WO2022019247A1 - Biomarker for detecting radiation exposure - Google Patents

Biomarker for detecting radiation exposure Download PDF

Info

Publication number
WO2022019247A1
WO2022019247A1 PCT/JP2021/026902 JP2021026902W WO2022019247A1 WO 2022019247 A1 WO2022019247 A1 WO 2022019247A1 JP 2021026902 W JP2021026902 W JP 2021026902W WO 2022019247 A1 WO2022019247 A1 WO 2022019247A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxi
oxidation
biomarker
oxy
modified albumin
Prior art date
Application number
PCT/JP2021/026902
Other languages
French (fr)
Japanese (ja)
Inventor
幾郎 柏倉
眞司 床次
富智 三浦
正洋 細田
平 山口
洋太 多田羅
サイフディン ムク
ラマダーニ ドウィ
ジャトニカ ヌグラハ エカ
Original Assignee
国立大学法人弘前大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人弘前大学 filed Critical 国立大学法人弘前大学
Priority to JP2022537987A priority Critical patent/JPWO2022019247A1/ja
Publication of WO2022019247A1 publication Critical patent/WO2022019247A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/795Porphyrin- or corrin-ring-containing peptides
    • C07K14/805Haemoglobins; Myoglobins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood

Definitions

  • the present invention relates to a biomarker for detecting radiation exposure, a method for detecting radiation exposure using the biomarker, and a kit for carrying out the method.
  • a bikinetochore chromosome is a chromosome with two localized centromeres and is usually a chromosomal abnormality induced only by radiation. Since the spontaneous incidence of kinetochore chromosomes is low and relatively easy to identify, the incidence of kinetochore chromosomes is used as a biological indicator of radiation exposure.
  • the dikinetochore chromosomal method requires skilled expertise in chromosomal aberration analysis of the obtained results, and it takes several days to analyze, so that the dose evaluation of radiation exposure is simple and rapid. There is a problem with sex.
  • the victims of radiation exposure do not always wear personal dosimeters.
  • a victim of radiation exposure does not wear a personal dosimeter, how to estimate and evaluate the exposure dose at the time of an accident has repeatedly become a problem.
  • the standard method for assessing radiation doses worldwide is the dicentometochore chromosome method, but this method is difficult to assess doses in low-dose regions of 1 Gy or less, and many. There is a problem that it is difficult to respond promptly when exposed patients occur at the same time.
  • Patent Document 1 reports a method for measuring a specific biomarker of a blood sample when radiation exposure exceeds 2 Gy, and the biomarkers include ⁇ -1-antichymotrypsin and Fms-related tyrosine kinase 3 ligand. Etc. are disclosed.
  • Patent Document 2 discloses a method for detecting a fatty acid metabolism-related gene as a biomarker as a gene sensitive to high-level ionizing radiation (0.8 Gy / min) in the thymus using a microarray.
  • Patent Document 3 discloses a method for detecting low-dose exposure of about several mGy in the medical field by measuring an increase in the expression level of PPP1CA, BAD and / or BCL-XL gene in stem cells.
  • Patent Document 4 discloses a method for measuring an exposure dose by measuring the expression level of type 1 and type 3 caspase decomposition products of LyGDI protein contained in a tissue or blood collected from a living body.
  • Patent Document 5 describes the expression levels of the genes of sumer, CXCL2, CXCL6, SCG2, THSD2, AREG, CXCL1, spapraw, IL6, USP49 and IL8 in cell samples obtained within 2 hours after exposure.
  • a method for detecting low-dose radiation exposure of 0.01 Gy to 0.1 Gy is disclosed.
  • An object of the present invention is to identify a biomarker for detecting low-dose radiation exposure, and to provide a method for detecting low-dose radiation exposure using the biomarker and a kit for carrying out the method.
  • the present inventors have found the existence of a high-level natural radiation area (Tande tande) in the Mamuju area of Sulawesi Island, Indonesia, and the residents living in the Tande tande area and the residents living in the neighboring low-level natural radiation area (Topoyo).
  • a proteomic analysis was performed on the blood obtained from.
  • the present inventors have found that the abundance of hemoglobin A1 (HBA1) in blood and the abundance of oxidation-modified amino acids in the constituent amino acids of albumin correlate with the radiation exposure dose, and have completed the present invention. rice field.
  • the biomarker comprises a step of measuring the abundance of at least one biomarker in a sample obtained from a subject and a step of comparing the abundance of the biomarker with a reference value of the biomarker, wherein the biomarker is hemoglobin A1 (HBA1).
  • HBA1 hemoglobin A1
  • a method for detecting radiation exposure in the subject which is a protein selected from the group consisting of and oxidation-modified albumin or a fragment thereof.
  • the oxidation-modified amino acid contained in the oxidation-modified albumin is selected from the group consisting of M 111 [Oxi], Y 162 [Oxi], Y 356 [Oxi], M 470 [Oxi] and any combination thereof.
  • the method described in. [3] The fragment of the oxidation-modified albumin according to [1], wherein the fragment of the oxidation-modified albumin contains an oxidation-modified amino acid selected from the group consisting of M 111 [Oxi], Y 162 [Oxi], Y 356 [Oxy] and M 470 [Oxi].
  • the fragment of the oxidation-modified albumin is selected from SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK, Y 162 [Oxy] LYEIAR, DVFLGMFLY 356 [Oxy] EYAR and M 470 [Oxy] PCAEDYLSVVLNQLH. .. [5]
  • HBA1 hemoglobin A1
  • / or the abundance of the oxidation-modified albumin or the fragment of the oxidation-modified albumin is the respective reference value.
  • [7] In the subject, comprising measuring the abundance of the biomarker in the sample obtained from the subject, wherein the biomarker is an M 111 [Oxi] -oxidation modified albumin or an M 111 [Oxi] -oxidation modified albumin fragment.
  • Estimating method of radiation exposure dose [8] The method according to [7], wherein the fragment of the oxidation-modified albumin is SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK.
  • HBA1 Hemoglobin A1
  • a biomarker for assessing radiation exposure in said subjects selected from the group consisting of 111 [Oxy]-, Y 162 [Oxi]-, Y 356 [Oxi] -and M 470 [Oxi] -oxidation modified albumin fragments. .. [13]
  • the oxidation-modified albumin fragment is selected from SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK, Y 162 [Oxy] LYEIAR, DVFLGMFLY 356 [Oxy] EYAR and M 470 [Oxy] PCAEDYLSVVLNQLN. ..
  • a biomarker for estimating radiation exposure dose in a subject wherein the biomarker is an M 111 [Oxi] -oxidation-modified albumin fragment or an M 111 [Oxi] -oxidation-modified albumin fragment in a sample obtained from the subject. There is a biomarker.
  • the biomarker according to [14], wherein the oxidation-modified albumin fragment is SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK.
  • a radiation exposure detection kit comprising an antibody against at least one biomarker selected from the group consisting of [Oxy]-, Y 356 [Oxy] -and M 470 [Oxi] -oxidation modified albumin fragments.
  • the biomarker comprises Western blotting, dot blotting, slot blotting, radioimmunoassay (RIA), radioimmunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), immunochromatography, protein microarray and peptide microarray.
  • radiation exposure in a subject can be detected by using hemoglobin A1 and oxidation-modified albumin or a peptide fragment thereof in a sample obtained from a subject as biomarkers.
  • hemoglobin A1 and oxidation-modified albumin or a peptide fragment thereof in a sample obtained from a subject as biomarkers.
  • Low-dose radiation exposure is radiation exposure that is routinely encountered not only by residents living in high-level radiation areas, but also by aircraft crew members, astronauts, miners, and patients undergoing CT examinations.
  • the stochastic effects of radiation exposure on the human body in the low dose range of 100 mSv or less are extremely difficult to detect epidemiologically, and there are few scientific data, so it is difficult to predict accurate health risks. be.
  • the present invention makes it possible to estimate and evaluate the complex effects of chronic long-term combined exposure to radiation in the human body and may contribute significantly to the health risk assessment of radiation.
  • FIG. 2A is a diagram showing the results of principal component analysis (PCA) on the proteome.
  • PCA principal component analysis
  • the left figure shows the score plot, and the right figure shows the loading plot.
  • Each plot point represents each subject data.
  • the horizontal axis and the vertical axis indicate the first principal component and the second principal component, respectively, and all the proteome information of each subject is summarized and represented in a two-dimensional diagram.
  • 2B is a diagram showing the results of discriminant analysis (OPLS-DA) on the proteome.
  • the left figure shows the score plot, and the right figure shows the S-plot.
  • the inside of the ellipse in the score plot shows the 95% confidence interval of the approximate distribution of the data according to the T2 theory of hoteling.
  • the results of mass spectrometric measurement of blood hemoglobin A1 (HBA1) levels in residents (26 cases) residing in high-level radiation areas (HBRA) and inhabitants (23 cases) residing in low-level radiation areas (NBRA) are shown. It is a figure.
  • the figure on the left shows the result of data analysis using a box plot, and the figure on the right shows the ROC (Receiver Operating Characteristic) curve.
  • the vertical axis of the boxplot shows the relative peak area value of HBA1 in which the area value of the peak corresponding to HBA1 is standardized by the total peak area value in the mass spectrum.
  • the cutoff value in the ROC curve using the Youden index was 257,000. It is a figure which shows the result of having measured SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK (abbreviated as OMSA3) as a human oxidation-modified albumin fragment.
  • the area under the ROC curve (AUC) was 0.730.
  • the cutoff value in the ROC curve using the Youden index was 0.128.
  • Y 162 [Oxi] LYEIAR is a diagram showing the result of measuring the.
  • the area under the ROC curve (AUC) was 0.828.
  • the cutoff value in the ROC curve using the Youden index was 0.00918. It is a figure which shows the result of having measured DVFLGMFLY 356 [Oxy] EYAR (abbreviated as OMSA24) as a human oxidation-modified albumin fragment.
  • the area under the ROC curve (AUC) was 0.794.
  • the cutoff value in the ROC curve using the Youden index was 0.0696.
  • human oxide modified albumin fragment is a diagram showing the M 470 [Oxi] (abbreviated as OMSA34.) PCAEDYLSVVLNQLCVLHEK result of measuring the.
  • the area under the ROC curve (AUC) was 0.813.
  • the cutoff value in the ROC curve using the Youden index was 0.642. It is a figure which shows the result of having measured the body weight of a mouse 24 hours after irradiating the whole body of a mouse with X-rays of absorption doses of 0.5, 1.0 and 3.0 Gy. The plots in the figure each show one mouse.
  • the statistically significant difference between the non-irradiated group (0 Gy) and the irradiated group was evaluated by a multiple comparison test by the Tukey-Kramer method (* p ⁇ 0.05). It is a figure which shows the result of having measured the hematocrit value of the blood collected 24 hours after the irradiation of the whole body of a mouse with the X-ray of an absorbed dose of 0.5, 1.0 and 3.0 Gy. The plots in the figure each show one mouse. It is a figure which shows the result of having measured SLHTLFGDK 97 [LAA] LCAIPNLR (abbreviated as mOMSA9) as a mouse oxidation-modified albumin fragment.
  • the method of the present invention comprises a step of measuring the abundance of at least one biomarker in a sample obtained from a subject.
  • a “sample” is a body fluid obtained from a human who is a subject for detection of radiation exposure, that is, estimation or evaluation of whether or not radiation exposure has been received, and is a body fluid containing a biomarker used in the present invention. .. Samples include, for example, blood (whole blood), cord blood, lymph, tissue fluid (interstitial fluid, interstitial fluid and interstitial fluid), body cavity fluid (abdominal fluid, pleural fluid, cerebrospinal fluid and joint fluid). Peripheral blood is preferred because it is less invasive to the subject. Whole blood is preferably used as serum or plasma, more preferably serum.
  • the biomarker in the sample to be measured is hemoglobin A1 (HBA1) or a peptide fragment thereof.
  • HBA1 is one of the subtypes of hemoglobin.
  • the peptide fragment of HBA1 can have any amino acid chain length as long as it can be identified that the peptide fragment is derived from HBA1 under the measurement conditions used.
  • the biomarker in the sample to be measured is oxidation-modified albumin or a peptide fragment thereof.
  • Oxidation-modified albumin is albumin in which the amino acids constituting albumin are oxidatively modified by radiation exposure. When exposed to radiation, reactive oxygen species are generated from water contained in living organisms. Since active oxygen species act as a powerful oxidizing agent, when a living body is exposed to radiation, it becomes in a state of being subjected to oxidative stress by the generated active oxygen species. Serum albumin is one of the most abundant proteins in blood, but since albumin has a half-life of about 15 days in the living body, it is considered that it always reflects the oxidative stress state of the living body.
  • Human albumin is a linear polypeptide consisting of 609 amino acid residues (eg UniProtKB ID: P02768 (https://www.uniprot.org/uniprot/P02768) and Minghetti PP, J Biol Chem. 1986. See 261 (15): 6747-6757).
  • the oxidatively modified albumin is methionine (M 111 ) with residue number 111, tyrosine with residue number 162 (Y 162 ), tyrosine with residue number 356 (Y 356 ), residue number 470.
  • M 470 methionine
  • 470 oxidatively modified amino acids in which amino acids selected from the group consisting of any combination thereof have been oxidized.
  • the oxidatively modified albumin is at least one selected from the oxidatively modified residues of these four amino acids, two of any combination thereof, three of any combination thereof, or oxidative modification of all these amino acids. It may contain residues.
  • the oxidatively modified albumin may be oxidatively modified with amino acid residues other than the above four residues.
  • the amino acids obtained by oxidatively modifying M 111 , Y 162 , Y 356 and M 470 are referred to as M 111 [Oxy], Y 162 [Oxy], Y 356 [Oxi] and M 470 [Oxi], respectively.
  • M 111 [Oxy]-, Y 162 [Oxi]-, Y 356 [Oxi] -and M 470 [Oxi] -oxidation-modified albumin are oxidation-modified amino acids M 111 [Oxi] and Y 162, respectively.
  • M 111 [Oxi]-, Y 162 [Oxi]-, Y 356 [Oxi] -and M 470 [Oxi] -oxidation-modified albumin fragments are oxidation-modified amino acids M 111 [Oxi], respectively.
  • the oxidative modification of methionine is considered to be a sulfoxide methionine sulfoxide, and the oxidative modification of tyrosine is considered to have a structure in which a hydroxy group is substituted at the ortho-position or meta-position of the phenyl group.
  • the peptide fragment of oxidatively modified albumin as a biomarker to be measured is the fragment of the oxidatively modified albumin.
  • the oxidation-modified albumin fragment comprises an oxidation-modified amino acid selected from the group consisting of M 111 [Oxi], Y 162 [Oxi], Y 356 [Oxi] and M 470 [Oxi]. It is a peptide fragment containing.
  • the peptide fragment may contain two or more of the oxidation-modified amino acids. Further, the peptide fragment may contain an oxidation-modified amino acid other than the oxidation-modified amino acid.
  • the fragments of the oxidation-modified albumin are SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK (abbreviated as OMSA3), Y 162 [Oxi] LYEIAR (abbreviated as OMSA9), DVFLGMFLY 356 [Oxi] EYAR (abbreviated as OMSA24).
  • a fragment selected from the group consisting of M 470 [Oxy] PCAEDYLSVVLNQLCVLHEK (abbreviated as OMSA34) is exemplified.
  • amino acids are represented by abbreviations in the conventional one-letter notation.
  • OMSA3 is a 29-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 89 to 117 (SEQ ID NO: 1) of human albumin.
  • OMSA9 is a 7-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 162 to 168 of human albumin (SEQ ID NO: 2).
  • OMSA24 is a 13-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 348 to 360 (SEQ ID NO: 3) of human albumin.
  • OMSA34 is a 21-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 470 to 490 (SEQ ID NO: 4) of human albumin.
  • the "reference value" of the HBA1 or the oxidatively modified albumin or the fragment of the oxidatively modified albumin is the HBA1 in a sample obtained from a reference subject whose radiation exposure dose is clearly low, regardless of whether it is natural radiation or artificial radiation. Alternatively, it refers to the abundance of the oxidation-modified albumin or a fragment of the oxidation-modified albumin.
  • the exposure dose from natural radiation is the total exposure dose that is the sum of the external exposure dose received from space and the earth and the internal exposure dose received from naturally occurring radioactive substances such as radon in food and the atmosphere.
  • the exposure dose due to artificial radiation is the total exposure dose that is the sum of the exposure dose caused by working in the reactor and the exposure dose caused by medical practice such as chest CT scan and chest X-gland examination.
  • the reference subject for which the reference value is to be obtained includes, for example, a resident living in a low-level natural radiation area, and the annual total exposure dose is preferably 10 mSv or less, more preferably 5 mSv or less, still more preferably 2 mSv or less, most preferably. It is preferably a reference subject of 1 mSv or less. It is preferable that the reference value is measured for a plurality of reference subjects and stored in a database in advance. If necessary, the effect of racial differences on reference values can also be assessed.
  • the abundance of HBA1 in the subject is “lower” than the HBA1 reference value in the reference subject
  • the presence of HBA1 in the subject is based on, for example, the median value or the average value of the HBA1 reference value. This is the case where the amount is lower than the reference value.
  • "when the abundance of HBA1 in a subject is low” means about 10% or more, about 25% or more, about 50% or more, about 75% or more as compared with the reference value. Or it refers to the case where it is reduced by about 90% or more.
  • the abundance of the oxidatively modified albumin or the fragment of the oxidatively modified albumin in the subject is "high" as compared with the reference value of the oxidatively modified albumin or the fragment of the oxidatively modified albumin in the reference subject, respectively, it means oxidation.
  • the abundance of the oxidatively modified albumin or the oxidatively modified albumin fragment in the subject shows a higher value than the respective reference values, for example, the median value or the average value of the reference value of the modified albumin or the oxidatively modified albumin fragment is used as a reference value. be.
  • "when the abundance of oxidatively modified albumin or a fragment of oxidatively modified albumin in a subject is” high is about 1.2 times or more, about 1.5 times, as compared with the reference value. The above refers to the case where the increase is about 2.0 times or more or about 3.0 times or more.
  • Whether to adopt the median value or the average value as the reference value in the HBA1 reference value and the reference value of the oxidation-modified albumin and the fragment of the oxidation-modified albumin is determined by using HBA1, the oxidation-modified albumin and the oxidation modification in a plurality of reference subjects. It can be determined based on the distribution of the abundance of albumin fragments. An index other than the median value and the average value of the reference values may be adopted as the reference value. For example, the cutoff value in the ROC curve using the Youden index may be adopted.
  • the subject can be identified as an individual exposed to radiation. In one embodiment of the invention, if the HBA1 abundance in the sample obtained from the subject is lower than the HBA1 reference value in the reference subject, the subject is classified as an individual likely to have been exposed to radiation. Can be done.
  • the subject if the abundance of oxidatively modified albumin or fragment of oxidatively modified albumin in a sample obtained from a subject is higher than the respective reference value in the reference subject, the subject is exposed to radiation. Can be identified as a received individual. In one embodiment of the present invention, if the abundance of oxidatively modified albumin or a fragment of oxidatively modified albumin in a sample obtained from a subject is higher than the respective reference value in the reference subject, the subject is exposed to radiation. It can be classified as an individual that is likely to have received it.
  • the method of the present invention or the biomarker of the present invention it is possible to detect low-dose radiation exposure of 100 mSv or less in the subject, but it does not exclude radiation exposure of more than 100 mSv.
  • the present invention in addition to being able to detect radiation exposure exceeding 100 mSv, it is also possible to detect radiation exposure in a low dose range of 100 mSv or less, which is difficult to detect epidemiologically. ..
  • HBA1 or a fragment of oxidation-modified albumin or oxidation-modified albumin may be used alone as a biomarker, or two or more thereof may be arbitrarily combined. You may use it.
  • biomarkers of the present invention it is possible to improve the detection accuracy of radiation exposure in a subject.
  • M 111 [Oxi] - oxide modified albumin or M 111 [Oxi] - the presence of the oxidizing modified albumin fragments can be used as a method of estimating the radiation dose in a subject.
  • M 111 [Oxi] - oxide modified albumin or M 111 [Oxi] - it is preferable to previously database of correlation between the abundance of oxidatively modified albumin fragments and dose.
  • the exposure dose is unknown subject
  • M 111 [Oxi] - oxide modified albumin or M 111 [Oxi] - by measuring the abundance of oxide modified albumin fragment, the exposure dose of the subject can be estimated.
  • the subject background such as lifestyle and living environment constant between the subject used for database construction and the subject whose exposure dose is unknown, it is possible to estimate the exposure dose with higher accuracy.
  • any method can be used as long as these biomarkers can be specifically detected. You may. For example, Western blotting, dot blotting, slot blotting, radioimmunoassay (RIA, radioimmunoassay), enzyme-linked immunosorbent assay (EIA, enzyme-immunoassay), enzyme-linked immunosorbent assay (EIA, enzyme-immunoassay) using specific antibodies against these biomarkers.
  • RIA radioimmunoassay
  • EIA enzyme-linked immunosorbent assay
  • EIA enzyme-linked immunosorbent assay
  • ELISA enzyme-linked immunosorbent assay
  • immunoblotting immunoassays such as protein microarrays and peptide microarrays
  • mass analysis can be used.
  • an antibody required for the detection of the biomarker of the present invention a commercially available product may be used.
  • mass spectrometry it is preferable to use an ionization method such as MALDI-MS (matrix-assisted laser desorption / ionization mass spectrometry) that does not easily cause decomposition of high molecular weight compounds.
  • MALDI-MS matrix-assisted laser desorption / ionization mass spectrometry
  • Kits for measuring the biomarkers of the invention using the methods of the invention include hemoglobin A1 (HBA1) and fragments thereof, M 111 [Oxy]-, Y 162 [Oxy]-, Y 356 [Oxi].
  • HBA1 hemoglobin A1
  • -And M 470 [Oxy] -oxidation modified albumin and selected from the group consisting of M 111 [Oxy]-, Y 162 [Oxy]-, Y 356 [Oxy] -and M 470 [Oxi] -oxidation modified albumin fragments.
  • the oxidation-modified albumin fragment comprising an antibody against at least one biomarker comprises SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK, Y 162 [Oxy] LYEIAR, DVFLGMFLY 356 [Oxy] EYAR and M 470 [Oxy] PCALE You may.
  • the kit of the present invention contains reagents necessary for immunologically measuring a protein or peptide, and the composition of the reagents can be appropriately determined by those skilled in the art.
  • the kit of the present invention may contain reagents for removing impurities from the sample.
  • HBRA High-level radiation areas
  • NBRA Radiation Area
  • FIGS. 1A and 1B Background information of the inhabitants of HBRA and NBRA is shown in FIGS. 1A and 1B, respectively.
  • the exposure dose in the table below is the total dose, which is the sum of the internal exposure dose and the external exposure dose.
  • the range of total annual exposure dose was 0.9 to 1.9 mSv for NBRA residents, but it was as high as 33.5 to 63.5 mSv for HBRA residents. Since the total annual exposure dose is sufficiently low in NBRA residents as compared with HBRA residents, NBRA residents are suitable as targets for obtaining the reference value.
  • This precipitate was dissolved in a 500 mM ammonium bicarbonate solution (10 ⁇ L) containing 8 M urea. To this, 5 ⁇ L of 200 mM DTT (1,4-dithiothreitol) was added, and the mixture was allowed to stand at 90 ° C. for 30 minutes. Then, a 200 mM iodoacetamide solution (10 ⁇ L) was further added, left in a dark place for 1 hour, and then 200 mM DTT (5 ⁇ L) was added.
  • the mass spectrometer used was a TripleTOF 6600 mass spectrometer (AB Sciex).
  • the flow velocity was set to 300 nL / min, with a linear acetonitrile gradient of 8-30% containing 0.1% formic acid for the first 90 minutes and a linear acetonitrile gradient of 30-40% for the next 10 minutes. Eluted.
  • data was first acquired by IDA (information dependent acquisition).
  • the setting of the MS spectrum scan was 400 to 1500 m / z in 250 milliseconds.
  • the MS / MS spectrum scan was set to 100 to 1800 m / z every 50 milliseconds, and the MS / MS spectrum was acquired 30 times or more.
  • the cycle time for MS and MS / MS spectrum acquisition was set to 1.8 seconds.
  • MS / MS spectra were acquired for ions with a charge of +2 to +5 and 125 counts or more per second. For the ions for which the MS / MS spectrum was acquired, the same ion was not selected for 12 seconds.
  • the mass spectrometer was operated by Analyst TF 1.7.1 software (AB Sciex).
  • DDA data dependent acquisition, SWATH (registered trademark) acquisition
  • the scan of the time-of-flight mass separator (TOF) MS is set to 100 milliseconds, and the range of 400 to 1250 m / z is divided into 200 m / z intervals, and 50 milliseconds. Measured at.
  • the overlap of each m / z section was set to 1 Da. This was taken as one cycle and measured in 9.6 seconds.
  • MS / MS spectral data acquired by IDA was searched in the UniProt protein database using ProteinPilot 5.0.1 software (AB Sciex).
  • the species to be searched is human (Homo sapiens), and the threshold value for protein identification obtained by false positive rate analysis (FDR) analysis is> 0.05% (10%). set to confidence).
  • FDR false positive rate analysis
  • peak area values were calculated using MarkerView software (version 1.3.0.1, AB Sciex) from spectral information obtained by SWATH analysis.
  • the data obtained by standardizing each peak based on the total peak area value was used for multivariate analysis.
  • Multivariate analysis software Simca (Infocom Co., Ltd.) was used for principal component analysis (PCA) and discriminant analysis (OPLS-DA). In the data analysis, standardization by Pareto scaling was applied.
  • FIG. 2A shows the results of principal component analysis (PCA) and the results of discriminant analysis (OPLS-DA) on the serum proteins of the inhabitants of HBRA and NBRA.
  • PCA principal component analysis
  • OPLS-DA discriminant analysis
  • the difference between the two groups is obtained by plotting the first principal component by a score plot (FIG. 2B left) with information on whether or not the group is High or Low. Is represented. If the plot points of both groups are separated to the left and right, it is shown that the model used can well explain the difference between the two groups. In the left figure of FIG. 2B, the plot points of both groups are separated to the left and right, suggesting the existence of a difference in proteome composition between the two groups. In the S-plot (right figure of FIG. 2B), the vertical axis shows the correlation and the horizontal axis shows the amount of change. Each plot point indicates an individual protein.
  • ⁇ (3rd quartile-1st quartile)] Refers to the largest and smallest data points in the following range, respectively. Points outside this range are outliers.
  • ROC curve (ROC curve ( FIG. 3 (right figure) is close to the upper left corner in the figure, and the area under the ROC curve (AUC) was 0.8 or more. Therefore, it was shown that HBA1 has a high ability to discriminate radiation exposure. It was found to be useful as a biomarker for evaluating radiation exposure. The cutoff value in the ROC curve using the Youden index was 257,000.
  • MRM-HR Multiple Reaction Monitoring High-Resolution
  • Correlation analysis The correlation between oxidative modification of serum albumin and the exposure dose was analyzed by Spearman's rank correlation. The ratio of the peak area value of the peptide fragment of oxidatively modified albumin to the peak area value of the corresponding unmodified peptide fragment was calculated and used for the analysis. Scaling was set to Auto scaling. Similarly, the correlation coefficient between the exposure dose standardized by autoscaling and the peptide fragment of oxidation-modified albumin was calculated by Spearman's rank correlation. When the p-value was 0.05 or less, it was determined that the peptide fragment of oxidatively modified albumin was statistically significant, that is, correlated with the exposure dose.
  • Oxidation-Modified Albumide Peptide Fragments Among the oxidation-modified albumin peptide fragments (oxidation-modified peptides) measured by MRM-HR, there is a significant correlation among the residents living in HBRA compared to the residents living in NBRA. An increasing oxidation-modified peptide was found. These oxidation-modified peptides are as follows. Peptide No. 1: SLHTLFGDKLC [CAM] TVATLRETYGEM 111 [Oxy] ADC [CAM] C [CAM] AK, Peptide No. 2: Y 162 [Oxy] LYEIAR, Peptide No.
  • C [CAM] indicates a carboxymethylated cysteine residue, and is produced by artificially protecting the cysteine residue in the pretreatment of serum for mass spectrometry. Therefore, the measurement results of peptides No. 1, No. 2, No. 3 and No. 4 show that the cysteine residues of peptides No. 1, No. 2, No. 3 and No. 4 are not carboxymethylated. It can be regarded as the measurement result of OMSA3, OMSA9, OMSA24 and OMSA34, which are oxidation-modified albumin fragments, respectively.
  • Peptides No. 1, No. 2, No. 3 and No. 4 which are oxidation-modified fragments of serum albumin, were analyzed by mass spectrometry for residents living in HBRA (26 cases) and residents living in NBRA (23 cases).
  • the measurement results are shown in FIGS. 4A, 4B, 4C and 4D, respectively.
  • the left figure shows the result of performing the data analysis by the boxplot
  • the right figure shows the ROC curve.
  • the vertical axis of the boxplot shows the relative peak area value of the oxidatively modified albumin fragment standardized by the peak area value of the corresponding unoxidized albumin fragment in the mass spectrum.
  • the area under the ROC curve is 0.730 for peptide No. 1, 0.828 for peptide No. 2, 0.794 for peptide No. 3, and 0.813 for peptide No. 4, and peptide No. 1, No. 2, and OMSA3, OMSA9, OMSA24 and OMSA34, which are oxidation-modified albumin fragments in which the cysteine residues of No. 3 and No. 4 are not carboxymethylated, have been shown to have high ability to discriminate radiation exposure, respectively. It has been found to be useful as a biomarker for evaluation.
  • the cutoff values in the ROC curve using the Youden index were 0.128, 0.00918, 0.0696 and 0.642 for peptide No. 1, peptide No. 2, peptide No. 3 and peptide No. 4, respectively.
  • OMSA3 an oxidation-modified albumin fragment in which the cysteine residue of peptide No. 1 is not carboxymethylated, has been shown to be useful as a biomarker for estimating radiation exposure dose.
  • mice [Oxidation modification of serum albumin in X-ray irradiated mice] Whether or not oxidative modification of serum albumin by radiation exposure occurs in a dose-dependent manner was investigated using mice. In order to improve the detection accuracy of oxidative modification of serum albumin by radiation, mice were irradiated with X-rays at a relatively high dose (absorbed dose of 0.5 Gy or more).
  • mice 7-week-old C57BL / 6JJcl (female, weight 17-20 g) was purchased from Japan Marie Co., Ltd. After 7 days of acclimatization, the mice were grouped and divided into 4 groups so that the average body weight and body weight distribution of each group were similar. Using an X-ray generator (MBR-1520R, Hitachi Power Solutions, Ltd.), the absorbed dose of X-rays (ionizing radiation) is 0 at 150 kVp, 20 mA, 0.5 mm Al and 0.3 mm Cu filters, 1.0 Gy / min. The whole body of the mouse was irradiated with 5.5, 1.0 and 3.0 Gy.
  • MRR-1520R Hitachi Power Solutions, Ltd.
  • mice The mouse body weight was measured 24 hours after X-ray irradiation, and then blood was collected from the mouse orbital venous plexus under eskine inhalation anesthesia. After measuring the hematocrit value of the collected blood, the protein in the blood was analyzed by LC / MS / MS. Blood sampling from mice, analysis sample preparation, LC / MS / MS, data analysis, and measurement of albumin oxidation modification by MRM-HR were performed in the same manner as in Example 2.
  • mice 24 hours after X-ray irradiation was significantly reduced in the 1.0 and 3.0 Gy irradiation groups compared to the non-irradiation group (0 Gy), indicating the effect of radiation exposure (FIG. 5).
  • the hematocrit value which is the percentage of red blood cells in the blood, did not change significantly in all groups (Fig. 6).
  • mice albumin is a linear polypeptide consisting of 608 amino acid residues (see, for example, UniProtKB ID: Q546G4 (see https://www.uniprot.org/uniprot/Q546G4)).
  • the oxidation-modified peptides that significantly increased depending on the absorbed dose were as follows. Peptide No.
  • K 97 [LAA] is an amino acid residue in which lysine (K 97 ) of residue number 97 in mouse albumin is converted to allicin.
  • M 159 [Oxi] and Y 287 [Oxi] are amino acid residues obtained by oxidizing methionine (M 159 ) of residue number 159 and tyrosine (Y 287 ) of residue number 287 in mouse albumin, respectively.
  • C [CAM] indicates a carboxymethylated cysteine residue and is produced by artificially protecting the cysteine residue in the pretreatment of serum for mass spectrometry.
  • Peptide No. 5 is abbreviated as mOMSA9.
  • No. 6 and No. 7 in which the cysteine residue is not carboxymethylated are abbreviated as mOMSA14 and mOMSA20, respectively.
  • MOMSA9 is a 17-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 89 to 105 (SEQ ID NO: 5) of mouse albumin.
  • MOMSA14 is a 16-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 153 to 168 (SEQ ID NO: 6) of mouse albumin.
  • mOMSA20 is a 12-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 287 to 298 (SEQ ID NO: 7) of mouse albumin.
  • FIGS. 7A, 7B and 7C The results of measuring the amounts of oxidatively modified peptides No. 5, No. 6 and No. 7 of serum albumin in blood according to the absorbed dose by mass spectrometry are shown in FIGS. 7A, 7B and 7C, respectively.
  • the horizontal axis is the absorbed dose (Gy)
  • the vertical axis is the relative peak area value of the oxidatively modified albumin fragment in the mass spectrum, standardized by the peak area value of the corresponding unoxidized albumin fragment. Shows the peak area value.
  • the statistically significant differences by the correlation coefficient (R) and Spearman's rank correlation analysis were as follows.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Toxicology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

[Problem] To provide a biomarker for detecting low-dose radiation exposure, and a method for detecting radiation exposure using said biomarker. [Solution] A method for detecting radiation exposure in a subject, the method including: a step for measuring the abundance of at least one biomarker in a sample obtained from the subject; and a step for comparing the abundance of said biomarker and a reference value for said biomarker, wherein said biomarker is a protein or protein fragment selected from the group consisting of hemoglobin A1 and oxidative modified albumin.

