WO2022024439A1 - 二次電池用正極活物質、二次電池用正極および二次電池 - Google Patents

二次電池用正極活物質、二次電池用正極および二次電池 Download PDF

Info

Publication number
WO2022024439A1
WO2022024439A1 PCT/JP2021/009522 JP2021009522W WO2022024439A1 WO 2022024439 A1 WO2022024439 A1 WO 2022024439A1 JP 2021009522 W JP2021009522 W JP 2021009522W WO 2022024439 A1 WO2022024439 A1 WO 2022024439A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
aluminum
electrode active
magnesium
Prior art date
Application number
PCT/JP2021/009522
Other languages
English (en)
French (fr)
Inventor
祐樹 庭田
サウラブ ランジヤン
健輔 鮫島
洋介 細谷
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022540005A priority Critical patent/JP7347679B2/ja
Priority to CN202180059448.9A priority patent/CN116157884A/zh
Publication of WO2022024439A1 publication Critical patent/WO2022024439A1/ja
Priority to US18/089,366 priority patent/US20230139370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to a positive electrode active material for a secondary battery, a positive electrode for a secondary battery, and a secondary battery.
  • This secondary battery includes an electrolytic solution together with a positive electrode (positive electrode for a secondary battery) and a negative electrode, and the positive electrode contains a positive electrode active material (positive electrode active material for a secondary battery) involved in a charge / discharge reaction. ..
  • a lithium raw material compound In order to obtain excellent charge / discharge cycle durability, a lithium raw material compound, an N element raw material compound such as cobalt, an M element raw material compound such as aluminum, an L element raw material compound such as phosphorus, and a fluorine raw material compound are used.
  • a lithium-containing composite oxide is produced by firing the mixture in an oxygen-containing atmosphere (see, for example, Patent Document 3).
  • This technology has been made in view of such problems, and its purpose is to obtain excellent initial capacity characteristics, cycle characteristics and storage characteristics, as well as positive electrode active materials for secondary batteries, positive electrodes for secondary batteries and It is to provide a secondary battery.
  • the positive electrode active material for a secondary battery of one embodiment of the present invention contains a layered rock salt type lithium composite oxide, and the lithium composite oxide is at least among lithium, cobalt, aluminum, magnesium, fluorine, phosphorus and sulfur. It contains an additional element including one kind and oxygen as a constituent element.
  • the aluminum content is greater than the magnesium content, and when the surface is analyzed using X-ray photoelectron spectroscopy, the chemical bond state of magnesium and oxygen.
  • the sum of the abundance and the abundance of the chemical bond state of magnesium and additional elements is larger than the sum of the abundance of the chemical bond state of aluminum and oxygen and the abundance of the chemical bond state of aluminum and additional elements.
  • the positive electrode for a secondary battery according to an embodiment of the present technology contains a positive electrode active material, and the positive electrode active material has the same configuration as that of the positive electrode active material for a secondary battery according to the above-described embodiment of the present technology. Is.
  • the secondary battery of one embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolytic solution, and the positive electrode has the same configuration as the configuration of the positive electrode for a secondary battery of the above-described embodiment of the present technology. ..
  • the aluminum content and the magnesium content are measured by analysis of the positive electrode active material using inductively coupled plasma emission spectroscopy as described above.
  • the abundance of the chemical bond state of magnesium and oxygen, the abundance of the chemical bond state of magnesium and additional elements, the abundance of the chemical bond state of aluminum and oxygen, and the abundance of the chemical bond state of aluminum and additional elements Is measured by surface analysis of the positive electrode active material using X-ray photoelectron spectroscopy as described above. The details of the analysis procedure using each of the inductively coupled plasma emission spectroscopy and the X-ray photoelectron spectroscopy will be described later.
  • the positive electrode active material for a secondary battery, the positive electrode for a secondary battery, or the secondary battery of one embodiment of the present technology
  • the positive electrode active material (layered rock salt type lithium composite oxide) is composed of lithium, cobalt, aluminum, and magnesium. It contains additional elements and oxygen as constituent elements. Further, the above conditions are satisfied with respect to the analysis result of the positive electrode active material using inductively coupled plasma emission spectroscopy, and the above conditions are satisfied with respect to the analysis result of the surface of the positive electrode active material using X-ray photoelectron spectroscopy. be satisfied. Therefore, excellent initial capacity characteristics, cycle characteristics, and storage characteristics can be obtained.
  • the effect of the present technology is not necessarily limited to the effect described here, and may be any effect of a series of effects related to the present technology described later.
  • FIG. 1 It is a perspective view which shows the structure of the secondary battery in one Embodiment of this technique. It is sectional drawing which shows the structure of the battery element shown in FIG. It is a block diagram which shows the structure of the application example of a secondary battery. It is sectional drawing which shows the structure of the secondary battery for a test.
  • a positive electrode active material for a secondary battery according to an embodiment of the present technology (hereinafter, simply referred to as a “positive electrode active material”) and a positive electrode for a secondary battery according to an embodiment of the present technology (hereinafter, simply referred to as a “positive electrode”). Since each of these (referred to as) is a part (one component) of the secondary battery, the positive electrode active material and the positive electrode thereof will be described together below.
  • the secondary battery described here is a secondary battery whose battery capacity can be obtained by utilizing the storage and release of an electrode reactant, and includes an electrolytic solution which is a liquid electrolyte together with a positive electrode and a negative electrode.
  • the charge capacity of the negative electrode is larger than the discharge capacity of the positive electrode in order to prevent the electrode reactant from precipitating on the surface of the negative electrode during charging. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode.
  • the type of electrode reactant is not particularly limited, but specifically, it is a light metal such as an alkali metal and an alkaline earth metal.
  • Alkali metals are lithium, sodium and potassium and the like, and alkaline earth metals are beryllium, magnesium and calcium and the like.
  • a secondary battery whose battery capacity can be obtained by utilizing the occlusion and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is occluded and released in an ionic state.
  • FIG. 1 shows a perspective configuration of a secondary battery
  • FIG. 2 shows a cross-sectional configuration of the battery element 20 shown in FIG.
  • FIG. 1 shows a state in which the exterior film 10 and the battery element 20 are separated from each other
  • FIG. 2 shows only a part of the battery element 20.
  • this secondary battery includes an exterior film 10, a battery element 20, a positive electrode lead 31 and a negative electrode lead 32, and sealing films 41 and 42.
  • the secondary battery described here is a laminated film type secondary battery using a flexible (or flexible) exterior member (exterior film 10) as an exterior member for accommodating the battery element 20. ..
  • the exterior film 10 is a flexible exterior member that houses a battery element 20, that is, a positive electrode 21, a negative electrode 22, an electrolytic solution, and the like, which will be described later, and has a bag-like structure. ..
  • the exterior film 10 is a single film-like member, and can be folded in the folding direction R.
  • the exterior film 10 is provided with a recessed portion 10U (so-called deep drawing portion) for accommodating the battery element 20.
  • the configuration (material, number of layers, etc.) of the exterior film 10 is not particularly limited. Therefore, the exterior film 10 may be a single-layer film or a multilayer film.
  • the exterior film 10 is a three-layer laminated film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order from the inside.
  • the fused layer contains a polymer compound such as polypropylene.
  • the metal layer contains a metallic material such as aluminum.
  • the surface protective layer contains a polymer compound such as nylon. In the folded state of the exterior film 10, the outer peripheral edges of the exterior films 10 (fused layers) facing each other are fused to each other.
  • each of the sealing films 41 and 42 is a sealing member for preventing outside air or the like from entering the inside of the exterior film 10.
  • the sealing film 41 is inserted between the exterior film 10 and the positive electrode lead 31, and the sealing film 42 is inserted between the exterior film 10 and the negative electrode lead 32.
  • one or both of the sealing films 41 and 42 may be omitted.
  • the sealing film 41 contains a polymer compound such as a polyolefin having adhesion to the positive electrode lead 31, and the polyolefin is polypropylene or the like.
  • the structure of the sealing film 42 is the same as that of the sealing film 41, except that it has adhesion to the negative electrode lead 32. That is, the sealing film 42 contains a polymer compound such as polyolefin having adhesion to the negative electrode lead 32.
  • the battery element 20 is a power generation element housed inside the exterior film 10, and includes a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution (not shown). Includes.
  • the battery element 20 is a so-called wound electrode body. That is, in the battery element 20, the positive electrode 21 and the negative electrode 22 are laminated with each other via the separator 23, and the positive electrode 21, the negative electrode 22 and the separator 23 have a winding axis (a virtual axis extending in the Y-axis direction). It is wound around as the center. Therefore, the positive electrode 21 and the negative electrode 22 are wound while facing each other via the separator 23.
  • the shape of the cross section (cross section along the XZ plane) of the battery element 20 intersecting the winding axis described above is defined by the major axis and the minor axis. It is a flat shape.
  • This long axis is a virtual axis extending in the X-axis direction and having a length larger than the short axis, and the short axis extends in the Z-axis direction intersecting the X-axis direction and is longer than the long axis. It is a virtual axis with a small length.
  • the shape of the cross section of the battery element 20 is a flat substantially elliptical shape.
  • the positive electrode 21 is a positive electrode for a secondary battery according to an embodiment of the present technology, and includes a positive electrode current collector 21A and a positive electrode active material layer 21B as shown in FIG. As will be described later, the positive electrode 21 contains a positive electrode active material involved in a charge / discharge reaction.
  • the positive electrode current collector 21A has a pair of surfaces on which the positive electrode active material layer 21B is arranged.
  • the positive electrode current collector 21A contains a conductive material such as a metal material, and the metal material is aluminum or the like.
  • the positive electrode active material layer 21B contains a positive electrode active material which is a positive electrode active material for a secondary battery according to an embodiment of the present technology, and the positive electrode active material can occlude and release lithium.
  • the positive electrode active material layer 21B is arranged on both sides of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B may further contain a positive electrode binder, a positive electrode conductive agent, and the like. Further, the positive electrode active material layer 21B may be arranged on only one side of the positive electrode current collector 21A.
  • the method for forming the positive electrode active material layer 21B is not particularly limited, but specifically, it is a coating method or the like.
  • This positive electrode active material contains any one or more of the layered rock salt type lithium composite oxides. That is, the lithium composite oxide has a layered rock salt type crystal structure. Specifically, the lithium composite oxide contains lithium, cobalt, aluminum, magnesium, additional elements, and oxygen as constituent elements, and the additional elements are fluorine, phosphorus, and sulfur. Includes any one or more. This is because a high energy density can be obtained.
  • the composition of the lithium composite oxide is not particularly limited as long as it has a layered rock salt type crystal structure and contains a series of constituent elements such as lithium.
  • the molar ratio of cobalt is preferably larger than the molar ratio of each of aluminum, magnesium and additional elements. That is, the lithium composite oxide preferably contains cobalt as a main component (main constituent element) among the constituent elements (cobalt, aluminum, magnesium and additional elements) other than lithium and oxygen. This is because a higher energy density can be obtained.
  • the lithium composite oxide preferably contains a compound represented by the following formula (1).
  • X in the formula (1) is the above-mentioned additional element.
  • X is any one or more of F, P and S.
  • A, b, c, d, e and f are 0.90 ⁇ a ⁇ 1.10, 0.80 ⁇ . b ⁇ 0.98, 0.001 ⁇ c ⁇ 0.3, 0.001 ⁇ d ⁇ 0.3, 0 ⁇ e ⁇ 0.3 and 1.8 ⁇ f ⁇ 2.1 are satisfied.
  • predetermined conditions are satisfied in order to improve the performance of the secondary battery.
  • the details of this physical characteristic condition will be described later.
  • the positive electrode active material may further contain any one or more of the lithium compounds in addition to the above-mentioned lithium composite oxide. However, the lithium composite oxide already described is excluded from the lithium compounds described here.
  • This lithium compound is a general term for compounds containing lithium as a constituent element, and more specifically, it is a compound containing one or more kinds of transition metal elements as a constituent element together with lithium. However, the lithium compound may further contain any one or more of other elements (elements other than lithium and transition metal elements).
  • the type of the lithium compound is not particularly limited, and specific examples thereof include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds. Specific examples of oxides are LiNiO 2 , LiCoO 2 and LiMn 2 O 4 , and specific examples of phosphoric acid compounds are LiFePO 4 and LiMnPO 4 .
  • the positive electrode binder contains any one or more of synthetic rubber and polymer compounds.
  • the synthetic rubber is styrene-butadiene rubber or the like, and the polymer compound is polyvinylidene fluoride or the like.
  • the positive electrode conductive agent contains a conductive material such as a carbon material, and the carbon material is graphite, carbon black, acetylene black, ketjen black and the like.
  • the conductive material may be a metal material, a polymer compound, or the like.
  • the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B.
  • the negative electrode current collector 22A has a pair of surfaces on which the negative electrode active material layer 22B is arranged.
