WO2022027329A1 - 频偏补偿、校准方法及装置、存储介质 - Google Patents

频偏补偿、校准方法及装置、存储介质 Download PDF

Info

Publication number
WO2022027329A1
WO2022027329A1 PCT/CN2020/107150 CN2020107150W WO2022027329A1 WO 2022027329 A1 WO2022027329 A1 WO 2022027329A1 CN 2020107150 W CN2020107150 W CN 2020107150W WO 2022027329 A1 WO2022027329 A1 WO 2022027329A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
compensation
frequency offset
uplink
target
Prior art date
Application number
PCT/CN2020/107150
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/107150 priority Critical patent/WO2022027329A1/zh
Priority to CN202080001795.1A priority patent/CN114391243A/zh
Priority to US18/005,913 priority patent/US20230268959A1/en
Publication of WO2022027329A1 publication Critical patent/WO2022027329A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/01Reducing phase shift
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a frequency offset compensation, calibration method and device, and a storage medium.
  • the phase and frequency of the signal sent and/or received by the mobile station will change due to the difference in propagation distance. This change is usually called Doppler shift. .
  • the terminal or base station can perform local estimation and local compensation to reduce the Doppler frequency. impact of shifting.
  • 5G 5th generation mobile networks, fifth generation mobile communication technology
  • NR New Radio, new air interface
  • NTN Non-Terrestrial Network, non-terrestrial network
  • the high-speed movement of communication satellites will produce a large Doppler frequency shift, and the Doppler frequency shift changes relatively quickly.
  • the offset compensation method cannot effectively track and compensate the frequency offset in this case, which will cause interference between multi-carriers and multi-users, resulting in the degradation of reception performance.
  • the embodiments of the present disclosure provide a frequency offset compensation and calibration method and device, and a storage medium.
  • a frequency offset compensation and calibration method is provided, and the method is used in a terminal, including:
  • the compensation frequency or the pre-compensation frequency of the target frequency is calibrated.
  • the target frequency includes an uplink frequency and/or a downlink frequency
  • the compensation or pre-compensation for the target frequency according to the downlink frequency offset includes:
  • the downlink frequency offset is used as a compensation frequency for compensating the downlink frequency.
  • calibrating the compensation frequency or pre-compensation frequency of the target frequency according to the uplink residual frequency offset including:
  • a second correction value for calibrating the compensation frequency of the downlink frequency is determined according to the second factor and the uplink residual frequency offset.
  • the method further includes:
  • the calibrating the compensation frequency or pre-compensation frequency of the target frequency according to the uplink residual frequency offset includes:
  • the compensation frequency or the pre-compensation frequency of the target frequency is calibrated according to the uplink residual frequency offset.
  • the method further includes:
  • the target frequency is compensated or pre-compensated by using the calibrated compensation frequency or pre-compensation frequency.
  • the method further includes:
  • communicating with the network device is based on the target frequency after each compensating or pre-compensating.
  • the method further includes:
  • a frequency offset compensation and calibration method is provided, and the method is used in a network device, including:
  • the method further includes:
  • an apparatus for frequency offset compensation and calibration is provided, and the apparatus is used in a terminal, including:
  • a first frequency offset compensation module configured to compensate or pre-compensate the target frequency according to the downlink frequency offset
  • a first acquiring module configured to acquire the uplink residual frequency offset corresponding to the uplink signal sent by the terminal from the network device
  • the calibration module is configured to calibrate the compensation frequency or pre-compensation frequency of the target frequency according to the uplink residual frequency offset.
  • the target frequency includes an uplink frequency and/or a downlink frequency
  • the first frequency offset compensation module is configured to:
  • the downlink frequency offset is used as a compensation frequency for compensating the downlink frequency.
  • the calibration module is configured to:
  • a second correction value for calibrating the compensation frequency of the downlink frequency is determined according to the second factor and the uplink residual frequency offset.
  • the device further includes:
  • a second obtaining module configured to obtain a target time period corresponding to the uplink residual frequency offset from the network device
  • a first determining module configured to determine a target time period corresponding to the uplink residual frequency offset according to a predetermined setting
  • the calibration module is configured to:
  • the compensation frequency or the pre-compensation frequency of the target frequency is calibrated according to the uplink residual frequency offset.
  • the device further includes:
  • the second frequency offset compensation module is configured to use the calibrated compensation frequency or pre-compensation frequency to compensate or pre-compensate the target frequency within the target time period.
  • the device further includes:
  • the communication module is configured to communicate with the network device based on the target frequency after each compensation or pre-compensation in response to each time the target frequency is compensated or pre-compensated.
  • the device further includes:
  • control module configured to use the uplink residual frequency offset to calibrate the compensation frequency or pre-compensated frequency of the target frequency, use the calibrated frequency offset as a new frequency offset, and control the first frequency offset compensation
  • the module compensates or pre-compensates the target frequency according to the downlink frequency offset.
  • an apparatus for frequency offset compensation and calibration is provided, and the apparatus is used for network equipment, including:
  • a second determining module configured to, in response to detecting the uplink signal sent by the terminal, determine the uplink residual frequency offset corresponding to the uplink signal
  • the first sending module is configured to send the residual frequency offset to the terminal.
  • the device further includes:
  • the second sending module is configured to send the target time period corresponding to the uplink residual frequency offset to the terminal.
  • a computer-readable storage medium where the storage medium stores a computer program, and the computer program is used to execute the frequency offset compensation and calibration method according to any one of the above-mentioned first aspect. .
  • a computer-readable storage medium where the storage medium stores a computer program, and the computer program is used to execute the frequency offset compensation and calibration method described in the second aspect.
  • a frequency offset compensation and calibration device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the frequency offset compensation and calibration method according to any one of the above-mentioned first aspect.
  • a frequency offset compensation and calibration device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the frequency offset compensation and calibration method described in the second aspect above.
  • the terminal may perform compensation or pre-compensation for the target frequency according to the downlink frequency offset, and further, according to the acquired uplink residual frequency offset from the network device, perform compensation or pre-compensation on the target frequency for the compensation frequency or the pre-compensation frequency. calibration.
  • the purpose of performing frequency offset compensation or pre-compensation and calibration in a non-terrestrial network is realized, the Doppler frequency shift of the satellite communication link can be effectively tracked and compensated, and the communication quality is improved.
  • the target frequency includes the uplink frequency and/or the downlink frequency
  • the terminal may determine the first factor according to the downlink frequency and the uplink frequency, and then determine the pre-compensation factor for the uplink frequency according to the first factor and the downlink frequency offset. Pre-compensated frequency.
  • the terminal may also use the downlink frequency offset as a compensation frequency for compensating the downlink frequency. The purpose of frequency offset compensation or pre-compensation in non-terrestrial networks is realized, and the availability is high.
  • the terminal may use the uplink residual frequency as the first correction value for calibrating the pre-compensation frequency of the uplink frequency.
  • a second factor may also be determined according to the downlink frequency and the uplink frequency, and a second correction value for calibrating the compensation frequency of the downlink frequency may be determined according to the second factor and the uplink residual frequency offset.
  • the terminal may acquire the target time period corresponding to the uplink residual frequency offset from the network device, or may determine the target time period according to a predetermined setting. Therefore, within the target time period, the compensation frequency or the pre-compensation frequency of the target frequency is calibrated according to the uplink residual frequency offset. Simple implementation and high availability.
  • the terminal may further use the calibrated compensation frequency or pre-compensation frequency to perform compensation or pre-compensation on the target frequency.
  • the purpose of performing frequency offset compensation or pre-compensation and calibration in a non-terrestrial network is realized, the Doppler frequency shift of the satellite communication link can be effectively tracked and compensated, and the communication quality is improved.
  • each time the terminal performs compensation or pre-compensation on the target frequency it can communicate with the network device based on the target frequency after compensation or pre-compensation. Therefore, the Doppler frequency shift of the satellite communication link can be tracked and compensated in a timely and effective manner, and the communication quality can be improved.
  • the terminal may use the uplink residual frequency offset to calibrate the compensation frequency or pre-compensation frequency of the target frequency, use the calibrated frequency offset as a new frequency offset, and return to offset, the step of compensating or pre-compensating the target frequency.
  • the terminal may use the uplink residual frequency offset to calibrate the compensation frequency or pre-compensation frequency of the target frequency, use the calibrated frequency offset as a new frequency offset, and return to offset, the step of compensating or pre-compensating the target frequency.
  • FIG. 1 is a schematic flowchart of a frequency offset compensation and calibration method according to an exemplary embodiment.
  • FIG. 2A is a schematic flowchart of another frequency offset compensation and calibration method according to an exemplary embodiment.
  • FIG. 2B is a schematic flowchart of another frequency offset compensation and calibration method according to an exemplary embodiment.
  • FIG. 3 is a schematic flowchart of another frequency offset compensation and calibration method according to an exemplary embodiment.
  • FIG. 4 is a schematic flowchart of another frequency offset compensation and calibration method according to an exemplary embodiment.
  • FIG. 5 is a schematic flowchart of another frequency offset compensation and calibration method according to an exemplary embodiment.
  • FIG. 6 is a schematic flowchart of another frequency offset compensation and calibration method according to an exemplary embodiment.
  • Fig. 7 is a block diagram of a frequency offset compensation and calibration apparatus according to an exemplary embodiment.
  • Fig. 8 is a block diagram of another frequency offset compensation and calibration apparatus according to an exemplary embodiment.
  • FIG. 9 is a schematic structural diagram of a frequency offset compensation and calibration apparatus according to an exemplary embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another frequency offset compensation and calibration apparatus according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the embodiment of the present disclosure provides a frequency offset compensation and calibration method, which can be used in a non-terrestrial network.
  • the Doppler frequency shift caused by the fast moving speed of the satellite is also large and the change is also fast.
  • the present disclosure provides the following solutions.
  • the frequency offset compensation and calibration method provided by the present disclosure will be introduced from the terminal side first.
