JP6834183B2 - Heat treatment equipment - Google Patents

Heat treatment equipment Download PDF

Info

Publication number
JP6834183B2
JP6834183B2 JP2016116075A JP2016116075A JP6834183B2 JP 6834183 B2 JP6834183 B2 JP 6834183B2 JP 2016116075 A JP2016116075 A JP 2016116075A JP 2016116075 A JP2016116075 A JP 2016116075A JP 6834183 B2 JP6834183 B2 JP 6834183B2
Authority
JP
Japan
Prior art keywords
flow path
heat transfer
transfer body
reaction
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016116075A
Other languages
Japanese (ja)
Other versions
JP2017219289A (en
Inventor
拓哉 吉野谷
拓哉 吉野谷
濱田 行貴
行貴 濱田
鎌田 博之
博之 鎌田
卓也 橋本
卓也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2016116075A priority Critical patent/JP6834183B2/en
Publication of JP2017219289A publication Critical patent/JP2017219289A/en
Application granted granted Critical
Publication of JP6834183B2 publication Critical patent/JP6834183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱交換型の熱処理装置に関する。 The present invention relates to a heat exchange type heat treatment apparatus.

熱交換型の反応装置は、反応体としての反応原料を含んだ気体又は液体の反応流体を、熱媒体を用いて加熱又は冷却することで、反応体の反応を進行させる。このような反応装置では、反応流体を流通させる反応流路と、熱媒体を流通させる熱媒体流路とが設けられており、反応流体及び熱媒体がそれぞれ導入されてから排出されるまでの間に相互の熱交換が進行する。ここで、反応流路及び熱媒体流路は、熱交換をより容易に行うために、伝熱面積が増加するよう各々複数設けられる。特許文献1は、発熱反応用の複数の流路を有するブロックと、吸熱反応用の複数の流路を有するブロックとを交互に積層した反応装置を開示している。 The heat exchange type reactor proceeds the reaction of the reactant by heating or cooling a gas or liquid reaction fluid containing the reaction raw material as the reactant using a heat medium. In such a reaction apparatus, a reaction flow path through which the reaction fluid is circulated and a heat medium flow path through which the heat medium is circulated are provided, and between the time when the reaction fluid and the heat medium are introduced and the time when they are discharged. Mutual heat exchange progresses. Here, a plurality of reaction channels and heat medium channels are provided so as to increase the heat transfer area in order to facilitate heat exchange. Patent Document 1 discloses a reactor in which a block having a plurality of flow paths for an exothermic reaction and a block having a plurality of flow paths for an endothermic reaction are alternately laminated.

特表2013−508150号公報Special Table 2013-508150

しかしながら、特許文献1に示す構成では、発熱反応用流路と吸熱反応用流路との間での伝熱が積層方向の上下間のみであるので、伝熱面積を増加させるにも限界がある。 However, in the configuration shown in Patent Document 1, since the heat transfer between the exothermic reaction flow path and the endothermic reaction flow path is only between the upper and lower parts in the stacking direction, there is a limit to increasing the heat transfer area. ..

そこで、本発明は、第1流体を流通させる第1流路と、第2流体を流通させる第2流路との間で、伝熱面積を増加させるのに有利な熱処理装置を提供することを目的とする。 Therefore, the present invention provides a heat treatment apparatus advantageous for increasing the heat transfer area between the first flow path through which the first fluid flows and the second flow path through which the second fluid flows. The purpose.

本発明の一態様によれば、第1流体と第2流体との熱交換を利用する熱処理装置であって、第1流体を流通させる第1流路と、第2流体を流通させる第2流路とが壁部を介して並設されている第1伝熱体と、第1流体を流通させる第1流路と、第2流体を流通させる第2流路とが壁部を介して並設され、第1伝熱体に接合される第2伝熱体と、を備え、第1伝熱体及び第2伝熱体は、第1伝熱体が有する第2流路と、第2伝熱体が有する第2流路とを連通させる連通路を有し、第2伝熱体が有する第1流路の少なくとも一部は、第1伝熱体が有する第2流路の少なくとも一部と、接合方向で、かつ、非接触で重なる。 According to one aspect of the present invention, it is a heat treatment apparatus that utilizes heat exchange between the first fluid and the second fluid, and is a first flow path through which the first fluid flows and a second flow through which the second fluid flows. The first heat transfer body in which the paths are arranged side by side through the wall portion, the first flow path through which the first fluid flows, and the second flow path through which the second fluid flows are arranged side by side through the wall portion. A second heat transfer body provided and joined to the first heat transfer body is provided, and the first heat transfer body and the second heat transfer body have a second flow path of the first heat transfer body and a second heat transfer body. It has a communication path for communicating with the second flow path of the heat transfer body, and at least a part of the first flow path of the second heat transfer body is at least one of the second flow paths of the first heat transfer body. It overlaps with the part in the joining direction and in a non-contact manner.

上記熱処理装置において、第2伝熱体が有する第1流路の少なくとも一部は、更に、第1伝熱体が有する第1流路の少なくとも一部と、接合方向で、かつ、非接触で重なるものとしてもよい。第2伝熱体が有する第1流路と、第1伝熱体が有する第2流路とが重なる割合xは、第1流路及び第2流路の接合方向の流路高さをHとし、第1流路及び第2流路の流路幅をWとすると、x>1−(H/W)との条件を満たすものとしてもよい In the above heat treatment apparatus, at least a part of the first flow path of the second heat transfer body is further in contact with at least a part of the first flow path of the first heat transfer body in the joining direction and in non-contact. It may overlap. The ratio x at which the first flow path of the second heat transfer body and the second flow path of the first heat transfer body overlap is H, which is the height of the flow path in the joining direction of the first flow path and the second flow path. Assuming that the flow path widths of the first flow path and the second flow path are W, the condition of x> 1- (H / W) may be satisfied .

本発明によれば、第1流体を流通させる第1流路と、第2流体を流通させる第2流路との間で、伝熱面積を増加させるのに有利な熱処理装置を提供することができる。 According to the present invention, it is possible to provide a heat treatment apparatus advantageous for increasing the heat transfer area between the first flow path through which the first fluid flows and the second flow path through which the second fluid flows. it can.

本発明の一実施形態に係る反応装置の構成を示す図である。It is a figure which shows the structure of the reaction apparatus which concerns on one Embodiment of this invention. 熱交換部の構成を示す図である。It is a figure which shows the structure of the heat exchange part. 熱交換部内の第1流路と第2流路との位置関係を示す図である。It is a figure which shows the positional relationship between the 1st flow path and the 2nd flow path in a heat exchange part. 熱交換部の他の構成を示す図である。It is a figure which shows the other structure of the heat exchange part.

以下、本発明の実施形態について図面を参照して詳細に説明する。ここで、実施形態に示す寸法、材料、その他、具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。また、本願明細書及び図面において、実質的に同一の機能及び構成を有する要素については、同一の符号を付することにより重複説明を省略し、本発明に直接関係のない要素は図示を省略する。さらに、以下の各図では、鉛直方向にZ軸を取り、Z軸に垂直な平面内において、後述する第1及び第2流路の延設方向にX軸を取り、かつ、X軸に垂直な方向にY軸を取る。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, the dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and the present invention is not limited unless otherwise specified. Further, in the specification and drawings of the present application, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate description, and elements not directly related to the present invention are not shown. .. Further, in each of the following figures, the Z axis is taken in the vertical direction, the X axis is taken in the extending direction of the first and second flow paths described later in the plane perpendicular to the Z axis, and the X axis is perpendicular to the X axis. Take the Y-axis in any direction.