  • the negative electrode current collector 22A contains a conductive material such as a metal material, and the metal material is copper or the like.
  • the negative electrode active material layer 22B contains any one or more of the negative electrode active materials capable of occluding and releasing lithium, and is arranged on both sides of the negative electrode current collector 22A here.
  • the negative electrode active material layer 22B may further contain a negative electrode binder, a negative electrode conductive agent, and the like, and may be arranged on only one side of the negative electrode current collector 22A.
  • the details regarding the negative electrode binder and the negative electrode conductive agent are the same as the details regarding the positive electrode binder and the positive electrode conductive agent, respectively.
  • the method for forming the negative electrode active material layer 22B is not particularly limited, but specifically, any one of a coating method, a gas phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), and the like, or There are two or more types.
  • the negative electrode active material is a carbon material, a metal-based material, or the like. This is because a high energy density can be obtained.
  • Carbon materials include graphitizable carbon, non-graphitizable carbon and graphite (natural graphite and artificial graphite).
  • Metallic materials are a general term for materials containing one or more of metal elements and semi-metal elements capable of forming an alloy with lithium as constituent elements, and the metal elements and semi-metal elements are used as constituent elements. For example, silicon and tin.
  • the metal-based material may be a simple substance, an alloy, a compound, a mixture of two or more of them, or a material containing two or more of these phases. Specific examples of the metallic material are TiSi 2 and SiO x (0 ⁇ x ⁇ 2, 0.2 ⁇ x ⁇ 1.4) and the like.
  • the separator 23 is an insulating porous film interposed between the positive electrode 21 and the negative electrode 22, and lithium ions are prevented while preventing contact (short circuit) between the positive electrode 21 and the negative electrode 22. To pass through.
  • the separator 23 contains a polymer compound such as polyethylene.
  • Electrolytic solution The electrolytic solution is impregnated in each of the positive electrode 21, the negative electrode 22, and the separator 23, and contains a solvent and an electrolyte salt.
  • the solvent contains any one or more of non-aqueous solvents (organic solvents) such as carbonic acid ester compounds, carboxylic acid ester compounds and lactone compounds, and contains the non-aqueous solvent.
  • the electrolytic solution is a so-called non-aqueous electrolytic solution.
  • the electrolyte salt contains any one or more of light metal salts such as lithium salts.
  • the positive electrode lead 31 is a positive electrode terminal connected to the battery element 20 (positive electrode 21), and is led out from the inside of the exterior film 10 to the outside.
  • the positive electrode lead 31 contains a conductive material such as aluminum, and the shape of the positive electrode lead 31 is either a thin plate shape or a mesh shape.
  • the negative electrode lead 32 is a negative electrode terminal connected to the battery element 20 (negative electrode 22), and here, the inside of the exterior film 10 is directed in the same direction as the lead-out direction of the positive electrode lead 31. It is derived from.
  • the negative electrode lead 32 contains a conductive material such as copper, and the details regarding the shape of the negative electrode lead 32 are the same as the details regarding the shape of the positive electrode lead 31.
  • the aluminum content CA contained in the positive electrode active material and the magnesium contained in the positive electrode active material are found.
  • the content CM is measured, the content CA is larger than the content CM.
  • the content CA is larger than the content CM.
  • the concentration of aluminum and the concentration of magnesium contained in the sample solution are measured.
  • an ICP emission spectroscopic analyzer (sequential type) SPS3100 manufactured by Hitachi High-Tech Science Corporation can be used.
  • each of the abundance PMO, PMX, PAO, and PAX is measured, and the sum PM of the abundance PMO and PMX and the abundance PAO are measured.
  • the sum PA of PAX is calculated, the sum PM is larger than the sum PA.
  • the abundance of aluminum (content CA) is larger than the abundance of magnesium (content CM), but a part of the positive positive active material (content CA).
  • the abundance of magnesium is larger than the abundance of aluminum. That is, in the positive electrode active material, magnesium is unevenly distributed near the surface.
  • analysis results (X-ray photoelectron spectroscopic spectrum) regarding all the elements contained in the lithium composite oxide are obtained.
  • the XPS analyzer a scanning XPS apparatus Quantera SXM manufactured by ULVAC PFI Co., Ltd. can be used as the XPS analyzer.
  • the bond energy (eV) is shown on the horizontal axis
  • the spectral intensity number of X-ray photoelectrons
  • the abundance is calculated by calculating the surface atomic concentration of each element based on the X-ray photoelectron spectroscopic spectrum (the peak area of the number of photoelectrons for each element) using the relative sensitivity factor manufactured by ULVAC FI Co., Ltd.
  • Each of PMO, PMX, PAO, and PAX is calculated.
  • fitting sin-called peak fitting processing is performed using analysis software (multipak) manufactured by ULVAC FI Co., Ltd.
  • the content CA is not particularly limited.
  • the content CA is preferably 4500 ppm or more, and more preferably 7800 ppm or less (that is, 4500 ppm to 7800 ppm). This is because the crystal structure of the positive electrode active material (lithium composite oxide) is more stabilized, and the decomposition reaction of the electrolytic solution due to the reactivity of the positive electrode active material is further suppressed.
  • each of the sum PM and PA is not particularly limited. Above all, it is preferable that the sum PM is 2.9 or more and the sum PA is 0.4 or less. This is because the crystal structure of the positive electrode active material (lithium composite oxide) is more stabilized, and the decomposition reaction of the electrolytic solution due to the reactivity of the positive electrode active material is further suppressed.
  • a positive electrode active material (lithium composite oxide) is produced, and a secondary battery is produced using the positive electrode active material.
  • a positive electrode active material (lithium composite oxide) is produced by the procedure described below.
  • lithium supply source lithium compound
  • cobalt supply source cobalt compound
  • aluminum supply source aluminum supply source
  • the lithium compound is any one or more of the compounds containing lithium as a constituent element, and specifically, it is an oxide, a carbonate, a sulfate, a hydroxide and the like.
  • the details regarding the cobalt compound are the same as those regarding the lithium compound described above, except that cobalt is contained as a constituent element instead of lithium.
  • the details regarding the aluminum compound are the same as the details regarding the lithium compound described above, except that aluminum is contained as a constituent element instead of lithium.
  • each of the lithium compound, the cobalt compound and the aluminum compound is in the form of powder.
  • the average particle size (median diameter D50 ( ⁇ m)) of each of the lithium compound, the cobalt compound and the aluminum compound is not particularly limited and can be arbitrarily set.
  • the lithium compound, the cobalt compound, and the aluminum compound are mixed with each other to obtain a mixture.
  • the mixing ratio of the lithium compound, the cobalt compound and the aluminum compound can be arbitrarily set according to the composition of the positive electrode active material (lithium composite oxide) finally produced. be.
  • the mixture may be agitated using a stirrer such as a high speed stirrer. Conditions such as stirring speed and stirring time can be arbitrarily set.
  • the mixture is cooled.
  • the lithium compound, the cobalt compound, and the aluminum compound react with each other, so that a composite oxide containing lithium, cobalt, and aluminum as constituent elements can be obtained.
  • Conditions such as firing temperature and firing time can be arbitrarily set.
  • a magnesium supply source magnesium compound
  • an additional element supply source additional compound
  • the details regarding the magnesium compound are the same as those regarding the lithium compound described above, except that magnesium is contained as a constituent element instead of lithium.
  • the details regarding the additional compound are the same as the details regarding the lithium compound described above, except that the additional element is contained as a constituent element instead of lithium.
  • each of the magnesium compound and the additional compound is in the form of powder.
  • the average particle size (median diameter D50 ( ⁇ m)) of each of the magnesium compound and the additional compound is not particularly limited and can be arbitrarily set.
  • the composite oxide, the aluminum compound, the magnesium compound, and the additional compound are mixed with each other to prepare a precursor.
  • the mixing ratio of the composite oxide, the aluminum compound, the magnesium compound, and the additional compound is that of the positive electrode active material (lithium composite oxide) finally produced. It can be arbitrarily set according to the composition.
  • the precursor may be agitated in the same manner as in the case where the above-mentioned mixture is agitated.
  • a positive electrode mixture is prepared by mixing a positive electrode active material, a positive electrode binder, a positive electrode conductive agent, etc. with each other to form a positive electrode mixture, and then adding a positive electrode mixture to an organic solvent or the like to prepare a paste-like positive electrode mixture slurry. ..
  • the positive electrode active material layer 21B is formed by applying the positive electrode mixture slurry on both sides of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B may be compression-molded using a roll press machine or the like. In this case, the positive electrode active material layer 21B may be heated, or compression molding may be repeated a plurality of times. As a result, the positive electrode 21 is manufactured.
  • the negative electrode 22 is manufactured by the same procedure as the procedure for manufacturing the positive electrode 21 described above. Specifically, a negative electrode active material, a negative electrode binder, a negative electrode conductive agent, and the like are mixed with each other to form a negative electrode mixture, and then a negative electrode mixture is added to an organic solvent or the like to form a paste-like negative electrode combination. Prepare the agent slurry. After that, the negative electrode active material layer 22B is formed by applying the negative electrode mixture slurry on both sides of the negative electrode current collector 22A. Of course, the negative electrode active material layer 22B may be compression-molded. As a result, the negative electrode 22 is manufactured.
  • the positive electrode lead 31 is connected to the positive electrode 21 (positive electrode current collector 21A) by a welding method or the like
  • the negative electrode lead 32 is connected to the negative electrode 22 (negative electrode current collector 22A) by a welding method or the like.
  • the positive electrode 21 and the negative electrode 22 are laminated with each other via the separator 23, and then the positive electrode 21, the negative electrode 22 and the separator 23 are wound to produce a wound body.
  • This winding body has the same configuration as that of the battery element 20 except that the positive electrode 21, the negative electrode 22, and the separator 23 are not impregnated with the electrolytic solution.
  • the winding body is molded into a flat shape by pressing the winding body using a press machine or the like.
  • the exterior film 10 is folded so that the exterior films 10 face each other via the winding body. Subsequently, by using a heat fusion method or the like to fuse the outer peripheral edges of the two sides of the exterior films 10 (fused layers) facing each other to each other, the film is wound inside the bag-shaped exterior film 10. Store the body.
  • the outer peripheral edges of the remaining one side of the exterior film 10 are fused to each other by a heat fusion method or the like. Let me wear it.
  • the sealing film 41 is inserted between the exterior film 10 and the positive electrode lead 31, and the sealing film 42 is inserted between the exterior film 10 and the negative electrode lead 32.
  • the wound body is impregnated with the electrolytic solution, so that the battery element 20 which is a wound electrode body is manufactured, and the battery element 20 is enclosed inside the bag-shaped exterior film 10, so that it is secondary. Batteries are assembled.
  • Stabilization of secondary battery Charge and discharge the assembled secondary battery. Conditions such as the environmental temperature, the number of charge / discharge cycles (number of cycles), and charge / discharge conditions can be arbitrarily set. As a result, a film is formed on the surface of the negative electrode 22 and the like, so that the state of the secondary battery is electrochemically stabilized.
  • the positive electrode active material (layered rock salt type lithium composite oxide) of the positive electrode 21 contains lithium, cobalt, aluminum, magnesium, additional elements, and oxygen as constituent elements. Further, the physical characteristic condition 1 is satisfied with respect to the analysis result (content CA, CM) of the positive electrode active material using the ICP emission spectroscopic analysis method, and the analysis result of the surface of the positive electrode active material using XPS (sum PA, Physical property condition 2 is satisfied with respect to PM).
  • the lithium composite oxide contains aluminum as a constituent element, and the aluminum (Al 3+ ) is arranged at the cobalt site in the crystal structure of the lithium composite oxide. This stabilizes the crystal structure of the positive electrode active material.
  • the lithium composite oxide contains magnesium as a constituent element, and the magnesium ion (Mg 2+ ) has an ionic radius close to the ionic radius of the lithium ion.
  • the magnesium ion Mg 2+
  • the lithium composite oxide contains magnesium as a constituent element, and the magnesium ion (Mg 2+ ) has an ionic radius close to the ionic radius of the lithium ion.
  • the lithium composite oxide contains an additional element as a constituent element, and the additional element reduces the reactivity of the lithium composite oxide with the electrolytic solution. As a result, the reaction between the positive electrode active material and the electrolytic solution is suppressed on the surface of the positive electrode active material.
  • the lithium composite oxide contains a sufficient amount of aluminum as a constituent element as a whole.
  • aluminum is more likely to be arranged at the cobalt site in the crystal structure of the lithium composite oxide, so that the crystal structure of the positive electrode active material is more stabilized.
  • magnesium is unevenly distributed in the vicinity of the surface of the lithium composite oxide.
  • the magnesium ion (Mg 2+ ) has an ionic radius close to the ionic radius of the lithium ion, magnesium is easily arranged at the lithium site in the crystal structure of the lithium composite oxide.
  • magnesium tends to be preferentially present in the vicinity of the surface over the aluminum.
  • magnesium is fired together with additional elements during the production of the positive electrode active material (when the precursor is fired), magnesium is likely to be unevenly distributed near the surface of the lithium composite oxide, and the lithium composite oxide is easily distributed. Since magnesium unevenly distributed in the vicinity of the surface easily reacts with the additional element, a chemical bond (Mg—X) between magnesium and the additional element is likely to exist in the vicinity of the surface of the lithium composite oxide.