  • FIG. 1 is a flowchart of a frequency offset compensation and calibration method according to an embodiment. The method may include: The following steps:
  • step 101 the target frequency is compensated or pre-compensated according to the downlink frequency offset.
  • the terminal may determine the downlink frequency offset according to the downlink signal sent by the network device.
  • the downlink signal may include, but is not limited to, a downlink reference signal.
  • the terminal can obtain the downlink frequency offset according to the phase difference of different downlink signals and the time difference when the downlink signal is received
  • the unit may be Hz (Hertz).
  • the target frequency includes the uplink frequency and/or downlink frequency
  • the terminal can obtain the downlink frequency offset according to the downlink frequency to compensate, and/or to the upstream frequency pre-compensation.
  • step 102 the uplink residual frequency offset corresponding to the uplink signal sent by the terminal is obtained from the network device.
  • the terminal may send an uplink signal to the network device based on the pre-compensated uplink frequency, and after receiving the network device, the network device may determine the uplink residual frequency offset ⁇ f UL corresponding to the uplink signal.
  • ⁇ f UL can be a positive value or a negative value, which is not limited in the present disclosure.
  • step 103 the compensation frequency or pre-compensation frequency of the target frequency is calibrated according to the uplink residual frequency offset.
  • the terminal may calibration of the compensation frequency, and/or the upstream frequency The pre-compensated frequency is calibrated.
  • frequency offset compensation or pre-compensation and calibration can be performed in a non-terrestrial network, thereby effectively tracking and compensating the Doppler frequency shift of the satellite communication link and improving the communication quality.
  • step 101 may include compensation for downlink frequencies and/or pre-compensation for uplink frequencies.
  • the uplink frequency may be pre-compensated in the following manner:
  • a first factor is determined according to the downlink frequency and the uplink frequency, and then a precompensation frequency for precompensating the uplink frequency is determined according to the first factor and the downlink frequency offset.
  • the first factor is a factor for mapping the downlink frequency offset to the uplink frequency so as to perform precompensation on the uplink frequency, and can be represented by the quotient of the uplink frequency and the downlink frequency. Further, the product value of the first factor and the downlink frequency offset can be used as the pre-compensation frequency A 1 for pre-compensating the uplink frequency, which is expressed by formula 1 as follows:
  • the uplink frequency is Downlink frequency is Corresponding to the first factor, is the downlink frequency offset.
  • the terminal may also compensate the downlink frequency in the following manner:
  • the downlink frequency offset is used as a compensation frequency for compensating the downlink frequency.
  • the downlink frequency can be offset It is directly used as the compensation frequency A 2 for compensating the downlink frequency.
  • the target frequency includes the uplink frequency and/or the downlink frequency
  • the terminal may determine the first factor according to the downlink frequency and the uplink frequency, and then determine the pre-compensation for the uplink frequency according to the first factor and the downlink frequency offset. compensation frequency.
  • the terminal may also use the downlink frequency offset as a compensation frequency for compensating the downlink frequency.
  • step 103 may include: calibrating the compensation frequency of the downlink frequency according to the uplink residual frequency offset, and/or calibrating the pre-compensation frequency of the uplink frequency according to the uplink residual frequency offset.
  • calibrating the pre-compensation frequency of the uplink frequency according to the uplink residual frequency offset may include: using the uplink residual frequency offset as a first correction value for calibrating the pre-compensation frequency of the uplink frequency.
  • the uplink residual frequency offset ⁇ f UL may be directly used as the first correction value B 1 .
  • calibrating the compensation frequency of the downlink frequency according to the uplink residual frequency offset may include:
  • a second factor is determined according to the downlink frequency and the uplink frequency; then, a second correction value for calibrating the compensation frequency of the downlink frequency is determined according to the second factor and the uplink residual frequency offset.
  • the second factor is a factor for mapping the uplink residual frequency offset to the downlink frequency, so as to determine the second calibration value for calibrating the compensation value of the downlink frequency, and the quotient of the downlink frequency and the uplink frequency can be used.
  • the product value of the second factor and the uplink residual frequency offset can be used as the second correction value B 2 , which is expressed by the following formula 2:
  • ⁇ f UL is the uplink residual frequency offset.
  • the terminal may use the uplink residual frequency as the first correction value for calibrating the pre-compensation frequency of the uplink frequency.
  • a second factor may also be determined according to the downlink frequency and the uplink frequency, and a second correction value for calibrating the compensation frequency of the downlink frequency may be determined according to the second factor and the uplink residual frequency offset.
  • FIG. 2A is a flowchart of another frequency offset compensation and calibration method according to the embodiment shown in FIG. 1 , and the above method further includes:
  • step 104 a target time period corresponding to the uplink residual frequency offset from the network device is obtained.
  • the terminal may receive the target time period corresponding to the uplink residual frequency offset sent by the network device.
  • FIG. 2B is a flowchart of another frequency offset compensation and calibration method according to the embodiment shown in FIG. 1 , and the above method further includes:
  • step 105 a target time period corresponding to the uplink residual frequency offset is determined according to a predetermined setting.
  • the terminal may also determine the target time period according to a predetermined device, including but not limited to the agreement in the protocol.
  • step 103 may include:
  • the compensation frequency or the pre-compensation frequency of the target frequency is calibrated according to the uplink residual frequency offset.
  • the terminal will calibrate the pre-compensation frequency of the uplink frequency and/or the compensation frequency of the downlink frequency according to the uplink residual frequency offset obtained from the network device within the target time period.
  • the terminal may acquire the target time period corresponding to the uplink residual frequency offset from the network device, or may determine the target time period according to a predetermined setting. Therefore, within the target time period, the compensation frequency or the pre-compensation frequency of the target frequency is calibrated according to the uplink residual frequency offset. Simple implementation and high availability.
  • FIG. 3 is a flowchart of another frequency offset compensation and calibration method according to the embodiment shown in FIG. 1 , and the above method further includes:
  • step 106 within the target time period, the target frequency is compensated or pre-compensated by using the calibrated compensation frequency or pre-compensation frequency.
  • the terminal after calibrating the pre-compensation frequency of the uplink frequency by using the uplink residual frequency offset, it can be determined that the corresponding uplink frequency offset is Using the uplink frequency offset, pre-compensate the uplink frequency, and the uplink frequency after pre-compensation is The terminal can send the uplink signal to the network device based on the uplink frequency.
  • the downlink frequency offset can be determined as Using the downlink frequency offset, the downlink frequency is compensated.
  • the downlink frequency after compensation is The terminal can receive the downlink signal sent by the network device based on the downlink frequency.
  • the terminal may also use the uplink residual frequency offset to calibrate the compensation frequency or pre-compensation frequency of the target frequency, and use the calibrated compensation frequency or pre-compensation frequency to compensate or pre-compensate the target frequency.
  • the purpose of performing frequency offset compensation or pre-compensation and calibration in a non-terrestrial network is realized, the Doppler frequency shift of the satellite communication link can be tracked and compensated effectively, and the communication quality is improved.
  • the terminal may communicate with the network device based on the target frequency after each compensation or pre-compensation.
  • the terminal pre-compensates the uplink frequency, then the terminal can use the pre-compensated uplink frequency Send uplink signals to network devices.
  • the terminal also compensates for the downlink frequency, then the terminal can base on the compensated downlink frequency Receive downlink signals sent by network equipment.
  • the terminal may use the pre-compensated uplink frequency at this time Send the uplink signal to the network device, and the terminal can use the compensated downlink frequency at this time Receive downlink signals sent by network equipment.
  • each time the terminal performs compensation or pre-compensation on the target frequency it can communicate with the network device based on the target frequency after compensation or pre-compensation. Therefore, the Doppler frequency shift of the satellite communication link can be tracked and compensated in a timely and effective manner, and the communication quality can be improved.
  • the terminal may also use the uplink residual frequency offset to calibrate the compensation frequency or pre-compensation frequency of the target frequency, use the calibrated frequency offset as a new frequency offset, and return to the execution step. 101.
  • the terminal can use the uplink residual frequency offset to calibrate the compensation frequency or pre-compensated frequency of the target frequency, and use the calibrated frequency offset as a new frequency offset, and return to the downlink frequency offset before execution.
  • the step of compensating or pre-compensating the target frequency By continuously compensating or pre-compensating and calibrating the target frequency, the purpose of effectively tracking and compensating the Doppler frequency shift of the satellite communication link and improving the communication quality is realized.
  • FIG. 4 shows another frequency offset compensation and calibration method according to an embodiment.
  • Flow chart of calibration method the method may include the following steps:
  • step 201 in response to detecting the uplink signal sent by the terminal, determine the uplink residual frequency offset corresponding to the uplink signal.
  • the terminal after receiving the downlink signal sent by the network device, the terminal will pre-compensate the uplink frequency and/or compensate the downlink frequency according to the determined downlink frequency offset, and the terminal will perform pre-compensation based on the pre-compensation
  • the subsequent uplink frequency sends the uplink signal to the network device.
  • the network device When the network device detects the uplink signal sent by the terminal, it can determine the uplink residual frequency offset corresponding to the uplink frequency used by the uplink signal.
  • the determination manner is the same as the manner in which the terminal determines the downlink frequency offset, and details are not described herein again.
  • step 202 the uplink residual frequency offset is sent to the terminal.
  • the value of the uplink residual frequency offset may be sent to the terminal. Let the terminal calibrate the compensation frequency of the downlink frequency and/or calibrate the pre-compensation frequency of the uplink frequency according to the uplink residual frequency.
  • the purpose of performing frequency offset compensation or pre-compensation and calibration in a non-terrestrial network is achieved, and the Doppler frequency shift of the satellite communication link can be effectively tracked and compensated, thereby improving the communication quality.
  • FIG. 5 is a flowchart of another frequency offset compensation and calibration method according to the embodiment shown in FIG. 4 .
  • the above method further includes:
  • step 203 the target time period corresponding to the uplink residual frequency offset is sent to the terminal.
  • the satellite may determine a target time period corresponding to the uplink residual frequency offset according to its own moving speed and direction, and notify the terminal of the target time period or preconfigure the target time period.
