WO2022024179A1 - Reaction device - Google Patents

Reaction device Download PDF

Info

Publication number
WO2022024179A1
WO2022024179A1 PCT/JP2020/028688 JP2020028688W WO2022024179A1 WO 2022024179 A1 WO2022024179 A1 WO 2022024179A1 JP 2020028688 W JP2020028688 W JP 2020028688W WO 2022024179 A1 WO2022024179 A1 WO 2022024179A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
main body
reaction
flow path
heat transfer
Prior art date
Application number
PCT/JP2020/028688
Other languages
French (fr)
Japanese (ja)
Inventor
大雅 山本
佑介 武内
明久 矢野
茂樹 坂倉
俊二 宮嶋
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to PCT/JP2020/028688 priority Critical patent/WO2022024179A1/en
Publication of WO2022024179A1 publication Critical patent/WO2022024179A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts

Definitions

  • This disclosure relates to a heat exchange type reactor.
  • Patent Document 1 a plurality of plates constituting a flow path for circulating a gas mixture which is a reaction fluid as a first fluid, and a plurality of tubes for circulating a gas mixture which is another reaction fluid as a second fluid are provided.
  • the reactor provided is disclosed.
  • the plurality of plates includes a plurality of rectangular plates and a plurality of corrugated plates, which are laminated alternately with each other.
  • the composition of the fluid containing the product at the outlet of the reactor does not reach the equilibrium composition at that temperature due to various factors. Therefore, the amount of product produced may be less than the value theoretically obtained from the amount of heat given for the reaction. This also applies to the laminated type reactor disclosed in Patent Document 1, and improvement for more effectively utilizing the amount of heat given for the reaction is desired.
  • a first heat transfer body having a first flow path through which a first fluid containing a reaction raw material is circulated is laminated on the first heat transfer body and used for heat exchange with the first fluid. It has a second heat transfer body having a second flow path through which the second fluid is circulated, and a recovery space facing a discharge port communicating with the first flow path in the first heat transfer body, and has a heat absorption reaction of the reaction raw material. Promotes the heat absorption reaction of the reaction raw material that is installed in the product recovery unit and the product recovery unit that collects the product produced in the first flow path and is discharged into the recovery space remaining in the first flow path. It is equipped with a catalyst to make it.
  • the above-mentioned reaction apparatus includes a catalyst body having a main body portion including a catalyst, the product recovery unit has a connection portion including an opening for accommodating the main body portion in the recovery space, and the catalyst body is a main body portion. May have a flange portion attached to the connection portion in a state of being housed in the collection space.
  • the reactor includes a catalyst body having a main body including a catalyst, the product recovery unit has a discharge pipe for discharging the product to an external pipe, and the catalyst body has the main body part housed in the recovery space. It may have a flange portion attached to the discharge pipe.
  • the discharge pipe has a first flange portion used for connecting to the external pipe, the external pipe has a second flange portion that can be connected to the first flange portion, and the flange portion has the first flange portion and the first flange portion. 2 It may be sandwiched between the flange portion and fastened.
  • the main body may be cylindrical or columnar.
  • the main body may have a structural material that supports the catalyst.
  • the catalyst may be porous.
  • the catalyst is in the form of pellets, and the main body may have a cylinder for accommodating the pellet-shaped catalyst.
  • the structural material may be cylindrical when the main body is tubular, and may have a plurality of through holes penetrating between the outside of the cylinder and the inside of the cylinder.
  • the structural material may include a honeycomb structure having a honeycomb-like cross section.
  • the structural material may include a corrugated structure in which a corrugated plate having a wavy cross section is rolled into a tubular shape.
  • the structural material is tubular or rod-shaped, and the main body may include a plurality of tubular or rod-shaped structural materials.
  • the structural material includes a plurality of board bodies, and the main body portion may include a holding body that holds the plurality of board bodies side by side in the tubular or columnar stretching direction of the main body portion.
  • the structural material may be a plate structure that is spirally stretched in a cylindrical or columnar stretching direction of the main body.
  • the main body may face the discharge port.
  • the catalyst may be supported on the inner wall of the product recovery section facing the recovery space.
  • the catalyst may be a granular material housed in the recovery space.
  • FIG. 1 is a side view showing the configuration of the reaction apparatus according to the first embodiment.
  • FIG. 2 is a plan sectional view showing a portion of the reactor according to the first embodiment including the first heat transfer body.
  • FIG. 3 is a plan sectional view showing a portion of the reactor according to the first embodiment including the second heat transfer body.
  • FIG. 4 is a perspective view showing a configuration example of the first catalyst body adopted in the first embodiment.
  • FIG. 5 is a diagram for explaining the arrangement and the like of the second catalyst body adopted in the first embodiment.
  • FIG. 6 is a perspective view showing the first configuration as a configuration example of the second catalyst body.
  • FIG. 7 is a perspective view showing a second configuration as a configuration example of the second catalyst body.
  • FIG. 1 is a side view showing the configuration of the reaction apparatus according to the first embodiment.
  • FIG. 2 is a plan sectional view showing a portion of the reactor according to the first embodiment including the first heat transfer body.
  • FIG. 3 is a plan sectional view showing
  • FIG. 8 is a perspective view showing a third configuration as a configuration example of the second catalyst body.
  • FIG. 9 is a perspective view showing a fourth configuration as a configuration example of the second catalyst body.
  • FIG. 10 is a perspective view showing a fifth configuration as a configuration example of the second catalyst body.
  • FIG. 11 is a perspective view showing a sixth configuration as a configuration example of the second catalyst body.
  • FIG. 12 is a perspective view showing a seventh configuration as a configuration example of the second catalyst body.
  • FIG. 13 is a perspective view showing an eighth configuration as a configuration example of the second catalyst body.
  • FIG. 14 is a perspective view showing a ninth configuration as a configuration example of the second catalyst body.
  • FIG. 15 is a diagram showing the shape of another product recovery unit adopted in the first embodiment.
  • FIG. 15 is a diagram showing the shape of another product recovery unit adopted in the first embodiment.
  • FIG. 16 is a diagram showing the shape of another product recovery unit adopted in the first embodiment.
  • FIG. 17 is a cross-sectional view showing a catalyst adopted in the reaction apparatus according to the second embodiment.
  • FIG. 18 is a side view showing a catalyst adopted in the reaction apparatus according to the third embodiment.
  • the dimensions, materials, and other specific numerical values shown in the embodiments are merely examples, and the present disclosure is not limited unless otherwise specified. Further, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate explanations, and elements not directly related to the present disclosure are omitted from the illustration. Further, in each of the following figures, the Z axis is taken in the stacking direction, the Y axis is taken in each stretching direction of the reaction flow path and the heat medium flow path in the plane perpendicular to the Z axis, and the Y axis is perpendicular to the Y axis. Take the X-axis in the direction.
  • FIG. 1 is a side view showing the configuration of the reaction apparatus 1 according to the first embodiment.
  • the reaction apparatus 1 produces a product P by utilizing heat exchange between the reaction fluid M and the heat medium HC.
  • the reaction fluid M is a gas or a liquid containing a reaction raw material as a reactant.
  • the reaction fluid M is a raw material gas as an example.
  • the product P is a substance produced by the thermal reaction of the reaction raw material.
  • the thermal reaction in this embodiment is an endothermic reaction.
  • the heat medium HC is, for example, a high temperature gas.
  • the reaction device 1 includes a heat exchange unit 3, a reaction fluid introduction unit 45, a product recovery unit 49, a heat medium introduction unit 53, and a heat medium recovery unit 57.
  • the heat exchange unit 3 causes heat exchange between the reaction fluid M and the heat medium HC to promote the thermal reaction of the reaction raw material contained in the reaction fluid M.
  • the heat exchange unit 3 includes a first heat transfer body 7, a second heat transfer body 9, and a third heat transfer body 39, which are laminated with each other.
  • the first heat transfer body 7, the second heat transfer body 9, and the third heat transfer body 39 are flat plate-shaped members made of a heat-resistant heat-conducting material, respectively. Further, the areas of the laminated surfaces of the first heat transfer body 7, the second heat transfer body 9, and the third heat transfer body 39 are, for example, the same as each other. In the present embodiment, there are a plurality of the first heat transfer body 7 and the second heat transfer body 9, respectively.
  • the first heat transfer body 7 has a reaction flow path 17 through which the reaction fluid M or the product P flows (see FIG. 2).
  • the second heat transfer body 9 has a heat medium flow path 31 through which the heat medium HC flows (see FIG. 3).
  • the reaction fluid M flowing through the main stream portion of the reaction flow path 17 and the heat medium HC flowing through the main stream portion of the heat medium flow path 31 flow in opposite directions to each other. It is a type.
  • FIG. 2 is a plan sectional view of the reactor 1 corresponding to the II-II cross section shown in FIG. FIG. 2 shows the configuration and shape of the reactor 1 in the portion including the first heat transfer body 7.
  • the reaction flow path 17 includes a plurality of first flow paths 22 and a first confluence flow path 23.
  • the first flow path 22 includes a reaction region in which the reaction raw material contained in the reaction fluid M receives heat supplied from the heat medium HC flowing through the heat medium flow path 31 to cause an endothermic reaction.
  • the first flow path 22 corresponds to the main stream portion of the reaction flow path 17, and is a groove having an open upper part in the Z direction and a rectangular cross section of the flow path.
  • each of the plurality of first flow paths 22 extends linearly along the Y direction and is arranged at equal intervals along the X direction.
  • One end of the first flow path 22 is opened by the first side surface 60 of the heat exchange unit 3 including one side surface of the first heat transfer body 7.
  • the end of the first flow path 22 opened on the first side surface 60 is the first introduction port 20 into which the reaction fluid M is introduced.
  • the other end of the first flow path 22 communicates with the first confluence flow path 23 on the side of the second side surface 61 of the heat exchange unit 3 including the other side surface of the first heat transfer body 7.
  • the number of the first flow paths 22 is set to 8 as an example. However, the number of the first flow paths 22 is not particularly limited.
  • the first heat transfer body 7 includes a first base portion 11, two first side walls 13, a plurality of first intermediate walls 15, and a first partition wall 19.
  • the first base portion 11 is a plate portion that covers the entire XY plane of the first heat transfer body 7.
  • the first side wall 13 is a wall portion provided on one main surface of the first base portion 11 at a side end in the X direction perpendicular to the stretching direction of the first flow path 22.
  • the plurality of first intermediate walls 15 are sandwiched between two first side walls 13 on one main surface of the first base 11, respectively, arranged parallel to the first side wall 13 and provided at equal intervals. It is a wall part to be sewn.
  • the first partition wall 19 is provided on the second side surface 61 side on one main surface of the first base portion 11 along the X direction which is perpendicular to the stretching direction of the first flow path 22.
  • the first partition wall 19 changes the traveling direction of the product P or the reaction fluid M flowing through the plurality of first flow paths 22 so that the first flow path 22 does not hit the second introduction space S2. It is separated by.
  • the first merging flow path 23 is a groove having a rectangular cross section of the flow path with the upper side in the Z direction open, and is provided linearly along the inner side surface of the first partition wall 19.
  • the first side wall 13 has a first discharge port 21 for discharging the product P to the outside of the first heat transfer body 7.
  • the first discharge port 21 is opened to the outside from the third side surface 62.
  • the third side surface 62 is one side surface of the YZ plane perpendicular to the first side surface 60 and the second side surface 61 in the heat exchange unit 3.
  • the heat exchange unit 3 is configured by laminating the first heat transfer body 7 and the second heat transfer body 9, the four side surfaces of the first heat transfer body 7 are the heat exchange unit 3. It corresponds to a part of each of the first side surface 60, the second side surface 61, the third side surface 62, and the fourth side surface 63, which are the four side surfaces of the above.
  • FIG. 3 is a plan sectional view of the reactor 1 corresponding to the cross section III-III shown in FIG.
  • FIG. 3 shows the configuration and shape of the reactor 1 in the portion including the second heat transfer body 9.
  • the heat medium flow path 31 includes a plurality of second flow paths 36 and a second merging flow path 37.
  • the heat medium HC flowing through the second flow path 36 supplies heat to the first heat transfer body 7 laminated on the second heat transfer body 9.
  • the second flow path 36 corresponds to the main flow portion of the heat medium flow path 31, and is a groove having an open upper part in the Z direction and a rectangular cross section of the flow path.
  • each of the plurality of second flow paths 36 extends linearly along the Y direction and is arranged at equal intervals along the X direction.
  • One end of the second flow path 36 is open at the second side surface 61.
  • the end of the second flow path 36 opened on the second side surface 61 is the second introduction port 30 into which the heat medium HC is introduced.
  • the other end of the second flow path 36 communicates with the second merging flow path 37 on the side of the first side surface 60.
  • the number of the second flow paths 36 is set to eight, for example, according to the number or arrangement of the first flow paths 22 formed in the first heat transfer body 7.
  • the number of the second flow paths 36 is not particularly limited, and may be further increased in consideration of the number of the first flow paths 22 formed in the first heat transfer body 7.
  • the second heat transfer body 9 includes a second base portion 25, two second side walls 27, a plurality of second intermediate walls 29, and a second partition wall 33.
  • the second base portion 25 is a plate portion that covers the entire XY plane of the second heat transfer body 9.
  • the second side wall 27 is a wall portion provided on one main surface of the second base portion 25 at the side end in the X direction perpendicular to the extending direction of the second flow path 36.
  • the plurality of second intermediate walls 29 are sandwiched between two second side walls 27 on one main surface of the second base 25, are arranged parallel to the second side wall 27, and are provided at equal intervals. It is a wall part to be sewn.
  • the second partition wall 33 is provided on the first side surface 60 side on one main surface of the second base portion 25 along the X direction which is the direction perpendicular to the stretching direction of the second flow path 36.
  • the second partition wall 33 changes the traveling direction of the heat medium HC that has flowed through the plurality of second flow paths 36, and separates the second flow path 36 so as not to hit the first introduction space S1. ..
  • the second merging flow path 37 is a groove having a rectangular cross section of the flow path with the upper side in the Z direction open, and is provided linearly along the inner side surface of the second partition wall 33.
  • the second side wall 27 has a second discharge port 35 that discharges the heat medium HC to the outside of the second heat transfer body 9.
  • One end of the second merging flow path 37 communicates with the second discharge port 35.
  • the second discharge port 35 is opened to the outside from the third side surface 62 as an example.
  • the heat exchange unit 3 is configured by laminating the first heat transfer body 7 and the second heat transfer body 9, the four side surfaces of the second heat transfer body 9 are the heat exchange unit 3. It corresponds to a part of each of the first side surface 60, the second side surface 61, the third side surface 62, and the fourth side surface 63, which are the four side surfaces of the above.
  • the third heat transfer body 39 is a lid body installed at the uppermost part of the heat exchange unit 3 in the Z direction.
  • the heat exchange portion 3 As the joint body or the laminated body is formed. ..
  • the first flow path 22 and the second flow path 36 are adjacent to each other in parallel via the first base portion 11 or the second base portion 25.
  • each member is fixed by using a joining method such as TIG (Tungsten Inert Gas) welding or diffusion joining, so that the contact between the members is poor. The decrease in heat is suppressed.
  • a heat-resistant metal such as an iron-based alloy or a nickel alloy is suitable. Specific examples thereof include iron-based alloys such as stainless steel, and heat-resistant alloys such as nickel alloys such as Inconel 625 (registered trademark), Inconel 617 (registered trademark), and Haynes 230 (registered trademark). These heat conductive materials are preferable because they have durability or corrosion resistance against the reaction progress in the first flow path 22 and the fluid that can be used as the heat medium HC, but are not limited thereto. Further, the heat conductive material may be iron-based plated steel, a metal coated with a heat-resistant resin such as fluororesin, carbon graphite, or the like.
  • the heat exchange unit 3 may be composed of a pair of at least one first heat transfer body 7 and a second heat transfer body 9, respectively.
  • the number of heat transfer bodies is large as illustrated in each figure.
  • the number of the first flow path 22 formed in one first heat transfer body 7 and the number of second flow paths 36 formed in one second heat transfer body 9 is not limited. However, it may be appropriately changed in consideration of the design conditions of the heat exchange unit 3, the heat transfer efficiency, and the like.
  • the reaction device 1 may be configured to cover the periphery of the heat exchange unit 3 with a housing or a heat insulating material in order to suppress heat dissipation from the heat exchange unit 3 and suppress heat loss.
  • a catalyst body may be installed in the first flow path 22.
  • the catalyst or the catalyst in addition to installing the catalyst in the first flow path 22, the catalyst or the catalyst is also installed in the product recovery unit 49. Therefore, in order to distinguish it from the catalyst or the catalyst body installed in the product recovery unit 49, the catalyst body installed in the first flow path 22 is hereinafter referred to as the first catalyst body 41.
  • FIG. 4 is a perspective view showing a configuration example of the first catalyst body 41.
  • the catalyst contained in the first catalyst body 41 is mainly composed of an active metal effective for promoting the progress of the endothermic reaction of the reaction raw material, and a catalyst suitable for promoting the reaction based on the synthetic reaction carried out by the heat exchange unit 3 is appropriate. Be selected.
  • the active metal that can be adopted as the catalyst component include Ni (nickel), Co (cobalt), Fe (iron), Pt (platinum), Ru (ruthenium), Rh (rhodium), Pd (palladium) and the like. Be done. In addition, you may combine a plurality of kinds of active metals.
  • the first catalyst body 41 is prepared, for example, by supporting a catalyst on a structural material.
  • a structural material one that can be molded and can support a catalyst is selected from heat-resistant metals.
  • the first catalyst body 41 may be a corrugated plate whose cross section is curved in a wavy shape or a rod body which is bent in a zigzag manner in order to increase the contact area with the reaction fluid M.
  • Heat-resistant metals include Fe (iron), Cr (chromium), Al (aluminum), Y (yttrium), Co (cobalt), Ni (nickel), Mg (magnesium), Ti (tantalum), and Mo (molybdenum).
  • a thin plate-shaped structural material made of a heat-resistant alloy such as Feclally (registered trademark) may be molded to form the first catalyst body 41.
  • a method of supporting the catalyst there are a method of directly supporting it on a structural material by surface modification and the like, and a method of indirectly supporting it using a carrier. In practical use, it is easy to support a catalyst using a carrier. be.
  • the carrier in consideration of the reaction carried out in the heat exchange unit 3, a material having durability that does not hinder the progress of the reaction and that can satisfactorily support the catalyst to be used is appropriately selected.
  • Examples thereof include metal oxides such as Al 2 O 3 (alumina), TiO 2 (titania), ZrO 2 (zirconia), CeO 2 (ceria), and SiO 2 (silica), and one or more types are selected.
  • Examples of the supporting method using a carrier include a method of forming a mixture layer of a catalyst and a carrier on the surface of a molded structural material, and a method of supporting a catalyst by surface modification or the like after forming a carrier layer. ..
  • heat transfer for increasing the contact area with the heat medium HC and promoting heat transfer between the heat medium HC and the second heat transfer body 9 is promoted.
  • a facilitator may be installed.
  • the shape of the heat transfer promoter may be a corrugated plate in order to secure a contact area with the second heat transfer body 9.
  • Examples of the heat conductive material constituting the heat transfer promoter include metals such as aluminum, copper, stainless steel, and iron-based plated steel.
  • the reaction fluid introduction unit 45 is a first lid that distributes the reaction fluid M to each of the plurality of first introduction ports 20.
  • the reaction fluid introduction unit 45 has a concavely curved shape, covers the first side surface 60 of the heat exchange unit 3 in which the plurality of first introduction ports 20 of the reaction flow path 17 are open, and the heat exchange unit 3 and the heat exchange unit 3.
  • a first introduction space S1 is formed between the two.
  • the reaction fluid introduction unit 45 can be attached to and detached from the heat exchange unit 3 or can be opened and closed. The operator can insert or remove the first catalyst body 41 into or out of the reaction flow path 17, for example, by attaching or detaching the reaction fluid introduction unit 45.
  • reaction fluid introduction unit 45 has a first introduction pipe 47 for introducing the reaction fluid M from the outside to the inside.
  • the first introduction pipe 47 faces approximately the center of the first side surface 60 on the XZ plane, and is connected along the opening direction of the plurality of first introduction ports 20.
  • the product recovery unit 49 is a first conduit unit having a first recovery space S3 for recovering the product P that has flowed through the reaction flow path 17.
  • the product recovery unit 49 has a box shape with one surface as an open surface, and the heat exchange unit is included so that the first discharge port 21 of the first heat transfer body 7 is included in the open surface. It is installed on the third side surface 62 of 3. That is, a part of the side surface of the first heat transfer body 7 including the first discharge port 21 becomes a part of the inner wall of the product recovery unit 49.
  • the product recovery unit 49 has a first discharge pipe 51 for discharging the product P to the outside of the reaction device 1.
  • a catalyst body is installed in the product recovery unit 49.
  • the catalyst body installed in the product recovery unit 49 will be referred to as a second catalyst body 42 in order to distinguish it from the first catalyst body 41 that can be installed in the first flow path 22.
  • FIG. 5 is a diagram for explaining the arrangement and the like of the second catalyst body 42.
  • FIG. 5 is basically a cross-sectional view of the product recovery unit 49 in which the second catalyst body 42 is installed, cut along the YZ plane. However, only a part of the second catalyst body 42 is shown in the side view.
  • the product recovery unit 49 in which the second catalyst body 42 is installed has a shape including a plurality of first discharge ports 21 arranged along the Z direction in the open surface. Therefore, the shape of the first recovery space S3 is also elongated along the Z direction in accordance with the arrangement of the plurality of first discharge ports 21. Therefore, in the present embodiment, the second catalyst body 42 has an elongated shape in accordance with the stretching direction of the first recovery space S3.
  • FIG. 6 is a diagram showing a first configuration 42a as a configuration example of the second catalyst body 42.
  • the first configuration 42a includes a first main body portion 70, a flange portion 43, and a support portion 44.
  • the first main body 70 is prepared by supporting a catalyst on a structural material in the same manner as the first catalyst 41.
  • the catalyst components and structural materials that can be used in the first main body 70 are the same as those used in the first catalyst 41.
  • the shape of the first main body 70 is a cylinder, for example, a cylinder having an outer diameter D1.
  • the catalyst is supported on the outer peripheral surface and the inner peripheral surface of the cylindrical structural material.
  • the cross-sectional shape of the first main body 70 is not limited to a circular ring, and may be, for example, a polygonal ring.
  • the flange portion 43 is attached to the connection portion 52 previously provided in the product recovery unit 49 when the second catalyst body 42 is installed in the product recovery unit 49.
  • the shape of the flange portion 43 is, for example, a disk shape.
  • the shape of the flange portion 43 is basically defined in relation to the shape of the connection portion 52 of the product recovery portion 49, but is not particularly limited.
  • the flange portion 43 has a plurality of through holes 43a for penetrating the bolt 65 used for attachment to the connecting portion 52.
  • the support portion 44 is connected to the flange portion 43 and supports the first main body portion 70.
  • the support portion 44 has a cylindrical shape whose outer diameter matches the outer diameter D1 of the first main body portion 70, and the first main body portion 70 and the flange portion 43. Is on the same axis as.
  • the support portion 44 may be integrated with the structural material or the flange portion 43 constituting the first main body portion 70 in advance.
  • FIG. 7 is a diagram showing a second configuration 42b as a configuration example of the second catalyst body 42.
  • the second configuration 42b includes a second main body portion 71, a flange portion 43, and a support portion 44.
  • the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
  • the second main body 71 is prepared by supporting the catalyst on the structural material in the same manner as the first catalyst 41.
  • the catalyst components and structural materials that can be used in the second main body 71 are the same as those used in the first catalyst 41.
  • the overall schematic shape of the second main body 71 is a cylinder having an outer diameter D1.
  • the inside of the second main body 71 is composed of a honeycomb structure 71a having a honeycomb-shaped cross section.
  • the catalyst is supported, for example, on the outer peripheral surface and the inner peripheral surface of the cylindrical structural material and the surface of the structural material which is the honeycomb structure 71a.
  • the cross-sectional shape of the tubular portion of the second main body portion 71 is not limited to a circular ring, and may be, for example, a polygonal ring.
  • FIG. 8 is a diagram showing a third configuration 42c as a configuration example of the second catalyst body 42.
  • the third configuration 42c includes a third main body portion 72, a flange portion 43, and a support portion 44.
  • the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
  • the third main body 72 is prepared by supporting the catalyst on the structural material in the same manner as the first catalyst 41.
  • the catalyst components and structural materials that can be used in the third main body 72 are the same as those used in the first catalyst 41.
  • the overall schematic shape of the third main body 72 is a cylinder having an outer diameter D1.
  • the third main body 72 is composed of a corrugated structure formed by rolling a corrugated plate having a wavy cross section into a tubular shape.
  • the catalyst is supported on the surface of the structural material which is a corrugated structure.
  • FIG. 9 is a diagram showing a fourth configuration 42d as a configuration example of the second catalyst body 42.
  • the fourth configuration 42d includes a fourth main body portion 73, a flange portion 43, and a support portion 44.
  • the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
  • the fourth main body 73 is prepared by supporting the catalyst on the structural material in the same manner as the first catalyst 41.
  • the catalyst components and structural materials that can be used in the fourth main body 73 are the same as those used in the first catalyst 41.
  • the overall schematic shape of the fourth main body 73 is a cylinder having an outer diameter D1.
  • the inside of the fourth main body 73 is composed of a corrugated structure 73a formed by rolling a corrugated plate having a wavy cross section into a tubular shape, similarly to the third main body 72.
  • the catalyst is supported on, for example, the outer peripheral surface and the inner peripheral surface of the cylindrical structural material and the surface of the structural material which is the corrugated structure 73a. Further, as shown in FIG.
  • the cylindrical structural material may be formed with a plurality of through holes in order to facilitate the flow of products between the outside of the cylinder and the inside of the cylinder.
  • the cross-sectional shape of the tubular portion of the fourth main body portion 73 is not limited to an annular ring, and may be, for example, a polygonal ring.
  • FIG. 10 is a diagram showing a fifth configuration 42e as a configuration example of the second catalyst body 42.
  • the fifth configuration 42e includes a fifth main body portion 74, a flange portion 43, and a support portion 44.
  • the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
  • the fifth main body portion 74 is prepared by supporting a catalyst on a structural material in the same manner as the first catalyst body 41, or is composed of the catalyst itself.
  • the materials of the catalyst component and the structural material that can be adopted in the fifth main body portion 74 are the same as those adopted in the first catalyst body 41.
  • the basic shape of the fifth main body portion 74 is a porous tubular or columnar shape.
  • the fifth main body portion 74 may be a porous cylinder having an outer diameter D1.
  • the catalyst may be supported on the entire porous cylindrical structural material.
  • the porous cylinder itself may be composed of a catalyst.
  • the fifth main body portion 74 may be a porous cylinder having an outer diameter D1.
  • the catalyst may be supported on the entire porous columnar structural material.
  • the porous cylinder itself may be composed of a catalyst.
  • FIG. 10 shows, as an example, a fifth main body portion 74 formed by rolling a porous plate body into a cylindrical shape.
  • the cross-sectional shape of the porous cylinder or column is not limited to a ring or a circle, and may be, for example, a polygonal ring or a polygon.
  • FIG. 11 is a diagram showing a sixth configuration 42f as a configuration example of the second catalyst body 42.