  • the crystal structure of the positive electrode active material (lithium composite oxide) is stabilized during charging and the like, the decomposition reaction of the electrolytic solution due to the reactivity of the positive electrode active material is suppressed. Cycle and storage characteristics can be obtained.
  • the energy density is improved and a higher effect can be obtained.
  • the crystal structure of the positive electrode active material (lithium composite oxide) is more stabilized and it is caused by the reactivity of the positive electrode active material. Since the decomposition reaction of the electrolytic solution is further suppressed, a higher effect can be obtained.
  • the crystal structure of the positive electrode active material (lithium composite oxide) is more stabilized and the reactivity of the positive electrode active material is increased. Since the resulting decomposition reaction of the electrolytic solution is further suppressed, a higher effect can be obtained.
  • the secondary battery is a lithium ion secondary battery, a sufficient battery capacity can be stably obtained by utilizing the occlusion and release of lithium, so that a higher effect can be obtained.
  • the positive electrode active material contains a layered rock salt-type lithium composite oxide having the above composition, and physical property conditions 1 and 2 are satisfied with respect to the analysis results using ICP emission spectroscopy and XPS. ing. Therefore, excellent initial capacity characteristics, cycle characteristics, and storage characteristics can be obtained in the secondary battery using the positive electrode active material for the same reason as the above-mentioned reason for the secondary battery.
  • the positive electrode active material contains a layered rock salt type lithium composite oxide having the above-mentioned composition, and the physical property conditions regarding the analysis result of the positive electrode active material using ICP emission spectroscopy and XPS. 1 and 2 are satisfied. Therefore, for the same reason as the above-mentioned reason for the secondary battery, excellent initial capacity characteristics, cycle characteristics, and storage characteristics can be obtained in the secondary battery using the positive electrode 21.
  • the laminated separator includes a porous membrane having a pair of faces and a polymer compound layer arranged on one or both sides of the porous membrane. This is because the adhesion of the separator to each of the positive electrode 21 and the negative electrode 22 is improved, so that the misalignment of the battery element 20 (the unwinding of each of the positive electrode 21, the negative electrode 22 and the separator) is less likely to occur. As a result, even if a decomposition reaction of the electrolytic solution occurs, the secondary battery is less likely to swell.
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because polyvinylidene fluoride and the like have excellent physical strength and are electrochemically stable.
  • one or both of the porous membrane and the polymer compound layer may contain a plurality of insulating particles. This is because a plurality of insulating particles dissipate heat when the secondary battery generates heat, so that the safety (heat resistance) of the secondary battery is improved.
  • the insulating particles include any one or more of inorganic particles and resin particles. Specific examples of the inorganic particles are particles such as aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of the resin particles are particles such as acrylic resin and styrene resin.
  • a precursor solution containing a polymer compound, an organic solvent, etc. When producing a laminated separator, prepare a precursor solution containing a polymer compound, an organic solvent, etc., and then apply the precursor solution to one or both sides of the porous membrane. In this case, if necessary, a plurality of insulating particles may be added to the precursor solution.
  • lithium ions can move between the positive electrode 21 and the negative electrode 22, so that the same effect can be obtained.
  • the positive electrode 21 and the negative electrode 22 are laminated with each other via the separator 23 and the electrolyte layer, and the positive electrode 21, the negative electrode 22, the separator 23 and the electrolyte layer are wound around the battery element 20.
  • This electrolyte layer is interposed between the positive electrode 21 and the separator 23, and is interposed between the negative electrode 22 and the separator 23.
  • the electrolyte layer contains a polymer compound together with the electrolytic solution, and the electrolytic solution is held by the polymer compound in the electrolyte layer. This is because the leakage of the electrolytic solution is prevented.
  • the structure of the electrolytic solution is as described above.
  • the polymer compound contains polyvinylidene fluoride and the like.
  • the use of the secondary battery is not particularly limited.
  • the secondary battery used as a power source may be a main power source for electronic devices and electric vehicles, or may be an auxiliary power source.
  • the main power source is a power source that is preferentially used regardless of the presence or absence of another power source.
  • the auxiliary power supply is a power supply used in place of the main power supply or a power supply that can be switched from the main power supply.
  • secondary batteries Specific examples of applications for secondary batteries are as follows.
  • Electronic devices including portable electronic devices
  • a storage device such as a backup power supply and a memory card.
  • Power tools such as electric drills and saws.
  • It is a battery pack installed in electronic devices.
  • Medical electronic devices such as pacemakers and hearing aids.
  • It is an electric vehicle such as an electric vehicle (including a hybrid vehicle).
  • It is a power storage system such as a household or industrial battery system that stores power in case of an emergency.
  • one secondary battery may be used, or a plurality of secondary batteries may be used.
  • the battery pack may use a single battery or an assembled battery.
  • the electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be a hybrid vehicle that also has a drive source other than the secondary battery as described above.
  • household electric products and the like can be used by using the power stored in a secondary battery which is a power storage source.
  • FIG. 3 shows the block configuration of the battery pack.
  • the battery pack described here is a battery pack (so-called soft pack) using one secondary battery, and is mounted on an electronic device represented by a smartphone.
  • this battery pack includes a power supply 51 and a circuit board 52.
  • the circuit board 52 is connected to the power supply 51 and includes a positive electrode terminal 53, a negative electrode terminal 54, and a temperature detection terminal 55.
  • the power supply 51 includes one secondary battery.
  • the positive electrode lead is connected to the positive electrode terminal 53
  • the negative electrode lead is connected to the negative electrode terminal 54. Since the power supply 51 can be connected to the outside via the positive electrode terminal 53 and the negative electrode terminal 54, it can be charged and discharged.
  • the circuit board 52 includes a control unit 56, a switch 57, a heat-sensitive resistance element (PTC) element 58, and a temperature detection unit 59. However, the PTC element 58 may be omitted.
  • the control unit 56 includes a central processing unit (CPU), a memory, and the like, and controls the operation of the entire battery pack.
  • the control unit 56 detects and controls the usage state of the power supply 51 as needed.
  • the control unit 56 turns off the switch 57 so that the charging current does not flow in the current path of the power supply 51.
  • the overcharge detection voltage and the overdischarge detection voltage are not particularly limited. As an example, the overcharge detection voltage is 4.2V ⁇ 0.05V, and the overdischarge detection voltage is 2.4V ⁇ 0.1V.
  • the switch 57 includes a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like, and switches whether or not the power supply 51 is connected to an external device according to an instruction from the control unit 56.
  • the switch 57 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, and the charge / discharge current is detected based on the ON resistance of the switch 57.
  • MOSFET field effect transistor
  • the temperature detection unit 59 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 51 using the temperature detection terminal 55, and outputs the measurement result of the temperature to the control unit 56.
  • the temperature measurement result measured by the temperature detection unit 59 is used when the control unit 56 performs charge / discharge control when abnormal heat generation occurs, or when the control unit 56 performs correction processing when calculating the remaining capacity.
  • Examples 1 to 10 and Comparative Examples 11 to 16 As will be described below, a positive electrode active material was produced, and a secondary battery for testing was produced using the positive electrode active material, and then the performance of the secondary battery was evaluated.
  • Examples 1 to 10 are referred to as "actual 1 to actual 10" and Comparative Examples 11 to 16 are referred to as "ratio" in order to simplify the notation contents. It is written as "11 to 16".
  • FIG. 4 shows the cross-sectional configuration of the secondary battery for testing.
  • This secondary battery is a coin-shaped secondary battery using two types of metal exterior members (exterior can 102 and exterior cup 104) that can be fitted to each other.
  • the test electrode 101 is housed inside the outer cup 104, and the counter electrode 103 is housed inside the outer can 102.
  • the test pole 101 and the counter electrode 103 are laminated to each other via the separator 105, and the outer can 102 and the outer cup 104 are crimped to each other via the gasket 106.
  • the electrolytic solution is impregnated in each of the test electrode 101, the counter electrode 103 and the separator 105.
  • a positive electrode active material (lithium composite oxide) was produced by the procedure described below.
  • a powdered lithium compound lithium carbonate (Li 2 CO 3 )
  • a powdered cobalt compound cobalt oxide (CoO 2 )
  • a powdered aluminum compound aluminum oxide (Al 2 O)
  • the average particle size (median diameter D50 ( ⁇ m)) of this aluminum compound is as shown in Table 1.
  • each of the lithium compound, the cobalt compound and the aluminum compound is referred to as "Li compound”, “Co compound” and "Al compound”.
  • a lithium compound, a cobalt compound, and an aluminum compound were mixed with each other to obtain a mixture.
  • the mixing ratio of the lithium compound, the cobalt compound and the aluminum compound was 1.02: 0.99: 0.01.
  • the mixing ratio of the aluminum compound was changed by changing the mixing ratio of the cobalt compound according to the mixing ratio of the aluminum compound.
  • the mixture was stirred using a high speed stirrer. The stirring time (hours) is as shown in Table 1.
  • a powdered magnesium compound magnesium oxide (MgO 2 )
  • two types of powdered additional compounds were prepared as other raw materials. ..
  • These two additional compounds include lithium fluoride (LiF) and magnesium fluoride (MgF 2 ) whose additional elements are fluorine, and lithium phosphate (Li 3 PO 4 ) and magnesium phosphate whose additional elements are phosphorus. (Mg 3 (PO 4 ) 2 ) and lithium sulfide (Li 2 S) and magnesium sulfide (Mg S) whose additional elements are sulfur were used.
  • the former additional compound is referred to as "first type additional compound”
  • the latter additional compound is referred to as "second type additional compound”.
  • magnesium compound In Table 1, the magnesium compound is referred to as "Mg compound”.
  • the positive electrode active material was produced by the same procedure except that no additional compound was used. As a result, a positive electrode active material containing no additional element as a constituent element was produced.
  • a secondary battery (lithium ion secondary battery) was manufactured using the above-mentioned positive electrode active material by the procedure described below.
  • the outer can 102 and the outer cup 104 were crimped to each other via the gasket 106 in a state where the test pole 101 and the counter electrode 103 were laminated with each other via the separator 105.
  • the test pole 101, the counter electrode 103, the separator 105, and the electrolytic solution were sealed by the outer can 102 and the outer cup 104, so that a coin-shaped secondary battery was assembled.
  • the aluminum content CA (ppm) and the magnesium content CM (ppm) were measured by analyzing the positive electrode active material using ICP emission spectroscopy. The results shown in Table 2 were obtained.
  • Table 2 shows the magnitude relationship between the contents CA and CM, and also shows the magnitude relationship between the sum PA and PM.
  • “large” indicates that the content CA is larger than the content CM
  • “small” indicates that the content CA is smaller than the content CM.
  • “large” indicates that the sum PM is larger than the sum PA
  • “small” indicates that the sum PM is smaller than the sum PA.
  • the elution amount values shown in Table 2 are standardized values with the elution amount value in Example 5 as 100.
  • the capacity retention rate was further increased and the elution amount was further decreased while the initial volume was secured.
  • the common advantage of using additional elements is that the capacity retention rate increases and the elution amount decreases while the initial capacity is secured, regardless of the type of the additional element (fluorine, phosphorus or sulfur). was gotten.
  • the positive electrode active material (layered rock salt type lithium composite oxide) contains lithium, cobalt, aluminum, magnesium, additional elements, and oxygen as constituent elements, and the ICP emission spectroscopy is performed.
  • the capacity retention rate increased and the elution amount decreased while the initial capacity was secured. .. Therefore, excellent initial capacity characteristics, cycle characteristics, and storage characteristics were obtained in the secondary battery.
  • the battery structure of the secondary battery is a laminated film and a coin type has been described, but the battery structure is not particularly limited.
  • This battery structure may be other battery structures such as cylindrical, square and button type.
  • the element structure of the battery element is not particularly limited.
  • This element structure may be another element structure such as a laminated type in which electrodes (positive electrode and negative electrode) are laminated and a zigzag type in which electrodes (positive electrode and negative electrode) are folded in a zigzag manner.
  • the electrode reactant is not particularly limited. Specifically, as described above, the electrode reactant may be another alkali metal such as sodium and potassium, or an alkaline earth metal such as beryllium, magnesium and calcium. In addition, the electrode reactant may be another light metal such as aluminum.
  • Each of the above-mentioned positive electrode active material and positive electrode is not limited to the secondary battery, and may be applied to other electrochemical devices such as capacitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池は、正極活物質を含む正極と、負極と、電解液とを備える。この正極活物質は、層状岩塩型のリチウム複合酸化物を含み、そのリチウム複合酸化物は、リチウムと、コバルトと、アルミニウムと、マグネシウムと、フッ素、リンおよび硫黄のうちの少なくとも1種を含む追加元素と、酸素とを構成元素として含む。誘導結合プラズマ発光分光分析法を用いて正極活物質を分析した際、アルミニウムの含有量はマグネシウムの含有量よりも大きいと共に、X線光電子分光法を用いて正極活物質の表面を分析した際、マグネシウムおよび酸素の化学結合状態の存在量とマグネシウムおよび追加元素の化学結合状態の存在量との和は、アルミニウムおよび酸素の化学結合状態の存在量とアルミニウムおよび追加元素の化学結合状態の存在量との和よりも大きい。

