WO2022025362A1 - 철도차량 연결기용 합금강 - Google Patents

철도차량 연결기용 합금강 Download PDF

Info

Publication number
WO2022025362A1
WO2022025362A1 PCT/KR2020/018300 KR2020018300W WO2022025362A1 WO 2022025362 A1 WO2022025362 A1 WO 2022025362A1 KR 2020018300 W KR2020018300 W KR 2020018300W WO 2022025362 A1 WO2022025362 A1 WO 2022025362A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy steel
nanoparticles
essential components
silicon
molybdenum
Prior art date
Application number
PCT/KR2020/018300
Other languages
English (en)
French (fr)
Inventor
문형석
박정준
이상근
Original Assignee
한국철도기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국철도기술연구원 filed Critical 한국철도기술연구원
Priority to EP20888730.7A priority Critical patent/EP3974557A4/en
Publication of WO2022025362A1 publication Critical patent/WO2022025362A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G1/00Couplings comprising interengaging parts of different shape or form and having links, bars, pins, shackles, or hooks as coupling means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to alloy steel for railway vehicle connectors, and more particularly, mechanical properties required for AAR connectors mainly used in Korea and China, and mechanical properties required for CA-3 connectors mainly used in Russia, etc. It relates to alloy steel for railway vehicle connectors that can be safely used in the railway system connecting Northeast Asia and Russia by making it possible to meet the requirements.
  • the connector of a railroad car is a very important component for safety that functions to transmit propulsion and braking force between vehicles.
  • Korean Patent Publication No. 10-1931494 discloses alloy steel for railway vehicle connectors, and its main technical composition is carbon (C), manganese (Mn), silicon ( Si), chromium (Cr), nickel (Ni), copper (Cu), molybdenum (Mo), aluminum (Al), phosphorus (P) and sulfur (S), the balance being iron (Fe) and impurities It is characterized by what has been done.
  • the prior art has mechanical properties that can be applied to transcontinental trains subject to severe climate change due to the above composition, so that durability can be improved by reducing wear due to friction between climate change and railway vehicle connectors.
  • 'AAR M201' which are the mechanical properties regulation for AAR type connectors
  • CA-3 CA-3 type connectors
  • the present invention has been devised to solve the problems of the prior art as described above, and an object of the present invention is 'AAR M201', which is a regulation of mechanical properties for an AAR type connector, and 'AAR M201', a regulation of mechanical properties for a CA-3 type connector. It is to provide alloy steel for railway vehicle connectors that can be safely used in the railway system connecting Northeast Asia and Russia by meeting the standards of GOST 22703' at the same time.
  • titanium nitride (TiN), cubic boron nitride (cBN), aluminum oxide (Al 2 O 3 ), and zirconium oxide (ZrO 2 ) It characterized in that it further comprises nanoparticles (nanopaticle) made of any one .
  • the essential components are carbon (C) 0.240 wt%, silicon (Si) 0.380 wt%, manganese (Mn) 1.160 wt%, phosphorus (P) 0.014 wt%, sulfur (S) 0.006 wt%, chromium (Cr) 0.250 wt%, nickel (Ni) 0.250 wt%, copper (Cu) 0.030 wt%, molybdenum (Mo) 0.180 wt%, vanadium (V) 0.020 wt% and aluminum (Al) 0.020 wt%, the balance is iron and impurities and the nanoparticles.
  • the alloy steel containing the essential components and nanoparticles is first heat-treated at 870° C. for 4 hours, then air-cooled, subjected to secondary heat treatment at 870° C. for 4 hours, and then water-cooled, and thirdly at 570° C. for 4 hours. It is characterized in that it is air-cooled after heat treatment.
  • the content of nickel (Ni) among the essential components is 0.25 to 0.30 wt%
  • the content of molybdenum (Mo) is 0.15 to 0.25 wt%
  • the content of vanadium (V) is 0.01 to 0.02 wt%, characterized in that do.
  • the essential components are carbon (C) 0.233 wt%, silicon (Si) 0.427 wt%, manganese (Mn) 1.222 wt%, phosphorus (P) 0.006 wt%, sulfur (S) 0.012 wt%, chromium (Cr) 0.261 wt%, nickel (Ni) 0.260 wt%, copper (Cu) 0.042 wt%, molybdenum (Mo) 0.175 wt%, vanadium (V) 0.019 wt%, and aluminum (Al) 0.022 wt%, the balance is iron and impurities and the nanoparticles.
  • the essential components are carbon (C) 0.240% by weight, silicon (Si) 0.380% by weight, manganese (Mn) 1.160% by weight, phosphorus (P) 0.014% by weight, sulfur (S) 0.006% by weight, chromium (Cr) 0.250 wt%, nickel (Ni) 0.250 wt%, copper (Cu) 0.030 wt%, molybdenum (Mo) 0.180 wt%, vanadium (V) 0.020 wt% and aluminum (Al) 0.020 wt%, the balance is iron and impurities and the nanoparticles.
  • the alloy steel containing the essential components and nanoparticles is subjected to a primary heat treatment at 870° C. for 4 hours, followed by air cooling, a secondary heat treatment at 870° C. for 4 hours, followed by water cooling, and a third heat treatment at 580° C. for 4 hours. It is characterized in that it is air-cooled after heat treatment.
  • the essential components are carbon (C) 0.220% by weight, silicon (Si) 0.430% by weight, manganese (Mn) 1.200% by weight, phosphorus (P) 0.016% by weight, sulfur (S) 0.006% by weight, chromium (Cr) 0.260 wt%, nickel (Ni) 0.250 wt%, copper (Cu) 0.030 wt%, molybdenum (Mo) 0.150 wt%, vanadium (V) 0.020 wt% and aluminum (Al) 0.030 wt%, the balance being iron and impurities and the nanoparticles.
  • alloy steel containing the essential components and nanoparticles is heat-treated at 580° C. for 4 hours and then air-cooled.
  • the strength of nanoparticles or alloy steel to reduce the hardness of the alloy steel in addition to the components included as essential components in the mechanical properties regulation for the AAR type connector and the CA-3 type connector in the alloy steel for the railway vehicle connector By selectively adding nanoparticles to improve
  • the present invention is a railway linking Northeast Asia and Russia by making it possible to satisfy both the mechanical properties required for the AAR connector mainly used in Korea and China and the mechanical properties required for the CA-3 connector mainly used in Russia, etc. It relates to alloy steel for railroad car connectors that can be safely used in the system.
  • 'AAR M201' a regulation on mechanical properties required for AAR connectors
  • 'GOST 22703' a regulation on mechanical properties for CA-3 type connectors
  • the contents of (Table 1) are as follows.
  • the content of the chemical components in (Table 1) below means wt%.
  • the AAR M201 standard and the GOST 22703 standard also have differences in the regulations for mechanical properties.
  • the GOST 22703 standard In the case of Russia, where the GOST 22703 standard is applied, railway vehicles must be able to operate in a relatively low temperature environment, so the yield strength (Y/P ), tensile strength (T/S) and hardness (HB) conditions are relatively low, and it can be seen that impact strength at -60°C is additionally required for cold resistance.
  • the present invention has a technical problem to satisfy both the chemical composition, that is, the chemical composition and mechanical properties required by the AAR M201 standard and the GOST 22703 standard, so the chemical composition and mechanical properties shown on the rightmost side of (Table 1) above It is designed to be satisfied.
  • the alloy steel for railroad car connector has chemical components required by AAR M201 and GOST 22703 standards, that is, carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur It consists of alloy steel containing (S), chromium (Cr), nickel (Ni) and copper (Cu) as essential components, titanium nitride (TiN), cubic boron nitride (cBN), aluminum oxide (Al 2 O) 3 ) and zirconium oxide (ZrO 2 ) It is characterized in that it further comprises a nanoparticle (nanopaticle) made of any one of.
  • the titanium nitride (TiN), cubic boron nitride (cBN), aluminum oxide (Al 2 O 3 ) and zirconium oxide (ZrO 2 ) are included in the alloy steel to lower the hardness, and alloy steel in the form of nanoparticles It is possible to obtain the effect of lowering hardness even with a very small amount.
  • elongation (El), section shrinkage (R/A), and impact strength among the target conditions of the mechanical properties indicated on the rightmost side of (Table 1) are carbon (C) included as essential components, Although it was relatively easy to meet the target conditions by controlling the content of silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), nickel (Ni) and copper (Cu), The remaining mechanical properties, such as yield strength (Y/P), tensile strength (T/S), and hardness (HB), had limitations in satisfying the target conditions through content control of the essential components.
  • the yield strength (Y) of the alloy steel /P) and the change in tensile strength (T/S) are minimized while the hardness (HB) can be lowered.