本発明の熱処理装置は、第1流体と第2流体との熱交換を利用する。以下、本実施形態に係る熱処置装置は、反応装置であるものとする。ただし、本発明は、例えば熱交換器などにも適用可能である。 The heat treatment apparatus of the present invention utilizes heat exchange between the first fluid and the second fluid. Hereinafter, the heat treatment device according to the present embodiment shall be a reaction device. However, the present invention can also be applied to, for example, heat exchangers.

図1は、本実施形態に係る反応装置1の構成を示す斜視分解図である。反応装置1は、熱交換型であり、反応体としての反応原料を含んだ気体又は液体の反応流体を加熱又は冷却することで、反応体の反応を進行させる。反応装置1は、本体部としての熱交換部101と、反応流体導入部120及び生成物排出部122と、熱媒体導入部130及び熱媒体排出部132とを備える。 FIG. 1 is a perspective exploded view showing the configuration of the reaction device 1 according to the present embodiment. The reactor 1 is a heat exchange type, and proceeds the reaction of the reactant by heating or cooling a gas or liquid reaction fluid containing a reaction raw material as a reactant. The reaction device 1 includes a heat exchange unit 101 as a main body unit, a reaction fluid introduction unit 120 and a product discharge unit 122, and a heat medium introduction unit 130 and a heat medium discharge unit 132.

図2は、熱交換部101の構成を示す断面図であり、特に、図2(a)は、図1におけるA−A断面図を示し、図2(b)は、図1におけるB−B断面図を示す。熱交換部101は、第1流体としての反応流体又は生成物が流通する反応流路と、第2流体としての熱媒体が流通する熱媒体流路とを含み、第1流体と第2流体とが互いに反対方向に流れる対向流型の構造を有する。 2A and 2B are cross-sectional views showing the configuration of the heat exchange unit 101. In particular, FIG. 2A shows a cross-sectional view taken along the line AA in FIG. 1, and FIG. 2B shows a cross-sectional view taken along the line BB in FIG. A cross-sectional view is shown. The heat exchange unit 101 includes a reaction flow path through which the reaction fluid or product as the first fluid flows, and a heat medium flow path through which the heat medium as the second fluid flows, and the first fluid and the second fluid Has a countercurrent structure in which water flows in opposite directions.

熱交換部101は、複数の伝熱体Pと、蓋体140とを備える。本実施形態では、一例として、鉛直方向の最上部に位置する伝熱体P1から最下部に位置する伝熱体P6までの計6つの伝熱体が存在するものとする。6つの伝熱体Pは、それぞれ、耐熱性を有する熱伝導性素材で形成される平板状部材であり、反応流路である第1流路FP1と、熱媒体流路である第2流路FP2とを有する。 The heat exchange unit 101 includes a plurality of heat transfer bodies P and a lid body 140. In the present embodiment, as an example, it is assumed that there are a total of six heat transfer bodies, from the heat transfer body P1 located at the uppermost part in the vertical direction to the heat transfer body P6 located at the lowermost part. Each of the six heat transfer bodies P is a flat plate-shaped member formed of a heat-resistant heat conductive material, and is a first flow path FP1 which is a reaction flow path and a second flow path which is a heat medium flow path. It has FP2.

まず、伝熱体P1は、それぞれ複数の第1流路FP1と第2流路FP2とを有し、本実施形態では、一例として、3つの第1流路FP1と、2つの第2流路FP2とを有する。第1流路FP1及び第2流路FP2は、それぞれ同じ方向に沿って延設されており、本実施形態ではX軸方向に沿って延設されている。また、第1流路FP1と第2流路FP2とは、壁部P1aを介して交互に並設されている。 First, the heat transfer body P1 has a plurality of first flow paths FP1 and second flow path FP2, respectively, and in the present embodiment, as an example, three first flow paths FP1 and two second flow paths FP1. It has FP2. The first flow path FP1 and the second flow path FP2 are respectively extended along the same direction, and in the present embodiment, they are extended along the X-axis direction. Further, the first flow path FP1 and the second flow path FP2 are alternately arranged side by side via the wall portion P1a.

第1流路FP1は、第2流路FP2を流通する熱媒体から供給された熱又は冷熱を受容して反応流体を反応させ、生成物を生成する。また、第1流路FP1は、鉛直方向上方を開とし、伝熱体P1の一方の端部の壁面から他方の端部の壁面まで一直線で貫通する溝である。さらに、不図示であるが、第1流路FP1には、反応体の反応を促進させるための触媒体を設置してもよい。なお、触媒体については、以下で詳説する。 The first flow path FP1 receives heat or cold heat supplied from the heat medium flowing through the second flow path FP2 and reacts the reaction fluid to produce a product. Further, the first flow path FP1 is a groove that opens upward in the vertical direction and penetrates straight from the wall surface of one end of the heat transfer body P1 to the wall surface of the other end. Further, although not shown, a catalyst body for accelerating the reaction of the reactant may be installed in the first flow path FP1. The catalyst will be described in detail below.

第2流路FP2は、熱媒体から供給された熱又は冷熱を、第1流路FP1に向けて供給する。また、第2流路FP2は、鉛直方向上方を開とし、互いに対向する2つの壁部P1aと、互いに対向する2つの壁部P1bとで側面四方を囲まれる溝である。さらに、不図示であるが、第2流路FP2には、熱媒体との接触面積を増加させて熱媒体と伝熱体Pとの間の伝熱を促進するための伝熱促進体を設置してもよい。伝熱促進体は、伝熱体Pとの接触面積を確保するために、コルゲート板状とし得る。また、伝熱促進体を構成する熱伝導性素材としては、アルミニウム、銅、ステンレス鋼、鉄系メッキ鋼等の金属が挙げられる。 The second flow path FP2 supplies heat or cold heat supplied from the heat medium toward the first flow path FP1. Further, the second flow path FP2 is a groove that opens upward in the vertical direction and is surrounded on all four sides by two wall portions P1a facing each other and two wall portions P1b facing each other. Further, although not shown, a heat transfer promoter is installed in the second flow path FP2 to increase the contact area with the heat medium and promote heat transfer between the heat medium and the heat transfer body P. You may. The heat transfer promoter may have a corrugated plate shape in order to secure a contact area with the heat transfer body P. Further, examples of the heat conductive material constituting the heat transfer promoter include metals such as aluminum, copper, stainless steel, and iron-based plated steel.

伝熱体P2は、鉛直方向の上部で伝熱体P1に接合される伝熱体である。伝熱体P1と同様に、伝熱体P2も、複数の第1流路FP1と第2流路FP2とを有し、第1流路FP1及び第2流路FP2は、X軸方向に沿って延設され、壁部P2aを介して交互に並設されている。ただし、伝熱体P2の第1流路FP1及び第2流路FP2は、伝熱体P1の第1流路FP1及び第2流路FP2の位置に対して、延設方向であるX軸方向と接合方向であるZ軸方向とにそれぞれ垂直となるY軸方向に、ずれて形成されている。したがって、伝熱体P2は、2つの第1流路FP1と、3つの第2流路FP2とを有することになる。 The heat transfer body P2 is a heat transfer body bonded to the heat transfer body P1 at the upper part in the vertical direction. Like the heat transfer body P1, the heat transfer body P2 also has a plurality of first flow paths FP1 and second flow path FP2, and the first flow path FP1 and the second flow path FP2 are along the X-axis direction. It is extended and alternately arranged side by side via the wall portion P2a. However, the first flow path FP1 and the second flow path FP2 of the heat transfer body P2 are in the X-axis direction which is the extension direction with respect to the positions of the first flow path FP1 and the second flow path FP2 of the heat transfer body P1. It is formed so as to be offset in the Y-axis direction which is perpendicular to the Z-axis direction which is the joining direction. Therefore, the heat transfer body P2 has two first flow paths FP1 and three second flow paths FP2.