Description

二次電池用正極活物質、二次電池用正極および二次電池
 本技術は、二次電池用正極活物質、二次電池用正極および二次電池に関する。
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度を得ることが可能である電源として、二次電池の開発が進められている。この二次電池は、正極(二次電池用正極)および負極と共に電解液を備えており、その正極は、充放電反応に関与する正極活物質(二次電池用正極活物質)を含んでいる。
 二次電池の構成に関しては、様々な検討がなされている。具体的には、正極活物質からコバルトが溶出することを抑制するために、そのコバルトを含むリチウム遷移金属酸化物の表面にジルコニウムなどの元素と共にフッ素が付着されている(例えば、特許文献1参照。)。充放電時において容量が低下することを抑制するために、第1の領域(内部)にリチウム、遷移金属および酸素を有すると共に第2の領域(表層部および内部の一部)にマグネシウム、フッ素および酸素を有する正極活物質が用いられている(例えば、特許文献2参照。)。優れた充放電サイクル耐久性などを得るために、リチウム原料化合物と、コバルトなどのN元素原料化合物と、アルミニウムなどのM元素原料化合物と、リンなどのL元素原料化合物と、フッ素原料化合物との混合物を酸素含有雰囲気で焼成することにより、リチウム含有複合酸化物が製造されている(例えば、特許文献3参照。)。
特開2016-507343号公報 特開2018-190700号公報 特開2005-347211号公報
 二次電池の性能を改善するために様々な検討がなされているが、その二次電池の初回容量特性、サイクル特性および保存特性のそれぞれは未だ十分でないため、改善の余地がある。
 本技術はかかる問題点に鑑みてなされたもので、その目的は、優れた初回容量特性、サイクル特性および保存特性を得ることが可能である二次電池用正極活物質、二次電池用正極および二次電池を提供することにある。
 本技術の一実施形態の二次電池用正極活物質は、層状岩塩型のリチウム複合酸化物を含み、そのリチウム複合酸化物がリチウムとコバルトとアルミニウムとマグネシウムとフッ素、リンおよび硫黄のうちの少なくとも1種を含む追加元素と酸素とを構成元素として含むものである。誘導結合プラズマ発光分光分析法を用いて分析した際、アルミニウムの含有量がマグネシウムの含有量よりも大きいと共に、X線光電子分光法を用いて表面を分析した際、マグネシウムおよび酸素の化学結合状態の存在量とマグネシウムおよび追加元素の化学結合状態の存在量との和がアルミニウムおよび酸素の化学結合状態の存在量とアルミニウムおよび追加元素の化学結合状態の存在量との和よりも大きい。
 本技術の一実施形態の二次電池用正極は、正極活物質を含み、その正極活物質が上記した本技術の一実施形態の二次電池用正極活物質の構成と同様の構成を有するものである。
 本技術の一実施形態の二次電池は、正極と負極と電解液とを備え、その正極が上記した本技術の一実施形態の二次電池用正極の構成と同様の構成を有するものである。
 アルミニウムの含有量と、マグネシウムの含有量とは、上記したように、誘導結合プラズマ発光分光分析法を用いた正極活物質の分析により測定される。また、マグネシウムおよび酸素の化学結合状態の存在量と、マグネシウムおよび追加元素の化学結合状態の存在量と、アルミニウムおよび酸素の化学結合状態の存在量と、アルミニウムおよび追加元素の化学結合状態の存在量とは、上記したように、X線光電子分光法を用いた正極活物質の表面分析により測定される。なお、誘導結合プラズマ発光分光分析法およびX線光電子分光法のそれぞれを用いた分析手順の詳細に関しては、後述する。
 本技術の一実施形態の二次電池用正極活物質、二次電池用正極または二次電池によれば、正極活物質(層状岩塩型のリチウム複合酸化物)がリチウムとコバルトとアルミニウムとマグネシウムと追加元素と酸素とを構成元素として含んでいる。また、誘導結合プラズマ発光分光分析法を用いた正極活物質の分析結果に関して上記した条件が満たされていると共に、X線光電子分光法を用いた正極活物質の表面の分析結果に関して上記した条件が満たされている。よって、優れた初回容量特性、サイクル特性および保存特性を得ることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の一実施形態における二次電池の構成を表す斜視図である。 図1に示した電池素子の構成を表す断面図である。 二次電池の適用例の構成を表すブロック図である。 試験用の二次電池の構成を表す断面図である。
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池(二次電池用正極活物質および二次電池用正極)
  1-1.構成
  1-2.物性
  1-3.動作
  1-4.製造方法
  1-5.作用および効果
 2.変形例
 3.二次電池の用途
<1.二次電池(二次電池用正極活物質および二次電池用正極)>
 まず、本技術の一実施形態の二次電池に関して説明する。なお、本技術の一実施形態の二次電池用正極活物質(以下、単に「正極活物質」と呼称する。)および本技術の一実施形態の二次電池用正極(以下、単に「正極」と呼称する。)のそれぞれは、二次電池の一部(一構成要素)であるため、それらの正極活物質および正極に関しては、以下で併せて説明する。
 ここで説明する二次電池は、電極反応物質の吸蔵放出を利用して電池容量が得られる二次電池であり、正極および負極と共に、液状の電解質である電解液を備えている。この二次電池では、充電途中において負極の表面に電極反応物質が析出することを防止するために、その負極の充電容量は、正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。
 電極反応物質の種類は、特に限定されないが、具体的には、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属は、ベリリウム、マグネシウムおよびカルシウムなどである。
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵放出される。
<1-1.構成>
 図1は、二次電池の斜視構成を表していると共に、図2は、図1に示した電池素子20の断面構成を表している。ただし、図1では、外装フィルム10と電池素子20とが互いに分離された状態を示していると共に、図2では、電池素子20の一部だけを示している。
 この二次電池は、図1および図2に示したように、外装フィルム10と、電池素子20と、正極リード31および負極リード32と、封止フィルム41,42とを備えている。ここで説明する二次電池は、電池素子20を収納するための外装部材として、可撓性(または柔軟性)を有する外装部材(外装フィルム10)を用いたラミネートフィルム型の二次電池である。
[外装フィルム]
 外装フィルム10は、図1に示したように、電池素子20、すなわち後述する正極21、負極22および電解液などを収納する可撓性の外装部材であり、袋状の構造を有している。
 ここでは、外装フィルム10は、1枚のフィルム状の部材であり、折り畳み方向Rに折り畳み可能である。この外装フィルム10には、電池素子20を収容するための窪み部10U(いわゆる深絞り部)が設けられている。
 外装フィルム10の構成(材質および層数など)は、特に限定されない。このため、外装フィルム10は、単層フィルムでもよいし、多層フィルムでもよい。
 ここでは、外装フィルム10は、融着層、金属層および表面保護層が内側からこの順に積層された3層のラミネートフィルムである。融着層は、ポリプロピレンなどの高分子化合物を含んでいる。金属層は、アルミニウムなどの金属材料を含んでいる。表面保護層は、ナイロンなどの高分子化合物を含んでいる。外装フィルム10が折り畳まれた状態では、互いに対向する外装フィルム10(融着層)のうちの外周縁部同士が互いに融着されている。
[封止フィルム]
 封止フィルム41,42のそれぞれは、図1に示したように、外装フィルム10の内部に外気などが侵入することを防止するための封止部材である。封止フィルム41は、外装フィルム10と正極リード31との間に挿入されていると共に、封止フィルム42は、外装フィルム10と負極リード32との間に挿入されている。ただし、封止フィルム41,42のうちの一方または双方は、省略されてもよい。
 具体的には、封止フィルム41は、正極リード31に対して密着性を有するポリオレフィンなどの高分子化合物を含んでおり、そのポリオレフィンは、ポリプロピレンなどである。
 封止フィルム42の構成は、負極リード32に対して密着性を有することを除いて、封止フィルム41の構成と同様である。すなわち、封止フィルム42は、負極リード32に対して密着性を有するポリオレフィンなどの高分子化合物を含んでいる。
[電池素子]
 電池素子20は、図1および図2に示したように、外装フィルム10の内部に収納された発電素子であり、正極21と、負極22と、セパレータ23と、電解液(図示せず)とを含んでいる。
 ここでは、電池素子20は、いわゆる巻回電極体である。すなわち、電池素子20では、正極21および負極22がセパレータ23を介して互いに積層されていると共に、その正極21、負極22およびセパレータ23が巻回軸(Y軸方向に延在する仮想軸)を中心として巻回されている。このため、正極21および負極22は、セパレータ23を介して互いに対向しながら巻回されている。
 この電池素子20は、扁平な立体的形状を有しているため、上記した巻回軸と交差する電池素子20の断面(XZ面に沿った断面)の形状は、長軸および短軸により規定される扁平形状である。この長軸は、X軸方向に延在すると共に短軸よりも大きい長さを有する仮想軸であると共に、短軸は、X軸方向と交差するZ軸方向に延在すると共に長軸よりも小さい長さを有する仮想軸である。ここでは、電池素子20の断面の形状は、扁平な略楕円形である。
(正極)
 正極21は、本技術の一実施形態の二次電池用正極であり、図2に示したように、正極集電体21Aおよび正極活物質層21Bを含んでいる。この正極21は、後述するように、充放電反応に関与する正極活物質を含んでいる。
 正極集電体21Aは、正極活物質層21Bが配置される一対の面を有している。この正極集電体21Aは、金属材料などの導電性材料を含んでおり、その金属材料は、アルミニウムなどである。
 正極活物質層21Bは、本技術の一実施形態の二次電池用正極活物質である正極活物質を含んでおり、その正極活物質は、リチウムを吸蔵放出可能である。ここでは、正極活物質層21Bは、正極集電体21Aの両面に配置されている。ただし、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などを含んでいてもよい。また、正極活物質層21Bは、正極集電体21Aの片面だけに配置されていてもよい。正極活物質層21Bの形成方法は、特に限定されないが、具体的には、塗布法などである。
 この正極活物質は、層状岩塩型のリチウム複合酸化物のうちのいずれか1種類または2種類以上を含んでいる。すなわち、リチウム複合酸化物は、層状岩塩型の結晶構造を有している。具体的には、リチウム複合酸化物は、リチウムと、コバルトと、アルミニウムと、マグネシウムと、追加元素と、酸素とを構成元素として含んでおり、その追加元素は、フッ素、リンおよび硫黄のうちのいずれか1種類または2種類以上を含んでいる。高いエネルギー密度が得られるからである。
 リチウム複合酸化物の組成は、上記したように、層状岩塩型の結晶構造を有していると共にリチウムなどの一連の構成元素を含んでいれば、特に限定されない。中でも、コバルトのモル比は、アルミニウム、マグネシウムおよび追加元素のそれぞれのモル比よりも大きいことが好ましい。すなわち、リチウム複合酸化物は、リチウムおよび酸素以外の構成元素(コバルト、アルミニウム、マグネシウムおよび追加元素)のうち、コバルトを主成分(主要な構成元素)として含んでいることが好ましい。より高いエネルギー密度が得られるからである。
 具体的には、リチウム複合酸化物は、下記の式(1)で表される化合物を含んでいることが好ましい。式(1)中のXは、上記した追加元素である。
 LiCoAlMg ・・・(1)
(Xは、F、PおよびSのうちのいずれか1種類または2種類以上である。a、b、c、d、eおよびfは、0.90≦a≦1.10、0.80≦b≦0.98、0.001≦c≦0.3、0.001≦d≦0.3、0≦e≦0.3および1.8≦f≦2.1を満たしている。)
 ここで、正極活物質(リチウム複合酸化物)の物性に関しては、二次電池の性能を改善するために所定の条件(物性条件)が満たされている。この物性条件の詳細に関しては、後述する。
 なお、正極活物質は、上記したリチウム複合酸化物に加えて、さらに、リチウム化合物のうちのいずれか1種類または2種類以上を含んでいてもよい。ただし、既に説明したリチウム複合酸化物は、ここで説明するリチウム化合物から除かれる。
 このリチウム化合物は、リチウムを構成元素として含む化合物の総称であり、より具体的には、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物である。ただし、リチウム化合物は、さらに、他元素(リチウムおよび遷移金属元素以外の元素)のうちのいずれか1種類または2種類以上を含んでいてもよい。リチウム化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。酸化物の具体例は、LiNiO、LiCoOおよびLiMnなどであると共に、リン酸化合物の具体例は、LiFePOおよびLiMnPOなどである。
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、スチレンブタジエン系ゴムなどであると共に、高分子化合物は、ポリフッ化ビニリデンなどである。正極導電剤は、炭素材料などの導電性材料を含んでおり、その炭素材料は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料および高分子化合物などでもよい。
(負極)
 負極22は、図2に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。
 負極集電体22Aは、負極活物質層22Bが配置される一対の面を有している。この負極集電体22Aは、金属材料などの導電性材料を含んでおり、その金属材料は、銅などである。
 負極活物質層22Bは、リチウムを吸蔵放出可能である負極活物質のうちのいずれか1種類または2種類以上を含んでおり、ここでは、負極集電体22Aの両面に配置されている。ただし、負極活物質層22Bは、さらに、負極結着剤および負極導電剤などを含んでいてもよいと共に、負極集電体22Aの片面だけに配置されていてもよい。負極結着剤および負極導電剤のそれぞれに関する詳細は、正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。負極活物質層22Bの形成方法は、特に限定されないが、具体的には、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。
 負極活物質は、炭素材料および金属系材料などである。高いエネルギー密度が得られるからである。炭素材料は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛(天然黒鉛および人造黒鉛)などである。金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称であり、その金属元素および半金属元素は、ケイ素およびスズなどである。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよい、それらの2種類以上の相を含む材料でもよい。金属系材料の具体例は、TiSiおよびSiO(0<x≦2、または0.2<x<1.4)などである。
(セパレータ)
 セパレータ23は、図2に示したように、正極21と負極22との間に介在する絶縁性の多孔質膜であり、その正極21と負極22との接触(短絡)を防止しながらリチウムイオンを通過させる。このセパレータ23は、ポリエチレンなどの高分子化合物を含んでいる。
(電解液)
 電解液は、正極21、負極22およびセパレータ23のそれぞれに含浸されており、溶媒および電解質塩を含んでいる。
 溶媒は、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などの非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。電解質塩は、リチウム塩などの軽金属塩のうちのいずれか1種類または2種類以上を含んでいる。
[正極リードおよび負極リード]
 正極リード31は、図1に示したように、電池素子20(正極21)に接続された正極端子であり、外装フィルム10の内部から外部に導出されている。この正極リード31は、アルミニウムなどの導電性材料を含んでおり、その正極リード31の形状は、薄板状および網目状などのうちのいずれかである。
 負極リード32は、図1に示したように、電池素子20(負極22)に接続された負極端子であり、ここでは、正極リード31の導出方向と同様の方向に向かって外装フィルム10の内部から外部に導出されている。この負極リード32は、銅などの導電性材料を含んでおり、その負極リード32の形状に関する詳細は、正極リード31の形状に関する詳細と同様である。
<1-2.物性>
 この二次電池では、性能(初回容量特性、サイクル特性および保存特性)を改善するために、上記したように、正極活物質(リチウム複合酸化物)の物性に関して所定の物性条件が満たされている。
[物性条件]
 具体的には、2種類の分析方法を用いた正極活物質(リチウム複合酸化物)の分析結果(物性)に関して、以下で説明する2種類の条件(物性条件1,2)が同時に満たされている。充電時などにおいて正極活物質(リチウム複合酸化物)の結晶構造が安定化しながら、その正極活物質の反応性に起因した電解液の分解反応が抑制されるため、初回容量特性、サイクル特性および保存特性のそれぞれが向上するからである。なお、物性条件1,2が同時に満たされている理由の詳細に関しては、後述する。
(物性条件1)
 誘導結合プラズマ(Inductively Coupled Plasma(ICP))発光分光分析法を用いて正極活物質を分析した際、アルミニウムの含有量CA(ppm)は、マグネシウムの含有量CM(ppm)よりも大きい。
 すなわち、ICP発光分光分析法を用いて正極活物質の全体を分析することにより、その正極活物質中に含有されているアルミニウムの含有量CAと、その正極活物質中に含有されているマグネシウムの含有量CMとを測定すると、その含有量CAは含有量CMよりも大きくなっている。
 これにより、正極活物質の全体において、アルミニウムの含有量CAとマグネシウムの含有量CMとを互いに比較すると、その含有量CAは含有量CMよりも大きくなっている。
 ここで、ICP発光分光分析法を用いて含有量CA,CMのそれぞれを測定する手順は、以下で説明する通りである。
 最初に、塩酸(濃度=1mol/kg)15ml(=15cm)中に正極活物質0.1gを投入したのち、その塩酸を煮沸させる。これにより、塩酸中において正極活物質が溶解されるため、その正極活物質の溶解物が得られる。続いて、正極活物質の溶解物を蒸発乾固させることにより、分析用の試料を得る。続いて、塩酸(濃度=0.1mol/kg)を用いて試料を100ml(=100cm)に希釈することにより、試料溶液とする。
 続いて、ICP発光分光分析装置を用いて試料溶液を分析することにより、その試料溶液中に含有されているアルミニウムの濃度およびマグネシウムの濃度のそれぞれを測定する。このICP発光分光分析装置としては、株式会社日立ハイテクサイエンス製のICP発光分光分析装置(シーケンシャル型) SPS3100などを使用可能である。
 最後に、含有量CA(ppm)=アルミニウムの重量/正極活物質の重量という計算式に基づいて、リチウム複合酸化物中に含有されているアルミニウムの含有量CAを算出する。また、含有量CM(ppm)=マグネシウムの重量/正極活物質の重量という計算式に基づいて、リチウム複合酸化物中に含有されているマグネシウムの含有量CMを算出する。
(物性条件2)
 式(1)に示したように、追加元素をXとする。これにより、X線光電子分光法(X-ray Photoelectron Spectroscopy(XPS))を用いて正極活物質の表面を分析した際、マグネシウムおよび酸素の化学結合状態(Mg-O)の存在量PMOとマグネシウムおよび追加元素の化学結合状態(Mg-X)の存在量PMXとの和PMは、アルミニウムおよび酸素の化学結合状態(Al-O)の存在量PAOとアルミニウムおよび追加元素の化学結合状態(Al-X)の存在量PAXとの和PAよりも大きい。
 すなわち、XPSを用いて正極活物質の一部(表面)を分析することにより、存在量PMO,PMX,PAO,PAXのそれぞれを測定すると共に、その存在量PMO,PMXの和PMと存在量PAO,PAXの和PAとを算出すると、その和PMは和PAよりも大きくなっている。
 これにより、正極活物質の全体では、上記したように、アルミニウムの存在量(含有量CA)がマグネシウムの存在量(含有量CM)よりも大きくなっているが、その正極活物質の一部(表面)では、上記したように、和PMが和PAよりも大きくなっているため、マグネシウムの存在量がアルミニウムの存在量よりも大きくなっている。すなわち、正極活物質では、マグネシウムが表面近傍に偏在している。
 ここで、XPSを用いて存在量PMO,PMX,PAO,PAXのそれぞれを測定する手順は、以下で説明する通りである。
 XPS分析装置を用いて正極活物質の表面を分析(元素分析)することにより、リチウム複合酸化物中に含有されている全元素に関する分析結果(X線光電子分光スペクトル)を得る。この場合には、XPS分析装置として、アルバック・ファイ株式会社製の走査型XPS装置 Quantera SXMなどを使用可能である。また、分析条件は、X線源=単色化Al-Kα(1486.6eV)、X線スポット径=100μmとする。このX線光電子分光スペクトルでは、横軸に結合エネルギー(eV)が示されていると共に、縦軸にスペクトル強度(X線光電子の数)が示されている。
 こののち、アルバック・ファイ株式会社製の相対感度因子を用いて、X線光電子分光スペクトル(各元素に関する光電子の数のピーク面積)に基づいて各元素の表面原子濃度を計算することにより、存在量PMO,PMX,PAO,PAXのそれぞれを算出する。この場合には、アルバック・ファイ株式会社製の解析ソフト(multi pak)を用いてフィッティング(いわゆるピークフィッティング)処理を行う。
 具体的には、マグネシウムの表面原子濃度(存在量PMO,PMX)を計算するためには、Mg kLLのX線光電子分光スペクトル(結合エネルギー=315eV~298eV)に基づいて、下記の4種類のピーク位置(結合エネルギー)における4本のピーク(ピーク1~4)を用いてフィッティングする。よって、ピーク1,3に基づいてピーク面積比を計算することにより、マグネシウムおよび酸素の化学結合状態の存在量PMOを算出すると共に、ピーク2,4に基づいてピーク面積比を算出することにより、マグネシウムおよび追加元素の化学結合状態の存在量PMXを算出する。