  • the sixth configuration 42f includes a sixth main body portion 75, a flange portion 43, and a support portion 44.
  • the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
  • the sixth main body portion 75 is prepared by supporting a catalyst on a structural material in the same manner as the first catalyst body 41.
  • the materials of the catalyst component and the structural material that can be adopted in the sixth main body portion 75 are the same as those adopted in the first catalyst body 41.
  • the basic shape of the sixth main body portion 75 is an aggregate of a plurality of structures having a cylindrical shape or a rod shape.
  • the plurality of tubular or rod-shaped structures are those in which a catalyst is supported on the entire tubular or rod-shaped structural material, respectively.
  • FIG. 11 shows, as an example, the sixth main body portion 75 configured as an aggregate of a plurality of structures in which a catalyst is supported on a rod-shaped structural material.
  • FIG. 12 is a diagram showing a seventh configuration 42 g as a configuration example of the second catalyst 42.
  • the seventh configuration 42g includes a seventh main body portion 76, a flange portion 43, and a support portion 44.
  • the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
  • the seventh main body 76 is a structure in which a pellet-shaped catalyst 76a is housed inside a cylinder such as a cylinder.
  • the material of the catalyst 76a is the same as that used for the first catalyst body 41.
  • a plurality of through holes may be formed in the cylinder body in order to facilitate distribution of products between the outside of the cylinder and the inside of the cylinder.
  • the cross-sectional shape of the tubular portion of the 7th main body portion 76 is not limited to an annular ring, and may be, for example, a polygonal ring.
  • FIG. 13 is a diagram showing an eighth configuration 42h as a configuration example of the second catalyst body 42.
  • the eighth configuration 42h includes an eighth main body portion 77, a flange portion 43, and a support portion 44.
  • the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
  • the eighth main body 77 is prepared by supporting the catalyst on the structural material in the same manner as the first catalyst 41.
  • the catalyst components and structural materials that can be used in the eighth main body 77 are the same as those used in the first catalyst 41.
  • the eighth main body portion 77 has, for example, a plurality of discs 77a which are disks having an outer diameter D1 and a holding body 77b for holding the plurality of discs 77a.
  • the catalyst is supported on the front surface and the back surface of the board 77a, for example.
  • the holding body 77b is a rod body whose one end is supported by the support portion 44.
  • the holding body 77b penetrates the central portion of each of the plurality of board bodies 77a, and holds the plurality of board bodies 77a side by side in the stretching direction.
  • the spacing between the boards 77a adjacent to each other in the stretching direction may be equal or different depending on the position.
  • the holding body 77b is not a holding rod, but a cylindrical structure having a plurality of through holes, for example, like the fourth main body portion 73 shown in FIG. May be good.
  • the tubular structure comes into contact with the outer peripheral surfaces of the plurality of board 77a on the inner peripheral surface, and holds the plurality of board 77a side by side in the stretching direction.
  • the tubular structure holds a plurality of discs 77a in this way, the plurality of discs 77a have through holes that allow products to flow between the front surface and the back surface of the disc 77a.
  • the eighth main body portion 77 may have a polygonal board having a polygonal plane shape instead of the board body 77a.
  • FIG. 14 is a diagram showing a ninth configuration 42i as a configuration example of the second catalyst body 42.
  • the ninth configuration 42i includes a ninth main body portion 78, a flange portion 43, and a support portion 44.
  • the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
  • the ninth main body 78 is prepared by supporting a catalyst on a structural material in the same manner as the first catalyst 41.
  • the catalyst components and structural materials that can be used in the eighth main body 77 are the same as those used in the first catalyst 41.
  • the ninth main body portion 78 has a plate structure 78a extending spirally from the support portion 44 and a holding body 78b for holding the plate structure 78a.
  • the cross-sectional shape on a plane perpendicular to the stretching direction is a circle having an outer diameter D1.
  • the catalyst is supported, for example, on the front surface and the back surface of the plate structure 78a.
  • the holding body 78b is, for example, a rod body whose one end is supported by the support portion 44 and which extends so as to penetrate the inner peripheral region existing along the extending direction of the plate structure 78a.
  • the plate structure 78a is held by the holding body 78b via a plurality of support rods 78c protruding from the holding body 78b.
  • the product recovery unit 49 has, for example, a connection unit 52 for attaching the second catalyst body 42 to one wall portion in the Z direction.
  • FIG. 5 illustrates a case where the connection portion 52 is provided on the lower wall portion of the product recovery portion 49 in the Z direction, that is, on the inner wall lower surface surface 49b side of the product recovery portion 49.
  • the case where the second catalyst body 42 attached to the product recovery unit 49 has the first configuration 42a is illustrated. However, the same applies even if the second catalyst body 42 has the second configuration 42b or the third configuration 42c.
  • the connection portion 52 has an opening 52a, a plurality of bolt holes 52b, and a gasket groove 52c.
  • the opening 52a penetrates inside and outside the product recovery unit 49.
  • the opening diameter D2 of the opening 52a is larger than the outer diameter D1 of the first main body 70. Therefore, the opening 52a can penetrate the first main body 70 and the support 44, which are a part of the second catalyst 42.
  • the plurality of bolt holes 52b are provided corresponding to the positions of the plurality of through holes 43a of the flange portion 43, and when the flange portion 43 is attached to the connection portion 52, the bolts 65 penetrating the through holes 43a are fastened.
  • the gasket groove 52c attaches the gasket 66 used for tightly fastening the flange portion 43 to the connecting portion 52.
  • the overall shape of the connecting portion 52 is not particularly limited as long as it has a shape that allows the flange portion 43 to be attached.
  • the first main body portion 70 is the inner wall of the product recovery portion 49 in a state where the second catalyst body 42 is attached to the product recovery portion 49. It is arranged along the side surface 49c. At this time, the first main body portion 70 is not in contact with the inner wall side surface 49c and the inner wall upper surface 49a of the product recovery portion 49.
  • L1 be the distance to.
  • the distance from the lower surface 49b of the inner wall of the product recovery unit 49 to the farthest portion of the outlet 51a of the first discharge pipe 51 is L2.
  • the distance L1 is longer than the distance L2. That is, the distance L1 can be defined in the range from the distance L2 to the distance L3 from the inner wall lower surface 49b of the product recovery unit 49 to the nearest inner wall upper surface 49a.
  • the outer diameter D1 of the first main body 70 may be larger than the inner diameter D3 of the first discharge pipe 51.
  • the position where the first discharge pipe 51 is provided in the product recovery unit 49 is not limited to the side wall portion of the product collection unit 49 as in the above example.
  • FIG. 15 is a diagram showing the shape of another product recovery unit 49 drawn corresponding to FIG. 5.
  • a first discharge pipe 80 instead of the first discharge pipe 51 is provided on one wall portion in the Z direction.
  • FIG. 15 illustrates a case where the connection portion 52 is provided on the lower wall portion of the product recovery portion 49 in the Z direction, that is, on the lower surface surface 49b side of the inner wall of the product recovery portion 49, as in FIG. is doing.
  • the first discharge pipe 80 may be provided on the upper wall portion of the product recovery unit 49 in the Z direction, that is, on the inner wall upper surface 49a side of the product recovery unit 49.
  • the connection portion 52 is provided on the upper wall portion in the Z direction of the product recovery portion 49
  • the first discharge pipe 80 is provided on the lower wall portion in the Z direction of the product recovery portion 49. It may be provided.
  • the inner diameter D4 of the first discharge pipe 80 may be the same as the inner diameter D3 of the first discharge pipe 51 shown in FIG.
  • the inner diameter of the first discharge pipe 80 D4 may be the same as the opening diameter D2 of the opening 52a.
  • the length of the first main body portion 70 is a length extending from the inner wall lower surface 49b of the product recovery portion 49 to the immediate vicinity of the inner wall upper surface 49a, as shown by the distance L3 shown in FIG. According to such a configuration, the fluid passing through the product recovery unit 49 and heading toward the outlet 80a of the first discharge pipe 80 is more likely to come into contact with the second catalyst body 42.
  • the first main body 70 having the outer diameter D1 can enter the outlet 80a of the first discharge pipe 80. Therefore, although not shown, the length of the first main body 70 is made longer than the distance L3 so that the tip of the first main body 70 is at a position facing the opening 52a of the connection 52. The length may be such that it enters the outlet 80a of the first discharge pipe 80. According to such a configuration, most of the fluid passing through the product recovery unit 49 and heading for the outlet 80a of the first discharge pipe 80 comes into contact with the second catalyst body 42.
  • FIG. 16 is a diagram showing the shape of another product recovery unit 49 drawn corresponding to FIG. 5 in the same manner as in FIG.
  • the product recovery unit 49 shown in FIG. 16 two discharge pipes are provided in place of the first discharge pipe 51 described above.
  • the first discharge pipe 81 is provided on the upper wall portion in the Z direction, that is, on the inner wall upper surface surface 49a side of the product recovery portion 49.
  • the other first discharge pipe 81 is provided on the lower wall portion in the Z direction, that is, on the lower surface surface 49b side of the inner wall of the product recovery portion 49.
  • the first discharge pipe 81 on one side and the second discharge pipe 82 on the other side have the same shape as the first discharge pipe 80 illustrated in FIG. 15, respectively.
  • the inner diameters of the first discharge pipe 81 and the second discharge pipe 82 may be D4, respectively, like the inner diameter of the first discharge pipe 80.
  • the first flange portion 81b has a plurality of through holes 81c provided corresponding to the positions of the plurality of through holes 43a of the flange portion 43.
  • the external pipe 83 is connected to the first discharge pipe 81 via the flange portion 43 of the second catalyst body 42.
  • the external pipe 83 has a second flange portion 83b to which the flange portion 43 of the second catalyst body 42 can be attached, similarly to the first flange portion 81b.
  • the opening 83a of the external pipe 83 has the same dimensions as the outlet 81a of the first discharge pipe 81.
  • the first flange portion 81b and the second flange portion 83b each have a gasket groove for attaching the gasket 66, similarly to the gasket groove 52c formed in the flange portion 43 of the second catalyst body 42.
  • the flange portion 43 is sandwiched between the first flange portion 81b and the second flange portion 83b, and is fastened to the first discharge pipe 81 by a bolt 65 penetrating the through hole 81c and the through hole 83c.
  • the external pipe 83 is attached, and the second catalyst body 42 is held.
  • the support portion 44 of the second catalyst body 42 has a support portion 44 so that the fluid can flow from the product recovery portion 49 to the external pipe 83. It has a through hole 44a that communicates from the first main body 70 side to the opening 83a side of the external pipe 83. Further, even when the second catalyst body 42 is held in the first discharge pipe 81, the length of the second catalyst body 42 can be set as described with reference to FIG.
  • the product recovery unit 49 may be configured to provide only the first discharge pipe 81 without providing the second discharge pipe 82. That is, even if the product recovery unit 49 is not provided with the first discharge pipe 51 and the connection portion 52 as illustrated in FIG. 5, as long as the first discharge pipe 81 having the first flange portion 81b is provided.
  • the second catalyst body 42 can be easily held in accordance with the connection with the external pipe 83.
  • the heat medium introduction unit 53 is a second lid that distributes the heat medium HC to each of the plurality of second introduction ports 30.
  • the heat medium introduction unit 53 has a concavely curved shape and covers the second side surface 61 of the heat exchange unit 3 in which the plurality of second introduction ports 30 of the heat medium flow path 31 are open, and the heat exchange unit 3 A second introduction space S2 is formed between the two.
  • the heat medium introduction unit 53 can be attached to and detached from or can be opened and closed with respect to the heat exchange unit 3. By attaching and detaching the heat medium introduction unit 53 and the like, the operator can insert and remove the heat transfer promoter into and out of the heat medium flow path 31, for example.
  • the heat medium introduction unit 53 has a second introduction pipe 55 that introduces the heat medium HC from the outside to the inside.
  • the second introduction pipe 55 faces approximately the center of the second side surface 61 on the XZ plane, and is connected along the opening direction of the plurality of second introduction ports 30. According to the heat medium introduction unit 53, the heat medium HC introduced from one second introduction pipe 55 is distributed to each of the plurality of second introduction ports 30.
  • the heat medium recovery unit 57 is a second conduit unit having a second recovery space S4 for recovering the heat medium HC flowing through the heat medium flow path 31.
  • the heat medium recovery unit 57 has a box shape with one surface as an open surface, and the heat exchange unit is included so that the second discharge port 35 of the second heat transfer body 9 is included in the open surface. It is installed on the third side surface 62 of 3. That is, a part of the side surface of the second heat transfer body 9 including the second discharge port 35 becomes a part of the inner wall of the heat medium recovery unit 57.
  • the heat medium recovery unit 57 has a second discharge pipe 59 that discharges the heat medium HC to the outside of the reaction device 1.
  • the heat exchange unit 3 can be used as any of a liquid-liquid heat exchanger, a gas-gas heat exchanger, and a gas-liquid heat exchanger.
  • the reaction fluid M and the heat medium HC may be either a gas or a liquid.
  • the synthesis by the endothermic reaction in the heat exchange unit 3 for example, there is a synthesis by a steam reforming reaction of methane represented by the formula (1) or a dry reforming reaction of methane represented by the formula (2).
  • the reaction fluid in these reactions is gaseous.
  • the heat medium HC a substance that does not corrode the constituent material of the heat exchange unit 3 is suitable, and in the case of a high temperature gas as in the present embodiment, a gaseous substance such as combustion gas or heated air is used. can. In addition, for example, it may be a liquid substance such as water and oil. However, when a gaseous substance is used as the heat medium HC, it is easier to handle than when a liquid medium is used.
  • the reaction fluid M introduced from the first introduction pipe 47 into the reaction fluid introduction unit 45 is distributed to each of the plurality of first introduction ports 20 in the first introduction space S1.
  • the reaction fluid M is introduced into the reaction flow path 17 from each first introduction port 20 and flows in the first flow path 22 along the Y direction.
  • the heat medium HC introduced from the second introduction pipe 55 to the heat medium introduction unit 53 is distributed to each of the plurality of second introduction ports 30 in the second introduction space S2.
  • the heat medium HC is introduced into the heat medium flow path 31 from each second introduction port 30 and circulates in the second flow path 36.
  • the second flow path 36 is also formed along the Y direction in accordance with the first flow path 22, but the flow direction of the heat medium HC is opposite to the flow direction of the reaction fluid M.
  • reaction fluid M Due to the flow between the reaction fluid M and the heat medium HC, heat exchange is performed between the reaction fluid M and the heat medium HC in the heat exchange unit 3, and the reaction fluid M is heated. Then, in the first flow path 22, the reaction fluid M undergoes an endothermic reaction at the reaction temperature in combination with the reaction promoting action of the first catalyst body 41, and the product P is produced. The product P is discharged from the first discharge port 21 to the first recovery space S3 in the product recovery unit 49 through the first confluence flow path 23.
  • the fluid discharged from the first discharge port 21 contains the reaction raw material that did not contribute to the production of the product P, in addition to the product P generated in the reaction flow path 17. There is also. Therefore, if no measures are taken, the fluid containing the remaining reaction raw material and the product P will be discharged to the outside of the reaction apparatus 1 as it is.
  • the second catalyst body 42 is provided in the first recovery space S3 of the product recovery unit 49. Further, since the fluid discharged into the first recovery space S3 is immediately after being discharged from the first discharge port 21, the high temperature is maintained. Therefore, the reaction raw material that did not contribute to the formation of the product P in the reaction flow path 17 is promoted again in the first recovery space S3 by the self-heat. Therefore, in the fluid discharged from the product recovery unit 49 to the outside of the reaction device 1 through the first discharge pipe 51, the residual ratio of the reaction raw material that did not contribute to the production of the product P is the second catalyst 42. It will be lower than when not used.
  • the heat medium HC flowing through the second flow path 36 and used for heat exchange is discharged from the second discharge port 35 to the second recovery space S4 in the heat medium recovery section 57 through the second confluence flow path 37. Will be done.
  • the heat medium HC recovered in the second recovery space S4 is discharged to the outside of the reaction device 1 through the second discharge pipe 59.
  • the reactor 1 is laminated on the first heat transfer body 7 and the first heat transfer body 7 having the first flow path 22 through which the first fluid containing the reaction raw material flows, and is used for heat exchange with the first fluid.
  • a second heat transfer body 9 having a second flow path 36 through which a second fluid flows is provided.
  • the reactor 1 has a first recovery space S3 facing the first discharge port 21 communicating with the first flow path 22 in the first heat transfer body 7, and is in the first flow path 22 due to the endothermic reaction of the reaction raw material.
  • a product recovery unit 49 for recovering the generated product P is provided. Further, the reaction apparatus 1 is installed in the product recovery unit 49 and includes a catalyst that promotes the endothermic reaction of the reaction raw material remaining in the first flow path 22 and discharged into the first recovery space S3.
  • the first fluid corresponds to the reaction fluid M in this embodiment.
  • the second fluid corresponds to the heat medium HC in this embodiment.
  • both the first fluid and the second fluid may be reaction fluids.
  • the catalyst such as the second catalyst body 42 since the catalyst such as the second catalyst body 42 is provided in the first recovery space S3 of the product recovery unit 49, it does not contribute to the formation of the product P in the reaction flow path 17.
  • the reaction of the reaction raw material is promoted again in the first recovery space S3. That is, when the reaction apparatus 1 is taken as a whole, a larger amount of product P can be obtained as compared with the case where a catalyst such as the second catalyst 42 is not used.
  • the catalyst such as the second catalyst 42 is used as in the present embodiment.
  • the temperature and flow rate of the heat medium HC can be reduced.
  • the temperature of the product P discharged from the reactor 1 is lower than that in the case where a catalyst such as the second catalyst 42 is not used.
  • a heat removal / cooling mechanism for lowering the temperature of the product P from the time when the product P is discharged from the reaction device 1. In some cases. In such a case, according to the present embodiment, the load of the mechanism is reduced or the design conditions are relaxed.
  • the reactor 1 which is advantageous for more effectively utilizing the amount of heat given for the reaction.
  • the reaction device 1 may include a second catalyst body 42 having a main body portion including a catalyst.
  • the product recovery unit 49 may have a connection unit 52 including an opening 52a for accommodating the main body unit in the first collection space S3.
  • the second catalyst body 42 may have a flange portion 43 attached to the connection portion 52 in a state where the main body portion is housed in the first recovery space S3.
  • the reaction device 1 may include a second catalyst body 42 having a main body portion including a catalyst.
  • the product recovery unit 49 may have a first discharge pipe 81 that discharges the product P to the external pipe 83.
  • the second catalyst body 42 may have a flange portion 43 attached to the first discharge pipe 81 in a state where the main body portion is housed in the first recovery space S3.
  • the work such as attachment or removal of the second catalyst body 42 by the operator becomes easy. Further, the product recovery unit 49 can hold the second catalyst body 42 via the first discharge pipe 81 even if the connection unit 52 as described above is not provided.
  • the first discharge pipe 81 may have a first flange portion 81b used for connection with the external pipe 83.
  • the external pipe 83 may have a second flange portion 83b that can be connected to the first flange portion 81b.
  • the flange portion 43 may be sandwiched between the first flange portion 81b and the second flange portion 83b and fastened.
  • the work of attaching or removing the second catalyst body 42 by the operator can be performed in accordance with the work of connecting the first discharge pipe 81 and the external pipe 83. As a result, the work process can be simplified.
  • the main body may be cylindrical or columnar.
  • the main body can be easily entered into the first recovery space S3 of the product recovery section 49 from the connection section 52 and the first discharge pipe 81. Further, since the surface area of the portion of the main body portion facing the first recovery space S3 can be increased, the reaction by the catalyst in the first recovery space S3 can be further promoted.
  • the main body may have a structural material for supporting the catalyst.
  • the entire main body portion, and thus the entire second catalyst body 42 becomes strong. Therefore, for example, the second catalyst 42 can easily hold the catalyst in the first recovery space S3 for a long period of time. Further, for example, when the operator attaches or removes the second catalyst body 42, the second catalyst body 42 is less likely to be damaged.
  • the catalyst may be porous.
  • the main body portion containing the porous catalyst is, for example, the fifth main body portion 74.
  • the main body may be composed of a single catalyst, for example, without using a structural material for supporting the catalyst. Further, when the catalyst is porous, the contact area with the fluid in the first recovery space S3 increases, so that the reaction by the catalyst in the first recovery space S3 can be further promoted.
  • the catalyst may be in the form of pellets.
  • the main body may have a cylinder containing a pellet-shaped catalyst.
  • the main body portion is, for example, the seventh main body portion 76.
  • the structural material may be cylindrical when the main body portion is tubular, and may have a plurality of through holes penetrating between the outside of the cylinder and the inside of the cylinder.
  • the fluid in the first recovery space S3 can move back and forth between the outside of the cylinder and the inside of the cylinder of the tubular structural material through a plurality of through holes, so that the catalyst can be used more. It becomes easier to contact.
  • the structural material may include a honeycomb structure having a honeycomb-like cross section.
  • the main body portion is, for example, the second main body portion 71.
  • the honeycomb structure 71a has a large surface area as a whole while securing a wide space area. Therefore, according to such a reaction device 1, for example, by supporting the catalyst on the entire surface of the structural material, the contact area with the fluid in the first recovery space S3 is larger than that in the case of the first main body 70. Can be wide.
  • the structural material may include a corrugated structure in which a corrugated plate having a wavy cross section is rolled into a tubular shape.
  • the main body portion is, for example, the third main body portion 72.
  • the corrugated structure 73a has a large surface area as a whole while securing a wide space area. Therefore, according to such a reaction device 1, for example, by supporting the catalyst on the entire surface of the structural material, the contact area with the fluid in the first recovery space S3 is larger than that in the case of the first main body 70. Can be wide.
  • the first catalyst body 41 installed in the reaction flow path 17 may be a corrugated plate-shaped rod whose cross section is curved in a wavy shape. Therefore, when the first catalyst body 41, which is such a corrugated plate-shaped rod, is adopted, the corrugated plate constituting the structural material of the first catalyst body 41 is diverted and the corrugated plate is rolled into a tubular shape. Therefore, it may be used as a structural material for the third main body portion 72. That is, when both the first catalyst body 41 and the second catalyst body 42 are adopted in the reaction device 1, the base materials used as the structural materials of the first catalyst body 41 or the second catalyst body 42 are individually used. It also has the advantage of not having to be prepared.
  • the structural material may be in the shape of a cylinder or a rod.
  • the main body may include a plurality of tubular or rod-shaped structural materials.
  • the main body portion is, for example, the sixth main body portion 75.
  • reaction device 1 when there are a plurality of tubular or rod-shaped structural materials on which a catalyst is supported in advance, those structural materials can be easily aggregated into one bundle.
  • the main body can be configured.
  • the structural material may include a plurality of boards.
  • the main body may include a holding body that holds a plurality of boards side by side in the tubular or columnar stretching direction of the main body.
  • the main body portion is, for example, the eighth main body portion 77.
  • reaction device 1 for example, when a plurality of structural materials such as a board 77a on which a catalyst is supported in advance are present, the structural materials are held by the holding body 77b so that the main body portion can be easily used. Can be configured.
  • the structural material may be a plate structure that is spirally stretched in a cylindrical or columnar stretching direction of the main body.
  • the main body portion is, for example, the ninth main body portion 78.
  • the plate structure 78a on which the catalyst is previously supported is held by the holding body 78b via a plurality of support rods 78c protruding from the holding body 78b, so that the main body portion can be easily obtained.
  • the plate structure 78a can define the flow direction of the fluid in the first recovery space S3 in the stretching direction according to the spiral shape. Therefore, according to such a reaction device 1, the plate structure 78a can facilitate the flow of the fluid in a desired direction, for example, toward the first discharge pipe 80, while promoting the reaction by the catalyst.
  • the main body may face the first discharge port 21.
  • reaction apparatus Next, the reaction apparatus according to the second embodiment will be described.
  • the reaction device 1 in which the second catalyst body 42 in which the catalyst is supported on the structural material is attached to the product recovery unit 49 is exemplified.
  • the catalyst 46 is supported on the product recovery unit 49 itself instead of the second catalyst body 42.
  • FIG. 17 is a partial cross-sectional view showing a product recovery unit 49 in a state where the catalyst 46 is supported with respect to the reaction device 1 according to the second embodiment.
  • a portion of the reaction device 1 including the product recovery unit 49 is cut along the XY plane.
  • the catalyst component that can be adopted in the catalyst 46 is the same as that adopted in the first catalyst body 41.
  • the catalyst 46 may be supported on the inner wall of the product recovery unit 49, for example, the entire surface of the inner wall side surface 49c.
  • the product may be supported on the inner wall upper surface 49a or the inner wall lower surface 49b of the product recovery unit 49.
  • the reaction apparatus 1 since the catalyst 46 faces the first recovery space S3, the case where the second catalyst body 42 is used without using the second catalyst body 42 in the first embodiment. Has the same effect as.
  • FIG. 18 is a side view showing the configuration of the reaction device 1 according to the third embodiment.
  • the catalyst 48 in the first recovery space S3 is partially drawn as a set of points.
  • the product recovery unit 49 may have the connection unit 52 adopted in the reaction device 1 according to the first embodiment. Further, the product recovery unit 49 may have a connection portion 58 including an opening 58a on the upper wall portion of the product recovery unit 49 in the Z direction, that is, on the inner wall upper surface surface 49a side of the product recovery unit 49. good.
  • the product recovery unit 49 has a first blank flange 54 that can be attached to the connection portion 52 by using bolts 65, and a first blank flange 54 that can be attached to the connection portion 58 by using bolts 65. 2
  • a blank flange 56 may be provided.
  • the operator when the catalyst 48 is housed in the first recovery space S3, the operator has the lower first blank flange 54 attached to the connecting portion 52 and the second blank flange 56 not attached.
  • the catalyst 48 can be introduced from the opening 58a of the connection portion 58 of the above.
  • the operator when the catalyst 48 is taken out from the first recovery space S3, the operator can easily take out the catalyst 48 by removing the first blank flange 54 from the connecting portion 52.
  • the reaction apparatus 1 since the catalyst 46 is present in the first recovery space S3, the second catalyst 42 is used without using the second catalyst 42 in the first embodiment. It has the same effect as the case. Further, since the first recovery space S3 is filled with the catalyst 46, the fluid discharged into the first recovery space S3 always comes into contact with the catalyst 48. Therefore, the reaction by the catalyst in the first recovery space S3 can be further promoted.
  • the fluid containing the product P is discharged from one first discharge port 21, but there are a plurality of first discharge ports 21. In some cases. In this case, there will be a plurality of product recovery units 49 in accordance with each of the first discharge ports 21. As described above, when a plurality of product recovery units 49 exist, the second catalyst body 42 and the catalyst 46 or the catalyst 48 equivalent thereto may be installed in each product recovery unit 49.
  • Reaction device 7 1st heat transfer body 9 2nd heat transfer body 21 1st discharge port 22 1st flow path 36 2nd flow path 42 2nd catalyst body 43 Flange part 46 Catalyst 48 Catalyst 49 Product recovery part 49c Inner wall side surface 52 Connection part 52a Opening part 70 1st main body part 71 2nd main body part 72 3rd main body part 73 4th main body part 74 5th main body part 75 6th main body part 76 7th main body part 77 8th main body part 78 9th main body Part 81 1st discharge pipe HC heat transfer medium M reaction fluid P product S3 1st recovery space