  • Table 2 shows the results of testing the hardness (HB) change that occurs when titanium nitride (TiN) nanoparticles and boron nitride (cBN) nanoparticles are added to alloy steel having a hardness (HB) of 203, respectively. It can be seen that the hardness (HB) decreased by 3.94% and 6.4%, respectively, by the addition of titanium nitride (TiN) nanoparticles and boron nitride (cBN) nanoparticles.
  • Nanoparticle additives no added Titanium nitride (TiN) Boron Nitride (cBN) Hardness (HB) 203 195 190
  • any one of titanium nitride (TiN), cubic boron nitride (cBN), aluminum oxide (Al 2 O 3 ) and zirconium oxide (ZrO 2 ) can be selected and included in the alloy steel in the form of nanoparticles. have.
  • nanoparticles contained in the alloy steel containing essential components are magnesium oxide (MgO), or 99% by weight of silicon oxide (SiO 2 ) and 1% by weight It may be any one of materials consisting of a combination of silicon carbide (SiC) of It is used when S) does not reach the target condition.
  • MgO magnesium oxide
  • SiO 2 silicon oxide
  • SiC silicon carbide
  • the material consisting of a combination of magnesium oxide (MgO), 99% by weight of silicon oxide (SiO 2 ) and 1% by weight of silicon carbide (SiC) is used for the purpose of improving the strength of the alloy steel, likewise It is included in the alloy steel in the form of nanoparticles, so that even a very small amount can improve the strength.
  • MgO magnesium oxide
  • SiO 2 silicon oxide
  • SiC silicon carbide
  • magnesium oxide (MgO) nanoparticles are added to carbon steel, as can be seen in (Table 3) below, the yield strength (Y/P) of up to about 22.4% depending on the amount of nanoparticles input ) and tensile strength (T/S) improvement of about 53.1%.
  • Mass fraction of magnesium oxide nanoparticles (%) 0 0.01 0.03 0.05 0.07 Yield strength (MPa) 232 233 264 294 284 Tensile strength (MPa) 293 425 427 448 441
  • essential components that is, carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S), chromium (Cr), nickel (Ni) and copper (Cu) ) by including nanoparticles in the alloy steel containing the hardness (HB), or it is possible to improve the strength (strength), that is, the yield strength (Y / P) and the tensile strength (T / S), the hardness (HB) ), titanium nitride (TiN), cubic boron nitride (cBN), aluminum oxide (Al 2 O 3 ) and zirconium oxide (ZrO 2 ) Including nanoparticles (nanopaticle) consisting of any one of the alloy steel and , In order to improve the strength, magnesium oxide (MgO), 99% by weight of silicon oxide (SiO 2 ), and 1% by weight of silicon carbide (SiC) containing any one of nanoparticles of a material consisting
  • T/S tensile strength
  • El elongation rate
  • R/A section shrinkage rate
  • HB hardness
  • the alloy steel for a railway vehicle connector according to the present invention may further include molybdenum (Mo), vanadium (V) and aluminum (Al) as essential components in addition to the essential components described above.
  • the aluminum (Al) is an alloy steel It is used for the purpose of improving the ductility of alloy steel as is usually included in the.
  • the molybdenum (Mo) is added for the purpose of improving the impact strength of the alloy steel, that is, the impact absorption rate, which can be confirmed through (Table 6) below.
  • Table 6 shows the mechanical properties of the second specimen cast by adding molybdenum (Mo) to the chemical composition that simultaneously satisfies the AAR M201 standard and the GOST 22703 standard, under different heat treatment conditions, and then the mechanical properties were tested.
  • Mo molybdenum
  • the impact strength was improved more than twice by the addition of molybdenum (Mo), but the yield strength (Y/P) and tensile strength (T/S) were lowered, and among them, the tensile strength (T/S) It can be seen that results that fall short of the target are shown.
  • Mo molybdenum
  • Y/P yield strength
  • T/S tensile strength
  • Table 7 shows that the third specimen cast by adding molybdenum (Mo) and vanadium (V) to the chemical composition that simultaneously satisfies the AAR M201 standard and GOST 22703 standard was heat treated under different heat treatment conditions. It shows the results of the mechanical property test after the addition of vanadium (V), and the yield strength (Y/P) and tensile strength (T/S) were improved to meet the target values, but the hardness was proportional to the (HB) was also improved, and it was found that the target value was exceeded, and it was confirmed that the impact strength was lowered and similarly fell short of the target value.
  • Mo molybdenum
  • V vanadium
  • Y/P yield strength
  • T/S tensile strength
  • the content of molybdenum (Mo) and vanadium (V) is limited to 0.15 to 0.25 wt% and 0.01 to 0.02 wt% of the total alloy steel, respectively.
  • the 4th specimen satisfies the content of essential components stipulated in the AAR M201 standard and GOST 22703 standard, and the content of nickel (Ni), molybdenum (Mo), and vanadium (V) is 0.25 wt% and 0.18 wt%, respectively. And it can be confirmed that the target values for all mechanical properties except for the hardness (HB) are satisfied by being cast and then heat-treated to 0.02 wt%.
  • the fifth specimen also satisfies the content of essential components stipulated in the AAR M201 standard and GOST 22703 standard, and the content of nickel (Ni), molybdenum (Mo), and vanadium (V) was 0.260 wt% and 0.175 wt%, respectively. And it can be confirmed that the target values for all mechanical properties except for the hardness (HB) are satisfied by heat treatment after casting by limiting the content to 0.019% by weight.
  • the hardness (HB) was titanium nitride (TiN), cubic boron nitride (cBN), aluminum oxide (Al 2 O 3 ) and zirconium oxide (ZrO), as described above. 2 ) Since it can be lowered by the addition of nanoparticles consisting of any one of the above, carbon steel having mechanical properties satisfying both AAR M201 and GOST 22703 standards can be manufactured by the addition of nanoparticles.
  • the mechanical properties of the alloy steel for railroad car connector according to the present invention as described above can be changed even by heat treatment conditions.
  • the same composition as the fourth specimen that is, carbon (C) 0.240 wt%, silicon (Si) 0.380 wt%, manganese (Mn) 1.160 wt%, phosphorus (P) 0.014 wt%, sulfur (S) 0.006 wt% , containing 0.250 wt% of chromium (Cr), 0.250 wt% of nickel (Ni), 0.030 wt% of copper (Cu), 0.180 wt% of molybdenum (Mo), 0.020 wt% of vanadium (V) and 0.020 wt% of aluminum (Al)
  • the heat treatment was performed by changing the temperature conditions of the third heat treatment.
  • the 1st heat treatment corresponding to normalizing is performed at 870°C for 4 hours.
  • the first heat treatment it was air cooled
  • the second heat treatment corresponding to quenching it was heat treated at a temperature of 870° C. for 4 hours and then cooled with water.
  • the third heat treatment corresponding to tempering, it was 570 After heat treatment at a temperature of °C for 4 hours and then air cooling was performed, the mechanical properties were measured.
  • Y/P yield strength
  • yield strength (Y/P) and tensile strength (T/S) were satisfied, yield strength (Y/P) and tensile strength (T/S) was found to fall short of the target by about 6.2% and about 4.1%, respectively.
  • magnesium oxide (MgO) nanoparticles or nanoparticles of a material consisting of a combination of 99% by weight of silicon oxide (SiO 2 ) and 1% by weight of silicon carbide (SiC) are added to alloy steel, the hardness ( Since yield strength (Y/P) and tensile strength (T/S) can be improved without significant change in HB), carbon (C) 0.220 wt%, silicon (Si) 0.430 wt%, manganese (Mn) 1.200 wt% , phosphorus (P) 0.016 wt%, sulfur (S) 0.006 wt%, chromium (Cr) 0.260 wt%, nickel (Ni) 0.250 wt%, copper (Cu) 0.030 wt%, molybdenum (Mo) 0.150 wt%, vanadium (V) a combination of magnesium oxide (MgO) nanoparticles or 99% by weight of silicon oxide (SiO 2 )
  • the hardness of the alloy steel By selectively adding nanoparticles to reduce the strength of alloy steel or to improve the strength of alloy steel, it meets the criteria for mechanical properties of AAR-type connectors and CA-3 connectors at the same time, it can satisfy both the mechanical property standards for the two most widely used connectors worldwide, so it can be used universally in most countries around the world, and at the same time, it can be used in Northeast Asia and Russia. It has various advantages such as being able to be safely used in the connecting railway system.
  • the present invention relates to alloy steel for railway vehicle connectors, and more particularly, mechanical properties required for AAR connectors mainly used in Korea and China, and mechanical properties required for CA-3 connectors mainly used in Russia, etc. It relates to alloy steel for railway vehicle connectors that can be safely used in the railway system connecting Northeast Asia and Russia by making it possible to meet the requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 철도차량 연결기용 합금강에 관한 것으로, 보다 상세하게는 한국과 중국에서 주로 사용되는 AAR 연결기에 대해서 요구되는 기계적 성질과, 러시아 등에서 주로 사용되는 CA-3 연결기에 대해서 요구되는 기계적 성질을 모두 충족시킬 수 있도록 함으로써 동북아시아와 러시아를 연결하는 철도시스템에서 안전하게 사용할 수 있도록 하는 철도차량 연결기용 합금강에 관한 것이다.

Description

철도차량 연결기용 합금강
본 발명은 철도차량 연결기용 합금강에 관한 것으로, 보다 상세하게는 한국과 중국에서 주로 사용되는 AAR 연결기에 대해서 요구되는 기계적 성질과, 러시아 등에서 주로 사용되는 CA-3 연결기에 대해서 요구되는 기계적 성질을 모두 충족시킬 수 있도록 함으로써 동북아시아와 러시아를 연결하는 철도시스템에서 안전하게 사용할 수 있도록 하는 철도차량 연결기용 합금강에 관한 것이다.
철도차량의 연결기는 추진력 및 제동력을 차량 간에 전달하는 기능을 하는 안전상 매우 중요한 구성품으로, 최근 들어 화차를 포함하는 철도차량의 장대화 필요성으로 인하여 그 구조적 안정성이 더욱 중요해지고 있다.
그리고, 최근 러시아를 포한한 동북아 경제의 중요성이 커지고 있고, 동북 아시아의 운송, 물류 및 연결성 향상은 미래 성장 동력 과제 중 하나로 부상하고 있다.
그에 따라, 한반도와 중국, 중앙아시아, 러시아, 유럽의 연결을 목표로 하는 대륙철도에 대한 연구가 활발히 진행되고 있는데, 특히 화차의 경우 한반도와 중국에서는 AAR 타입 연결기를 사용하고, 러시아를 포함한 CIS 국가와 몽골에서는 CA-3 타입 연결기를 사용하여 연결기의 헤드 형상이 서로 상이하여 상호간 연결이 불가능할 뿐만 아니라, 요구하고 있는 연결기 재료의 기계적 성질 또한 상이하다.
이와 관련하여 헤드 형상이 서로 상이한 AAR 타입 연결기와 CA-3 타입 연결기를 상호 연결할 수 있도록 하는 가변형 연결기 및 연결기 어댑터와 관련된 기술은 활발히 개발되고 있지만, 두 종류의 연결기에 대하여 요구되는 기계적 성질을 만족하는 재질과 관련된 개발은 미흡한 실정이다.
이와 같은 문제점을 해결하기 위한 종래기술로 대한민국 등록특허공보 제10-1931494호에는 철도차량 연결기용 합금강이 게재되어 있는데, 그 주요 기술적 구성은 필수성분으로서 탄소(C), 망간(Mn), 실리콘(Si), 크롬(Cr), 니켈(Ni), 구리(Cu), 몰리브덴(Mo), 알루미늄(Al), 인(P) 및 황(S)을 함유하고, 잔부가 철(Fe) 및 불순물로 이루어진 것에 그 특징이 있다.
즉, 상기 종래기술은 위와 같은 조성으로 인해 기후변화가 심한 대륙횡단 열차에 적용할 수 있는 기계적 성질을 갖으므로 기후변화와 철도차량 연결기 간의 마찰로 인해 마모되는 것을 절감함으로써 내구성이 증진될 수 있도록 한 것에 기술적 특징이 있으나, AAR 타입 연결기에 대한 기계적 성질 규정인 'AAR M201, Gr.E'(이하, 'AAR M201'이라 한다) 기준의 충족 여부만을 고려하고 있어 CA-3 타입 연결기에 대한 기계적 성질 규정인 러시아 국가표준 'GOST 22703, 20 GL'(이하, 'GOST 22703'이라 한다) 기준의 충족 여부에 대해서는 확인할 수 없는 단점이 있다.
또한, 기후변화가 심한 대륙철도의 경우 깨짐이나 마모 등과 관련하여 연결기의 기계적 성질 중 경도(hardness)가 상당히 중요한데, 상기 종래기술은 기계적 성질 중 경도 조건에 대한 기준을 충족하는지 여부 또한 확인할 수 없는 문제점이 있다.
따라서, AAR 타입 연결기에 대한 기계적 성질 규정인 'AAR M201'과, CA-3 타입 연결기에 대한 기계적 성질 규정인 'GOST 22703'의 기준을 동시에 충족할 수 있는 연결기용 합금강의 개발이 시급한 실정이다.
본 발명은 상기와 같은 종래기술의 문제점들을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 AAR 타입 연결기에 대한 기계적 성질 규정인 'AAR M201'과, CA-3 타입 연결기에 대한 기계적 성질 규정인 'GOST 22703'의 기준을 동시에 충족시킬 수 있도록 함으로써 동북아시아와 러시아를 연결하는 철도시스템에서 안전하게 사용할 수 있도록 하는 철도차량 연결기용 합금강을 제공함에 있다.
상기와 같은 목적들을 달성하기 위한 본 발명은,
탄소(C), 규소(Si), 망간(Mn), 인(P), 황(S), 크롬(Cr), 니켈(Ni) 및 구리(Cu)를 필수 성분으로 포함하여 이루어지는 철도차량 연결기용 합금강에 있어서, 질화티탄(TiN), 입방정 질화붕소(cBN), 산화알루미늄(Al 2O 3) 및 산화지르코늄(ZrO 2) 중 어느 하나로 이루어지는 나노입자(nanopaticle)를 더 포함하여 이루어진 것을 특징으로 한다.
이때, 상기 필수 성분으로 몰리브덴(Mo), 바나듐(V) 및 알루미늄(Al)을 더 포함하여 이루어진 것을 특징으로 한다.
또한, 상기 필수 성분은 탄소(C) 0.240중량%, 규소(Si) 0.380중량%, 망간(Mn) 1.160중량%, 인(P) 0.014중량%, 황(S) 0.006중량%, 크롬(Cr) 0.250중량%, 니켈(Ni) 0.250중량%, 구리(Cu) 0.030중량%, 몰리브덴(Mo) 0.180중량%, 바나듐(V) 0.020중량% 및 알루미늄(Al) 0.020중량%로 이루어지고, 잔부는 철과 불순물 및 상기 나노입자로 이루어진 것을 특징으로 한다.
그리고, 상기 필수 성분들과 나노입자를 포함하는 합금강을 870℃에서 4시간 동안 1차 열처리한 후 공랭시키고, 870℃에서 4시간 동안 2차 열처리한 후 수랭시키며, 570℃에서 4시간 동안 3차 열처리한 후 공랭시킨 것을 특징으로 한다.
또한, 상기 필수 성분 중 니켈(Ni)의 함량은 0.25 ~ 0.30 중량%이고, 몰리브덴(Mo)의 함량은 0.15 ~ 0.25 중량%이며, 바나듐(V)의 함량은 0.01 ~ 0.02 중량%인 것을 특징으로 한다.
이때, 상기 필수 성분은 탄소(C) 0.233중량%, 규소(Si) 0.427중량%, 망간(Mn) 1.222중량%, 인(P) 0.006중량%, 황(S) 0.012중량%, 크롬(Cr) 0.261중량%, 니켈(Ni) 0.260중량%, 구리(Cu) 0.042중량%, 몰리브덴(Mo) 0.175중량%, 바나듐(V) 0.019중량% 및 알루미늄(Al) 0.022중량%로 이루어지고, 잔부는 철과 불순물 및 상기 나노입자로 이루어진 것을 특징으로 한다.
한편, 본 발명의 다른 실시예는,
탄소(C), 규소(Si), 망간(Mn), 인(P), 황(S), 크롬(Cr), 니켈(Ni) 및 구리(Cu)를 필수 성분으로 포함하여 이루어지는 철도차량 연결기용 합금강에 있어서, 산화마그네슘(MgO) 또는 99중량%의 산화규소(SiO 2)와 1중량%의 탄화규소(SiC)의 조합으로 이루어진 물질 중 어느 하나의 나노입자(nanopaticle)를 더 포함하여 이루어진 것을 특징으로 한다.
이때, 상기 필수 성분으로 몰리브덴(Mo), 바나듐(V) 및 알루미늄(Al)을 더 포함하여 이루어진 것을 특징으로 한다.
그리고, 상기 필수 성분은 탄소(C) 0.240중량%, 규소(Si) 0.380중량%, 망간(Mn) 1.160중량%, 인(P) 0.014중량%, 황(S) 0.006중량%, 크롬(Cr) 0.250중량%, 니켈(Ni) 0.250중량%, 구리(Cu) 0.030중량%, 몰리브덴(Mo) 0.180중량%, 바나듐(V) 0.020중량% 및 알루미늄(Al) 0.020중량%로 이루어지고, 잔부는 철과 불순물 및 상기 나노입자로 이루어진 것을 특징으로 한다.
또한, 상기 필수 성분들과 나노입자를 포함하는 합금강을 870℃에서 4시간 동안 1차 열처리한 후 공랭시키고, 870℃에서 4시간 동안 2차 열처리한 후 수랭시키며, 580℃에서 4시간 동안 3차 열처리한 후 공랭시킨 것을 특징으로 한다.
그리고, 상기 필수 성분은 탄소(C) 0.220중량%, 규소(Si) 0.430중량%, 망간(Mn) 1.200중량%, 인(P) 0.016중량%, 황(S) 0.006중량%, 크롬(Cr) 0.260중량%, 니켈(Ni) 0.250중량%, 구리(Cu) 0.030중량%, 몰리브덴(Mo) 0.150중량%, 바나듐(V) 0.020중량% 및 알루미늄(Al) 0.030중량%로 이루어지고, 잔부는 철과 불순물 및 상기 나노입자로 이루어진 것을 특징으로 한다.
또한, 상기 필수 성분과 나노입자를 포함하는 합금강을 580℃에서 4시간 동안 열처리한 후 공랭시킨 것을 특징으로 한다.
본 발명에 따르면, 철도차량 연결기용 합금강에 AAR 타입 연결기와 CA-3 타입 연결기에 대한 기계적 성질 규정에 필수 성분으로 포함되어 있는 성분들 외에 합금강의 경도를 감소시킬 수 있도록 하는 나노입자 또는 합금강의 강도를 향상시킬 수 있도록 하는 나노입자를 선택적으로 첨가시킴으로써 AAR 타입 연결기의 기계적 성질에 대한 기준과 CA-3 타입 연결기에 대한 기계적 성질에 대한 기준을 동시에 충족시킬 수 있는 뛰어난 효과를 갖는다.
또한, 본 발명에 따르면 전세계적으로 가장 널리 사용되는 두 가지 연결기에 대한 기계적 성질 기준을 모두 충족시킬 수 있게 되어 전세계 대부분의 국가에서 범용적으로 사용될 수 있을 뿐만 아니라, 현재 추진 중에 있는 동북아시아와 러시아를 연결하는 철도시스템에서 안전하게 사용될 수 있는 효과를 추가로 갖는다.
이하, 본 발명에 따른 철도차량 연결기용 합금강의 바람직한 실시예들을 상세히 설명하기로 한다.
본 발명은 한국과 중국에서 주로 사용되는 AAR 연결기에 대해서 요구되는 기계적 성질과, 러시아 등에서 주로 사용되는 CA-3 연결기에 대해서 요구되는 기계적 성질을 모두 충족시킬 수 있도록 함으로써 동북아시아와 러시아를 연결하는 철도시스템에서 안전하게 사용할 수 있도록 하는 철도차량 연결기용 합금강에 관한 것으로, 먼저 AAR 연결기에 대해서 요구되는 기계적 성질에 대한 규정인 'AAR M201'과, CA-3 타입 연결기에 대한 기계적 성질 규정인 'GOST 22703'의 내용은 아래의 (표 1)과 같다. 아래의 (표 1)에서 화학성분들의 함량은 중량%를 의미한다.
Figure PCTKR2020018300-appb-img-000001
상기 (표 1)에서 확인할 수 있는 바와 같이, AAR M201 규격의 경우 연결기의 화학적 조성과 관련하여 C(탄소), Si(규소), Mn(망간), P(인), S(황)의 최대치 만을 규정하여 규제가 심하지 않은 반면, GOST 22703 규격은 AAR M201 규격에 비해 Cr(크롬), 니켈(Ni) 및 구리(Cu)의 최대치가 추가적으로 규정되고, C(탄소), Si(규소), Mn(망간)은 함량 범위를 한정하여 상대적으로 화학적 조성에 대한 규제가 엄격한 것을 알 수 있다.
AAR M201 규격과 GOST 22703 규격은 기계적 성질에 대한 규정에서도 서로 차이를 보이는데, GOST 22703 규격이 적용되는 러시아의 경우 상대적으로 기온이 낮은 환경에서 철도차량의 운행이 가능해야 하므로, 항복강도(Y/P), 인장강도(T/S) 및 경도(HB) 조건이 상대적으로 낮고, 내한성을 위하여 -60℃에서의 충격강도(Impact strength)를 추가적으로 요구하고 있는 것을 확인할 수 있다.
본 발명은 AAR M201 규격과 GOST 22703 규격에서 요구하는 화학성분, 즉 화학적 조성과 기계적 성질을 모두 만족시킬 수 있도록 하는 것에 기술적 과제가 있으므로 상기 (표 1)의 최우측에 나타낸 화학적 조성 및 기계적 성질을 충족시킬 수 있도록 구성되어 있다.
보다 상세히 설명하면, 본 발명에 따른 철도차량 연결기용 합금강은 AAR M201 규격과 GOST 22703 규격에서 요구하는 화학성분 즉, 탄소(C), 규소(Si), 망간(Mn), 인(P), 황(S), 크롬(Cr), 니켈(Ni) 및 구리(Cu)를 필수 성분으로 포함하는 합금강으로 이루어지는데, 여기에 질화티탄(TiN), 입방정 질화붕소(cBN), 산화알루미늄(Al 2O 3) 및 산화지르코늄(ZrO 2) 중 어느 하나로 이루어지는 나노입자(nanopaticle)를 더 포함하여 이루어진 것에 그 특징이 있다.
이때, 상기 질화티탄(TiN), 입방정 질화붕소(cBN), 산화알루미늄(Al 2O 3) 및 산화지르코늄(ZrO 2)은 합금강에 포함되어 경도를 낮추는 역할을 하는 것으로, 나노입자의 형태로 합금강에 포함되어 극소량으로도 경도 저하의 효과를 얻을 수 있게 된다.
즉, 테스트 결과 상기 (표 1)의 최우측에 표시된 기계적 성질의 목표 조건 중 연신율(El), 단면수축율(R/A), 충격강도(impact strength)는 필수 성분으로 포함되는 탄소(C), 규소(Si), 망간(Mn), 인(P), 황(S), 크롬(Cr), 니켈(Ni) 및 구리(Cu)의 함량 조절을 통해 비교적 용이하게 목표 조건을 충족시킬 수 있었지만, 나머지 기계적 성질인 항복강도(Y/P), 인장강도(T/S) 및 경도(HB) 조건은 상기 필수 성분들의 함량 조절을 통해 목표 조건을 충족시키는 것에 한계가 있었다.
보다 상세히 설명하면, 합금강의 항복강도(Y/P)와 인장강도(T/S)에 대한 목표 조건을 충족시키는 경우 경도(HB)가 목표 조건을 초과하게 되고, 합금강의 경도(HB)에 대한 목표 조건을 충족시키는 경우에는 항복강도(Y/P)와 인장강도(T/S)가 목표 조건에 미치지 못하게 되는 문제가 발생되었다.
따라서, 상기 질화티탄(TiN), 입방정 질화붕소(cBN), 산화알루미늄(Al 2O 3) 및 산화지르코늄(ZrO 2) 중 어느 하나를 나노입자의 형태로 합금강에 포함시킴으로써 합금강의 항복강도(Y/P)와 인장강도(T/S)의 변화를 최소화하면서 경도(HB)를 낮출 수 있도록 한 것이다.
아래의 (표 2)는 경도(HB)가 203인 합금강에 질화티탄(TiN) 나노입자와 질화붕소(cBN) 나노입자를 각각 첨가하였을 때 나타나는 경도(HB) 변화를 테스트한 결과를 나타낸 것으로, 질화티탄(TiN) 나노입자와 질화붕소(cBN) 나노입자의 첨가에 의해 경도(HB)가 각각 3.94% 및 6.4% 감소한 것을 확인할 수 있다.
나노입자 첨가물 첨가안함 질화티탄(TiN) 질화붕소(cBN)
경도(HB) 203 195 190
그리고, 마찬가지 실험에서 산화알루미늄(Al 2O 3) 나노입자와 산화지르코늄(ZrO 2) 나노입자는 각각 최대 27% 및 38%의 경도 감소 효과를 보일 수 있는 것으로 확인되었다.그러므로, 감소시키고자 하는 합금강의 경도 크기에 따라 질화티탄(TiN), 입방정 질화붕소(cBN), 산화알루미늄(Al 2O 3) 및 산화지르코늄(ZrO 2) 중 어느 하나를 선택하여 나노입자의 형태로 합금강에 포함시킬 수 있다.
다음, 본 발명에 따른 철도차량 연결기용 합금강의 다른 실시예에 따르면 필수 성분들을 포함하는 합금강에 포함되는 나노입자가 산화마그네슘(MgO), 또는 99중량%의 산화규소(SiO 2)와 1중량%의 탄화규소(SiC)의 조합으로 이루어진 물질 중의 어느 하나일 수 있는데, 상기 두 가지 물질들은 합금강의 경도(HB)에 대한 목표 조건을 충족시키면서, 항복강도(Y/P)와 인장강도(T/S)가 목표 조건에 미치지 못하게 되는 경우에 사용된다.
즉, 상기 산화마그네슘(MgO)과, 99중량%의 산화규소(SiO 2)와 1중량%의 탄화규소(SiC)의 조합으로 이루어진 물질은 합금강의 강도를 향상시키기 위한 목적으로 사용되는 것으로, 마찬가지로 나노입자의 형태로 합금강에 포함되어 극소량으로도 강도 향상의 효과를 얻을 수 있다.
보다 상세히 설명하면, 탄소강에 산화마그네슘(MgO) 나노입자를 첨가시키는 경우 아래의 (표 3)에서 확인할 수 있는 바와 같이, 투입되는 나노입자의 양에 따라 최대 약 22.4%의 항복강도(Y/P) 향상 효과와, 약 53.1%의 인장강도(T/S) 향상 효과를 보일 수 있는 것으로 나타났다.
산화마그네슘 나노입자의 질량분율(%) 0 0.01 0.03 0.05 0.07
항복강도(MPa) 232 233 264 294 284
인장강도(MPa) 293 425 427 448 441
또한, 탄소강에 99중량%의 산화규소(SiO 2)와 1중량%의 탄화규소(SiC)의 조합으로 이루어진 물질의 나노입자를 첨가시키는 경우, 아래의 (표 4)에서 확인할 수 있는 바와 같이, 경도(HB)가 크게 변화되지 않도록 하면서도 최대 약 60%의 강도 향상 효과를 보일 수 있는 것으로 나타났다.
Modifier weight(g) 0 77 120 460
경도(HB) 185 - 210 210 220 190
강도(MPa) 168 - 180 270 240 200
전술한 바와 같이, 본 발명에서는 필수 성분, 즉 탄소(C), 규소(Si), 망간(Mn), 인(P), 황(S), 크롬(Cr), 니켈(Ni) 및 구리(Cu)를 포함하는 합금강에 나노입자들을 포함시킴으로써 경도(HB)를 감소시키거나, 강도(strength), 즉 항복강도(Y/P)와 인장강도(T/S)를 향상시킬 수 있는데, 경도(HB)를 감소시키고자 하는 경우에는 질화티탄(TiN), 입방정 질화붕소(cBN), 산화알루미늄(Al 2O 3) 및 산화지르코늄(ZrO 2) 중 어느 하나로 이루어지는 나노입자(nanopaticle)를 합금강에 포함시키고, 강도를 향상시키기 위해서는 산화마그네슘(MgO)이나, 99중량%의 산화규소(SiO 2)와 1중량%의 탄화규소(SiC)의 조합으로 이루어진 물질 중 어느 하나의 나노입자를 합금강에 포함시킨다.한편, 전술한 AAR M201 규격과 GOST 22703 규격을 동시에 만족하는 화학성분으로 주조한 제1시편을 열처리 조건을 서로 달리하여 열처리한 후 기계적성질을 테스트한 결과를 아래의 (표 5)에 나타내었다.
Figure PCTKR2020018300-appb-img-000002
열처리를 통해 인장강도(T/S), 연신율(El), 단면수축률(R/A) 및 경도(HB)는 목표로 하는 기계적성질 조건을 충족하도록 향상시킬 수 있었으나, 항복강도(Y/P)와 충격강도 부분에서 목표치에 미달되는 결과를 얻은 것을 확인할 수 있다.
한편, 본 발명에 따른 철도차량 연결기용 합금강은 전술한 필수 성분들 이외에도 몰리브덴(Mo), 바나듐(V) 및 알루미늄(Al)을 필수 성분으로 더 포함할 수 있는데, 먼저 상기 알루미늄(Al)은 합금강에 통상적으로 포함되는 것으로 합금강의 연성을 향상시키기 위한 목적으로 사용된다.
다음, 상기 몰리브덴(Mo)은 합금강의 충격강도(Impact strength), 즉 충격흡수율을 향상시키기 위한 목적으로 첨가된 것으로, 이는 아래의 (표 6)을 통해 확인할 수 있다.
즉, 아래의 (표 6)은 AAR M201 규격과 GOST 22703 규격을 동시에 만족하는 화학성분에 몰리브덴(Mo)을 첨가하여 주조한 제2시편을 열처리 조건을 서로 달리하여 열처리한 후 기계적성질을 테스트한 결과를 나타낸 것으로, 열처리를 통해 경도(HB)를 목표범위에 포함되도록 한 결과, 대부분의 기계적 성질이 목표범위를 충족하는 것으로 나타났다.
특히, 충격강도(Impact strength)는 몰리브덴(Mo)의 첨가에 의해 두 배 이상 향상되었으나, 항복강도(Y/P)와 인장강도(T/S)가 저하되어 그 중 인장강도(T/S)는 목표치에 미달되는 결과를 보이는 것을 확인할 수 있다.
Figure PCTKR2020018300-appb-img-000003
다음, 상기 바나듐(V)은 합금강의 강도 향상을 목적으로 첨가되는 것으로, 이는 아래의 (표 7)을 통해 확인할 수 있다.
즉, 아래의 (표 7)은 AAR M201 규격과 GOST 22703 규격을 동시에 만족하는 화학성분에 몰리브덴(Mo)과 바나듐(V)을 함께 첨가하여 주조한 제3시편을 열처리 조건을 서로 달리하여 열처리한 후 기계적성질을 테스트한 결과를 나타낸 것으로, 바나듐(V)의 첨가로 인해 항복강도(Y/P)와 인장강도(T/S)가 향상되어 목표치를 충족하는 것으로 나타났으나, 그에 비례하여 경도(HB) 또한 향상되어 목표치를 초과하는 것으로 나타났고, 충격강도는 저하되어 마찬가지로 목표치에 미달되는 것을 확인할 수 있다.
Figure PCTKR2020018300-appb-img-000004
상기한 테스트들의 결과를 통해 합금강으로 규정된 필수성분들에 몰리브덴(Mo)을 첨가할 경우 충격강도를 향상시킬 수 있고, 바나듐(V)의 첨가를 통해 항복강도(Y/P)와 인장강도(T/S)를 향상시킬 수 있는 것을 확인할 수 있었다.
하지만, 몰리브덴(Mo)의 경우 경도(HB) 범위를 충족시키기 위한 열처리에 의해 항복강도(Y/P)와 인장강도(T/S)가 저하되고, 이를 해소하기 위해 바나듐(V)을 첨가하는 경우 충격강도가 다시 저하되는 결과를 보여, 이러한 문제해결을 위해 몰리브덴(Mo)과 바나듐(V)의 함량을 제한할 필요가 있다.
그에 따라 몰리브덴(Mo)과 바나듐(V)의 함량을 각각 전체 합금강의 0.15 ~ 0.25 중량%와, 0.01 ~ 0.02 중량%로 제한하고, 이에 더하여 AAR M201 규격과 GOST 22703 규격에 규정되어 있는 필수 성분 중 충격강도가 우수한 니켈의 함량을 0.25 ~ 0.30 중량%이 되도록 하여 주조한 제4시편 및 제5시편을 각각 열처리한 후 기계적성질을 테스트한 결과를 아래의 (표 8)에 나타내었다.
Figure PCTKR2020018300-appb-img-000005
먼저, 제4시편은 AAR M201 규격과 GOST 22703 규격에 규정되어 있는 필수 성분들의 함량을 만족시키면서, 니켈(Ni), 몰리브덴(Mo), 바나듐(V)의 함량을 각각 0.25 중량%, 0.18 중량% 및 0.02 중량%로 한정하여 주조한 후 열처리 한 것으로, 경도(HB)를 제외한 모든 기계적 성질에 대한 목표치들을 충족시키는 것을 확인할 수 있다.
다음, 제5시편 또한 AAR M201 규격과 GOST 22703 규격에 규정되어 있는 필수 성분들의 함량을 만족시키면서, 니켈(Ni), 몰리브덴(Mo), 바나듐(V)의 함량을 각각 0.260 중량%, 0.175 중량% 및 0.019 중량%로 한정하여 주조한 후 열처리 한 것으로, 마찬가지로 경도(HB)를 제외한 모든 기계적 성질에 대한 목표치들을 충족시키는 것을 확인할 수 있다.
즉, 상기 제4시편 및 제5시편 모두 경도(HB)를 제외한 모든 기계적 성질, 즉 항복강도(Y/P), 인장강도(T/S), 연신율(El), 단면수축률(R/A) 및 충격강도에 대한 목표조건들을 충족시키는 것으로 확인되었는데, 경도(HB)는 전술한 바와 같이, 질화티탄(TiN), 입방정 질화붕소(cBN), 산화알루미늄(Al 2O 3) 및 산화지르코늄(ZrO 2) 중 어느 하나로 이루어지는 나노입자(nanopaticle)의 첨가를 통해 낮출 수 있으므로, 상기 나노입자의 첨가에 의해 AAR M201 규격과 GOST 22703 규격을 동시에 만족시키는 기계적 성질을 갖는 탄소강을 제조할 수 있게 된다.
한편, 상기한 바와 같은 본 발명에 따른 철도차량 연결기용 합금강은 열처리 조건에 의해서도 기계적 성질이 변화될 수 있는데, 아래의 (표 9)는 상기 (표 8)에 기재된 제4시편과 동일한 조성으로 이루어진 합금강 시편에 대해 한국화학융합시험연구원(KTR)과 한국철도기술연구원(KRRI)에서 각각 2차례씩 기계적 성질을 테스트 한 결과와, 새로운 조성 즉, 탄소(C) 0.220중량%, 규소(Si) 0.430중량%, 망간(Mn) 1.200중량%, 인(P) 0.016중량%, 황(S) 0.006중량%, 크롬(Cr) 0.260중량%, 니켈(Ni) 0.250중량%, 구리(Cu) 0.030중량%, 몰리브덴(Mo) 0.150중량%, 바나듐(V) 0.020중량% 및 알루미늄(Al) 0.030중량%을 포함하여 이루어진 합금강 시편에 대한 한국화학융합시험연구원(KTR)에서의 기계적 성질 테스트 결과를 열처리 조건과 함께 나타낸 것이다.
Figure PCTKR2020018300-appb-img-000006