 ピーク1:結合エネルギー=303eV~306eV
 ピーク2:結合エネルギー=ピーク1のピーク位置+2.48eV
 ピーク3:結合エネルギー=ピーク2のピーク位置+5.38eV
 ピーク4:結合エネルギー=ピーク3のピーク位置+7.03eV
 また、アルミニウムの表面原子濃度(存在量PAO,PAX)を計算するためには、Al 2sのX線光電子分光スペクトル(結合エネルギー=120eV~115eV)のピークに基づいてフィッティングすると共に、ピーク面積を定量化する。これにより、アルミニウムおよび酸素の化学結合状態の存在量PAOを算出すると共に、アルミニウムおよび追加元素の化学結合状態の存在量PAXを算出する。
(他の条件)
 上記した物性条件1が満たされていれば、含有量CAは、特に限定されない。中でも、含有量CAは、4500ppm以上であることが好ましく、7800ppm以下(すなわち4500ppm~7800ppm)であることがより好ましい。正極活物質(リチウム複合酸化物)の結晶構造がより安定化すると共に、その正極活物質の反応性に起因した電解液の分解反応がより抑制されるからである。
 また、上記した物性条件2が満たされていれば、和PM,PAのそれぞれは、特に限定されない。中でも、和PMは2.9以上であると共に、和PAは0.4以下であることが好ましい。正極活物質(リチウム複合酸化物)の結晶構造がより安定化すると共に、その正極活物質の反応性に起因した電解液の分解反応がより抑制されるからである。
<1-3.動作>
 二次電池の充電時には、電池素子20において、正極21からリチウムが放出されると共に、そのリチウムが電解液を介して負極22に吸蔵される。また、二次電池の放電時には、電池素子20において、負極22からリチウムが放出されると共に、そのリチウムが電解液を介して正極21に吸蔵される。これらの充放電時には、リチウムがイオン状態で吸蔵および放出される。
<1-4.製造方法>
 正極活物質(リチウム複合酸化物)を製造すると共に、その正極活物質を用いて二次電池を作製する。
[正極活物質の製造]
 まず、以下で説明する手順により、正極活物質(リチウム複合酸化物)を製造する。
 最初に、原材料として、リチウムの供給源(リチウム化合物)と、コバルトの供給原(コバルト化合物)と、アルミニウムの供給源(アルミニウム化合物)とを準備する。
 リチウム化合物は、リチウムを構成元素として含む化合物のうちのいずれか1種類または2種類以上であり、具体的には、酸化物、炭酸塩、硫酸塩および水酸化物などである。コバルト化合物に関する詳細は、リチウムの代わりにコバルトを構成元素として含んでいることを除いて、上記したリチウム化合物に関する詳細と同様である。アルミニウム化合物に関する詳細は、リチウムの代わりにアルミニウムを構成元素として含んでいることを除いて、上記したリチウム化合物に関する詳細と同様である。
 ここでは、リチウム化合物、コバルト化合物およびアルミニウム化合物のそれぞれは、粉末状である。この場合において、リチウム化合物、コバルト化合物およびアルミニウム化合物のそれぞれの平均粒径(メジアン径D50(μm))は、特に限定されないため、任意に設定可能である。
 続いて、リチウム化合物と、コバルト化合物と、アルミニウム化合物とを互いに混合させることにより、混合物を得る。リチウム化合物とコバルト化合物とアルミニウム化合物との混合比(リチウムとコバルトとアルミニウムとのモル比)は、最終的に製造される正極活物質(リチウム複合酸化物)の組成に応じて任意に設定可能である。この場合には、高速攪拌機などの撹拌装置を用いて混合物を撹拌してもよい。撹拌速度および撹拌時間などの条件は、任意に設定可能である。
 続いて、混合物を焼成したのち、その混合物を除冷する。これにより、リチウム化合物とコバルト化合物とアルミニウム化合物とが互いに反応するため、リチウムとコバルトとアルミニウムとを構成元素として含む複合酸化物が得られる。焼成温度および焼成時間などの条件は、任意に設定可能である。
 続いて、上記したアルミニウム化合物と共に、さらに、他の原材料として、マグネシウムの供給源(マグネシウム化合物)と、追加元素の供給源(追加化合物)とを準備する。マグネシウム化合物に関する詳細は、リチウムの代わりにマグネシウムを構成元素として含んでいることを除いて、上記したリチウム化合物に関する詳細と同様である。追加化合物に関する詳細は、リチウムの代わりに追加元素を構成元素として含んでいることを除いて、上記したリチウム化合物に関する詳細と同様である。
 ここでは、マグネシウム化合物および追加化合物のそれぞれは、粉末状である。この場合において、マグネシウム化合物および追加化合物のそれぞれの平均粒径(メジアン径D50(μm))は、特に限定されないため、任意に設定可能である。
 続いて、複合酸化物と、アルミニウム化合物と、マグネシウム化合物と、追加化合物とを互いに混合させることにより、前駆体とする。複合酸化物とアルミニウム化合物とマグネシウム化合物と追加化合物との混合比(リチウムとコバルトとアルミニウムとマグネシウムと追加元素とのモル比)は、最終的に製造される正極活物質(リチウム複合酸化物)の組成に応じて任意に設定可能である。この場合には、上記した混合物を撹拌した場合と同様に、前駆体を撹拌してもよい。
 最後に、酸素気流下において前駆体を焼成する。これにより、前駆体とアルミニウム化合物とマグネシウム化合物と追加化合物とが互いに反応するため、リチウムとコバルトとアルミニウムとマグネシウムと追加元素とを構成元素として含むリチウム複合酸化物が合成される。よって、正極活物質(リチウム複合酸化物)が得られる。焼成温度および焼成時間などの条件は、任意に設定可能である。
[二次電池の製造]
 次に、以下で説明する手順により、上記した正極活物質(リチウム複合酸化物)を用いて二次電池を製造する。
(正極の作製)
 正極活物質、正極結着剤および正極導電剤などを互いに混合させることにより、正極合剤としたのち、有機溶剤などに正極合剤を投入することにより、ペースト状の正極合剤スラリーを調製する。こののち、正極集電体21Aの両面に正極合剤スラリーを塗布することにより、正極活物質層21Bを形成する。なお、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。これにより、正極21が作製される。
(負極の作製)
 上記した正極21の作製手順と同様の手順により、負極22を作製する。具体的には、負極活物質、負極結着剤および負極導電剤などを互いに混合させることにより、負極合剤としたのち、有機溶剤などに負極合剤を投入することにより、ペースト状の負極合剤スラリーを調製する。こののち、負極集電体22Aの両面に負極合剤スラリーを塗布することにより、負極活物質層22Bを形成する。もちろん、負極活物質層22Bを圧縮成型してもよい。これにより、負極22が作製される。
(電解液の調製)
 溶媒に電解質塩を投入する。これにより、溶媒中において電解質塩が分散または溶解されるため、電解液が調製される。
(二次電池の組み立て)
 最初に、溶接法などを用いて正極21(正極集電体21A)に正極リード31を接続させると共に、溶接法などを用いて負極22(負極集電体22A)に負極リード32を接続させる。
 続いて、セパレータ23を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回体を作製する。この巻回体は、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されていないことを除いて、電池素子20の構成と同様の構成を有している。続いて、プレス機などを用いて巻回体を押圧することにより、扁平形状となるように巻回体を成型する。
 続いて、窪み部10Uの内部に巻回体を収容したのち、外装フィルム10を折り畳むことにより、その巻回体を介して外装フィルム10同士を互いに対向させる。続いて、熱融着法などを用いて互いに対向する外装フィルム10(融着層)のうちの2辺の外周縁部同士を互いに融着させることにより、袋状の外装フィルム10の内部に巻回体を収納する。
 最後に、袋状の外装フィルム10の内部に電解液を注入したのち、熱融着法などを用いて外装フィルム10(融着層)のうちの残りの1辺の外周縁部同士を互いに融着させる。この場合には、外装フィルム10と正極リード31との間に封止フィルム41を挿入すると共に、外装フィルム10と負極リード32との間に封止フィルム42を挿入する。これにより、巻回体に電解液が含浸されるため、巻回電極体である電池素子20が作製されると共に、袋状の外装フィルム10の内部に電池素子20が封入されるため、二次電池が組み立てられる。
(二次電池の安定化)
 組み立て後の二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの条件は、任意に設定可能である。これにより、負極22などの表面に被膜が形成されるため、二次電池の状態が電気化学的に安定化する。
 よって、外装フィルム10を用いた二次電池、すなわちラミネートフィルム型の二次電池が完成する。
<1-5.作用および効果>
 この二次電池によれば、正極21の正極活物質(層状岩塩型のリチウム複合酸化物)がリチウムとコバルトとアルミニウムとマグネシウムと追加元素と酸素とを構成元素として含んでいる。また、ICP発光分光分析法を用いた正極活物質の分析結果(含有量CA,CM)に関して物性条件1が満たされていると共に、XPSを用いた正極活物質の表面の分析結果(和PA,PM)に関して物性条件2が満たされている。
 この場合には、第1に、リチウム複合酸化物がアルミニウムを構成元素として含んでおり、そのアルミニウム(Al3+)がリチウム複合酸化物の結晶構造中においてコバルトのサイトに配置される。これにより、正極活物質の結晶構造が安定化する。
 第2に、リチウム複合酸化物がマグネシウムを構成元素として含んでおり、マグネシウムイオン(Mg2+)がリチウムイオンのイオン半径に近いイオン半径を有している。これにより、リチウム複合酸化物からリチウムが放出された際に、そのリチウム複合酸化物の結晶構造中においてマグネシウムがリチウムのサイトに配置されるため、充電時において正極活物質の結晶構造が安定化する。
 第3に、リチウム複合酸化物が追加元素を構成元素として含んでおり、その追加元素が電解液に対するリチウム複合酸化物の反応性を低減させる。これにより、正極活物質の表面において、その正極活物質と電解液との反応が抑制される。
 第4に、ICP発光分光分析法を用いた正極活物質の分析結果に関して物性条件1が満たされているため、リチウム複合酸化物が全体として十分な量のアルミニウムを構成元素として含んでいる。これにより、上記したように、リチウム複合酸化物の結晶構造中においてアルミニウムがコバルトのサイトに配置されやすくなるため、正極活物質の結晶構造がより安定化する。
 第5に、XPSを用いた正極活物質の表面の分析結果に関して物性条件2が満たされているため、リチウム複合酸化物の表面近傍にマグネシウムが偏在している。この場合には、マグネシウムイオン(Mg2+)がリチウムイオンのイオン半径に近いイオン半径を有しているため、リチウム複合酸化物の結晶構造中においてマグネシウムがリチウムのサイトに配置されやすくなる。これにより、正極活物質の製造時(前駆体の焼成時)においてリチウムが表面近傍において欠損しても、その表面近傍ではマグネシウムがアルミニウムよりも優先的に存在しやすくなる。しかも、正極活物質の製造時(前駆体の焼成時)においてマグネシウムが追加元素と一緒に焼成されるため、リチウム複合酸化物の表面近傍にマグネシウムが偏在しやすくなると共に、そのリチウム複合酸化物の表面近傍に偏在したマグネシウムが追加元素と反応しやすくなるため、そのリチウム複合酸化物の表面近傍においてマグネシウムおよび追加元素の化学結合(Mg-X)が存在しやすくなる。
 よって、充電時などにおいて正極活物質(リチウム複合酸化物)の結晶構造が安定化しながら、その正極活物質の反応性に起因した電解液の分解反応が抑制されるため、優れた初回容量特性、サイクル特性および保存特性を得ることができる。
 特に、リチウム複合酸化物においてコバルトのモル比がアルミニウム、マグネシウムおよび追加元素のそれぞれのモル比よりも大きくなっていれば、エネルギー密度が向上するため、より高い効果を得ることができる。
 また、アルミニウムの含有量CAが4500ppm以上であり、好ましくは7800ppm以下であれば、正極活物質(リチウム複合酸化物)の結晶構造がより安定化すると共に、その正極活物質の反応性に起因した電解液の分解反応がより抑制されるため、より高い効果を得ることができる。
 また、和PMが2.9以上であると共に和PAが0.4以下であれば、正極活物質(リチウム複合酸化物)の結晶構造がより安定化すると共に、その正極活物質の反応性に起因した電解液の分解反応がより抑制されるため、より高い効果を得ることができる。
 また、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵放出を利用して十分な電池容量が安定に得られるため、より高い効果を得ることができる。
 この他、正極活物質によれば、上記した組成を有する層状岩塩型のリチウム複合酸化物を含んでいると共に、ICP発光分光分析法およびXPSを用いた分析結果に関して物性条件1,2が満たされている。よって、上記した二次電池に関する理由と同様の理由により、その正極活物質を用いた二次電池において優れた初回容量特性、サイクル特性および保存特性を得ることができる。
 また、正極21によれば、正極活物質が上記した組成を有する層状岩塩型のリチウム複合酸化物を含んでいると共に、ICP発光分光分析法およびXPSを用いた正極活物質の分析結果に関して物性条件1,2が満たされている。よって、上記した二次電池に関する理由と同様の理由により、その正極21を用いた二次電池において優れた初回容量特性、サイクル特性および保存特性を得ることができる。
<2.変形例>
 次に、上記した二次電池の変形例に関して説明する。二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例のうちの任意の2種類以上は、互いに組み合わされてもよい。
[変形例1]
 多孔質膜であるセパレータ23を用いた。しかしながら、ここでは具体的に図示しないが、多孔質膜であるセパレータ23の代わりに、高分子化合物層を含む積層型のセパレータを用いてもよい。
 具体的には、積層型のセパレータは、一対の面を有する多孔質膜と、その多孔質膜の片面または両面に配置された高分子化合物層とを含んでいる。正極21および負極22のそれぞれに対するセパレータの密着性が向上するため、電池素子20の位置ずれ(正極21、負極22およびセパレータのそれぞれの巻きずれ)が発生しにくくなるからである。これにより、電解液の分解反応などが発生しても、二次電池が膨れにくくなる。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。ポリフッ化ビニリデンなどは、物理的強度に優れていると共に、電気化学的に安定だからである。
 なお、多孔質膜および高分子化合物層のうちの一方または双方は、複数の絶縁性粒子を含んでいてもよい。二次電池の発熱時において複数の絶縁性粒子が放熱するため、その二次電池の安全性(耐熱性)が向上するからである。絶縁性粒子は、無機粒子および樹脂粒子などのうちのいずれか1種類または2種類以上を含んでいる。無機粒子の具体例は、酸化アルミニウム、窒化アルミニウム、ベーマイト、酸化ケイ素、酸化チタン、酸化マグネシウムおよび酸化ジルコニウムなどの粒子である。樹脂粒子の具体例は、アクリル樹脂およびスチレン樹脂などの粒子である。
 積層型のセパレータを作製する場合には、高分子化合物および有機溶剤などを含む前駆溶液を調製したのち、多孔質膜の片面または両面に前駆溶液を塗布する。この場合には、必要に応じて、前駆溶液に複数の絶縁性粒子を添加してもよい。
 この積層型のセパレータを用いた場合においても、正極21と負極22との間においてリチウムイオンが移動可能になるため、同様の効果を得ることができる。
[変形例2]
 液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、電解液の代わりに、ゲル状の電解質である電解質層を用いてもよい。
 電解質層を用いた電池素子20では、セパレータ23および電解質層を介して正極21および負極22が互いに積層されていると共に、その正極21、負極22、セパレータ23および電解質層が巻回されている。この電解質層は、正極21とセパレータ23との間に介在していると共に、負極22とセパレータ23との間に介在している。
 具体的には、電解質層は、電解液と共に高分子化合物を含んでおり、その電解質層中では、電解液が高分子化合物により保持されている。電解液の漏液が防止されるからである。電解液の構成は、上記した通りである。高分子化合物は、ポリフッ化ビニリデンなどを含んでいる。電解質層を形成する場合には、電解液、高分子化合物および有機溶剤などを含む前駆溶液を調製したのち、正極21および負極22のそれぞれの片面または両面に前駆溶液を塗布する。
 この電解質層を用いた場合においても、正極21と負極22との間において電解質層を介してリチウムイオンが移動可能になるため、同様の効果を得ることができる。
<3.二次電池の用途>
 次に、上記した二次電池の用途(適用例)に関して説明する。
 二次電池の用途は、特に限定されない。電源として用いられる二次電池は、電子機器および電動車両などの主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源、または主電源から切り替えられる電源である。
 二次電池の用途の具体例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、ヘッドホンステレオ、携帯用ラジオおよび携帯用情報端末などの電子機器(携帯用電子機器を含む。)である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。電子機器などに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用または産業用のバッテリシステムなどの電力貯蔵システムである。これらの用途では、1個の二次電池が用いられてもよいし、複数個の二次電池が用いられてもよい。