Abstract

A reaction device (1) comprises: a first heat transfer body (7) that has a first flow path for allowing a first fluid which contains a reaction raw material to flow therethrough; a second heat transfer body (9) that is stacked on the first heat transfer body (7) and that has a second flow path for allowing a second fluid which is used for heat exchange with the first fluid to flow therethrough; a product collection unit (49) that has a collection space which faces a discharge port (21) in communication with the first flow path in the first heat transfer body (7), and that collects a product which has been produced in the first flow path through endothermic reaction of the reaction raw material; and a catalyst body (42) that is installed in the product collection unit (49) and that accelerates the endothermic reaction of the reaction raw material which remained in the first flow path and which has been discharged into the collection space.

Description

反応装置Reactor
 本開示は、熱交換型の反応装置に関する。 This disclosure relates to a heat exchange type reactor.
 従来、一方又は双方が反応流体である第1流体と第2流体との熱交換により、反応流体に含まれる反応原料の反応を進行させて所望の物質を生成させる反応装置がある。特許文献1は、第1流体として反応流体であるガス混合物を流通させるための流路を構成する複数のプレートと、第2流体として別の反応流体であるガス混合物を流通させる複数のチューブとを備える反応装置を開示している。ここで、複数のプレートは、互いに交互に積層された、複数の長方形プレートと、複数の波形プレートとを含む。 Conventionally, there is a reaction device that advances the reaction of the reaction raw material contained in the reaction fluid to produce a desired substance by heat exchange between the first fluid and the second fluid, one or both of which are reaction fluids. In Patent Document 1, a plurality of plates constituting a flow path for circulating a gas mixture which is a reaction fluid as a first fluid, and a plurality of tubes for circulating a gas mixture which is another reaction fluid as a second fluid are provided. The reactor provided is disclosed. Here, the plurality of plates includes a plurality of rectangular plates and a plurality of corrugated plates, which are laminated alternately with each other.
特表2003-519563号公報Special Table 2003-591563 Gazette
 一般に、所望の物質を生成するための熱的反応を行う反応装置では、反応装置の出口における生成物を含む流体の組成は、種々の要因によりそのときの温度における平衡組成に達しない。そのため、生成物の生成量は、反応のために与えられた熱量から理論上得られる値を下回ることがある。このことは、特許文献1に開示されている積層型の反応装置においても同様であり、反応のために与えられた熱量をより有効に活用するための改良が望まれている。 Generally, in a reactor that carries out a thermal reaction to produce a desired substance, the composition of the fluid containing the product at the outlet of the reactor does not reach the equilibrium composition at that temperature due to various factors. Therefore, the amount of product produced may be less than the value theoretically obtained from the amount of heat given for the reaction. This also applies to the laminated type reactor disclosed in Patent Document 1, and improvement for more effectively utilizing the amount of heat given for the reaction is desired.
 そこで、本開示は、反応のために与えられた熱量をより有効に活用するのに有利となる反応装置を提供することを目的とする。 Therefore, it is an object of the present disclosure to provide a reaction apparatus which is advantageous for more effectively utilizing the amount of heat given for the reaction.
 本発明の一態様によれば、反応原料を含む第1流体を流通させる第1流路を有する第1伝熱体と、第1伝熱体に積層され、第1流体との熱交換に用いられる第2流体を流通させる第2流路を有する第2伝熱体と、第1伝熱体にある第1流路に連通する排出口に面する回収空間を有し、反応原料の吸熱反応により第1流路で生成された生成物を回収する生成物回収部と、生成物回収部に設置され、第1流路にて残存して回収空間に排出された反応原料の吸熱反応を促進させる触媒と、を備える。 According to one aspect of the present invention, a first heat transfer body having a first flow path through which a first fluid containing a reaction raw material is circulated is laminated on the first heat transfer body and used for heat exchange with the first fluid. It has a second heat transfer body having a second flow path through which the second fluid is circulated, and a recovery space facing a discharge port communicating with the first flow path in the first heat transfer body, and has a heat absorption reaction of the reaction raw material. Promotes the heat absorption reaction of the reaction raw material that is installed in the product recovery unit and the product recovery unit that collects the product produced in the first flow path and is discharged into the recovery space remaining in the first flow path. It is equipped with a catalyst to make it.
 また、上記の反応装置は、触媒を含む本体部を有する触媒体を備え、生成物回収部は、本体部を回収空間に収容させる開口部を含む接続部を有し、触媒体は、本体部を回収空間に収容させた状態で、接続部に取り付けられるフランジ部を有してもよい。反応装置は、触媒を含む本体部を有する触媒体を備え、生成物回収部は、生成物を外部配管へ排出する排出配管を有し、触媒体は、本体部を回収空間に収容させた状態で、排出配管に取り付けられるフランジ部を有してもよい。排出配管は、外部配管との連結に用いられる第1フランジ部を有し、外部配管は、第1フランジ部と接続可能な第2フランジ部を有し、フランジ部は、第1フランジ部と第2フランジ部とに挟まれて締結されてもよい。本体部は、筒状又は柱状であってもよい。本体部は、触媒を担持する構造材を有してもよい。触媒は、多孔質状であってもよい。触媒は、ペレット状であり、本体部は、ペレット状の触媒を収容する筒体を有してもよい。構造材は、本体部が筒状である場合には筒状であり、かつ、筒外部と筒内部とで貫通する複数の貫通穴を有してもよい。構造材は、断面がハニカム状となるハニカム構造体を含んでもよい。構造材は、断面が波状に湾曲したコルゲート板を筒型に丸められたコルゲート構造体を含んでもよい。構造材は、筒状又は棒状であり、本体部は、筒状又は棒状の構造材を複数含んでもよい。構造材は、複数の盤体を含み、本体部は、複数の盤体を、本体部の筒状又は柱状の延伸方向に並べて保持する保持体を含んでもよい。構造材は、本体部の筒状又は柱状の延伸方向に合わせてスパイラル状に延伸する板構造体であってもよい。本体部は、排出口に対向してもよい。触媒は、回収空間に面する生成物回収部の内壁に担持されてもよい。触媒は、回収空間に収納された粒状体であってもよい。 Further, the above-mentioned reaction apparatus includes a catalyst body having a main body portion including a catalyst, the product recovery unit has a connection portion including an opening for accommodating the main body portion in the recovery space, and the catalyst body is a main body portion. May have a flange portion attached to the connection portion in a state of being housed in the collection space. The reactor includes a catalyst body having a main body including a catalyst, the product recovery unit has a discharge pipe for discharging the product to an external pipe, and the catalyst body has the main body part housed in the recovery space. It may have a flange portion attached to the discharge pipe. The discharge pipe has a first flange portion used for connecting to the external pipe, the external pipe has a second flange portion that can be connected to the first flange portion, and the flange portion has the first flange portion and the first flange portion. 2 It may be sandwiched between the flange portion and fastened. The main body may be cylindrical or columnar. The main body may have a structural material that supports the catalyst. The catalyst may be porous. The catalyst is in the form of pellets, and the main body may have a cylinder for accommodating the pellet-shaped catalyst. The structural material may be cylindrical when the main body is tubular, and may have a plurality of through holes penetrating between the outside of the cylinder and the inside of the cylinder. The structural material may include a honeycomb structure having a honeycomb-like cross section. The structural material may include a corrugated structure in which a corrugated plate having a wavy cross section is rolled into a tubular shape. The structural material is tubular or rod-shaped, and the main body may include a plurality of tubular or rod-shaped structural materials. The structural material includes a plurality of board bodies, and the main body portion may include a holding body that holds the plurality of board bodies side by side in the tubular or columnar stretching direction of the main body portion. The structural material may be a plate structure that is spirally stretched in a cylindrical or columnar stretching direction of the main body. The main body may face the discharge port. The catalyst may be supported on the inner wall of the product recovery section facing the recovery space. The catalyst may be a granular material housed in the recovery space.
 本開示によれば、反応のために与えられた熱量をより有効に活用するのに有利となる反応装置を提供することができる。 According to the present disclosure, it is possible to provide a reactor that is advantageous for more effectively utilizing the amount of heat given for the reaction.
図1は、第1実施形態に係る反応装置の構成を示す側面図である。FIG. 1 is a side view showing the configuration of the reaction apparatus according to the first embodiment. 図2は、第1実施形態に係る反応装置の第1伝熱体を含む部位を示す平断面図である。FIG. 2 is a plan sectional view showing a portion of the reactor according to the first embodiment including the first heat transfer body. 図3は、第1実施形態に係る反応装置の第2伝熱体を含む部位を示す平断面図である。FIG. 3 is a plan sectional view showing a portion of the reactor according to the first embodiment including the second heat transfer body. 図4は、第1実施形態において採用される第1触媒体の構成例を示す斜視図である。FIG. 4 is a perspective view showing a configuration example of the first catalyst body adopted in the first embodiment. 図5は、第1実施形態において採用される第2触媒体の配置等を説明する図である。FIG. 5 is a diagram for explaining the arrangement and the like of the second catalyst body adopted in the first embodiment. 図6は、第2触媒体の構成例としての第1構成を示す斜視図である。FIG. 6 is a perspective view showing the first configuration as a configuration example of the second catalyst body. 図7は、第2触媒体の構成例としての第2構成を示す斜視図である。FIG. 7 is a perspective view showing a second configuration as a configuration example of the second catalyst body. 図8は、第2触媒体の構成例としての第3構成を示す斜視図である。FIG. 8 is a perspective view showing a third configuration as a configuration example of the second catalyst body. 図9は、第2触媒体の構成例としての第4構成を示す斜視図である。FIG. 9 is a perspective view showing a fourth configuration as a configuration example of the second catalyst body. 図10は、第2触媒体の構成例としての第5構成を示す斜視図である。FIG. 10 is a perspective view showing a fifth configuration as a configuration example of the second catalyst body. 図11は、第2触媒体の構成例としての第6構成を示す斜視図である。FIG. 11 is a perspective view showing a sixth configuration as a configuration example of the second catalyst body. 図12は、第2触媒体の構成例としての第7構成を示す斜視図である。FIG. 12 is a perspective view showing a seventh configuration as a configuration example of the second catalyst body. 図13は、第2触媒体の構成例としての第8構成を示す斜視図である。FIG. 13 is a perspective view showing an eighth configuration as a configuration example of the second catalyst body. 図14は、第2触媒体の構成例としての第9構成を示す斜視図である。FIG. 14 is a perspective view showing a ninth configuration as a configuration example of the second catalyst body. 図15は、第1実施形態において採用される他の生成物回収部の形状を示す図である。FIG. 15 is a diagram showing the shape of another product recovery unit adopted in the first embodiment. 図16は、第1実施形態において採用される他の生成物回収部の形状を示す図である。FIG. 16 is a diagram showing the shape of another product recovery unit adopted in the first embodiment. 図17は、第2実施形態に係る反応装置に採用される触媒を示す断面図である。FIG. 17 is a cross-sectional view showing a catalyst adopted in the reaction apparatus according to the second embodiment. 図18は、第3実施形態に係る反応装置に採用される触媒を示す側面図である。FIG. 18 is a side view showing a catalyst adopted in the reaction apparatus according to the third embodiment.
 以下、いくつかの例示的な実施形態について、図面を参照して詳細に説明する。ここで、実施形態に示す寸法、材料、その他、具体的な数値等は、例示にすぎず、特に断る場合を除き、本開示を限定するものではない。また、実質的に同一の機能及び構成を有する要素については、同一の符号を付することにより重複説明を省略し、本開示に直接関係のない要素については、図示を省略する。さらに、以下の各図では、積層方向にZ軸を取り、Z軸に垂直な平面内において、反応流路及び熱媒体流路の各延伸方向にY軸を取り、かつ、Y軸に垂直な方向にX軸を取る。 Hereinafter, some exemplary embodiments will be described in detail with reference to the drawings. Here, the dimensions, materials, and other specific numerical values shown in the embodiments are merely examples, and the present disclosure is not limited unless otherwise specified. Further, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate explanations, and elements not directly related to the present disclosure are omitted from the illustration. Further, in each of the following figures, the Z axis is taken in the stacking direction, the Y axis is taken in each stretching direction of the reaction flow path and the heat medium flow path in the plane perpendicular to the Z axis, and the Y axis is perpendicular to the Y axis. Take the X-axis in the direction.
 (第1実施形態)
 まず、第1実施形態に係る反応装置について説明する。図1は、第1実施形態に係る反応装置1の構成を示す側面図である。反応装置1は、反応流体Mと熱媒体HCとの熱交換を利用して生成物Pを生成する。反応流体Mとは、反応体としての反応原料を含む気体又は液体である。以下、反応流体Mは、一例として原料ガスである。生成物Pは、反応原料の熱的反応により生成された物質である。本実施形態における熱的反応は、吸熱反応である。また、熱媒体HCは、一例として高温ガスである。
(First Embodiment)
First, the reaction apparatus according to the first embodiment will be described. FIG. 1 is a side view showing the configuration of the reaction apparatus 1 according to the first embodiment. The reaction apparatus 1 produces a product P by utilizing heat exchange between the reaction fluid M and the heat medium HC. The reaction fluid M is a gas or a liquid containing a reaction raw material as a reactant. Hereinafter, the reaction fluid M is a raw material gas as an example. The product P is a substance produced by the thermal reaction of the reaction raw material. The thermal reaction in this embodiment is an endothermic reaction. Further, the heat medium HC is, for example, a high temperature gas.
 反応装置1は、熱交換部3と、反応流体導入部45と、生成物回収部49と、熱媒体導入部53と、熱媒体回収部57とを備える。 The reaction device 1 includes a heat exchange unit 3, a reaction fluid introduction unit 45, a product recovery unit 49, a heat medium introduction unit 53, and a heat medium recovery unit 57.
 熱交換部3は、反応流体Mと熱媒体HCとで熱交換を行わせて、反応流体Mに含まれる反応原料の熱的反応を進行させる。熱交換部3は、互いに積層される、第1伝熱体7と、第2伝熱体9と、第3伝熱体39とを含む。第1伝熱体7、第2伝熱体9及び第3伝熱体39は、それぞれ、耐熱性を有する熱伝導性素材で形成された平板状部材である。また、第1伝熱体7、第2伝熱体9及び第3伝熱体39の積層面の面積は、一例として、互いに同一である。本実施形態では、第1伝熱体7と第2伝熱体9とは、それぞれ複数ある。 The heat exchange unit 3 causes heat exchange between the reaction fluid M and the heat medium HC to promote the thermal reaction of the reaction raw material contained in the reaction fluid M. The heat exchange unit 3 includes a first heat transfer body 7, a second heat transfer body 9, and a third heat transfer body 39, which are laminated with each other. The first heat transfer body 7, the second heat transfer body 9, and the third heat transfer body 39 are flat plate-shaped members made of a heat-resistant heat-conducting material, respectively. Further, the areas of the laminated surfaces of the first heat transfer body 7, the second heat transfer body 9, and the third heat transfer body 39 are, for example, the same as each other. In the present embodiment, there are a plurality of the first heat transfer body 7 and the second heat transfer body 9, respectively.
 第1伝熱体7は、反応流体M又は生成物Pが流通する反応流路17を有する(図2参照)。第2伝熱体9は、熱媒体HCが流通する熱媒体流路31を有する(図3参照)。本実施形態では、熱交換部3は、反応流路17の本流部を流通する反応流体Mと、熱媒体流路31の本流部を流通する熱媒体HCとが、互いに反対方向に流れる対向流型である。 The first heat transfer body 7 has a reaction flow path 17 through which the reaction fluid M or the product P flows (see FIG. 2). The second heat transfer body 9 has a heat medium flow path 31 through which the heat medium HC flows (see FIG. 3). In the present embodiment, in the heat exchange unit 3, the reaction fluid M flowing through the main stream portion of the reaction flow path 17 and the heat medium HC flowing through the main stream portion of the heat medium flow path 31 flow in opposite directions to each other. It is a type.
 図2は、図1に示すII-II断面に相当する、反応装置1の平断面図である。図2では、第1伝熱体7を含む部分の反応装置1の構成及び形状が示されている。 FIG. 2 is a plan sectional view of the reactor 1 corresponding to the II-II cross section shown in FIG. FIG. 2 shows the configuration and shape of the reactor 1 in the portion including the first heat transfer body 7.
 反応流路17は、複数の第1流路22と、第1合流流路23とを含む。第1流路22は、反応流体Mに含まれる反応原料に、熱媒体流路31を流通する熱媒体HCから供給された熱を受容させて、吸熱反応を起こさせる反応領域を含む。第1流路22は、反応流路17の本流部に相当し、Z方向の上方を開として、流路断面を矩形とした溝である。本実施形態では、複数の第1流路22は、それぞれ、Y方向に沿って直線状に延伸し、X方向に沿って等間隔に並んでいる。第1流路22の一方の端部は、第1伝熱体7の一方の側面を含む熱交換部3の第1側面60で開放されている。第1側面60で開放されている第1流路22の端部が、反応流体Mが導入される第1導入口20である。第1流路22の他方の端部は、第1伝熱体7の他方の側面を含む熱交換部3の第2側面61の側で第1合流流路23に連通する。なお、図2では、第1流路22の数を一例として8つとしている。ただし、第1流路22の数は、特に限定されるものではない。 The reaction flow path 17 includes a plurality of first flow paths 22 and a first confluence flow path 23. The first flow path 22 includes a reaction region in which the reaction raw material contained in the reaction fluid M receives heat supplied from the heat medium HC flowing through the heat medium flow path 31 to cause an endothermic reaction. The first flow path 22 corresponds to the main stream portion of the reaction flow path 17, and is a groove having an open upper part in the Z direction and a rectangular cross section of the flow path. In the present embodiment, each of the plurality of first flow paths 22 extends linearly along the Y direction and is arranged at equal intervals along the X direction. One end of the first flow path 22 is opened by the first side surface 60 of the heat exchange unit 3 including one side surface of the first heat transfer body 7. The end of the first flow path 22 opened on the first side surface 60 is the first introduction port 20 into which the reaction fluid M is introduced. The other end of the first flow path 22 communicates with the first confluence flow path 23 on the side of the second side surface 61 of the heat exchange unit 3 including the other side surface of the first heat transfer body 7. In FIG. 2, the number of the first flow paths 22 is set to 8 as an example. However, the number of the first flow paths 22 is not particularly limited.
 第1伝熱体7は、第1基部11と、2つの第1側壁13と、複数の第1中間壁15と、第1隔壁19とを含む。第1基部11は、第1伝熱体7のXY平面全体を網羅する板部である。第1側壁13は、第1基部11の一方の主表面上で、第1流路22の延伸方向に対して垂直方向となるX方向の側端にそれぞれ設けられる壁部である。複数の第1中間壁15は、第1基部11の一方の主表面上で、2つの第1側壁13に挟まれ、それぞれ、第1側壁13に対して平行に並び、かつ、等間隔で設けられる壁部である。また、第1隔壁19は、第1基部11の一方の主表面上の第2側面61側で、第1流路22の延伸方向に対して垂直方向となるX方向に沿って設けられる。ここで、仮に第1流路22が第2側面61まで延伸すると、第1流路22は、熱媒体HCが導入されている第2導入空間S2に突き当たる。そこで、第1隔壁19は、複数の第1流路22を流通してきた生成物P又は反応流体Mの進行方向を変化させて、第1流路22が第2導入空間S2に突き当たらないように隔てている。 The first heat transfer body 7 includes a first base portion 11, two first side walls 13, a plurality of first intermediate walls 15, and a first partition wall 19. The first base portion 11 is a plate portion that covers the entire XY plane of the first heat transfer body 7. The first side wall 13 is a wall portion provided on one main surface of the first base portion 11 at a side end in the X direction perpendicular to the stretching direction of the first flow path 22. The plurality of first intermediate walls 15 are sandwiched between two first side walls 13 on one main surface of the first base 11, respectively, arranged parallel to the first side wall 13 and provided at equal intervals. It is a wall part to be sewn. Further, the first partition wall 19 is provided on the second side surface 61 side on one main surface of the first base portion 11 along the X direction which is perpendicular to the stretching direction of the first flow path 22. Here, if the first flow path 22 extends to the second side surface 61, the first flow path 22 abuts on the second introduction space S2 in which the heat medium HC is introduced. Therefore, the first partition wall 19 changes the traveling direction of the product P or the reaction fluid M flowing through the plurality of first flow paths 22 so that the first flow path 22 does not hit the second introduction space S2. It is separated by.
 第1合流流路23は、Z方向の上方を開として、流路断面を矩形とした溝であり、第1隔壁19の内側面に沿って直線状に設けられている。第1側壁13は、生成物Pを第1伝熱体7の外部に排出する第1排出口21を有する。第1排出口21は、一例として、第3側面62から外部に向けて開放される。第3側面62は、熱交換部3における第1側面60及び第2側面61とは垂直となるYZ平面のうちの一方の側面である。 The first merging flow path 23 is a groove having a rectangular cross section of the flow path with the upper side in the Z direction open, and is provided linearly along the inner side surface of the first partition wall 19. The first side wall 13 has a first discharge port 21 for discharging the product P to the outside of the first heat transfer body 7. As an example, the first discharge port 21 is opened to the outside from the third side surface 62. The third side surface 62 is one side surface of the YZ plane perpendicular to the first side surface 60 and the second side surface 61 in the heat exchange unit 3.
 また、熱交換部3は、第1伝熱体7と第2伝熱体9とを積層して構成されるものであるので、第1伝熱体7の四方の側面は、熱交換部3の四方の側面である第1側面60、第2側面61、第3側面62及び第4側面63のそれぞれ一部に相当する。 Further, since the heat exchange unit 3 is configured by laminating the first heat transfer body 7 and the second heat transfer body 9, the four side surfaces of the first heat transfer body 7 are the heat exchange unit 3. It corresponds to a part of each of the first side surface 60, the second side surface 61, the third side surface 62, and the fourth side surface 63, which are the four side surfaces of the above.
 図3は、図2に示すIII-III断面に相当する、反応装置1の平断面図である。図3では、第2伝熱体9を含む部分の反応装置1の構成及び形状が示されている。 FIG. 3 is a plan sectional view of the reactor 1 corresponding to the cross section III-III shown in FIG. FIG. 3 shows the configuration and shape of the reactor 1 in the portion including the second heat transfer body 9.