Description

放射線被ばくを検出するためのバイオマーカーBiomarkers for detecting radiation exposure
 本発明は、放射線被ばくを検出するためのバイオマーカー、前記バイオマーカーを利用する放射線被ばくの検出方法および前記方法を実行するためのキットに関する。 The present invention relates to a biomarker for detecting radiation exposure, a method for detecting radiation exposure using the biomarker, and a kit for carrying out the method.
 個体への放射線被ばくでは、 急性放射線症候群による造血組織や腸管粘膜などの再生能の高い組織の重篤な損傷から死に至る場合もある。放射線被ばく後の速やかな治療のためには、被ばく患者の被ばく線量評価が重要である。現在のところ、放射線被ばく個体の被ばく線量評価において最も信頼性の高い方法は、二動原体染色体法である。二動原体染色体は二つの局在型動原体を持つ染色体であり、通常、放射線によってのみ誘発される染色体異常である。二動原体染色体の自然発生率は低く、また識別も比較的容易であるため、二動原体染色体の発生率が放射線被ばくの生物学的指標として用いられる。一方で、二動原体染色体法は、得られた結果についての染色体異常解析に熟練した専門性が必要であること、また解析に数日間を要するなど、放射線ばくの線量評価の簡便性および迅速性に課題がある。 Radiation exposure to individuals may result in death from severe damage to highly regenerative tissues such as hematopoietic tissues and intestinal mucosa due to acute radiation syndrome. For prompt treatment after radiation exposure, it is important to evaluate the exposure dose of exposed patients. At present, the most reliable method for assessing the exposure dose of radiation-exposed individuals is the dikinetochore chromosome method. A bikinetochore chromosome is a chromosome with two localized centromeres and is usually a chromosomal abnormality induced only by radiation. Since the spontaneous incidence of kinetochore chromosomes is low and relatively easy to identify, the incidence of kinetochore chromosomes is used as a biological indicator of radiation exposure. On the other hand, the dikinetochore chromosomal method requires skilled expertise in chromosomal aberration analysis of the obtained results, and it takes several days to analyze, so that the dose evaluation of radiation exposure is simple and rapid. There is a problem with sex.
 放射線被ばく事故が発生した場合、放射線被ばくによる傷病者が必ずしも個人線量計を装着しているとは限らない。放射線被ばく傷病者が個人線量計を装着していない場合、事故時の被ばく線量をどのようにして推定し、評価するのかが繰り返し問題となってきた。現在のところ、世界的に放射線被ばく線量評価の標準的な方法は二動原体染色体法であるが、この方法では、1Gy以下の低線量領域における被ばく線量評価が困難であること、および多数の被ばく患者が同時に発生した場合における迅速な対応が困難であるという課題がある。 When a radiation exposure accident occurs, the victims of radiation exposure do not always wear personal dosimeters. When a victim of radiation exposure does not wear a personal dosimeter, how to estimate and evaluate the exposure dose at the time of an accident has repeatedly become a problem. At present, the standard method for assessing radiation doses worldwide is the dicentometochore chromosome method, but this method is difficult to assess doses in low-dose regions of 1 Gy or less, and many. There is a problem that it is difficult to respond promptly when exposed patients occur at the same time.
 二動原体染色体法を用いる方法以外に、放射線照射により変動するバイオマーカーを検出し、放射線被ばくを評価する方法が報告されている。例えば、特許文献1には、放射線被ばくが2Gyを超える場合に、血液サンプルの特定のバイオマーカーを測定する方法が報告され、バイオマーカーとしては、α-1-抗キモトリプシン、Fms関連チロシンキナーゼ3リガンドなどが開示されている。特許文献2には、マイクロアレイを用いて、胸腺における高レベル電離放射線(0.8Gy/分)に感受性のある遺伝子として、脂肪酸代謝関連遺伝子をバイオマーカーとして検出する方法が開示されている。特許文献3には、幹細胞におけるPPP1CA、BAD及び/又はBCL-XL遺伝子の発現量の増加を測定することにより、医療分野における数mGy程度の低線量被ばくを検出する方法が開示されている。特許文献4には、生体から採取した組織または血液に含まれるLyGDI タンパク質の1型および3型カスペース分解物の発現量を測定することにより、被ばく量を測定する方法が開示されている。特許文献5には、被ばく後2時間以内に得た細胞サンプルについて、smamer、CXCL2、CXCL6、SCG2、THSD2、AREG、CXCL1、spaplaw、IL6、USP49およびIL8の遺伝子の発現量を測定することにより、0.01Gy~0.1Gyの低線量放射線被ばくを検出する方法が開示されている。 In addition to the method using the dikinetochore chromosome method, a method of detecting biomarkers that fluctuate due to irradiation and evaluating radiation exposure has been reported. For example, Patent Document 1 reports a method for measuring a specific biomarker of a blood sample when radiation exposure exceeds 2 Gy, and the biomarkers include α-1-antichymotrypsin and Fms-related tyrosine kinase 3 ligand. Etc. are disclosed. Patent Document 2 discloses a method for detecting a fatty acid metabolism-related gene as a biomarker as a gene sensitive to high-level ionizing radiation (0.8 Gy / min) in the thymus using a microarray. Patent Document 3 discloses a method for detecting low-dose exposure of about several mGy in the medical field by measuring an increase in the expression level of PPP1CA, BAD and / or BCL-XL gene in stem cells. Patent Document 4 discloses a method for measuring an exposure dose by measuring the expression level of type 1 and type 3 caspase decomposition products of LyGDI protein contained in a tissue or blood collected from a living body. Patent Document 5 describes the expression levels of the genes of sumer, CXCL2, CXCL6, SCG2, THSD2, AREG, CXCL1, spapraw, IL6, USP49 and IL8 in cell samples obtained within 2 hours after exposure. A method for detecting low-dose radiation exposure of 0.01 Gy to 0.1 Gy is disclosed.
特表2016-533497号公報Special Table 2016-533497 Gazette 特表2015-518706号公報Japanese Patent Application Laid-Open No. 2015-518706 特開2008-173034号公報Japanese Unexamined Patent Publication No. 2008-173034 特開2007-47147号公報Japanese Unexamined Patent Publication No. 2007-47147 特開2007-93341号公報Japanese Unexamined Patent Publication No. 2007-93341
 実効線量として概ね100~200mSv以下の低線量放射線被ばくでは、人体に対する被ばくの影響は確率的現象であり、また科学的なデータも少ないため、被ばくによる健康リスクの評価は困難である。その原因のひとつとして、低線量被ばくを正確に把握することができるバイオマーカーが見つかっていないことが挙げられる。 In low-dose radiation exposure with an effective dose of approximately 100 to 200 mSv or less, the effect of exposure on the human body is a stochastic phenomenon, and since there are few scientific data, it is difficult to evaluate the health risk due to exposure. One of the causes is that no biomarker that can accurately grasp low-dose exposure has been found.
 本発明の目的は、低線量放射線被ばくを検出するためのバイオマーカーを同定し、前記バイオマーカーを利用する低線量放射線被ばくの検出方法および前記方法を実行するためのキットを提供することである。 An object of the present invention is to identify a biomarker for detecting low-dose radiation exposure, and to provide a method for detecting low-dose radiation exposure using the biomarker and a kit for carrying out the method.
 本発明者らは、インドネシア国スラウェシ島マムジュ地区において、高レベル自然放射線地域(Tande tande)の存在を見出し、Tande tande地域に居住する住民および近隣の低レベル自然放射線地域(Topoyo)に居住する住民から得られた血液について、プロテオーム解析を行った。その結果、本発明者らは、血液中のヘモグロビンA1(HBA1)存在量およびアルブミンの構成アミノ酸における酸化修飾アミノ酸の存在量が、放射線被ばく線量と相関することを見出し、本発明を完成するに至った。 The present inventors have found the existence of a high-level natural radiation area (Tande tande) in the Mamuju area of Sulawesi Island, Indonesia, and the residents living in the Tande tande area and the residents living in the neighboring low-level natural radiation area (Topoyo). A proteomic analysis was performed on the blood obtained from. As a result, the present inventors have found that the abundance of hemoglobin A1 (HBA1) in blood and the abundance of oxidation-modified amino acids in the constituent amino acids of albumin correlate with the radiation exposure dose, and have completed the present invention. rice field.
 すなわち、本発明の目的は、以下の発明により達成される。
 〔1〕
 被験者から得られる試料中の少なくとも1つのバイオマーカーの存在量を測定する工程および前記バイオマーカーの存在量を前記バイオマーカーの参照値と比較する工程を含み、前記バイオマーカーが、ヘモグロビンA1(HBA1)および酸化修飾アルブミンからなる群より選択されるタンパク質またはその断片である、前記被験者における放射線被ばくの検出方法。
 〔2〕
 前記酸化修飾アルブミンに含まれる酸化修飾アミノ酸が、M111[Oxi]、Y162[Oxi]、Y356[Oxi]、M470[Oxi]およびこれらの任意の組み合わせからなる群より選択される、〔1〕に記載の方法。
 〔3〕
 前記酸化修飾アルブミンの断片が、M111[Oxi]、Y162[Oxi]、Y356[Oxi]およびM470[Oxi]からなる群より選択される酸化修飾アミノ酸を含む、〔1〕に記載の方法。
 〔4〕
 前記酸化修飾アルブミンの断片が、SLHTLFGDKLCTVATLRETYGEM111[Oxi]ADCCAK、Y162[Oxi]LYEIAR、DVFLGMFLY356[Oxi]EYARおよびM470[Oxi]PCAEDYLSVVLNQLCVLHEKからなる群より選択される、〔3〕に記載の方法。
 〔5〕
 被験者において、前記ヘモグロビンA1(HBA1)の存在量がHBA1参照値と比較して低値である場合、および/または前記酸化修飾アルブミンもしくは前記酸化修飾アルブミンの断片の存在量が、それぞれの参照値と比較して高値である場合に、前記被験者が放射線被ばくを受けた個体として特定される、〔1〕~〔4〕のいずれかに記載の方法。
 〔6〕
 被験者において、前記ヘモグロビンA1(HBA1)の存在量がHBA1参照値と比較して低値である場合、および/または前記酸化修飾アルブミンもしくは前記酸化修飾アルブミンの断片の存在量が、それぞれの参照値と比較して高値である場合に、前記被験者が放射線被ばくを受けた個体である可能性が高いことが示される、〔1〕~〔4〕のいずれかに記載の方法。
 〔7〕
 被験者から得られる試料中のバイオマーカーの存在量を測定する工程を含み、前記バイオマーカーが、M111[Oxi]-酸化修飾アルブミンまたはM111[Oxi]-酸化修飾アルブミン断片である、前記被験者における放射線被ばく線量の推定方法。
 〔8〕
 前記酸化修飾アルブミンの断片が、SLHTLFGDKLCTVATLRETYGEM111[Oxi]ADCCAKである、〔7〕に記載の方法。
 〔9〕
 前記放射線被ばくが、100mSv以下の低線量放射線被ばくである、〔1〕~〔8〕のいずれかに記載の方法。
 〔10〕
 前記試料が、全血、血清または血漿である、〔1〕~〔9〕のいずれかに記載の方法。
 〔11〕
 前記バイオマーカーの存在量が、質量分析により測定される、〔1〕~〔10〕のいずれかに記載の方法。
 〔12〕
 被験者から得られる試料中のヘモグロビンA1(HBA1)およびその断片、ならびにM111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミン、ならびにM111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミン断片からなる群より選択される、前記被験者における放射線被ばくを評価するためのバイオマーカー。
 〔13〕
 前記酸化修飾アルブミン断片が、SLHTLFGDKLCTVATLRETYGEM111[Oxi]ADCCAK、Y162[Oxi]LYEIAR、DVFLGMFLY356[Oxi]EYARおよびM470[Oxi]PCAEDYLSVVLNQLCVLHEKからなる群より選択される、〔12〕に記載のバイオマーカー。
 〔14〕
 被験者における放射線被ばく線量を推定するためのバイオマーカーであって、前記バイオマーカーが、前記被験者から得られる試料中のM111[Oxi]-酸化修飾アルブミンまたはM111[Oxi]-酸化修飾アルブミン断片である、バイオマーカー。
 〔15〕
 前記酸化修飾アルブミン断片が、SLHTLFGDKLCTVATLRETYGEM111[Oxi]ADCCAKである、〔14〕に記載のバイオマーカー。
 〔16〕
 前記放射線被ばくが、100mSv以下の低線量放射線被ばくである、〔12〕~〔15〕のいずれかに記載のバイオマーカー。
 〔17〕
 前記試料が、全血、血清または血漿である、〔12〕~〔16〕のいずれかに記載のバイオマーカー。
 〔18〕
 ヘモグロビンA1(HBA1)およびその断片、M111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミン、ならびにM111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミン断片からなる群より選択される少なくとも1つのバイオマーカーに対する抗体を含む、放射線被ばく検出キット。
 〔19〕
 前記バイオマーカーを、ウェスタンブロッティング、ドットブロッティング、スロットブロッティング、放射免疫測定法(RIA)、酵素免疫測定法(EIA)、酵素結合免疫吸着測定法(ELISA)、イムノクロマト法、タンパク質マイクロアレイおよびペプチドマイクロアレイからなる群より選択される免疫学的測定法により測定するための、〔18〕に記載のキット。
That is, the object of the present invention is achieved by the following invention.
[1]
The biomarker comprises a step of measuring the abundance of at least one biomarker in a sample obtained from a subject and a step of comparing the abundance of the biomarker with a reference value of the biomarker, wherein the biomarker is hemoglobin A1 (HBA1). A method for detecting radiation exposure in the subject, which is a protein selected from the group consisting of and oxidation-modified albumin or a fragment thereof.
[2]
The oxidation-modified amino acid contained in the oxidation-modified albumin is selected from the group consisting of M 111 [Oxi], Y 162 [Oxi], Y 356 [Oxi], M 470 [Oxi] and any combination thereof. 1] The method described in.
[3]
The fragment of the oxidation-modified albumin according to [1], wherein the fragment of the oxidation-modified albumin contains an oxidation-modified amino acid selected from the group consisting of M 111 [Oxi], Y 162 [Oxi], Y 356 [Oxy] and M 470 [Oxi]. Method.
[4]
The fragment of the oxidation-modified albumin is selected from SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK, Y 162 [Oxy] LYEIAR, DVFLGMFLY 356 [Oxy] EYAR and M 470 [Oxy] PCAEDYLSVVLNQLH. ..
[5]
In the subject, when the abundance of the hemoglobin A1 (HBA1) is lower than the HBA1 reference value, and / or the abundance of the oxidation-modified albumin or the fragment of the oxidation-modified albumin is the respective reference value. The method according to any one of [1] to [4], wherein the subject is identified as an individual exposed to radiation when the value is relatively high.
[6]
In the subject, when the abundance of the hemoglobin A1 (HBA1) is lower than the HBA1 reference value, and / or the abundance of the oxidatively modified albumin or the fragment of the oxidatively modified albumin is the respective reference value. The method according to any one of [1] to [4], wherein when the value is relatively high, it is indicated that the subject is likely to be an individual exposed to radiation.
[7]
In the subject, comprising measuring the abundance of the biomarker in the sample obtained from the subject, wherein the biomarker is an M 111 [Oxi] -oxidation modified albumin or an M 111 [Oxi] -oxidation modified albumin fragment. Estimating method of radiation exposure dose.
[8]
The method according to [7], wherein the fragment of the oxidation-modified albumin is SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK.
[9]
The method according to any one of [1] to [8], wherein the radiation exposure is a low-dose radiation exposure of 100 mSv or less.
[10]
The method according to any one of [1] to [9], wherein the sample is whole blood, serum or plasma.
[11]
The method according to any one of [1] to [10], wherein the abundance of the biomarker is measured by mass spectrometry.
[12]
Hemoglobin A1 (HBA1) and fragments thereof in samples obtained from subjects, as well as M 111 [Oxi]-, Y 162 [Oxi]-, Y 356 [Oxi] -and M 470 [Oxi] -oxidation modified albumins, and M. A biomarker for assessing radiation exposure in said subjects, selected from the group consisting of 111 [Oxy]-, Y 162 [Oxi]-, Y 356 [Oxi] -and M 470 [Oxi] -oxidation modified albumin fragments. ..
[13]
The oxidation-modified albumin fragment is selected from SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK, Y 162 [Oxy] LYEIAR, DVFLGMFLY 356 [Oxy] EYAR and M 470 [Oxy] PCAEDYLSVVLNQLN. ..
[14]
A biomarker for estimating radiation exposure dose in a subject, wherein the biomarker is an M 111 [Oxi] -oxidation-modified albumin fragment or an M 111 [Oxi] -oxidation-modified albumin fragment in a sample obtained from the subject. There is a biomarker.
[15]
The biomarker according to [14], wherein the oxidation-modified albumin fragment is SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK.
[16]
The biomarker according to any one of [12] to [15], wherein the radiation exposure is a low-dose radiation exposure of 100 mSv or less.
[17]
The biomarker according to any one of [12] to [16], wherein the sample is whole blood, serum or plasma.
[18]
Hemoglobin A1 (HBA1) and its fragments, M 111 [Oxi]-, Y 162 [Oxi]-, Y 356 [Oxi] -and M 470 [Oxi] -oxidation-modified albumin, and M 111 [Oxi]-, Y 162. A radiation exposure detection kit comprising an antibody against at least one biomarker selected from the group consisting of [Oxy]-, Y 356 [Oxy] -and M 470 [Oxi] -oxidation modified albumin fragments.
[19]
The biomarker comprises Western blotting, dot blotting, slot blotting, radioimmunoassay (RIA), radioimmunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), immunochromatography, protein microarray and peptide microarray. The kit according to [18] for measurement by an immunoassay selected from the group.
 本発明によれば、被験者から得られた試料中のヘモグロビンA1および酸化修飾アルブミンまたはそのペプチド断片をバイオマーカーとして使用することにより、被験者における放射線被ばくを検出することができる。特に、本発明によれば、従来困難とされてきた、100mSv以下の低線量放射線被ばく線量の迅速な推定および評価が可能となる。 According to the present invention, radiation exposure in a subject can be detected by using hemoglobin A1 and oxidation-modified albumin or a peptide fragment thereof in a sample obtained from a subject as biomarkers. In particular, according to the present invention, it is possible to quickly estimate and evaluate a low-dose radiation exposure dose of 100 mSv or less, which has been difficult in the past.