 電池パックは、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えたハイブリッド自動車でもよい。家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に蓄積された電力を利用して家庭用の電気製品などを使用可能である。
 ここで、二次電池の適用例の一例に関して具体的に説明する。以下で説明する適用例の構成は、あくまで一例であるため、適宜、変更可能である。
 図3は、電池パックのブロック構成を表している。ここで説明する電池パックは、1個の二次電池を用いた電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。
 この電池パックは、図3に示したように、電源51と、回路基板52とを備えている。この回路基板52は、電源51に接続されていると共に、正極端子53、負極端子54および温度検出端子55を含んでいる。
 電源51は、1個の二次電池を含んでいる。この二次電池では、正極リードが正極端子53に接続されていると共に、負極リードが負極端子54に接続されている。この電源51は、正極端子53および負極端子54を介して外部と接続可能であるため、充放電可能である。回路基板52は、制御部56と、スイッチ57と、熱感抵抗素子(PTC)素子58と、温度検出部59とを含んでいる。ただし、PTC素子58は省略されてもよい。
 制御部56は、中央演算処理装置(CPU)およびメモリなどを含んでおり、電池パック全体の動作を制御する。この制御部56は、必要に応じて電源51の使用状態の検出および制御を行う。
 なお、制御部56は、電源51(二次電池)の電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ57を切断することにより、電源51の電流経路に充電電流が流れないようにする。過充電検出電圧および過放電検出電圧は、特に限定されない。一例を挙げると、過充電検出電圧は、4.2V±0.05Vであると共に、過放電検出電圧は、2.4V±0.1Vである。
 スイッチ57は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでおり、制御部56の指示に応じて電源51と外部機器との接続の有無を切り換える。このスイッチ57は、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などを含んでおり、充放電電流は、スイッチ57のON抵抗に基づいて検出される。
 温度検出部59は、サーミスタなどの温度検出素子を含んでおり、温度検出端子55を用いて電源51の温度を測定すると共に、その温度の測定結果を制御部56に出力する。温度検出部59により測定される温度の測定結果は、異常発熱時において制御部56が充放電制御を行う場合および残容量の算出時において制御部56が補正処理を行う場合などに用いられる。
 本技術の実施例に関して説明する。
(実施例1~10および比較例11~16)
 以下で説明するように、正極活物質を製造すると共に、その正極活物質を用いて試験用の二次電池を製造したのち、その二次電池の性能を評価した。なお、後述する表1および表2のそれぞれでは、表記内容を簡略化するために、実施例1~10を「実1~実10」と表記していると共に、比較例11~16を「比11~比16」と表記している。
 図4は、試験用の二次電池の断面構成を表している。この二次電池は、互いに嵌合可能である2種類の金属製の外装部材(外装缶102および外装カップ104)を用いたコイン型の二次電池である。
 コイン型の二次電池では、図4に示したように、外装カップ104の内部に試験極101が収容されていると共に、外装缶102の内部に対極103が収容されている。試験極101および対極103は、セパレータ105を介して互いに積層されていると共に、外装缶102および外装カップ104は、ガスケット106を介して互いにかしめられている。電解液は、試験極101、対極103およびセパレータ105のそれぞれに含浸されている。
[正極活物質の製造]
 以下で説明する手順により、正極活物質(リチウム複合酸化物)を製造した。
 最初に、原材料として、粉末状のリチウム化合物(炭酸リチウム(LiCO))と、粉末状のコバルト化合物(酸化コバルト(CoO))と、粉末状のアルミニウム化合物(酸化アルミニウム(Al))とを準備した。このアルミニウム化合物の平均粒径(メジアン径D50(μm))は、表1に示した通りである。
 なお、表1では、リチウム化合物、コバルト化合物およびアルミニウム化合物のそれぞれを「Li化合物」、「Co化合物」および「Al化合物」と表記している。
 続いて、リチウム化合物と、コバルト化合物と、アルミニウム化合物とを互いに混合させることにより、混合物を得た。この場合には、リチウム化合物とコバルト化合物とアルミニウム化合物との混合比(リチウムとコバルトとアルミニウムとのモル比)を1.02:0.99:0.01とした。また、アルミニウム化合物の混合比に応じてコバルト化合物の混合比を変化させることにより、表1に示したように、そのアルミニウム化合物の混合比を変化させた。続いて、高速攪拌機を用いて混合物を撹拌した。撹拌時間(時間)は、表1に示した通りである。
 続いて、空気中において混合物を焼成(焼成温度=1050℃,焼成時間=8時間)したのち、その混合物を除冷した。これにより、リチウムとコバルトとアルミニウムとを構成元素として含む粉末状の複合酸化物(アルミニウムを含有するコバルト酸リチウム,平均粒径(メジアン径D50)=20μm,比表面積=0.3m/g)が得られた。
 続いて、上記した粉末状のアルミニウム化合物(酸化アルミニウム)と共に、さらに、他の原材料として、粉末状のマグネシウム化合物(酸化マグネシウム(MgO))と、2種類の粉末状の追加化合物とを準備した。この2種類の追加化合物としては、追加元素がフッ素であるフッ化リチウム(LiF)およびフッ化マグネシウム(MgF)と、追加元素がリンであるリン酸リチウム(LiPO)およびリン酸マグネシウム(Mg(PO)と、追加元素が硫黄である硫化リチウム(LiS)および硫化マグネシウム(MgS)とを用いた。以下では、上記した2種類の追加化合物のうち、前者の追加化合物を「1種類目の追加化合物」と呼称すると共に、後者の追加化合物を「2種類目の追加化合物」と呼称する。
 なお、表1では、マグネシウム化合物を「Mg化合物」と表記している。
 続いて、複合酸化物に対して、アルミニウム化合物500ppmと、マグネシウム化合物500ppmと、1種類目の追加化合物500ppmと、2種類目の追加化合物250ppmとを混合させることにより、混合物を得た。この場合には、表1に示したように、アルミニウム化合物の混合量(ppm)およびマグネシウム化合物の混合量(ppm)のそれぞれを変化させた。
 最後に、酸素気流下において混合物を焼成(焼成温度=800℃,焼成時間=5時間)した。これにより、リチウムとコバルトとアルミニウムとマグネシウムと追加元素とを構成元素として含む粉末状の複合酸化物(リチウム複合酸化物)が合成されたため、正極活物質(リチウム複合酸化物)が得られた。
 なお、比較のために、追加化合物を用いなかったことを除いて同様の手順により、正極活物質を製造した。これにより、追加元素を構成元素として含まない正極活物質が製造された。
[二次電池の製造]
 以下で説明する手順により、上記した正極活物質を用いて二次電池(リチウムイオン二次電池)を製造した。
(試験極の作製)
 最初に、正極活物質(リチウム複合酸化物)98質量部と、正極結着剤(ポリフッ化ビニリデン)1.2質量部と、正極導電剤(アモルファス性炭素粉であるケッチェンブラック)0.8質量物とを互いに混合させることにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体(厚さ=12μmであるアルミニウム箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを温風乾燥させることにより、正極活物質層を形成した。最後に、ロールプレス機を用いて正極活物質層を圧縮成型したのち、その正極活物質層が形成された正極集電体を円盤状(直径=15mm)に打ち抜いた。これにより、試験極101(正極)が作製された。
(対極の作製)
 最初に、負極活物質(黒鉛)95質量部と、負極結着剤(ポリフッ化ビニリデン)5質量部とを互いに混合させることにより、負極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に負極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体(厚さ=12μmである銅箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを温風乾燥させることにより、負極活物質層を形成した。最後に、ロールプレス機を用いて負極活物質層を圧縮成型したのち、その負極活物質層が形成された負極集電体を円盤状(直径=16mm)に打ち抜いた。これにより、対極103(負極)が作製された。
(電解液の調製)
 溶媒(炭酸エステル系化合物である炭酸エチレンおよび炭酸プロピレン)に電解質塩(リチウム塩である六フッ化リン酸リチウム(LiPF))を投入したのち、その溶媒を撹拌した。この場合には、炭酸エチレンと炭酸プロピレンとの混合比(重量比)を50:50とすると共に、電解質塩の含有量を溶媒に対して1mol/kgとした。これにより、溶媒中において電解質塩が分散または溶解されたため、電解液が調製された。
(二次電池の組み立て)
 最初に、外装カップ104の内部に試験極101を収容すると共に、外装缶102の内部に対極103を収容した。続いて、電解液が含浸されたセパレータ105(厚さ=25μmである多孔性ポリオレフィンフィルム)を介して、外装カップ104の内部に収容された試験極101と外装缶102の内部に収容された対極103とを互いに積層させた。これにより、セパレータ105に含浸された電解液の一部が試験極101および対極103のそれぞれに含浸された。最後に、セパレータ105を介して試験極101と対極103とが互いに積層されている状態において、ガスケット106を介して外装缶102および外装カップ104を互いにかしめた。これにより、外装缶102および外装カップ104により試験極101、対極103、セパレータ105および電解液が封入されたため、コイン型の二次電池が組み立てられた。
(二次電池の安定化)
 常温環境中(温度=23℃)において、組み立て後の二次電池を1サイクル充放電させた。充電時には、0.1Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、その4.2Vの電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が3.0Vに到達するまで定電流放電した。0.1Cとは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.05Cとは、電池容量を20時間で放電しきる電流値である。
 これにより、試験極101および対極103のそれぞれの表面に被膜が形成されたため、二次電池の状態が電気化学的に安定化した。よって、コイン型の二次電池が完成した。
 なお、二次電池の完成後、ICP発光分光分析法を用いて正極活物質を分析することにより、アルミニウムの含有量CA(ppm)およびマグネシウムの含有量CM(ppm)のそれぞれを測定したところ、表2に示した結果が得られた。
 また、XPSを用いて正極活物質の表面を分析することにより、存在量PAO,PAX,PMO,PMXのそれぞれを測定すると共に、和PA,PMのそれぞれを算出したところ、表2に示した結果が得られた。
 なお、表2では、含有量CA,CMの大小関係を示していると共に、和PA,PMの大小関係を示している。含有量CA,CMの大小関係に関して、「大」は含有量CAが含有量CMよりも大きいことを表していると共に、「小」は含有量CAが含有量CMよりも小さいことを表している。また、和PA,PMの大小関係に関して、「大」は和PMが和PAよりも大きいことを表していると共に、「小」は和PMが和PAよりも小さいことを表している。
[性能の評価]
 二次電池の性能(初回容量特性、サイクル特性および保存特性)を評価したところ、表2に示した結果が得られた。
(初回容量特性)
 高温環境中(温度=45℃)において二次電池を1サイクル充放電させることにより、放電容量(初回容量(mAh))を測定した。充電時には、10mAの電流で電圧が4.45Vに到達するまで定電流充電したのち、その4.45Vの電圧で総充電時間が2.5時間に到達するまで定電圧充電した。放電時には、9mAの電流で電圧が3.0Vに到達するまで定電流放電した。
(サイクル特性)
 上記した手順により、高温環境中(温度=45℃)において初回容量を測定したのち、同環境中においてサイクル数の総数が500サイクルに到達するまで二次電池を繰り返して充放電させることにより、放電容量(500サイクル目の放電容量)を測定した。2サイクル目以降の充放電条件は、1サイクル目の充放電条件と同様にした。これにより、容量維持率(%)=(500サイクル目の放電容量/初回容量)×100を算出した。
(保存特性)
 最初に、二次電池を充電させたのち、高温環境中(温度=60℃)において充電状態の二次電池を保存(保存期間=14日間)した。充電条件は、初回容量特性を調べた場合の充電条件と同様にした。続いて、保存後の二次電池を解体することにより、対極103(負極)を回収した。続いて、塩酸(濃度=1mol/kg)15ml(=15cm)中において対極103を煮沸(煮沸時間=15分間)させたのち、その塩酸を濾過することにより、分析用の試料(溶液)を得た。続いて、ICP発光分光分析法を用いて試料を分析することにより、その試料中に含有されているコバルトの濃度を測定した。最後に、コバルトの溶出量=コバルトの濃度/正極活物質の重量という計算式に基づいて、そのコバルトの溶出量を算出した。
 なお、表2に示した溶出量の値は、実施例5におおける溶出量の値を100として規格化した値を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[考察]
 表2に示したように、初回容量特性、サイクル特性および保存特性のそれぞれは、正極活物質(リチウム複合酸化物)の物性に応じて大きく変動した。
 具体的には、ICP発光分光分析法の分析結果に関する物性条件1(含有量CA>含有量CM)およびXPSの分析結果に関する物性条件2(和PM>和PA)の双方が満たされている場合(実施例1~10)には、その物性条件1,2の双方が満たされていない場合(比較例11~16)と比較して、初回容量が担保されながら、容量維持率が増加したと共に溶出量が減少した。すなわち、正極活物質(リチウム複合酸化物)の反応性に起因する電解液の分解反応が抑制されたため、初回容量が担保されながら容量維持率が増加したと共に、その正極活物質の結晶構造が安定化したため、コバルトの溶出量が減少した。
 特に、物性条件1,2の双方が満たされている場合には、以下で説明する一連の傾向が得られた。第1に、正極活物質(リチウム複合酸化物)においてコバルトのモル比がアルミニウム、マグネシウムおよび追加元素のそれぞれのモル比よりも大きいと、十分な初回容量が得られた。第2に、含有量CAが4500ppm以上であると、初回容量が担保されながら、容量維持率がより増加したと共に溶出量がより減少した。この場合には、含有量CAが7800ppm以下であると、高い容量維持率が得られると共に溶出量が十分に抑えられながら、より高い初回容量が得られた。第3に、和PMが2.9以上であると共に和PAが0.4以下であると、初回容量が担保されながら、容量維持率がより増加したと共に溶出量がより減少した。第4に、追加元素を用いると、その追加元素の種類(フッ素、リンまたは硫黄)に依存せずに、初回容量が担保されながら容量維持率が増加すると共に溶出量が減少するという共通の利点が得られた。
[まとめ]
 表2に示した結果から、正極活物質(層状岩塩型のリチウム複合酸化物)がリチウムとコバルトとアルミニウムとマグネシウムと追加元素と酸素とを構成元素として含んでいると共に、ICP発光分光分析法を用いた分析結果に関する物性条件1およびX線光電子分光法を用いた分析結果に関する物性条件2が同時に満たされていると、初回容量が担保されながら、容量維持率が増加したと共に溶出量が減少した。よって、二次電池において優れた初回容量特性、サイクル特性および保存特性が得られた。
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。
 具体的には、二次電池の電池構造がラミネートフィルムおよびコイン型である場合に関して説明したが、その電池構造は特に限定されない。この電池構造は、円筒型、角型およびボタン型などの他の電池構造でもよい。
 また、電池素子の素子構造が巻回型である場合に関して説明したが、その電池素子の素子構造は特に限定されない。この素子構造は、電極(正極および負極)が積層された積層型および電極(正極および負極)がジグザグに折り畳まれた九十九折り型などの他の素子構造でもよい。
 さらに、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質は、特に限定されない。具体的には、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。
 なお、上記した正極活物質および正極のそれぞれは、二次電池に限られず、キャパシタなどの他の電気化学デバイスに適用されてもよい
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。

Claims (8)

  1.  正極活物質を含む正極と、負極と、電解液とを備え、
     前記正極活物質は、層状岩塩型のリチウム複合酸化物を含み、
     前記リチウム複合酸化物は、リチウムと、コバルトと、アルミニウムと、マグネシウムと、フッ素、リンおよび硫黄のうちの少なくとも1種を含む追加元素と、酸素とを構成元素として含み、
     誘導結合プラズマ発光分光分析法を用いて前記正極活物質を分析した際、前記アルミニウムの含有量は、前記マグネシウムの含有量よりも大きいと共に、
     X線光電子分光法を用いて前記正極活物質の表面を分析した際、前記マグネシウムおよび前記酸素の化学結合状態の存在量と前記マグネシウムおよび前記追加元素の化学結合状態の存在量との和は、前記アルミニウムおよび前記酸素の化学結合状態の存在量と前記アルミニウムおよび前記追加元素の化学結合状態の存在量との和よりも大きい、
     二次電池。
  2.  前記コバルトのモル比は、前記アルミニウム、前記マグネシウムおよび前記追加元素のそれぞれのモル比よりも大きい、
     請求項1記載の二次電池。
  3.  前記アルミニウムの含有量は、4500ppm以上である、
     請求項1または請求項2に記載の二次電池。
  4.  前記アルミニウムの含有量は、7800ppm以下である、
     請求項3記載の二次電池。
  5.  前記マグネシウムおよび前記酸素の化学結合状態の存在量と前記マグネシウムおよび前記追加元素の化学結合状態の存在量との和は、2.9以上であると共に、
     前記アルミニウムおよび前記酸素の化学結合状態の存在量と前記アルミニウムおよび前記追加元素の化学結合状態の存在量との和は、0.4以下である、
     請求項1ないし請求項4のいずれか1項に記載の二次電池。
  6.  リチウムイオン二次電池である、
     請求項1ないし請求項5のいずれか1項に記載の二次電池。
  7.  層状岩塩型のリチウム複合酸化物を含み、
     前記リチウム複合酸化物は、リチウムと、コバルトと、アルミニウムと、マグネシウムと、フッ素、リンおよび硫黄のうちの少なくとも1種を含む追加元素と、酸素とを構成元素として含み、
     誘導結合プラズマ発光分光分析法を用いて分析した際、前記アルミニウムの含有量は、前記マグネシウムの含有量よりも大きいと共に、
     X線光電子分光法を用いて表面を分析した際、前記マグネシウムおよび前記酸素の化学結合状態の存在量と前記マグネシウムおよび前記追加元素の化学結合状態の存在量との和は、前記アルミニウムおよび前記酸素の化学結合状態の存在量と前記アルミニウムおよび前記追加元素の化学結合状態の存在量との和よりも大きい、
     二次電池用正極活物質。
  8.  正極活物質を含み、
     前記正極活物質は、層状岩塩型のリチウム複合酸化物を含み、
     前記リチウム複合酸化物は、リチウムと、コバルトと、アルミニウムと、マグネシウムと、フッ素、リンおよび硫黄のうちの少なくとも1種を含む追加元素と、酸素とを構成元素として含み、
     誘導結合プラズマ発光分光分析法を用いて前記正極活物質を分析した際、前記アルミニウムの含有量は、前記マグネシウムの含有量よりも大きいと共に、
     X線光電子分光法を用いて前記正極活物質の表面を分析した際、前記マグネシウムおよび前記酸素の化学結合状態の存在量と前記マグネシウムおよび前記追加元素の化学結合状態の存在量との和は、前記アルミニウムおよび前記酸素の化学結合状態の存在量と前記アルミニウムおよび前記追加元素の化学結合状態の存在量との和よりも大きい、
     二次電池用正極。
PCT/JP2021/009522 2020-07-27 2021-03-10 二次電池用正極活物質、二次電池用正極および二次電池 WO2022024439A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022540005A JP7347679B2 (ja) 2020-07-27 2021-03-10 二次電池用正極活物質、二次電池用正極および二次電池
CN202180059448.9A CN116157884A (zh) 2020-07-27 2021-03-10 二次电池用正极活性物质、二次电池用正极以及二次电池
US18/089,366 US20230139370A1 (en) 2020-07-27 2022-12-27 Positive electrode active material for secondary battery, positive electrode for secondary battery, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-126633 2020-07-27
JP2020126633 2020-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/089,366 Continuation US20230139370A1 (en) 2020-07-27 2022-12-27 Positive electrode active material for secondary battery, positive electrode for secondary battery, and secondary battery