 熱媒体流路31は、複数の第2流路36と、第2合流流路37とを含む。第2流路36を流通する熱媒体HCは、第2伝熱体9に積層されている第1伝熱体7へ熱を供給する。第2流路36は、熱媒体流路31の本流部に相当し、Z方向の上方を開として、流路断面を矩形とした溝である。本実施形態では、複数の第2流路36は、それぞれ、Y方向に沿って直線状に延伸し、X方向に沿って等間隔に並んでいる。第2流路36の一方の端部は、第2側面61で開放されている。第2側面61で開放されている第2流路36の端部が、熱媒体HCが導入される第2導入口30である。第2流路36の他方の端部は、第1側面60の側で第2合流流路37に連通する。なお、図3では、第2流路36の数を、一例として、第1伝熱体7に形成されている第1流路22の数又は配置に合わせて8つとしている。ただし、第2流路36の数は、特に限定されるものではなく、第1伝熱体7に形成されている第1流路22の数を考慮し、さらに多くてもよい。 The heat medium flow path 31 includes a plurality of second flow paths 36 and a second merging flow path 37. The heat medium HC flowing through the second flow path 36 supplies heat to the first heat transfer body 7 laminated on the second heat transfer body 9. The second flow path 36 corresponds to the main flow portion of the heat medium flow path 31, and is a groove having an open upper part in the Z direction and a rectangular cross section of the flow path. In the present embodiment, each of the plurality of second flow paths 36 extends linearly along the Y direction and is arranged at equal intervals along the X direction. One end of the second flow path 36 is open at the second side surface 61. The end of the second flow path 36 opened on the second side surface 61 is the second introduction port 30 into which the heat medium HC is introduced. The other end of the second flow path 36 communicates with the second merging flow path 37 on the side of the first side surface 60. In FIG. 3, the number of the second flow paths 36 is set to eight, for example, according to the number or arrangement of the first flow paths 22 formed in the first heat transfer body 7. However, the number of the second flow paths 36 is not particularly limited, and may be further increased in consideration of the number of the first flow paths 22 formed in the first heat transfer body 7.
 第2伝熱体9は、第2基部25と、2つの第2側壁27と、複数の第2中間壁29と、第2隔壁33とを含む。第2基部25は、第2伝熱体9のXY平面全体を網羅する板部である。第2側壁27は、第2基部25の一方の主表面上で、第2流路36の延伸方向に対して垂直方向となるX方向の側端にそれぞれ設けられる壁部である。複数の第2中間壁29は、第2基部25の一方の主表面上で、2つの第2側壁27に挟まれ、それぞれ、第2側壁27に対して平行に並び、かつ、等間隔で設けられる壁部である。また、第2隔壁33は、第2基部25の一方の主表面上の第1側面60側で、第2流路36の延伸方向に対して垂直方向となるX方向に沿って設けられる。ここで、仮に第2流路36が第1側面60まで延伸すると、第2流路36は、反応流体Mが導入されている第1導入空間S1に突き当たる。そこで、第2隔壁33は、複数の第2流路36を流通してきた熱媒体HCの進行方向を変化させて、第2流路36が第1導入空間S1に突き当たらないように隔てている。 The second heat transfer body 9 includes a second base portion 25, two second side walls 27, a plurality of second intermediate walls 29, and a second partition wall 33. The second base portion 25 is a plate portion that covers the entire XY plane of the second heat transfer body 9. The second side wall 27 is a wall portion provided on one main surface of the second base portion 25 at the side end in the X direction perpendicular to the extending direction of the second flow path 36. The plurality of second intermediate walls 29 are sandwiched between two second side walls 27 on one main surface of the second base 25, are arranged parallel to the second side wall 27, and are provided at equal intervals. It is a wall part to be sewn. Further, the second partition wall 33 is provided on the first side surface 60 side on one main surface of the second base portion 25 along the X direction which is the direction perpendicular to the stretching direction of the second flow path 36. Here, if the second flow path 36 is extended to the first side surface 60, the second flow path 36 abuts on the first introduction space S1 in which the reaction fluid M is introduced. Therefore, the second partition wall 33 changes the traveling direction of the heat medium HC that has flowed through the plurality of second flow paths 36, and separates the second flow path 36 so as not to hit the first introduction space S1. ..
 第2合流流路37は、Z方向の上方を開として、流路断面を矩形とした溝であり、第2隔壁33の内側面に沿って直線状に設けられている。第2側壁27は、熱媒体HCを第2伝熱体9の外部に排出する第2排出口35を有する。第2合流流路37の一方の端部は、第2排出口35に連通する。第2排出口35は、一例として、第3側面62から外部に向けて開放される。 The second merging flow path 37 is a groove having a rectangular cross section of the flow path with the upper side in the Z direction open, and is provided linearly along the inner side surface of the second partition wall 33. The second side wall 27 has a second discharge port 35 that discharges the heat medium HC to the outside of the second heat transfer body 9. One end of the second merging flow path 37 communicates with the second discharge port 35. The second discharge port 35 is opened to the outside from the third side surface 62 as an example.
 また、熱交換部3は、第1伝熱体7と第2伝熱体9とを積層して構成されるものであるので、第2伝熱体9の四方の側面は、熱交換部3の四方の側面である第1側面60、第2側面61、第3側面62及び第4側面63のそれぞれ一部に相当する。 Further, since the heat exchange unit 3 is configured by laminating the first heat transfer body 7 and the second heat transfer body 9, the four side surfaces of the second heat transfer body 9 are the heat exchange unit 3. It corresponds to a part of each of the first side surface 60, the second side surface 61, the third side surface 62, and the fourth side surface 63, which are the four side surfaces of the above.
 第3伝熱体39は、熱交換部3のZ方向の最上部に設置される蓋体である。第3伝熱体39の下方に向かって第2伝熱体9と第1伝熱体7とを交互に積層し接合することで、接合体又は積層体としての熱交換部3が形成される。このとき、第1流路22と、第2流路36とは、第1基部11又は第2基部25を介して並行に隣り合う。熱交換部3の組み立ての際には、各部材間をTIG(Tungsten Inert Gas)溶接や拡散接合等のような接合方法を利用して固着させることで、各部材間の接触不良に起因する伝熱性の低下等が抑止される。 The third heat transfer body 39 is a lid body installed at the uppermost part of the heat exchange unit 3 in the Z direction. By alternately laminating and joining the second heat transfer body 9 and the first heat transfer body 7 toward the lower side of the third heat transfer body 39, the heat exchange portion 3 as the joint body or the laminated body is formed. .. At this time, the first flow path 22 and the second flow path 36 are adjacent to each other in parallel via the first base portion 11 or the second base portion 25. When assembling the heat exchange unit 3, each member is fixed by using a joining method such as TIG (Tungsten Inert Gas) welding or diffusion joining, so that the contact between the members is poor. The decrease in heat is suppressed.
 熱交換部3を構成する各要素の熱伝導性素材としては、鉄系合金やニッケル合金等の耐熱性金属が好適である。具体的には、ステンレス綱等の鉄系合金、インコネル625(登録商標)、インコネル617(登録商標)、Haynes230(登録商標)等のニッケル合金のような耐熱合金が挙げられる。これらの熱伝導性素材は、第1流路22での反応進行や熱媒体HCとして使用し得る流体に対する耐久性又は耐食性を有するので好ましいが、これらに限定されるものではない。また、熱伝導性素材は、鉄系メッキ鋼や、フッ素樹脂等の耐熱樹脂で被覆した金属、又は、カーボングラファイト等でもよい。 As the heat conductive material of each element constituting the heat exchange unit 3, a heat-resistant metal such as an iron-based alloy or a nickel alloy is suitable. Specific examples thereof include iron-based alloys such as stainless steel, and heat-resistant alloys such as nickel alloys such as Inconel 625 (registered trademark), Inconel 617 (registered trademark), and Haynes 230 (registered trademark). These heat conductive materials are preferable because they have durability or corrosion resistance against the reaction progress in the first flow path 22 and the fluid that can be used as the heat medium HC, but are not limited thereto. Further, the heat conductive material may be iron-based plated steel, a metal coated with a heat-resistant resin such as fluororesin, carbon graphite, or the like.
 なお、熱交換部3は、それぞれ少なくとも1つの第1伝熱体7と第2伝熱体9との一対の組で構成されてもよい。ただし、熱交換性能を向上させる観点から、伝熱体の数は、各図に例示しているように多い方が望ましい。また、1つの第1伝熱体7に形成されている第1流路22、及び、1つの第2伝熱体9に形成されている第2流路36の数も、限定されるものではなく、熱交換部3の設計条件や伝熱効率などを考慮して適宜変更されてもよい。さらに、反応装置1は、熱交換部3からの放熱を抑制して熱損失を抑えるために、ハウジング又は断熱材で熱交換部3の周囲を覆う構成としてもよい。 The heat exchange unit 3 may be composed of a pair of at least one first heat transfer body 7 and a second heat transfer body 9, respectively. However, from the viewpoint of improving the heat exchange performance, it is desirable that the number of heat transfer bodies is large as illustrated in each figure. Further, the number of the first flow path 22 formed in one first heat transfer body 7 and the number of second flow paths 36 formed in one second heat transfer body 9 is not limited. However, it may be appropriately changed in consideration of the design conditions of the heat exchange unit 3, the heat transfer efficiency, and the like. Further, the reaction device 1 may be configured to cover the periphery of the heat exchange unit 3 with a housing or a heat insulating material in order to suppress heat dissipation from the heat exchange unit 3 and suppress heat loss.
 また、第1流路22には、触媒体が設置されてもよい。ここで、本実施形態では、第1流路22に触媒体を設置し得る他に、生成物回収部49にも触媒又は触媒体を設置する。そこで、生成物回収部49に設置する触媒又は触媒体と区別するために、以下、第1流路22に設置される触媒体を第1触媒体41と表記する。 Further, a catalyst body may be installed in the first flow path 22. Here, in the present embodiment, in addition to installing the catalyst in the first flow path 22, the catalyst or the catalyst is also installed in the product recovery unit 49. Therefore, in order to distinguish it from the catalyst or the catalyst body installed in the product recovery unit 49, the catalyst body installed in the first flow path 22 is hereinafter referred to as the first catalyst body 41.
 図4は、第1触媒体41の構成例を示す斜視図である。 FIG. 4 is a perspective view showing a configuration example of the first catalyst body 41.
 第1触媒体41に含まれる触媒は、反応原料の吸熱反応の進行促進に有効な活性金属を主成分とし、熱交換部3で遂行される合成反応に基づいて反応促進に適したものが適宜選択される。触媒成分として採用され得る活性金属としては、例えば、Ni(ニッケル)、Co(コバルト)、Fe(鉄)、Pt(白金)、Ru(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)等が挙げられる。なお、複数種の活性金属を組み合わせてもよい。 The catalyst contained in the first catalyst body 41 is mainly composed of an active metal effective for promoting the progress of the endothermic reaction of the reaction raw material, and a catalyst suitable for promoting the reaction based on the synthetic reaction carried out by the heat exchange unit 3 is appropriate. Be selected. Examples of the active metal that can be adopted as the catalyst component include Ni (nickel), Co (cobalt), Fe (iron), Pt (platinum), Ru (ruthenium), Rh (rhodium), Pd (palladium) and the like. Be done. In addition, you may combine a plurality of kinds of active metals.
 第1触媒体41は、例えば、触媒を構造材に担持することにより調製される。構造材の材質は、耐熱性の金属から、成形加工が可能で、触媒の担持が可能なものが選択される。第1触媒体41は、反応流体Mとの接触面積を増加させるために、断面が波状に丸く湾曲したコルゲート板状やギザギザに屈曲した棒体であってもよい。耐熱性の金属としては、Fe(鉄)、Cr(クロム)、Al(アルミニウム)、Y(イットリウム)、Co(コバルト)、Ni(ニッケル)、Mg(マグネシウム)、Ti(チタン)、Mo(モリブデン)、W(タングステン)、Nb(ニオブ)、Ta(タンタル)等の金属の1種又は複数種を主成分とする耐熱合金がある。例えば、Fecralloy(登録商標)等の耐熱合金製の薄板状構造材を成形加工して、第1触媒体41を構成してもよい。触媒の担持方法としては、表面修飾等によって構造材上に直接担持する方法や、担体を用いて間接的に担持する方法などがあり、実用的には、担体を用いた触媒の担持が容易である。担体は、熱交換部3で実施される反応を考慮して、反応の進行を阻害せず耐久性を有する材料であって、使用する触媒を良好に担持し得るものが適宜選択される。例えば、Al23(アルミナ)、TiO2(チタニア)、ZrO2(ジルコニア)、CeO2(セリア)、SiO2(シリカ)等の金属酸化物が挙げられ、1種又は複数種を選択して担体として使用することができる。担体を用いた担持方法としては、例えば、成形した構造材の表面に触媒と担体との混合物層を形成する方式や、担体層を形成した後に表面修飾等によって触媒を担持させる方式などが挙げられる。 The first catalyst body 41 is prepared, for example, by supporting a catalyst on a structural material. As the material of the structural material, one that can be molded and can support a catalyst is selected from heat-resistant metals. The first catalyst body 41 may be a corrugated plate whose cross section is curved in a wavy shape or a rod body which is bent in a zigzag manner in order to increase the contact area with the reaction fluid M. Heat-resistant metals include Fe (iron), Cr (chromium), Al (aluminum), Y (yttrium), Co (cobalt), Ni (nickel), Mg (magnesium), Ti (tantalum), and Mo (molybdenum). ), W (tungsten), Nb (niobium), Ta (tantalum) and other metals. For example, a thin plate-shaped structural material made of a heat-resistant alloy such as Feclally (registered trademark) may be molded to form the first catalyst body 41. As a method of supporting the catalyst, there are a method of directly supporting it on a structural material by surface modification and the like, and a method of indirectly supporting it using a carrier. In practical use, it is easy to support a catalyst using a carrier. be. As the carrier, in consideration of the reaction carried out in the heat exchange unit 3, a material having durability that does not hinder the progress of the reaction and that can satisfactorily support the catalyst to be used is appropriately selected. Examples thereof include metal oxides such as Al 2 O 3 (alumina), TiO 2 (titania), ZrO 2 (zirconia), CeO 2 (ceria), and SiO 2 (silica), and one or more types are selected. Can be used as a carrier. Examples of the supporting method using a carrier include a method of forming a mixture layer of a catalyst and a carrier on the surface of a molded structural material, and a method of supporting a catalyst by surface modification or the like after forming a carrier layer. ..
 一方、第2流路36には、不図示であるが、熱媒体HCとの接触面積を増加させて熱媒体HCと第2伝熱体9との間の伝熱を促進するための伝熱促進体が設置されてもよい。伝熱促進体の形状は、第2伝熱体9との接触面積を確保するために、コルゲート板状であってもよい。また、伝熱促進体を構成する熱伝導性素材としては、アルミニウム、銅、ステンレス鋼、鉄系メッキ鋼等の金属が挙げられる。 On the other hand, although not shown in the second flow path 36, heat transfer for increasing the contact area with the heat medium HC and promoting heat transfer between the heat medium HC and the second heat transfer body 9 is promoted. A facilitator may be installed. The shape of the heat transfer promoter may be a corrugated plate in order to secure a contact area with the second heat transfer body 9. Examples of the heat conductive material constituting the heat transfer promoter include metals such as aluminum, copper, stainless steel, and iron-based plated steel.
 反応流体導入部45は、複数の第1導入口20のそれぞれに反応流体Mを分配する第1蓋体である。反応流体導入部45は、凹状に湾曲した形状を有し、反応流路17の複数の第1導入口20が開放されている熱交換部3の第1側面60を覆い、熱交換部3との間に第1導入空間S1を形成する。反応流体導入部45は、熱交換部3に対して着脱可能又は開閉可能である。作業者は、反応流体導入部45の着脱等を行うことで、例えば、反応流路17に対する第1触媒体41の挿入や抜き出しを行うことができる。また、反応流体導入部45は、反応流体Mを外部から内部へ導入する第1導入配管47を有する。第1導入配管47は、第1側面60のXZ平面上のおおよそ中心に対向し、複数の第1導入口20の開口方向に沿って連接されている。 The reaction fluid introduction unit 45 is a first lid that distributes the reaction fluid M to each of the plurality of first introduction ports 20. The reaction fluid introduction unit 45 has a concavely curved shape, covers the first side surface 60 of the heat exchange unit 3 in which the plurality of first introduction ports 20 of the reaction flow path 17 are open, and the heat exchange unit 3 and the heat exchange unit 3. A first introduction space S1 is formed between the two. The reaction fluid introduction unit 45 can be attached to and detached from the heat exchange unit 3 or can be opened and closed. The operator can insert or remove the first catalyst body 41 into or out of the reaction flow path 17, for example, by attaching or detaching the reaction fluid introduction unit 45. Further, the reaction fluid introduction unit 45 has a first introduction pipe 47 for introducing the reaction fluid M from the outside to the inside. The first introduction pipe 47 faces approximately the center of the first side surface 60 on the XZ plane, and is connected along the opening direction of the plurality of first introduction ports 20.
 生成物回収部49は、反応流路17を流通した生成物Pを回収する第1回収空間S3を有する第1導管部である。本実施形態では、生成物回収部49は、1つの面を開放面とする箱形状を有し、第1伝熱体7の第1排出口21が開放面に含まれるように、熱交換部3の第3側面62に設置される。つまり、第1排出口21を含む第1伝熱体7の側面の一部は、生成物回収部49の内壁の一部となる。また、生成物回収部49は、生成物Pを反応装置1の外部へ排出する第1排出配管51を有する。 The product recovery unit 49 is a first conduit unit having a first recovery space S3 for recovering the product P that has flowed through the reaction flow path 17. In the present embodiment, the product recovery unit 49 has a box shape with one surface as an open surface, and the heat exchange unit is included so that the first discharge port 21 of the first heat transfer body 7 is included in the open surface. It is installed on the third side surface 62 of 3. That is, a part of the side surface of the first heat transfer body 7 including the first discharge port 21 becomes a part of the inner wall of the product recovery unit 49. Further, the product recovery unit 49 has a first discharge pipe 51 for discharging the product P to the outside of the reaction device 1.
 また、生成物回収部49には、触媒体が設置される。以下、生成物回収部49に設置される触媒体を、第1流路22に設置され得る第1触媒体41と区別して、第2触媒体42と表記する。 Further, a catalyst body is installed in the product recovery unit 49. Hereinafter, the catalyst body installed in the product recovery unit 49 will be referred to as a second catalyst body 42 in order to distinguish it from the first catalyst body 41 that can be installed in the first flow path 22.
 図5は、第2触媒体42の配置等を説明する図である。図5は、基本的には、第2触媒体42が設置されている生成物回収部49をYZ平面に沿って切断した断面図である。ただし、第2触媒体42の一部のみ、側面図で示されている。 FIG. 5 is a diagram for explaining the arrangement and the like of the second catalyst body 42. FIG. 5 is basically a cross-sectional view of the product recovery unit 49 in which the second catalyst body 42 is installed, cut along the YZ plane. However, only a part of the second catalyst body 42 is shown in the side view.
 第2触媒体42を設置する生成物回収部49は、上記のとおり、Z方向に沿って配列されている複数の第1排出口21を開放面に含む形状を有する。そのため、第1回収空間S3の形状も、複数の第1排出口21の配列に合わせて、Z方向に沿って細長い。そこで、本実施形態では、第2触媒体42は、第1回収空間S3の延伸方向に合わせて細長い形状を有する。 As described above, the product recovery unit 49 in which the second catalyst body 42 is installed has a shape including a plurality of first discharge ports 21 arranged along the Z direction in the open surface. Therefore, the shape of the first recovery space S3 is also elongated along the Z direction in accordance with the arrangement of the plurality of first discharge ports 21. Therefore, in the present embodiment, the second catalyst body 42 has an elongated shape in accordance with the stretching direction of the first recovery space S3.
 図6は、第2触媒体42の構成例としての第1構成42aを示す図である。第1構成42aは、第1本体部70と、フランジ部43と、支持部44とを備える。 FIG. 6 is a diagram showing a first configuration 42a as a configuration example of the second catalyst body 42. The first configuration 42a includes a first main body portion 70, a flange portion 43, and a support portion 44.
 第1本体部70は、第1触媒体41と同様に、触媒を構造材に担持することにより調製される。第1本体部70において採用し得る触媒成分や構造材の材質は、第1触媒体41に採用されるものと同様である。第1本体部70の形状は、筒状であり、例えば、外径D1の円筒形である。触媒は、円筒形である構造材の外周面及び内周面に担持される。なお、第1本体部70の断面形状は、円環に限定されず、例えば多角形環であってもよい。 The first main body 70 is prepared by supporting a catalyst on a structural material in the same manner as the first catalyst 41. The catalyst components and structural materials that can be used in the first main body 70 are the same as those used in the first catalyst 41. The shape of the first main body 70 is a cylinder, for example, a cylinder having an outer diameter D1. The catalyst is supported on the outer peripheral surface and the inner peripheral surface of the cylindrical structural material. The cross-sectional shape of the first main body 70 is not limited to a circular ring, and may be, for example, a polygonal ring.
 フランジ部43は、第2触媒体42を生成物回収部49に設置する際に、生成物回収部49に予め設けられている接続部52に取り付けられる。フランジ部43の形状は、例えば円板形である。なお、フランジ部43の形状は、基本的には、生成物回収部49の接続部52の形状との関係で規定されるものであるが、特に限定されるものではない。フランジ部43は、接続部52への取り付けに用いられるボルト65を貫通させるための複数の貫通穴43aを有する。 The flange portion 43 is attached to the connection portion 52 previously provided in the product recovery unit 49 when the second catalyst body 42 is installed in the product recovery unit 49. The shape of the flange portion 43 is, for example, a disk shape. The shape of the flange portion 43 is basically defined in relation to the shape of the connection portion 52 of the product recovery portion 49, but is not particularly limited. The flange portion 43 has a plurality of through holes 43a for penetrating the bolt 65 used for attachment to the connecting portion 52.
 支持部44は、フランジ部43に連接され、第1本体部70を支持する。例えば、フランジ部43の形状が円板形である場合には、支持部44は、外径を第1本体部70の外径D1に合わせた円筒形で、第1本体部70及びフランジ部43と同軸上にある。なお、支持部44は、第1本体部70を構成する構造材又はフランジ部43と予め一体化されたものであってもよい。 The support portion 44 is connected to the flange portion 43 and supports the first main body portion 70. For example, when the shape of the flange portion 43 is a disk shape, the support portion 44 has a cylindrical shape whose outer diameter matches the outer diameter D1 of the first main body portion 70, and the first main body portion 70 and the flange portion 43. Is on the same axis as. The support portion 44 may be integrated with the structural material or the flange portion 43 constituting the first main body portion 70 in advance.