 低線量放射線被ばくは、高レベル放射線地域に居住する住民のみならず、航空機乗務員、宇宙飛行士、鉱山労働者およびCT検査を受ける患者などが日常的に遭遇する放射線被ばくである。しかしながら、100mSv以下の低線量域における放射線被ばくによる人体への確率的影響は、疫学的に検出することは極めて難しく、また科学的なデータも少ないため、正確な健康リスクを予測することは困難である。本発明は、人体における放射線の慢性的長期的複合被ばくの複雑な影響を推定および評価することを可能とし、放射線による健康リスク評価に大きく貢献する可能性がある。 Low-dose radiation exposure is radiation exposure that is routinely encountered not only by residents living in high-level radiation areas, but also by aircraft crew members, astronauts, miners, and patients undergoing CT examinations. However, the stochastic effects of radiation exposure on the human body in the low dose range of 100 mSv or less are extremely difficult to detect epidemiologically, and there are few scientific data, so it is difficult to predict accurate health risks. be. The present invention makes it possible to estimate and evaluate the complex effects of chronic long-term combined exposure to radiation in the human body and may contribute significantly to the health risk assessment of radiation.
インドネシア国スラウェシ島における高レベル放射線地域に居住する住民(26例)の背景情報を示す図である。「Sex」欄において、1:男性および2:女性であることを示す。「Smoking」欄において、1:喫煙者および2:非喫煙者であることを示す。It is a figure which shows the background information of the inhabitants (26 cases) living in the high-level radiation area in Sulawesi Island, Indonesia. In the "Sex" column, it indicates that it is 1: male and 2: female. In the "Smoking" column, it indicates that they are 1: smoker and 2: non-smoker. インドネシア国スラウェシ島における低レベル放射線地域に居住する住民(23例)の背景情報を示す図である。「Sex」欄において、1:男性および2:女性であることを示す。「Smoking」欄において、1:喫煙者および2:非喫煙者であることを示す。It is a figure which shows the background information of the inhabitants (23 cases) living in the low-level radiation area in Sulawesi Island, Indonesia. In the "Sex" column, it indicates that it is 1: male and 2: female. In the "Smoking" column, it indicates that they are 1: smoker and 2: non-smoker. 図1AおよびBで示された住民の血中タンパク質について、質量分析によるプロテオーム解析を行った結果を示す図である。多変量解析により、高レベル放射線地域に居住する住民群(High群)と低レベル放射線地域に居住する住民群(Low群)との間でプロテオーム比較を行った。図2Aはプロテオームについて、主成分分析(PCA)を行った結果を示す図である。左図はスコアプロットを、また右図はローディングプロットを示す。それぞれのプロット点は、各被験者データを表す。横軸および縦軸は、それぞれ第一主成分および第二主成分を示し、各被験者のすべてのプロテオーム情報を二次元の図に集約して表している。図2Bはプロテオームについて、判別分析(OPLS-DA)を行った結果を示す図である。左図はスコアプロットを、また右図はS-プロットを示す。スコアプロット(左図)における楕円形内は、ホテリングのT2理論によるデータの近似分布の95%信頼区間を示す。It is a figure which shows the result of having performed the proteome analysis by mass spectrometry about the blood protein of the inhabitant shown in FIGS. 1A and 1B. By multivariate analysis, a proteome comparison was made between the inhabitants living in the high-level radiation area (High group) and the inhabitants living in the low-level radiation area (Low group). FIG. 2A is a diagram showing the results of principal component analysis (PCA) on the proteome. The left figure shows the score plot, and the right figure shows the loading plot. Each plot point represents each subject data. The horizontal axis and the vertical axis indicate the first principal component and the second principal component, respectively, and all the proteome information of each subject is summarized and represented in a two-dimensional diagram. FIG. 2B is a diagram showing the results of discriminant analysis (OPLS-DA) on the proteome. The left figure shows the score plot, and the right figure shows the S-plot. The inside of the ellipse in the score plot (left figure) shows the 95% confidence interval of the approximate distribution of the data according to the T2 theory of hoteling. 高レベル放射線地域(HBRA)に居住する住民(26例)および低レベル放射線地域(NBRA)に居住する住民(23例)における血中ヘモグロビンA1(HBA1)量を、質量分析により測定した結果を示す図である。左図は、データ解析を箱ひげ図により行った結果を示し、右図はROC(Receiver Operating Characteristic)曲線を示す。箱ひげ図(左図)の縦軸は、マススペクトルにおいて、HBA1に対応するピークの面積値を、総ピーク面積値により標準化したHBA1の相対ピーク面積値を示す。ROC曲線において、縦軸および横軸は、それぞれ真陽性率(True positive rate)および偽陽性率(False positive rate)を示し、図内の斜点線は、ランダム予測(ROC曲線下面積(AUC)= 0.5)を表している。Youdenインデックスを用いたROC曲線におけるカットオフ値は、257,000であった。The results of mass spectrometric measurement of blood hemoglobin A1 (HBA1) levels in residents (26 cases) residing in high-level radiation areas (HBRA) and inhabitants (23 cases) residing in low-level radiation areas (NBRA) are shown. It is a figure. The figure on the left shows the result of data analysis using a box plot, and the figure on the right shows the ROC (Receiver Operating Characteristic) curve. The vertical axis of the boxplot (left figure) shows the relative peak area value of HBA1 in which the area value of the peak corresponding to HBA1 is standardized by the total peak area value in the mass spectrum. In the ROC curve, the vertical and horizontal axes show the true positive rate and the false positive rate, respectively, and the diagonal lines in the figure are random predictions (area under the ROC curve (AUC) =. It represents 0.5). The cutoff value in the ROC curve using the Youden index was 257,000. ヒト酸化修飾アルブミン断片として、SLHTLFGDKLCTVATLRETYGEM111[Oxi]ADCCAK(OMSA3と略称する。)を測定した結果を示す図である。ROC曲線下面積(AUC)は0.730であった。Youdenインデックスを用いたROC曲線におけるカットオフ値は、0.128であった。It is a figure which shows the result of having measured SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK (abbreviated as OMSA3) as a human oxidation-modified albumin fragment. The area under the ROC curve (AUC) was 0.730. The cutoff value in the ROC curve using the Youden index was 0.128. ヒト酸化修飾アルブミン断片として、Y162[Oxi]LYEIAR(OMSA9と略称する。)を測定した結果を示す図である。ROC曲線下面積(AUC)は0.828であった。Youdenインデックスを用いたROC曲線におけるカットオフ値は、0.00918であった。As human oxide modified albumin fragment, (abbreviated as OMSA9.) Y 162 [Oxi] LYEIAR is a diagram showing the result of measuring the. The area under the ROC curve (AUC) was 0.828. The cutoff value in the ROC curve using the Youden index was 0.00918. ヒト酸化修飾アルブミン断片として、DVFLGMFLY356[Oxi]EYAR(OMSA24と略称する。)を測定した結果を示す図である。ROC曲線下面積(AUC)は0.794であった。Youdenインデックスを用いたROC曲線におけるカットオフ値は、0.0696であった。It is a figure which shows the result of having measured DVFLGMFLY 356 [Oxy] EYAR (abbreviated as OMSA24) as a human oxidation-modified albumin fragment. The area under the ROC curve (AUC) was 0.794. The cutoff value in the ROC curve using the Youden index was 0.0696. ヒト酸化修飾アルブミン断片として、M470[Oxi]PCAEDYLSVVLNQLCVLHEK(OMSA34と略称する。)を測定した結果を示す図である。ROC曲線下面積(AUC)は0.813であった。Youdenインデックスを用いたROC曲線におけるカットオフ値は、0.642であった。As human oxide modified albumin fragment is a diagram showing the M 470 [Oxi] (abbreviated as OMSA34.) PCAEDYLSVVLNQLCVLHEK result of measuring the. The area under the ROC curve (AUC) was 0.813. The cutoff value in the ROC curve using the Youden index was 0.642. マウスの全身に、吸収線量0.5、1.0および3.0GyのX線を照射後24時間のマウスの体重を測定した結果を示す図である。図中のプロットは、それぞれマウス1個体を示す。無照射群(0Gy)と照射群との間の統計学的有意差は、チューキー・クレーマー(Tukey-Kramer)法による多重比較検定により評価した(*p<0.05)。It is a figure which shows the result of having measured the body weight of a mouse 24 hours after irradiating the whole body of a mouse with X-rays of absorption doses of 0.5, 1.0 and 3.0 Gy. The plots in the figure each show one mouse. The statistically significant difference between the non-irradiated group (0 Gy) and the irradiated group was evaluated by a multiple comparison test by the Tukey-Kramer method (* p <0.05). マウスの全身に、吸収線量0.5、1.0および3.0GyのX線を照射後24時間で採取した血液のヘマトクリット値を測定した結果を示す図である。図中のプロットは、それぞれマウス1個体を示す。It is a figure which shows the result of having measured the hematocrit value of the blood collected 24 hours after the irradiation of the whole body of a mouse with the X-ray of an absorbed dose of 0.5, 1.0 and 3.0 Gy. The plots in the figure each show one mouse. マウス酸化修飾アルブミン断片として、SLHTLFGDK97[LAA]LCAIPNLR(mOMSA9と略称する。)を測定した結果を示す図である。It is a figure which shows the result of having measured SLHTLFGDK 97 [LAA] LCAIPNLR (abbreviated as mOMSA9) as a mouse oxidation-modified albumin fragment. マウス酸化修飾アルブミン断片として、ENPTTFM159[Oxi]GHYLHEVAR(mOMSA14と略称する。)を測定した結果を示す図である。It is a figure which shows the result of having measured ENPTTFM 159 [Oxy] GHYLHEVAR (abbreviated as MOMSA14) as a mouse oxidation-modified albumin fragment. マウス酸化修飾アルブミン断片として、Y287[Oxi]MCENQATISSK(mOMSA20と略称する。)を測定した結果を示す図である。It is a figure which shows the result of having measured Y 287 [Oxy] MCNQUATISSK (abbreviated as MOMSA20) as a mouse oxidation-modified albumin fragment.
 本発明の方法は、被験者から得られる試料中の少なくとも1つのバイオマーカーの存在量を測定する工程を含む。「試料」とは、放射線被ばくの検出、すなわち放射線被ばくを受けたかどうかの推定または評価の対象となる被験者であるヒトから得られる体液であって、本発明で使用するバイオマーカーを含む体液である。試料は、例えば、血液(全血)、臍帯血、リンパ液、組織液(組織間液、細胞間液および間質液)、体腔液(腹水、胸水、脳脊髄液および関節液)が挙げられるが、被験者に対する侵襲性が低いことから、好ましくは末梢血である。全血は、血清または血漿として使用することが好ましく、血清がより好ましい。 The method of the present invention comprises a step of measuring the abundance of at least one biomarker in a sample obtained from a subject. A "sample" is a body fluid obtained from a human who is a subject for detection of radiation exposure, that is, estimation or evaluation of whether or not radiation exposure has been received, and is a body fluid containing a biomarker used in the present invention. .. Samples include, for example, blood (whole blood), cord blood, lymph, tissue fluid (interstitial fluid, interstitial fluid and interstitial fluid), body cavity fluid (abdominal fluid, pleural fluid, cerebrospinal fluid and joint fluid). Peripheral blood is preferred because it is less invasive to the subject. Whole blood is preferably used as serum or plasma, more preferably serum.
 本発明の一実施態様において、測定対象とする試料中のバイオマーカーは、ヘモグロビンA1(HBA1)またはそのペプチド断片である。HBA1は、血色素(ヘモグロビン)のサブタイプのひとつである。HBA1のペプチド断片を測定対象とする場合、用いる測定条件において、前記ペプチド断片がHBA1由来であることが識別できる限りにおいて、任意のアミノ酸鎖長であり得る。 In one embodiment of the present invention, the biomarker in the sample to be measured is hemoglobin A1 (HBA1) or a peptide fragment thereof. HBA1 is one of the subtypes of hemoglobin. When the peptide fragment of HBA1 is to be measured, it can have any amino acid chain length as long as it can be identified that the peptide fragment is derived from HBA1 under the measurement conditions used.
 本発明の一実施態様において、測定対象とする試料中のバイオマーカーは、酸化修飾アルブミンまたはそのペプチド断片である。「酸化修飾アルブミン」とは、放射線被ばくにより、アルブミンを構成するアミノ酸が酸化修飾されたアルブミンである。放射線被ばくすると、生体に含まれる水から活性酸素種が生成する。活性酸素種は強力な酸化剤として作用するため、生体が放射線被ばくを受けると、生成した活性酸素種により酸化ストレスを受けた状態となる。血清アルブミンは血液中に最も多く存在するタンパク質のひとつであるが、アルブミンの生体における半減期は約15日であるため、生体の酸化ストレス状態を常に反映していることが考えられる。 In one embodiment of the present invention, the biomarker in the sample to be measured is oxidation-modified albumin or a peptide fragment thereof. "Oxidation-modified albumin" is albumin in which the amino acids constituting albumin are oxidatively modified by radiation exposure. When exposed to radiation, reactive oxygen species are generated from water contained in living organisms. Since active oxygen species act as a powerful oxidizing agent, when a living body is exposed to radiation, it becomes in a state of being subjected to oxidative stress by the generated active oxygen species. Serum albumin is one of the most abundant proteins in blood, but since albumin has a half-life of about 15 days in the living body, it is considered that it always reflects the oxidative stress state of the living body.
 ヒトのアルブミンは、609個のアミノ酸残基からなる直鎖ポリペプチドである(例えば、UniProtKB ID:P02768 (https://www.uniprot.org/uniprot/P02768) およびMinghetti PP, J Biol Chem. 1986; 261(15):6747-6757を参照)。本発明の一実施態様において、酸化修飾アルブミンは、残基番号111のメチオニン(M111)、残基番号162のチロシン(Y162)、残基番号356のチロシン(Y356)、残基番号470のメチオニン(M470)およびこれらの任意の組み合わせからなる群より選択されるアミノ酸が酸化された酸化修飾アミノ酸を含む。したがって、前記酸化修飾アルブミンは、これら4個のアミノ酸の酸化修飾残基から選ばれる少なくとも1個、これらの任意の組み合わせの2個、これらの任意の組み合わせの3個またはこれらすべてのアミノ酸の酸化修飾残基を含んでもよい。前記酸化修飾アルブミンは、上記の4残基以外のアミノ酸残基が酸化修飾されていてもよい。なお、M111、Y162、Y356およびM470が酸化修飾されたアミノ酸は、それぞれM111[Oxi]、Y162[Oxi]、Y356[Oxi]およびM470[Oxi]と表記される。また、M111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミンとは、それぞれ、酸化修飾アミノ酸であるM111[Oxi]、Y162[Oxi]、Y356[Oxi]およびM470[Oxi]を含む酸化修飾アルブミンを指す。同様に、M111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミン断片とは、それぞれ、酸化修飾アミノ酸であるM111[Oxi]、Y162[Oxi]、Y356[Oxi]およびM470[Oxi]を含む酸化修飾アルブミン断片を指す。本発明において、メチオニンの酸化修飾体は、スルホキシド化されたメチオニンスルホキシドと考えられ、またチロシンの酸化修飾体は、フェニル基のオルト位またはメタ位にヒドロキシ基が置換した構造を有すると考えられる。 Human albumin is a linear polypeptide consisting of 609 amino acid residues (eg UniProtKB ID: P02768 (https://www.uniprot.org/uniprot/P02768) and Minghetti PP, J Biol Chem. 1986. See 261 (15): 6747-6757). In one embodiment of the invention, the oxidatively modified albumin is methionine (M 111 ) with residue number 111, tyrosine with residue number 162 (Y 162 ), tyrosine with residue number 356 (Y 356 ), residue number 470. Contains methionine (M 470 ) and oxidatively modified amino acids in which amino acids selected from the group consisting of any combination thereof have been oxidized. Therefore, the oxidatively modified albumin is at least one selected from the oxidatively modified residues of these four amino acids, two of any combination thereof, three of any combination thereof, or oxidative modification of all these amino acids. It may contain residues. The oxidatively modified albumin may be oxidatively modified with amino acid residues other than the above four residues. The amino acids obtained by oxidatively modifying M 111 , Y 162 , Y 356 and M 470 are referred to as M 111 [Oxy], Y 162 [Oxy], Y 356 [Oxi] and M 470 [Oxi], respectively. Further, M 111 [Oxy]-, Y 162 [Oxi]-, Y 356 [Oxi] -and M 470 [Oxi] -oxidation-modified albumin are oxidation-modified amino acids M 111 [Oxi] and Y 162, respectively. Refers to oxidation-modified albumin containing [Oxi], Y 356 [Oxi] and M 470 [Oxi]. Similarly, M 111 [Oxi]-, Y 162 [Oxi]-, Y 356 [Oxi] -and M 470 [Oxi] -oxidation-modified albumin fragments are oxidation-modified amino acids M 111 [Oxi], respectively. Refers to an oxidation-modified albumin fragment containing Y 162 [Oxi], Y 356 [Oxi] and M 470 [Oxi]. In the present invention, the oxidative modification of methionine is considered to be a sulfoxide methionine sulfoxide, and the oxidative modification of tyrosine is considered to have a structure in which a hydroxy group is substituted at the ortho-position or meta-position of the phenyl group.
 測定対象とするバイオマーカーとしての酸化修飾アルブミンのペプチド断片とは、前記酸化修飾アルブミンの断片である。本発明の一実施態様において、前記酸化修飾アルブミンの断片は、M111[Oxi]、Y162[Oxi]、Y356[Oxi]およびM470[Oxi]からなる群より選択される酸化修飾アミノ酸を含むペプチド断片である。前記ペプチド断片は、前記酸化修飾アミノ酸を2個以上含んでもよい。また、前記ペプチド断片は、前記酸化修飾アミノ酸以外の酸化修飾アミノ酸を含んでもよい。 The peptide fragment of oxidatively modified albumin as a biomarker to be measured is the fragment of the oxidatively modified albumin. In one embodiment of the invention, the oxidation-modified albumin fragment comprises an oxidation-modified amino acid selected from the group consisting of M 111 [Oxi], Y 162 [Oxi], Y 356 [Oxi] and M 470 [Oxi]. It is a peptide fragment containing. The peptide fragment may contain two or more of the oxidation-modified amino acids. Further, the peptide fragment may contain an oxidation-modified amino acid other than the oxidation-modified amino acid.