먼저, 상기 제4시편과 동일한 조성, 즉 탄소(C) 0.240중량%, 규소(Si) 0.380중량%, 망간(Mn) 1.160중량%, 인(P) 0.014중량%, 황(S) 0.006중량%, 크롬(Cr) 0.250중량%, 니켈(Ni) 0.250중량%, 구리(Cu) 0.030중량%, 몰리브덴(Mo) 0.180중량%, 바나듐(V) 0.020중량% 및 알루미늄(Al) 0.020중량%을 포함하여 이루어진 합금강 시편의 경우, 총 3차에 걸친 열처리를 수행하였는데, 한국화학융합시험연구원(KTR)에서의 1차 테스트와, 한국철도기술연구원(KRRI) 1,2차 테스트에서는 동일한 조건으로 열처리를 수행하였고, 한국화학융합시험연구원(KTR)에서의 2차 테스트에서는 3차 열처리의 온도 조건을 변화시켜 열처리를 수행하였다.
보다 상세히 설명하면, 한국화학융합시험연구원(KTR)에서의 1차 테스트와, 한국철도기술연구원(KRRI) 1,2차 테스트에서는 노멀라이징(Normalizing)에 해당되는 1차 열처리시 870℃ 온도에서 4시간 동안 1차 열처리한 후 공랭하였고, 담금질(Quenching)에 해당되는 2차 열처리시에는 마찬가지로 870℃의 온도에서 4시간 동안 열처리한 후 수랭시켰으며, 템퍼링(Tempering)에 해당되는 3차 열처리시에는 570℃의 온도에서 4시간 동안 열처리한 후 공랭시키는 열처리 작업을 수행한 후 기계적 성질들을 측정하였다.
그 결과, 세 번의 테스트에서 모두 경도(HB)를 제외한 모든 기계적 성질들, 즉 항복강도(Y/P), 인장강도(T/S), 연신율(El), 단면수축률(R/A) 및 충격강도에 대한 목표조건들을 충족시키는 것으로 확인되었는데, 한국화학융합시험연구원(KTR)에서의 1차 테스트에서는 경도(HB)가 목표범위에서 약 3.4% 정도 초과되는 것으로 측정되었고, 한국철도기술연구원(KRRI)에서의 1,2차 테스트에서는 경도(HB)가 각각 목표범위에서, 약 2.7% 및 약 5.0% 정도 초과되는 것으로 측정되었다.
전술한 (표 2)에서 질화티탄(TiN) 나노입자와 질화붕소(cBN) 나노입자의 첨가에 의해 경도(HB)를 각각 3.94% 및 6.4% 감소시킬 수 있는 것을 확인하였으므로, 탄소(C) 0.240중량%, 규소(Si) 0.380중량%, 망간(Mn) 1.160중량%, 인(P) 0.014중량%, 황(S) 0.006중량%, 크롬(Cr) 0.250중량%, 니켈(Ni) 0.250중량%, 구리(Cu) 0.030중량%, 몰리브덴(Mo) 0.180중량%, 바나듐(V) 0.020중량% 및 알루미늄(Al) 0.020중량%을 포함하여 이루어진 합금강에 질화티탄(TiN) 나노입자와 질화붕소(cBN) 나노입자 중 어느 하나를 선택하여 첨가시킬 경우 경도(HB) 조건을 포함하는 모든 기계적 성질들의 목표조건들을 충족시킬 수 있는 철도차량 연결기용 합금강을 제조할 수 있게 된다.
그리고, 상기와 동일한 조성으로 이루어진 합금강에 대한 한국화학융합시험연구원(KTR)에서의 2차 테스트에서는 템퍼링(Tempering)에 해당하는 3차 열처리 온도만 580℃로 달리하여 전술한 세 차례의 열처리와 동일한 조건으로 열처리 작업을 수행한 후 기계적 성질들을 측정하였다.
그 결과, 항복강도(Y/P)를 제외한 모든 기계적 성질들에 대한 목표조건들을 충족시키는 것으로 확인되었는데, 항복강도(Y/P)는 목표치에서 약 3.2% 정도 미달되는 것으로 확인되었다.
전술한 (표 3) 및 (표 4)에서 산화마그네슘(MgO) 나노입자 또는 99중량%의 산화규소(SiO 2)와 1중량%의 탄화규소(SiC)의 조합으로 이루어진 물질의 나노입자(nanopaticle) 첨가에 의해 항복강도(Y/P)를 향상시킬 수 있는 것을 확인하였으므로, 3차 열처리 온도를 580℃로 하는 경우에는 합금강에 산화마그네슘(MgO) 나노입자와 9중량%의 산화규소(SiO 2)와 1중량%의 탄화규소(SiC)의 조합으로 이루어진 물질의 나노입자 중 어느 하나를 선택하여 첨가시킬 경우 항복강도(Y/P)를 포함하는 모든 기계적 성질들의 목표조건들을 충족시킬 수 있는 철도차량 연결기용 합금강을 제조할 수 있게 된다.
다음, 탄소(C) 0.220중량%, 규소(Si) 0.430중량%, 망간(Mn) 1.200중량%, 인(P) 0.016중량%, 황(S) 0.006중량%, 크롬(Cr) 0.260중량%, 니켈(Ni) 0.250중량%, 구리(Cu) 0.030중량%, 몰리브덴(Mo) 0.150중량%, 바나듐(V) 0.020중량% 및 알루미늄(Al) 0.030중량%을 포함하여 이루어진 합금강의 경우 열처리 시간의 단축시킴과 동시에 경도(HB)가 목표범위를 초과하는 것을 방지하기 위해 템퍼링(Tempering)에 해당되는 열처리만을 수행한 후 기계적 성질들을 측정하였는데, 열처리는 580℃의 온도에서 4시간 동안 수행한 후 공랭시켰다.
그 결과, 항복강도(Y/P)와 인장강도(T/S)를 제외한 다른 기계적 성질들에 대한 목표조건들을 충족시키는 것으로 확인되었으며, 항복강도(Y/P)와 인장강도(T/S)는 각각 목표치에서 약 6.2%와 약 4.1% 만큼 미달되는 것으로 확인되었다.
전술한 바와 같이, 산화마그네슘(MgO) 나노입자 또는 99중량%의 산화규소(SiO 2)와 1중량%의 탄화규소(SiC)의 조합으로 이루어진 물질의 나노입자를 합금강에 첨가하는 경우, 경도(HB)에 큰 변화없이 항복강도(Y/P)와 인장강도(T/S)를 향상시킬 수 있으므로, 탄소(C) 0.220중량%, 규소(Si) 0.430중량%, 망간(Mn) 1.200중량%, 인(P) 0.016중량%, 황(S) 0.006중량%, 크롬(Cr) 0.260중량%, 니켈(Ni) 0.250중량%, 구리(Cu) 0.030중량%, 몰리브덴(Mo) 0.150중량%, 바나듐(V) 0.020중량% 및 알루미늄(Al) 0.030중량%을 포함하여 이루어진 합금강에 산화마그네슘(MgO) 나노입자 또는 99중량%의 산화규소(SiO 2)와 1중량%의 탄화규소(SiC)의 조합으로 이루어진 물질의 나노입자를 첨가하여 580℃의 온도에서 4시간 동안 열처리하게 되면 항복강도(Y/P)와 인장강도(T/S)를 포함하는 모든 기계적 성질들의 목표조건들을 충족시킬 수 있는 철도차량 연결기용 합금강을 제조할 수 있게 된다.
따라서, 전술한 바와 같은 본 발명에 따른 철도차량 연결기용 합금강에 의하면 철도차량 연결기용 합금강에 AAR 타입 연결기와 CA-3 타입 연결기에 대한 기계적 성질 규정에 필수 성분으로 포함되어 있는 성분들 외에 합금강의 경도를 감소시킬 수 있도록 하는 나노입자 또는 합금강의 강도를 향상시킬 수 있도록 하는 나노입자를 선택적으로 첨가시킴으로써 AAR 타입 연결기의 기계적 성질에 대한 기준과 CA-3 타입 연결기에 대한 기계적 성질에 대한 기준을 동시에 충족시킬 수 있을 뿐만 아니라, 전세계적으로 가장 널리 사용되는 두 가지 연결기에 대한 기계적 성질 기준을 모두 충족시킬 수 있게 되어 전세계 대부분의 국가에서 범용적으로 사용될 수 있음과 동시에 현재 추진 중에 있는 동북아시아와 러시아를 연결하는 철도시스템에서 안전하게 사용될 수 있는 등의 다양한 장점을 갖는 것이다.
전술한 실시예들은 본 발명의 가장 바람직한 예에 대하여 설명한 것이지만, 상기 실시예에만 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변형이 가능하다는 것은 당업자에게 있어서 명백한 것이다.
본 발명은 철도차량 연결기용 합금강에 관한 것으로, 보다 상세하게는 한국과 중국에서 주로 사용되는 AAR 연결기에 대해서 요구되는 기계적 성질과, 러시아 등에서 주로 사용되는 CA-3 연결기에 대해서 요구되는 기계적 성질을 모두 충족시킬 수 있도록 함으로써 동북아시아와 러시아를 연결하는 철도시스템에서 안전하게 사용할 수 있도록 하는 철도차량 연결기용 합금강에 관한 것이다.

Claims (12)

  1. 탄소(C), 규소(Si), 망간(Mn), 인(P), 황(S), 크롬(Cr), 니켈(Ni) 및 구리(Cu)를 필수 성분으로 포함하여 이루어지는 철도차량 연결기용 합금강에 있어서,
    질화티탄(TiN), 입방정 질화붕소(cBN), 산화알루미늄(Al 2O 3) 및 산화지르코늄(ZrO 2) 중 어느 하나로 이루어지는 나노입자(nanopaticle)를 더 포함하여 이루어진 것을 특징으로 하는 철도차량 연결기용 합금강.
  2. 제 1항에 있어서,
    상기 필수 성분으로 몰리브덴(Mo), 바나듐(V) 및 알루미늄(Al)을 더 포함하여 이루어진 것을 특징으로 하는 철도차량 연결기용 합금강.
  3. 제 2항에 있어서,
    상기 필수 성분은 탄소(C) 0.240중량%, 규소(Si) 0.380중량%, 망간(Mn) 1.160중량%, 인(P) 0.014중량%, 황(S) 0.006중량%, 크롬(Cr) 0.250중량%, 니켈(Ni) 0.250중량%, 구리(Cu) 0.030중량%, 몰리브덴(Mo) 0.180중량%, 바나듐(V) 0.020중량% 및 알루미늄(Al) 0.020중량%로 이루어지고, 잔부는 철과 불순물 및 상기 나노입자로 이루어진 것을 특징으로 하는 철도차량 연결기용 합금강.
  4. 제 3항에 있어서,
    상기 필수 성분들과 나노입자를 포함하는 합금강을 870℃에서 4시간 동안 1차 열처리한 후 공랭시키고, 870℃에서 4시간 동안 2차 열처리한 후 수랭시키며, 570℃에서 4시간 동안 3차 열처리한 후 공랭시킨 것을 특징으로 하는 철도차량 연결기용 합금강.
  5. 제 2항에 있어서,
    상기 필수 성분 중 니켈(Ni)의 함량은 0.25 ~ 0.30 중량%이고, 몰리브덴(Mo)의 함량은 0.15 ~ 0.25 중량%이며, 바나듐(V)의 함량은 0.01 ~ 0.02 중량%인 것을 특징으로 하는 철도차량 연결기용 합금강.
  6. 제 5항에 있어서,
    상기 필수 성분은 탄소(C) 0.233중량%, 규소(Si) 0.427중량%, 망간(Mn) 1.222중량%, 인(P) 0.006중량%, 황(S) 0.012중량%, 크롬(Cr) 0.261중량%, 니켈(Ni) 0.260중량%, 구리(Cu) 0.042중량%, 몰리브덴(Mo) 0.175중량%, 바나듐(V) 0.019중량% 및 알루미늄(Al) 0.022중량%로 이루어지고, 잔부는 철과 불순물 및 상기 나노입자로 이루어진 것을 특징으로 하는 철도차량 연결기용 합금강.
  7. 탄소(C), 규소(Si), 망간(Mn), 인(P), 황(S), 크롬(Cr), 니켈(Ni) 및 구리(Cu)를 필수 성분으로 포함하여 이루어지는 철도차량 연결기용 합금강에 있어서,
    산화마그네슘(MgO) 또는 99중량%의 산화규소(SiO 2)와 1중량%의 탄화규소(SiC)의 조합으로 이루어진 물질 중 어느 하나의 나노입자(nanopaticle)를 더 포함하여 이루어진 것을 특징으로 하는 철도차량 연결기용 합금강.
  8. 제 7항에 있어서,
    상기 필수 성분으로 몰리브덴(Mo), 바나듐(V) 및 알루미늄(Al)을 더 포함하여 이루어진 것을 특징으로 하는 철도차량 연결기용 합금강.
  9. 제 8항에 있어서,
    상기 필수 성분은 탄소(C) 0.240중량%, 규소(Si) 0.380중량%, 망간(Mn) 1.160중량%, 인(P) 0.014중량%, 황(S) 0.006중량%, 크롬(Cr) 0.250중량%, 니켈(Ni) 0.250중량%, 구리(Cu) 0.030중량%, 몰리브덴(Mo) 0.180중량%, 바나듐(V) 0.020중량% 및 알루미늄(Al) 0.020중량%로 이루어지고, 잔부는 철과 불순물 및 상기 나노입자로 이루어진 것을 특징으로 하는 철도차량 연결기용 합금강.
  10. 제 9항에 있어서,
    상기 필수 성분과 나노입자를 포함하는 합금강을 870℃에서 4시간 동안 1차 열처리한 후 공랭시키고, 870℃에서 4시간 동안 2차 열처리한 후 수랭시키며, 580℃에서 4시간 동안 3차 열처리한 후 공랭시킨 것을 특징으로 하는 철도차량 연결기용 합금강.
  11. 제 8항에 있어서,
    상기 필수 성분은 탄소(C) 0.220중량%, 규소(Si) 0.430중량%, 망간(Mn) 1.200중량%, 인(P) 0.016중량%, 황(S) 0.006중량%, 크롬(Cr) 0.260중량%, 니켈(Ni) 0.250중량%, 구리(Cu) 0.030중량%, 몰리브덴(Mo) 0.150중량%, 바나듐(V) 0.020중량% 및 알루미늄(Al) 0.030중량%로 이루어지고, 잔부는 철과 불순물 및 상기 나노입자로 이루어진 것을 특징으로 하는 철도차량 연결기용 합금강.
  12. 제 11항에 있어서,
    상기 필수 성분들과 나노입자를 포함하는 합금강을 580℃에서 4시간 동안 열처리한 후 공랭시킨 것을 특징으로 하는 철도차량 연결기용 합금강.
PCT/KR2020/018300 2020-07-29 2020-12-15 철도차량 연결기용 합금강 WO2022025362A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20888730.7A EP3974557A4 (en) 2020-07-29 2020-12-15 ALLOY STEEL FOR RAILWAY COUPLERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200094654A KR102370219B1 (ko) 2020-07-29 2020-07-29 철도차량 연결기용 합금강
KR10-2020-0094654 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022025362A1 true WO2022025362A1 (ko) 2022-02-03

Family

ID=80035603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018300 WO2022025362A1 (ko) 2020-07-29 2020-12-15 철도차량 연결기용 합금강

Country Status (3)

Country Link
EP (1) EP3974557A4 (ko)
KR (1) KR102370219B1 (ko)
WO (1) WO2022025362A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482576A (en) * 1992-01-11 1996-01-09 Bwg Butzbacher Weichenbau, Gmbh Railway-track elements and method of manufacturing them
JP2002363702A (ja) * 2001-04-04 2002-12-18 Nippon Steel Corp 耐摩耗性および延性に優れた低偏析性パーライト系レール
JP2005002385A (ja) * 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd 成形性と靱性に優れた鋼管とその製造方法
CN102534416A (zh) * 2012-01-05 2012-07-04 莱芜钢铁集团有限公司 一种载货列车连接件用钢及其制备方法
KR101499868B1 (ko) * 2014-10-17 2015-03-12 이태영 철도 차량용 브레이크 디스크 제조 방법
KR101931494B1 (ko) 2017-03-02 2018-12-21 (주)천호케스팅 철도차량 연결기용 합금강

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773500A (en) * 1970-03-26 1973-11-20 Nippon Steel Corp High tensile steel for large heat-input automatic welding and production process therefor
CA1084310A (en) * 1976-04-12 1980-08-26 Hiroaki Masui High tension steel sheet product
JP3432713B2 (ja) * 1997-08-29 2003-08-04 新日本製鐵株式会社 強度と靭性に優れた構造用厚鋼板
JP2000256784A (ja) * 1999-03-10 2000-09-19 Nippon Steel Corp 高靱性耐摩耗部材用厚鋼板
JP3793388B2 (ja) * 2000-03-08 2006-07-05 新日本製鐵株式会社 耐震建築用大入熱溶接用鋼
JP2002363697A (ja) 2001-06-07 2002-12-18 Nippon Steel Corp 耐ころがり疲労損傷性および耐破壊性に優れたレールおよびその製造法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482576A (en) * 1992-01-11 1996-01-09 Bwg Butzbacher Weichenbau, Gmbh Railway-track elements and method of manufacturing them
JP2002363702A (ja) * 2001-04-04 2002-12-18 Nippon Steel Corp 耐摩耗性および延性に優れた低偏析性パーライト系レール
JP2005002385A (ja) * 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd 成形性と靱性に優れた鋼管とその製造方法
CN102534416A (zh) * 2012-01-05 2012-07-04 莱芜钢铁集团有限公司 一种载货列车连接件用钢及其制备方法
KR101499868B1 (ko) * 2014-10-17 2015-03-12 이태영 철도 차량용 브레이크 디스크 제조 방법
KR101931494B1 (ko) 2017-03-02 2018-12-21 (주)천호케스팅 철도차량 연결기용 합금강

Also Published As

Publication number Publication date
EP3974557A4 (en) 2023-01-18
KR102370219B1 (ko) 2022-03-08
EP3974557A1 (en) 2022-03-30
KR20220014948A (ko) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2013180338A1 (ko) 저탄성 고강도 베타형 타이타늄 합금
CN112281080A (zh) 一种轨道车辆制动盘用低合金钢及其热处理方法
WO2022139007A1 (ko) 고인성 주조용 알루미늄 합금 및 그 제조방법
WO2017082684A1 (ko) 냉간단조성이 우수한 선재 및 그 제조방법
WO2018097604A1 (ko) 고온강도가 우수한 오스테나이트강
WO2017111290A1 (ko) Pwht 저항성이 우수한 저온 압력용기용 강판 및 그 제조 방법
WO2014209064A1 (ko) 고강도 강판 및 그 제조 방법
WO2018110779A1 (ko) 강도 및 연성이 우수한 저합금 강판
CN109837460A (zh) 一种铁路客车货车车轴用钢inc35e及其制造方法
KR20210102146A (ko) 항복강도가 우수한 오스테나이트계 고망간 강재
WO2018117678A1 (ko) 표면 특성이 우수한 오스테나이트계 강재 및 그 제조방법
WO2022025362A1 (ko) 철도차량 연결기용 합금강
WO2015126083A1 (ko) 엔진 배기계 부품용 구상흑연 주철
CN109161650A (zh) 一种低合金铸钢、制造方法及其应用
DE102009037540B4 (de) Gepresste, kohlenstoffgebundene Feuerfesterzeugnisse auf Aluminiumoxidbasis und Verfahren zu ihrer Herstellung
WO2020085861A1 (ko) 형상이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
WO2020085852A1 (ko) 항복강도가 우수한 오스테나이트계 고망간 강재 및 그 제조방법
WO2018117464A1 (ko) 극저온 인성 및 강도가 우수한 용접이음부
WO2020085864A1 (ko) 내부식성이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
WO2020105885A1 (ko) 열간가공성 및 인장 특성이 우수한 보론 함유 스테인리스강 및 그 제조 방법
WO2020111739A2 (ko) 법랑용 냉연 강판 및 그 제조방법
WO2022139135A1 (ko) 강도와 저온 충격인성이 우수한 극후강판 및 그 제조방법
JPH01239A (ja) 高強度および高靭性を有する耐摩耗性Cu合金
RU2819029C1 (ru) Легированная сталь, применяемая при изготовлении сцепных устройств железнодорожного подвижного состава
WO2020085858A1 (ko) 형상이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020888730

Country of ref document: EP

Effective date: 20210526

NENP Non-entry into the national phase

Ref country code: DE