 図7は、第2触媒体42の構成例としての第2構成42bを示す図である。第2構成42bは、第2本体部71と、フランジ部43と、支持部44とを備える。ここで、フランジ部43及び支持部44は、第1構成42aを構成するものと同一であってもよい。 FIG. 7 is a diagram showing a second configuration 42b as a configuration example of the second catalyst body 42. The second configuration 42b includes a second main body portion 71, a flange portion 43, and a support portion 44. Here, the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
 第2本体部71は、第1触媒体41と同様に、触媒を構造材に担持することにより調製される。第2本体部71において採用し得る触媒成分や構造材の材質は、第1触媒体41に採用されるものと同様である。第2本体部71の全体的な概略形状は、外径D1の円筒状である。ただし、第2本体部71の内部は、断面がハニカム状となるハニカム構造体71aで構成されている。触媒は、例えば、円筒形構造材の外周面及び内周面と、ハニカム構造体71aである構造材の表面とに担持される。なお、第2本体部71の筒部分の断面形状は、円環に限定されず、例えば多角形環であってもよい。 The second main body 71 is prepared by supporting the catalyst on the structural material in the same manner as the first catalyst 41. The catalyst components and structural materials that can be used in the second main body 71 are the same as those used in the first catalyst 41. The overall schematic shape of the second main body 71 is a cylinder having an outer diameter D1. However, the inside of the second main body 71 is composed of a honeycomb structure 71a having a honeycomb-shaped cross section. The catalyst is supported, for example, on the outer peripheral surface and the inner peripheral surface of the cylindrical structural material and the surface of the structural material which is the honeycomb structure 71a. The cross-sectional shape of the tubular portion of the second main body portion 71 is not limited to a circular ring, and may be, for example, a polygonal ring.
 図8は、第2触媒体42の構成例としての第3構成42cを示す図である。第3構成42cは、第3本体部72と、フランジ部43と、支持部44とを備える。ここで、フランジ部43及び支持部44は、第1構成42aを構成するものと同一であってもよい。 FIG. 8 is a diagram showing a third configuration 42c as a configuration example of the second catalyst body 42. The third configuration 42c includes a third main body portion 72, a flange portion 43, and a support portion 44. Here, the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
 第3本体部72は、第1触媒体41と同様に、触媒を構造材に担持することにより調製される。第3本体部72において採用し得る触媒成分や構造材の材質は、第1触媒体41に採用されるものと同様である。第3本体部72の全体的な概略形状は、外径D1の筒状である。ただし、具体的には、第3本体部72は、断面が波状に湾曲したコルゲート板を筒型に丸めて構成したコルゲート構造体で構成されている。この場合、触媒は、コルゲート構造体である構造材の表面に担持される。 The third main body 72 is prepared by supporting the catalyst on the structural material in the same manner as the first catalyst 41. The catalyst components and structural materials that can be used in the third main body 72 are the same as those used in the first catalyst 41. The overall schematic shape of the third main body 72 is a cylinder having an outer diameter D1. However, specifically, the third main body 72 is composed of a corrugated structure formed by rolling a corrugated plate having a wavy cross section into a tubular shape. In this case, the catalyst is supported on the surface of the structural material which is a corrugated structure.
 図9は、第2触媒体42の構成例としての第4構成42dを示す図である。第4構成42dは、第4本体部73と、フランジ部43と、支持部44とを備える。ここで、フランジ部43及び支持部44は、第1構成42aを構成するものと同一であってもよい。 FIG. 9 is a diagram showing a fourth configuration 42d as a configuration example of the second catalyst body 42. The fourth configuration 42d includes a fourth main body portion 73, a flange portion 43, and a support portion 44. Here, the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
 第4本体部73は、第1触媒体41と同様に、触媒を構造材に担持することにより調製される。第4本体部73において採用し得る触媒成分や構造材の材質は、第1触媒体41に採用されるものと同様である。第4本体部73の全体的な概略形状は、外径D1の円筒状である。ただし、第4本体部73の内部は、第3本体部72と同様に、断面が波状に湾曲したコルゲート板を筒型に丸めて構成したコルゲート構造体73aで構成されている。触媒は、例えば、円筒形構造材の外周面及び内周面と、コルゲート構造体73aである構造材の表面に担持される。また、円筒形構造材には、図9に示すように、円筒外部と円筒内部との間で生成物を流通しやすくするために、複数の貫通穴が形成されていてもよい。なお、第4本体部73の筒部分の断面形状は、円環に限定されず、例えば多角形環であってもよい。 The fourth main body 73 is prepared by supporting the catalyst on the structural material in the same manner as the first catalyst 41. The catalyst components and structural materials that can be used in the fourth main body 73 are the same as those used in the first catalyst 41. The overall schematic shape of the fourth main body 73 is a cylinder having an outer diameter D1. However, the inside of the fourth main body 73 is composed of a corrugated structure 73a formed by rolling a corrugated plate having a wavy cross section into a tubular shape, similarly to the third main body 72. The catalyst is supported on, for example, the outer peripheral surface and the inner peripheral surface of the cylindrical structural material and the surface of the structural material which is the corrugated structure 73a. Further, as shown in FIG. 9, the cylindrical structural material may be formed with a plurality of through holes in order to facilitate the flow of products between the outside of the cylinder and the inside of the cylinder. The cross-sectional shape of the tubular portion of the fourth main body portion 73 is not limited to an annular ring, and may be, for example, a polygonal ring.
 図10は、第2触媒体42の構成例としての第5構成42eを示す図である。第5構成42eは、第5本体部74と、フランジ部43と、支持部44とを備える。ここで、フランジ部43及び支持部44は、第1構成42aを構成するものと同一であってもよい。 FIG. 10 is a diagram showing a fifth configuration 42e as a configuration example of the second catalyst body 42. The fifth configuration 42e includes a fifth main body portion 74, a flange portion 43, and a support portion 44. Here, the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
 第5本体部74は、第1触媒体41と同様に触媒を構造材に担持することにより調製されるか、又は、触媒自体で構成される。第5本体部74において採用し得る触媒成分や構造材の材質は、第1触媒体41に採用されるものと同様である。第5本体部74の基本形状は、多孔質の筒状又は柱状である。例えば、第5本体部74は、外径D1の多孔質状の円筒であってもよい。この場合、触媒は、多孔質の円筒状の構造材の全体に担持されてもよい。又は、多孔質状の円筒自体が、触媒で構成されているものであってもよい。一方、第5本体部74は、外径D1の多孔質状の円柱であってもよい。この場合、触媒は、多孔質の円柱状の構造材の全体に担持されてもよい。又は、多孔質状の円柱自体が、触媒で構成されているものであってもよい。なお、図10では、一例として、多孔質状の板体を円筒型に丸めて構成された第5本体部74を示している。ただし、多孔質の筒又は柱の断面形状は、円環又は円に限られず、例えば多角形環又は多角形であってもよい。 The fifth main body portion 74 is prepared by supporting a catalyst on a structural material in the same manner as the first catalyst body 41, or is composed of the catalyst itself. The materials of the catalyst component and the structural material that can be adopted in the fifth main body portion 74 are the same as those adopted in the first catalyst body 41. The basic shape of the fifth main body portion 74 is a porous tubular or columnar shape. For example, the fifth main body portion 74 may be a porous cylinder having an outer diameter D1. In this case, the catalyst may be supported on the entire porous cylindrical structural material. Alternatively, the porous cylinder itself may be composed of a catalyst. On the other hand, the fifth main body portion 74 may be a porous cylinder having an outer diameter D1. In this case, the catalyst may be supported on the entire porous columnar structural material. Alternatively, the porous cylinder itself may be composed of a catalyst. Note that FIG. 10 shows, as an example, a fifth main body portion 74 formed by rolling a porous plate body into a cylindrical shape. However, the cross-sectional shape of the porous cylinder or column is not limited to a ring or a circle, and may be, for example, a polygonal ring or a polygon.
 図11は、第2触媒体42の構成例としての第6構成42fを示す図である。第6構成42fは、第6本体部75と、フランジ部43と、支持部44とを備える。ここで、フランジ部43及び支持部44は、第1構成42aを構成するものと同一であってもよい。 FIG. 11 is a diagram showing a sixth configuration 42f as a configuration example of the second catalyst body 42. The sixth configuration 42f includes a sixth main body portion 75, a flange portion 43, and a support portion 44. Here, the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
 第6本体部75は、第1触媒体41と同様に、触媒を構造材に担持することにより調製される。第6本体部75において採用し得る触媒成分や構造材の材質は、第1触媒体41に採用されるものと同様である。第6本体部75の基本形状は、筒状又は棒状である複数の構造体の集合体である。筒状又は棒状である複数の構造体は、それぞれ、筒状又は棒状の構造材の全体に触媒が担持されたものである。なお、図11では、一例として、棒状の構造材に触媒が担持された複数の構造体の集合体として構成された第6本体部75を示している。 The sixth main body portion 75 is prepared by supporting a catalyst on a structural material in the same manner as the first catalyst body 41. The materials of the catalyst component and the structural material that can be adopted in the sixth main body portion 75 are the same as those adopted in the first catalyst body 41. The basic shape of the sixth main body portion 75 is an aggregate of a plurality of structures having a cylindrical shape or a rod shape. The plurality of tubular or rod-shaped structures are those in which a catalyst is supported on the entire tubular or rod-shaped structural material, respectively. Note that FIG. 11 shows, as an example, the sixth main body portion 75 configured as an aggregate of a plurality of structures in which a catalyst is supported on a rod-shaped structural material.
 図12は、第2触媒体42の構成例としての第7構成42gを示す図である。第7構成42gは、第7本体部76と、フランジ部43と、支持部44とを備える。ここで、フランジ部43及び支持部44は、第1構成42aを構成するものと同一であってもよい。 FIG. 12 is a diagram showing a seventh configuration 42 g as a configuration example of the second catalyst 42. The seventh configuration 42g includes a seventh main body portion 76, a flange portion 43, and a support portion 44. Here, the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
 第7本体部76は、円筒等の筒体の内部にペレット状の触媒76aを収容した構造体である。触媒76aの材質は、第1触媒体41に採用されるものと同様である。また、筒体には、図12に示すように、筒外部と筒内部との間で生成物を流通しやすくするために、複数の貫通穴が形成されていてもよい。なお、第7本体部76の筒部分の断面形状は、円環に限定されず、例えば多角形環であってもよい。 The seventh main body 76 is a structure in which a pellet-shaped catalyst 76a is housed inside a cylinder such as a cylinder. The material of the catalyst 76a is the same as that used for the first catalyst body 41. Further, as shown in FIG. 12, a plurality of through holes may be formed in the cylinder body in order to facilitate distribution of products between the outside of the cylinder and the inside of the cylinder. The cross-sectional shape of the tubular portion of the 7th main body portion 76 is not limited to an annular ring, and may be, for example, a polygonal ring.
 図13は、第2触媒体42の構成例としての第8構成42hを示す図である。第8構成42hは、第8本体部77と、フランジ部43と、支持部44とを備える。ここで、フランジ部43及び支持部44は、第1構成42aを構成するものと同一であってもよい。 FIG. 13 is a diagram showing an eighth configuration 42h as a configuration example of the second catalyst body 42. The eighth configuration 42h includes an eighth main body portion 77, a flange portion 43, and a support portion 44. Here, the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
 第8本体部77は、第1触媒体41と同様に、触媒を構造材に担持することにより調製される。第8本体部77において採用し得る触媒成分や構造材の材質は、第1触媒体41に採用されるものと同様である。第8本体部77は、例えば外径D1の円盤である複数の盤体77aと、複数の盤体77aを保持する保持体77bとを有する。触媒は、例えば、盤体77aの表面及び裏面に担持される。保持体77bは、図13に示す例では、一端が支持部44に支持された棒体である。この場合、保持体77bは、複数の盤体77aのそれぞれの中心部に貫通し、複数の盤体77aを延伸方向に並べて保持する。延伸方向で隣り合う盤体77a同士の間隔は、それぞれ、等間隔でもよいし、位置によって異なっていてもよい。これに対して、不図示であるが、保持体77bは、保持棒ではなく、例えば、図9に示す第4本体部73のように、複数の貫通穴を有する筒状の構造体であってもよい。この場合、筒状の構造体は、内周面で複数の盤体77aの外周面と接触し、複数の盤体77aを延伸方向に並べて保持する。このように筒状の構造体が複数の盤体77aを保持する場合には、複数の盤体77aは、盤体77aの表面と裏面との間で生成物を流通可能とする貫通穴を有してもよい。また、第8本体部77は、盤体77aに代えて、平面形状が多角形である多角形盤を有するものとしてもよい。 The eighth main body 77 is prepared by supporting the catalyst on the structural material in the same manner as the first catalyst 41. The catalyst components and structural materials that can be used in the eighth main body 77 are the same as those used in the first catalyst 41. The eighth main body portion 77 has, for example, a plurality of discs 77a which are disks having an outer diameter D1 and a holding body 77b for holding the plurality of discs 77a. The catalyst is supported on the front surface and the back surface of the board 77a, for example. In the example shown in FIG. 13, the holding body 77b is a rod body whose one end is supported by the support portion 44. In this case, the holding body 77b penetrates the central portion of each of the plurality of board bodies 77a, and holds the plurality of board bodies 77a side by side in the stretching direction. The spacing between the boards 77a adjacent to each other in the stretching direction may be equal or different depending on the position. On the other hand, although not shown, the holding body 77b is not a holding rod, but a cylindrical structure having a plurality of through holes, for example, like the fourth main body portion 73 shown in FIG. May be good. In this case, the tubular structure comes into contact with the outer peripheral surfaces of the plurality of board 77a on the inner peripheral surface, and holds the plurality of board 77a side by side in the stretching direction. When the tubular structure holds a plurality of discs 77a in this way, the plurality of discs 77a have through holes that allow products to flow between the front surface and the back surface of the disc 77a. You may. Further, the eighth main body portion 77 may have a polygonal board having a polygonal plane shape instead of the board body 77a.
 図14は、第2触媒体42の構成例としての第9構成42iを示す図である。第9構成42iは、第9本体部78と、フランジ部43と、支持部44とを備える。ここで、フランジ部43及び支持部44は、第1構成42aを構成するものと同一であってもよい。 FIG. 14 is a diagram showing a ninth configuration 42i as a configuration example of the second catalyst body 42. The ninth configuration 42i includes a ninth main body portion 78, a flange portion 43, and a support portion 44. Here, the flange portion 43 and the support portion 44 may be the same as those constituting the first configuration 42a.
 第9本体部78は、第1触媒体41と同様に、触媒を構造材に担持することにより調製される。第8本体部77において採用し得る触媒成分や構造材の材質は、第1触媒体41に採用されるものと同様である。第9本体部78は、支持部44からスパイラル状に延伸する板構造体78aと、板構造体78aを保持する保持体78bとを有する。板構造体78aにおいて、延伸方向に対して垂直となる平面上の断面形状は、外径D1の円である。触媒は、例えば、板構造体78aの表面及び裏面に担持される。保持体78bは、例えば、一端が支持部44に支持され、板構造体78aの延伸方向に沿って存在する内周領域を貫通するように延伸する棒体である。板構造体78aは、保持体78bから突出する複数の支持棒78cを介して、保持体78bに保持される。 The ninth main body 78 is prepared by supporting a catalyst on a structural material in the same manner as the first catalyst 41. The catalyst components and structural materials that can be used in the eighth main body 77 are the same as those used in the first catalyst 41. The ninth main body portion 78 has a plate structure 78a extending spirally from the support portion 44 and a holding body 78b for holding the plate structure 78a. In the plate structure 78a, the cross-sectional shape on a plane perpendicular to the stretching direction is a circle having an outer diameter D1. The catalyst is supported, for example, on the front surface and the back surface of the plate structure 78a. The holding body 78b is, for example, a rod body whose one end is supported by the support portion 44 and which extends so as to penetrate the inner peripheral region existing along the extending direction of the plate structure 78a. The plate structure 78a is held by the holding body 78b via a plurality of support rods 78c protruding from the holding body 78b.
 さらに、生成物回収部49は、例えば、Z方向の一方の壁部に、第2触媒体42を取り付けるための接続部52を有する。なお、図5では、接続部52が生成物回収部49のZ方向の下部の壁部、すなわち、生成物回収部49の内壁下面49b側に設けられている場合を例示している。ここでは、生成物回収部49に取り付けられる第2触媒体42が第1構成42aである場合を例示する。ただし、第2触媒体42が第2構成42b又は第3構成42cであっても同様である。 Further, the product recovery unit 49 has, for example, a connection unit 52 for attaching the second catalyst body 42 to one wall portion in the Z direction. Note that FIG. 5 illustrates a case where the connection portion 52 is provided on the lower wall portion of the product recovery portion 49 in the Z direction, that is, on the inner wall lower surface surface 49b side of the product recovery portion 49. Here, the case where the second catalyst body 42 attached to the product recovery unit 49 has the first configuration 42a is illustrated. However, the same applies even if the second catalyst body 42 has the second configuration 42b or the third configuration 42c.
 接続部52は、開口部52aと、複数のボルト穴52bと、ガスケット溝52cとを有する。開口部52aは、生成物回収部49の内部と外部とで貫通する。開口部52aの開口径D2は、第1本体部70の外径D1よりも大きい。したがって、開口部52aは、第2触媒体42の一部である第1本体部70及び支持部44を貫通させることができる。複数のボルト穴52bは、フランジ部43の複数の貫通穴43aの位置に対応して設けられ、フランジ部43を接続部52に取り付ける際に、貫通穴43aを貫通したボルト65をそれぞれ締結する。ガスケット溝52cは、接続部52に対してフランジ部43を密に締結させるために用いられるガスケット66を取り付ける。なお、接続部52の全体形状は、フランジ部43を取り付け可能とする形状であれば、特に限定されるものではない。 The connection portion 52 has an opening 52a, a plurality of bolt holes 52b, and a gasket groove 52c. The opening 52a penetrates inside and outside the product recovery unit 49. The opening diameter D2 of the opening 52a is larger than the outer diameter D1 of the first main body 70. Therefore, the opening 52a can penetrate the first main body 70 and the support 44, which are a part of the second catalyst 42. The plurality of bolt holes 52b are provided corresponding to the positions of the plurality of through holes 43a of the flange portion 43, and when the flange portion 43 is attached to the connection portion 52, the bolts 65 penetrating the through holes 43a are fastened. The gasket groove 52c attaches the gasket 66 used for tightly fastening the flange portion 43 to the connecting portion 52. The overall shape of the connecting portion 52 is not particularly limited as long as it has a shape that allows the flange portion 43 to be attached.
 第2触媒体42及び接続部52を上記のような構成とすると、第2触媒体42が生成物回収部49に取り付けられた状態では、第1本体部70は、生成物回収部49の内壁側面49cに沿った形で配置される。このとき、第1本体部70は、生成物回収部49の内壁側面49c及び内壁上面49aには接触していない。 When the second catalyst body 42 and the connecting portion 52 are configured as described above, the first main body portion 70 is the inner wall of the product recovery portion 49 in a state where the second catalyst body 42 is attached to the product recovery portion 49. It is arranged along the side surface 49c. At this time, the first main body portion 70 is not in contact with the inner wall side surface 49c and the inner wall upper surface 49a of the product recovery portion 49.
 ここで、第2触媒体42の第1回収空間S3内に収容されている部分に関して、生成物回収部49の内壁下面49bから、フランジ部43とは反対側となる第2触媒体42の先端までの距離をL1とする。一方、生成物回収部49の内壁下面49bから、第1排出配管51の導出口51aの最遠部までの距離をL2とする。このとき、距離L1は、距離L2よりも長い。つまり、距離L1は、距離L2から、生成物回収部49の内壁下面49bから内壁上面49a直近までの距離L3までの範囲に規定することができる。また、第1本体部70の外径D1は、第1排出配管51の内径D3よりも大きくてもよい。 Here, with respect to the portion of the second catalyst body 42 housed in the first recovery space S3, the tip of the second catalyst body 42 on the opposite side of the flange portion 43 from the inner wall lower surface 49b of the product recovery portion 49. Let L1 be the distance to. On the other hand, the distance from the lower surface 49b of the inner wall of the product recovery unit 49 to the farthest portion of the outlet 51a of the first discharge pipe 51 is L2. At this time, the distance L1 is longer than the distance L2. That is, the distance L1 can be defined in the range from the distance L2 to the distance L3 from the inner wall lower surface 49b of the product recovery unit 49 to the nearest inner wall upper surface 49a. Further, the outer diameter D1 of the first main body 70 may be larger than the inner diameter D3 of the first discharge pipe 51.
 なお、生成物回収部49において第1排出配管51が設けられる位置は、上記例示のような生成物回収部49の側壁部に限られない。 The position where the first discharge pipe 51 is provided in the product recovery unit 49 is not limited to the side wall portion of the product collection unit 49 as in the above example.
 図15は、図5に対応して描画された、他の生成物回収部49の形状を示す図である。図15に示す生成物回収部49では、上記の第1排出配管51に代わる第1排出配管80が、Z方向の一方の壁部に設けられている。なお、図15では、図5と同様に、接続部52が生成物回収部49のZ方向の下部の壁部、すなわち、生成物回収部49の内壁下面49b側に設けられている場合を例示している。この場合、第1排出配管80は、生成物回収部49のZ方向の上部の壁部、すなわち、生成物回収部49の内壁上面49a側に設けられてもよい。反対に、接続部52が生成物回収部49のZ方向の上部の壁部に設けられている場合には、第1排出配管80は、生成物回収部49のZ方向の下部の壁部に設けられてもよい。 FIG. 15 is a diagram showing the shape of another product recovery unit 49 drawn corresponding to FIG. 5. In the product recovery unit 49 shown in FIG. 15, a first discharge pipe 80 instead of the first discharge pipe 51 is provided on one wall portion in the Z direction. Note that FIG. 15 illustrates a case where the connection portion 52 is provided on the lower wall portion of the product recovery portion 49 in the Z direction, that is, on the lower surface surface 49b side of the inner wall of the product recovery portion 49, as in FIG. is doing. In this case, the first discharge pipe 80 may be provided on the upper wall portion of the product recovery unit 49 in the Z direction, that is, on the inner wall upper surface 49a side of the product recovery unit 49. On the contrary, when the connection portion 52 is provided on the upper wall portion in the Z direction of the product recovery portion 49, the first discharge pipe 80 is provided on the lower wall portion in the Z direction of the product recovery portion 49. It may be provided.