 前記酸化修飾アルブミンの断片は、SLHTLFGDKLCTVATLRETYGEM111[Oxi]ADCCAK(OMSA3と略称する。)、Y162[Oxi]LYEIAR(OMSA9と略称する。)、DVFLGMFLY356[Oxi]EYAR(OMSA24と略称する。)およびM470[Oxi]PCAEDYLSVVLNQLCVLHEK(OMSA34と略称する。)からなる群より選択される断片が例示される。なお本願において、アミノ酸は慣用的な1文字表記による略号で表示される。OMSA3は、ヒト・アルブミンのアミノ酸残基番号89~117の配列(配列番号1)に対応する29残基の酸化修飾ペプチドである。OMSA9は、ヒト・アルブミンのアミノ酸残基番号162~168の配列(配列番号2)に対応する7残基の酸化修飾ペプチドである。OMSA24は、ヒト・アルブミンのアミノ酸残基番号348~360の配列(配列番号3)に対応する13残基の酸化修飾ペプチドである。OMSA34は、ヒト・アルブミンのアミノ酸残基番号470~490の配列(配列番号4)に対応する21残基の酸化修飾ペプチドである。 The fragments of the oxidation-modified albumin are SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK (abbreviated as OMSA3), Y 162 [Oxi] LYEIAR (abbreviated as OMSA9), DVFLGMFLY 356 [Oxi] EYAR (abbreviated as OMSA24). A fragment selected from the group consisting of M 470 [Oxy] PCAEDYLSVVLNQLCVLHEK (abbreviated as OMSA34) is exemplified. In the present application, amino acids are represented by abbreviations in the conventional one-letter notation. OMSA3 is a 29-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 89 to 117 (SEQ ID NO: 1) of human albumin. OMSA9 is a 7-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 162 to 168 of human albumin (SEQ ID NO: 2). OMSA24 is a 13-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 348 to 360 (SEQ ID NO: 3) of human albumin. OMSA34 is a 21-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 470 to 490 (SEQ ID NO: 4) of human albumin.
 前記HBA1または前記酸化修飾アルブミンもしくは前記酸化修飾アルブミンの断片の「参照値」とは、自然放射線および人工放射線を問わず、放射線被ばく線量が低いことが明確な参照被験者から得られる試料中の前記HBA1または前記酸化修飾アルブミンもしくは前記酸化修飾アルブミンの断片の存在量を指す。自然放射線による被ばく線量は、宇宙および大地から受ける外部被ばく線量ならびに食物および大気中のラドンなどの自然由来の放射性物質から受ける内部被ばく線量を和した総被ばく線量である。人工放射線による被ばく線量には、原子炉内での作業に起因する被ばく線量ならびに胸部CTスキャンおよび胸部X腺検査などの医療行為に起因する被ばく線量を和した総被ばく線量である。 The "reference value" of the HBA1 or the oxidatively modified albumin or the fragment of the oxidatively modified albumin is the HBA1 in a sample obtained from a reference subject whose radiation exposure dose is clearly low, regardless of whether it is natural radiation or artificial radiation. Alternatively, it refers to the abundance of the oxidation-modified albumin or a fragment of the oxidation-modified albumin. The exposure dose from natural radiation is the total exposure dose that is the sum of the external exposure dose received from space and the earth and the internal exposure dose received from naturally occurring radioactive substances such as radon in food and the atmosphere. The exposure dose due to artificial radiation is the total exposure dose that is the sum of the exposure dose caused by working in the reactor and the exposure dose caused by medical practice such as chest CT scan and chest X-gland examination.
 参照値を取得する対象である参照被験者は、例えば、低レベル自然放射線地域に居住する住民が挙げられ、好ましくは年間総被ばく線量が10mSv以下、より好ましくは5mSv以下、さらに好ましくは2mSv以下、最も好ましくは1mSv以下の参照被験者である。参照値は、複数の参照被験者について測定し、予めデータベース化しておくことが好ましい。必要に応じて、人種差が参照値に及ぼす影響を評価することもできる。 The reference subject for which the reference value is to be obtained includes, for example, a resident living in a low-level natural radiation area, and the annual total exposure dose is preferably 10 mSv or less, more preferably 5 mSv or less, still more preferably 2 mSv or less, most preferably. It is preferably a reference subject of 1 mSv or less. It is preferable that the reference value is measured for a plurality of reference subjects and stored in a database in advance. If necessary, the effect of racial differences on reference values can also be assessed.
 被験者における前記HBA1の存在量が、参照被験者における前記HBA1参照値と比較して「低値である場合」とは、HBA1参照値の例えば中央値または平均値を基準値として、被験者におけるHBA1の存在量が前記基準値より低値を示す場合である。いくつかの実施態様において、被験者におけるHBA1の存在量が「低値である場合」とは、前記基準値と比較して約10%以上、約25%以上、約50%以上、約75%以上または約90%以上減少している場合を指す。 When the abundance of HBA1 in the subject is "lower" than the HBA1 reference value in the reference subject, the presence of HBA1 in the subject is based on, for example, the median value or the average value of the HBA1 reference value. This is the case where the amount is lower than the reference value. In some embodiments, "when the abundance of HBA1 in a subject is low" means about 10% or more, about 25% or more, about 50% or more, about 75% or more as compared with the reference value. Or it refers to the case where it is reduced by about 90% or more.
 被験者における前記酸化修飾アルブミンまたは前記酸化修飾アルブミンの断片の存在量が、参照被験者におけるそれぞれ前記酸化修飾アルブミンまたは前記酸化修飾アルブミンの断片の参照値と比較して「高値である場合」とは、酸化修飾アルブミンまたは酸化修飾アルブミンの断片の参照値の例えば中央値または平均値を基準値として、被験者における酸化修飾アルブミンまたは酸化修飾アルブミンの断片の存在量が、それぞれの前記基準値より高値を示す場合である。いくつかの実施態様において、被験者における酸化修飾アルブミンまたは酸化修飾アルブミンの断片の存在量が「高値である場合」とは、前記基準値と比較して約1.2倍以上、約1.5倍以上、約2.0倍以上または約3.0倍以上増加している場合を指す。 When the abundance of the oxidatively modified albumin or the fragment of the oxidatively modified albumin in the subject is "high" as compared with the reference value of the oxidatively modified albumin or the fragment of the oxidatively modified albumin in the reference subject, respectively, it means oxidation. When the abundance of the oxidatively modified albumin or the oxidatively modified albumin fragment in the subject shows a higher value than the respective reference values, for example, the median value or the average value of the reference value of the modified albumin or the oxidatively modified albumin fragment is used as a reference value. be. In some embodiments, "when the abundance of oxidatively modified albumin or a fragment of oxidatively modified albumin in a subject is" high "is about 1.2 times or more, about 1.5 times, as compared with the reference value. The above refers to the case where the increase is about 2.0 times or more or about 3.0 times or more.
 前記HBA1参照値ならびに前記酸化修飾アルブミンおよび前記酸化修飾アルブミンの断片の参照値において、中央値または平均値のいずれを基準値として採用するかは、複数の参照被験者におけるHBA1、酸化修飾アルブミンおよび酸化修飾アルブミンの断片の存在量の分布に基づいて決定することができる。前記参照値の中央値および平均値以外の指標を基準値として採用してもよい。例えば、Youdenインデックスを用いたROC曲線におけるカットオフ値を採用してもよい。当業者であれば、HBA1、酸化修飾アルブミンおよび酸化修飾アルブミンの断片の存在量の分布における外れ値の有無等の統計学的な解析に基づいて、より適切と推定される基準値を選択することができる。また、上記で使用される「約」という用語は、当業者が容易に知り得る、それぞれの値の通常の誤差範囲を指す。 Whether to adopt the median value or the average value as the reference value in the HBA1 reference value and the reference value of the oxidation-modified albumin and the fragment of the oxidation-modified albumin is determined by using HBA1, the oxidation-modified albumin and the oxidation modification in a plurality of reference subjects. It can be determined based on the distribution of the abundance of albumin fragments. An index other than the median value and the average value of the reference values may be adopted as the reference value. For example, the cutoff value in the ROC curve using the Youden index may be adopted. One of ordinary skill in the art should select a reference value that is presumed to be more appropriate based on statistical analysis such as the presence or absence of outliers in the distribution of the abundance of HBA1, oxidation-modified albumin and fragments of oxidation-modified albumin. Can be done. Also, the term "about" as used above refers to the usual error range of each value that is readily known to those of skill in the art.
 本発明の一実施態様において、被験者から得られた試料中のHBA1存在量が、参照被験者におけるHBA1基準値より低値を示す場合、前記被験者は、放射線被ばくを受けた個体として特定され得る。本発明の一実施態様において、被験者から得られた試料中のHBA1存在量が、参照被験者におけるHBA1基準値より低値を示す場合、前記被験者は、放射線被ばくを受けた可能性が高い個体として分類され得る。 In one embodiment of the present invention, if the abundance of HBA1 in the sample obtained from the subject is lower than the HBA1 reference value in the reference subject, the subject can be identified as an individual exposed to radiation. In one embodiment of the invention, if the HBA1 abundance in the sample obtained from the subject is lower than the HBA1 reference value in the reference subject, the subject is classified as an individual likely to have been exposed to radiation. Can be done.
 本発明の一実施態様において、被験者から得られた試料中の酸化修飾アルブミンまたは酸化修飾アルブミンの断片の存在量が、参照被験者におけるそれぞれの基準値より高値を示す場合、前記被験者は、放射線被ばくを受けた個体として特定され得る。本発明の一実施態様において、被験者から得られた試料中の酸化修飾アルブミンまたは酸化修飾アルブミンの断片の存在量が、参照被験者におけるそれぞれの基準値より高値を示す場合、前記被験者は、放射線被ばくを受けた可能性が高い個体として分類され得る。 In one embodiment of the invention, if the abundance of oxidatively modified albumin or fragment of oxidatively modified albumin in a sample obtained from a subject is higher than the respective reference value in the reference subject, the subject is exposed to radiation. Can be identified as a received individual. In one embodiment of the present invention, if the abundance of oxidatively modified albumin or a fragment of oxidatively modified albumin in a sample obtained from a subject is higher than the respective reference value in the reference subject, the subject is exposed to radiation. It can be classified as an individual that is likely to have received it.
 本発明の方法または本発明のバイオマーカーを使用することにより、前記被験者において、100mSv以下の低線量放射線被ばくを検出することができるが、100mSvを超える放射線被ばくを排除するものではない。本発明によれば、100mSvを超える放射線被ばくを検出することができることに加えて、疫学的に検出することが困難な100mSv以下の低線量域における放射線被ばくであっても検出することが可能である。 By using the method of the present invention or the biomarker of the present invention, it is possible to detect low-dose radiation exposure of 100 mSv or less in the subject, but it does not exclude radiation exposure of more than 100 mSv. According to the present invention, in addition to being able to detect radiation exposure exceeding 100 mSv, it is also possible to detect radiation exposure in a low dose range of 100 mSv or less, which is difficult to detect epidemiologically. ..
 本発明の方法において、被験者における放射線被ばくを検出するために、バイオマーカーとしてHBA1または酸化修飾アルブミンもしくは酸化修飾アルブミンの断片を、単独で使用してもよく、またはこれらを任意に組み合わせた2以上を使用してもよい。本発明のバイオマーカーの複数を組み合わせることにより、被験者における放射線被ばくの検出精度を向上させることが可能である。 In the method of the present invention, in order to detect radiation exposure in a subject, HBA1 or a fragment of oxidation-modified albumin or oxidation-modified albumin may be used alone as a biomarker, or two or more thereof may be arbitrarily combined. You may use it. By combining a plurality of biomarkers of the present invention, it is possible to improve the detection accuracy of radiation exposure in a subject.
 本発明の一実施態様において、M111[Oxi]-酸化修飾アルブミンまたはM111[Oxi]-酸化修飾アルブミン断片の存在量を、被験者における放射線被ばく線量を推定する方法として使用することができる。この場合、M111[Oxi]-酸化修飾アルブミンまたはM111[Oxi]-酸化修飾アルブミン断片の存在量と被ばく線量との間の相関性を予めデータベース化しておくことが好ましい。このデータベースを用いることにより、被ばく線量が未知の被験者について、M111[Oxi]-酸化修飾アルブミンまたはM111[Oxi]-酸化修飾アルブミン断片の存在量を測定することにより、前記被験者の被ばく線量を推定することができる。データベース構築に使用された被験者と被ばく線量が未知の被験者との間で、生活習慣および生活環境などの被験者背景を一定にすることにより、より精度の高い被ばく線量の推定が可能となる。 In one embodiment of the present invention, M 111 [Oxi] - oxide modified albumin or M 111 [Oxi] - the presence of the oxidizing modified albumin fragments, can be used as a method of estimating the radiation dose in a subject. In this case, M 111 [Oxi] - oxide modified albumin or M 111 [Oxi] - it is preferable to previously database of correlation between the abundance of oxidatively modified albumin fragments and dose. By using this database, the exposure dose is unknown subject, M 111 [Oxi] - oxide modified albumin or M 111 [Oxi] - by measuring the abundance of oxide modified albumin fragment, the exposure dose of the subject Can be estimated. By keeping the subject background such as lifestyle and living environment constant between the subject used for database construction and the subject whose exposure dose is unknown, it is possible to estimate the exposure dose with higher accuracy.
 前記被験者または前記参照被験者から得られる試料について、本発明のバイオマーカーの存在量を測定するためには、これらのバイオマーカーを特異的に検出することのできる方法であればどのような方法であってもよい。例えば、これらのバイオマーカーに対する特異的な抗体を用いるウェスタンブロッティング、ドットブロッティング、スロットブロッティング、放射免疫測定法(RIA、radioimmunoassay)、酵素免疫測定法(EIA、enzyme immunoassay)、酵素結合免疫吸着測定法(ELISA、enzyme-linked immune sorbent assay)、イムノクロマト法、タンパク質マイクロアレイおよびペプチドマイクロアレイなどの免疫学的測定法ならびに質量分析等の、当業者に理解される方法を用いることができる。本発明のバイオマーカーの検出に必要な抗体は、市販品を使用してもよい。質量分析は、MALDI-MS(マトリックス支援レーザー脱離イオン化質量分析法)などの、高分子量化合物の分解を生じにくいイオン化法を用いることが好ましい。 In order to measure the abundance of the biomarkers of the present invention with respect to the sample obtained from the subject or the reference subject, any method can be used as long as these biomarkers can be specifically detected. You may. For example, Western blotting, dot blotting, slot blotting, radioimmunoassay (RIA, radioimmunoassay), enzyme-linked immunosorbent assay (EIA, enzyme-immunoassay), enzyme-linked immunosorbent assay (EIA, enzyme-immunoassay) using specific antibodies against these biomarkers. Methods understood by those skilled in the art such as ELISA, enzyme-linked immunosorbent assay), immunoblotting, immunoassays such as protein microarrays and peptide microarrays, and mass analysis can be used. As the antibody required for the detection of the biomarker of the present invention, a commercially available product may be used. For mass spectrometry, it is preferable to use an ionization method such as MALDI-MS (matrix-assisted laser desorption / ionization mass spectrometry) that does not easily cause decomposition of high molecular weight compounds.
 構造を特定したメチオニンおよびチロシンの酸化修飾体を含む前記酸化修飾アルブミン断片を調製し、これらの酸化修飾アルブミン断片に対する特異的抗体を作製することができる。これらの抗体と、被験者から得られた酸化修飾アルブミンまたはその断片との結合試験の結果を、質量分析から得られる前記酸化修飾アルブミン断片の存在量の測定結果と比較し、これらの結果が相関することを確認することにより、メチオニンおよびチロシンの酸化修飾体の構造を特定することができる。 It is possible to prepare the oxidation-modified albumin fragment containing an oxidation-modified product of methionine and tyrosine whose structure has been specified, and to prepare a specific antibody against these oxidation-modified albumin fragments. The results of the binding test between these antibodies and the oxidation-modified albumin or a fragment thereof obtained from the subject are compared with the measurement results of the abundance of the oxidation-modified albumin fragment obtained from mass spectrometry, and these results are correlated. By confirming that, the structure of the oxidative modifiers of methionine and tyrosine can be identified.
 本発明の方法を使用して、本発明のバイオマーカーを測定するためのキットは、ヘモグロビンA1(HBA1)およびその断片、M111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミン、ならびにM111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミン断片からなる群より選択される少なくとも1つのバイオマーカーに対する抗体を含む、前記酸化修飾アルブミン断片は、SLHTLFGDKLCTVATLRETYGEM111[Oxi]ADCCAK、Y162[Oxi]LYEIAR、DVFLGMFLY356[Oxi]EYARおよびM470[Oxi]PCAEDYLSVVLNQLCVLHEKからなる群より選択してもよい。本発明のキットは、タンパク質またはペプチドを免疫学的に測定するために必要な試薬を含み、前記試薬の構成は、当業者であれば、適宜決定することができる。本発明のキットは、試料から夾雑物を除去するための試薬を含んでもよい。 Kits for measuring the biomarkers of the invention using the methods of the invention include hemoglobin A1 (HBA1) and fragments thereof, M 111 [Oxy]-, Y 162 [Oxy]-, Y 356 [Oxi]. -And M 470 [Oxy] -oxidation modified albumin, and selected from the group consisting of M 111 [Oxy]-, Y 162 [Oxy]-, Y 356 [Oxy] -and M 470 [Oxi] -oxidation modified albumin fragments. The oxidation-modified albumin fragment comprising an antibody against at least one biomarker comprises SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK, Y 162 [Oxy] LYEIAR, DVFLGMFLY 356 [Oxy] EYAR and M 470 [Oxy] PCALE You may. The kit of the present invention contains reagents necessary for immunologically measuring a protein or peptide, and the composition of the reagents can be appropriately determined by those skilled in the art. The kit of the present invention may contain reagents for removing impurities from the sample.
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to the following Examples.
〔住民背景〕
 本発明のバイオマーカーを測定することにより放射線被ばくを検出するための被験者および前記バイオマーカーの参照値を取得するための参照被験者として、それぞれインドネシア国スラウェシ島における高レベル放射線地域(HBRA)および低レベル放射線地域(NBRA)に居住する住民を選択した。HBRAおよびNBRAに居住する住民の背景情報を、それぞれ図1Aおよび図1Bに示す。また、いくつかの背景情報を下表に示す。下表中の被ばく線量は、内部被ばく線量と外部被ばく線量とを合わせた総被ばく線量(total dose)である。
Figure JPOXMLDOC01-appb-I000001
 年間総被ばく線量の範囲は、NBRA住民では0.9~1.9mSvであったが、HBRA住民では33.5~63.5mSvと高値であった。年間総被ばく線量は、HBRA住民に比較してNBRA住民では十分に低いため、NBRA住民は、前記参照値を取得する対象として好適である。
[Background of residents]
High-level radiation areas (HBRA) and low-level in Sulawesi, Indonesia, as reference subjects for detecting radiation exposure by measuring the biomarkers of the present invention and for obtaining reference values for the biomarkers, respectively. Residents residing in the Radiation Area (NBRA) were selected. Background information of the inhabitants of HBRA and NBRA is shown in FIGS. 1A and 1B, respectively. In addition, some background information is shown in the table below. The exposure dose in the table below is the total dose, which is the sum of the internal exposure dose and the external exposure dose.
Figure JPOXMLDOC01-appb-I000001
The range of total annual exposure dose was 0.9 to 1.9 mSv for NBRA residents, but it was as high as 33.5 to 63.5 mSv for HBRA residents. Since the total annual exposure dose is sufficiently low in NBRA residents as compared with HBRA residents, NBRA residents are suitable as targets for obtaining the reference value.
〔質量分析による血液中のタンパク質の分析〕
分析試料の調製
 実施例1における住民から、抗凝固因子を含まない採血管内に採血し、室温で30分間静置後、1200×gで10分間の遠心分離を行い、上清(血清)を回収した。得られた血清2μLに、50mM炭酸水素アンモニウム溶液(198μL)を加えて希釈した。この希釈液に1mLのアセトンを加えて混合後、15000×gで10分間の遠心分離を行い、タンパク質を沈殿として得た。この沈殿を、8M尿素を含む500mM炭酸水素アンモニウム溶液(10μL)で溶解した。ここへ、200mM DTT(1,4-ジチオスレイトール)5μLを加えて、90℃で30分間放置した。この後、200mMヨードアセトアミド溶液(10μL)をさらに加えて、暗所に1時間放置後、200mM DTT(5μL)を添加した。さらに100mM炭酸水素アンモニウム溶液(320μL)を添加した後、N-トシル-L-フェニルアラニンクロロメチルケトン(TPCK)で処理したトリプシン(5μg、AB SCIEX社)を加えて、37℃で18時間放置した。この後、トリフルオロ酢酸(1μL)を加えて反応を停止し、C18樹脂のチップカラム(Zip Tip、Merck Millipore社)によりペプチド画分を脱塩し、精製した。精製したペプチド画分は、減圧乾固した後、0.1%ギ酸(20μL)に溶解した。
[Analysis of proteins in blood by mass spectrometry]
Preparation of analytical sample Blood was collected from the inhabitants of Example 1 into a blood collection tube containing no anticoagulant factor, allowed to stand at room temperature for 30 minutes, and then centrifuged at 1200 × g for 10 minutes to collect the supernatant (serum). did. To 2 μL of the obtained serum, a 50 mM ammonium hydrogencarbonate solution (198 μL) was added and diluted. After adding 1 mL of acetone to this diluted solution and mixing, centrifugation was performed at 15,000 × g for 10 minutes to obtain a protein as a precipitate. This precipitate was dissolved in a 500 mM ammonium bicarbonate solution (10 μL) containing 8 M urea. To this, 5 μL of 200 mM DTT (1,4-dithiothreitol) was added, and the mixture was allowed to stand at 90 ° C. for 30 minutes. Then, a 200 mM iodoacetamide solution (10 μL) was further added, left in a dark place for 1 hour, and then 200 mM DTT (5 μL) was added. Further, 100 mM ammonium hydrogencarbonate solution (320 μL) was added, then trypsin (5 μg, AB SCIEX) treated with N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) was added, and the mixture was allowed to stand at 37 ° C. for 18 hours. Then, trifluoroacetic acid (1 μL) was added to terminate the reaction, and the peptide fraction was desalted and purified with a C18 resin chip column (Zip Tip, Merck Millipore). The purified peptide fraction was dried under reduced pressure and then dissolved in 0.1% formic acid (20 μL).
液体クロマトグラフィー質量分析(LC/MS/MS)
 ナノフロー液体クロマトグラフィー(nanoLC Eksigent 400 system、Eksigent、AB Sciex社)により上記の分析試料に含まれるペプチドを分画し、溶出液を質量分析器によりMS/MS測定した。ペプチドを分画するカラムとして、トラップカラム(nano trap column、350μm×0.5 mm、3μm、120 Å、AB Sciex社)を接続したC18逆相カラム(nano ChromXP C18 reverse phase column、75μm×15 cm、3μm、120 Å、AB Sciex社)を用いた。質量分析器は、TripleTOF6600質量分析計(AB Sciex社)を用いた。流速を300nL/分に設定し、最初の90分間を、0.1%ギ酸を含む8~30%のアセトニトリル直線濃度勾配で、続く10分間を、30~40%のアセトニトリル直線濃度勾配によりペプチドを溶出した。質量分析では、まずIDA(information dependent acquisition)によるデータ取得を行った。MSスペクトルスキャンの設定は250ミリ秒間で400~1500m/zとした。MS/MSスペクトルスキャンの設定は50ミリ秒ごとに100~1800m/zとして、30回以上のMS/MSスペクトルを取得した。MSとMS/MSスペクトル取得のサイクルタイムは1.8秒とした。+2から+5の電荷を持ち、1秒間あたり125カウント以上のイオンについて、MS/MSスペクトルを取得した。また、MS/MSスペクトルを取得したイオンについては、12秒間は同じイオンを選択しない設定とした。質量分析計は、Analyst TF 1.7.1ソフトウェア(AB Sciex社)により操作した。DDA(data dependent acquisition、SWATH(登録商標)acquisition)では飛行時間型質量分離器(TOF)MSのスキャンを100ミリ秒とし、400~1250m/zの範囲を200m/zごとに区切り、50ミリ秒で測定した。各m/z区間のオーバーラップは1Daとした。これを1サイクルとして、9.6秒で測定した。
Liquid Chromatography Mass Spectrometry (LC / MS / MS)
The peptides contained in the above analysis sample were fractionated by nanoflow liquid chromatography (nanoLC Eksigent 400 system, Eksigent, AB Sciex), and the eluate was measured by MS / MS using a mass spectrometer. C18 reverse phase column (nano ChromXP C18 reverse phase column, 75 μm × 15 cm, 3 μm) to which a trap column (nano trap column, 350 μm × 0.5 mm, 3 μm, 120 Å, AB Sciex) was connected as a column for fractionating the peptide. , 120 Å, AB Sciex). The mass spectrometer used was a TripleTOF 6600 mass spectrometer (AB Sciex). The flow velocity was set to 300 nL / min, with a linear acetonitrile gradient of 8-30% containing 0.1% formic acid for the first 90 minutes and a linear acetonitrile gradient of 30-40% for the next 10 minutes. Eluted. In mass spectrometry, data was first acquired by IDA (information dependent acquisition). The setting of the MS spectrum scan was 400 to 1500 m / z in 250 milliseconds. The MS / MS spectrum scan was set to 100 to 1800 m / z every 50 milliseconds, and the MS / MS spectrum was acquired 30 times or more. The cycle time for MS and MS / MS spectrum acquisition was set to 1.8 seconds. MS / MS spectra were acquired for ions with a charge of +2 to +5 and 125 counts or more per second. For the ions for which the MS / MS spectrum was acquired, the same ion was not selected for 12 seconds. The mass spectrometer was operated by Analyst TF 1.7.1 software (AB Sciex). In DDA (data dependent acquisition, SWATH (registered trademark) acquisition), the scan of the time-of-flight mass separator (TOF) MS is set to 100 milliseconds, and the range of 400 to 1250 m / z is divided into 200 m / z intervals, and 50 milliseconds. Measured at. The overlap of each m / z section was set to 1 Da. This was taken as one cycle and measured in 9.6 seconds.
データ解析
 IDAにより取得されたMS/MSスペクトルデータを、ProteinPilot 5.0.1ソフトウェア(AB Sciex社)を用いてUniProtタンパク質データベース検索を行った。検索対象の種はヒト(Homo sapiens)とし、偽陽性率解析(False Discovery Rate (FDR) analysis)により得られたタンパク質同定の閾値を > 0.05%(10% 
confidence)に設定した。1%未満のlocal FDRを満たして同定されたペプチドについて、SWATH解析により取得したスペクトル情報から、MarkerViewソフトウェア(version 1.3.0.1、AB Sciex社)を用いてピーク面積値を算出した。総ピーク面積値により各ピークを標準化したデータを多変量解析に用いた。主成分分析(PCA)および判別分析(OPLS-DA)には多変量解析ソフトウェアSimca(インフォコム株式会社)を用いた。データ解析においては、パレートスケーリング(Pareto scaling)による標準化を適用した。
Data analysis The MS / MS spectral data acquired by IDA was searched in the UniProt protein database using ProteinPilot 5.0.1 software (AB Sciex). The species to be searched is human (Homo sapiens), and the threshold value for protein identification obtained by false positive rate analysis (FDR) analysis is> 0.05% (10%).
set to confidence). For peptides identified with a local FDR of less than 1%, peak area values were calculated using MarkerView software (version 1.3.0.1, AB Sciex) from spectral information obtained by SWATH analysis. The data obtained by standardizing each peak based on the total peak area value was used for multivariate analysis. Multivariate analysis software Simca (Infocom Co., Ltd.) was used for principal component analysis (PCA) and discriminant analysis (OPLS-DA). In the data analysis, standardization by Pareto scaling was applied.
 HBRAおよびNBRAに居住する住民の血清中タンパク質について、主成分分析(PCA)を行った結果を図2Aに、また判別分析(OPLS-DA)を行った結果を図2Bに示す。HBRAに居住する住民群はHigh群として、またNBRAに居住する住民群はLow群として表示されている。主成分分析(図2A)においては、High群またはLow群であるか否かの情報がない状態でスコアプロット(図2A左図)によりプロットされた点は、相互の位置が接近するほどプロテオーム組成が類似することが示される。したがって、分析した結果として、High群およびLow群の点の位置が離れていれば、各群のプロテオームが相互に異なっていることが示される。図2A左図では、両群間で相互に離れた点が観察されることから、両群間におけるプロテオーム組成の差異の存在が示唆される。ローディングプロット(図2A右図)においては、第一主成分または第二主成分に寄与する個々のタンパク質がプロットされている。 FIG. 2A shows the results of principal component analysis (PCA) and the results of discriminant analysis (OPLS-DA) on the serum proteins of the inhabitants of HBRA and NBRA. The inhabitants who live in HBRA are displayed as the High group, and the inhabitants who live in the NBRA are displayed as the Low group. In the principal component analysis (FIG. 2A), the points plotted by the score plot (FIG. 2A, left) without information on whether or not they are in the High group or the Low group have a proteome composition as the positions approach each other. Is shown to be similar. Therefore, as a result of the analysis, if the positions of the points of the High group and the Low group are separated, it is shown that the proteomes of the respective groups are different from each other. In the left figure of FIG. 2A, points separated from each other are observed between the two groups, suggesting the existence of a difference in proteome composition between the two groups. In the loading plot (FIG. 2A, right), individual proteins that contribute to the first or second principal component are plotted.
 判別分析(図2B)においては、High群またはLow群であるか否かの情報がある状態で、スコアプロット(図2B左図)により第一主成分をプロットすることにより、両群間の相違が表される。両群のプロット点がそれぞれ左右に分離すれば、使用したモデルにより、両群間の相違をよく説明することができることが示される。図2B左図では、両群のプロット点がそれぞれ左右に分離しており、両群間におけるプロテオーム組成の差異の存在が示唆される。S-プロット(図2B右図)では、縦軸は相関を、また横軸は変化量を示す。各プロット点は個々のタンパク質を示す。S-プロットにおいて、各プロット点に該当するタンパク質は、プロット点が右側に移動するほど、High群における増加量が大きく、また左側に移動するほどHigh群における減少量が大きいことが示される。また、S-プロットにおいて、各プロット点が上方または下方に移動するほど、分析対象において各プロット点に該当するタンパク質が、それぞれ増加または減少すること、すなわち相関することが示される。S-プロットでは、左右および上下方向に移動したプロット点が観察されることから、高レベル放射線地域に居住する住民の血液中には、被ばくに応じて存在量が変動するタンパク質の存在が示唆される。 In the discriminant analysis (FIG. 2B), the difference between the two groups is obtained by plotting the first principal component by a score plot (FIG. 2B left) with information on whether or not the group is High or Low. Is represented. If the plot points of both groups are separated to the left and right, it is shown that the model used can well explain the difference between the two groups. In the left figure of FIG. 2B, the plot points of both groups are separated to the left and right, suggesting the existence of a difference in proteome composition between the two groups. In the S-plot (right figure of FIG. 2B), the vertical axis shows the correlation and the horizontal axis shows the amount of change. Each plot point indicates an individual protein. In the S-plot, it is shown that the protein corresponding to each plot point increases in the High group as the plot point moves to the right side, and decreases in the High group as it moves to the left side. Further, in the S-plot, it is shown that as each plot point moves upward or downward, the protein corresponding to each plot point in the analysis target increases or decreases, that is, correlates. In the S-plot, plot points that move left and right and up and down are observed, suggesting the presence of proteins whose abundance varies depending on exposure in the blood of residents living in high-level radiation areas. To.
血中タンパク質のプロテオーム解析
 質量分析により血中タンパク質を網羅的に解析し、HBRAおよびNBRAに居住する住民の間で、血清中に存在するタンパク質の存在量を比較した。その結果、血中ヘモグロビンA1(HBA1)の存在量が、HBRAに居住する住民では、NBRAに居住する住民と比較して顕著に減少することが示された(図3左図)。箱ひげ図(図3左図)において、中央線は中央値(Median)を示す。箱の最上端は第3四分位数、また箱の最下端は第1四分位数を表す。上側ひげおよび下側ひげは、[(第1四分位数-1.5×(第3四分位数-第1四分位数)]以上、[(第3四分位数+1.5×(第3四分位数-第1四分位数)] 以下の範囲で,それぞれ最も大きいデータ点および最も小さいデータ点を指す。この範囲外の点は、外れ値である。ROC曲線(図3右図)は、図において左上隅に近接しており、ROC曲線下面積(AUC)は0.8以上であった。したがって、HBA1は、放射線被ばくの判別能が高いことが示され、放射線被ばくを評価するためのバイオマーカーとして有用であることが分かった。なお、Youdenインデックスを用いたROC曲線におけるカットオフ値は、257,000であった。
Proteome analysis of blood protein Comprehensive analysis of blood protein by mass spectrometry was performed, and the abundance of protein present in serum was compared among the inhabitants residing in HBRA and NBRA. As a result, it was shown that the abundance of hemoglobin A1 (HBA1) in the blood was significantly reduced in the inhabitants living in HBRA as compared with the inhabitants living in NBRA (Fig. 3, left figure). In the boxplot (Fig. 3, left figure), the center line indicates the median. The top edge of the box represents the third quartile, and the bottom edge of the box represents the first quartile. The upper and lower quartiles are [(1st quartile-1.5 × (3rd quartile-first quartile)] or more, [(3rd quartile + 1.5). × (3rd quartile-1st quartile)] Refers to the largest and smallest data points in the following range, respectively. Points outside this range are outliers. ROC curve (ROC curve ( FIG. 3 (right figure) is close to the upper left corner in the figure, and the area under the ROC curve (AUC) was 0.8 or more. Therefore, it was shown that HBA1 has a high ability to discriminate radiation exposure. It was found to be useful as a biomarker for evaluating radiation exposure. The cutoff value in the ROC curve using the Youden index was 257,000.
MRM-HRによるアルブミンの酸化修飾測定
 IDAにより取得されたスペクトル情報から、ヒト血清アルブミンの酸化修飾を抽出し、ヒト血清アルブミンの酸化修飾を対象としたMRM-HR(Multiple Reaction Monitoring High-Resolution)法をSkylineソフトウェア(MacCoss Lab, University of Washington, WA)を用いて構築した。TOF-MSによりスキャンする質量電荷比の範囲を400~2250m/zに設定した。ペプチドイオンのデータ取得を0.1秒間行った後、ペプチドイオンの分解生成物のデータ蓄積を100ミリ秒間行う設定とした。コリジョンエネルギーは、IDA測定と同様に、ローリングコリジョンエネルギーにより算出した。MRM-HR測定により取得したデータは、MultiQuant 3.0ソフトウェア(AB Sciex社)を用いて、MRM-HRの測定対象としたそれぞれの酸化修飾ペプチドのピーク面積値を算出した。
Measurement of oxidative modification of albumin by MRM-HR MRM-HR (Multiple Reaction Monitoring High-Resolution) method for extracting oxidative modification of human serum albumin from spectral information acquired by IDA. Was constructed using Skyline software (MacCoss Lab, University of Washington, WA). The range of the mass-to-charge ratio scanned by TOF-MS was set to 400 to 2250 m / z. After the peptide ion data acquisition was performed for 0.1 seconds, the data accumulation of the peptide ion decomposition products was set to be performed for 100 milliseconds. The collision energy was calculated by rolling collision energy as in the IDA measurement. For the data acquired by MRM-HR measurement, the peak area value of each oxidation-modified peptide to be measured by MRM-HR was calculated using MultiQuant 3.0 software (AB Sciex).
相関解析
血清アルブミンの酸化修飾と被ばく線量との相関を、スピアマンの順位相関により解析した。酸化修飾アルブミンのペプチド断片のピーク面積値と、対応する酸化修飾されていないペプチド断片のピーク面積値との比を算出して解析に用いた。スケーリングは、オートスケーリング(Auto scaling)に設定した。同様にして、オートスケーリングで標準化した被ばく線量と酸化修飾アルブミンのペプチド断片との相関係数をスピアマンの順位相関により算出した。p値が0.05以下である場合に、酸化修飾アルブミンのペプチド断片が統計的に有意である、すなわち被ばく線量と相関があると判断した。
Correlation analysis The correlation between oxidative modification of serum albumin and the exposure dose was analyzed by Spearman's rank correlation. The ratio of the peak area value of the peptide fragment of oxidatively modified albumin to the peak area value of the corresponding unmodified peptide fragment was calculated and used for the analysis. Scaling was set to Auto scaling. Similarly, the correlation coefficient between the exposure dose standardized by autoscaling and the peptide fragment of oxidation-modified albumin was calculated by Spearman's rank correlation. When the p-value was 0.05 or less, it was determined that the peptide fragment of oxidatively modified albumin was statistically significant, that is, correlated with the exposure dose.
酸化修飾アルブミンのペプチド断片の分析
 MRM-HRの測定対象とした酸化修飾アルブミンのペプチド断片(酸化修飾ペプチド)の中で、HBRAに居住する住民において、NBRAに居住する住民と比較して有意に相関して増加する酸化修飾ペプチドが見出された。これらの酸化修飾ペプチドは以下の通りである。
 ペプチドNo.1:SLHTLFGDKLC[CAM]TVATLRETYGEM111[Oxi]ADC[CAM]C[CAM]AK、
 ペプチドNo.2:Y162[Oxi]LYEIAR、
 ペプチドNo.3:DVFLGMFLY356[Oxi]EYAR、および
 ペプチドNo.4:M470[Oxi]PC[CAM]AEDYLSVVLNQLC[CAM]VLHEK
 なお、C[CAM]は、カルボキシメチル化されたシステイン残基を示し、質量分析のための血清の前処理において、人為的にシステイン残基を保護したことにより生成する。したがって、ペプチドNo.1、No.2、No.3およびNo.4の測定結果は、ペプチドNo.1、No.2、No.3およびNo.4のシステイン残基がカルボキシメチル化されていない酸化修飾アルブミン断片である、それぞれOMSA3、OMSA9、OMSA24およびOMSA34の測定結果と見なすことができる。
Analysis of Oxidation-Modified Albumide Peptide Fragments Among the oxidation-modified albumin peptide fragments (oxidation-modified peptides) measured by MRM-HR, there is a significant correlation among the residents living in HBRA compared to the residents living in NBRA. An increasing oxidation-modified peptide was found. These oxidation-modified peptides are as follows.
Peptide No. 1: SLHTLFGDKLC [CAM] TVATLRETYGEM 111 [Oxy] ADC [CAM] C [CAM] AK,
Peptide No. 2: Y 162 [Oxy] LYEIAR,
Peptide No. 3: DVFLGMFLY 356 [Oxy] EYAR, and Peptide No. 4: M 470 [Oxy] PC [CAM] AEDYLSVVLNQLC [CAM] VLHEK
In addition, C [CAM] indicates a carboxymethylated cysteine residue, and is produced by artificially protecting the cysteine residue in the pretreatment of serum for mass spectrometry. Therefore, the measurement results of peptides No. 1, No. 2, No. 3 and No. 4 show that the cysteine residues of peptides No. 1, No. 2, No. 3 and No. 4 are not carboxymethylated. It can be regarded as the measurement result of OMSA3, OMSA9, OMSA24 and OMSA34, which are oxidation-modified albumin fragments, respectively.
 上記のペプチドNo.1~4の特性を下表に示す。年間総被ばく線量と血清アルブミンの酸化修飾との相関は、HBRAに居住する住民から選ばれた被験者(n=26、図1Aを参照)およびNBRAに居住する住民から選ばれた参照被験者(n=23、図1Bを参照)のすべてを対象に解析した。その結果、ペプチドNo.1~4はすべて、有意に被ばく線量と相関があることが示された。
Figure JPOXMLDOC01-appb-I000002
The characteristics of the above peptides No. 1 to 4 are shown in the table below. The correlation between total annual dose and oxidative modification of serum albumin was found in subjects selected from residents residing in HBRA (n = 26, see Figure 1A) and reference subjects selected from residents residing in NBRA (n =). 23, see Fig. 1B) were all analyzed. As a result, it was shown that all peptides No. 1 to 4 were significantly correlated with the exposure dose.
Figure JPOXMLDOC01-appb-I000002
 HBRAに居住する住民(26例)およびNBRAに居住する住民(23例)について、血清アルブミンの酸化修飾断片であるペプチドNo.1、No.2、No.3およびNo.4について、質量分析により測定した結果を、それぞれ図4A、図4B、図4Cおよび図4Dに示す。それぞれの図において、左図は、データ解析を箱ひげ図により行った結果を示し、右図はROC曲線を示す。箱ひげ図(左図)の縦軸は、マススペクトルにおいて、酸化修飾アルブミン断片のピーク面積値を、酸化修飾されていない対応するアルブミン断片のピーク面積値により標準化した相対ピーク面積値を示す。NBRA群とHBRA群との間の統計学的有意差は、ウェルチのt-検定により評価した(***p<0.001、**p<0.01)。ROC曲線において、縦軸および横軸は、それぞれ真陽性率(True positive rate)および偽陽性率(False positive rate)を示し、図内の斜点線は、ランダム予測(ROC曲線下面積(AUC)= 0.5)を表している。 Peptides No. 1, No. 2, No. 3 and No. 4, which are oxidation-modified fragments of serum albumin, were analyzed by mass spectrometry for residents living in HBRA (26 cases) and residents living in NBRA (23 cases). The measurement results are shown in FIGS. 4A, 4B, 4C and 4D, respectively. In each figure, the left figure shows the result of performing the data analysis by the boxplot, and the right figure shows the ROC curve. The vertical axis of the boxplot (left figure) shows the relative peak area value of the oxidatively modified albumin fragment standardized by the peak area value of the corresponding unoxidized albumin fragment in the mass spectrum. Statistical significance between the NBRA and HBRA groups was assessed by Welch's t-test (*** p <0.001, ** p <0.01). In the ROC curve, the vertical and horizontal axes show the true positive rate and the false positive rate, respectively, and the diagonal lines in the figure are random predictions (area under the ROC curve (AUC) =. It represents 0.5).
 各ペプチドの存在量は、NBRA群に比較してHBRA群で有意に高いことが示された。またROC曲線下面積(AUC)は、ペプチドNo.1では0.730、ペプチドNo.2では0.828、ペプチドNo.3では0.794、およびペプチドNo.4では0.813であり、ペプチドNo.1、No.2、No.3およびNo.4のシステイン残基がカルボキシメチル化されていない酸化修飾アルブミン断片である、それぞれOMSA3、OMSA9、OMSA24およびOMSA34は、放射線被ばくの判別能が高いことが示され、放射線被ばくを評価するためのバイオマーカーとして有用であることが分かった。また、Youdenインデックスを用いたROC曲線におけるカットオフ値は、ペプチドNo.1、ペプチドNo.2、ペプチドNo.3およびペプチドNo.4について、それぞれ0.128、0.00918、0.0696および0.642であった。 It was shown that the abundance of each peptide was significantly higher in the HBRA group than in the NBRA group. The area under the ROC curve (AUC) is 0.730 for peptide No. 1, 0.828 for peptide No. 2, 0.794 for peptide No. 3, and 0.813 for peptide No. 4, and peptide No. 1, No. 2, and OMSA3, OMSA9, OMSA24 and OMSA34, which are oxidation-modified albumin fragments in which the cysteine residues of No. 3 and No. 4 are not carboxymethylated, have been shown to have high ability to discriminate radiation exposure, respectively. It has been found to be useful as a biomarker for evaluation. The cutoff values in the ROC curve using the Youden index were 0.128, 0.00918, 0.0696 and 0.642 for peptide No. 1, peptide No. 2, peptide No. 3 and peptide No. 4, respectively.
 さらに、HBRAに居住する住民(n=26)を対象に、年間総被ばく線量と血清アルブミン酸化修飾との相関解析を行った結果、ペプチドNo.1が、有意に被ばく線量と相関があることが示された(相関係数:0.500、p値=0.0093)。ペプチドNo.1のシステイン残基がカルボキシメチル化されていない酸化修飾アルブミン断片であるOMSA3は、放射線被ばく線量を推定するバイオマーカーとしても有用であることが示される。 Furthermore, as a result of a correlation analysis between the annual total exposure dose and serum albumin oxidative modification in the residents (n = 26) residing in HBRA, peptide No. 1 was found to have a significant correlation with the exposure dose. Shown (correlation coefficient: 0.500, p-value = 0.0093). OMSA3, an oxidation-modified albumin fragment in which the cysteine residue of peptide No. 1 is not carboxymethylated, has been shown to be useful as a biomarker for estimating radiation exposure dose.
〔X線照射したマウスにおける血清アルブミンの酸化修飾〕
 放射線被ばくによる血清アルブミンの酸化修飾が、被ばく線量依存的に生じるかどうかを、マウスを用いて検討した。放射線による血清アルブミンの酸化修飾の検出精度を上げるため、マウスに対して比較的高線量(吸収線量0.5Gy以上)のX線を照射した。
[Oxidation modification of serum albumin in X-ray irradiated mice]
Whether or not oxidative modification of serum albumin by radiation exposure occurs in a dose-dependent manner was investigated using mice. In order to improve the detection accuracy of oxidative modification of serum albumin by radiation, mice were irradiated with X-rays at a relatively high dose (absorbed dose of 0.5 Gy or more).
 7週齢のC57BL/6JJcl(雌性、体重17~20g)を日本クレア株式会社より購入した。7日間の馴化飼育後、マウスを群分けし、各群の平均体重および体重分布が近似するように4群に分けた。X線発生装置(MBR-1520R、株式会社日立パワーソリューションズ)を使用して、150kVp、20mA、0.5mmAl及び0.3mmCuフィルター、1.0Gy/分で、X線(電離放射線)を吸収線量0.5、1.0および3.0Gyでマウスの全身に照射した。 7-week-old C57BL / 6JJcl (female, weight 17-20 g) was purchased from Japan Claire Co., Ltd. After 7 days of acclimatization, the mice were grouped and divided into 4 groups so that the average body weight and body weight distribution of each group were similar. Using an X-ray generator (MBR-1520R, Hitachi Power Solutions, Ltd.), the absorbed dose of X-rays (ionizing radiation) is 0 at 150 kVp, 20 mA, 0.5 mm Al and 0.3 mm Cu filters, 1.0 Gy / min. The whole body of the mouse was irradiated with 5.5, 1.0 and 3.0 Gy.
 X線照射後24時間にマウス体重を測定し、続いてエスカイン吸入麻酔下、マウス眼窩静脈叢から血液を採取した。採取した血液のヘマトクリット値を測定した後、血液中のタンパク質をLC/MS/MSにより分析した。マウスからの採血、分析試料調製、LC/MS/MS、データ解析およびMRM-HRによるアルブミンの酸化修飾測定は、実施例2と同様にして行った。 The mouse body weight was measured 24 hours after X-ray irradiation, and then blood was collected from the mouse orbital venous plexus under eskine inhalation anesthesia. After measuring the hematocrit value of the collected blood, the protein in the blood was analyzed by LC / MS / MS. Blood sampling from mice, analysis sample preparation, LC / MS / MS, data analysis, and measurement of albumin oxidation modification by MRM-HR were performed in the same manner as in Example 2.
 X線照射後24時間のマウス体重は、無照射群(0Gy)に対して、1.0および3.0Gyの照射群において有意に低下し、放射線被ばくの影響が示された(図5)。一方、血液中における赤血球が占める割合(%)であるヘマトクリット値では、すべての群において有意な変化は認められなかった(図6)。 The body weight of mice 24 hours after X-ray irradiation was significantly reduced in the 1.0 and 3.0 Gy irradiation groups compared to the non-irradiation group (0 Gy), indicating the effect of radiation exposure (FIG. 5). On the other hand, the hematocrit value, which is the percentage of red blood cells in the blood, did not change significantly in all groups (Fig. 6).
 酸化修飾アルブミンのペプチド断片(酸化修飾ペプチド)を分析した結果、MRM-HRの測定対象とした酸化修飾ペプチドの中で、吸収線量に依存して増加するペプチドが見出された。マウスのアルブミンは、608個のアミノ酸残基からなる直鎖ポリペプチドである(例えば、UniProtKB ID:Q546G4 (https://www.uniprot.org/uniprot/Q546G4) を参照)。このポリペプチドにおいて、吸収線量に依存して有意に増加する酸化修飾ペプチドは以下の通りであった。
 ペプチドNo.5:SLHTLFGDK97[LAA]LC[CAM]AIPNLR、
 ペプチドNo.6:ENPTTFM159[Oxi]GHYLHEVAR、および
 ペプチドNo.7:Y287[Oxi]MC[CAM]ENQATISSK
As a result of analyzing a peptide fragment (oxidation-modified peptide) of oxidation-modified albumin, a peptide that increases depending on the absorbed dose was found among the oxidation-modified peptides targeted for measurement of MRM-HR. Mice albumin is a linear polypeptide consisting of 608 amino acid residues (see, for example, UniProtKB ID: Q546G4 (see https://www.uniprot.org/uniprot/Q546G4)). In this polypeptide, the oxidation-modified peptides that significantly increased depending on the absorbed dose were as follows.
Peptide No. 5: SLHTLFGDK 97 [LAA] LC [CAM] AIPNLR,
Peptide No. 6: ENPTTFM 159 [Oxy] GHYLHEVAR, and Peptide No. 7: Y 287 [Oxy] MC [CAM] ENQATISSK
 上記のアミノ酸配列において、K97[LAA]は、マウスのアルブミンにおける残基番号97のリシン(K97)がアリシン(allysine)に変換されたアミノ酸残基である。また、M159[Oxi]およびY287[Oxi]は、それぞれ、マウスのアルブミンにおける残基番号159のメチオニン(M159)および残基番号287のチロシン(Y287)が酸化されたアミノ酸残基である。C[CAM]は、カルボキシメチル化されたシステイン残基を示し、質量分析のための血清の前処理において、人為的にシステイン残基を保護したことにより生成する。ペプチドNo.5はmOMSA9と略称する。また、システイン残基がカルボキシメチル化されていないNo.6およびNo.7は、それぞれmOMSA14およびmOMSA20と略称する。 In the above amino acid sequence, K 97 [LAA] is an amino acid residue in which lysine (K 97 ) of residue number 97 in mouse albumin is converted to allicin. In addition, M 159 [Oxi] and Y 287 [Oxi] are amino acid residues obtained by oxidizing methionine (M 159 ) of residue number 159 and tyrosine (Y 287 ) of residue number 287 in mouse albumin, respectively. be. C [CAM] indicates a carboxymethylated cysteine residue and is produced by artificially protecting the cysteine residue in the pretreatment of serum for mass spectrometry. Peptide No. 5 is abbreviated as mOMSA9. Further, No. 6 and No. 7 in which the cysteine residue is not carboxymethylated are abbreviated as mOMSA14 and mOMSA20, respectively.
 mOMSA9は、マウス・アルブミンのアミノ酸残基番号89~105の配列(配列番号5)に対応する17残基の酸化修飾ペプチドである。mOMSA14は、マウス・アルブミンのアミノ酸残基番号153~168の配列(配列番号6)に対応する16残基の酸化修飾ペプチドである。mOMSA20は、マウス・アルブミンのアミノ酸残基番号287~298の配列(配列番号7)に対応する12残基の酸化修飾ペプチドである。 MOMSA9 is a 17-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 89 to 105 (SEQ ID NO: 5) of mouse albumin. MOMSA14 is a 16-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 153 to 168 (SEQ ID NO: 6) of mouse albumin. mOMSA20 is a 12-residue oxidation-modified peptide corresponding to the sequence of amino acid residue numbers 287 to 298 (SEQ ID NO: 7) of mouse albumin.
 吸収線量に応じた血液中の血清アルブミンの酸化修飾ペプチドNo.5、No.6およびNo.7量を、質量分析により測定した結果を、それぞれ図7A、図7Bおよび図7Cに示す。これらの図において、横軸は吸収線量(Gy)を、および縦軸は、マススペクトルにおける酸化修飾アルブミン断片のピーク面積値を、酸化修飾されていない対応するアルブミン断片のピーク面積値により標準化した相対ピーク面積値を示す。相関係数(R)およびスピアマンの順位相関分析による統計学的有意差は以下の通りであった。スピアマンの順位相関分析において、「R=0」である場合は「相関なし」、「0<R≦0.2」である場合は「ほとんど相関なし」、「0.2<R≦0.4」である場合は「弱い相関あり」、「0.4<R≦0.7」である場合は「相関あり」、「0.7<R<1.0」である場合は「強い相関あり」、そして「R= 1.0または-1.0」である場合は「完全な相関あり」とみなし、相関係数の統計学的有意差を評価した。
Figure JPOXMLDOC01-appb-I000003
The results of measuring the amounts of oxidatively modified peptides No. 5, No. 6 and No. 7 of serum albumin in blood according to the absorbed dose by mass spectrometry are shown in FIGS. 7A, 7B and 7C, respectively. In these figures, the horizontal axis is the absorbed dose (Gy), and the vertical axis is the relative peak area value of the oxidatively modified albumin fragment in the mass spectrum, standardized by the peak area value of the corresponding unoxidized albumin fragment. Shows the peak area value. The statistically significant differences by the correlation coefficient (R) and Spearman's rank correlation analysis were as follows. In Spearman's rank correlation analysis, "R = 0" means "no correlation", "0 <R ≤ 0.2" means "almost no correlation", and "0.2 <R ≤ 0.4" means "no correlation". "Weakly correlated", "0.4 <R ≤ 0.7" is "correlated", "0.7 <R <1.0" is "strongly correlated", and "R = 1.0 or -1.0" Was regarded as "completely correlated" and the statistically significant difference in the correlation coefficient was evaluated.
Figure JPOXMLDOC01-appb-I000003

Claims (19)

  1.  被験者から得られる試料中の少なくとも1つのバイオマーカーの存在量を測定する工程および前記バイオマーカーの存在量を前記バイオマーカーの参照値と比較する工程を含み、前記バイオマーカーが、ヘモグロビンA1(HBA1)および酸化修飾アルブミンからなる群より選択されるタンパク質またはその断片である、前記被験者における放射線被ばくの検出方法。 The biomarker comprises a step of measuring the abundance of at least one biomarker in a sample obtained from a subject and a step of comparing the abundance of the biomarker with a reference value of the biomarker, wherein the biomarker is hemoglobin A1 (HBA1). A method for detecting radiation exposure in the subject, which is a protein selected from the group consisting of and oxidation-modified albumin or a fragment thereof.
  2.  前記酸化修飾アルブミンに含まれる酸化修飾アミノ酸が、M111[Oxi]、Y162[Oxi]、Y356[Oxi]、M470[Oxi]およびこれらの任意の組み合わせからなる群より選択される、請求項1に記載の方法。 The oxidatively modified amino acid contained in the oxidatively modified albumin is selected from the group consisting of M 111 [Oxi], Y 162 [Oxy], Y 356 [Oxy], M 470 [Oxi] and any combination thereof. Item 1. The method according to Item 1.
  3.  前記酸化修飾アルブミンの断片が、M111[Oxi]、Y162[Oxi]、Y356[Oxi]およびM470[Oxi]からなる群より選択される酸化修飾アミノ酸を含む、請求項1に記載の方法。 The one according to claim 1, wherein the fragment of the oxidation-modified albumin contains an oxidation-modified amino acid selected from the group consisting of M 111 [Oxi], Y 162 [Oxi], Y 356 [Oxi] and M 470 [Oxi]. Method.
  4.  前記酸化修飾アルブミンの断片が、SLHTLFGDKLCTVATLRETYGEM111[Oxi]ADCCAK、Y162[Oxi]LYEIAR、DVFLGMFLY356[Oxi]EYARおよびM470[Oxi]PCAEDYLSVVLNQLCVLHEKからなる群より選択される、請求項3に記載の方法。 The fragment of the oxidation-modified albumin is selected from SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK, Y 162 [Oxy] LYEIAR, DVFLGMFLY 356 [Oxy] EYAR and M 470 [Oxy] PCAEDYLSVVLNQL. ..
  5.  被験者において、前記ヘモグロビンA1(HBA1)の存在量がHBA1参照値と比較して低値である場合、および/または前記酸化修飾アルブミンもしくは前記酸化修飾アルブミンの断片の存在量が、それぞれの参照値と比較して高値である場合に、前記被験者が放射線被ばくを受けた個体として特定される、請求項1~4のいずれか1項に記載の方法。 In the subject, when the abundance of the hemoglobin A1 (HBA1) is lower than the HBA1 reference value, and / or the abundance of the oxidatively modified albumin or the fragment of the oxidatively modified albumin is the respective reference value. The method according to any one of claims 1 to 4, wherein the subject is identified as an individual exposed to radiation when the value is relatively high.
  6.  被験者において、前記ヘモグロビンA1(HBA1)の存在量がHBA1参照値と比較して低値である場合、および/または前記酸化修飾アルブミンもしくは前記酸化修飾アルブミンの断片の存在量が、それぞれの参照値と比較して高値である場合に、前記被験者が放射線被ばくを受けた個体である可能性が高いことが示される、請求項1~4のいずれか1項に記載の方法。 In the subject, when the abundance of the hemoglobin A1 (HBA1) is lower than the HBA1 reference value, and / or the abundance of the oxidatively modified albumin or the fragment of the oxidatively modified albumin is the respective reference value. The method according to any one of claims 1 to 4, wherein when the value is relatively high, it is indicated that the subject is likely to be an individual exposed to radiation.
  7.  被験者から得られる試料中のバイオマーカーの存在量を測定する工程を含み、前記バイオマーカーが、M111[Oxi]-酸化修飾アルブミンまたはM111[Oxi]-酸化修飾アルブミン断片である、前記被験者における放射線被ばく線量の推定方法。 In the subject, comprising measuring the abundance of the biomarker in the sample obtained from the subject, wherein the biomarker is an M 111 [Oxi] -oxidation modified albumin or an M 111 [Oxi] -oxidation modified albumin fragment. Estimating method of radiation exposure dose.
  8.  前記酸化修飾アルブミンの断片が、SLHTLFGDKLCTVATLRETYGEM111[Oxi]ADCCAKである、請求項7に記載の方法。 The method according to claim 7, wherein the fragment of the oxidation-modified albumin is SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK.
  9.  前記放射線被ばくが、100mSv以下の低線量放射線被ばくである、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the radiation exposure is a low-dose radiation exposure of 100 mSv or less.
  10.  前記試料が、全血、血清または血漿である、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the sample is whole blood, serum or plasma.
  11.  前記バイオマーカーの存在量が、質量分析により測定される、請求項1~10のいずれか1項に記載の方法。 The method according to any one of claims 1 to 10, wherein the abundance of the biomarker is measured by mass spectrometry.
  12.  被験者から得られる試料中のヘモグロビンA1(HBA1)およびその断片、ならびにM111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミン、ならびにM111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミン断片からなる群より選択される、前記被験者における放射線被ばくを評価するためのバイオマーカー。 Hemoglobin A1 (HBA1) and fragments thereof in samples obtained from subjects, as well as M 111 [Oxi]-, Y 162 [Oxi]-, Y 356 [Oxi] -and M 470 [Oxi] -oxidation modified albumins, and M. A biomarker for assessing radiation exposure in said subjects, selected from the group consisting of 111 [Oxy]-, Y 162 [Oxi]-, Y 356 [Oxi] -and M 470 [Oxi] -oxidation modified albumin fragments. ..
  13.  前記酸化修飾アルブミン断片が、SLHTLFGDKLCTVATLRETYGEM111[Oxi]ADCCAK、Y162[Oxi]LYEIAR、DVFLGMFLY356[Oxi]EYARおよびM470[Oxi]PCAEDYLSVVLNQLCVLHEKからなる群より選択される、請求項12に記載のバイオマーカー。 The oxidation-modified albumin fragment is selected from SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK, Y 162 [Oxy] LYEIAR, DVFLGMFLY 356 [Oxy] EYAR and M 470 [Oxy] PCAEDYLSVVLNQLN. ..
  14.  被験者における放射線被ばく線量を推定するためのバイオマーカーであって、前記バイオマーカーが、前記被験者から得られる試料中のM111[Oxi]-酸化修飾アルブミンまたはM111[Oxi]-酸化修飾アルブミン断片である、バイオマーカー。 A biomarker for estimating radiation exposure dose in a subject, wherein the biomarker is an M 111 [Oxi] -oxidation-modified albumin fragment or an M 111 [Oxi] -oxidation-modified albumin fragment in a sample obtained from the subject. There is a biomarker.
  15.  前記酸化修飾アルブミン断片が、SLHTLFGDKLCTVATLRETYGEM111[Oxi]ADCCAKである、請求項14に記載のバイオマーカー。 The biomarker according to claim 14, wherein the oxidation-modified albumin fragment is SLHTLFGDKLCTVATLRETYGEM 111 [Oxy] ADCCAK.
  16.  前記放射線被ばくが、100mSv以下の低線量放射線被ばくである、請求項12~15のいずれか1項に記載のバイオマーカー。 The biomarker according to any one of claims 12 to 15, wherein the radiation exposure is a low-dose radiation exposure of 100 mSv or less.
  17.  前記試料が、全血、血清または血漿である、請求項12~16のいずれか1項に記載のバイオマーカー。 The biomarker according to any one of claims 12 to 16, wherein the sample is whole blood, serum or plasma.
  18.  ヘモグロビンA1(HBA1)およびその断片、M111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミン、ならびにM111[Oxi]-、Y162[Oxi]-、Y356[Oxi]-およびM470[Oxi]-酸化修飾アルブミン断片からなる群より選択される少なくとも1つのバイオマーカーに対する抗体を含む、放射線被ばく検出キット。 Hemoglobin A1 (HBA1) and its fragments, M 111 [Oxi]-, Y 162 [Oxi]-, Y 356 [Oxi] -and M 470 [Oxi] -oxidation-modified albumin, and M 111 [Oxi]-, Y 162. A radiation exposure detection kit comprising an antibody against at least one biomarker selected from the group consisting of [Oxy]-, Y 356 [Oxy] -and M 470 [Oxi] -oxidation modified albumin fragments.
  19.  前記バイオマーカーを、ウェスタンブロッティング、ドットブロッティング、スロットブロッティング、放射免疫測定法(RIA)、酵素免疫測定法(EIA)、酵素結合免疫吸着測定法(ELISA)、イムノクロマト法、タンパク質マイクロアレイおよびペプチドマイクロアレイからなる群より選択される免疫学的測定法により測定するための、請求項18に記載のキット。
     

     
    The biomarker comprises Western blotting, dot blotting, slot blotting, radioimmunoassay (RIA), radioimmunoassay (EIA), enzyme-linked immunosorbent assay (ELISA), immunochromatography, protein microarray and peptide microarray. The kit according to claim 18, for measurement by an immunoassay method selected from the group.


PCT/JP2021/026902 2020-07-22 2021-07-19 Biomarker for detecting radiation exposure WO2022019247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022537987A JPWO2022019247A1 (en) 2020-07-22 2021-07-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020125736 2020-07-22
JP2020-125736 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022019247A1 true WO2022019247A1 (en) 2022-01-27

Family

ID=79729555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026902 WO2022019247A1 (en) 2020-07-22 2021-07-19 Biomarker for detecting radiation exposure

Country Status (2)

Country Link
JP (1) JPWO2022019247A1 (en)
WO (1) WO2022019247A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080227130A1 (en) * 2007-03-15 2008-09-18 Tulsee Satish Doshi Method for detecting exposure to ionizing radiation
US20090289182A1 (en) * 2008-05-03 2009-11-26 Pevsner Paul H Biomarkers of ionizing radiation
US20120063657A1 (en) * 2009-05-28 2012-03-15 Koninklijke Philips Electronics N.V. Method and device for side-effect prognosis and monitoring
JP2014535040A (en) * 2011-09-29 2014-12-25 ウィリアム・ブレイクリー Biodosimetry panel and method
JP2018091649A (en) * 2016-11-30 2018-06-14 学校法人北里研究所 Oxidation stress marker and use of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080227130A1 (en) * 2007-03-15 2008-09-18 Tulsee Satish Doshi Method for detecting exposure to ionizing radiation
US20090289182A1 (en) * 2008-05-03 2009-11-26 Pevsner Paul H Biomarkers of ionizing radiation
US20120063657A1 (en) * 2009-05-28 2012-03-15 Koninklijke Philips Electronics N.V. Method and device for side-effect prognosis and monitoring
JP2014535040A (en) * 2011-09-29 2014-12-25 ウィリアム・ブレイクリー Biodosimetry panel and method
JP2018091649A (en) * 2016-11-30 2018-06-14 学校法人北里研究所 Oxidation stress marker and use of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BACARELLA NICOLE, RUGGIERO ALISTAIRE, DAVIS ASHLEY T., UBERSEDER BETH, DAVIS MATTHEW A., BRACY DEANNA P., WASSERMAN DAVID H., CLIN: "Whole Body Irradiation Induces Diabetes and Adipose Insulin Resistance in Nonhuman Primates", INTERNATIONAL JOURNAL OF RADIATION: ONCOLOGY BIOLOGY PHYSICS.,, vol. 106, no. 4, 1 March 2020 (2020-03-01), PERGAMON PRESS., USA, pages 878 - 886, XP055888256, ISSN: 0360-3016, DOI: 10.1016/j.ijrobp.2019.11.034 *
KINOSHITA MANABU: "Novel antioxidant therapy for radiation-induced injuries Research Project", GRANTS-IN-AID FOR SCIENTIFIC RESEARCH, FINAL RESEARCH REPORT, 1 January 2017 (2017-01-01), XP055888278, Retrieved from the Internet <URL:https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-26670569/26670569seika/> [retrieved on 20220207] *

Also Published As

Publication number Publication date
JPWO2022019247A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
KR101645841B1 (en) Identification of proteins in human serum indicative of pathologies of human lung tissues
US9403889B2 (en) Diagnostic lung cancer panel and methods for its use
US20150241453A1 (en) Methods and compositions for detecting endometrial or ovarian cancer
Timms et al. Early detection of ovarian cancer in samples pre-diagnosis using CA125 and MALDI-MS peaks
JP6081912B2 (en) c-Src selective reaction monitoring assay
Preianò et al. Gingival crevicular fluid peptidome profiling in healthy and in periodontal diseases
Wölter et al. A proteome signature for intrauterine growth restriction derived from multifactorial analysis of mass spectrometry‐based cord blood serum profiling
Chaiyarit et al. Comparative evaluation of 5–15-kDa salivary proteins from patients with different oral diseases by MALDI-TOF/TOF mass spectrometry
Terrington et al. The role of measuring exhaled breath biomarkers in sarcoidosis: a systematic review
Choi et al. Serum lactoferrin level as a serologic biomarker for allergic rhinitis
Patwa et al. The identification of phosphoglycerate kinase‐1 and histone H4 autoantibodies in pancreatic cancer patient serum using a natural protein microarray
Liu et al. Potential biomarkers for esophageal carcinoma detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
WO2022019247A1 (en) Biomarker for detecting radiation exposure
Pinet et al. Predicting left ventricular remodeling after a first myocardial infarction by plasma proteome analysis
CN108020668B (en) The application of 3 albumen of urine SH3 structural domain glutamic acid rich sample albumen and its polypeptide fragment in adenocarcinoma of lung
CN108020669B (en) Application of urinary osteopontin and polypeptide fragment thereof in lung adenocarcinoma
Wan et al. Utility of serum peptidome patterns of esophageal squamous cell carcinoma patients for comprehensive treatment
US20140336281A1 (en) SRM/MRM Assay for the Ephrin Typa-A Receptor 2 Protein
CN108020667A (en) The application of urine immunoglobulin kappa chain C area&#39;s albumen and its polypeptide fragment in adenocarcinoma of lung
US20090011431A1 (en) Diagnosis of Sepsis by the Selective Determination of the Concentration of Cu/Zn Superoxide Dismutase (Cu/Zn Sod) in Patient Samples
Mil’man et al. Mass spectrometric analysis of medical samples and aspects of clinical diagnostics
Ranganathan et al. Assessment of protein stability in cerebrospinal fluid using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry protein profiling
Cheng et al. Comparative proteomics analysis of exhaled breath condensate in lung cancer patients
JP5867834B2 (en) Lung cancer marker complement C3dg molecule and method for analyzing lung cancer marker
JP2015108515A (en) Inspection method for colon cancer diagnosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022537987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846909

Country of ref document: EP

Kind code of ref document: A1