  • the terminal may calibrate the compensation frequency or pre-compensation frequency of the target frequency according to the uplink residual frequency offset within the target time period, and use the calibrated compensation frequency or pre-compensation frequency to calibrate the target frequency. Compensate or pre-compensate.
  • the base station may send the target time period corresponding to the uplink residual frequency offset to the terminal, and the terminal may, within the target time period, according to the uplink residual frequency offset, the compensation frequency or pre-compensation frequency of the target frequency. Perform calibration. Simple implementation and high availability.
  • FIG. 6 is a flowchart of another frequency offset compensation and calibration method according to an embodiment. The method may include the following steps:
  • step 301 the terminal determines the first factor according to the downlink frequency and the uplink frequency
  • step 302 the terminal determines a pre-compensation frequency for pre-compensating the uplink frequency according to the first factor and the downlink frequency offset.
  • the pre-compensation frequency is
  • step 303 the terminal uses the downlink frequency offset as a compensation frequency for compensating the downlink frequency.
  • the compensation frequency is
  • step 304 the terminal communicates with the network device based on the compensated or pre-compensated target frequency.
  • the pre-compensated uplink frequency is The terminal sends an uplink signal to the network device based on this uplink frequency, and the downlink frequency after compensation is The terminal receives the downlink signal sent by the network device based on the downlink frequency.
  • step 305 the network device determines the uplink residual frequency offset corresponding to the uplink signal.
  • step 306 the network device sends the uplink residual frequency to the terminal.
  • step 307 the network device sends the target time period corresponding to the uplink residual frequency offset to the terminal.
  • step 308 the terminal uses the uplink residual frequency offset as a first correction value for calibrating the pre-compensation frequency of the uplink frequency within the target time period.
  • the first correction value is ⁇ f UL .
  • step 309 the terminal determines a second factor according to the downlink frequency and the uplink frequency.
  • step 310 the terminal determines a second correction value for calibrating the compensation frequency of the downlink frequency according to the second factor and the uplink residual frequency offset.
  • the second correction value is
  • step 311 the terminal uses the uplink residual frequency offset to compensate or pre-compensate the target frequency for the calibrated compensation frequency or pre-compensation frequency within the target time period.
  • the uplink frequency offset obtained after calibrating the pre-compensation frequency of the uplink frequency by using the uplink residual frequency offset is:
  • the downlink frequency offset is The uplink frequency obtained after pre-compensation is The downlink frequency obtained after compensation is
  • step 312 the terminal communicates with the network device based on the compensated or pre-compensated target frequency within the target time period.
  • step 313 the compensation frequency or pre-compensation frequency of the target frequency is calibrated by using the uplink residual frequency offset, and the calibrated frequency offset is used as a new frequency offset, and the process returns to step 301.
  • the purpose of performing frequency offset compensation and calibration in a non-terrestrial network is achieved, and the Doppler frequency shift of the satellite communication link can be effectively tracked and compensated, thereby improving the communication quality.
  • the present disclosure further provides an application function implementation device embodiment.
  • FIG. 7 is a block diagram of an apparatus for frequency offset compensation and calibration according to an exemplary embodiment.
  • the apparatus is used in a terminal, including:
  • the first frequency offset compensation module 410 is configured to compensate or pre-compensate the target frequency according to the downlink frequency offset;
  • the first obtaining module 420 is configured to obtain the uplink residual frequency offset corresponding to the uplink signal sent by the terminal from the network device;
  • the calibration module 430 is configured to calibrate the compensation frequency or pre-compensation frequency of the target frequency according to the uplink residual frequency offset.
  • the target frequency includes an uplink frequency and/or a downlink frequency
  • the first frequency offset compensation module is configured to:
  • the downlink frequency offset is used as a compensation frequency for compensating the downlink frequency.
  • the calibration module is configured to:
  • a second correction value for calibrating the compensation frequency of the downlink frequency is determined according to the second factor and the uplink residual frequency offset.
  • the device further includes:
  • a second obtaining module configured to obtain a target time period corresponding to the uplink residual frequency offset from the network device
  • a first determining module configured to determine a target time period corresponding to the uplink residual frequency offset according to a predetermined setting
  • the calibration module is configured to:
  • the compensation frequency or the pre-compensation frequency of the target frequency is calibrated according to the uplink residual frequency offset.
  • the device further includes:
  • the second frequency offset compensation module is configured to use the calibrated compensation frequency or pre-compensation frequency to compensate or pre-compensate the target frequency within the target time period.
  • the device further includes:
  • the communication module is configured to communicate with the network device based on the target frequency after each compensation or pre-compensation in response to each time the target frequency is compensated or pre-compensated.
  • the device further includes:
  • control module configured to use the uplink residual frequency offset to calibrate the compensation frequency or pre-compensated frequency of the target frequency, use the calibrated frequency offset as a new frequency offset, and control the first frequency offset compensation
  • the module compensates or pre-compensates the target frequency according to the downlink frequency offset.
  • FIG. 8 is a block diagram of another frequency offset compensation and calibration apparatus according to an exemplary embodiment.
  • the apparatus is used in network equipment, including:
  • the second determining module 510 is configured to, in response to detecting the uplink signal sent by the terminal, determine the uplink residual frequency offset corresponding to the uplink signal;
  • the first sending module 520 is configured to send the residual frequency offset to the terminal.
  • the device further includes:
  • the second sending module is configured to send the target time period corresponding to the uplink residual frequency offset to the terminal.
  • the present disclosure also provides a computer-readable storage medium, where the storage medium stores a computer program, and the computer program is used to execute any one of the frequency offset compensation and calibration methods for the terminal side.
  • the present disclosure also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to execute any one of the frequency offset compensation and calibration methods for the network device side .
  • the present disclosure also provides a frequency offset compensation and calibration device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the frequency offset compensation and calibration methods described above on the terminal side.
  • FIG. 9 is a block diagram of an electronic device 900 according to an exemplary embodiment.
  • the electronic device 900 may be a terminal.
  • an electronic device 900 may include one or more of the following components: a processing component 902, a memory 904, a power supply component 906, a multimedia component 908, an audio component 910, an input/output (I/O) interface 912, a sensor component 916, and communication component 918.
  • the processing component 902 generally controls the overall operation of the electronic device 900, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 902 may include one or more processors 920 to execute instructions to complete all or part of the steps of the above-described frequency offset compensation and calibration methods.
  • processing component 902 may include one or more modules to facilitate interaction between processing component 902 and other components.
  • processing component 902 may include a multimedia module to facilitate interaction between multimedia component 908 and processing component 902.
  • the processing component 902 may read executable instructions from the memory to implement the steps of a frequency offset compensation and calibration method provided by the above embodiments.
  • Memory 904 is configured to store various types of data to support operation at electronic device 900 . Examples of such data include instructions for any application or method operating on electronic device 900, contact data, phonebook data, messages, pictures, videos, and the like. Memory 904 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 906 provides power to various components of electronic device 900 .
  • Power supply components 906 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to electronic device 900 .
  • Multimedia component 908 includes a display screen that provides an output interface between the electronic device 900 and the user.
  • the multimedia component 908 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 910 is configured to output and/or input audio signals.
  • audio component 910 includes a microphone (MIC) that is configured to receive external audio signals when electronic device 900 is in operating modes, such as calling mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 904 or transmitted via communication component 918 .
  • audio component 910 also includes a speaker for outputting audio signals.
  • the I/O interface 912 provides an interface between the processing component 902 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 916 includes one or more sensors for providing status assessments of various aspects of electronic device 900 .
  • the sensor assembly 916 can detect the open/closed state of the electronic device 900, the relative positioning of the components, such as the display and the keypad of the electronic device 900, the sensor assembly 916 can also detect the electronic device 900 or one of the electronic devices 900 Changes in the position of components, presence or absence of user contact with the electronic device 900 , orientation or acceleration/deceleration of the electronic device 900 and changes in the temperature of the electronic device 900 .
  • Sensor assembly 916 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 916 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 916 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 918 is configured to facilitate wired or wireless communication between electronic device 900 and other devices.
  • the electronic device 900 may access a wireless network based on a communication standard, such as Wi-Fi, 2G, 3G, 4G or 5G, or a combination thereof.
  • the communication component 918 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 918 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • electronic device 900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programming gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are implemented for performing the above-mentioned frequency offset compensation and calibration methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programming gate array
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other electronic components are implemented for performing the above-mentioned frequency offset compensation and calibration methods.
  • a non-transitory machine-readable storage medium including instructions such as a memory 904 including instructions, is also provided, and the instructions are executable by the processor 920 of the electronic device 900 to complete the wireless charging method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the present disclosure also provides a frequency offset compensation and calibration device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the frequency offset compensation and calibration methods described on the network device side.
  • FIG. 10 is a schematic structural diagram of a frequency offset compensation and calibration apparatus 1000 according to an exemplary embodiment.
  • the apparatus 1000 may be provided as a network device, such as a satellite.
  • apparatus 1000 includes a processing component 1022, a wireless transmit/receive component 1024, an antenna component 1026, and a signal processing portion specific to a wireless interface, and the processing component 1022 may further include one or more processors.
  • One of the processors in the processing component 1022 may be configured to execute any one of the frequency offset compensation and calibration methods described above on the network device side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radio Relay Systems (AREA)