 ここで、第1排出配管80の内径D4は、図5に示した第1排出配管51の内径D3と同様でもよい。一方、図15の例示のように、生成物回収部49において、第1排出配管80の導出口80aと、接続部52の開口部52aとが対向する場合には、第1排出配管80の内径D4は、開口部52aの開口径D2と同様でもよい。この場合、第1本体部70の長さは、図15に示す距離L3のように、生成物回収部49の内壁下面49bから内壁上面49a直近まで延伸する長さとすることが望ましい。このような構成によれば、生成物回収部49を通過して第1排出配管80の導出口80aに向かう流体は、より第2触媒体42に接触しやすくなる。 Here, the inner diameter D4 of the first discharge pipe 80 may be the same as the inner diameter D3 of the first discharge pipe 51 shown in FIG. On the other hand, as in the example of FIG. 15, when the outlet 80a of the first discharge pipe 80 and the opening 52a of the connection portion 52 face each other in the product recovery unit 49, the inner diameter of the first discharge pipe 80 D4 may be the same as the opening diameter D2 of the opening 52a. In this case, it is desirable that the length of the first main body portion 70 is a length extending from the inner wall lower surface 49b of the product recovery portion 49 to the immediate vicinity of the inner wall upper surface 49a, as shown by the distance L3 shown in FIG. According to such a configuration, the fluid passing through the product recovery unit 49 and heading toward the outlet 80a of the first discharge pipe 80 is more likely to come into contact with the second catalyst body 42.
 また、第1排出配管80の内径D4が開口部52aの開口径D2と同様である場合、外径D1である第1本体部70が第1排出配管80の導出口80aに進入できる。そこで、不図示であるが、第1本体部70の長さを、距離L3よりもさらに長くすることで、第1本体部70の先端部が、接続部52の開口部52aの対向位置にある第1排出配管80の導出口80aに進入する程度の長さとしてもよい。このような構成によれば、生成物回収部49を通過して第1排出配管80の導出口80aに向かう流体の大部分が、第2触媒体42に接触することになる。 Further, when the inner diameter D4 of the first discharge pipe 80 is the same as the opening diameter D2 of the opening 52a, the first main body 70 having the outer diameter D1 can enter the outlet 80a of the first discharge pipe 80. Therefore, although not shown, the length of the first main body 70 is made longer than the distance L3 so that the tip of the first main body 70 is at a position facing the opening 52a of the connection 52. The length may be such that it enters the outlet 80a of the first discharge pipe 80. According to such a configuration, most of the fluid passing through the product recovery unit 49 and heading for the outlet 80a of the first discharge pipe 80 comes into contact with the second catalyst body 42.
 図16は、図15と同様に図5に対応して描画された、他の生成物回収部49の形状を示す図である。図16に示す生成物回収部49では、上記の第1排出配管51に代えて、2つの排出配管が設けられている。一方の第1排出配管81は、Z方向の上部の壁部、すなわち、生成物回収部49の内壁上面49a側に設けられている。他方の第1排出配管81は、Z方向の下部の壁部、すなわち、生成物回収部49の内壁下面49b側に設けられている。 FIG. 16 is a diagram showing the shape of another product recovery unit 49 drawn corresponding to FIG. 5 in the same manner as in FIG. In the product recovery unit 49 shown in FIG. 16, two discharge pipes are provided in place of the first discharge pipe 51 described above. On the other hand, the first discharge pipe 81 is provided on the upper wall portion in the Z direction, that is, on the inner wall upper surface surface 49a side of the product recovery portion 49. The other first discharge pipe 81 is provided on the lower wall portion in the Z direction, that is, on the lower surface surface 49b side of the inner wall of the product recovery portion 49.
 この場合、一方の第1排出配管81及び他方の第2排出配管82は、それぞれ、図15に例示した第1排出配管80と同様の形状を有する。例えば、第1排出配管81及び第2排出配管82の内径は、それぞれ、第1排出配管80の内径と同様にD4であってもよい。 In this case, the first discharge pipe 81 on one side and the second discharge pipe 82 on the other side have the same shape as the first discharge pipe 80 illustrated in FIG. 15, respectively. For example, the inner diameters of the first discharge pipe 81 and the second discharge pipe 82 may be D4, respectively, like the inner diameter of the first discharge pipe 80.
 ただし、第1排出配管81は、導出口81aに第2触媒体42の第1本体部70を貫通させた状態で、第2触媒体42のフランジ部43を取付可能とする第1フランジ部81bを有する。つまり、第1フランジ部81bは、フランジ部43の複数の貫通穴43aの位置に対応して設けられる複数の貫通穴81cを有する。 However, in the first discharge pipe 81, the first flange portion 81b to which the flange portion 43 of the second catalyst body 42 can be attached while the first main body portion 70 of the second catalyst body 42 is passed through the outlet port 81a. Have. That is, the first flange portion 81b has a plurality of through holes 81c provided corresponding to the positions of the plurality of through holes 43a of the flange portion 43.
 また、第1排出配管81には、第2触媒体42のフランジ部43を介して、外部配管83が連結される。外部配管83は、第1フランジ部81bと同様に、第2触媒体42のフランジ部43を取付可能とする第2フランジ部83bを有する。なお、外部配管83の開口部83aは、第1排出配管81の導出口81aと同様の寸法を有する。また、第1フランジ部81b及び第2フランジ部83bは、それぞれ、第2触媒体42のフランジ部43に形成されているガスケット溝52cと同様に、ガスケット66を取り付けるためのガスケット溝を有する。つまり、フランジ部43が第1フランジ部81bと第2フランジ部83bとに挟み込まれて、貫通穴81c及び貫通穴83cを貫通したボルト65で締結されることで、第1排出配管81には、外部配管83が取り付けられるとともに、第2触媒体42が保持される。 Further, the external pipe 83 is connected to the first discharge pipe 81 via the flange portion 43 of the second catalyst body 42. The external pipe 83 has a second flange portion 83b to which the flange portion 43 of the second catalyst body 42 can be attached, similarly to the first flange portion 81b. The opening 83a of the external pipe 83 has the same dimensions as the outlet 81a of the first discharge pipe 81. Further, the first flange portion 81b and the second flange portion 83b each have a gasket groove for attaching the gasket 66, similarly to the gasket groove 52c formed in the flange portion 43 of the second catalyst body 42. That is, the flange portion 43 is sandwiched between the first flange portion 81b and the second flange portion 83b, and is fastened to the first discharge pipe 81 by a bolt 65 penetrating the through hole 81c and the through hole 83c. The external pipe 83 is attached, and the second catalyst body 42 is held.
 一方、第2触媒体42が第1排出配管81に保持される場合、生成物回収部49から外部配管83に向けて流体が流通可能となるように、第2触媒体42の支持部44は、第1本体部70側から外部配管83の開口部83a側に連通する貫通穴44aを有する。また、第2触媒体42が第1排出配管81に保持される場合であっても、第2触媒体42の長さは、図15を用いて説明したように設定され得る。 On the other hand, when the second catalyst body 42 is held in the first discharge pipe 81, the support portion 44 of the second catalyst body 42 has a support portion 44 so that the fluid can flow from the product recovery portion 49 to the external pipe 83. It has a through hole 44a that communicates from the first main body 70 side to the opening 83a side of the external pipe 83. Further, even when the second catalyst body 42 is held in the first discharge pipe 81, the length of the second catalyst body 42 can be set as described with reference to FIG.
 そして、このような構成によれば、生成物回収部49が第1排出配管81と第2排出配管82とを有する場合でも、第2触媒体42と接触した流体を双方の排出配管に向かわせることができる。 According to such a configuration, even when the product recovery unit 49 has the first discharge pipe 81 and the second discharge pipe 82, the fluid in contact with the second catalyst 42 is directed to both discharge pipes. be able to.
 また、生成物回収部49は、第2排出配管82を設けずに、第1排出配管81のみを設ける構成としてもよい。つまり、生成物回収部49は、図5に例示したような第1排出配管51及び接続部52を設けていなくても、第1フランジ部81bを有する第1排出配管81を設けてさえいれば、外部配管83との連結に合わせて、容易に第2触媒体42を保持することができる。 Further, the product recovery unit 49 may be configured to provide only the first discharge pipe 81 without providing the second discharge pipe 82. That is, even if the product recovery unit 49 is not provided with the first discharge pipe 51 and the connection portion 52 as illustrated in FIG. 5, as long as the first discharge pipe 81 having the first flange portion 81b is provided. The second catalyst body 42 can be easily held in accordance with the connection with the external pipe 83.
 熱媒体導入部53は、複数の第2導入口30のそれぞれに熱媒体HCを分配する第2蓋体である。熱媒体導入部53は、凹状に湾曲した形状を有し、熱媒体流路31の複数の第2導入口30が開放されている熱交換部3の第2側面61を覆い、熱交換部3との間に第2導入空間S2を形成する。熱媒体導入部53は、熱交換部3に対して着脱可能又は開閉可能である。作業者は、熱媒体導入部53の着脱等を行うことで、例えば、熱媒体流路31に対する伝熱促進体の挿入や抜き出しを行うことができる。また、熱媒体導入部53は、熱媒体HCを外部から内部へ導入する第2導入配管55を有する。第2導入配管55は、第2側面61のXZ平面上のおおよそ中心に対向し、複数の第2導入口30の開口方向に沿って連接されている。熱媒体導入部53によれば、1つの第2導入配管55から導入された熱媒体HCは、複数の第2導入口30のそれぞれに分配される。 The heat medium introduction unit 53 is a second lid that distributes the heat medium HC to each of the plurality of second introduction ports 30. The heat medium introduction unit 53 has a concavely curved shape and covers the second side surface 61 of the heat exchange unit 3 in which the plurality of second introduction ports 30 of the heat medium flow path 31 are open, and the heat exchange unit 3 A second introduction space S2 is formed between the two. The heat medium introduction unit 53 can be attached to and detached from or can be opened and closed with respect to the heat exchange unit 3. By attaching and detaching the heat medium introduction unit 53 and the like, the operator can insert and remove the heat transfer promoter into and out of the heat medium flow path 31, for example. Further, the heat medium introduction unit 53 has a second introduction pipe 55 that introduces the heat medium HC from the outside to the inside. The second introduction pipe 55 faces approximately the center of the second side surface 61 on the XZ plane, and is connected along the opening direction of the plurality of second introduction ports 30. According to the heat medium introduction unit 53, the heat medium HC introduced from one second introduction pipe 55 is distributed to each of the plurality of second introduction ports 30.
 熱媒体回収部57は、熱媒体流路31を流通した熱媒体HCを回収する第2回収空間S4を有する第2導管部である。本実施形態では、熱媒体回収部57は、1つの面を開放面とする箱形状を有し、第2伝熱体9の第2排出口35が開放面に含まれるように、熱交換部3の第3側面62に設置される。つまり、第2排出口35を含む第2伝熱体9の側面の一部は、熱媒体回収部57の内壁の一部となる。また、熱媒体回収部57は、熱媒体HCを反応装置1の外部へ排出する第2排出配管59を有する。 The heat medium recovery unit 57 is a second conduit unit having a second recovery space S4 for recovering the heat medium HC flowing through the heat medium flow path 31. In the present embodiment, the heat medium recovery unit 57 has a box shape with one surface as an open surface, and the heat exchange unit is included so that the second discharge port 35 of the second heat transfer body 9 is included in the open surface. It is installed on the third side surface 62 of 3. That is, a part of the side surface of the second heat transfer body 9 including the second discharge port 35 becomes a part of the inner wall of the heat medium recovery unit 57. Further, the heat medium recovery unit 57 has a second discharge pipe 59 that discharges the heat medium HC to the outside of the reaction device 1.
 熱交換部3は、液-液型熱交換器、気-気型熱交換器及び気-液型熱交換器のいずれとしても使用可能である。反応流体M及び熱媒体HCは、気体及び液体のいずれであってもよい。また、熱交換部3における吸熱反応による合成としては、例えば、式(1)で示すメタンの水蒸気改質反応、又は、式(2)で示すメタンのドライリフォーミング反応による合成がある。なお、これらの反応における反応流体は、気体状である。 The heat exchange unit 3 can be used as any of a liquid-liquid heat exchanger, a gas-gas heat exchanger, and a gas-liquid heat exchanger. The reaction fluid M and the heat medium HC may be either a gas or a liquid. Further, as the synthesis by the endothermic reaction in the heat exchange unit 3, for example, there is a synthesis by a steam reforming reaction of methane represented by the formula (1) or a dry reforming reaction of methane represented by the formula (2). The reaction fluid in these reactions is gaseous.
 CH4 + H2O → 3H2 + CO   ・・・(1)
 CH4 + CO2 → 2H2 + 2CO  ・・・(2)
 一方、熱媒体HCとしては、熱交換部3の構成素材を腐食させない物質が好適であり、本実施形態のように高温ガスである場合には、燃焼ガス、加熱空気等の気体状物質が使用できる。なお、例えば、水、油等の液状物質であってもよい。ただし、熱媒体HCとして気体状物質を使用すると、液体媒体を使用する場合と比較して、取り扱いが容易である。
CH 4 + H 2 O → 3H 2 + CO ・ ・ ・ (1)
CH 4 + CO 2 → 2H 2 + 2CO ・ ・ ・ (2)
On the other hand, as the heat medium HC, a substance that does not corrode the constituent material of the heat exchange unit 3 is suitable, and in the case of a high temperature gas as in the present embodiment, a gaseous substance such as combustion gas or heated air is used. can. In addition, for example, it may be a liquid substance such as water and oil. However, when a gaseous substance is used as the heat medium HC, it is easier to handle than when a liquid medium is used.
 次に、本実施形態に係る反応装置1の作用について説明する。 Next, the operation of the reaction device 1 according to the present embodiment will be described.
 まず、反応流体Mに関して、第1導入配管47から反応流体導入部45に導入された反応流体Mは、第1導入空間S1において複数の第1導入口20のそれぞれに分配される。反応流体Mは、各々の第1導入口20から反応流路17に導入されて、第1流路22内をY方向に沿って流通する。 First, regarding the reaction fluid M, the reaction fluid M introduced from the first introduction pipe 47 into the reaction fluid introduction unit 45 is distributed to each of the plurality of first introduction ports 20 in the first introduction space S1. The reaction fluid M is introduced into the reaction flow path 17 from each first introduction port 20 and flows in the first flow path 22 along the Y direction.
 一方、熱媒体HCに関して、第2導入配管55から熱媒体導入部53に導入された熱媒体HCは、第2導入空間S2において複数の第2導入口30のそれぞれに分配される。熱媒体HCは、各々の第2導入口30から熱媒体流路31に導入されて、第2流路36内を流通する。本実施形態では、第2流路36も第1流路22に合わせてY方向に沿って形成されているが、熱媒体HCの流通方向は、反応流体Mの流通方向とは反対である。 On the other hand, regarding the heat medium HC, the heat medium HC introduced from the second introduction pipe 55 to the heat medium introduction unit 53 is distributed to each of the plurality of second introduction ports 30 in the second introduction space S2. The heat medium HC is introduced into the heat medium flow path 31 from each second introduction port 30 and circulates in the second flow path 36. In the present embodiment, the second flow path 36 is also formed along the Y direction in accordance with the first flow path 22, but the flow direction of the heat medium HC is opposite to the flow direction of the reaction fluid M.
 反応流体Mと熱媒体HCとの流通により、熱交換部3では、反応流体Mと熱媒体HCとの間で熱交換が行われ、反応流体Mが加熱される。そして、第1流路22では、第1触媒体41の反応促進作用も相まって、反応流体Mが反応温度で吸熱反応し、生成物Pが生成される。生成物Pは、第1合流流路23を通じて、第1排出口21から生成物回収部49内の第1回収空間S3に排出される。 Due to the flow between the reaction fluid M and the heat medium HC, heat exchange is performed between the reaction fluid M and the heat medium HC in the heat exchange unit 3, and the reaction fluid M is heated. Then, in the first flow path 22, the reaction fluid M undergoes an endothermic reaction at the reaction temperature in combination with the reaction promoting action of the first catalyst body 41, and the product P is produced. The product P is discharged from the first discharge port 21 to the first recovery space S3 in the product recovery unit 49 through the first confluence flow path 23.
 ここで、第1排出口21から排出される流体には、反応流路17内で生成された生成物Pのほかに、生成物Pの生成に寄与しなかった反応原料が残存している場合もある。そのため、なんら対策を採らなければ、このような残存した反応原料と生成物Pとを含む流体は、そのまま反応装置1の外部へ排出されることになる。 Here, in the case where the fluid discharged from the first discharge port 21 contains the reaction raw material that did not contribute to the production of the product P, in addition to the product P generated in the reaction flow path 17. There is also. Therefore, if no measures are taken, the fluid containing the remaining reaction raw material and the product P will be discharged to the outside of the reaction apparatus 1 as it is.
 これに対して、本実施形態では、生成物回収部49の第1回収空間S3内に第2触媒体42が備えられている。また、第1回収空間S3内に排出される流体は、第1排出口21から排出された直後であるので、高温を維持している。そのため、反応流路17内で生成物Pの生成に寄与しなかった反応原料は、自己熱により、第1回収空間S3内で改めて反応促進される。したがって、生成物回収部49から第1排出配管51を通じて反応装置1の外部に排出される流体中では、生成物Pの生成に寄与しなかった反応原料の残存率は、第2触媒体42を用いない場合に比べて低くなる。 On the other hand, in the present embodiment, the second catalyst body 42 is provided in the first recovery space S3 of the product recovery unit 49. Further, since the fluid discharged into the first recovery space S3 is immediately after being discharged from the first discharge port 21, the high temperature is maintained. Therefore, the reaction raw material that did not contribute to the formation of the product P in the reaction flow path 17 is promoted again in the first recovery space S3 by the self-heat. Therefore, in the fluid discharged from the product recovery unit 49 to the outside of the reaction device 1 through the first discharge pipe 51, the residual ratio of the reaction raw material that did not contribute to the production of the product P is the second catalyst 42. It will be lower than when not used.
 なお、第2流路36を流通して熱交換に利用された熱媒体HCは、第2合流流路37を通じて、第2排出口35から熱媒体回収部57内の第2回収空間S4に排出される。第2回収空間S4で回収された熱媒体HCは、第2排出配管59を通じて反応装置1の外部に排出される。 The heat medium HC flowing through the second flow path 36 and used for heat exchange is discharged from the second discharge port 35 to the second recovery space S4 in the heat medium recovery section 57 through the second confluence flow path 37. Will be done. The heat medium HC recovered in the second recovery space S4 is discharged to the outside of the reaction device 1 through the second discharge pipe 59.
 次に、本実施形態に係る反応装置1による効果について説明する。 Next, the effect of the reaction device 1 according to the present embodiment will be described.
 反応装置1は、反応原料を含む第1流体を流通させる第1流路22を有する第1伝熱体7と、第1伝熱体7に積層され、第1流体との熱交換に用いられる第2流体を流通させる第2流路36を有する第2伝熱体9とを備える。反応装置1は、第1伝熱体7にある第1流路22に連通する第1排出口21に面する第1回収空間S3を有し、反応原料の吸熱反応により第1流路22で生成された生成物Pを回収する生成物回収部49を備える。また、反応装置1は、生成物回収部49に設置され、第1流路22にて残存して第1回収空間S3に排出された反応原料の吸熱反応を促進させる触媒を備える。 The reactor 1 is laminated on the first heat transfer body 7 and the first heat transfer body 7 having the first flow path 22 through which the first fluid containing the reaction raw material flows, and is used for heat exchange with the first fluid. A second heat transfer body 9 having a second flow path 36 through which a second fluid flows is provided. The reactor 1 has a first recovery space S3 facing the first discharge port 21 communicating with the first flow path 22 in the first heat transfer body 7, and is in the first flow path 22 due to the endothermic reaction of the reaction raw material. A product recovery unit 49 for recovering the generated product P is provided. Further, the reaction apparatus 1 is installed in the product recovery unit 49 and includes a catalyst that promotes the endothermic reaction of the reaction raw material remaining in the first flow path 22 and discharged into the first recovery space S3.
 ここで、第1流体とは、本実施形態では反応流体Mに相当する。第2流体とは、本実施形態では熱媒体HCに相当する。なお、別の実施形態として、例えば、第1流体及び第2流体がともに反応流体であってもよい。 Here, the first fluid corresponds to the reaction fluid M in this embodiment. The second fluid corresponds to the heat medium HC in this embodiment. As another embodiment, for example, both the first fluid and the second fluid may be reaction fluids.
 本実施形態では、生成物回収部49の第1回収空間S3内に、第2触媒体42等の触媒が備えられているので、反応流路17内で生成物Pの生成に寄与しなかった反応原料に対して、第1回収空間S3内で改めて反応促進が行われる。つまり、反応装置1全体として捉えた場合に、第2触媒体42のような触媒を用いない場合に比べて、より多くの生成物Pが得られることになる。特に、本実施形態によれば、平衡組成に近づけるために、熱交換部3での熱交換に用いる熱媒体HCの温度や流量などを増加させる必要がなくなる。一方で、第2触媒体42等の触媒を用いない場合のときの生成物Pの生成量が所望の量である場合には、本実施形態のように第2触媒体42等の触媒を用いることで、熱媒体HCの温度や流量を低減させることができる。また、反応装置1から排出される生成物Pの温度は、第2触媒体42のような触媒を用いない場合に比べて低下する。例えば、反応装置1の下流側におけるプロセス上又は機器設計上の何らかの制約により、生成物Pの温度を反応装置1から排出された時点より低下させるための除熱・冷却機構の設置が要求される場合がある。このような場合において、本実施形態によれば、その機構の負荷が低減され、又は、設計条件が緩和される。 In the present embodiment, since the catalyst such as the second catalyst body 42 is provided in the first recovery space S3 of the product recovery unit 49, it does not contribute to the formation of the product P in the reaction flow path 17. The reaction of the reaction raw material is promoted again in the first recovery space S3. That is, when the reaction apparatus 1 is taken as a whole, a larger amount of product P can be obtained as compared with the case where a catalyst such as the second catalyst 42 is not used. In particular, according to the present embodiment, it is not necessary to increase the temperature and flow rate of the heat medium HC used for heat exchange in the heat exchange unit 3 in order to approach the equilibrium composition. On the other hand, when the amount of product P produced when the catalyst such as the second catalyst 42 is not used is a desired amount, the catalyst such as the second catalyst 42 is used as in the present embodiment. As a result, the temperature and flow rate of the heat medium HC can be reduced. Further, the temperature of the product P discharged from the reactor 1 is lower than that in the case where a catalyst such as the second catalyst 42 is not used. For example, due to some restrictions on the process or equipment design on the downstream side of the reaction device 1, it is required to install a heat removal / cooling mechanism for lowering the temperature of the product P from the time when the product P is discharged from the reaction device 1. In some cases. In such a case, according to the present embodiment, the load of the mechanism is reduced or the design conditions are relaxed.
 このように、本実施形態によれば、反応のために与えられた熱量をより有効に活用するのに有利となる反応装置1を提供することができる。 As described above, according to the present embodiment, it is possible to provide the reactor 1 which is advantageous for more effectively utilizing the amount of heat given for the reaction.