伝熱体P2の下部に接合される伝熱体P3は、伝熱体P1と同様の形状を有する。伝熱体P3の下部に接合される伝熱体P4は、伝熱体P2と同様の形状を有する。伝熱体P4の下部に接合される伝熱体P5は、伝熱体P1と同様の形状を有する。また、伝熱体P5の下部に接合される伝熱体P6は、伝熱体P2と同様の形状を有する。すなわち、それぞれの伝熱体Pに形成されている第1流路FP1及び第2流路FP2の位置は、伝熱体P一つおきに同じとなる。 The heat transfer body P3 joined to the lower part of the heat transfer body P2 has the same shape as the heat transfer body P1. The heat transfer body P4 joined to the lower part of the heat transfer body P3 has the same shape as the heat transfer body P2. The heat transfer body P5 joined to the lower part of the heat transfer body P4 has the same shape as the heat transfer body P1. Further, the heat transfer body P6 joined to the lower part of the heat transfer body P5 has the same shape as the heat transfer body P2. That is, the positions of the first flow path FP1 and the second flow path FP2 formed in each heat transfer body P are the same for every other heat transfer body P.

蓋体140は、伝熱体P1の鉛直方向の上部に設置される平板部材である。そして、図1に示すように、平板面を水平として、鉛直方向に伝熱体P6から順にそれぞれの伝熱体Pと蓋体140とを接合することで、接合体又は積層体としての熱交換部101が形成される。熱交換部101の組み立ての際には、各部材間をTIG(Tungsten Inert Gas)溶接や拡散接合等のような接合方法を利用して固着させることで、各部材間の接触不良に起因する伝熱性の低下等が抑止される。 The lid 140 is a flat plate member installed on the upper portion of the heat transfer body P1 in the vertical direction. Then, as shown in FIG. 1, heat exchange as a bonded body or a laminated body is performed by joining the heat transfer bodies P and the lid 140 in order from the heat transfer body P6 in the vertical direction with the flat plate surface horizontal. Part 101 is formed. When assembling the heat exchange section 101, the members are fixed by using a joining method such as TIG (Tungsten Inert Gas) welding or diffusion welding, so that the heat exchange section 101 is transmitted due to poor contact between the members. The decrease in heat is suppressed.

ここで、第1流路FP1は、それぞれ、反応流体を熱交換部101の外部から導入する開口と、生成物を熱交換部101の外部に放出する開口とを直接的に有している。一方、第2流路FP2は、それぞれ、伝熱体Pの内部に形成されているため、熱交換部101の外部に直接的に開放されている開口を有していない。そこで、伝熱体Pは、それぞれ、第2流路FP2の一方の端部に連通し、伝熱体P及び蓋体140の接合方向に沿って設けられる第1連通路FP3と、第2流路FP2の他方の端部に連通し、同様に接合方向に沿って設けられる第2連通路FP4とを有する。 Here, each of the first flow path FP1 directly has an opening for introducing the reaction fluid from the outside of the heat exchange unit 101 and an opening for discharging the product to the outside of the heat exchange unit 101. On the other hand, since each of the second flow paths FP2 is formed inside the heat transfer body P, it does not have an opening that is directly open to the outside of the heat exchange unit 101. Therefore, the heat transfer body P communicates with one end of the second flow path FP2, respectively, and is provided along the joining direction of the heat transfer body P and the lid 140, the first continuous passage FP3 and the second flow. It has a second passage FP4 that communicates with the other end of the road FP2 and is also provided along the joining direction.

具体的には、図2(a)に示すように、伝熱体P1〜伝熱体P5に形成されている第1連通路FP3は、それぞれ接合方向に貫通している。そして、熱交換部101の最下部に位置する伝熱体P6に形成されている第1連通路FP3のみ、第2流体が熱交換部101の底部から放出されないように、貫通していない。また、それぞれの伝熱体Pに形成されている第1連通路FP3は、熱交換部101としてそれぞれの伝熱体Pが接合されている状態で、それぞれ連通している。すなわち、組み合わされた第1連通路FP3は、伝熱体P1の上面にある1つの開口を通じて外部に開放されることになる。なお、第2連通路FP4も、第1連通路FP3と同一形状である。 Specifically, as shown in FIG. 2A, the first passage FP3 formed in the heat transfer bodies P1 to the heat transfer body P5 penetrates in the joining direction, respectively. Then, only the first passage FP3 formed in the heat transfer body P6 located at the lowermost portion of the heat exchange portion 101 does not penetrate so that the second fluid is not discharged from the bottom portion of the heat exchange portion 101. Further, the first communication passage FP3 formed in each heat transfer body P communicates with each other in a state where each heat transfer body P is joined as a heat exchange portion 101. That is, the combined first passage FP3 is opened to the outside through one opening on the upper surface of the heat transfer body P1. The second passage FP4 also has the same shape as the first passage FP3.

熱交換部101を構成する各要素の熱伝導性素材としては、鉄系合金やニッケル合金等の耐熱性金属が好適である。具体的には、ステンレス綱等の鉄系合金、インコネル625(登録商標)、インコネル617(登録商標)、Haynes230(登録商標)等のニッケル合金のような耐熱合金が挙げられる。これらの熱伝導性素材は、第1流路FP1での反応進行や熱媒体として使用し得る燃焼ガスに対する耐久性又は耐食性を有するので好ましいが、これらに限定されるものではない。また、鉄系メッキ鋼や、フッ素樹脂等の耐熱樹脂で被覆した金属、又は、カーボングラファイト等でもよい。 As the heat conductive material of each element constituting the heat exchange unit 101, a heat-resistant metal such as an iron alloy or a nickel alloy is suitable. Specific examples thereof include iron-based alloys such as stainless steel, and heat-resistant alloys such as nickel alloys such as Inconel 625 (registered trademark), Inconel 617 (registered trademark), and Haynes 230 (registered trademark). These thermally conductive materials are preferable because they have durability or corrosion resistance against combustion gas that can be used as a heat medium and the reaction progress in the first flow path FP1, but are not limited thereto. Further, iron-based plated steel, a metal coated with a heat-resistant resin such as fluororesin, carbon graphite, or the like may be used.

なお、熱交換部101は、少なくとも2つの伝熱体Pを用いても構成可能である。ただし、熱交換性能を向上させる観点から、伝熱体Pの数は多い方が望ましい。また、1つの伝熱体Pに形成される第1流路FP1及び第2流路FP2の数も、特に限定されるものではなく、熱交換部101の設計条件や伝熱効率などを考慮して適宜変更可能である。さらに、本実施形態では、熱交換部101自体を反応装置1の本体部と位置付けているが、熱交換部101からの放熱を抑制して熱損失を抑えるために、ハウジング又は断熱材で熱交換部101の周囲を覆う構成としてもよい。 The heat exchange unit 101 can also be configured by using at least two heat transfer bodies P. However, from the viewpoint of improving the heat exchange performance, it is desirable that the number of heat transfer bodies P is large. Further, the number of the first flow path FP1 and the second flow path FP2 formed in one heat transfer body P is not particularly limited, and the design conditions of the heat exchange unit 101, the heat transfer efficiency, and the like are taken into consideration. It can be changed as appropriate. Further, in the present embodiment, the heat exchange unit 101 itself is positioned as the main body of the reaction device 1, but in order to suppress heat dissipation from the heat exchange unit 101 and suppress heat loss, heat exchange is performed with a housing or a heat insulating material. It may be configured to cover the periphery of the portion 101.

反応流体導入部120は、凹状に湾曲した筐体であり、複数の第1流路FP1が上流側で開放されている側の熱交換部101の側面を覆い、熱交換部101との間に空間を形成する。反応流体導入部120は、熱交換部101に対して着脱可能又は開閉可能に設置される。この着脱等により、例えば、作業者が第1流路FP1に対する触媒体の挿入や抜き出しを行うことができる。また、反応流体導入部120は、反応流体を熱交換部101の外部から内部へ導入する導入配管120aを有する。導入配管120aは、図1に示すように、熱交換部101の側面に対して中心、具体的にはYZ平面上の中心に位置し、複数の第1流路FP1の開口方向と同一方向に連接されている。これにより、導入配管120aは、第1流路FP1のそれぞれに、反応流体をバランス良く分配することができる。 The reaction fluid introduction unit 120 is a concavely curved housing, covers the side surface of the heat exchange unit 101 on the side where the plurality of first flow paths FP1 are open on the upstream side, and is between the reaction fluid introduction unit 120 and the heat exchange unit 101. Form a space. The reaction fluid introduction unit 120 is installed so as to be removable or openable / closable with respect to the heat exchange unit 101. By this attachment / detachment or the like, for example, the operator can insert or remove the catalyst body from the first flow path FP1. Further, the reaction fluid introduction unit 120 has an introduction pipe 120a for introducing the reaction fluid from the outside to the inside of the heat exchange unit 101. As shown in FIG. 1, the introduction pipe 120a is located at the center with respect to the side surface of the heat exchange portion 101, specifically at the center on the YZ plane, and is in the same direction as the opening direction of the plurality of first flow paths FP1. It is connected. As a result, the introduction pipe 120a can distribute the reaction fluid to each of the first flow paths FP1 in a well-balanced manner.

生成物排出部122は、反応流体導入部120と同様に、凹状に湾曲した筐体であり、複数の第1流路FP1が下流側で開放されている側の熱交換部101の側面を覆い、熱交換部101との間に空間を形成する。生成物排出部122は、反応流体導入部120と同様に熱交換部101に対して着脱可能又は開閉可能に設置されるものとしてもよいが、反応流体導入部120が着脱可能等に構成されているのであれば、着脱等不可能であってもよい。その反対に、生成物排出部122が着脱可能等に構成されているのであれば、反応流体導入部120が着脱等不可能であってもよい。また、生成物排出部122は、生成物を熱交換部101の内部から外部へ排出する排出配管122aを有する。排出配管122aも、図1に示すように、熱交換部101の側面に対して中心、具体的にはYZ平面上の中心に位置し、複数の第1流路FP1の開口方向と同一方向に連接されている。これにより、排出配管122aは、第1流路FP1のそれぞれから、効率良く生成物を回収しつつ排出させることができる。 The product discharge unit 122 is a concavely curved housing similar to the reaction fluid introduction unit 120, and covers the side surface of the heat exchange unit 101 on the side where the plurality of first flow paths FP1 are open on the downstream side. , A space is formed between the heat exchange unit 101 and the heat exchange unit 101. The product discharge unit 122 may be installed in a detachable or openable / closable manner with respect to the heat exchange unit 101 like the reaction fluid introduction unit 120, but the reaction fluid introduction unit 120 is configured to be detachable and the like. If so, it may not be possible to attach or detach it. On the contrary, if the product discharge unit 122 is configured to be removable, the reaction fluid introduction unit 120 may not be removable. In addition, the product discharge unit 122 has a discharge pipe 122a that discharges the product from the inside of the heat exchange unit 101 to the outside. As shown in FIG. 1, the discharge pipe 122a is also located at the center with respect to the side surface of the heat exchange portion 101, specifically at the center on the YZ plane, in the same direction as the opening direction of the plurality of first flow paths FP1. It is connected. As a result, the discharge pipe 122a can efficiently collect and discharge the product from each of the first flow paths FP1.

熱媒体導入部130は、蓋体140に形成された複数の開口部であり、伝熱体P1の上面から開放されている複数の第2連通路FP4にそれぞれ連通している。熱媒体導入部130は、不図示であるが、熱交換部101の外部から熱媒体を導入する導入配管に接続される。 The heat medium introduction portion 130 is a plurality of openings formed in the lid 140, and communicates with each of the plurality of second passages FP4 opened from the upper surface of the heat transfer body P1. Although not shown, the heat medium introduction unit 130 is connected to an introduction pipe for introducing the heat medium from the outside of the heat exchange unit 101.

熱媒体排出部132は、蓋体140に形成された複数の開口部であり、伝熱体P1の上面から開放されている複数の第1連通路FP3にそれぞれ連通している。熱媒体排出部132は、不図示であるが、熱交換部101の外部へ熱媒体を排出する排出配管に接続される。 The heat medium discharge portion 132 is a plurality of openings formed in the lid 140, and communicates with each of the plurality of first passages FP3 opened from the upper surface of the heat transfer body P1. Although not shown, the heat medium discharge unit 132 is connected to a discharge pipe that discharges the heat medium to the outside of the heat exchange unit 101.

熱交換部101は、液−液型熱交換器、気−気型熱交換器及び気−液型熱交換器のいずれとしても使用可能であり、反応装置1に供給する反応流体及び熱媒体は、気体及び液体のいずれであってもよい。また、反応装置1は、吸熱反応や発熱反応など様々な熱的反応による化学合成を可能とする。そのような熱的反応による合成として、例えば、式(1)で示すメタンの水蒸気改質反応、式(2)で示すメタンのドライリフォーミング反応のような吸熱反応、式(3)で示すシフト反応、式(4)で示すメタネーション反応、式(5)で示すフィッシャー−トロプシュ(Fischer tropsch)合成反応等の発熱反応による合成がある。なお、これらの反応における反応流体は、気体状である。 The heat exchange unit 101 can be used as any of a liquid-liquid heat exchanger, a gas-gas heat exchanger, and a gas-liquid heat exchanger, and the reaction fluid and heat medium supplied to the reactor 1 can be used. , Gas or liquid. In addition, the reactor 1 enables chemical synthesis by various thermal reactions such as endothermic reaction and exothermic reaction. As the synthesis by such a thermal reaction, for example, a steam reforming reaction of methane represented by the formula (1), a heat absorption reaction such as a dry reforming reaction of methane represented by the formula (2), and a shift represented by the formula (3). There are reactions by exothermic reactions such as the methanation reaction represented by the formula (4) and the Fischer-Tropsch synthesis reaction represented by the formula (5). The reaction fluid in these reactions is gaseous.

CH4 + H2O → 3H2 + CO ----式(1)
CH4 + CO2 → 2H2 + 2CO ----式(2)
CO + H2O → CO2 + H2 ----式(3)
CO + 3H2 → CH4 + H2O ----式(4)
(2n+1)H2 + nCO → Cn2n+2 + nH2O ----式(5)
CH 4 + H 2 O → 3H 2 + CO ---- Equation (1)
CH 4 + CO 2 → 2H 2 + 2CO ---- Equation (2)
CO + H 2 O → CO 2 + H 2 ---- Equation (3)
CO + 3H 2 → CH 4 + H 2 O ---- Equation (4)
(2n + 1) H 2 + nCO → C n H 2n + 2 + nH 2 O ---- Equation (5)

また、上記反応以外に、アセチル化反応、付加反応、アルキル化反応、脱アルキル化反応、水素脱アルキル化反応、還元性アルキル化反応、アミン化反応、芳香族化反応、アリール化反応、自熱式改質反応、カルボニル化反応、脱カルボニル化反応、還元性カルボニル化反応、カルボキシル化反応、還元性カルボキシル化反応、還元性カップリング反応、縮合反応、分解(クラッキング)反応、水素分解反応、環化反応、シクロオリゴマー化(cyclooligomerization)反応、脱ハロゲン化反応、二量体化反応、エポキシ化反応、エステル化反応、交換反応、ハロゲン化反応、水素化反応、水素ハロゲン化反応、同族体形成(homologation)反応、水和反応、脱水反応、水素化反応、脱水素化反応、水素カルボキシル化反応、水素ホルミル化反応、水添分解反応、水素金属化反応、ヒドロシリル化反応、加水分解反応、水素化処理反応、異性体化反応、メチル化反応、脱メチル化反応、メタセシス(置換)反応、ニトロ化反応、酸化反応、部分酸化反応、重合反応、還元反応、逆水性ガスシフト(reverse water gas shift)反応、スルホン化反応、短鎖重合反応、エステル交換反応、三量体化反応等の実施に、反応装置1を適用してもよい。 In addition to the above reactions, acetylation reaction, addition reaction, alkylation reaction, dealkylation reaction, hydrogen dealkylation reaction, reducing alkylation reaction, amination reaction, aromaticization reaction, arylation reaction, self-heating. Formula Modification reaction, carbonylation reaction, decarbonylation reaction, reducing carbonylation reaction, carboxylation reaction, reducing carboxylation reaction, reducing coupling reaction, condensation reaction, decomposition (cracking) reaction, hydrogenation reaction, ring Chemical reaction, cyclooligomerization reaction, dehalogenation reaction, dimerization reaction, epoxidation reaction, esterification reaction, exchange reaction, halogenation reaction, hydrogenation reaction, hydrogen halogenation reaction, homologous formation ( homologation) reaction, hydration reaction, dehydration reaction, hydrogenation reaction, dehydrogenation reaction, hydrogen carboxylation reaction, hydrogen formylation reaction, hydrogenation decomposition reaction, hydrogen metallization reaction, hydrosilylation reaction, hydrolysis reaction, hydrogenation Treatment reaction, isomerization reaction, methylation reaction, demethylation reaction, metathesis (substitution) reaction, nitrate reaction, oxidation reaction, partial oxidation reaction, polymerization reaction, reduction reaction, reverse water gas shift reaction , The reaction apparatus 1 may be applied to carry out a sulfonate reaction, a short chain polymerization reaction, an ester exchange reaction, a trimerization reaction and the like.

反応装置1では、上記のような化学反応に関与する原料などの物質を反応体とし、その反応体を有する流体を反応流体とする。反応流体は、第1流路FP1を流通する間に、第2流路FP2を流通する熱媒体の熱又は冷熱を受けて加熱又は冷却されて反応が進行し、反応体が目的生成物に変換される。なお、反応流体は、反応に関与しないキャリアを含有してもよい。キャリアは、実施する化学反応を考慮して、反応の進行に影響を与えない物質から適宜選択することができる。特に、気体状の反応流体に使用可能なキャリアとしては、不活性ガスや低反応性の気体状物質等の気体キャリアが挙げられる。一方、熱媒体としては、反応装置1の構成素材を腐食させない流体物質が好適であり、例えば、水、油等の液状物質や、燃焼ガス等の気体状物質が使用できる。熱媒体として気体状物質を使用する構成は、液体媒体を使用する場合と比較して、取り扱いが容易である。 In the reactor 1, a substance such as a raw material involved in a chemical reaction as described above is used as a reactant, and a fluid having the reactant is used as a reaction fluid. While flowing through the first flow path FP1, the reaction fluid receives the heat or cold heat of the heat medium flowing through the second flow path FP2 and is heated or cooled to proceed with the reaction, and the reactant is converted into the target product. Will be done. The reaction fluid may contain carriers that are not involved in the reaction. The carrier can be appropriately selected from substances that do not affect the progress of the reaction in consideration of the chemical reaction to be carried out. In particular, examples of carriers that can be used for the gaseous reaction fluid include gaseous carriers such as an inert gas and a low-reactivity gaseous substance. On the other hand, as the heat medium, a fluid substance that does not corrode the constituent material of the reactor 1 is preferable, and for example, a liquid substance such as water or oil or a gaseous substance such as combustion gas can be used. The configuration in which a gaseous substance is used as the heat medium is easier to handle as compared with the case where a liquid medium is used.

触媒体に含まれる触媒は、上述のような化学反応の進行促進に有効な活性金属を主成分として有し、反応装置1で遂行する合成反応に基づいて反応促進に適したものが適宜選択される。触媒成分である活性金属としては、例えば、Ni(ニッケル)、Co(コバルト)、Fe(鉄)、Pt(白金)、Ru(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)等が挙げられ、1種、又は、反応促進に有効である限り、複数種を組み合わせて使用してもよい。触媒体は、例えば、触媒を構造材に担持することによって調製される。構造材は、耐熱性の金属から、成形加工が可能で、触媒の担持が可能なものが選択される。構造体、すなわち触媒体は、反応流体との接触面積を増加させるために、断面が波状に丸く湾曲したコルゲート板状や鋸歯状に屈曲した形状などがあり得る。耐熱性の金属としては、Fe(鉄)、Cr(クロム)、Al(アルミニウム)、Y(イットリウム)、Co(コバルト)、Ni(ニッケル)、Mg(マグネシウム)、Ti(チタン)、Mo(モリブデン)、W(タングステン)、Nb(ニオブ)、Ta(タンタル)等の金属の1種又は複数種を主成分とする耐熱合金がある。例えばFecralloy(登録商標)等の耐熱合金製の薄板状構造材を成形加工して触媒体を構成してもよい。触媒の担持方法としては、表面修飾等によって構造材上に直接担持する方法や、担体を用いて間接的に担持する方法などがあり、実用的には、担体を用いた触媒の担持が容易である。担体は、反応装置1で実施する反応を考慮して、反応の進行を阻害せず耐久性を有する材料であって、使用する触媒を良好に担持し得るものが適宜選択される。例えば、Al23(アルミナ)、TiO2(チタニア)、ZrO2(ジルコニア)、CeO2(セリア)、SiO2(シリカ)等の金属酸化物が挙げられ、1種又は複数種を選択して担体として使用することができる。担体を用いた担持方法としては、例えば、成形した構造材の表面に触媒と担体との混合物層を形成する方式や、担体層を形成した後に表面修飾等によって触媒を担持させる方式などが挙げられる。 The catalyst contained in the catalyst has an active metal as a main component, which is effective in promoting the progress of the chemical reaction as described above, and a catalyst suitable for promoting the reaction is appropriately selected based on the synthetic reaction carried out in the reaction apparatus 1. To. Examples of the active metal as a catalyst component include Ni (nickel), Co (cobalt), Fe (iron), Pt (platinum), Ru (ruthenium), Rh (rhodium), Pd (palladium) and the like. One type may be used, or a plurality of types may be used in combination as long as it is effective in promoting the reaction. The catalyst body is prepared, for example, by supporting the catalyst on a structural material. As the structural material, a heat-resistant metal that can be molded and can support a catalyst is selected. The structure, that is, the catalyst body, may have a corrugated plate-like shape in which the cross section is curved in a wavy shape or a serrated shape in order to increase the contact area with the reaction fluid. Heat-resistant metals include Fe (iron), Cr (chromium), Al (aluminum), Y (ittrium), Co (cobalt), Ni (nickel), Mg (magnesium), Ti (tantalum), and Mo (molybdenum). ), W (tungsten), Nb (niobium), Ta (tantalum), and other heat-resistant alloys containing one or more metals as main components. For example, a thin plate-like structural material made of a heat-resistant alloy such as Feclloy (registered trademark) may be molded to form a catalyst. As a method for supporting the catalyst, there are a method of directly supporting the catalyst on a structural material by surface modification or the like, a method of indirectly supporting the catalyst using a carrier, and the like, and practically, it is easy to support the catalyst using a carrier. is there. As the carrier, in consideration of the reaction carried out in the reaction apparatus 1, a material having durability that does not hinder the progress of the reaction and capable of satisfactorily supporting the catalyst to be used is appropriately selected. Examples thereof include metal oxides such as Al 2 O 3 (alumina), TiO 2 (titania), ZrO 2 (zirconia), CeO 2 (ceria), and SiO 2 (silica), and one or more types are selected. Can be used as a carrier. Examples of the supporting method using a carrier include a method of forming a mixture layer of a catalyst and a carrier on the surface of a molded structural material, a method of supporting a catalyst by surface modification or the like after forming a carrier layer, and the like. ..

次に、本実施形態による作用及び効果について説明する。 Next, the action and effect of this embodiment will be described.

まず、第1流体と第2流体との熱交換を利用する熱処理装置は、第1流体を流通させる第1流路FP1と、第2流体を流通させる第2流路FP2とが壁部を介して並設されている第1伝熱体と、第1流体を流通させる第1流路FP1と、第2流体を流通させる第2流路FP2とが壁部を介して並設され、第1伝熱体に接合される第2伝熱体と、を備え、第2伝熱体が有する第1流路FP1の少なくとも一部は、第1伝熱体が有する第2流路FP2の少なくとも一部と、接合方向で、かつ、非接触で重なる。 First, in the heat treatment apparatus that utilizes heat exchange between the first fluid and the second fluid, the first flow path FP1 that circulates the first fluid and the second flow path FP2 that circulates the second fluid pass through the wall portion. The first heat transfer body, the first flow path FP1 for passing the first fluid, and the second flow path FP2 for passing the second fluid are arranged side by side via the wall portion, and the first A second heat transfer body bonded to the heat transfer body is provided, and at least a part of the first flow path FP1 of the second heat transfer body is at least one of the second flow path FP2 of the first heat transfer body. It overlaps with the part in the joining direction and in a non-contact manner.

ただし、熱処理装置は、本実施形態では反応装置1に相当する。第1流体は、反応流体又は生成物とし、第2流体は、熱媒体とし得る。また、第1伝熱体が本実施形態における伝熱体P2に相当するとすれば、第2伝熱体は、伝熱体P3に相当する。また、第1伝熱体が伝熱体P1に相当するとすれば、第1伝熱体の壁部は、壁部P1aに相当する。なお、その他の伝熱体P2〜伝熱体P6に設けられている壁部P2a〜P6aについても同様である。ここで、少なくとも一部と表現しているのは、第2伝熱体の第1流路FP1の一部と第1伝熱体の第2流路FP2の一部とが上記のように重なる場合を包含するだけではないからである。すなわち、以下で詳説するが、ここでは、第2伝熱体の第1流路FP1と、第1伝熱体の第2流路FP2とが、接合方向で、かつ、非接触で、完全に重なる場合も包含している。 However, the heat treatment apparatus corresponds to the reaction apparatus 1 in this embodiment. The first fluid can be a reaction fluid or product and the second fluid can be a heat medium. Further, if the first heat transfer body corresponds to the heat transfer body P2 in the present embodiment, the second heat transfer body corresponds to the heat transfer body P3. Further, if the first heat transfer body corresponds to the heat transfer body P1, the wall portion of the first heat transfer body corresponds to the wall portion P1a. The same applies to the wall portions P2a to P6a provided on the other heat transfer bodies P2 to P6. Here, what is expressed as at least a part is that a part of the first flow path FP1 of the second heat transfer body and a part of the second flow path FP2 of the first heat transfer body overlap as described above. This is because it does not only include cases. That is, as will be described in detail below, here, the first flow path FP1 of the second heat transfer body and the second flow path FP2 of the first heat transfer body are completely in the joining direction and in a non-contact manner. It also includes cases where they overlap.

本実施形態に係る熱処理装置によれば、第1に、第1流路FP1は、側面の壁部を介して並設されている第2流路FP2から熱を受ける。すなわち、第1流路FP1は、延設方向及び接合方向に対して垂直となる図中左右方向から熱を受けることができる。第2に、第1流路FP1は、その第1流路FP1を有する伝熱体Pに接合されている他の伝熱体Pが有する第2流路FP2から熱を受ける。すなわち、第1流路FP1は、接合方向、具体的には、図中上下斜め方向から熱を受けることができる。したがって、反応流路が接合方向からしか熱を受けることができない従来の熱処理装置に比べて、その伝熱面積を増加させることができ、その結果、第1流体に与える熱供給量を増加させることができる。 According to the heat treatment apparatus according to the present embodiment, first, the first flow path FP1 receives heat from the second flow path FP2 arranged side by side via the side wall portion. That is, the first flow path FP1 can receive heat from the left and right directions in the figure which are perpendicular to the extending direction and the joining direction. Secondly, the first flow path FP1 receives heat from the second flow path FP2 of another heat transfer body P bonded to the heat transfer body P having the first flow path FP1. That is, the first flow path FP1 can receive heat from the joining direction, specifically, from the vertical diagonal direction in the drawing. Therefore, the heat transfer area can be increased as compared with the conventional heat treatment apparatus in which the reaction flow path can receive heat only from the joining direction, and as a result, the amount of heat supplied to the first fluid can be increased. Can be done.

また、本実施形態に係る熱処理装置では、第2伝熱体が有する第1流路FP1の少なくとも一部は、更に、第1伝熱体が有する第1流路FP1の少なくとも一部と、接合方向で、かつ、非接触で重なる。 Further, in the heat treatment apparatus according to the present embodiment, at least a part of the first flow path FP1 of the second heat transfer body is further joined with at least a part of the first flow path FP1 of the first heat transfer body. Overlapping in a directional and non-contact manner.

本実施形態に係る熱処理装置によれば、第2伝熱体の第1流路FP1は、結果的に、図1及び図2に示すように、第1伝熱体の第1流路FP1及び第2流路FP2の両方に対して一部が重なることになる。したがって、伝熱面積を従来よりも増加させる観点と、伝熱体Pの横幅、すなわち第1流路FP1と第2流路FP2とが並設される方向の幅を可能な限り縮小させる観点との双方を考慮した場合に、最も効率がよい。 According to the heat treatment apparatus according to the present embodiment, the first flow path FP1 of the second heat transfer body eventually becomes the first flow path FP1 of the first heat transfer body and as shown in FIGS. 1 and 2. A part of the second flow path FP2 overlaps with each other. Therefore, there is a viewpoint of increasing the heat transfer area as compared with the conventional case and a viewpoint of reducing the width of the heat transfer body P, that is, the width in the direction in which the first flow path FP1 and the second flow path FP2 are arranged side by side as much as possible. It is the most efficient when both of the above are taken into consideration.

また、本実施形態に係る熱処理装置では、第2伝熱体が有する第1流路FP1と、第1伝熱体が有する第2流路FP2とが重なる割合xは、第1流路FP1及び第2流路FP2の接合方向の流路高さをHとし、第1流路FP1及び第2流路FP2の流路幅をWとすると、x>1−(H/W)との条件を満たす。 Further, in the heat treatment apparatus according to the present embodiment, the ratio x in which the first flow path FP1 of the second heat transfer body and the second flow path FP2 of the first heat transfer body overlap is the first flow path FP1 and Assuming that the flow path height in the joining direction of the second flow path FP2 is H and the flow path widths of the first flow path FP1 and the second flow path FP2 are W, the condition of x> 1- (H / W) is satisfied. Fulfill.

本実施形態に係る熱処理装置によれば、熱交換部101を構成する伝熱体Pの設置数を従来に比べて減らすことも可能である。図3は、熱交換部101における第1流路FP1と第2流路FP2との位置関係の詳細を示す拡大断面図である。ここでは、一例として、伝熱体P2に形成されている第2流路FP2と、伝熱体P2の下部に接合されている伝熱体P3に形成されている第1流路FP1とについて考える。 According to the heat treatment apparatus according to the present embodiment, it is possible to reduce the number of heat transfer bodies P installed in the heat exchange unit 101 as compared with the conventional case. FIG. 3 is an enlarged cross-sectional view showing details of the positional relationship between the first flow path FP1 and the second flow path FP2 in the heat exchange unit 101. Here, as an example, consider the second flow path FP2 formed in the heat transfer body P2 and the first flow path FP1 formed in the heat transfer body P3 joined to the lower part of the heat transfer body P2. ..

ここで、本実施形態における流路配置では、第1流路FP1は、延設方向視で上下左右に存在する第2流路FP2から熱を受けるので、伝熱面積は、(2×H)+(2×xW)となる。一方、従来の流路配置では、反応流路及び熱媒体流路の寸法が上記と同様であるとすると、反応流路は、延設方向視で上下に存在する熱媒体流路からしか熱を受けないので、伝熱面積は、(2×W)となる。このことから、本実施形態における流路配置が、従来の流路配置よりも伝熱性能を向上させるものとなるためには、(2×H)+(2×xW)>(2×W)の式が成り立ち、すなわち、割合xが、x>1−(H/W)の条件を満たせばよい。したがって、この点を考慮して伝熱体Pを設計すれば、従来の熱交換部と比較して、伝熱面積を同等か又は向上させつつ、伝熱体Pの設置数を半分程度にまで減らすことができる。 Here, in the flow path arrangement in the present embodiment, since the first flow path FP1 receives heat from the second flow path FP2 existing in the vertical and horizontal directions in the extending direction, the heat transfer area is (2 × H). It becomes + (2 × xW). On the other hand, in the conventional flow path arrangement, assuming that the dimensions of the reaction flow path and the heat medium flow path are the same as above, the reaction flow path receives heat only from the heat medium flow paths existing above and below in the extending direction. Since it does not receive heat, the heat transfer area is (2 × W). From this, in order for the flow path arrangement in the present embodiment to improve the heat transfer performance as compared with the conventional flow path arrangement, (2 × H) + (2 × x W)> (2 × W). That is, the ratio x may satisfy the condition of x> 1- (H / W). Therefore, if the heat transfer body P is designed in consideration of this point, the number of heat transfer bodies P installed can be reduced to about half while the heat transfer area is equal to or improved as compared with the conventional heat exchange unit. Can be reduced.

さらに、本実施形態に係る熱処理装置では、第1伝熱体及び第2伝熱体は、第1伝熱体が有する第2流路FP2と、第2伝熱体が有する第2流路FP2とを連通させる連通路FP3,FP4を有する。 Further, in the heat treatment apparatus according to the present embodiment, the first heat transfer body and the second heat transfer body are the second flow path FP2 of the first heat transfer body and the second flow path FP2 of the second heat transfer body. It has communication passages FP3 and FP4 for communicating with and.

本実施形態に係る熱処理装置によれば、第1伝熱体及び第2伝熱体の内部に第1連通路FP3及び第2連通路FP4を設け、熱交換部101の内部に存在する複数の第2流路FP2を外部に連通させる。したがって、第1に、第1連通路FP3及び第2連通路FP4が熱交換部101の内部に存在することから、流路内の耐圧の点で有利となる。第2に、熱交換部101の側面などに、別途、連通路となる配管や筐体等を接続させる必要がないので、装置構成が簡略化し、また、第1連通路FP3及び第2連通路FP4の形成も、単に孔を開けるのみであるので簡単化するという利点がある。 According to the heat treatment apparatus according to the present embodiment, a plurality of first-passage FP3 and second-passage FP4 are provided inside the first heat transfer body and the second heat transfer body, and a plurality of heat exchange units 101 exist inside. The second flow path FP2 is communicated to the outside. Therefore, firstly, since the first passage FP3 and the second passage FP4 are present inside the heat exchange section 101, it is advantageous in terms of pressure resistance in the flow path. Secondly, since it is not necessary to separately connect a pipe, a housing, or the like to be a continuous passage to the side surface of the heat exchange unit 101, the device configuration is simplified, and the first continuous passage FP3 and the second continuous passage are not required. The formation of FP4 also has an advantage of being simplified because it merely makes a hole.

(他の実施形態)
なお、上記触れたように、本発明では、第2伝熱体の第1流路FP1と、第1伝熱体の第2流路FP2とが、接合方向で、かつ、非接触で、完全に重なる場合もあり得る。図4は、この場合について説明するための熱交換部101の他の構成を示す断面図である。上記実施形態では、第2伝熱体の第1流路FP1と第1伝熱体の第2流路FP2とが接合方向で完全に重なるまでずれているわけではないので、第1連通路FP3及び第2連通路FP4を、図2(a)に示すように一直線状に形成することができる。第1連通路FP3及び第2連通路FP4が一直線状であることは、第1連通路FP3及び第2連通路FP4を形成する上で容易となる。これに対して、図4に示すような構成では、第2伝熱体の第1流路FP1と第1伝熱体の第2流路FP2とが接合方向で完全に重なっているので、第1連通路FP3は、例えば、第2流路FP2に連通する連通路FP3aと、接合方向に対して傾斜している連通路FP3bとを組み合わせて構成されることになる。これは、第2連通路FP4についても、同様である。この場合、第1連通路FP3及び第2連通路FP4を形成する工程が、上記の実施形態と比較して複雑となるが、伝熱面積をより増加させる点では有利となる。
(Other embodiments)
As mentioned above, in the present invention, the first flow path FP1 of the second heat transfer body and the second flow path FP2 of the first heat transfer body are completely in the joining direction and in a non-contact manner. It may overlap with. FIG. 4 is a cross-sectional view showing another configuration of the heat exchange unit 101 for explaining this case. In the above embodiment, the first flow path FP1 of the second heat transfer body and the second flow path FP2 of the first heat transfer body are not displaced until they completely overlap in the joining direction, so that the first continuous passage FP3 And the second passage FP4 can be formed in a straight line as shown in FIG. 2A. The fact that the first passage FP3 and the second passage FP4 are linear makes it easy to form the first passage FP3 and the second passage FP4. On the other hand, in the configuration shown in FIG. 4, the first flow path FP1 of the second heat transfer body and the second flow path FP2 of the first heat transfer body completely overlap in the joining direction. The single passage FP3 is configured by, for example, combining a communication passage FP3a communicating with the second flow path FP2 and a communication passage FP3b inclined with respect to the joining direction. This also applies to the second passage FP4. In this case, the step of forming the first passage FP3 and the second passage FP4 becomes complicated as compared with the above embodiment, but it is advantageous in that the heat transfer area is further increased.

また、第1流体と第2流体とは、本発明が適用される熱処理装置によっては、それぞれ異なる物質となる場合も、同一の物質となる場合もあり得る。また、上記実施形態では、第1流体が反応流体又は生成物で、第2流体が熱媒体であるものとしたが、それぞれ反対とすることも可能である。さらに、本発明が適用される熱処理装置が熱交換器であるならば、第1流体及び第2流体ともに、熱媒体となる場合もあり得る。 Further, the first fluid and the second fluid may be different substances or the same substance depending on the heat treatment apparatus to which the present invention is applied. Further, in the above embodiment, the first fluid is a reaction fluid or a product, and the second fluid is a heat medium, but the opposite is also possible. Further, if the heat treatment apparatus to which the present invention is applied is a heat exchanger, both the first fluid and the second fluid may be heat media.

また、上記実施形態では、伝熱体Pごとに並設される2種類の形状の流路、すなわち、伝熱体Pの一方の端部の壁面から他方の端部の壁面まで一直線で貫通する第1流路FP1と、側面四方を壁部P1a,P1bで囲まれる第2流路FP2とを例示した。しかしながら、第1流路FP1及び第2流路FP2の形状は、それぞれ上記のような形状に限定されるものではない。例えば、第1流路FP1及び第2流路FP2ともに、1つの方向に延設される溝の一端が、上記の第1流路FP1の例示と同様に、伝熱体Pの一方の端部の壁面から貫通し、他端が、上記の第2流路FP2の例示と同様に、連通路に連接されるものとしてもよい。 Further, in the above embodiment, two types of flow paths arranged side by side for each heat transfer body P, that is, penetrating in a straight line from the wall surface of one end of the heat transfer body P to the wall surface of the other end. The first flow path FP1 and the second flow path FP2 whose side surfaces are surrounded by wall portions P1a and P1b are illustrated. However, the shapes of the first flow path FP1 and the second flow path FP2 are not limited to the above-mentioned shapes, respectively. For example, in both the first flow path FP1 and the second flow path FP2, one end of the groove extending in one direction is one end of the heat transfer body P, as in the above example of the first flow path FP1. The other end of the second flow path FP2 may be connected to the communication path as in the above example of the second flow path FP2.

また、上記実施形態では、熱交換部101が、第1流路FP1を流通する第1流体と第2流路FP2を流通する第2流体とが互いに反対方向に流れる対向流型であるものとしたが、互いに同方向に流れる並流型であってもよい。さらに、本発明では、第1流体と第2流体とが流れる方向についても、なんら限定されるものではない。 Further, in the above embodiment, the heat exchange unit 101 is of a countercurrent type in which the first fluid flowing through the first flow path FP1 and the second fluid flowing through the second flow path FP2 flow in opposite directions. However, it may be a parallel flow type that flows in the same direction as each other. Further, in the present invention, the direction in which the first fluid and the second fluid flow is not limited at all.

さらに、上記実施形態では、熱交換部101を構成する6つの伝熱体Pが鉛直方向に接合すなわち積層されるものとしているが、本発明は、これに限られない。例えば、熱交換部101を構成する6つの伝熱体Pが、それぞれ接合されて鉛直方向に立設するような、いわゆる横置きとして使用されるものとしてもよい。 Further, in the above embodiment, the six heat transfer bodies P constituting the heat exchange unit 101 are joined or laminated in the vertical direction, but the present invention is not limited to this. For example, the six heat transfer bodies P constituting the heat exchange unit 101 may be used as a so-called horizontal installation in which the six heat transfer bodies P are joined to each other and stand upright in the vertical direction.

以上、本発明の好ましい実施形態について説明したが、本発明は、この実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and various modifications and modifications can be made within the scope of the gist thereof.

1 反応装置
FP1 第1流路
FP2 第2流路
P1〜P6 伝熱体
P1a〜P6a 壁部
1 Reactor FP1 1st flow path FP2 2nd flow path P1 to P6 Heat transfer bodies P1a to P6a Walls

Claims (3)

第1流体と第2流体との熱交換を利用する熱処理装置であって、
前記第1流体を流通させる第1流路と、前記第2流体を流通させる第2流路とが壁部を介して並設されている第1伝熱体と、
前記第1流体を流通させる第1流路と、前記第2流体を流通させる第2流路とが壁部を介して並設され、前記第1伝熱体に接合される第2伝熱体と、を備え、
前記第1伝熱体及び前記第2伝熱体は、前記第1伝熱体が有する前記第2流路と、前記第2伝熱体が有する前記第2流路とを連通させる連通路を有し、
前記第2伝熱体が有する前記第1流路の少なくとも一部は、前記第1伝熱体が有する前記第2流路の少なくとも一部と、接合方向で、かつ、非接触で重なる熱処理装置。
A heat treatment device that utilizes heat exchange between the first fluid and the second fluid.
A first heat transfer body in which a first flow path through which the first fluid flows and a second flow path through which the second fluid flows are arranged side by side via a wall portion.
A second heat transfer body in which a first flow path through which the first fluid flows and a second flow path through which the second fluid flows are arranged side by side via a wall portion and joined to the first heat transfer body. And with
The first heat transfer body and the second heat transfer body have a communication passage for communicating the second flow path of the first heat transfer body and the second flow path of the second heat transfer body. Have and
A heat treatment apparatus that overlaps at least a part of the first flow path of the second heat transfer body with at least a part of the second flow path of the first heat transfer body in the joining direction and in a non-contact manner. ..
前記第2伝熱体が有する前記第1流路の少なくとも一部は、更に、前記第1伝熱体が有する前記第1流路の少なくとも一部と、接合方向で、かつ、非接触で重なる請求項1に記載の熱処理装置。 At least a part of the first flow path of the second heat transfer body further overlaps with at least a part of the first flow path of the first heat transfer body in the joining direction and in a non-contact manner. The heat treatment apparatus according to claim 1. 前記第2伝熱体が有する前記第1流路と、前記第1伝熱体が有する前記第2流路とが重なる割合xは、前記第1流路及び前記第2流路の接合方向の流路高さをHとし、前記第1流路及び前記第2流路の流路幅をWとすると、
x>1−(H/W)
との条件を満たす請求項1又は2に記載の熱処理装置。
The ratio x at which the first flow path of the second heat transfer body and the second flow path of the first heat transfer body overlap is the joining direction of the first flow path and the second flow path. Assuming that the flow path height is H and the flow path widths of the first flow path and the second flow path are W.
x> 1- (H / W)
The heat treatment apparatus according to claim 1 or 2, which satisfies the condition of.
JP2016116075A 2016-06-10 2016-06-10 Heat treatment equipment Active JP6834183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016116075A JP6834183B2 (en) 2016-06-10 2016-06-10 Heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016116075A JP6834183B2 (en) 2016-06-10 2016-06-10 Heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2017219289A JP2017219289A (en) 2017-12-14
JP6834183B2 true JP6834183B2 (en) 2021-02-24

Family

ID=60656053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016116075A Active JP6834183B2 (en) 2016-06-10 2016-06-10 Heat treatment equipment

Country Status (1)

Country Link
JP (1) JP6834183B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB363083A (en) * 1930-11-10 1931-12-17 Georg Franz Holler Improvements in, or relating to, economisers or other tubular heat exchangers
JP2007192500A (en) * 2006-01-20 2007-08-02 Calsonic Kansei Corp Multilayered heat exchanger
US9618278B2 (en) * 2009-12-02 2017-04-11 Denkenberger Thermal, Llc Microchannel expanded heat exchanger
JP5944104B2 (en) * 2011-03-15 2016-07-05 株式会社東芝 Heat exchanger
JP2015509178A (en) * 2011-12-19 2015-03-26 ディーポイント テクノロジーズ インコーポレイテッドdPoint Technologies Inc. Counter-current energy recovery ventilator (ERV) core
WO2013126449A1 (en) * 2012-02-21 2013-08-29 Ceramatec, Inc. Compact ft combined with micro-fibrous supported nano-catalyst
FR2995073A1 (en) * 2012-09-05 2014-03-07 Air Liquide EXCHANGER ELEMENT FOR HEAT EXCHANGER, HEAT EXCHANGER COMPRISING SUCH AN EXCHANGER MEMBER, AND METHOD FOR MANUFACTURING SUCH EXCHANGER MEMBER

Also Published As

Publication number Publication date
JP2017219289A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
US10350575B2 (en) Reactor
US10449506B2 (en) Reactor and reaction system
US10767934B2 (en) Reactor
JP6860102B2 (en) Heat treatment equipment
JP7255232B2 (en) Reactor
JP6834183B2 (en) Heat treatment equipment
JP7263834B2 (en) heat exchange structure
JP7263833B2 (en) heat exchange structure
JP7271865B2 (en) Reactor
JP2018094457A (en) Reactor
JP7107387B2 (en) Reactor
WO2022024309A1 (en) Heat exchange structure
WO2022024179A1 (en) Reaction device
WO2022034683A1 (en) Heat exchange structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201207

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6834183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151