Abstract

本公开提供一种频偏补偿、校准方法及装置、存储介质,其中,所述方法包括:根据下行频率偏移,对目标频率进行补偿或预补偿;获取来自网络设备的与所述终端发送的上行信号对应的上行残留频偏;根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。本公开实现了在非地面网络中,进行频偏补偿或预补偿、以及校准的目的,可以有效地跟踪和补偿卫星通信链路的多普勒频移,提高了通信质量。

Description

频偏补偿、校准方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及频偏补偿、校准方法及装置、存储介质。
背景技术
当移动台以恒定的速率沿某一方向移动时,由于传播路程差的原因,会造成移动台发送和/或接收的信号相位和频率的变化,通常将这种变化称为多普勒频移。
在地面通信***中,比如5G(5th generation mobile networks,第五代移动通信技术)NR(New Radio,新空口)可以采用由终端或基站进行本地估计和本地补偿的方式,来降低多普勒频移的影响。
但在NTN(Non-Terrestrial Network,非地面网络)中,通信卫星的高速移动会产生很大的多普勒频移,并且多普勒频移的变化比较快,目前地面通信***所采用的频偏补偿方式,无法有效地跟踪和补偿此种情况下的频率偏移,会造成多载波和多用户之间的干扰,导致接收性能的下降。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种频偏补偿、校准方法及装置、存储介质。
根据本公开实施例的第一方面,提供一种频偏补偿、校准方法,所述方法用于终端,包括:
根据下行频率偏移,对目标频率进行补偿或预补偿;
获取来自网络设备的与所述终端发送的上行信号对应的上行残留频偏;
根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。
可选地,所述目标频率包括上行频率和/或下行频率;
所述根据下行频率偏移,对目标频率进行补偿或预补偿,包括:
根据所述下行频率和所述上行频率,确定第一因子;
根据所述第一因子和所述下行频率偏移,确定对所述上行频率进行预补偿的预补偿频率;和/或
将所述下行频率偏移作为对所述下行频率进行补偿的补偿频率。
可选地,所述根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准,包括:
将所述上行残留频率作为对所述上行频率的所述预补偿频率进行校准的第一修正值;和/或
根据所述下行频率和所述上行频率,确定第二因子;
根据所述第二因子和所述上行残留频偏,确定对所述下行频率的补偿频率进行校准的第二修正值。
可选地,所述方法还包括:
获取来自所述网络设备的与所述上行残留频偏对应的目标时间段;或
根据预定设置,确定与所述上行残留频偏对应的目标时间段;
所述根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准,包括:
在所述目标时间段内,根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。
可选地,所述方法还包括:
在所述目标时间段内,利用所述校准后的补偿频率或预补偿频率,对所述目标频率进行补偿或预补偿。
可选地,所述方法还包括:
响应于每次对所述目标频率进行补偿或预补偿,基于每次补偿或预补偿后的所述目标频率与所述网络设备进行通信。
可选地,所述方法还包括:
利用所述上行残留频偏对所述目标频率的补偿频率或预补偿频率进行校准,将校准后的频率偏移作为新的频率偏移,返回执行所述根据下行频率偏移,对目标频率进行补偿或预补偿的步骤。
根据本公开实施例的第二方面,提供一种频偏补偿、校准方法,所述方法用于网络设备,包括:
响应于检测到终端发送的上行信号,确定所述上行信号对应的上行残留频偏;
发送所述残留频偏给所述终端。
可选地,所述方法还包括:
发送所述上行残留频偏对应的目标时间段给所述终端。
根据本公开实施例的第三方面,提供一种频偏补偿、校准装置,所述装置用于终端,包括:
第一频偏补偿模块,被配置为根据下行频率偏移,对目标频率进行补偿或预补偿;
第一获取模块,被配置为获取来自网络设备的与所述终端发送的上行信号对应的上行残留频偏;
校准模块,被配置为根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。
可选地,所述目标频率包括上行频率和/或下行频率;
所述第一频偏补偿模块被配置为:
根据所述下行频率和所述上行频率,确定第一因子;
根据所述第一因子和所述下行频率偏移,确定对所述上行频率进行预补偿的预补偿频率;和/或
将所述下行频率偏移作为对所述下行频率进行补偿的补偿频率。
可选地,所述校准模块被配置为:
将所述上行残留频率作为对所述上行频率的所述预补偿频率进行校准的第一修正值;和/或
根据所述下行频率和所述上行频率,确定第二因子;
根据所述第二因子和所述上行残留频偏,确定对所述下行频率的补偿频率进行校准的第二修正值。
可选地,所述装置还包括:
第二获取模块,被配置为获取来自所述网络设备的与所述上行残留频偏对应的目标时间段;或
第一确定模块,被配置为根据预定设置,确定与所述上行残留频偏对应的目标时间段;
所述校准模块被配置为:
在所述目标时间段内,根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。
可选地,所述装置还包括:
第二频偏补偿模块,被配置为在所述目标时间段内,利用校准后的补偿频率或预补偿频率,对所述目标频率进行补偿或预补偿。
可选地,所述装置还包括:
通信模块,被配置为响应于每次对所述目标频率进行补偿或预补偿,基于每次补偿或预补偿后的所述目标频率与所述网络设备进行通信。
可选地,所述装置还包括:
控制模块,被配置为利用所述上行残留频偏对所述目标频率的补偿频率或预补偿频率进行校准,将校准后的频率偏移作为新的频率偏移,控制所述第一频偏补偿模块根据下行频率偏移,对目标频率进行补偿或预补偿。
根据本公开实施例的第四方面,提供一种频偏补偿、校准装置,所述装置用于网络设备,包括:
第二确定模块,被配置为响应于检测到终端发送的上行信号,确定所述上行信号对应的上行残留频偏;
第一发送模块,被配置为发送所述残留频偏给所述终端。
可选地,所述装置还包括:
第二发送模块,被配置为发送所述上行残留频偏对应的目标时间段给所述终端。
根据本公开实施例的第五方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第一方面任一所述的频偏补偿、校准方法。
根据本公开实施例的第六方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第二方面所述的频偏补偿、校准方法。
根据本公开实施例的第七方面,提供一种频偏补偿、校准装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述第一方面任一所述的频偏补偿、校准方法。
根据本公开实施例的第八方面,提供一种频偏补偿、校准装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述第二方面所述的频偏补偿、校准方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例中,终端可以根据下行频率偏移,对目标频率进行补偿或预补偿,进一步地,根据获取到的来自网络设备的上行残留频偏,对目标频率的补偿频率或预补偿频率进行校准。实现了在非地面网络中,进行频偏补偿或预补偿、以及校准的目的,可以有效地跟踪和补偿卫星通信链路的多普勒频移,提高了通信质量。
本公开实施例中,目标频率包括上行频率和/或下行频率,终端可以根据下行频率和上行频率,确定第一因子,进而根据第一因子和下行频率偏移,确定对上行频率进行预补偿的预补偿频率。终端还可以将下行频率偏 移作为对所述下行频率进行补偿的补偿频率。实现了在非地面网络中,进行频偏补偿或预补偿的目的,可用性高。
本公开实施例中,终端可以将上行残留频率作为对所述上行频率的所述预补偿频率进行校准的第一修正值。还可以根据所述下行频率和所述上行频率,确定第二因子,根据所述第二因子和所述上行残留频偏,确定对所述下行频率的补偿频率进行校准的第二修正值。实现了在非地面网络中,进行频偏校准的目的,可用性高。
本公开实施例中,终端可以获取来自网络设备的与上行残留频偏对应的目标时间段,或者可以根据预定设置,确定该目标时间段。从而在目标时间段内,根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。实现简便,可用性高。
本公开实施例中,终端还可以利用校准后的补偿频率或预补偿频率,对目标频率进行补偿或预补偿。实现了在非地面网络中,进行频偏补偿或预补偿、以及校准的目的,可以有效地跟踪和补偿卫星通信链路的多普勒频移,提高了通信质量。
本公开实施例中,终端每次对目标频率进行补偿或预补偿,都可以基于补偿或预补偿后的所述目标频率与所述网络设备进行通信。从而可以及时、有效地跟踪和补偿卫星通信链路的多普勒频移,提高通信质量。
本公开实施例中,终端可以利用所述上行残留频偏对所述目标频率的补偿频率或预补偿频率进行校准,将校准后的频率偏移作为新的频率偏移,返回执行之前根据下行频率偏移,对目标频率进行补偿或预补偿的步骤。通过对目标频率不断进行补偿或预补偿、以及校准,实现了有效地跟踪和补偿卫星通信链路的多普勒频移,提高通信质量的目的。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种频偏补偿、校准方法流程示意图。
图2A是根据一示例性实施例示出的另一种频偏补偿、校准方法流程示意图。
图2B是根据一示例性实施例示出的另一种频偏补偿、校准方法流程示意图。
图3是根据一示例性实施例示出的另一种频偏补偿、校准方法流程示意图。
图4是根据一示例性实施例示出的另一种频偏补偿、校准方法流程示意图。
图5是根据一示例性实施例示出的另一种频偏补偿、校准方法流程示意图。
图6是根据一示例性实施例示出的另一种频偏补偿、校准方法流程示意图。
图7是根据一示例性实施例示出的一种频偏补偿、校准装置框图。
图8是根据一示例性实施例示出的另一种频偏补偿、校准装置框图。
图9是本公开根据一示例性实施例示出的一种频偏补偿、校准装置的一结构示意图。
图10是本公开根据一示例性实施例示出的另一种频偏补偿、校准装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面 的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开实施例提供了一种频偏补偿、校准方法,可以用于非地面网络中,在该网络中由于卫星移动速度较快,造成的多普勒频移也较大,且变化也较快。为了解决基于地面通信***所采用的频率偏补偿方式,无法有效地跟踪和补偿此种情况下的频率偏移的问题,本公开提供了以下解决方案。
下面先从终端侧介绍一下本公开提供的频偏补偿、校准方法。
本公开实施例提供了一种频偏补偿、校准方法,可以用于终端,参照图1所示,图1是根据一实施例示出的一种频偏补偿、校准方法流程图,该方法可以包括以下步骤:
在步骤101中,根据下行频率偏移,对目标频率进行补偿或预补偿。
在本公开实施例中,终端可以根据网络设备发送的下行信号,确定下行频率偏移。其中,下行信号可以包括但不限于下行参考信号。
在一个示例中,终端可以根据不同的下行信号的相位差与接收到下行信号的时间差,得到下行频率偏移
Figure PCTCN2020107150-appb-000001
单位可以为Hz(赫兹)。
在本公开实施例中,目标频率包括上行频率
Figure PCTCN2020107150-appb-000002
和/或下行频率
Figure PCTCN2020107150-appb-000003
终端可以根据得到的下行频率偏移
Figure PCTCN2020107150-appb-000004
对下行频率
Figure PCTCN2020107150-appb-000005
进行补偿,和/或对上行频率
Figure PCTCN2020107150-appb-000006
进行预补偿。
在步骤102中,获取来自网络设备的与所述终端发送的上行信号对应的上行残留频偏。
在本公开实施例中,终端可以基于预补偿后的上行频率发送上行信号给网络设备,网络设备接收后,可以确定该上行信号对应的上行残留频偏Δf UL。其中,Δf UL可以为正值或负值,本公开对此不作限定。
在步骤103中,根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。
在本公开实施例中,终端在接收到网络设备发送的上行残留频偏Δf UL后,可以对下行频率
Figure PCTCN2020107150-appb-000007
的补偿频率进行校准,和/或对上行频率
Figure PCTCN2020107150-appb-000008
的预补偿频率进行校准。
上述实施例中,可以在非地面网络中,进行频偏补偿或预补偿、以及校准,从而有效地跟踪和补偿卫星通信链路的多普勒频移,提高了通信质量。
在一可选实施例中,步骤101可以包括对下行频率的补偿,和/或对上行频率的预补偿。
在本公开实施例中,可以采用以下方式对上行频率进行预补偿:
先根据所述下行频率和所述上行频率,确定第一因子,然后根据所述第一因子和所述下行频率偏移,确定对所述上行频率进行预补偿的预补偿频率。
其中,第一因子是为了将下行频率偏移映射到上行频率上,以便对上行频率进行预补偿的一个因子,可以采用上行频率与下行频率的商来表示。 进一步地,第一因子与下行频率偏移的乘积值,可以作为对所述上行频率进行预补偿的预补偿频率A 1,用公式1表示如下:
Figure PCTCN2020107150-appb-000009
其中,上行频率为
Figure PCTCN2020107150-appb-000010
下行频率为
Figure PCTCN2020107150-appb-000011
对应第一因子,
Figure PCTCN2020107150-appb-000012
是下行频率偏移。
另外,在本公开实施例中,终端还可以采用以下方式对下行频率进行补偿:
将所述下行频率偏移作为对所述下行频率进行补偿的补偿频率。
其中,可以将下行频率偏移
Figure PCTCN2020107150-appb-000013
直接作为对所述下行频率进行补偿的补偿频率A 2
上述实施例中,目标频率包括上行频率和/或下行频率,终端可以根据下行频率和上行频率,确定第一因子,进而根据第一因子和下行频率偏移,确定对上行频率进行预补偿的预补偿频率。终端还可以将下行频率偏移作为对所述下行频率进行补偿的补偿频率。实现了在非地面网络中,进行频偏补偿或预补偿的目的,可用性高。
在一可选实施例中,步骤103可以包括:根据上行残留频偏对下行频率的补偿频率进行校准,和/或根据上行残留频偏对上行频率的预补偿频率进行校准。
其中,根据上行残留频偏对上行频率的预补偿频率进行校准,可以包括:将所述上行残留频偏作为对所述上行频率的预补偿频率进行校准的第一修正值。
在本公开实施例中,可以将上行残留频偏Δf UL直接作为第一修正值B 1
另外,根据上行残留频偏对下行频率的补偿频率进行校准,可以包括:
先根据所述下行频率和所述上行频率,确定第二因子;然后根据所述第二因子和所述上行残留频偏,确定对所述下行频率的补偿频率进行校准 的第二修正值。
在本公开实施例中,第二因子是将上行残留频偏映射到下行频率上,以便确定对下行频率的补偿值进行校准的第二校准值的一个因子,可以采用下行频率与上行频率的商来表示。进一步地,可以将第二因子和上行残留频偏的乘积值作为第二修正值B 2,通过以下公式2表示:
Figure PCTCN2020107150-appb-000014
其中,
Figure PCTCN2020107150-appb-000015
对应第二因子,Δf UL是上行残留频偏。
上述实施例中,终端可以将上行残留频率作为对所述上行频率的所述预补偿频率进行校准的第一修正值。还可以根据所述下行频率和所述上行频率,确定第二因子,根据所述第二因子和所述上行残留频偏,确定对所述下行频率的补偿频率进行校准的第二修正值。实现了在非地面网络中,进行频偏校准的目的,可用性高。
在一可选实施例中,参照图2A所示,图2A是根据图1所示的实施例示出的另一种频偏补偿、校准方法流程图,上述方法还包括:
在步骤104中,获取来自所述网络设备的与所述上行残留频偏对应的目标时间段。
在本公开实施例中,终端可以接收网络设备发送的与上行残留频偏对应的目标时间段。
或者参照图2B所示,图2B是根据图1所示的实施例示出的另一种频偏补偿、校准方法流程图,上述方法还包括:
在步骤105中,根据预定设置,确定与所述上行残留频偏对应的目标时间段。
在本公开实施例中,终端还可以根据预定设备,包括但不限于协议中的约定,确定该目标时间段。
在确定目标时间段之后,相应地,上述步骤103可以包括:
在所述目标时间段内,根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。
在本公开实施例中,终端会在该目标时间段内,根据从网络设备获取的上行残留频偏对上行频率的预补偿频率和/或下行频率的补偿频率进行校准。
上述实施例中,终端可以获取来自网络设备的与上行残留频偏对应的目标时间段,或者可以根据预定设置,确定该目标时间段。从而在目标时间段内,根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。实现简便,可用性高。
在一可选实施例中,参照图3所示,图3是根据图1所示的实施例示出的另一种频偏补偿、校准方法流程图,上述方法还包括:
在步骤106中,在所述目标时间段内,利用校准后的补偿频率或预补偿频率,对所述目标频率进行补偿或预补偿。
在本公开实施例中,在利用上行残留频偏对上行频率的预补偿频率进行校准后,可以确定对应的上行频率偏移为
Figure PCTCN2020107150-appb-000016
利用该上行频率偏移,对上行频率进行预补偿,预补偿后的上行频率为
Figure PCTCN2020107150-appb-000017
终端可以基于这一上行频率发送上行信号给网络设备。
在利用上行残留频偏对下行频率的补偿频率进行校准后,可以确定下行频率偏移为
Figure PCTCN2020107150-appb-000018
利用该下行频率偏移,对下行频率进行补偿。补偿后的下行频率为
Figure PCTCN2020107150-appb-000019
终端可以基于这个下行频率接收网络设备发送的下行信号。
上述实施例中,终端还可以利用上行残留频偏对所述目标频率的补偿频率或预补偿频率进行校准,利用校准后的补偿频率或预补偿频率对目标频率进行补偿或预补偿。实现了在非地面网络中,进行频偏补偿或预补偿、 以及校准的目的,可以有效地跟踪和补偿卫星通信链路的多普勒频移,提高了通信质量。
在一可选实施例中,终端每次对目标频率进行了补偿或预补偿,那么可以基于每次补偿或预补偿后的所述目标频率与所述网络设备进行通信。
例如,在执行了步骤101之后,终端对上行频率进行了预补偿,那么终端可以基于预补偿后的上行频率
Figure PCTCN2020107150-appb-000020
发送上行信号给网络设备。
终端还对下行频率进行补偿,那么终端可以基于补偿后的下行频率
Figure PCTCN2020107150-appb-000021
接收网络设备发送的下行信号。
再例如,在执行了步骤106之后,终端可以基于此时预补偿后的上行频率
Figure PCTCN2020107150-appb-000022
发送上行信号给网络设备,另外终端可以基于此时补偿后的下行频率
Figure PCTCN2020107150-appb-000023
接收网络设备发送的下行信号。
上述实施例中,终端每次对目标频率进行补偿或预补偿,都可以基于补偿或预补偿后的所述目标频率与所述网络设备进行通信。从而可以及时、有效地跟踪和补偿卫星通信链路的多普勒频移,提高通信质量。
在一可选实施例中,终端还可以利用所述上行残留频偏对所述目标频率的补偿频率或预补偿频率进行校准,将校准后的频率偏移作为新的频率偏移,返回执行步骤101。
即将
Figure PCTCN2020107150-appb-000024
作为新的上行频率偏移,
Figure PCTCN2020107150-appb-000025
作为新的下行频率偏移,再次执行上述步骤101。
上述实施例中,终端可以利用所述上行残留频偏对所述目标频率的补偿频率或预补偿频率进行校准,将校准后的频率偏移作为新的频率偏移,返回执行之前根据下行频率偏移,对目标频率进行补偿或预补偿的步骤。 通过对目标频率不断进行补偿或预补偿、以及校准,实现了有效地跟踪和补偿卫星通信链路的多普勒频移,提高通信质量的目的。
下面再从网络设备侧介绍一下本公开提供的频偏补偿、校准方法。
本公开实施例提供了另一种频偏补偿、校准方法,可以用于网络设备,包括但不限于卫星,参照图4所示,图4是根据一实施例示出的另一种频偏补偿、校准方法流程图,该方法可以包括以下步骤:
在步骤201中,响应于检测到终端发送的上行信号,确定所述上行信号对应的上行残留频偏。
在本公开实施例中,终端在接收到网络设备发送的下行信号后,会根据确定出的下行频率偏移,会对上行频率进行预补偿,和/或对下行频率进行补偿,终端基于预补偿后的上行频率发送上行信号给网络设备。
网络设备检测到终端发送的上行信号,那么可以确定与该上行信号所采用的上行频率对应的上行残留频偏。确定方式与终端确定下行频率偏移的方式相同,在此不再赘述。
在步骤202中,发送所述上行残留频偏给所述终端。
在本公开实施例中,可以将上行残留频偏的数值发送给终端。让终端根据该上行残留频率对下行频率的补偿频率进行校准,和/或对上行频率的预补偿频率进行校准。
上述实施例中,实现了在非地面网络中,进行频偏补偿或预补偿、以及校准的目的,可以有效地跟踪和补偿卫星通信链路的多普勒频移,提高了通信质量。
在一可选实施例中,参照图5所示,图5是根据图4所示的实施例示出的另一种频偏补偿、校准方法流程图,上述方法还包括:
在步骤203中,发送所述上行残留频偏对应的目标时间段给所述终端。
在本公开实施例中,卫星可以根据自身移动的速度、方向等确定与该上行残留频偏对应的目标时间段,将该目标时间段告知终端或者预先配置该目标时间段。终端可以在目标时间段内,根据所述上行残留频偏,对所 述目标频率的补偿频率或预补偿频率进行校准,以及利用所述校准后的补偿频率或预补偿频率,对所述目标频率进行补偿或预补偿。
上述实施例中,基站可以将与上行残留频偏对应的目标时间段发送给终端,终端可以在目标时间段内,根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。实现简便,可用性高。
在一可选实施例中,参照图6所示,图6是根据一实施例示出的另一种频偏补偿、校准方法流程图,该方法可以包括以下步骤:
在步骤301中,终端根据下行频率和上行频率,确定第一因子;
在步骤302中,终端根据所述第一因子和下行频率偏移,确定对上行频率进行预补偿的预补偿频率。
在本公开实施例中,该预补偿频率为
Figure PCTCN2020107150-appb-000026
在步骤303中,终端将所述下行频率偏移作为对所述下行频率进行补偿的补偿频率。
在本公开实施例中,该补偿频率为
Figure PCTCN2020107150-appb-000027
在步骤304中,终端基于补偿或预补偿后的目标频率与网络设备进行通信。
在本公开实施例中,此时预补偿后的上行频率为
Figure PCTCN2020107150-appb-000028
终端基于这个上行频率发送上行信号给网络设备,补偿后的下行频率为
Figure PCTCN2020107150-appb-000029
终端基于这个下行频率接收网络设备发送的下行信号。
在步骤305中,网络设备确定与所述上行信号对应的上行残留频偏。
在步骤306中,网络设备发送所述上行残留频率给所述终端。
在步骤307中,网络设备发送所述上行残留频偏对应的目标时间段给所述终端。
在步骤308中,终端在所述目标时间段内,将所述上行残留频偏,作为对所述上行频率的预补偿频率进行校准的第一修正值。
在本公开实施例中,第一修正值为Δf UL
在步骤309中,终端根据所述下行频率和所述上行频率,确定第二因子。
在步骤310中,终端根据所述第二因子和所述上行残留频偏,确定对所述下行频率的补偿频率进行校准的第二修正值。
在本公开实施例中,第二修正值为
Figure PCTCN2020107150-appb-000030
在步骤311中,终端在目标时间段内,利用所述上行残留频偏对校准后的补偿频率或预补偿频率,对所述目标频率进行补偿或预补偿。
在本公开实施例中,利用上行残留频偏对上行频率的预补偿频率进行校准后得到的上行频率偏移为
Figure PCTCN2020107150-appb-000031
下行频率偏移为
Figure PCTCN2020107150-appb-000032
预补偿后得到的上行频率为
Figure PCTCN2020107150-appb-000033
补偿后得到的下行频率为
Figure PCTCN2020107150-appb-000034
在步骤312中,终端在目标时间段内,基于补偿或预补偿后的目标频率与网络设备进行通信。
在步骤313中,利用所述上行残留频偏对所述目标频率的补偿频率或预补偿频率进行校准,将校准后的频率偏移作为新的频率偏移,返回执行步骤301。
上述实施例中,实现了在非地面网络中,进行频偏补偿和校准的目的,可以有效地跟踪和补偿卫星通信链路的多普勒频移,提高了通信质量。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图7,图7是根据一示例性实施例示出的一种频偏补偿、校准装置框图,所述装置用于终端,包括:
第一频偏补偿模块410,被配置为根据下行频率偏移,对目标频率进 行补偿或预补偿;
第一获取模块420,被配置为获取来自网络设备的与所述终端发送的上行信号对应的上行残留频偏;
校准模块430,被配置为根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。
可选地,所述目标频率包括上行频率和/或下行频率;
所述第一频偏补偿模块被配置为:
根据所述下行频率和所述上行频率,确定第一因子;
根据所述第一因子和所述下行频率偏移,确定对所述上行频率进行预补偿的预补偿频率;和/或
将所述下行频率偏移作为对所述下行频率进行补偿的补偿频率。
可选地,所述校准模块被配置为:
将所述上行残留频率作为对所述上行频率的所述预补偿频率进行校准的第一修正值;和/或
根据所述下行频率和所述上行频率,确定第二因子;
根据所述第二因子和所述上行残留频偏,确定对所述下行频率的补偿频率进行校准的第二修正值。
可选地,所述装置还包括:
第二获取模块,被配置为获取来自所述网络设备的与所述上行残留频偏对应的目标时间段;或
第一确定模块,被配置为根据预定设置,确定与所述上行残留频偏对应的目标时间段;
所述校准模块被配置为:
在所述目标时间段内,根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。
可选地,所述装置还包括:
第二频偏补偿模块,被配置为在所述目标时间段内,利用校准后的补 偿频率或预补偿频率,对所述目标频率进行补偿或预补偿。
可选地,所述装置还包括:
通信模块,被配置为响应于每次对所述目标频率进行补偿或预补偿,基于每次补偿或预补偿后的所述目标频率与所述网络设备进行通信。
可选地,所述装置还包括:
控制模块,被配置为利用所述上行残留频偏对所述目标频率的补偿频率或预补偿频率进行校准,将校准后的频率偏移作为新的频率偏移,控制所述第一频偏补偿模块根据下行频率偏移,对目标频率进行补偿或预补偿。
参照图8,图8是根据一示例性实施例示出的另一种频偏补偿、校准装置框图,所述装置用于网络设备,包括:
第二确定模块510,被配置为响应于检测到终端发送的上行信号,确定所述上行信号对应的上行残留频偏;
第一发送模块520,被配置为发送所述残留频偏给所述终端。
可选地,所述装置还包括:
第二发送模块,被配置为发送所述上行残留频偏对应的目标时间段给所述终端。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行用于终端侧的任一所述的频偏补偿、校准方法。
相应地,本公开还提供了一种计算机可读存储介质,,所述存储介质存 储有计算机程序,所述计算机程序用于执行用于网络设备侧的任一所述的频偏补偿、校准方法。
相应地,本公开还提供了一种频偏补偿、校准装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一所述的频偏补偿、校准方法。
图9是根据一示例性实施例示出的一种电子设备900的框图。例如电子设备900可以是终端。
参照图9,电子设备900可以包括以下一个或多个组件:处理组件902,存储器904,电源组件906,多媒体组件908,音频组件910,输入/输出(I/O)接口912,传感器组件916,以及通信组件918。
处理组件902通常控制电子设备900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件902可以包括一个或多个处理器920来执行指令,以完成上述的频偏补偿、校准方法的全部或部分步骤。此外,处理组件902可以包括一个或多个模块,便于处理组件902和其他组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。又如,处理组件902可以从存储器读取可执行指令,以实现上述各实施例提供的一种频偏补偿、校准方法的步骤。
存储器904被配置为存储各种类型的数据以支持在电子设备900的操作。这些数据的示例包括用于在电子设备900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件906为电子设备900的各种组件提供电力。电源组件906可以包括电源管理***,一个或多个电源,及其他与为电子设备900生成、管理和分配电力相关联的组件。
多媒体组件908包括在所述电子设备900和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当电子设备900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当电子设备900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件918发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件916包括一个或多个传感器,用于为电子设备900提供各个方面的状态评估。例如,传感器组件916可以检测到电子设备900的打开/关闭状态,组件的相对定位,例如所述组件为电子设备900的显示器和小键盘,传感器组件916还可以检测电子设备900或电子设备900一个组件的位置改变,用户与电子设备900接触的存在或不存在,电子设备900方位或加速/减速和电子设备900的温度变化。传感器组件916可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件916还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件916还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件918被配置为便于电子设备900和其他设备之间有线或无线 方式的通信。电子设备900可以接入基于通信标准的无线网络,如Wi-Fi,2G,3G,4G或5G,或它们的组合。在一个示例性实施例中,通信组件918经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件918还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述频偏补偿、校准方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储介质,例如包括指令的存储器904,上述指令可由电子设备900的处理器920执行以完成上述无线充电方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
相应地,本公开还提供了一种频偏补偿、校准装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行网络设备侧任一所述的频偏补偿、校准方法。
如图10所示,图10是根据一示例性实施例示出的一种频偏补偿、校准装置1000的一结构示意图。装置1000可以被提供为网络设备,例如卫星。参照图10,装置1000包括处理组件1022、无线发射/接收组件1024、天线组件1026、以及无线接口特有的信号处理部分,处理组件1022可进一步包括一个或多个处理器。
处理组件1022中的其中一个处理器可以被配置为用于执行上述网络 设备侧任一所述的频偏补偿、校准方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构或具体步骤,并且可以在不脱离其范围进行各种修改、改变和组合。本公开的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种频偏补偿、校准方法,其特征在于,所述方法用于终端,包括:
    根据下行频率偏移,对目标频率进行补偿或预补偿;
    获取来自网络设备的与所述终端发送的上行信号对应的上行残留频偏;
    根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。
  2. 根据权利要求1所述的方法,其特征在于,所述目标频率包括上行频率和/或下行频率;
    所述根据下行频率偏移,对目标频率进行补偿或预补偿,包括:
    根据所述下行频率和所述上行频率,确定第一因子;
    根据所述第一因子和所述下行频率偏移,确定对所述上行频率进行预补偿的预补偿频率;和/或
    将所述下行频率偏移作为对所述下行频率进行补偿的补偿频率。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准,包括:
    将所述上行残留频率作为对所述上行频率的所述预补偿频率进行校准的第一修正值;和/或
    根据所述下行频率和所述上行频率,确定第二因子;
    根据所述第二因子和所述上行残留频偏,确定对所述下行频率的补偿频率进行校准的第二修正值。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取来自所述网络设备的与所述上行残留频偏对应的目标时间段;或
    根据预定设置,确定与所述上行残留频偏对应的目标时间段;
    所述根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准,包括:
    在所述目标时间段内,根据所述上行残留频偏,对所述目标频率的补 偿频率或预补偿频率进行校准。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    在所述目标时间段内,利用校准后的补偿频率或预补偿频率,对所述目标频率进行补偿或预补偿。
  6. 根据权利要1或5所述的方法,其特征在于,所述方法还包括:
    响应于每次对所述目标频率进行补偿或预补偿,基于每次补偿或预补偿后的所述目标频率与所述网络设备进行通信。
  7. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    利用所述上行残留频偏对所述目标频率的补偿频率或预补偿频率进行校准,将校准后的频率偏移作为新的频率偏移,返回执行所述根据下行频率偏移,对目标频率进行补偿或预补偿的步骤。
  8. 一种频偏补偿、校准方法,其特征在于,所述方法用于网络设备,包括:
    响应于检测到终端发送的上行信号,确定所述上行信号对应的上行残留频偏;
    发送所述残留频偏给所述终端。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    发送所述上行残留频偏对应的目标时间段给所述终端。
  10. 一种频偏补偿、校准装置,其特征在于,所述装置用于终端,包括:
    第一频偏补偿模块,被配置为根据下行频率偏移,对目标频率进行补偿或预补偿;
    第一获取模块,被配置为获取来自网络设备的与所述终端发送的上行信号对应的上行残留频偏;
    校准模块,被配置为根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。
  11. 根据权利要求10所述的装置,其特征在于,所述目标频率包括上 行频率和/或下行频率;
    所述第一频偏补偿模块被配置为:
    根据所述下行频率和所述上行频率,确定第一因子;
    根据所述第一因子和所述下行频率偏移,确定对所述上行频率进行预补偿的预补偿频率;和/或
    将所述下行频率偏移作为对所述下行频率进行补偿的补偿频率。
  12. 根据权利要求11所述的装置,其特征在于,所述校准模块被配置为:
    将所述上行残留频率作为对所述上行频率的所述预补偿频率进行校准的第一修正值;和/或
    根据所述下行频率和所述上行频率,确定第二因子;
    根据所述第二因子和所述上行残留频偏,确定对所述下行频率的补偿频率进行校准的第二修正值。
  13. 根据权利要求10所述的装置,其特征在于,所述装置还包括:
    第二获取模块,被配置为获取来自所述网络设备的与所述上行残留频偏对应的目标时间段;或
    第一确定模块,被配置为根据预定设置,确定与所述上行残留频偏对应的目标时间段;
    所述校准模块被配置为:
    在所述目标时间段内,根据所述上行残留频偏,对所述目标频率的补偿频率或预补偿频率进行校准。
  14. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    第二频偏补偿模块,被配置为在所述目标时间段内,利用校准后的补偿频率或预补偿频率,对所述目标频率进行补偿或预补偿。
  15. 根据权利要10或14所述的装置,其特征在于,所述装置还包括:
    通信模块,被配置为响应于每次对所述目标频率进行补偿或预补偿,基于每次补偿或预补偿后的所述目标频率与所述网络设备进行通信。
  16. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    控制模块,被配置为利用所述上行残留频偏对所述目标频率的补偿频率或预补偿频率进行校准,将校准后的频率偏移作为新的频率偏移,控制所述第一频偏补偿模块根据下行频率偏移,对目标频率进行补偿或预补偿。
  17. 一种频偏补偿、校准装置,其特征在于,所述装置用于网络设备,包括:
    第二确定模块,被配置为响应于检测到终端发送的上行信号,确定所述上行信号对应的上行残留频偏;
    第一发送模块,被配置为发送所述残留频偏给所述终端。
  18. 根据权利要求17所述的装置,其特征在于,所述装置还包括:
    第二发送模块,被配置为发送所述上行残留频偏对应的目标时间段给所述终端。
  19. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-7任一所述的频偏补偿、校准方法。
  20. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求8或9所述的频偏补偿、校准方法。
  21. 一种频偏补偿、校准装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求1-7任一所述的频偏补偿、校准方法。
  22. 一种频偏补偿、校准装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求8或9所述的频偏 补偿、校准方法。
PCT/CN2020/107150 2020-08-05 2020-08-05 频偏补偿、校准方法及装置、存储介质 WO2022027329A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/107150 WO2022027329A1 (zh) 2020-08-05 2020-08-05 频偏补偿、校准方法及装置、存储介质
CN202080001795.1A CN114391243A (zh) 2020-08-05 2020-08-05 频偏补偿、校准方法及装置、存储介质
US18/005,913 US20230268959A1 (en) 2020-08-05 2020-08-05 Frequency offset compensation and calibration method and apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107150 WO2022027329A1 (zh) 2020-08-05 2020-08-05 频偏补偿、校准方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2022027329A1 true WO2022027329A1 (zh) 2022-02-10

Family

ID=80119694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107150 WO2022027329A1 (zh) 2020-08-05 2020-08-05 频偏补偿、校准方法及装置、存储介质

Country Status (3)

Country Link
US (1) US20230268959A1 (zh)
CN (1) CN114391243A (zh)
WO (1) WO2022027329A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173877A (zh) * 2022-06-17 2022-10-11 清华大学 通信卫星转发器及锁相转发***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118175619A (zh) * 2022-12-08 2024-06-11 大唐移动通信设备有限公司 卫星通信***频率同步方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956429A (zh) * 2005-10-28 2007-05-02 华为技术有限公司 残留频偏检测方法、装置及其无线通信***
CN109005135A (zh) * 2017-06-06 2018-12-14 中兴通讯股份有限公司 一种处理通信***上行链路频偏的方法与装置
WO2020074747A1 (en) * 2018-10-12 2020-04-16 Oq Technology S.À R.L. Method and system for non-terrestrial cellular wireless communication networks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106411800B (zh) * 2015-07-29 2021-01-01 上海中兴软件有限责任公司 一种频偏预补偿方法及装置
CN107370698B (zh) * 2016-05-13 2021-11-30 中兴通讯股份有限公司 一种下行信号处理方法、装置及基站
CN110311673B (zh) * 2019-06-24 2024-02-02 Oppo广东移动通信有限公司 一种频率校准方法、终端及存储介质
CN110545136B (zh) * 2019-07-31 2021-11-23 上海众睿通信科技有限公司 低轨卫星多载波通信***上行链路载波频偏估计与补偿方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956429A (zh) * 2005-10-28 2007-05-02 华为技术有限公司 残留频偏检测方法、装置及其无线通信***
CN109005135A (zh) * 2017-06-06 2018-12-14 中兴通讯股份有限公司 一种处理通信***上行链路频偏的方法与装置
WO2020074747A1 (en) * 2018-10-12 2020-04-16 Oq Technology S.À R.L. Method and system for non-terrestrial cellular wireless communication networks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173877A (zh) * 2022-06-17 2022-10-11 清华大学 通信卫星转发器及锁相转发***

Also Published As

Publication number Publication date
CN114391243A (zh) 2022-04-22
US20230268959A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
KR101712301B1 (ko) 화면을 촬영하기 위한 방법 및 디바이스
CN108401501B (zh) 数据传输方法、装置及无人机
WO2022027329A1 (zh) 频偏补偿、校准方法及装置、存储介质
WO2022021292A1 (zh) 随机接入方法和装置、配置指示方法和装置
WO2018133341A1 (zh) 发射上行信号的方法及装置
WO2019047143A1 (zh) 寻呼消息接收方法及装置和寻呼配置方法及装置
WO2019024053A1 (zh) 无人机控制方法及装置、无人机和遥控设备
WO2022021405A1 (zh) 随机接入方法和装置、配置指示方法和装置
CN109561356B (zh) 数据发送方法、数据发送装置、电子设备和计算机可读存储介质
WO2022027495A1 (zh) 调整指示方法和装置、调整接收方法和装置
WO2022141598A1 (zh) 上行定时提前量确定、公共定时相关信息广播方法和装置
US11917562B2 (en) Vehicle-to-everything synchronization method and device
CN110620871B (zh) 视频拍摄方法及电子设备
WO2022027198A1 (zh) 用于混合自动重传请求harq传输的方法及装置、存储介质
WO2022151093A1 (zh) 定时调整方法及装置、存储介质
US20240125917A1 (en) Ranging method and apparatus, and user equipment and storage medium
WO2022021126A1 (zh) 卫星通信方法及装置、存储介质
US20230261790A1 (en) Retransmission request method and apparatus, and retransmitted data reception method and apparatus
WO2020097881A1 (zh) 传输控制信息和数据的方法及装置
WO2022021353A1 (zh) 定时提前量发送方法和装置
WO2022120831A1 (zh) 通信方法及装置、存储介质
WO2022205008A1 (zh) 能力获取方法和装置、能力指示方法和装置
WO2022188004A1 (zh) 资源配置方法和装置、资源确定方法和装置
CN111064669B (zh) 一种路由存储方法、装置、设备及存储介质
WO2022067740A1 (zh) 信道传输方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947953

Country of ref document: EP

Kind code of ref document: A1