 また、反応装置1は、触媒を含む本体部を有する第2触媒体42を備えてもよい。この場合、生成物回収部49は、本体部を第1回収空間S3に収容させる開口部52aを含む接続部52を有してもよい。また、第2触媒体42は、本体部を第1回収空間S3に収容させた状態で、接続部52に取り付けられるフランジ部43を有してもよい。 Further, the reaction device 1 may include a second catalyst body 42 having a main body portion including a catalyst. In this case, the product recovery unit 49 may have a connection unit 52 including an opening 52a for accommodating the main body unit in the first collection space S3. Further, the second catalyst body 42 may have a flange portion 43 attached to the connection portion 52 in a state where the main body portion is housed in the first recovery space S3.
 このような反応装置1によれば、作業者による第2触媒体42の取り付け又は取り外し等の作業が容易となる。 According to such a reaction device 1, the work such as attachment or removal of the second catalyst body 42 by the operator becomes easy.
 また、反応装置1は、触媒を含む本体部を有する第2触媒体42を備えてもよい。この場合、生成物回収部49は、生成物Pを外部配管83へ排出する第1排出配管81を有してもよい。また、第2触媒体42は、本体部を第1回収空間S3に収容させた状態で、第1排出配管81に取り付けられるフランジ部43を有してもよい。 Further, the reaction device 1 may include a second catalyst body 42 having a main body portion including a catalyst. In this case, the product recovery unit 49 may have a first discharge pipe 81 that discharges the product P to the external pipe 83. Further, the second catalyst body 42 may have a flange portion 43 attached to the first discharge pipe 81 in a state where the main body portion is housed in the first recovery space S3.
 このような反応装置1によれば、作業者による第2触媒体42の取り付け又は取り外し等の作業が容易となる。また、生成物回収部49は、上記のような接続部52を設けていなくても、第1排出配管81を介して第2触媒体42を保持することができる。 According to such a reaction device 1, the work such as attachment or removal of the second catalyst body 42 by the operator becomes easy. Further, the product recovery unit 49 can hold the second catalyst body 42 via the first discharge pipe 81 even if the connection unit 52 as described above is not provided.
 また、反応装置1では、第1排出配管81は、外部配管83との連結に用いられる第1フランジ部81bを有してもよい。外部配管83は、第1フランジ部81bと接続可能な第2フランジ部83bを有してもよい。この場合、フランジ部43は、第1フランジ部81bと第2フランジ部83bとに挟まれて締結されてもよい。 Further, in the reaction device 1, the first discharge pipe 81 may have a first flange portion 81b used for connection with the external pipe 83. The external pipe 83 may have a second flange portion 83b that can be connected to the first flange portion 81b. In this case, the flange portion 43 may be sandwiched between the first flange portion 81b and the second flange portion 83b and fastened.
 このような反応装置1によれば、作業者による第2触媒体42の取り付け又は取り外し等の作業が、第1排出配管81と外部配管83との連結作業に合わせて行うことができることになり、結果として、作業工程を単純化させることができる。 According to such a reaction device 1, the work of attaching or removing the second catalyst body 42 by the operator can be performed in accordance with the work of connecting the first discharge pipe 81 and the external pipe 83. As a result, the work process can be simplified.
 また、反応装置1では、本体部は、筒状又は柱状であってもよい。 Further, in the reaction device 1, the main body may be cylindrical or columnar.
 このような反応装置1によれば、本体部を、接続部52や第1排出配管81から生成物回収部49の第1回収空間S3に進入しやすくすることができる。また、本体部における第1回収空間S3に面する部分の表面積をより多く取ることができるため、第1回収空間S3内での触媒による反応をより促進させることができる。 According to such a reaction device 1, the main body can be easily entered into the first recovery space S3 of the product recovery section 49 from the connection section 52 and the first discharge pipe 81. Further, since the surface area of the portion of the main body portion facing the first recovery space S3 can be increased, the reaction by the catalyst in the first recovery space S3 can be further promoted.
 また、反応装置1では、本体部は、触媒を担持する構造材を有してもよい。 Further, in the reaction device 1, the main body may have a structural material for supporting the catalyst.
 このような反応装置1によれば、触媒が構造材に担持されているので、本体部全体、引いては第2触媒体42全体が強固となる。したがって、例えば、第2触媒体42は、触媒を長期間に渡って第1回収空間S3に保持しやすくなる。また、例えば、作業者による第2触媒体42の取り付け又は取り外し等の作業時に、第2触媒体42の破損等が生じづらくなる。 According to such a reaction device 1, since the catalyst is supported on the structural material, the entire main body portion, and thus the entire second catalyst body 42, becomes strong. Therefore, for example, the second catalyst 42 can easily hold the catalyst in the first recovery space S3 for a long period of time. Further, for example, when the operator attaches or removes the second catalyst body 42, the second catalyst body 42 is less likely to be damaged.
 また、反応装置1では、触媒は、多孔質状であってもよい。ここで、多孔質状の触媒を含む本体部は、例えば第5本体部74である。 Further, in the reaction device 1, the catalyst may be porous. Here, the main body portion containing the porous catalyst is, for example, the fifth main body portion 74.
 このような反応装置1によれば、本体部は、例えば、触媒を担持する構造材を用いなくても、触媒単体で構成されることもあり得る。また、触媒が多孔質状であると、第1回収空間S3にある流体との接触面積が増えるため、第1回収空間S3内での触媒による反応をより促進させることができる。 According to such a reaction device 1, the main body may be composed of a single catalyst, for example, without using a structural material for supporting the catalyst. Further, when the catalyst is porous, the contact area with the fluid in the first recovery space S3 increases, so that the reaction by the catalyst in the first recovery space S3 can be further promoted.
 また、反応装置1では、触媒は、ペレット状であってもよい。この場合、本体部は、ペレット状の触媒を収容する筒体を有してもよい。ここで、本体部は、例えば第7本体部76である。 Further, in the reaction device 1, the catalyst may be in the form of pellets. In this case, the main body may have a cylinder containing a pellet-shaped catalyst. Here, the main body portion is, for example, the seventh main body portion 76.
 このような反応装置1によれば、例えば、使用済みの触媒と新たな触媒とを交換する場合に、筒体に収容されているペレット状の触媒76aを入れ替えるだけで済む。したがって、触媒を構造材に担持させた本体部を多数準備する必要がなくなる。また、ペレット状の触媒76aが筒体に収容されている状態では、触媒同士の隙間が多数存在することになり、第1回収空間S3にある流体との接触面積が増えるため、第1回収空間S3内での触媒による反応をより促進させることができる。 According to such a reaction device 1, for example, when exchanging a used catalyst with a new catalyst, it is only necessary to replace the pellet-shaped catalyst 76a housed in the cylinder. Therefore, it is not necessary to prepare a large number of main bodies in which the catalyst is supported on the structural material. Further, in the state where the pellet-shaped catalyst 76a is housed in the cylinder, there are many gaps between the catalysts, and the contact area with the fluid in the first recovery space S3 increases, so that the first recovery space The catalytic reaction in S3 can be further promoted.
 また、反応装置1では、構造材は、本体部が筒状である場合には筒状であり、かつ、筒外部と筒内部とで貫通する複数の貫通穴を有してもよい。 Further, in the reaction device 1, the structural material may be cylindrical when the main body portion is tubular, and may have a plurality of through holes penetrating between the outside of the cylinder and the inside of the cylinder.
 このような反応装置1によれば、第1回収空間S3にある流体が、複数の貫通穴を介して筒状の構造材の筒外部と筒内部とで行き来することができるため、より触媒に接触しやすくなる。 According to such a reaction device 1, the fluid in the first recovery space S3 can move back and forth between the outside of the cylinder and the inside of the cylinder of the tubular structural material through a plurality of through holes, so that the catalyst can be used more. It becomes easier to contact.
 また、反応装置1では、構造材は、断面がハニカム状となるハニカム構造体を含んでもよい。ここで、本体部は、例えば第2本体部71である。 Further, in the reaction device 1, the structural material may include a honeycomb structure having a honeycomb-like cross section. Here, the main body portion is, for example, the second main body portion 71.
 ハニカム構造体71aは、空間領域を広く確保しながら、全体として広い表面積を有する。したがって、このような反応装置1によれば、例えば、触媒を構造材の表面全体に担持させることで、第1回収空間S3内の流体との接触面積を、第1本体部70の場合よりも広くすることができる。 The honeycomb structure 71a has a large surface area as a whole while securing a wide space area. Therefore, according to such a reaction device 1, for example, by supporting the catalyst on the entire surface of the structural material, the contact area with the fluid in the first recovery space S3 is larger than that in the case of the first main body 70. Can be wide.
 また、反応装置1では、構造材は、断面が波状に湾曲したコルゲート板を筒型に丸められたコルゲート構造体を含んでもよい。ここで、本体部は、例えば第3本体部72である。 Further, in the reaction device 1, the structural material may include a corrugated structure in which a corrugated plate having a wavy cross section is rolled into a tubular shape. Here, the main body portion is, for example, the third main body portion 72.
 コルゲート構造体73aは、空間領域を広く確保しながら、全体として広い表面積を有する。したがって、このような反応装置1によれば、例えば、触媒を構造材の表面全体に担持させることで、第1回収空間S3内の流体との接触面積を、第1本体部70の場合よりも広くすることができる。 The corrugated structure 73a has a large surface area as a whole while securing a wide space area. Therefore, according to such a reaction device 1, for example, by supporting the catalyst on the entire surface of the structural material, the contact area with the fluid in the first recovery space S3 is larger than that in the case of the first main body 70. Can be wide.
 なお、反応流路17に設置される第1触媒体41は、上記のとおり、断面が波状に丸く湾曲したコルゲート板状の棒体であってもよい。そこで、このようなコルゲート板状の棒体である第1触媒体41を採用する場合には、第1触媒体41の構造材を構成するコルゲート板を流用し、当該コルゲート板を筒型に丸めることで、第3本体部72に用いる構造材としてもよい。つまり、第1触媒体41と第2触媒体42との双方を反応装置1に採用する場合には、第1触媒体41又は第2触媒体42のそれぞれの構造材となる基材を個別に準備する必要がないという利点もある。 As described above, the first catalyst body 41 installed in the reaction flow path 17 may be a corrugated plate-shaped rod whose cross section is curved in a wavy shape. Therefore, when the first catalyst body 41, which is such a corrugated plate-shaped rod, is adopted, the corrugated plate constituting the structural material of the first catalyst body 41 is diverted and the corrugated plate is rolled into a tubular shape. Therefore, it may be used as a structural material for the third main body portion 72. That is, when both the first catalyst body 41 and the second catalyst body 42 are adopted in the reaction device 1, the base materials used as the structural materials of the first catalyst body 41 or the second catalyst body 42 are individually used. It also has the advantage of not having to be prepared.
 また、反応装置1では、構造材は、筒状又は棒状であってもよい。この場合、本体部は、筒状又は棒状の前記構造材を複数含んでもよい。ここで、本体部は、例えば第6本体部75である。 Further, in the reaction device 1, the structural material may be in the shape of a cylinder or a rod. In this case, the main body may include a plurality of tubular or rod-shaped structural materials. Here, the main body portion is, for example, the sixth main body portion 75.
 このような反応装置1によれば、例えば、予め触媒を担持した筒状又は棒状の構造材が複数存在する場合には、それらの構造材を集合させて1つの束とすることで、容易に本体部を構成させることができる。 According to such a reaction device 1, for example, when there are a plurality of tubular or rod-shaped structural materials on which a catalyst is supported in advance, those structural materials can be easily aggregated into one bundle. The main body can be configured.
 また、反応装置1では、構造材は、複数の盤体を含んでもよい。この場合、本体部は、複数の盤体を、本体部の筒状又は柱状の延伸方向に並べて保持する保持体を含んでもよい。ここで、本体部は、例えば第8本体部77である。 Further, in the reaction device 1, the structural material may include a plurality of boards. In this case, the main body may include a holding body that holds a plurality of boards side by side in the tubular or columnar stretching direction of the main body. Here, the main body portion is, for example, the eighth main body portion 77.
 このような反応装置1によれば、例えば、予め触媒を担持した盤体77a等の構造材が複数存在する場合には、それらの構造材を保持体77bに保持させることで、容易に本体部を構成させることができる。 According to such a reaction device 1, for example, when a plurality of structural materials such as a board 77a on which a catalyst is supported in advance are present, the structural materials are held by the holding body 77b so that the main body portion can be easily used. Can be configured.
 また、反応装置1では、構造材は、本体部の筒状又は柱状の延伸方向に合わせてスパイラル状に延伸する板構造体であってもよい。ここで、本体部は、例えば第9本体部78である。 Further, in the reaction device 1, the structural material may be a plate structure that is spirally stretched in a cylindrical or columnar stretching direction of the main body. Here, the main body portion is, for example, the ninth main body portion 78.
 このような反応装置1によれば、例えば、予め触媒を担持した板構造体78aを、保持体78bから突出する複数の支持棒78cを介して保持体78bに保持させることで、容易に本体部を構成させることができる。特に、板構造体78aの形状がスパイラル状である場合には、板構造体78aは、第1回収空間S3内の流体の流通方向を、スパイラル形状に合わせて延伸方向に規定することができる。したがって、このような反応装置1によれば、板構造体78aは、触媒による反応を促進させつつ、流体を所望の方向である例えば第1排出配管80に向けて流通させやすくすることができる。 According to such a reaction device 1, for example, the plate structure 78a on which the catalyst is previously supported is held by the holding body 78b via a plurality of support rods 78c protruding from the holding body 78b, so that the main body portion can be easily obtained. Can be configured. In particular, when the shape of the plate structure 78a is spiral, the plate structure 78a can define the flow direction of the fluid in the first recovery space S3 in the stretching direction according to the spiral shape. Therefore, according to such a reaction device 1, the plate structure 78a can facilitate the flow of the fluid in a desired direction, for example, toward the first discharge pipe 80, while promoting the reaction by the catalyst.
 また、反応装置1では、本体部は、第1排出口21に対向してもよい。 Further, in the reaction device 1, the main body may face the first discharge port 21.
 このような反応装置1によれば、第1排出口21から排出された生成物Pを含む流体が本体部に突き当たるので、第1回収空間S3内での触媒による反応をより促進させることができる。 According to such a reaction device 1, since the fluid containing the product P discharged from the first discharge port 21 abuts on the main body portion, the reaction by the catalyst in the first recovery space S3 can be further promoted. ..
 (第2実施形態)
 次に、第2実施形態に係る反応装置について説明する。第1実施形態では、生成物回収部49に、構造材に触媒を担持させた第2触媒体42を取り付ける反応装置1を例示した。これに対して、本実施形態では、第2触媒体42に代えて、生成物回収部49自体に触媒46を担持させる。
(Second Embodiment)
Next, the reaction apparatus according to the second embodiment will be described. In the first embodiment, the reaction device 1 in which the second catalyst body 42 in which the catalyst is supported on the structural material is attached to the product recovery unit 49 is exemplified. On the other hand, in the present embodiment, the catalyst 46 is supported on the product recovery unit 49 itself instead of the second catalyst body 42.
 図17は、第2実施形態に係る反応装置1に関し、触媒46を担持させた状態の生成物回収部49を示す一部断面図である。図17では、反応装置1のうち、生成物回収部49を含む部位をXY平面に沿って切断した描画となっている。 FIG. 17 is a partial cross-sectional view showing a product recovery unit 49 in a state where the catalyst 46 is supported with respect to the reaction device 1 according to the second embodiment. In FIG. 17, a portion of the reaction device 1 including the product recovery unit 49 is cut along the XY plane.
 触媒46に採用し得る触媒成分は、第1触媒体41に採用されるものと同様である。この場合、触媒46は、生成物回収部49の内壁、例えば、内壁側面49cの全面に担持されてもよい。また、不図示であるが、生成物回収部49の内壁上面49a又は内壁下面49bに担持されてもよい。 The catalyst component that can be adopted in the catalyst 46 is the same as that adopted in the first catalyst body 41. In this case, the catalyst 46 may be supported on the inner wall of the product recovery unit 49, for example, the entire surface of the inner wall side surface 49c. Further, although not shown, the product may be supported on the inner wall upper surface 49a or the inner wall lower surface 49b of the product recovery unit 49.
 本実施形態に係る反応装置1によれば、触媒46は、第1回収空間S3に面するため、第1実施形態における第2触媒体42を用いずとも、第2触媒体42を用いた場合と同等の効果を奏する。 According to the reaction apparatus 1 according to the present embodiment, since the catalyst 46 faces the first recovery space S3, the case where the second catalyst body 42 is used without using the second catalyst body 42 in the first embodiment. Has the same effect as.
 (第3実施形態)
 次に、第3実施形態に係る反応装置について説明する。本実施形態では、さらに、第1実施形態における第2触媒体42に代えて、第1回収空間S3の全体に、粒状体の触媒48を多数収納する。
(Third Embodiment)
Next, the reaction apparatus according to the third embodiment will be described. In the present embodiment, instead of the second catalyst body 42 in the first embodiment, a large number of granular catalysts 48 are housed in the entire first recovery space S3.
 図18は、第3実施形態に係る反応装置1の構成を示す側面図である。図18では、第1回収空間S3内にある触媒48が、一部、点の集合で描画されている。 FIG. 18 is a side view showing the configuration of the reaction device 1 according to the third embodiment. In FIG. 18, the catalyst 48 in the first recovery space S3 is partially drawn as a set of points.
 触媒48に採用し得る触媒成分は、第1触媒体41に採用されるものと同様である。この場合、生成物回収部49は、第1実施形態に係る反応装置1で採用した接続部52を有してもよい。また、生成物回収部49は、生成物回収部49のZ方向の上部の壁部、すなわち、生成物回収部49の内壁上面49a側に、開口部58aを含む接続部58を有してもよい。これに合わせて、生成物回収部49は、接続部52に対してボルト65を用いて取り付け可能とする第1ブランクフランジ54と、接続部58に対してボルト65を用いて取り付け可能とする第2ブランクフランジ56とを備えてもよい。 The catalyst components that can be used in the catalyst 48 are the same as those used in the first catalyst body 41. In this case, the product recovery unit 49 may have the connection unit 52 adopted in the reaction device 1 according to the first embodiment. Further, the product recovery unit 49 may have a connection portion 58 including an opening 58a on the upper wall portion of the product recovery unit 49 in the Z direction, that is, on the inner wall upper surface surface 49a side of the product recovery unit 49. good. In line with this, the product recovery unit 49 has a first blank flange 54 that can be attached to the connection portion 52 by using bolts 65, and a first blank flange 54 that can be attached to the connection portion 58 by using bolts 65. 2 A blank flange 56 may be provided.
 ここで、第1回収空間S3内に触媒48を収納する場合には、作業者は、下部の第1ブランクフランジ54を接続部52に取り付けた状態で、第2ブランクフランジ56を取り付けていない状態の接続部58の開口部58aから触媒48を導入させることができる。一方、第1回収空間S3内から触媒48を取り出す場合には、作業者は、接続部52から第1ブランクフランジ54を取り外すことで、容易に触媒48を取り出すことができる。 Here, when the catalyst 48 is housed in the first recovery space S3, the operator has the lower first blank flange 54 attached to the connecting portion 52 and the second blank flange 56 not attached. The catalyst 48 can be introduced from the opening 58a of the connection portion 58 of the above. On the other hand, when the catalyst 48 is taken out from the first recovery space S3, the operator can easily take out the catalyst 48 by removing the first blank flange 54 from the connecting portion 52.
 本実施形態に係る反応装置1によれば、第1回収空間S3内に触媒46が存在することから、第1実施形態における第2触媒体42を用いずとも、第2触媒体42を用いた場合と同等の効果を奏する。また、第1回収空間S3が触媒46によって満たされていることから、第1回収空間S3に排出された流体は、必ず触媒48に接触する。したがって、第1回収空間S3内での触媒による反応をより促進させることができる。 According to the reaction apparatus 1 according to the present embodiment, since the catalyst 46 is present in the first recovery space S3, the second catalyst 42 is used without using the second catalyst 42 in the first embodiment. It has the same effect as the case. Further, since the first recovery space S3 is filled with the catalyst 46, the fluid discharged into the first recovery space S3 always comes into contact with the catalyst 48. Therefore, the reaction by the catalyst in the first recovery space S3 can be further promoted.
 (他の実施形態)
 上記の実施形態では、1つの第1伝熱体7において、生成物Pを含む流体が1箇所の第1排出口21から排出される場合を例示したが、第1排出口21が複数存在する場合もあり得る。この場合、それぞれの第1排出口21に合わせて、生成物回収部49も複数存在することになる。このように、生成物回収部49が複数存在する場合には、上記のような第2触媒体42やそれに準ずる触媒46又は触媒48は、各々の生成物回収部49に設置されてもよい。
(Other embodiments)
In the above embodiment, in one first heat transfer body 7, the fluid containing the product P is discharged from one first discharge port 21, but there are a plurality of first discharge ports 21. In some cases. In this case, there will be a plurality of product recovery units 49 in accordance with each of the first discharge ports 21. As described above, when a plurality of product recovery units 49 exist, the second catalyst body 42 and the catalyst 46 or the catalyst 48 equivalent thereto may be installed in each product recovery unit 49.
 以上、本開示の好ましい実施形態について説明したが、本開示は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although the preferred embodiments of the present disclosure have been described above, the present disclosure is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist thereof.
 1   反応装置
 7   第1伝熱体
 9   第2伝熱体
 21  第1排出口
 22  第1流路
 36  第2流路
 42  第2触媒体
 43  フランジ部
 46  触媒
 48  触媒
 49  生成物回収部
 49c 内壁側面
 52  接続部
 52a 開口部
 70  第1本体部
 71  第2本体部
 72  第3本体部
 73  第4本体部
 74  第5本体部
 75  第6本体部
 76  第7本体部
 77  第8本体部
 78  第9本体部
 81  第1排出配管
 HC  熱媒体
 M   反応流体
 P   生成物
 S3  第1回収空間
1 Reaction device 7 1st heat transfer body 9 2nd heat transfer body 21 1st discharge port 22 1st flow path 36 2nd flow path 42 2nd catalyst body 43 Flange part 46 Catalyst 48 Catalyst 49 Product recovery part 49c Inner wall side surface 52 Connection part 52a Opening part 70 1st main body part 71 2nd main body part 72 3rd main body part 73 4th main body part 74 5th main body part 75 6th main body part 76 7th main body part 77 8th main body part 78 9th main body Part 81 1st discharge pipe HC heat transfer medium M reaction fluid P product S3 1st recovery space

