化が困難であった。また、成形品のさらなる強度向上も要望されているが、特に、溶融製膜において、溶融粘度の増大が予想される高分子量セルロースアセテートの適用は容易ではなかった。
 本開示の目的は、200℃未満の溶融温度で製膜可能なセルロースアセテート樹脂組成物の提供にある。
 本開示に係るセルロースアセテート組成物は、アセチル総置換度が1.9以上2.6以下であるセルロースアセテートと、可塑剤とを含む。このセルロースアセテートは、数平均分子量Mnが45,000以上であり、重量平均分子量Mwが70,000以上である。この可塑剤は、
(1)ポリアルキレングリコールの少なくとも1つの末端水酸基がエーテル化されており、このポリアルキレングリコールの重合度が3以上10未満であり、その末端基が芳香環を含まないエーテル系可塑剤
及び
(2)ポリアルキレングリコールの少なくとも1つの末端水酸基がエステル化されており、このポリアルキレングリコールの重合度が3以上10未満であり、その末端基が芳香環を含まないエステル系可塑剤
から選択される。
 好ましくは、この樹脂組成物全体における可塑剤の総含有量は、5重量%以上50重量%以下である。
 好ましくは、このポリアルキレングリコールは、炭素数2以上4以下のアルキレンオキシ基を繰り返し単位として有している。
 好ましくは、エーテル系可塑剤のエーテル置換基は、分子量150以下の炭化水素基である。好ましくは、この炭化水素基はアルキル基である。
 好ましくは、エステル系可塑剤は、分子量150以下のカルボン酸によりエステル化されたポリアルキレングリコールである。好ましくは、このカルボン酸は飽和脂肪酸である。
 好ましくは、セルロースアセテートの分子量分布Mw/Mnは1.7を超える。
 本開示に係るフィルムは、前述したいずれかの樹脂組成物を用いて得られる。このフィルムの厚みは、10μm以上150μm以下である。
 本開示に係るセルロースアセテート樹脂組成物は、200℃未満の温度領域における溶融流動性が高いため、容易に薄膜化することができ、強度に優れたフィルムを得ることができる。また、この樹脂組成物によれば、セルロースアセテートの熱分解温度より充分に低い温度で製膜できるため、着色が抑制される。さらに、この樹脂組成物は、溶融張力が高いため、インフレーション製膜への適用も可能である。
 以下、好ましい実施形態に基づいて本開示が詳細に説明される。各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。
 なお、本願明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特に注釈のない限り、「ppm」は「重量ppm」を意味する。
 [セルロースアセテート樹脂組成物]
 本開示に係るセルロースアセテート樹脂組成物は、セルロースアセテートと、可塑剤とを含む。セルロースアセテートは、アセチル総置換度が1.9以上2.6以下であり、数平均分子量Mnが45,000以上であり、重量平均分子量Mwが70,000以上である。可塑剤は、
(1)ポリアルキレングリコールの少なくとも1つの末端水酸基がエーテル化されており、このポリアルキレングリコールの重合度が3以上10未満であり、その末端基に芳香環を含まないエーテル系可塑剤
及び
(2)ポリアルキレングリコールの少なくとも1つの末端水酸基がエステル化されており、このポリアルキレングリコールの重合度が3以上10未満であり、その末端基に芳香環を含まないエステル系可塑剤
から選択される1又は2以上である。
 この樹脂組成物には、ポリアルキレングリコール末端の水酸基の少なくとも一つが、エーテル化又はエステル化された可塑剤が配合される。この可塑剤と、アセチル総置換度1.9以上2.6以下であり、数平均分子量Mnが45,000以上であり、重量平均分子量Mwが70,000以上であるセルロースアセテートとの相溶性は、高い。この樹脂組成物では、可塑剤のブリードアウトが抑制される。さらに、この可塑剤を含む樹脂組成物は、セルロースアセテートの熱分解温度より低い温度、具体的には200℃未満での溶融成形が可能であり、分解物に起因する着色が回避されうる。また、この樹脂組成物は、200℃未満の温度領域における溶融粘度が低い。そのため、溶融押出法においてダイリップを狭めて、薄膜のフィルムを吐出する場合でも、溶融物に対する粘度が必要以上に大きくならず、好適な製膜が可能である。
 さらに、この樹脂組成物では、溶融時に、末端水酸基がエーテル化又はエステル化された可塑剤が、セルロースアセテートの分子鎖間の絡み合いを向上させる作用を示すと考えられる。本開示に係る樹脂組成物では、この可塑剤の作用によって、溶融粘度が過大に増加することなく、溶融張力が向上する。そのため、溶融押出後のフィルムをさらに延伸して薄膜化することができる。また、従来セルロースアセテートの適用が困難であったインフレーション法による製膜も可能となる。
 高い溶融流動性が得られるとの観点から、本開示の樹脂組成物のMI値(190℃、5kg)は、6.0以上が好ましく、7.5以上が好ましく、9.0以上がより好ましい。MI値は、JIS K7210-1「プラスチック-熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の求め方-第1部:標準的試験方法」の記載に準拠して測定される。
 [可塑剤]
 前述した通り、本開示に係る樹脂組成物に配合される可塑剤は、ポリアルキレングリコールの末端水酸基の少なくとも1つが、エーテル化又はエステル化されている。詳細には、この可塑剤は、芳香環を含まない官能基によって、エーテル化又はエステル化されている。換言すれば、この可塑剤は、末端基に芳香環をふくんでいない。この可塑剤によれば、芳香族化合物に起因する環境への悪影響が少ない。
 ポリアルキレングリコールは、繰り返し単位として、アルキレンオキシ基を有している。溶融時の分解抑制の観点から、繰り返し単位であるアルキレンオキシ基の炭素数は2以上が好ましく、セルロースアセテートとの相溶性に優れるとの観点から、この炭素数は4以下が好ましい。このようなアルキレンオキシ基として、例えば、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基が挙げられる。
 高い溶融張力が得られるとの観点から、ポリアルキレングリコールにおける繰り返し単位の数(以下、重合度と称する)は、3以上であり、4以上が好ましい。低い溶融粘度が得られるとの観点から、ポリアルキレングリコールの重合度は10未満であり、好ましくは9以下、より好ましくは8以下である。
 ポリアルキレングリコールの少なくとも1つの末端水酸基がエーテル化されているエーテル系可塑剤において、好ましいエーテル置換基は、直鎖状、分岐状又は環状の炭化水素基である。脂肪族炭化水素基が好ましく、飽和脂肪族炭化水素基(アルキル基)がより好ましい。セルロースアセテートとの相溶性に優れるとの観点から、この炭化水素基の分子量は150以下が好ましく、140以下がより好ましく、100以下がさらに好ましい。
 セルロースアセテートとの相溶性に優れるとの観点から、エーテル系可塑剤の数平均重合度は10以下が好ましく、8以下がより好ましい。溶融流動性が高いとの観点から、数平均重合度3以上のエーテル系可塑剤が好ましい。エーテル系可塑剤の数平均重合度は、ポリスチレンを標準物質として用いたサイズ排除クロマトグラフィ(GPC)で測定される数平均分子量から算出される。
 本開示の樹脂組成物に用いるエーテル系可塑剤の具体例として、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、ポリエチレングリコールモノメチルエーテル等が挙げられる。また、重合度3以上10未満であるポリエチレングリコールのモノメチルエーテル、モノエチルエーテル、ジメチルエーテル等、重合度3以上10未満であるポリプロピレングリコールのモノメチルエーテル、モノエチルエーテル、ジメチルエーテル等が例示される。
 本開示の樹脂組成物において、ポリアルキレングリコールの少なくとも1つの末端水酸基がエステル化されているエステル系可塑剤の数平均重合度は2以上である。溶融時の揮発抑制及び溶融張力向上の観点から、エステル系可塑剤の数平均重合度は3以上がより好ましい。セルロースアセテートとの相溶性に優れるとの観点から、数平均重合度10以下のエステル系可塑剤が好ましい。エステル系可塑剤の数平均重合度は、ポリスチレンを標準物質として用いたサイズ排除クロマトグラフィ(GPC)で測定される数平均分子量から算出される。
 ポリアルキレングリコールの少なくとも1つの末端水酸基が、好ましくは分子量150以下、より好ましくは分子量130以下のカルボン酸によりエステル化されているエステル系可塑剤が好ましい。環境への負荷低減の観点から、好ましいカルボン酸は、脂肪族カルボン酸(脂肪酸)である。飽和脂肪酸であってもよく、不飽和脂肪酸であってもよい。好ましくは、飽和脂肪酸でエステル化されたエステル系可塑剤である。
 本開示の樹脂組成物に用いるエステル系可塑剤の具体例として、トリエチレングリコールモノアセテート、トリエチレングリコールジアセテート、トリエチレングリコールジプロピオネート、テトラエチレングリコールジアセテート等が挙げられる。
 本開示の樹脂組成物における可塑剤の含有量は、可塑剤の種類、セルロースアセテートの物性等に応じて適宜調整される。前述した可塑剤の作用が得られやすいとの観点から、この可塑剤の総含有量は、樹脂組成物全体に対して5重量%以上が好ましく、10重量%以上がより好ましく、15重量%以上がさらに好ましく、20重量%以上が特に好ましい。得られる成形品の強度の観点から、可塑剤の総含有量は、50重量%以下が好ましく、45重量%以下がより好ましく、40重量%以下がさらに好ましく、35重量%以下が特に好ましい。本開示の樹脂組成物における可塑剤の総含有量としては、10~45重量%であってよく、10~40重量%であってよく、10~35重量%であってよく、15~50重量%であってよく、15~45重量%であってよく、15~40重量%であってよく、15~35重量%であってよく、20~50重量%であってよく、20~45重量%であってよく、20~40重量%であってよく、20~35重量%であってよい。複数の可塑剤が併用される場合、その合計量が前述の数値範囲に調整されることが好ましい。
 [セルロースアセテート(CA)]
 本開示の樹脂組成物には、アセチル総置換度(DS)が1.9以上2.6以下のセルロースアセテートが用いられる。耐水性向上の観点から、セルロースアセテートのアセチル総置換度は、2.0以上が好ましく、2.1以上がより好ましい。生分解性に優れるとの観点から、セルロースアセテートのアセチル総置換度は、2.56以下が好ましく、2.50以下がより好ましく、2.40以下がさらに好ましく、2.30以下がよりさらに好ましく、2.26以下が特に好ましい。セルロースアセテートのアセチル総置換度は、1.9~2.56であってよく1.9~2.50であってよく、1.9~2.40であってよく、1.9~2.30であってよく、1.9~2.26であってよく、2.0~2.6であってよく、2.0~2.56であってよく、2.0~2.50であってよく、2.0~2.40であってよく、2.0~2.30であってよく、2.0~2.26であってよく、2.1~2.6であってよく、2.1~2.56であってよく、2.1~2.50であってよく、2.1~2.40であってよく、2.1~2.30であってよく、2.1~2.26であってよい。
 セルロースアセテートのアセチル総置換度(平均置換度と称する場合がある)は、ASTM:D-871-96(セルロースアセテート等の試験方法)における酢化度の測定法に準じて求めた酢化度AVを、次式で換算することにより求められる。これは、最も一般的なセルロースアセテートの置換度の求め方である。
 DS=162.14×AV×0.01/(60.052-42.037×AV×0.01)
 DS:アセチル総置換度
 AV:酢化度(%)
 酢化度(AV)の測定方法は、以下の通りである。
 まず、乾燥した酢酸セルロース(試料)500mgを精秤し、超純水とアセトンとの混合溶媒(容量比4:1)50mlに溶解した後、0.2N-水酸化ナトリウム水溶液50mlを添加し、25℃で2時間ケン化する。次に、0.2N-塩酸50mlを添加し、フェノールフタレインを指示薬として、0.2N-水酸化ナトリウム水溶液(0.2N-水酸化ナトリウム規定液)で、脱離した酢酸量を滴定する。また、同様の方法によりブランク試験(試料を用いない試験)を行う。そして、下記式に従ってAV(酢化度)(%)を算出する。
 AV(%)=(A-B)×F×1.201/試料重量(g)
 A:0.2N-水酸化ナトリウム規定液の滴定量(ml)
 B:ブランクテストにおける0.2N-水酸化ナトリウム規定液の滴定量(ml)
 F:0.2N-水酸化ナトリウム規定液のファクター
 [セルロースアセテートの分子量及び分子量分布]
 本開示の樹脂組成物には、数平均分子量Mnが45,000以上、かつ、重量平均分子量Mwが70,000以上のセルロースアセテートが含まれる。数平均分子量Mn及び重量平均分子量Mwがこの範囲であるセルロースアセテートを含む樹脂組成物によれば、溶融成形により強度の高い成形品を容易に得ることができる。強度向上の観点から、セルロースアセテートの重量平均分子量Mwは、80,000以上が好ましく、90,000以上がより好ましく、100,000以上がさらに好ましい。重量平均分子量Mwの上限値は特に限定されないが、溶融成形が容易であるとの観点から、250,000以下が好ましく、240,000以下がより好ましく、230,000以下がさらに好ましい。
 強度向上の観点から、セルロースアセテートの数平均分子量Mnは、50,000以上が好ましく、55,000以上がより好ましく、60,000以上がさらに好ましい。数平均分子量Mnの上限値は特に限定されないが、溶融成形が容易であるとの観点から、125,000以下が好ましく、120,000以下がより好ましく、115,000以下がより好ましい。
 セルロースアセテートの分子量分布は、数平均分子量Mnと重量平均分子量Mwとの比(Mw/Mn)により評価される。大きな溶融流動性が得られるとの観点から、セルロースアセテートの分子量分布Mw/Mnは1.7を超えることが好ましく、1.8以上がより好ましく、2.0以上がさらに好ましく、2.1以上が特に好ましい。セルロースアセテートの生産効率の観点から、分子量分布Mw/Mnは、3.5以下が好ましく、3.2以下がより好ましく、3.0以下がさらに好ましい。
 セルロースアセテートは、セルロースを原材料として得られる半合成高分子である。セルロースアセテートの分子量の最大値は、原材料であるセルロースにより定まる。分子量分布Mw/Mnが大きいセルロースアセテートは、後述する製造方法において、加水分解をなるべく短時間でおこなうことにより得られる。また、原材料として分子量が異なるセルロースを用いることにより、分子量分布Mw/Mnの大きいセルロースアセテートを得ることができる。さらに、重合度の中央値が異なる複数のセルロースアセテートフレークを混合することにより、分子量分布Mw/Mnを大きくすることも可能である。分子量分布Mw/Mnが概ね3.5以下であれば、後述するセルロースアセテートの製造方法において、その反応条件を調整することにより、得ることができる。3.5を超える分子量分布Mw/Mnを得る場合には、原材料のセルロースを複数混合する方法、又は、複数のセルロースアセテートフレークを混合する方法が有効である。
 セルロースアセテートの分子量及び分子量分布は、公知の方法で求めることができる。詳細には、セルロースアセテートの分子量及び分子量分布は、以下の装置及び条件でサイズ排除クロマトグラフィー(GPC)測定を行うことにより決定される(GPC-光散乱法)。
 装置:Shodex製 GPC 「SYSTEM-21H」
 溶媒:アセトン
 カラム:GMHxl(東ソー)2本、ガードカラム(東ソー製TSKgel guardcolumn HXL-H)
 流速:0.8ml/min
 温度:29℃
 試料濃度:0.25%(wt/vol)
 注入量:100μl
 検出:MALLS(多角度光散乱検出器)(Wyatt製、「DAWN-EOS」)
 MALLS補正用標準物質:PMMA(分子量27600)
 [セルロースアセテートの粘度平均重合度(DPv)]
 本開示の樹脂組成物に用いるセルロースアセテートの粘度平均重合度(DPv)は特に限定されないが、好ましくは、10以上400以下である。粘度平均重合度がこの範囲であるセルロースアセテートを含む樹脂組成物は、溶融成形性に優れる。この観点から、粘度平均重合度は、15以上300以下がより好ましく、20以上200以下がさらに好ましい。
 粘度平均重合度(DPv)は、セルロースアセテートの極限粘度数([η]、単位:cm/g)に基づいて求められる。
 極限粘度数([η]、単位:cm/g)は、JIS-K-7367-1及びISO1628-1に準じて求められる。具体的には、ジメチルスルホキシド(DMSO)を溶媒とする試料溶液を準備し、サイズ番号1Cのウベローデ型粘度計を用いて測定した25℃の対数相対粘度を、試料溶液の濃度で除すことにより求められる。
 得られた極限粘度数[η]を用いて、Kamideらの文献(Polymer Journal、13、421-431(1981))に従って、次式により、粘度平均分子量を算出した。
 粘度平均分子量=(極限粘度数[η]/0.171)(1/0.61)
 算出した粘度平均分子量を用いて、次式により粘度平均重合度(DPv)を求めた。
 粘度平均重合度(DPv)=粘度平均分子量/(162.14+42.037×DS)
なお、式中、DSは、前述したアセチル総置換度である。
 [セルロースアセテートの製造方法]
 アセチル総置換度1.9以上2.6以下、数平均分子量45,000以上及び重量平均分子量70,000以上のセルロースアセテートは、公知のセルロースアセテートの製造方法により製造できる。このような製造方法としては、無水酢酸を酢化剤、酢酸を希釈剤、硫酸を触媒とするいわゆる酢酸法が挙げられる。酢酸法の基本的工程は、(1)α-セルロース含有率の比較的高いパルプ原料(溶解パルプ)を、離解・解砕後、酢酸を散布混合する前処理工程と、(2)無水酢酸、酢酸及び酢化触媒(例えば硫酸)よりなる混酸で、(1)の前処理パルプを反応させる酢化工程と、(3)セルロースアセテートを加水分解して所望の酢化度のセルロースアセテートとする熟成工程と、(4)加水分解反応の終了したセルロースアセテートを反応溶液から沈殿分離、精製、安定化、乾燥する後処理工程より成る。アセチル総置換度の調整は、熟成工程の条件(時間、温度等の条件)を調整することにより可能となる。
 [樹脂組成物の製造方法]
 本開示の樹脂組成物は、アセチル総置換度1.9以上2.6以下、数平均分子量45,000以上及び重量平均分子量70,000以上のセルロースアセテートと、前述した可塑剤とを溶融混練することにより得られうる。好ましくは、この樹脂組成物は、セルロースアセテートと可塑剤とを混合した後、溶融混練することにより得られる。溶融混練前の混合により、可塑剤とセルロースアセテートとがより均一に、また短時間で馴染むことで、得られる混練物が均質化するため、溶融流動性及び加工精度が向上した樹脂組成物が得られる。
 セルロースアセテートと可塑剤との混合には、ヘンシェルミキサー等の既知の混合機が用いられうる。乾式混合でもよく、湿式混合でもよい。ヘンシェルミキサー等の混合機を用いる場合、混合機内の温度は、セルロースアセテートが溶融しない温度、例えば、20℃以上200℃未満が好ましい。
 セルロースアセテートと可塑剤との溶融混練、又は、セルロースアセテートと可塑剤との混合後の溶融混練には、二軸押出機等の押出機等が用いられうる。混練物の均一性及び加熱劣化抑制の観点から、押出機による混練温度(シリンダー温度)は160℃以上230℃以下が好ましく、170℃以上210℃以下がより好ましい。セルロースアセテートの融点は、置換度にもよるが、およそ230℃から280℃であり、セルロースアセテートの分解温度に近いため、通常は、この温度範囲では溶融混練は難しいが、本開示の樹脂組成物では、前述の可塑剤により可塑化温度が低下するため、230℃以下の温度で充分均一な混練物が得られうる。例えば、二軸押出機を用いて溶融混練する場合には、混練温度(シリンダー温度とも称する)は200℃であってもよい。二軸押出機の先端に取り付けたダイスから混練物をストランド状に押出した後、ホットカットしてペレットにしてもよい。このときダイス温度は、200℃~220℃程度であってよい。
 得られる樹脂組成物全体に対する可塑剤の配合量は、5重量%以上50重量%以下が好ましい。2種以上の可塑剤を配合する場合、その合計量が、5重量%以上50重量%以下であることが好ましい。本開示の効果を阻害しない範囲で、この樹脂組成物に、前述した可塑剤以外の可塑剤を配合してもよく、着色剤、紫外線吸収剤、光安定剤、酸化防止剤、熱安定剤、光学特性調整剤、蛍光増白剤及び難燃剤等既知の添加剤を配合してもよい。
 [フィルム]
 他の観点から、本開示は、前述したセルロースアセテート樹脂組成物を用いたフィルムに関する。本開示の樹脂組成物を、従来困難であった溶融製膜法に用いて得られるフィルムは、薄く、しかも、熱分解物に起因する着色がない。好ましくは、このフィルムの厚みは、150μm以下であり、より好ましくは、10μm以上150μm以下であり、さらに好ましくは10μm以上100μm以下であり、特に好ましくは、10μm以上90μm以下である。後述するように、溶融押出後の延伸又はインフレーション法を用いることで、用途に応じて、フィルムの厚みを、10μm以上50μm以下、さらには、10μm以上30μm以下に薄膜化することができる。
 本開示の樹脂組成物を用いて得られるフィルムは、海洋生分解性に優れるものである。海洋中で180日以内に有機炭素量の40重量%以上がCOへ分解することが好ましく、50重量%以上がより好ましく、60重量%以上が特に好ましい。海洋分解性は、ASTM D6691に準じた方法により測定することができる。
 [製膜方法]
 本開示のフィルムは、環境負荷の大きい溶剤及び可塑剤を用いることなく、溶融製膜法にて製造される。詳細には、このフィルムは、本開示の樹脂組成物を加熱溶融し、プレス又はTダイから押し出すことにより製膜される。溶融温度としては、210℃以下が好ましく、200℃以下がより好ましく、190℃以下がさらに好ましい。製膜容易との観点から、好ましい溶融温度は160℃以上である。
 例えば、公知の溶融押出機を用いて、溶融物をTダイから所定の温度に調整したロール上に押し出して固化させることにより、未延伸フィルムが得られる。溶融温度及びダイリップの変更により、フィルムの厚みが調整される。ダイ押出後のロール速度を増加することにより、より薄膜化した延伸フィルムが得られうる。
 インフレーション法により本開示のフィルムが得られてもよい。インフレーション法では、チューブ状にフィルムを製膜することが可能である。このチューブを溶断シールと溶断することで、取っ手付きの袋を簡単に製膜することができる。生分解性に優れた本開示の樹脂組成物を用いて、インフレーション法で製膜することにより、低環境負荷のレジ袋やゴミ袋とすることができる。
 本開示に係る樹脂組成物は、例えば、食器類、包装容器、トレー類、農業用資材、漁業用資材、OA用部品、家電部品、自動車用部材、日用雑貨類、文房具類等の基材として、好適に使用され得る。
 以下、実施例によって本開示の効果が明らかにされるが、この実施例の記載に基づいて本開示が限定的に解釈されるべきではない。
 [試験1:可塑性評価試験]
 [実施例1-1]
 セルロースアセテート(株式会社ダイセル製:アセチル総置換度DS=2.45、数平均分子量Mn=85,000、重量平均分子量Mw=190,000、Mw/Mn=2.2)75重量部と、可塑剤としてトリエチレングリコールジアセテート(TCI社製、分子量234)25重量部とを乾燥状態でブレンドし、80℃で3時間以上乾燥させ、さらに、ヘンシェルミキサーを用いて攪拌混合し、セルロースアセテートと可塑剤との混合物を得た。得られた混合物を、二軸押出機(株式会社池貝製、商品名「PCM30」、シリンダー温度:210℃、ダイ温度:210℃)に供給し、溶融混練し、押し出してペレット化し、混練物とした。
 [実施例1-2~1-3及び比較例1-1~1-6]
 可塑剤を下表1-2に示される通りとした他は実施例1-1と同様にして、混練物を得た。
 [可塑性の評価]
 実施例1-1~1-3及び比較例1-1~1-6の混練物の透明性を目視にて観察した。不透明な部分が認められなかった混練物を、可塑性が高い(○)と評価し、わずかでも不透明な部分が観察された混練物を、可塑性が低い(×)と評価した。評価結果が、下表1-2に示されている。
 [MFR測定]
 可塑性が高いと評価された実施例1-1~1-3及び比較例1-1~1-4の混練物のMFR(g/10min)を、JIS K7210-1「プラスチック-熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の求め方-第1部:標準的試験方法」に記載された方法に準拠して、温度190℃、荷重5kgの条件で測定した。測定には、メルトインデクサー(東洋精機社製)を使用した。得られた結果が、MI値(190℃、5kg)として、下表1-2に示されている。また、MFR測定時に得られたストランドの状態を観察し、表面が均一であったものを良好(○)と評価し、表面にオイル状の付着が認められたものを不良(×)と評価した。比較例1-5は、溶融流動性が低いため、同条件での測定ができなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [試験2:フィルム作成試験]
 [実施例2-1]
 実施例1-1と同様にして、セルロースアセテート(株式会社ダイセル製:アセチル総置換度DS=2.45、数平均分子量Mn=85,000、重量平均分子量Mw=190,000、Mw/Mn=2.2)と、トリエチレングリコールジアセテート(TCI社製、分子量234)とを溶融混練して、ペレットを得た。得られたペレットを、下表3に示された温度に制御された溶融押出機(2軸押出機)に投入し、溶融した樹脂組成物をTダイからロール上に押し出すことにより、未延伸のフィルムを製膜した。得られたフィルムは無色透明であり、その厚みは100μmであった。
 [実施例2-2]
 セルロースアセテート(株式会社ダイセル製:アセチル総置換度DS=2.15、数平均分子量Mn=81,000、重量平均分子量Mw=180,000、Mw/Mn=2.2)を使用した以外は、実施例2-1と同様にして、厚み100μmのフィルム(無色透明)を得た。
 [実施例2-3、2-4及び2-9~2-12並びに比較例2-1~2-4]
 セルロースアセテート及び可塑剤の仕様を下表3及び4に示される通りとした他は実施例2-1及び2-2と同様にして、厚み100μmのフィルム(無色透明)を得た。なお、実施例2-3、2-9及び2-11並びに比較例2-1~2-4では、セルロースアセテート(株式会社ダイセル製:アセチル総置換度DS=2.45、数平均分子量Mn=85,000、重量平均分子量Mw=190,000、Mw/Mn=2.2)を使用し、実施例2-4、2-10及び2-12では、セルロースアセテート(株式会社ダイセル製:アセチル総置換度DS=2.15、数平均分子量Mn=81,000、重量平均分子量Mw=180,000、Mw/Mn=2.2)を使用した。比較例2-1~2-4では、得られた成形物中に不溶物が認められ、200℃未満で均質な厚みの製膜が困難であることを確認した。
 [実施例2-5~2-8及び2-13~2-16]
 セルロースアセテート及び可塑剤の仕様を下表3及び4に示されるものとし、Tダイから押出後のロール速度を変更した以外は、実施例2-1及び2-2と同様にして、下表3に示される厚みの延伸フィルムを得た。なお、実施例2-5、2-6、2-13及び2-14では、セルロースアセテート(株式会社ダイセル製:アセチル総置換度DS=2.45、数平均分子量Mn=85,000、重量平均分子量Mw=190,000、Mw/Mn=2.2)を使用し、実施例2-7、2-8、2-15及び2-16では、セルロースアセテート(株式会社ダイセル製:アセチル総置換度DS=2.15、数平均分子量Mn=81,000、重量平均分子量Mw=180,000、Mw/Mn=2.2)を使用した。
 [比較例2-5~2-8]
 比較例2-5及び2-7では、セルロースアセテートの仕様を下表4に示されるものとし、溶融押出機を210℃に温度制御した以外は比較例2-1と同様にして、厚み100μmのフィルム(無色透明)を得たが、溶融粘度が高いため作業性に劣るものであった。比較例2-6及び2-8では、Tダイからの押出後のロール速度を変更して薄膜化を試みたが、得られるフィルムに多くの欠けが発生したため、実用化できるものではなかった。なお、比較例2-5及び2-6では、セルロースアセテート(株式会社ダイセル製:アセチル総置換度DS=2.45、数平均分子量Mn=85,000、重量平均分子量Mw=190,000、Mw/Mn=2.2)を使用し、比較例2-7及び2-8では、セルロースアセテート(株式会社ダイセル製:アセチル総置換度DS=2.15、数平均分子量Mn=81,000、重量平均分子量Mw=180,000、Mw/Mn=2.2)を使用した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[試験3:インフレーションフィルム作成試験]
 [実施例3-1]
 実施例2-3と同様にして、セルロースアセテート(株式会社ダイセル製:アセチル総置換度DS=2.45、数平均分子量Mn=85,000、重量平均分子量Mw=190,000、Mw/Mn=2.2)67重量部と、トリエチレングリコールジアセテート(TCI社製、分子量234)33重量部とを乾燥状態でブレンドし、80℃で3時間以上乾燥させ、さらに、ヘンシェルミキサーを用いて攪拌混合し、セルロースアセテートと可塑剤との混合物を得た。得られた混合物を、二軸押出機(株式会社池貝製、商品名「PCM30」、シリンダー温度:170℃、ダイ温度:170℃)に供給し、溶融混練し、押し出すことによりペレットを得た。このペレットを、インフレーション成形機(ダイ直径30mm、リップ幅1mm)に投入し、Zone前半温度170℃、Zone後半温度170℃、ダイス温度170℃にて、厚み100μm、折幅80mmのインフレーションフィルムを得た。製膜状態は良好であり、得られたフィルムは無色透明であった。
 [実施例3-2~3-4]
 セルロースアセテート及び可塑剤の仕様を下表5に示される通りとした他は実施例3-1と同様にして、厚み100μm、折幅80mmのインフレーションフィルムを得た。いずれも製膜状態は良好であり、得られたフィルムは無色透明であった。なお、実施例3-2及び3-4では、セルロースアセテート(株式会社ダイセル製:アセチル総置換度DS=2.15、数平均分子量Mn=81,000、重量平均分子量Mw=180,000、Mw/Mn=2.2)を使用した。
Figure JPOXMLDOC01-appb-T000005
 [試験4:強度評価試験]
 [実施例4-1~4-4及び比較例4-1~4-4]
 下表6に示される組成にて、セルロースアセテートと可塑剤とを乾燥状態でブレンドし、80℃で3時間以上乾燥させ、さらに、ヘンシェルミキサーを用いて攪拌混合し、セルロースアセテートと可塑剤との混合物を得た。得られた混合物を、二軸押出機(株式会社池貝製、商品名「PCM30」、シリンダー温度:210℃、ダイ温度:210℃)に供給して溶融混練し、押し出すことにより、混練物のペレットを得た。
 (ダンベル片の作成)
 実施例及び比較例のペレットを射出成形(温度210℃)することにより、ISO527に記載されたダンベル状のA型試験片(厚み4mm)を作成した。
 (フィルム状試験片の作成)
 実施例及び比較例のペレットを、溶融押出機(2軸押出機)に投入し、Zone前半温度190℃、Zone後半温度200℃、ダイス温度200℃にて、溶融した樹脂組成物をTダイからロール上に押し出すことにより、厚み100μmのフィルムを得た。
 [引張試験]
 実施例及び比較例のダンベル片及びフィルムの引張強度(最大強度:MPa)を、ISO527に記載された方法に準拠して、室温(20℃±5℃)で測定した。測定には、エー・アンド・デイ社製の引張試験機を使用した。試験条件は、以下の通りである。
引張速度:50mm/min
つかみ具間距離:115mm
各5回測定してその平均値を算出した結果が、下表6に示されている。なお、フィルムの強度は縦方向(押出方向)における最大強度である。
Figure JPOXMLDOC01-appb-T000006
 (まとめ)
 表1-2に示される通り、実施例1-1~1-3の樹脂組成物は可塑性が高く、温度190℃において比較例の樹脂組成物よりも高い溶融流動性(MI値)を示すことがわかった。また、表3に示される通り、実施例2-1~2-16の樹脂組成物では、200℃未満の温度で良好な溶融製膜が可能であった。さらに、実施例2-5~2-8及び2-13~2-16のように溶融物の溶融張力が高いため、これを延伸して厚み100μm未満に薄膜化することが可能であった。一方、表4に示される通り、比較例2-1~2-4の樹脂組成物では、200℃未満の溶融温度での製膜が困難であった。比較例2-5~2-8のように、200℃以上の溶融温度では製膜できたが、溶融粘度が高いため作業性に劣り、薄膜化することができなかった。また、表5に示される通り、実施例の樹脂組成物は、200℃未満でのインフレーション製膜に適用可能であることを確認した。さらに、表6に示される通り、実施例の樹脂組成物は、比較例よりも引張強度が高く、機械的特性に優れることを確認した。
 表1-6に示されるように、実施例の樹脂組成物は、比較例の樹脂組成物に比べて評価が高い。この評価結果から、本開示の優位性は明らかである。
 以上説明された樹脂組成物は、溶融製膜法を用いる種々の分野に適用されうる。

Claims (9)

  1.  アセチル総置換度が1.9以上2.6以下であるセルロースアセテートと、可塑剤とを含み、
     上記セルロースアセテートは、数平均分子量Mnが45,000以上、かつ、重量平均分子量Mwが70,000以上であり、
     上記可塑剤が、
    (1)ポリアルキレングリコールの少なくとも1つの末端水酸基がエーテル化されており、このポリアルキレングリコールの重合度が3以上10未満であり、その末端基が芳香環を含まないエーテル系可塑剤
    及び
    (2)ポリアルキレングリコールの少なくとも1つの末端水酸基がエステル化されており、このポリアルキレングリコールの重合度が3以上10未満であり、その末端基に芳香環を含まないエステル系可塑剤
    から選択される、セルロースアセテート樹脂組成物。
  2.  上記可塑剤の総含有量が、上記樹脂組成物全体に対して5重量%以上50重量%以下である、請求項1に記載の樹脂組成物。
  3.  上記ポリアルキレングリコールが、炭素数2以上4以下のアルキレンオキシ基を繰り返し単位として有している、請求項1又は2に記載の樹脂組成物。
  4.  上記エーテル系可塑剤のエーテル置換基が、分子量150以下の炭化水素基である、請求項1から3のいずれかに記載の樹脂組成物。
  5.  上記炭化水素基がアルキル基である、請求項4に記載の樹脂組成物。
  6.  上記エステル系可塑剤が、分子量150以下のカルボン酸によりエステル化されたポリアルキレングリコールである、請求項1から5のいずれかに記載の樹脂組成物。
  7.  上記カルボン酸が飽和脂肪酸である、請求項6に記載の樹脂組成物。
  8.  上記セルロースアセテートの分子量分布Mw/Mnが1.7を超える、請求項1から7のいずれかに記載の樹脂組成物。
  9.  請求項1から8のいずれかに記載の樹脂組成物を用いて得られる、厚み10μm以上150μm以下である、フィルム。
PCT/JP2021/029071 2020-08-07 2021-08-05 セルロースアセテート樹脂組成物 WO2022030573A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180038763.3A CN115698160B (zh) 2020-08-07 2021-08-05 乙酸纤维素树脂组合物
EP21852175.5A EP4194491A4 (en) 2020-08-07 2021-08-05 CELLULOSE ACETATE RESIN COMPOSITION
JP2022541721A JPWO2022030573A1 (ja) 2020-08-07 2021-08-05
US18/106,507 US20230192993A1 (en) 2020-08-07 2023-02-07 Cellulose acetate resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/030471 2020-08-07
PCT/JP2020/030471 WO2022030014A1 (ja) 2020-08-07 2020-08-07 セルロースアセテート樹脂組成物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/106,507 Continuation US20230192993A1 (en) 2020-08-07 2023-02-07 Cellulose acetate resin composition

Publications (1)

Publication Number Publication Date
WO2022030573A1 true WO2022030573A1 (ja) 2022-02-10

Family

ID=80117246

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/030471 WO2022030014A1 (ja) 2020-08-07 2020-08-07 セルロースアセテート樹脂組成物
PCT/JP2021/029071 WO2022030573A1 (ja) 2020-08-07 2021-08-05 セルロースアセテート樹脂組成物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030471 WO2022030014A1 (ja) 2020-08-07 2020-08-07 セルロースアセテート樹脂組成物

Country Status (6)

Country Link
US (1) US20230192993A1 (ja)
EP (1) EP4194491A4 (ja)
JP (1) JPWO2022030573A1 (ja)
CN (1) CN115698160B (ja)
TW (1) TW202219149A (ja)
WO (2) WO2022030014A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853575A (ja) 1994-08-12 1996-02-27 Teijin Ltd 生分解性シート及びその熱成形物
JPH11255959A (ja) 1998-03-06 1999-09-21 Daicel Chem Ind Ltd セルロースアセテート系樹脂組成物及びその製造法
JP2002060545A (ja) 2001-06-15 2002-02-26 Mitsubishi Plastics Ind Ltd 生分解性のフィルム又はシ−ト及び成形品
JP2005047936A (ja) * 2003-06-06 2005-02-24 Konica Minolta Opto Inc ハードコートフィルム、その製造方法、偏光板及び表示装置
JP2005537514A (ja) * 2002-09-03 2005-12-08 コーロン インダストリーズ インク サンドブラストレジスト用感光性樹脂組成物
JP2007077300A (ja) 2005-09-15 2007-03-29 Kao Corp 酢酸セルロース系樹脂用可塑剤
WO2009096365A1 (ja) * 2008-02-01 2009-08-06 Teijin Limited 無機ナノ粒子-高分子複合体及びその製造方法
WO2010061820A1 (ja) * 2008-11-25 2010-06-03 旭化成せんい株式会社 複合膜及び該複合膜を含むイオントフォレーシス装置
JP2015140432A (ja) 2014-01-30 2015-08-03 株式会社ダイセル 水溶性酢酸セルロース系樹脂組成物、水溶性酢酸セルロース複合体成形品及びその製造方法
JP2018524463A (ja) 2015-07-24 2018-08-30 ロディア・アツェトウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングRhodia Acetow GmbH 可塑化セルロースエステル誘導体、その製造方法及びその使用
JP2019026728A (ja) * 2017-07-28 2019-02-21 富士ゼロックス株式会社 樹脂組成物及び樹脂成形体
JP2019112546A (ja) * 2017-12-25 2019-07-11 Dic株式会社 セルロースエステル樹脂組成物、及びその成型体
CN111138721A (zh) * 2019-12-30 2020-05-12 南通醋酸纤维有限公司 一种可生物降解的薄膜、其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061595A1 (ja) * 2003-12-24 2005-07-07 Konica Minolta Opto, Inc. 延伸セルロースエステルフィルム、ハードコートフィルム、反射防止フィルム及び光学補償フィルム、並びにそれらを用いた偏光板及び表示装置
JP2011241236A (ja) * 2010-05-13 2011-12-01 Fujifilm Corp 樹脂組成物、射出成形用樹脂組成物、及び電気電子機器用筐体
WO2013031687A1 (ja) * 2011-08-31 2013-03-07 コニカミノルタホールディングス株式会社 ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子素子用基板
JP6075776B2 (ja) * 2013-06-26 2017-02-08 株式会社Adeka ポリエステル系可塑剤およびセルロース系樹脂組成物
KR102257406B1 (ko) * 2015-06-19 2021-05-27 주식회사 다이셀 수용성 아세트산셀룰로오스계 수지 조성물, 피복 제제, 수용성 아세트산셀룰로오스 복합체 성형품 및 그 제조 방법
JP6852384B2 (ja) * 2016-12-20 2021-03-31 富士ゼロックス株式会社 樹脂組成物及び樹脂成形体
CN111116997A (zh) * 2019-12-30 2020-05-08 南通醋酸纤维有限公司 一种可生物降解的管材及其制备方法和应用
WO2022030013A1 (ja) * 2020-08-07 2022-02-10 株式会社ダイセル セルロースアセテート樹脂組成物

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853575A (ja) 1994-08-12 1996-02-27 Teijin Ltd 生分解性シート及びその熱成形物
JPH11255959A (ja) 1998-03-06 1999-09-21 Daicel Chem Ind Ltd セルロースアセテート系樹脂組成物及びその製造法
JP2002060545A (ja) 2001-06-15 2002-02-26 Mitsubishi Plastics Ind Ltd 生分解性のフィルム又はシ−ト及び成形品
JP2005537514A (ja) * 2002-09-03 2005-12-08 コーロン インダストリーズ インク サンドブラストレジスト用感光性樹脂組成物
JP2005047936A (ja) * 2003-06-06 2005-02-24 Konica Minolta Opto Inc ハードコートフィルム、その製造方法、偏光板及び表示装置
JP2007077300A (ja) 2005-09-15 2007-03-29 Kao Corp 酢酸セルロース系樹脂用可塑剤
WO2009096365A1 (ja) * 2008-02-01 2009-08-06 Teijin Limited 無機ナノ粒子-高分子複合体及びその製造方法
WO2010061820A1 (ja) * 2008-11-25 2010-06-03 旭化成せんい株式会社 複合膜及び該複合膜を含むイオントフォレーシス装置
JP2015140432A (ja) 2014-01-30 2015-08-03 株式会社ダイセル 水溶性酢酸セルロース系樹脂組成物、水溶性酢酸セルロース複合体成形品及びその製造方法
JP2018524463A (ja) 2015-07-24 2018-08-30 ロディア・アツェトウ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングRhodia Acetow GmbH 可塑化セルロースエステル誘導体、その製造方法及びその使用
JP2019026728A (ja) * 2017-07-28 2019-02-21 富士ゼロックス株式会社 樹脂組成物及び樹脂成形体
JP2019112546A (ja) * 2017-12-25 2019-07-11 Dic株式会社 セルロースエステル樹脂組成物、及びその成型体
CN111138721A (zh) * 2019-12-30 2020-05-12 南通醋酸纤维有限公司 一种可生物降解的薄膜、其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAMIDE ET AL., POLYMER JOURNAL, vol. 13, 1981, pages 421 - 43 1
See also references of EP4194491A4

Also Published As

Publication number Publication date
CN115698160A (zh) 2023-02-03
JPWO2022030573A1 (ja) 2022-02-10
US20230192993A1 (en) 2023-06-22
TW202219149A (zh) 2022-05-16
EP4194491A4 (en) 2024-02-14
EP4194491A1 (en) 2023-06-14
WO2022030014A1 (ja) 2022-02-10
CN115698160B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
CN109796734B (zh) 一种聚乳酸全生物降解复合材料
US11981796B2 (en) Cellulose acetate resin composition
AU2009311259B2 (en) Biodegradable polymer composition
DE60205677T2 (de) Polyesterharzzusammensetzung und daraus geformter Gegenstand
US6933335B1 (en) Thermoplastic polymer blend produced from thermoplastic starch and method for the production thereof
HUT57808A (en) Polymer composition suitable for producing biologically decomposable plastic products and process for its production
CN103724950B (zh) 一种含有pbat的组合物及其制备方法和pbat保鲜膜
JPH0717810B2 (ja) ポリアセタ−ルの安定化組成物
JP6839166B2 (ja) セルロースアセテート組成物
WO2022030573A1 (ja) セルロースアセテート樹脂組成物
CN107513262B (zh) 聚酮组合物
CN116981728A (zh) 热塑性树脂组合物
CN107936443B (zh) 热塑性薄膜及制备方法
CN107793591B (zh) 生物降解聚酯增韧热塑性聚多糖共混物及其制备方法和薄膜
CN106317430A (zh) 土豆全降解塑料薄膜的制备方法
CN114410085B (zh) 一种全生物降解增韧增塑聚乙醇酸材料及其制备方法
CN112795201B (zh) 一种热塑性聚醚酯复合物及其制备方法和应用
CN113493591B (zh) 聚乙烯醇母料及其制备方法
JP6369610B1 (ja) 樹脂組成物及び樹脂成形体
CN117165051A (zh) 生物降解缠绕膜及其制备方法和应用
JP2000265003A (ja) 生分解性アセチルセルロース樹脂組成物
JP2022187088A (ja) セルロースエステル組成物
JPH04114060A (ja) 熱可塑性樹脂組成物
JP2023012765A (ja) セルロースエステル組成物
CN117209983A (zh) 一种高透明易撕裂生物降解薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021852175

Country of ref document: EP

Effective date: 20230307