Publications (1)

Publication Number Publication Date
WO2022024439A1 true WO2022024439A1 (ja) 2022-02-03

Family

ID=80037891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009522 WO2022024439A1 (ja) 2020-07-27 2021-03-10 二次電池用正極活物質、二次電池用正極および二次電池

Country Status (4)

Country Link
US (1) US20230139370A1 (ja)
JP (1) JP7347679B2 (ja)
CN (1) CN116157884A (ja)
WO (1) WO2022024439A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273427A (ja) * 2006-03-31 2007-10-18 Sony Corp 正極活物質および非水電解質二次電池
JP2017021942A (ja) * 2015-07-09 2017-01-26 日立マクセル株式会社 正極材料、および正極材料を用いた非水電解質二次電池
JP2018510450A (ja) * 2015-01-23 2018-04-12 ユミコア 高電圧リチウムイオンバッテリのためのリチウムニッケルマンガンコバルト酸化物のカソード用粉末
WO2018225450A1 (ja) * 2017-06-09 2018-12-13 株式会社村田製作所 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273427A (ja) * 2006-03-31 2007-10-18 Sony Corp 正極活物質および非水電解質二次電池
JP2018510450A (ja) * 2015-01-23 2018-04-12 ユミコア 高電圧リチウムイオンバッテリのためのリチウムニッケルマンガンコバルト酸化物のカソード用粉末
JP2017021942A (ja) * 2015-07-09 2017-01-26 日立マクセル株式会社 正極材料、および正極材料を用いた非水電解質二次電池
WO2018225450A1 (ja) * 2017-06-09 2018-12-13 株式会社村田製作所 正極活物質、正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム

Also Published As

Publication number Publication date
JPWO2022024439A1 (ja) 2022-02-03
JP7347679B2 (ja) 2023-09-20
CN116157884A (zh) 2023-05-23
US20230139370A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
US20210367230A1 (en) Positive electrode active material for secondary battery, and secondary battery
JP6054540B2 (ja) 正極活物質、非水電解質電池及び電池パック
WO2022024439A1 (ja) 二次電池用正極活物質、二次電池用正極および二次電池
WO2021220743A1 (ja) 二次電池用正極および二次電池
WO2022059340A1 (ja) 二次電池用負極活物質、二次電池用負極および二次電池
JPWO2020218020A1 (ja) 負極活物質、負極および二次電池
JP7276602B2 (ja) 二次電池用正極および二次電池
WO2021256015A1 (ja) 二次電池
WO2021220745A1 (ja) 二次電池
WO2022059634A1 (ja) 二次電池
WO2023181731A1 (ja) 二次電池用負極活物質、二次電池用負極および二次電池
WO2022059557A1 (ja) 二次電池
WO2022172603A1 (ja) 活物質およびその製造方法、ならびに電極および二次電池
JP7044174B2 (ja) 二次電池
WO2024004581A1 (ja) 二次電池用電極および二次電池
WO2021059974A1 (ja) 活物質およびその製造方法、ならびに電極および二次電池
WO2021192403A1 (ja) 二次電池
WO2022172604A1 (ja) 活物質およびその製造方法、ならびに電極および二次電池
WO2023112576A1 (ja) 二次電池用正極および二次電池
WO2023286579A1 (ja) 二次電池用負極および二次電池
WO2021192402A1 (ja) 二次電池
JP2024021741A (ja) 電極および二次電池
JP2024021740A (ja) 二次電池用正極活物質、二次電池用正極および二次電池
JP2023089516A (ja) 正極活物質、正極および二次電池
JP2023089518A (ja) 正極活物質、正極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540005

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850640

Country of ref document: EP

Kind code of ref document: A1