Claims (17)

  1.  反応原料を含む第1流体を流通させる第1流路を有する第1伝熱体と、
     前記第1伝熱体に積層され、前記第1流体との熱交換に用いられる第2流体を流通させる第2流路を有する第2伝熱体と、
     前記第1伝熱体にある前記第1流路に連通する排出口に面する回収空間を有し、前記反応原料の吸熱反応により前記第1流路で生成された生成物を回収する生成物回収部と、
     前記生成物回収部に設置され、前記第1流路にて残存して前記回収空間に排出された前記反応原料の吸熱反応を促進させる触媒と、
    を備える反応装置。
    A first heat transfer body having a first flow path through which a first fluid containing a reaction material is circulated,
    A second heat transfer body laminated with the first heat transfer body and having a second flow path through which a second fluid used for heat exchange with the first fluid flows.
    A product having a recovery space facing the discharge port communicating with the first flow path in the first heat transfer body, and recovering the product produced in the first flow path by the endothermic reaction of the reaction raw material. Collection department and
    A catalyst installed in the product recovery unit, which remains in the first flow path and is discharged into the recovery space to promote the endothermic reaction of the reaction raw material,
    A reactor equipped with.
  2.  前記触媒を含む本体部を有する触媒体を備え、
     前記生成物回収部は、前記本体部を前記回収空間に収容させる開口部を含む接続部を有し、
     前記触媒体は、前記本体部を前記回収空間に収容させた状態で、前記接続部に取り付けられるフランジ部を有する、請求項1に記載の反応装置。
    A catalyst body having a main body including the catalyst is provided.
    The product recovery unit has a connection portion including an opening for accommodating the main body portion in the recovery space.
    The reaction apparatus according to claim 1, wherein the catalyst body has a flange portion attached to the connection portion in a state where the main body portion is housed in the recovery space.
  3.  前記触媒を含む本体部を有する触媒体を備え、
     前記生成物回収部は、前記生成物を外部配管へ排出する排出配管を有し、
     前記触媒体は、前記本体部を前記回収空間に収容させた状態で、前記排出配管に取り付けられるフランジ部を有する、請求項1に記載の反応装置。
    A catalyst body having a main body including the catalyst is provided.
    The product recovery unit has a discharge pipe for discharging the product to an external pipe.
    The reaction device according to claim 1, wherein the catalyst body has a flange portion attached to the discharge pipe in a state where the main body portion is housed in the recovery space.
  4.  前記排出配管は、前記外部配管との連結に用いられる第1フランジ部を有し、
     前記外部配管は、前記第1フランジ部と接続可能な第2フランジ部を有し、
     前記フランジ部は、前記第1フランジ部と前記第2フランジ部とに挟まれて締結される、請求項3に記載の反応装置。
    The discharge pipe has a first flange portion used for connecting to the external pipe.
    The external pipe has a second flange portion that can be connected to the first flange portion.
    The reaction device according to claim 3, wherein the flange portion is sandwiched between the first flange portion and the second flange portion and fastened.
  5.  前記本体部は、筒状又は柱状である、請求項2~4のいずれか1項に記載の反応装置。 The reaction device according to any one of claims 2 to 4, wherein the main body is cylindrical or columnar.
  6.  前記本体部は、前記触媒を担持する構造材を有する、請求項5に記載の反応装置。 The reaction apparatus according to claim 5, wherein the main body portion has a structural material that supports the catalyst.
  7.  前記触媒は、多孔質状である、請求項5に記載の反応装置。 The reaction apparatus according to claim 5, wherein the catalyst is porous.
  8.  前記触媒は、ペレット状であり、
     前記本体部は、前記ペレット状の前記触媒を収容する筒体を有する、請求項5に記載の反応装置。
    The catalyst is in the form of pellets and is in the form of pellets.
    The reaction apparatus according to claim 5, wherein the main body has a tubular body containing the pellet-shaped catalyst.
  9.  前記構造材は、前記本体部が筒状である場合には筒状であり、かつ、筒外部と筒内部とで貫通する複数の貫通穴を有する、請求項6に記載の反応装置。 The reaction device according to claim 6, wherein the structural material is cylindrical when the main body is cylindrical, and has a plurality of through holes penetrating between the outside of the cylinder and the inside of the cylinder.
  10.  前記構造材は、断面がハニカム状となるハニカム構造体を含む、請求項6に記載の反応装置。 The reaction device according to claim 6, wherein the structural material includes a honeycomb structure having a honeycomb-like cross section.
  11.  前記構造材は、断面が波状に湾曲したコルゲート板を筒型に丸められたコルゲート構造体を含む、請求項6に記載の反応装置。 The reaction device according to claim 6, wherein the structural material includes a corrugated structure in which a corrugated plate having a curved cross section is rolled into a tubular shape.
  12.  前記構造材は、筒状又は棒状であり、
     前記本体部は、筒状又は棒状の前記構造材を複数含む、請求項6に記載の反応装置。
    The structural material is cylindrical or rod-shaped and has a tubular shape or a rod shape.
    The reaction device according to claim 6, wherein the main body portion includes a plurality of tubular or rod-shaped structural materials.
  13.  前記構造材は、複数の盤体を含み、
     前記本体部は、前記複数の盤体を、前記本体部の筒状又は柱状の延伸方向に並べて保持する保持体を含む、請求項6に記載の反応装置。
    The structural material includes a plurality of discs and includes a plurality of discs.
    The reaction apparatus according to claim 6, wherein the main body portion includes a holding body that holds the plurality of discs side by side in a tubular or columnar stretching direction of the main body portion.
  14.  前記構造材は、前記本体部の筒状又は柱状の延伸方向に合わせてスパイラル状に延伸する板構造体である、請求項6に記載の反応装置。 The reaction device according to claim 6, wherein the structural material is a plate structure that is spirally stretched in a cylindrical or columnar stretching direction of the main body.
  15.  前記本体部は、前記排出口に対向する、請求項2~14のいずれか1項に記載の反応装置。 The reaction device according to any one of claims 2 to 14, wherein the main body portion faces the discharge port.
  16.  前記触媒は、前記回収空間に面する前記生成物回収部の内壁に担持される、請求項1に記載の反応装置。 The reaction apparatus according to claim 1, wherein the catalyst is supported on the inner wall of the product recovery unit facing the recovery space.
  17.  前記触媒は、前記回収空間に収納された粒状体である、請求項1に記載の反応装置。 The reaction apparatus according to claim 1, wherein the catalyst is a granular material housed in the recovery space.
PCT/JP2020/028688 2020-07-27 2020-07-27 Reaction device WO2022024179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028688 WO2022024179A1 (en) 2020-07-27 2020-07-27 Reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028688 WO2022024179A1 (en) 2020-07-27 2020-07-27 Reaction device

Publications (1)

Publication Number Publication Date
WO2022024179A1 true WO2022024179A1 (en) 2022-02-03

Family

ID=80037791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028688 WO2022024179A1 (en) 2020-07-27 2020-07-27 Reaction device

Country Status (1)

Country Link
WO (1) WO2022024179A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168765B1 (en) * 1998-09-08 2001-01-02 Uop Llc Process and apparatus for interbed injection in plate reactor arrangement
WO2017138300A1 (en) * 2016-02-12 2017-08-17 株式会社Ihi Reaction device
WO2017150653A1 (en) * 2016-03-03 2017-09-08 株式会社Ihi Reactor
WO2018070427A1 (en) * 2016-10-13 2018-04-19 株式会社Ihi Thermal treatment device
WO2018105588A1 (en) * 2016-12-08 2018-06-14 株式会社Ihi Reactor
WO2018181651A1 (en) * 2017-03-31 2018-10-04 株式会社Ihi Heat treatment device
WO2019221238A1 (en) * 2018-05-17 2019-11-21 株式会社Ihi Reaction device
WO2019240156A1 (en) * 2018-06-12 2019-12-19 株式会社Ihi Reaction device
JP2020006335A (en) * 2018-07-10 2020-01-16 株式会社Ihi Reactor
JP2020131164A (en) * 2019-02-25 2020-08-31 株式会社Ihi Reaction apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168765B1 (en) * 1998-09-08 2001-01-02 Uop Llc Process and apparatus for interbed injection in plate reactor arrangement
WO2017138300A1 (en) * 2016-02-12 2017-08-17 株式会社Ihi Reaction device
WO2017150653A1 (en) * 2016-03-03 2017-09-08 株式会社Ihi Reactor
WO2018070427A1 (en) * 2016-10-13 2018-04-19 株式会社Ihi Thermal treatment device
WO2018105588A1 (en) * 2016-12-08 2018-06-14 株式会社Ihi Reactor
WO2018181651A1 (en) * 2017-03-31 2018-10-04 株式会社Ihi Heat treatment device
WO2019221238A1 (en) * 2018-05-17 2019-11-21 株式会社Ihi Reaction device
WO2019240156A1 (en) * 2018-06-12 2019-12-19 株式会社Ihi Reaction device
JP2020006335A (en) * 2018-07-10 2020-01-16 株式会社Ihi Reactor
JP2020131164A (en) * 2019-02-25 2020-08-31 株式会社Ihi Reaction apparatus

Similar Documents

Publication Publication Date Title
US4340501A (en) Fluid flow
US10350575B2 (en) Reactor
US10449506B2 (en) Reactor and reaction system
US10166526B2 (en) Reactor
EA004758B1 (en) Process and device for carrying out reactions in a reactor with slot-shaped reaction spaces
WO2017150653A1 (en) Reactor
JP7255232B2 (en) Reactor
EP0073150A2 (en) Catalyst devices
CN115532201A (en) Enhanced microchannel or mesochannel device and additive manufacturing method thereof
US9255746B2 (en) Reactor core for use in a chemical reactor, and method of making the same
JP6860102B2 (en) Heat treatment equipment
WO2022024179A1 (en) Reaction device
EP2090355A1 (en) Isothermal chemical reactor with plate heat exchanger
GB2057908A (en) Fluid-solid contact
US11413598B2 (en) Reactor
US7718146B2 (en) Enhanced bed separation in a styrene monomer reactor using milled plates
US20210268472A1 (en) Reactor
JP6834183B2 (en) Heat treatment equipment
US20220176339A1 (en) Jig for inserting filling member into reactor
ITMI20122251A1 (en) MULTI-TEXTURED REACTOR FOR CHEMICAL PROCESSES WITH HIGH HEAT EXCHANGE
JP2013011428A (en) Heat exchange member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP