WO2022019064A1 - 自動分析装置および自動分析方法 - Google Patents

自動分析装置および自動分析方法 Download PDF

Info

Publication number
WO2022019064A1
WO2022019064A1 PCT/JP2021/024619 JP2021024619W WO2022019064A1 WO 2022019064 A1 WO2022019064 A1 WO 2022019064A1 JP 2021024619 W JP2021024619 W JP 2021024619W WO 2022019064 A1 WO2022019064 A1 WO 2022019064A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
process data
reaction process
fluctuation
absorbance
Prior art date
Application number
PCT/JP2021/024619
Other languages
English (en)
French (fr)
Inventor
晃弘 井口
智憲 三村
昌彦 飯島
望 寒河江
尚哉 茂手木
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2022538661A priority Critical patent/JP7320137B2/ja
Publication of WO2022019064A1 publication Critical patent/WO2022019064A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to an automated analyzer and an automated analysis method, and is applied to, for example, an automated analyzer and an automated analysis method for measuring the concentration of a specific component contained in a sample based on the absorbance of a sample and a reagent into a reaction solution. Regarding effective technology.
  • Patent Document 1 introduces an approximate function to the reaction process data in this reaction to eliminate the influence of disturbance of the reaction process data due to noise of the photometer and the like. Therefore, a technique for calculating a predicted value and warning the measurer when there is an absorbance with a large deviation is described.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2010-271095 (Patent Document 2), a sample can be appropriately measured by selecting an approximate expression using data of a plurality of measurement points for the item of the rate analysis method in this reaction. A technique that can evaluate whether or not the stirring mechanism constituting the automatic analyzer is functioning normally is described.
  • Patent Document 3 describes a technique capable of accurately detecting and classifying an abnormal reaction process curve based on a blood coagulation reaction.
  • the automatic analyzer is used to measure the concentration of specific components contained in samples such as blood and urine. More specifically, the absorbance measured for the reaction solution obtained by reacting the sample with the reagent corresponding to each component is converted into the concentration of the specific component using a calibration curve prepared in advance.
  • the calibration curve is created by performing a calibration including measurement of the absorbance of the reaction solution obtained by reacting a standard solution having a known concentration of a specific component with a reagent.
  • Factors that affect the analysis performance include a sampling mechanism for samples collected from patients, a reagent dispensing mechanism, a stirring mechanism, an optical system, a constant temperature bath, etc., which are the mechanisms constituting the automatic analyzer.
  • Factors other than the automated analyzer that affect the analytical performance include reagents, liquid properties of the control sample, components contained in the patient sample, and the like.
  • the measurer measures the quality control sample after calibration to check the condition of the automatic analyzer, reagents, etc., and then measures the components contained in the sample.
  • the measurer repeatedly measures the quality-controlled sample during the measurement of the sample to confirm whether the measurement result of the sample is appropriate.
  • time series data is also called reaction process data.
  • the check method can be classified into two types, the rate method and the endpoint method.
  • the rate method is mainly used when measuring the activity of enzyme components contained in a sample. Since the reagent of the biochemical item contains sufficient temperament, if the reaction between the sample and the reagent is performed normally, the reaction generally changes linearly by a constant amount with time. ..
  • linearity check and ABS limit as the conventional method of detecting data abnormality at the time of measurement in the rate method.
  • the linearity check checks the linearity of the change in absorbance in the analysis item of the rate method. The difference in the amount of change in absorbance between the first half and the second half of a certain photometric range is obtained, and if the difference exceeds the specified linearity check value, it is judged that it is not a straight line.
  • the concentration or enzyme activity value of the sample to be measured is abnormally high and exceeds the measurable range of the reagent, all the substrate or coenzyme in the reagent is consumed before the photometric time, and the absorbance value changes rapidly. Therefore, the correct measured value cannot be obtained. Therefore, the reaction absorption limit value (ABS limit) of the upper limit or the lower limit of the absorbance is set to detect the abnormality of the data.
  • the endpoint method mainly measures the concentration of components such as proteins and lipids contained in the sample.
  • the substance produced by the reaction between the components in the sample and the reagent gradually approaches a certain amount over time. Therefore, the measured value also asymptotically approaches a constant value with time.
  • the absorbance obtained based on the reaction process data in this reaction and the reaction process data in the pretreatment reaction are used.
  • the concentration of the specific component is measured by taking the difference in the absorbances obtained.
  • reaction process data that is the basis of the measurement results of each sample may change unintentionally depending on the components contained in the sample. This variation in reaction process data may affect the measurement results of the sample. In addition, the reaction process data may fluctuate due to defects in the dispensing system, optical system, stirring, washing, etc. that make up the automatic analyzer.
  • this reaction for detecting the concentration of a specific component is utilized.
  • these techniques it is possible to detect anomalies in the reaction process data in this reaction, but it is not possible to detect anomalies in the reaction process data occurring in the pretreatment reaction. That is, in the prior art, it is not considered that the fluctuation of the reaction process data in the pretreatment reaction for the purpose of removing the disturbing component affects the measurement of the concentration of the specific component.
  • the concentration of a specific component is measured by taking the difference between the absorbance obtained based on the reaction process data in this reaction and the absorbance obtained based on the reaction process data in the pretreatment reaction. The inventor has newly found that abnormal fluctuations in reaction process data in a pretreatment reaction may adversely affect the measurement of the concentration of a specific component.
  • An object of the present invention is to provide a technique capable of detecting anomalous fluctuations in reaction process data in a pretreatment reaction for removing interfering components.
  • the automatic analyzer in one embodiment is configured to measure the concentration of a specific component contained in a sample based on the absorbance of the sample and the reagent with respect to the reaction solution.
  • the reaction between the sample and the reagent includes a pretreatment reaction in which the sample and the first reagent are reacted, and a main reaction in which the sample and a reagent other than the first reagent are reacted.
  • the automated analyzer is configured to acquire reaction process data by measuring the absorbance in a time series in the pretreatment reaction, and a condition configured to set conditions related to the absorbance.
  • an abnormal change determination unit configured to output the determination result
  • an output unit configured to output the determination result determined by the abnormal change determination unit
  • the automatic analysis method in one embodiment is a method of measuring the concentration of a specific component contained in a sample based on the absorbance of the sample and the reagent with respect to the reaction solution.
  • the reaction between the sample and the reagent includes a pretreatment reaction in which the sample and the first reagent are reacted, and a main reaction in which the sample and a reagent other than the first reagent are reacted.
  • the automatic analysis method is set in a reaction process data acquisition step of acquiring reaction process data by measuring the absorbance in a pretreatment reaction in time series, a condition setting step of setting conditions related to the absorbance, and a condition setting step.
  • Anomalous fluctuation judgment process for determining whether or not the fluctuation of the reaction process data acquired in the pretreatment reaction affects the measurement of the concentration of a specific component in this reaction, and the abnormality fluctuation judgment based on the above conditions. It includes an output process that outputs the judgment result determined in the process.
  • the novel first finding found by the present inventor is that (a) changes in absorbance in the pretreatment reaction (changes in the reaction process data) affect the reaction of the reaction process data.
  • Based on this first finding in order to detect abnormal fluctuations in the reaction process data in the pretreatment reaction, "changes in the reaction process data due to (a)” and “changes in the reaction process data due to (b)” are used. It can be seen that it is necessary to distinguish and detect only "variation of reaction process data due to (a)” as anomalous variation of reaction process data.
  • the novel second finding found by the present inventor is the finding shown below.
  • the variation in absorbance varies randomly if it is caused by an optical system caused by an automated analyzer. For example, air bubbles in the reaction solution and dripping of the washing solution also cause a large fluctuation in the absorbance.
  • This variation in absorbance can generally be classified as a "sudden error”.
  • the contaminants contained in the sample are an abnormal reaction because they react with the reagent components, but they undergo characteristic changes such as an increase / decrease in absorbance in a certain direction. This can generally be categorized as "systematic error".
  • the pretreatment reaction of the interfering component after the addition of the first reagent may affect the calculation of the measurement result of this reaction.
  • the fluctuation check of the reaction process data in the main reaction as in the prior art there is a possibility that the abnormal fluctuation (noise) of the reaction process data in the pretreatment reaction may be overlooked. For this reason, it is important to detect abnormal fluctuations in reaction process data at the stage of pretreatment reaction.
  • the technical idea of detecting abnormal fluctuations in the reaction process data at the stage of the pretreatment reaction is that the abnormal fluctuations in the reaction process data are due to the sample itself, or due to the mechanism of the automatic analyzer. It means that it is suitable for sensitively determining whether or not the fluctuation is to occur. Therefore, it can be said that the technical idea of detecting abnormal fluctuations in the reaction process data at the stage of the pretreatment reaction has important technical significance in investigating the cause of the abnormal fluctuations in the reaction process data.
  • the interfering components contained in the sample differ for each sample. Since the effect of the pretreatment reaction of the interfering component also differs from sample to sample, the effect on this reaction also differs. Therefore, when this reaction is approximated by an approximate formula, it is not possible to determine whether the event is caused by a deviation in the sample component or a malfunction of the automatic analyzer, and it is difficult to systematically classify the event.
  • the reaction after the addition of the first reagent is significantly different from other normal samples.
  • the reaction process data in the pretreatment reaction of a normal sample remains flat, but when a certain amount of contaminants are contained, the absorbance is asymptotic during the pretreatment reaction due to the reaction to remove the contaminants.
  • the coping method when an abnormality occurs is different.
  • sudden noise is measured due to dripping of cleaning liquid, it is important to stop the analysis of the automatic analyzer without continuing the analysis. Occurrence of such a serious event is extremely rare.
  • the content of impurities in the sample varies depending on the content, it is contained in most of the samples, and in many items, the reagents are adjusted so as not to affect this reaction by devising the reagents.
  • the content of impurities contained in the sample is large, there are some items that affect the concentration component of this reaction. In that case, it is important to reduce the sample volume and remeasure it in order to ensure the reliability of the data.
  • the subsequent measures can be promptly implemented. That is, to detect abnormal fluctuations in the reaction process data at the stage of the pretreatment reaction prior to this reaction, it is necessary to immediately interrupt the measurement and remeasure it, or stop the automatic analyzer. It means that it can be judged at an early stage of measurement. Therefore, it can be seen that the technical idea of detecting abnormal fluctuations in the reaction process data at the stage of the pretreatment reaction is very useful from the viewpoint of shortening the inspection result reporting time and enabling the state management of the automatic analyzer. Two specific examples of the pretreatment reaction are given.
  • lipid components such as LDL-C (LDL cholesterol)
  • a pretreatment reaction is carried out in order to remove interfering components other than the target component. If the lipid component in the sample is excessive, the excess lipid component cannot be completely removed in the pretreatment reaction, so unlike a normal sample, the absorbance of the pretreatment reaction increases, and this effect is removed. If it does not work, it may not be possible to obtain reasonable measurement results.
  • the serum contains an excessive amount of globulin component, it becomes cloudy due to being mixed with a reagent for biochemical measurement, and the absorbance increases during the reaction time, which should not increase in the pretreatment reaction. There is. As a result, the measured concentration may become abnormal. In addition to the above two cases, there are cases where the reaction process data becomes abnormal during the pretreatment reaction due to the components contained in the sample.
  • FIG. 1 is a diagram illustrating a configuration example of an automatic analyzer that analyzes a sample.
  • the automatic analyzer 100 includes an analysis unit 1, a storage unit 14, a display unit 15, an operation unit 16, and a control unit 17.
  • the analysis unit 1 includes a transfer line 4, a sample probe 5, a reagent probe 6, a reagent disk 8, a reaction disk 10, a stirring unit 11, a photometer 12, and a cleaning unit 13.
  • the transport line 4 transports the sample rack 3 on which a plurality of sample containers 2 containing samples such as blood and urine are stored to a position where the sample probe 5 accesses.
  • the sample rack 3 and the transport line 4 may be replaced with a sample disk that rotates in one direction in order to move the sample container 2 mounted in a ring shape.
  • the reagent disk 8 stores a plurality of reagent containers 7 containing reagents to be reacted with the sample, and rotates in one direction in order to move the reagent container 7 to a position where the reagent probe 6 can access.
  • the reaction disc 10 holds a plurality of reaction vessels 9 to which the sample and the reagent are dispensed in a ring shape, and rotates in one direction in order to move the reaction vessel 9 to a predetermined position.
  • the sample probe 5 dispenses a sample from the sample container 2 mounted on the sample rack 3 conveyed by the transfer line 4 to the reaction container 9.
  • the reagent probe 6 dispenses the reagent from the reagent container 7 into the reaction vessel 9 into which the sample is dispensed.
  • the number of reagents dispensed into the reaction vessel 9 is not limited to one, and may be plural.
  • the stirring unit 11 is arranged around the reaction disk 10 and stirs in the reaction vessel 9 in which the sample and the reagent are dispensed.
  • the photometer 12 is arranged around the reaction disk 10 and measures the absorbance of the solution in the reaction vessel 9 stirred by the stirring unit 11 each time the reaction vessel 9 crosses the front. Since the reaction disk 10 rotates intermittently at a constant timing, the absorbance of the solution in the reaction vessel 9 is measured at regular time intervals. The measured absorbance is converted into the concentration of a specific component contained in the sample using a calibration curve prepared in advance. The calibration curve is created by performing a calibration including measurement of the absorbance of the reaction solution obtained by reacting a standard solution having a known concentration of a specific component with a reagent.
  • the cleaning unit 13 is arranged around the reaction disk 10 and cleans the reaction vessel 9 for which analysis has been completed.
  • the standard solution used for calibration is an aqueous solution containing a specific component, and has at least a concentration near the upper limit value and a concentration near the lower limit value in the measurement range of the automatic analyzer 100. That is, at least two standard solutions are used.
  • the standard solution in which the concentration of the specific component is substantially zero and does not react with the reagent is called the first standard solution, and in many cases, it is physiological saline, purified water, or the like.
  • the storage unit 14 is, for example, an HDD (Hard Disk Drive) or SSD (Solid State Drive), and stores the absorbance measured by the photometer 12 and the concentration converted from the absorbance.
  • HDD Hard Disk Drive
  • SSD Solid State Drive
  • the display unit 15 is, for example, a liquid crystal display or a touch panel, and displays information such as absorbance and concentration.
  • the operation unit 16 is, for example, a keyboard or a mouse, and operations such as inputting conditions and parameters necessary for analysis are performed.
  • the GUI Graphic User Interface
  • the control unit 17 is, for example, an arithmetic unit such as a CPU (Central Processing Unit), which controls each unit and executes various operations. As described above, the automatic analyzer 100 is configured.
  • FIG. 2 is a graph showing an example of CRP reaction process data.
  • the horizontal axis indicates the photometric point (photometric time), and the vertical axis indicates the absorbance.
  • the time range from "Measuring point 1" to "Measuring point 17" corresponds to the pretreatment reaction, and the time range from "Measuring point 18" to "Measuring point 34" corresponds to this reaction.
  • the reaction process data in the pretreatment reaction is almost flat, which indicates that the reaction process data in the pretreatment reaction has little fluctuation and is normal. Further, in the graph for the sample 200A, it can be seen that the reaction process data in this reaction tends to increase.
  • the reaction process data of the sample 200A is an example of normal data.
  • the reaction process data in the pretreatment reaction is not flat and tends to increase. Since the reaction process data in the pretreatment reaction is usually flat, the reaction process data of the sample 200B showing the fluctuation of the increasing tendency is abnormal. That is, the reaction process data of the sample 200B is an example of abnormal data.
  • the concentration of the specific component is measured, for example, based on the difference between the absorbance of this reaction and the absorbance of the pretreatment reaction.
  • the absorbance of this reaction is the absorbance of the final photometric point “photometric point 34”, while the absorbance of the pretreatment reaction is the final photometric point of the pretreatment reaction “photometry”.
  • the absorbance at point 17 ” is used. Therefore, in the abnormal data of the sample 200B, since the absorbance of the “photometric point 17”, which is the final photometric point of the pretreatment reaction, is large, the measurement is performed based on the difference between the absorbance of this reaction and the absorbance of the pretreatment reaction. It will affect the concentration of the specific component. That is, the fluctuation of the reaction process data of the sample 200B shown in FIG. 2 corresponds to the “effect fluctuation”.
  • FIG. 3 is a graph showing an example of reaction process data of LDL-C.
  • the reaction process data in the pretreatment reaction is almost flat, which indicates that the reaction process data in the pretreatment reaction has little fluctuation and is normal.
  • the reaction process data in the pretreatment reaction shows a decreasing tendency. Therefore, at first glance, the graph for the sample 300B is considered to be abnormal.
  • the sample 300B contains a large amount of interfering components, and as a result of the progress of removal of the interfering components in the pretreatment reaction, the absorbance due to the interfering components is reduced.
  • the absorbance of the final photometric point 34 is used as the absorbance of this reaction, while the absorbance of the pretreatment reaction is that of the final photometric point 17 of the pretreatment reaction.
  • the fluctuation in the pretreatment reaction does not affect the measurement of the concentration of the specific component. That is, the fluctuation of the reaction process data in the sample 300B is the normal data corresponding to the “non-influenced fluctuation”.
  • the variation of the reaction process data in the sample 200B shown in FIG. 2 can be detected as an abnormal variation, while the variation of the reaction process data in the sample 300B shown in FIG. 3 can be detected. Fluctuations need not be detected as anomalous fluctuations.
  • the absorbance described in the present specification is expressed as an integer value, for example, multiplied by 10,000.
  • FIG. 4 is a diagram showing a functional block configuration of the automatic analyzer.
  • the automatic analyzer 100 includes a reaction process data acquisition unit 500, a condition setting unit 501, an abnormality fluctuation determination unit 502, an output unit 504, a measurement interruption unit 505, and a data storage unit 506. ing.
  • the reaction process data acquisition unit 500 is configured to acquire reaction process data obtained by measuring the absorbance in a time series in the pretreatment reaction. As an example of the reaction process data, the reaction process data shown in FIGS. 2 and 3 can be mentioned.
  • the reaction process data acquired by the reaction process data acquisition unit 500 is stored in the data storage unit 506.
  • the condition setting unit 501 is configured to be able to set initial conditions including conditions related to absorbance.
  • FIG. 5 is a table showing an example of initial conditions set by the condition setting unit 501.
  • the component to be measured for the concentration is set in the “item”.
  • the condition used for the analysis of the reaction process data of "LDL” is set in the row corresponding to "LDL”.
  • the conditions set for each "item” include “photometric point”, “variation tolerance”, “point number”, “Err tolerance”, “absorbance width of pretreatment reaction”, “judgment method” and “measurement”. There is “continuation”.
  • the "measurement point” defines the measurement section used for analysis of reaction process data. For example, when “5-17" is described in “Measuring point", the reaction process data is analyzed using the reaction process data from "Measuring point 5" to "Measuring point 17".
  • variable tolerance defines the range of allowable deviation from the approximate function to which the reaction process data is fitted. For example, when “100” is described in “variation tolerance”, it means that the range of allowable deviation from the approximation function is "100".
  • the “number of points” defines the permissible number of reaction process data that is outside the permissible deviation range from the approximation function. For example, when "5" is described in “the number of points", it means that the allowable number of reaction process data outside the allowable range of deviation is "5".
  • Err tolerance defines the tolerance of the squared error based on the approximate function and the measured reaction process data. For example, when “200" is described in “Err tolerance”, it means that the tolerance of the square error is "200".
  • the "absorbance width of the pretreatment reaction” defines the permissible value for the difference between the minimum value and the maximum value of the reaction process data in the pretreatment reaction. For example, when “150" is described in “absorbance width of pretreatment reaction", it means that the allowable value for the absorbance width is "150".
  • the "judgment method” defines whether a plurality of conditions related to absorbance are used as AND conditions or OR conditions. Specifically, the AND condition or the OR condition of the condition based on the “variation tolerance” and the “number of points”, the condition based on the “Err tolerance”, and the condition based on the "absorbance width of the pretreatment reaction”. It is stipulated whether to judge abnormal fluctuations in reaction process data. For example, when “AND” is described in the “determination method”, it means that the presence or absence of abnormal fluctuations in the reaction process data is determined by using a plurality of conditions related to the above-mentioned absorbance as AND conditions.
  • Continuous measurement defines whether to continue the measurement or interrupt the measurement when there is an abnormal change in the reaction process data. For example, when “stop” is described in “continuation of measurement”, it means that the measurement is interrupted when there is an abnormal change in the reaction process data.
  • condition setting unit 501 is configured so that the approximation function used when fitting the reaction process data can be selected and set.
  • the types of approximation functions include a linear function, an inverse proportional function, an exponential function, a logarithmic function, and the like, and an approximation function used for fitting can be set from these functions.
  • a linear function will be selected as the approximate function used for fitting.
  • FIG. 6 is a table showing an example of an exception condition set by the condition setting unit 501.
  • the component to be measured for the concentration is set in the “item”.
  • the line corresponding to "LDL” defines an exception condition for not determining the reaction process data of "LDL” as an abnormal change.
  • This exception condition includes "light measurement point”, “change direction”, and "change rate”.
  • the measurement section of the reaction process data is defined in the “measurement section (measurement point)". For example, when “5-17" is described in "Measuring point”, it means that the reaction process data from "Measuring point 5" to “Measuring point 17" is within the scope of the exception condition.
  • the “change direction” defines the change direction of the reaction process data, which is an exception condition.
  • the "change direction” is described as “continuous decrease”
  • the "change direction” is described as “continuous decrease”
  • the “rate of change” defines the rate of change of reaction process data, which is an exception condition. For example, when the "rate of change" is described as "100", it means that the exception condition is applied when the slope of the approximate function to which the reaction process data is fitted is "100" or less.
  • condition setting unit 501 is configured to set, for example, the exception condition shown in FIG. 6 in addition to the condition shown in FIG. Then, the conditions related to the absorbance (FIGS. 5 and 6) set by the condition setting unit 501 are stored in the data storage unit 506.
  • the fluctuation of the reaction process data acquired in the pretreatment reaction affects the measurement of the concentration of the specific component in this reaction based on the conditions related to the absorbance set in the condition setting unit 501. It is configured to determine if it is a variable that it exerts.
  • the abnormal change determination unit 502 is configured to perform the determination process shown below.
  • the anomalous fluctuation determination unit 502 determines whether or not the difference between the minimum value and the maximum value of the reaction process data is within the allowable range of the "absorbance width of the pretreatment reaction" set by the condition setting unit 501. It is configured in. Thereby, the abnormal fluctuation determination unit 502 can determine whether or not the fluctuation of the reaction process data exceeds a certain slope.
  • the anomalous fluctuation determination unit 502 includes a parameter determination unit 503 configured to determine parameters included in the approximation function by fitting reaction process data with an approximation function (regression line).
  • the abnormal variation determination unit 502 is configured to evaluate the deviation of the reaction process data from the regression line based on the "variation allowable value" and the "point number” set by the condition setting unit 501.
  • FIG. 7 is an enlarged graph showing the reaction process data in the pretreatment reaction among the reaction process data shown in FIG. 2.
  • the reaction process data of the sample 200A is evaluated within the allowable range of the regression line shown by the broken line
  • the reaction process data of the sample 200B is evaluated within the allowable range of the regression line shown by the broken line. It is shown to be in a state of being.
  • the number of reaction process data in the reaction process data of the sample 200A that exceeds the allowable range of the regression line is the reaction process data that exceeds the allowable range of the regression line in the reaction process data of the sample 200B. Less than the number of data. Therefore, for example, the abnormality fluctuation determination unit 502 can determine that the number of reaction process data in the reaction process data of the sample 200A that exceeds the allowable range of the regression line is smaller than the allowable number of data. On the other hand, the abnormality fluctuation determination unit 502 can determine that the number of reaction process data in the reaction process data of the sample 200B that exceeds the allowable range of the regression line is larger than the allowable number of data.
  • FIG. 8 is a graph showing an enlarged reaction process data in the pretreatment reaction among the reaction process data shown in FIG.
  • the reaction process data of the sample 300A is evaluated within the allowable range of the regression line shown by the broken line
  • the reaction process data of the sample 300B is evaluated within the allowable range of the regression line shown by the broken line. It is shown to be in a state of being.
  • the number of reaction process data in the reaction process data of the sample 300A that exceeds the allowable range of the regression line is the reaction process data that exceeds the allowable range of the regression line in the reaction process data of the sample 300B. Less than the number of data. Therefore, for example, the abnormality fluctuation determination unit 502 can determine that the number of reaction process data in the reaction process data of the sample 300A that exceeds the allowable range of the regression line is smaller than the allowable number of data. On the other hand, the abnormality fluctuation determination unit 502 can determine that the number of reaction process data in the reaction process data of the sample 300B that exceeds the allowable range of the regression line is larger than the allowable number of data.
  • the anomalous fluctuation determination unit 502 allows fluctuations in the reaction process data acquired in the pretreatment reaction based on the allowable range of the square error between the approximation function (regression line) set in the condition setting unit 501 and the reaction process data. It is configured to determine if it is within range. As a result, the abnormal fluctuation determination unit 502 can determine whether or not the reaction process data has a large variation.
  • the abnormal fluctuation determination unit 502 detects "impact fluctuation” as abnormal fluctuation, but does not detect “non-impact fluctuation” as abnormal fluctuation.
  • the abnormal change judgment unit 502 comprehensively considers the judgment results of the first judgment process, the second judgment process, the third judgment process, and the fourth judgment process, and the change of the reaction process data in the pretreatment reaction is an abnormal change. It is configured to determine if it exists.
  • the abnormality change determination unit 502 determines whether or not the change in the reaction process data in the pretreatment reaction is an abnormality change. For example, when the "judgment method" set by the condition setting unit 501 is an AND condition, the difference between the minimum value and the maximum value of the reaction process data in the first judgment process is the allowable range of the "absorbance width of the pretreatment reaction". It is judged that the fluctuation is not within the range, and the fluctuation of the reaction process data is judged to be a fluctuation with a large deviation from the regression line in the second judgment processing, and the fluctuation of the reaction process data is squared in the third judgment processing.
  • the abnormality change determination unit 502 determines that the change in the reaction process data in the pretreatment reaction is abnormal. It is judged to be fluctuating. On the other hand, even if the judgment results of the first judgment processing, the second judgment processing, and the third judgment processing are the same as above, if it is determined in the fourth judgment processing that the exception condition is satisfied, the abnormal change judgment unit 502 determines. It is judged that the fluctuation of the reaction process data in the pretreatment reaction is not an abnormal fluctuation.
  • the abnormal fluctuation determination unit 502 is configured so that "impact fluctuation” can be detected as an abnormal fluctuation, but "non-impact fluctuation” is not detected as an abnormal fluctuation.
  • reaction process data for the sample 200B in FIG. 7 is “influence variation”
  • reaction process data for the sample 300B in FIG. 8 is “non-influence variation”.
  • the abnormality change determination unit 502 does not have the fourth judgment processing configuration, the change of the reaction process data with respect to the sample 200B of FIG. 7 and the change of the reaction process data with respect to the sample 300B of FIG. 8 are determined as abnormal changes. It is thought that it will be done.
  • the abnormal change determination unit 502 has not only the first determination processing configuration to the third determination processing configuration but also the fourth determination processing configuration related to the exception condition.
  • the fluctuation of the reaction process data shown in FIG. 8 is not judged to be an abnormal fluctuation because it corresponds to the exception condition.
  • the output unit 504 is configured to output the determination result determined by the abnormal fluctuation determination unit 502.
  • the output unit 504 can issue a warning by voice or display a warning text or an image on the display device when the determination result determined by the abnormality fluctuation determination unit 502 is an abnormality fluctuation. It is configured in.
  • the output method from the output unit 504 can be set in advance by the condition setting unit 501.
  • FIG. 9 shows an example of the display output from the output unit 504.
  • the measurer can grasp that the reaction process data has abnormal fluctuations in the pretreatment reaction.
  • the automatic analyzer 100 in the present embodiment interrupts the measurement of the concentration of the specific component contained in the sample when the abnormality change determination unit 502 determines that the change in the reaction process data is an “effect change”. It has a measurement interruption unit 505 configured as described above. Whether or not the measurement is interrupted by the measurement interruption unit 505 can be set in advance by the condition setting unit 501.
  • the automatic analyzer 100 in the present embodiment it is possible to detect abnormal fluctuations in the reaction process data at an early stage (pretreatment reaction stage) of the concentration measurement of the specific component. Response can be carried out promptly. That is, since the automatic analyzer 100 in the present embodiment can detect abnormal fluctuations in the reaction process data at the stage of the pretreatment reaction prior to the main reaction, is it necessary to immediately interrupt the measurement and remeasure? Alternatively, it can be determined early in the measurement whether the automated analyzer needs to be shut down. Therefore, the technical idea of detecting the "impact fluctuation" of the reaction process data at the stage of the pretreatment reaction is very useful from the viewpoint of shortening the inspection result reporting time and enabling the state management of the automatic analyzer. Recognize.
  • FIG. 10 is a flowchart showing a flow of an overall operation for detecting an abnormal change in reaction process data in the automatic analyzer 100.
  • a condition is set (S101).
  • the condition setting unit 501 the initial conditions including the conditions related to the absorbance shown in FIG. 5 are set, and the exception conditions shown in FIG. 6 are set.
  • the condition setting unit 501 sets the output method of the determination result (S102). For example, as a method of outputting the judgment result, it is conceivable to display a warning or a warning message by a buzzer.
  • the analysis of the reaction process data is started (S103). In the following, the analysis operation of the reaction process data will be described.
  • 11 and 12 are flowcharts illustrating the flow of analysis operation for detecting abnormal fluctuations in reaction process data.
  • a method for detecting abnormal fluctuations in the reaction process data a method for analyzing the reaction process data by approximating the relationship between the measured absorbance and time with a linear function (regression line). Is shown.
  • the absorbance of the reaction solution which is a mixture of the sample and the first reagent, is measured with a photometer (S201).
  • reaction process data in the pretreatment reaction is acquired (S202).
  • the acquired reaction process data is stored in the data storage unit 506 of the automatic analyzer 100 (S203).
  • the data storage unit 506 is premised on the configuration included in the automatic analyzer 100, but the data storage unit 506 is not limited to this, and the data storage unit 506 may be used in a server or the like connected to the automatic analyzer 100 via a network. It may be installed.
  • reaction process data of the measurement point (photometric section) necessary for the analysis of the reaction process data in the pretreatment reaction could be acquired (S204). If the required reaction process data has been obtained, proceed to the next process. On the other hand, if the required reaction process data cannot be obtained, the absorbance measurement of the reaction solution is continued until the reaction process data are available.
  • the absorbance width is calculated based on the acquired reaction process data (S205).
  • the absorbance width can be calculated from the difference between the maximum value and the minimum value of the absorbance.
  • the regression line “Y aX + b” when “Y” is the absorbance and “X” is the measurement time.
  • the slope "a” and the Y-intercept "b" of "" are calculated (S206).
  • the allowable width is calculated from the slope of the calculated regression line and the Y-intercept (S207).
  • an arbitrary value can be set in the "variation tolerance”, but the "variation tolerance” is set based on the standard deviation in the reaction process data of the past sample and the quality control sample. You may.
  • the number of data outside the allowable range specified by the calculated allowable width is calculated, and the calculated number of data is stored in the data storage unit 506 (S208).
  • the square error (Err) between the reaction process data and the regression line is calculated and stored in the data storage unit 506 (S209).
  • the square error is calculated by comparing the measured absorbance (reaction process data) with the calculated regression line.
  • the square error is calculated to distinguish whether the fluctuation of the reaction process data is due to the sample itself or the fluctuation due to the malfunction of the automatic analyzer 100. For example, when the fluctuation of the reaction process data is caused by the turbidity component of the sample, the reaction process data tends to gradually increase or decrease at regular time intervals. On the other hand, when the fluctuation of the reaction process data is caused by a defect in the optical system of the automatic analyzer 100, the tendency of the fluctuation is not uniform and the variation is often large.
  • the determination method can be set, for example, in the determination method column of FIG.
  • the process is terminated. On the other hand, if it is determined that the fluctuation of the reaction process data is an abnormal fluctuation, the process proceeds to the next step.
  • the fluctuation of the reaction process data corresponds to the exception item (S211). This is in consideration of not determining that the fluctuation of the reaction process data is an abnormal fluctuation when the fluctuation of the reaction process data is "non-influenced fluctuation". That is, by registering in advance the case where the fluctuation of the reaction process data is "non-influenced fluctuation" in the exception item, it is possible to prevent the "non-influenced fluctuation" from being judged as an abnormal fluctuation.
  • exception items are set as shown in the table shown in FIG.
  • the exception item indicates, for example, a measurement item for removing impurities contained in a sample by a pretreatment reaction, and refers to an item in which a change in absorbance occurs during the pretreatment reaction. Fluctuations in reaction process data in the pretreatment reaction of each item are basically determined based on the parameters shown in FIG. However, in items such as "LDL-C", a change in absorbance occurs in order to remove a component other than the specific component of interest in the pretreatment reaction (see, for example, sample 300B in FIG. 3). In addition to this, items that cause a change in absorbance (“non-influenced fluctuation”) in the pretreatment reaction can be registered in advance as an exception condition. Such fluctuations in the reaction process data are fluctuations in the reaction process data peculiar to the item and are “non-impact fluctuations”. Therefore, they can be added as exception items and distinguished from "impact fluctuations”. ..
  • the metering section set as shown in FIG. 6 is set (S212). Then, in the set photometric section, it is determined whether or not the change direction (change tendency) of the reaction process data coincides with the "change direction" set as shown in FIG. 6 (S213). If they match, it is determined whether or not the value is equal to or less than the set value by comparing the rate of change in absorbance set as shown in FIG. 6 with the slope “a” of the regression line (S214). If it is less than the set value, the fluctuation of the reaction process data is regarded as "non-influenced fluctuation" and excluded from the warning target. In this embodiment, only the direction of change is mentioned, but for example, the absorbance at the start of measurement in the pretreatment reaction or the absorbance corresponding to the concentration calculation point in the reaction process data in the pretreatment reaction can be used as a judgment material. can.
  • the measurer is notified.
  • This notification method is not limited to the display example as shown in FIG. 9, and can be warned by, for example, a method of adding an alarm indicating an abnormality to the reaction process data, a method of sounding a warning sound from the automatic analyzer 100, or the like. ..
  • FIG. 13 is a flowchart illustrating a modified example of the operation.
  • the change direction of the fluctuation of the reaction process data is specified (S301). For example, it is specified whether the fluctuation of the reaction process data is “monotonically decreasing", “monotonically increasing”, “repeating increase or decrease”, or the like. After that, in this modification, it is determined whether or not the reaction process data is abnormally changed (S302). In the judgment here, not only the judgment conditions used in the embodiment but also the conditions corresponding to the exception conditions regarding the change direction and the rate of change of the fluctuations of the reaction process data are taken into consideration, and the fluctuations of the reaction process data are abnormal fluctuations. It is judged whether or not there is.
  • the judgment regarding the change direction in S302 is made based on the change direction specified in S301, and the judgment regarding the change rate in S302 is whether the slope of the regression line calculated in S206 is equal to or less than the set value. It is done based on whether or not.
  • the "non-influenced fluctuation" of the reaction process data can be prevented from being judged as an abnormal fluctuation of the reaction process data.
  • Subsequent operations are the same as those of the embodiment shown in FIG. 12, and thus the description thereof will be omitted. As described above, the operation of this modification is performed.
  • the fluctuation of the reaction process data includes the fluctuation caused by the contaminants contained in the sample and the fluctuation caused by the mechanism of the automatic analyzer and the measurement conditions. Therefore, if it is possible to identify whether the fluctuation of the reaction process data is caused by the sample itself or the mechanism or measurement conditions of the automatic analyzer, the cause of the fluctuation of the reaction process data should be determined. Because it can be done, the subsequent response becomes easy.
  • reaction process data unit for one sample in addition to the analysis of one test unit (reaction process data unit for one sample), the reaction process data for a plurality of samples is accumulated, and the reaction process data for the accumulated plurality of samples is analyzed. By doing so, the cause of fluctuations in the reaction process data is estimated.
  • an automated analyzer that embodies this technical idea will be described.
  • the automatic analyzer 100 has a specific condition setting unit 600 and a fluctuation cause estimation unit 601.
  • the specific condition setting unit 600 is configured to set specific conditions for identifying the cause of fluctuation of the reaction process data. For example, in the specific condition setting unit 600, the specific condition shown in FIG. 14 is set. In FIG. 14, for example, in “HDL”, the square error (Err) is set to "50” as the “check value”, and the "check rule” is set to "5 times in a row”. This is because the reaction process data having a square error of "50" or more is detected 5 times or more in succession in the accumulated reaction process data for "HDL" (when the "check rule" is violated).
  • the fluctuation cause estimation unit 601 is caused by the sample itself based on the specific condition (see FIG. 14) set by the specific condition setting unit 600, or is caused by the mechanism or the measurement condition of the automatic analyzer. It is configured to identify if it is.
  • the fluctuation cause estimation unit 601 estimates the fluctuation cause of the reaction process data according to, for example, the flowchart shown in FIG. FIG. 15 is a flowchart illustrating an operation of estimating the cause of fluctuation of the reaction process data.
  • FIG. 15 for example, by analyzing the reaction process data, the data of the item set in the “check value” shown in FIG. 14 is acquired and stored in the data storage unit 506 (S401).
  • FIG. 16 is a diagram showing an example of a warning display.
  • This analysis method calculates the difference between the absorbance at the target photometric point and the absorbance at the photometric point immediately before it in the analysis target section of the reaction process data in the pretreatment reaction, and the reaction process in the pretreatment reaction. This is a method for analyzing data.
  • FIG. 17 is a graph showing an example of reaction process data of UA (uric acid).
  • UA uric acid
  • the reaction process data in the pretreatment reaction is almost flat. This indicates that the reaction process data in the pretreatment reaction has little fluctuation and is normal.
  • the reaction process data in the pretreatment reaction is not flat and tends to increase. Since the reaction process data in the pretreatment reaction is usually flat, the reaction process data of the sample 700B showing an increasing tendency is abnormal. As mentioned above, this corresponds to "impact fluctuation".
  • FIG. 18 is a graph showing an example of reaction process data of CRE (creatinine).
  • CRE creatinine
  • the reaction process data in the pretreatment reaction is almost flat. This indicates that the reaction process data in the pretreatment reaction has little fluctuation and is normal.
  • the sample 800B there is a sudden increase in absorbance at the photometric points near 5 points. This variation in absorbance corresponds to "non-influenced variation" that does not affect the calculation of the concentration of CRE.
  • fluctuations may be caused by the optical system of the automatic analyzer itself, depending on whether or not the frequency is high.
  • FIG. 19 is a table showing an example of initial conditions set by the condition setting unit 501.
  • the conditions set for each “item” include “photometric point”, “variation allowable value”, “variation allowable absorbance difference”, “point number”, “determination method”, and “measurement continuation”. ..
  • the "measurement point” defines the measurement section used for analysis of reaction process data. For example, when “5-19” is described in “Measuring point”. The reaction process data is analyzed using the reaction process data from the “measurement point 5” to the “measurement point 19”.
  • “Allowable fluctuation value” defines the allowable value of the amount of fluctuation in the section specified by “Measuring point”. For example, when “ ⁇ 200" is described, it means that the range of fluctuation allowed within the specified section is “ ⁇ 200". When “15%” is described as “15%” in “Variation tolerance”, it means that the range of variation allowed within the specified interval is “15%” of the absorbance width of the reaction process data to be analyzed. means.
  • the reaction process data in the pretreatment reaction is measured at the stage (early stage of measurement) without measuring the reaction process data in the main reaction. It is possible to determine the presence or absence of an abnormality.
  • the “variation tolerance” when the "variation tolerance” is described as a percentage of the absorbance width of the reaction process data to be analyzed, the “variation tolerance” must be measured at the stage where the entire reaction process data including the pretreatment reaction and the main reaction is measured. It is effective when it is not possible to judge the presence or absence of an abnormality based on the "value”, but it is difficult to express the "variable allowable value” as an absolute numerical value.
  • variable allowable absorbance difference defines the allowable range of the difference in adjacent absorbances in the section specified by the "photometric point". For example, when “100” is described in “variation allowable absorbance difference”, it means that the allowable value of the difference between adjacent absorbances in the section specified by the "photometric point” is “100”. When “15%” is described in “Variation allowable absorbance difference”, the allowable value of the difference in adjacent absorbances in the section specified by "Metering point” is the total absorbance change amount of the reaction process data to be analyzed. It means “15%”.
  • the "number of points” defines the number of data that are outside the range of the "variability allowable absorbance difference” in the difference in the absorbances adjacent to each other in the section specified by the "photometric point". For example, when the "number of points" is described as “2", the number of data in which the difference between adjacent absorbances in the section specified by the "photometric point” is outside the range of the "variability allowable absorbance difference” is “2". If it is as follows, it means that it is within the allowable range. In other words, if the difference between adjacent absorbances in the section defined by the "photometric point” is greater than the number of data outside the range of the "variation allowable absorbance difference", it means that the difference is out of the allowable range.
  • the "judgment method” defines whether to judge multiple conditions related to analysis by "AND condition” or to use them as “OR condition”.
  • Continuous measurement defines whether to continue the measurement or interrupt the measurement when there is an abnormal change in the reaction process data.
  • the automatic analyzer 100 detects "impact variation” as anomalous variation, while "non-influence variation” is anomalous variation.
  • the condition setting unit 501 uses not only the condition shown in FIG. 19 but also the exception condition as shown in FIG. 20.
  • FIG. 20 is a table showing an example of exception conditions.
  • a component to be measured for concentration is set in the “item”.
  • an exception condition is defined so that the reaction process data of "AST” is not regarded as an abnormal fluctuation.
  • This exception condition includes "light measurement point”, “change direction”, and "variation tolerance”.
  • the “measurement point” defines the measurement section of the reaction process data. For example, when “5-19” is described in “Measuring point”, it means that the reaction process data from "Measuring point 5" to “Measuring point 19" is within the scope of the exception condition.
  • the "direction of change” defines the direction of change in the reaction process data, which is an exception condition. For example, it means that the exception condition is applied when the "change direction" is “continuous decrease”.
  • variable tolerance defines the tolerance of reaction process data, which is an exception condition. For example, when the "variable allowable value” is described as “-400", it means that the exception condition is applied if it is "-400" or more.
  • the conditions related to the absorbance analysis (FIGS. 19 and 20) set in the condition setting unit 501 are stored in the data storage unit 506. Then, the abnormal fluctuation determination unit 502 performs the determination process shown below based on the conditions related to the absorbance analysis set by the condition setting unit 501.
  • FIG. 21 shows the absorbance “A (x)” and the absorbance “A (x—” immediately before the photometry point “A (x)” in the section from the photometric point “1” to the photometric point “19”, which is the preprocessing reaction of the reaction process data shown in FIG. It is a graph which calculated the difference ⁇ A (x)-A (x-1) ⁇ from "1)” and plotted it in chronological order.
  • FIG. 22 shows the absorbance “A (x)” and the absorbance A (x-1) immediately before the photometric point “A (x)” in the section from the photometric point “1” to the photometric point “19”, which is the preprocessing reaction of the reaction process data shown in FIG. It is a graph which calculated the difference ⁇ A (x)-A (x-1) ⁇ of, and plotted it in chronological order.
  • the difference between the absorbance A (x) and the absorbance A (x-1) immediately before it ⁇ A (x) -A (x-1)) fluctuates between the plus side and the minus side.
  • the value is smaller than that of the sample 700B. Therefore, even in this analysis method, it is possible to distinguish between continuous increase and decrease of absorbance and variation in absorbance.
  • the broken line shown in FIG. 22 is drawn by " ⁇ 30" set in the "variation allowable absorbance difference" of the CRE set in the condition setting unit 501. Since all the data of the sample 800A is inside the broken line, it is judged that there is no abnormality. On the other hand, in the sample 800B, the data of four points exceeds the broken line at the "light measurement point" designated by the condition setting unit 501. Therefore, the sample 800B is determined to be abnormal because it is larger than "2", which is the "number of points" of the CRE set by the condition setting unit 501.
  • the abnormality fluctuation determination unit 502 indicates that the fluctuation of the reaction process data is abnormal regardless of the above-mentioned result. Judge that it is not fluctuating.
  • the reaction process data in the pretreatment reaction is abnormal according to the "determination method” set by the condition setting unit 501.
  • the total value of the results of this calculation exceeds the "variable allowable value”
  • the number of data exceeding the "variable allowable absorbance difference” exceeds the "point number”.
  • the abnormality fluctuation determination unit 502 determines that an abnormality occurs when any of the above two conditions exceeds the value set by the condition setting unit 501.
  • the abnormality determination unit 502 determines whether or not the exception condition set by the condition setting unit 501 is satisfied, and if the exception condition is applicable, the abnormality determination unit 502 preprocesses. It is judged that the fluctuation of the reaction process data in the reaction is not an abnormal fluctuation. Other features and operations are the same as the analysis method using the approximation function.
  • FIG. 23 is a flowchart illustrating a flow for detecting abnormal fluctuations in reaction process data by the above-mentioned analysis method.
  • a method of analysis is shown by using the difference in absorbance continuously measured by the reaction process data.
  • the absorbance of the reaction solution which is a mixture of the sample and the first reagent, is measured with a photometer (S501).
  • reaction process data in the pretreatment reaction is acquired (S502).
  • the acquired reaction process data is stored in the data storage unit 506 of the automatic analyzer 100 (S503).
  • the data storage unit 506 is premised on the configuration included in the automatic analyzer 100, but the data storage unit 506 is not limited to this, and the data storage unit 506 may be a server or the like connected to the automatic analyzer 100 via a network. It may be installed.
  • the automatic analyzer 100 calculates an allowable value. For example, as shown in FIG. 19, when the “variation allowable value” and the “variation allowable absorbance difference” are set as percentages in the condition setting unit 501, the allowable value is set based on the absorbance width of the reaction process data to be analyzed. Calculate (S507). Then, the allowable value and the calculated absolute value of the absorbance difference ⁇ A (x) ⁇ A (x-1) ⁇ are compared to calculate the number of data out of the allowable range (S508). In this application example, any numerical value can be input, but the "variation tolerance” and “variation tolerance difference” are based on the statistical analysis of the reaction process data of past samples and quality control samples. May be set.
  • the abnormality determination unit 502 is performed according to the "variation allowable value", "point number”, and “determination condition” set in the condition setting unit 501.
  • the total “G” of the calculated absorbance difference ⁇ A (x) ⁇ A (x-1) ⁇ and the number of data “H” outside the permissible range are set as the fluctuation permissible value “I” set by the condition setting unit 501.
  • the reaction process data is determined to be anomalous variation.
  • "OR” is set in the “determination method”

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

妨害成分を除去する前処理反応における反応過程データの異常変動を検出することができる技術を提供する。自動分析装置は、前処理反応において吸光度を時系列で測定することにより反応過程データを取得するように構成された反応過程データ取得部と、吸光度に関する条件を設定するように構成された条件設定部と、条件設定部で設定された条件に基づいて、前処理反応で取得された反応過程データの変動が本反応における特定成分の濃度の測定に影響を及ぼす変動であるか否かを判断するように構成された異常変動判断部と、異常変動判断部で判断された判断結果を出力するように構成された出力部とを備える。

Description

自動分析装置および自動分析方法
 本発明は、自動分析装置および自動分析方法に関し、例えば、検体と試薬との反応液に対する吸光度に基づいて、検体に含まれる特定成分の濃度を測定する自動分析装置および自動分析方法に適用して有効な技術に関する。
 特開2006-337125号公報(特許文献1)には、本反応における反応過程データに対して近似関数を導入して、光度計のノイズなどに起因する反応過程データの乱れの影響を除去することにより、予測値の計算や乖離が大きい吸光度があった場合に測定者に警告する技術が記載されている。
 特開2010-271095号公報(特許文献2)には、本反応におけるレート分析法の項目に対して複数の測定点のデータを使用して近似式を選択することにより、検体が適切に測定できているかということと、自動分析装置を構成する撹拌機構が正常に機能しているかということを評価可能な技術が記載されている。
 特開2015-197370号公報(特許文献3)には、血液凝固反応に基づく異常な反応過程曲線を正確に検出および分類することができる技術が記載されている。
 自動分析装置は、血液や尿等の検体に含まれる特定成分の濃度の測定に用いられる。より具体的には、検体と各成分に対応する試薬を反応させた反応液に対して測定された吸光度が、予め作成された検量線を用いて特定成分の濃度に換算される。
 ここで、検量線は、特定成分の濃度が既知である標準液と試薬を反応させた反応液の吸光度の測定を含むキャリブレーションの実行により作成される。
 分析性能を左右する要因としては、自動分析装置を構成する機構である患者から採取した検体のサンプリング機構、試薬分注機構、撹拌機構、光学系、恒温槽などを挙げることができる。また、分析性能を左右する自動分析装置以外の要因としては、試薬、コントロール検体の液性、患者検体に含まれる成分などを挙げることができる。
 測定者は、自動分析装置や試薬等の状態を確認するためにキャリブレーション後に精度管理試料を測定してから、検体に含まれる成分を測定する。測定者は、検体の測定の間に精度管理試料を繰り返し測定して、検体の測定結果が妥当であるか確認している。
 試料と試薬との反応中に、吸光度が複数回測定され、時系列データとして記録される。この時系列データは反応過程データとも呼ばれている。
 反応過程データに異常がないかをデータチェックする方法があり、そのチェック方法は、レート法とエンドポイント法の2種類に分類することができる。
 レート法は、主に、検体に含まれる酵素成分の活性を測定するときに使用される。生化学項目の試薬には十分な気質が含まれているため、検体と試薬の反応が正常に行われていれば、一般に反応は時間変化に対して、吸光度が一定量ずつ直線的に変化する。
 レート法における測定時の従来のデータ異常を検知する方法には、リニアリティチェックとABSリミットがある。リニアリティチェックは、レート法の分析項目において,吸光度変化の直線性をチェックする。一定の測光範囲の前半と後半の吸光度変化量の差を求め、その差が指定したリニアリティチェック値を超えていた場合に直線ではないと判断する。また、測定する試料の濃度または酵素活性値が異常に高く、試薬の測定可能範囲を超えた場合には試薬中の基質または補酵素が測光時間前に全て消費されて、急激に吸光度値が変化して正しい測定値が得られない。このため、吸光度の上限または下限の反応吸光限界値(ABSリミット)を設定してデータの異常を検知する。
 エンドポイント法は、主に試料に含まれる蛋白質や脂質などの成分の濃度を測定する。試料中の成分と試薬が反応して生成される物質は時間と共に一定量に漸近する。このため、計測値も時間と共に一定値に漸近する。
 エンドポイント法における測定時の従来のデータ異常を検知する方法には、プロゾーンチェックがある。IgA(免疫グロブリンA)やCRP(C反応性蛋白)などの免疫比濁法を用いた試薬では、試薬組成分の塩濃度の影響により蛋白質が沈殿物として析出してしまう場合がある。この沈殿物によって反応過程データが揺らぐ場合があり、実際には反応時間の後半部分に現れる場合が多い。濃度演算に用いる測光ポイント部に、この揺らぎが起きた場合には正確に測定値を得ることができない。これをチェックする方法として、抗体再添加法と反応速度比法があり、いずれもパラメータで指定した限界値を超えるとアラームを出すという方法がある。
特開2006-337125号公報 特開2010-271095号公報 特開2015-197370号公報
 生化学分析の多くの項目は、特定成分の濃度を検出するための本反応と、妨害成分を除去する前処理反応で構成されることが多い。具体的には、検体と第1の試薬とを反応させる前処理反応を実施した後、検体と第1の試薬以外の第2試薬、第3の試薬とを反応させる本反応が実施される。ここで、例えば、本反応で使用される第1の試薬以外の第2試薬、第3の試薬は、検体に含まれる特定成分と反応させる試薬である。
 例えば、検体と試薬との反応液に対する吸光度に基づいて検体に含まれる特定成分の濃度を測定する場合、本反応における反応過程データに基づいて取得された吸光度と前処理反応における反応過程データに基づいて取得された吸光度の差分を取ることにより、特定成分の濃度が測定される。
 ここで、個々の検体の測定結果の基となる反応過程データは、検体に含まれる成分により、意図せず変動することがある。この反応過程データの変動は、検体の測定結果に影響を及ぼす可能性がある。また、自動分析装置を構成する分注系、光学系、撹拌、洗浄等の不良によっても反応過程データが変動することがある。
 これらの反応過程データの変動をチェックするためには、日常検査業務の中で、自動分析装置の使用者である検査技師が、膨大な反応過程データを目視でチェックすることが求められるが、実施することは困難である。その中でも、測定結果が基準範囲付近のデータでは反応の異常を見逃す可能性が高くなり、妥当な測定結果を得ることが困難である。したがって、反応過程データの変動を検出する技術が必要である。
 この点に関し、上述した特許文献1や特許文献2に代表される従来の反応過程近似法を使用した技術では、特定成分の濃度を検出するための本反応を活用している。これらの技術では、本反応での反応過程データの異常を検出することは可能であるが、前処理反応で発生している反応過程データの異常については検出することはできない。すなわち、従来技術では、妨害成分の除去を目的とする前処理反応における反応過程データの変動が特定成分の濃度の測定に影響を及ぼすことが考慮されていない。これに対し、本反応における反応過程データに基づいて取得された吸光度と前処理反応における反応過程データに基づいて取得された吸光度の差分を取ることにより特定成分の濃度が測定されることから、本発明者は、前処理反応における反応過程データの異常変動が特定成分の濃度の測定に悪影響を及ぼす場合があることを新規に見出した。
 本発明の目的は、妨害成分を除去する前処理反応における反応過程データの異常変動を検出することができる技術を提供することにある。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 一実施の形態における自動分析装置は、検体と試薬との反応液に対する吸光度に基づいて、検体に含まれる特定成分の濃度を測定するように構成される。ここで、検体と試薬との反応は、検体と第1試薬とを反応させる前処理反応と、検体と第1の試薬以外の試薬とを反応させる本反応とを含む。そして、自動分析装置は、前処理反応において吸光度を時系列で測定することにより反応過程データを取得するように構成された反応過程データ取得部と、吸光度に関する条件を設定するように構成された条件設定部と、条件設定部で設定された条件に基づいて、前処理反応で取得された反応過程データの変動が本反応における特定成分の濃度の測定に影響を及ぼす変動であるか否かを判断するように構成された異常変動判断部と、異常変動判断部で判断された判断結果を出力するように構成された出力部と、を備える。
 また、一実施の形態における自動分析方法は、検体と試薬との反応液に対する吸光度に基づいて、検体に含まれる特定成分の濃度を測定する方法である。ここで、検体と試薬との反応は、検体と第1試薬とを反応させる前処理反応と、検体と第1の試薬以外の試薬とを反応させる本反応とを含む。そして、自動分析方法は、前処理反応において吸光度を時系列で測定することにより反応過程データを取得する反応過程データ取得工程と、吸光度に関する条件を設定する条件設定工程と、条件設定工程で設定された条件に基づいて、前処理反応で取得された反応過程データの変動が本反応における特定成分の濃度の測定に影響を及ぼす変動であるか否かを判断する異常変動判断工程と、異常変動判断工程で判断された判断結果を出力する出力工程と、を備える。
 一実施の形態によれば、妨害成分を除去する前処理反応における反応過程データの異常変動を検出することができる。
検体を分析する自動分析装置の構成例を説明する図である。 CRPの反応過程データの一例を示すグラフである。 LDL-Cの反応過程データの一例を示すグラフである。 自動分析装置の機能ブロック構成を示す図である。 条件設定部で設定される初期条件の一例を示す表である。 条件設定部で設定される例外条件の一例を示す表である。 図2に示す反応過程データのうち前処理反応での反応過程データを拡大して示すグラフである。 図3に示す反応過程データのうち前処理反応での反応過程データを拡大して示すグラフである。 出力部から出力される表示の一例を示す図である。 自動分析装置でhの反応過程データの異常変動を検出する全体動作の流れを示すフローチャートである。 反応過程データの異常変動を検出するための解析動作の流れを説明するフローチャートである。 反応過程データの異常変動を検出するための解析動作の流れを説明するフローチャートである。 動作の変形例を説明するフローチャートである。 特定条件の一例を示す表である。 反応過程データの変動原因を推定する動作を説明するフローチャートである。 警告表示の一例を示す図である。 UA(尿酸)の反応過程データの例を示すグラフである。 CRE(クレアチニン)の反応過程データの例を示すグラフである。 条件設定部で設定される初期条件の一例を示す表である。 例外条件の一例を示す表である。 図17に示す反応過程データの第1測光ポイントから第2測光ポイントまでの前処理反応の区間において、吸光度とその直前の吸光度との差を計算して、時系列順にプロットしたグラフである。 図17に示す反応過程データの第1測光ポイントから第2測光ポイントまでの前処理反応の区間において、吸光度とその直前の吸光度との差を計算して、時系列順にプロットしたグラフである。 反応過程データの異常変動を応用例の解析手法で検出するための流れを説明するフローチャートである。
 実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 <本発明者が見出した新規な知見>
 まず、本発明者が見出した新規な第1知見とは、反応過程データの変動には、(a)前処理反応における吸光度の変化(反応過程データの変動)が、本反応の反応に影響を及ぼして、特定成分の濃度の測定に影響する変動と、(b)前処理反応における吸光度は変動するが、本反応における特定成分の濃度の測定には影響を与えない変動の2種類があるということである。この第1知見に基づくと、前処理反応における反応過程データの異常変動を検出するためには、「(a)による反応過程データの変動」と「(b)による反応過程データの変動」とを区別して、「(a)による反応過程データの変動」だけを反応過程データの異常変動として検出する工夫が必要とされることがわかる。
 なお、以降の記載では、「(a)前処理反応における吸光度の変化が、本反応の反応に影響を及ぼして、特定成分の濃度の測定に影響する変動」を単に「影響変動」と呼び、「(b)前処理反応における吸光度は変動するが、本反応における特定成分の濃度の測定には影響を与えない変動」を単に「非影響変動」と呼ぶことにする。
 続いて、本発明者が見出した新規な第2知見とは、以下に示す知見である。吸光度の変動は、自動分析装置に起因する光学系が原因の場合、ランダムに変動する。例えば、反応液中の気泡や洗浄液の滴下なども大きく吸光度が変動する要因となる。この吸光度の変動は、一般的に「突発的な誤差」として分類することができる。一方、検体中に含まれる夾雑物は、試薬成分と反応しているため、異常な反応であるが、一定方向に吸光度が上昇/低下するなどの特徴的な変化をする。これは一般的に「系統的な誤差」と分類することができる。第1試薬を添加した後の前処理反応の段階でのノイズ発生時(反応過程データの変動)の対処方法は、「突発的な誤差」と「系統的な誤差」では項目やその誤差の程度で大きく異なる。各項目の前処理反応の段階での影響を定量的に、かつ、特徴を抽出して対処することが重要となる。この第2知見に基づくと、前処理反応における反応過程データの変動を「突発的な誤差」と「系統的な誤差」に区別することができれば、反応過程データの変動が検体自体に起因する変動であるのか、あるいは、自動分析装置に起因する変動であるのかを区別することができることになる。
 上述した第1知見に基づくと、本反応が正常であったとしても、第1試薬を添加した後の妨害成分の前処理反応が、本反応の測定結果の算出に影響を及ぼすことがある。このような場合、従来技術のような本反応における反応過程データの変動チェックでは、前処理反応における反応過程データの異常変動(ノイズ)を見落としてしまう可能性がある。このことから、前処理反応の段階で反応過程データの異常変動を検出することが重要である。
 さらに、上述した第2知見に基づくと、反応過程データの変動が検体自体に起因する変動であるのか、あるいは、自動分析装置に起因する変動であるのかを特定することも重要である。この点に関し、本反応では、濃度依存的に吸光度が増加するため、本反応の吸光度の変化が大きい場合、突発的なノイズの影響は相対的に小さいため、ノイズは埋もれてしまい検出しにくい。このことは、本反応の段階では、反応過程データの変動が検体自体に起因する変動であるのか、あるいは、自動分析装置に起因する変動であるのかを特定することが困難になることを意味する。これに対し、前処理反応における反応過程データは、吸光度の変動が小さいという特徴を有していることから、突発的なノイズも顕在化しやすい。このことは、前処理反応の段階で反応過程データの異常変動を検出する技術的思想は、反応過程データの異常変動が検体自体に起因する変動であるか、あるいは、自動分析装置の機構に起因する変動であるかを感度よく判別することに適していることを意味する。したがって、前処理反応の段階で反応過程データの異常変動を検出する技術的思想は、反応過程データの異常変動の原因を追究する上でも重要な技術的意義を有していると言える。
 さらに言えば、検体に含まれる妨害成分は個々の検体ごとに異なる。妨害成分の前処理反応による影響も検体ごとに異なるため、本反応への影響も異なる。このため、本反応を近似式で近似した場合、検体成分で乖離した事象と自動分析装置の不具合などによって発生した事象かを判定することができず、系統的な分類が困難である。特に、溶血検体や高脂血症の場合、第1試薬を添加した後の反応は、他の正常検体とは大きく異なる。正常検体の前処理反応における反応過程データは、フラットなままであるが、夾雑物が一定量含まれている場合では、その夾雑物を除くための反応により、前処理反応の間に吸光度が漸近的に低下する場合もある。一方、同一の項目でも、試薬分注時の反応容器内の気泡の付着や光源ランプが不安定などの場合、ランダムな吸光度の変動が発生する。これらの自動分析装置に起因する吸光度のずれと検体に起因する吸光度の変動は混在している場合が多い。突発的に変動した項目は、再検査や自動分析装置を停止してのメンテナンスを実施することが望ましい一方で、検体の夾雑物の影響である場合、自動分析装置の不具合ではないため、再検査を自動で実施することが望ましい。しかしながら、検体に含まれる夾雑物の影響が大きい検体を測定している場合であっても、自動分析装置の測定者は、測定が終了するまで気づくことができずに再測定をすることが困難であることが実情である。
 また、異常発生時の対処方法は異なる。洗浄液の滴下等が起因で突発的なノイズが計測された場合は、自動分析装置の分析を継続せずに停止させることが重要である。このような重大な事象の発生は極めてまれである。検体の夾雑物は含有量の大小はあるが、ほとんどの検体に含まれており、多くの項目では試薬の工夫で本反応には影響しないように試薬が調整されている。しかし、検体に含まれる夾雑物の含有量が大きい場合は、本反応の濃度成分に影響する項目も存在する。その場合は、試料量を少なくして、再測定することがデータの信頼性を確保する上でも重要である。
 このことから、特定成分の濃度測定の早い段階で反応過程データの異常変動を検出することができれば、その後の対応を迅速に実施できる。すなわち、本反応よりも前の前処理反応の段階で反応過程データの異常変動を検出することは、測定を即時中断して、再測定が必要か、あるいは、自動分析装置を停止する必要があるかを測定の早い段階で判断することできることを意味する。したがって、前処理反応の段階で反応過程データの異常変動を検出する技術的思想は、検査結果報告時間の短縮と自動分析装置の状態管理を可能とする観点から非常に有用であることがわかる。
 前処理反応の具体的な事例を2例に挙げる。
 LDL-C(LDLコレステロール)等の脂質成分では、目的となる成分以外の妨害成分を除去するために前処理反応を実施している。検体中の脂質成分が過剰であった場合、前処理反応での余分な脂質成分の除去が実施しきれないため、正常な検体と異なり、前処理反応の吸光度が大きくなり、この影響を除去しきれなかった場合、妥当な測定結果を得ることができないことがある。また、血清中にグロブリン成分が過剰に含まれていた場合、生化学測定用の試薬と混合されることによって、白濁してしまい、前処理反応では上昇しないはずの反応時間において吸光度が上昇する場合がある。これによって、測定濃度が異常となる場合が生じる。上述した2例以外にも検体に含まれる成分に起因して前処理反応中に反応過程データが異常となってしまうケースがある。
 そこで、本実施の形態では、上述した第1知見に基づき、「影響変動」と「非影響変動」とを区別して、「影響変動」だけを反応過程データの異常変動として検出する工夫を施している。さらに、本実施の形態では、上述した第2知見に基づき、反応過程データの変動が検体自体に起因する変動であるのか、あるいは、自動分析装置に起因する変動であるのかを区別するための工夫も施している。以下では、この工夫を施した本実施の形態における技術的思想について説明することにする。
 <自動分析装置の構成>
 図1は、検体を分析する自動分析装置の構成例を説明する図である。
 図1において、自動分析装置100は、分析部1、記憶部14、表示部15、操作部16、制御部17を備える。分析部1は、搬送ライン4、検体プローブ5、試薬プローブ6、試薬ディスク8、反応ディスク10、撹拌部11、光度計12、洗浄部13を有する。
 搬送ライン4は、血液や尿等の検体が収容される複数の検体容器2が搭載される検体ラック3を検体プローブ5がアクセスする位置まで搬送する。なお、検体ラック3と搬送ライン4は、環状に搭載される検体容器2を移動させるために一方向に回転する検体ディスクに置き換えられてもよい。
 試薬ディスク8は、検体と反応させる試薬を収容する複数の試薬容器7を保管するとともに、試薬プローブ6がアクセスする位置へ試薬容器7を移動させるために一方向に回転する。反応ディスク10は、検体と試薬が分注される複数の反応容器9を環状に保持するとともに、所定の位置へ反応容器9を移動させるために一方向に回転する。
 検体プローブ5は、搬送ライン4によって搬送された検体ラック3に搭載される検体容器2から反応容器9へ検体を分注する。試薬プローブ6は、検体が分注された反応容器9へ試薬容器7から試薬を分注する。なお、反応容器9に分注される試薬は、一つに限られず複数であっても良い。
 撹拌部11は、反応ディスク10の周囲に配置され、検体と試薬が分注された反応容器9の中を撹拌する。光度計12は、反応ディスク10の周囲に配置され、撹拌部11によって撹拌された反応容器9の中の溶液の吸光度を反応容器9が前を横切るたびに測定する。反応ディスク10が一定のタイミングで間歇的に回転するので、反応容器9の中の溶液の吸光度は一定の時間間隔で測定される。測定された吸光度は、予め作成された検量線を用いて、検体に含まれる特定成分の濃度に換算される。なお検量線は、特定成分の濃度が既知である標準液と試薬を反応させた反応液の吸光度の測定を含むキャリブレーションの実行により作成される。洗浄部13は、反応ディスク10の周囲に配置され、分析が終了した反応容器9を洗浄する。
 キャリブレーションに使用される標準液は特定成分を含む水溶液であり、自動分析装置100の測定範囲の上限値近辺の濃度と下限値近辺の濃度を少なくとも有する。つまり、少なくとも2つの標準液が使用される。なお、特定成分の濃度が略ゼロであって試薬と反応しない標準液は第1標準液と呼ばれ、多くの場合、生理食塩水や精製水等である。
 記憶部14は、例えばHDD(Hard Disk Drive)やSSD(Solid State Drive)であり、光度計12によって測定された吸光度や吸光度から換算される濃度などが記憶される。
 表示部15は、例えば液晶ディスプレイやタッチパネルであり、吸光度や濃度などの情報が表示される。操作部16は、例えばキーボードやマウスであり、分析に必要な条件やパラメータの入力等の操作が行われる。なお、表示部15がタッチパネルである場合には、タッチパネルに表示されるGUI(Graphical User Interface)が操作部16として機能する。制御部17は、例えばCPU(Central Processing Unit)等の演算器であり、各部を制御するとともに各種演算を実行する。
 以上のようにして、自動分析装置100が構成されている。
 <反応過程データの一例>
 次に、反応過程データの一例について説明する。
 図2は、CRPの反応過程データの一例を示すグラフである。
 図2において、横軸は、測光ポイント(測光時間)を示しており、縦軸は、吸光度を示している。そして、「測光ポイント1」から「測光ポイント17」までの時間範囲が前処理反応に対応し、「測光ポイント18」から「測光ポイント34」までの時間範囲が本反応に対応している。
 図2に示す検体200Aに対するグラフでは、前処理反応における反応過程データは、ほぼフラットであり、これは、前処理反応における反応過程データの変動が少なく正常であることを示している。また、検体200Aに対するグラフでは、本反応における反応過程データが増加傾向にあることがわかる。このような検体200Aの反応過程データは、正常データの一例である。これに対し、検体200Bに対するグラフでは、前処理反応における反応過程データがフラットではなく増加傾向にある。通常、前処理反応における反応過程データはフラットであるため、増加傾向の変動を示す検体200Bの反応過程データは異常である。つまり、検体200Bの反応過程データは、異常データの一例である。
 ここで、特定成分の濃度は、例えば、本反応の吸光度と前処理反応の吸光度との差分に基づいて測定される。例えば、図2において、本反応の吸光度としては、最終測光ポイントである「測光ポイント34」の吸光度が使用される一方、前処理反応の吸光度としては、前処理反応の最終測光ポイントである「測光ポイント17」の吸光度が使用される。したがって、検体200Bの異常データでは、前処理反応の最終測光ポイントである「測光ポイント17」の吸光度が大きくなっていることから、本反応の吸光度と前処理反応の吸光度との差分に基づいて測定される特定成分の濃度に影響が及ぶことになる。つまり、図2に示す検体200Bの反応過程データの変動は、「影響変動」に該当する。
 続いて、図3は、LDL-Cの反応過程データの一例を示すグラフである。
 図3に示す検体300Aに対するグラフでは、前処理反応における反応過程データは、ほぼフラットであり、これは、前処理反応における反応過程データの変動が少なく正常であることを示している。一方、図3に示す検体300Bに対するグラフでは、前処理反応における反応過程データが減少傾向を示している。したがって、一見すると、検体300Bに対するグラフは、異常であると考えられる。しかし、実際には、検体300Bでは、妨害成分が多く含まれており、前処理反応で妨害成分の除去が進む結果、妨害成分に起因する吸光度が減少したものと考えられる。そして、前処理反応の最終段階(「測光ポイント17」)では、妨害成分がほとんど除去されて、正常な吸光度になっていると考えられる。すなわち、本反応の吸光度としては、最終測光ポイントである「測光ポイント34」の吸光度が使用される一方、前処理反応の吸光度としては、前処理反応の最終測光ポイントである「測光ポイント17」の吸光度が使用されるとすると、検体300Bの反応過程データでは、特定成分の濃度の測定に前処理反応での変動が影響を与えないことになる。つまり、検体300Bにおける反応過程データの変動は、「非影響変動」に該当する正常データということになる。
 したがって、前処理反応での異常変動を検出する際、例えば、図2に示す検体200Bにおける反応過程データの変動は、異常変動であると検出できる一方、図3に示す検体300Bにおける反応過程データの変動は、異常変動であると検出しない必要がある。
 以下では、「影響変動」を異常変動として検出する一方、「非影響変動」を異常変動として検出しない自動分析装置について説明する。
 なお、吸光度に関する表現は、自動分析装置上で整数表示しているため、本明細書に記載されている吸光度は、例えば、10000倍して整数値で表現している。
 <自動分析装置の機能ブロック構成>
 図4は、自動分析装置の機能ブロック構成を示す図である。
 図4において、自動分析装置100は、反応過程データ取得部500と、条件設定部501と、異常変動判断部502と、出力部504と、測定中断部505と、データ記憶部506とを有している。
 反応過程データ取得部500は、前処理反応において吸光度を時系列で測定することにより得られた反応過程データを取得するように構成されている。反応過程データの一例としては、図2や図3に示す反応過程データを挙げることができる。反応過程データ取得部500で取得された反応過程データは、データ記憶部506に記憶される。
 次に、条件設定部501は、吸光度に関する条件を含む初期条件を設定することができるように構成されている。例えば、図5は、条件設定部501で設定される初期条件の一例を示す表である。図5において、「項目」には、濃度の測定対象となる成分が設定される。例えば、「項目」に「LDL」が設定されている場合、「LDL」に対応する行には、「LDL」の反応過程データの解析に使用される条件が設定される。
 「項目」ごとに設定される条件には、「測光ポイント」、「ばらつき許容値」、「ポイント数」、「Err許容値」、「前処理反応の吸光度幅」、「判定方法」および「測定継続」がある。
 「測光ポイント」には、反応過程データの解析に使用される測光区間が規定される。例えば、「測光ポイント」に「5-17」と記載されている場合、「測光ポイント5」から「測光ポイント17」の反応過程データを使用して、反応過程データの解析が行われる。
 「ばらつき許容値」には、反応過程データをフィッティングした近似関数からの許容されるずれの範囲が規定される。例えば、「ばらつき許容値」に「100」と記載されている場合、近似関数からの許容されるずれの範囲が「100」であることを意味する。
 「ポイント数」には、近似関数からの許容されるずれの範囲外にある反応過程データの許容データ数が規定される。例えば、「ポイント数」に「5」と記載されている場合、ずれの許容範囲外にある反応過程データの許容データ数が「5」であることを意味する。
 「Err許容値」には、近似関数と測定された反応過程テータとに基づく二乗誤差の許容範囲が規定される。例えば、「Err許容値」に「200」と記載されている場合、二乗誤差の許容範囲が「200」であることを意味する。
 「前処理反応の吸光度幅」には、前処理反応における反応過程データの最小値と最大値との差に対する許容値が規定される。例えば、「前処理反応の吸光度幅」に「150」と記載されている場合、吸光度幅に対する許容値が「150」であることを意味する。
 「判定方法」には、吸光度に関する複数の条件をAND条件として使用するか、あるいは、OR条件として使用するかが規定される。具体的には、「ばらつき許容値」および「ポイント数」に基づく条件と、「Err許容値」に基づく条件と、「前処理反応の吸光度幅」に基づく条件のAND条件、あるいは、OR条件で反応過程データの異常変動を判断するかが規定される。例えば、「判定方法」に「AND」と記載されている場合、上述した吸光度に関する複数の条件をAND条件にして反応過程データの異常変動の有無が判断されることを意味する。
 「測定継続」には、反応過程データに異常変動があった場合に測定を継続するか、あるいは、測定を中断するかが規定される。例えば、「測定継続」に「停止」と記載されている場合、反応過程データに異常変動があった場合に測定を中断することを意味する。
 なお、図5には記載されていないが、条件設定部501では、反応過程データをフィッティングする際に使用される近似関数を選択して設定できるように構成されている。例えば、近似関数の種類として、一次関数、反比例関数、指数関数、対数関数などがあり、これらの関数の中からフィッティングに使用する近似関数を設定することができる。ただし、本実施の形態では、簡単のため、フィッティングに使用する近似関数として一次関数を選択するものとして説明することにする。
 自動分析装置100では、「影響変動」を異常変動として検出する一方、「非影響変動」を異常変動として検出しないために、条件設定部501において、図5に示す条件だけでなく、以下に示す例外条件も設定するように構成される。
 例えば、図6は、条件設定部501で設定される例外条件の一例を示す表である。図6において、「項目」には、濃度の測定対象となる成分が設定される。例えば、「項目」に「LDL」が設定されている場合、「LDL」に対応する行には、「LDL」の反応過程データを異常変動と判断しないための例外条件が規定されている。この例外条件には、「測光ポイント」、「変化方向」、「変化率」がある。
 「測光区間(測光ポイント)」には、反応過程データの測光区間が規定される。例えば、「測光ポイント」に「5-17」と記載されている場合、「測光ポイント5」から「測光ポイント17」の反応過程データが例外条件の適用範囲となることを意味している。
 「変化方向」には、例外条件となる反応過程データの変化方向が規定される。例えば、「変化方向」が「連続減少」と記載されている場合、反応過程データの変化が連続減少である場合に例外条件が適用されることを意味している。言い換えれば、「変化方向」が「連続減少」と記載されている場合、反応過程データの変化が「連続減少」以外のときは例外条件が適用されないことを意味している。
 「変化率」には、例外条件となる反応過程データの変化率が規定される。例えば、「変化率」が「100」と記載されている場合、反応過程データをフィッティングした近似関数の傾きが「100」以下である場合に例外条件が適用されることを意味している。
 なお、「コメント」の欄には、反応過程データの変動が生じる要因を端的に記載することができる。例えば、「コメント」の欄に「弱乳び影響」と記載されている場合には、「弱乳び」によって、反応過程データに例外条件に該当する変動が生じていると理解できる。
 以上のようにして、条件設定部501は、例えば、図5に示す条件とともに、図6に示す例外条件も設定するように構成されている。そして、条件設定部501で設定された吸光度に関する条件(図5および図6)は、データ記憶部506に記憶される。
 続いて、異常変動判断部502は、条件設定部501で設定された吸光度に関する条件に基づいて、前処理反応で取得された反応過程データの変動が本反応における特定成分の濃度の測定に影響を及ぼす変動であるか否かを判断するように構成されている。
 異常変動判断部502では、以下に示す判断処理を行うように構成される。
  <<第1判断処理構成>>
 異常変動判断部502は、反応過程データの最小値と最大値との差が条件設定部501で設定された「前処理反応の吸光度幅」の許容範囲内に収まっているか否かを判断するように構成されている。これにより、異常変動判断部502は、反応過程データの変動が一定の傾きを超えているか否かを判断することができる。
  <<第2判断処理構成>>
 異常変動判断部502は、近似関数(回帰直線)で反応過程データをフィッティングすることにより近似関数に含まれるパラメータを決定するように構成されたパラメータ決定部503を有する。パラメータ決定部503では、反応過程データへのフィッティングを通じて、回帰直線である「Y=aX+b」の傾き「a」とY切片「b」のパラメータを決定するように構成されている。そして、異常変動判断部502は、条件設定部501で設定された「ばらつき許容値」と「ポイント数」に基づいて、反応過程データの回帰直線からのずれを評価するように構成されている。
 具体的に、異常変動判断部502は、条件設定部501で設定された「ばらつき許容値」を「A」とすると、反応過程データが「Y=aX+b±A」の許容範囲に収まっているか否かを判断するように構成されている。そして、異常変動判断部502は、この許容範囲に収まっていない反応過程データがある場合、許容範囲に収まっていない反応過程データの数が「ポイント数」で規定されている許容データ数を超えているか否かを判断するように構成されている。これにより、異常変動判断部502は、反応過程データの変動が回帰直線からのずれの大きい変動であるかを判断することができる。
 例えば、図7は、図2に示す反応過程データのうち前処理反応での反応過程データを拡大して示すグラフである。図7では、検体200Aの反応過程データに対して破線で示す回帰直線の許容範囲で評価している状態と、検体200Bの反応過程データに対して破線で示す回帰直線の許容範囲で評価している状態とが示されている。
 図7において、検体200Aの反応過程データのうち回帰直線の許容範囲を超えている反応過程データのデータ数は、検体200Bの反応過程データのうち回帰直線の許容範囲を超えている反応過程データのデータ数よりも少ない。したがって、例えば、異常変動判断部502は、検体200Aの反応過程データのうち回帰直線の許容範囲を超えている反応過程データのデータ数が許容データ数よりも少ないと判断することができる。一方、異常変動判断部502は、検体200Bの反応過程データのうち回帰直線の許容範囲を超えている反応過程データのデータ数が許容データ数よりも多いと判断することができる。
 同様に、図8は、図3に示す反応過程データのうち前処理反応での反応過程データを拡大して示すグラフである。図8では、検体300Aの反応過程データに対して破線で示す回帰直線の許容範囲で評価している状態と、検体300Bの反応過程データに対して破線で示す回帰直線の許容範囲で評価している状態とが示されている。
 図8において、検体300Aの反応過程データのうち回帰直線の許容範囲を超えている反応過程データのデータ数は、検体300Bの反応過程データのうち回帰直線の許容範囲を超えている反応過程データのデータ数よりも少ない。したがって、例えば、異常変動判断部502は、検体300Aの反応過程データのうち回帰直線の許容範囲を超えている反応過程データのデータ数が許容データ数よりも少ないと判断することができる。一方、異常変動判断部502は、検体300Bの反応過程データのうち回帰直線の許容範囲を超えている反応過程データのデータ数が許容データ数よりも多いと判断することができる。
  <<第3判断処理構成>>
 異常変動判断部502は、条件設定部501で設定された近似関数(回帰直線)と反応過程データとの二乗誤差の許容範囲に基づいて、前処理反応で取得された反応過程データの変動が許容範囲内に収まっているか否かを判断するように構成されている。これにより、異常変動判断部502は、反応過程データのばらつきが大きいか否かを判断できる。
  <<第4判断処理構成>>
 異常変動判断部502は、前処理反応で取得された反応過程データの変動が、条件設定部501で設定された例外条件(図6参照)に該当する場合、上述した第1判断処理と第2判断処理と第3判断処理の結果に関わらず、反応過程データの変動が異常変動ではないと判断するように構成されている。
 これにより、異常変動判断部502は、「影響変動」を異常変動として検出する一方、「非影響変動」を異常変動として検出しないことになる。
  <<異常判断処理構成>>
 異常変動判断部502は、第1判断処理と第2判断処理と第3判断処理と第4判断処理の判断結果を総合的に考慮して、前処理反応における反応過程データの変動が異常変動であるか否かを判断するように構成されている。
 具体的には、条件設定部501で設定された「判定方法」に基づいて、異常変動判断部502では、前処理反応における反応過程データの変動が異常変動であるか否かが判断される。例えば、条件設定部501で設定された「判定方法」がAND条件である場合、第1判断処理で反応過程データの最小値と最大値との差が「前処理反応の吸光度幅」の許容範囲内に収まっていないと判断され、かつ、第2判断処理で反応過程データの変動が回帰直線からのずれの大きい変動であると判断され、かつ、第3判断処理で反応過程データの変動が二乗誤差の許容範囲内に収まっていないと判断され、かつ、第4判断処理で例外条件に該当しないと判断されると、異常変動判断部502において、前処理反応での反応過程データの変動が異常変動であると判断される。一方、第1判断処理と第2判断処理と第3判断処理の判断結果が上記と同じであっても、第4判断処理で例外条件に該当すると判断されると、異常変動判断部502において、前処理反応での反応過程データの変動が異常変動ではないと判断されることになる。
 このようにして、異常変動判断部502は、「影響変動」を異常変動として検出することができる一方、「非影響変動」を異常変動として検出しないように構成されている。
 例えば、図7の検体200Bに対する反応過程データは「影響変動」である一方、図8の検体300Bに対する反応過程データは、「非影響変動」である。
 この点に関し、異常変動判断部502が第4判断処理構成を有さないとすると、図7の検体200Bに対する反応過程データの変動も図8の検体300Bに対する反応過程データの変動も異常変動として判断されると考えられる。
 しかしなから、本実施の形態では、異常変動判断部502が第1判断処理構成~第3判断処理構成だけでなく、例外条件に関する第4判断処理構成も有している。この結果、本実施の形態によれば、図8に示す反応過程データの変動は、例外条件に該当するとして、異常変動とは判断されないことになる。以上のことから、本実施の形態における自動分析装置100によれば、「影響変動」を異常変動として検出する一方、「非影響変動」を異常変動として検出しない構成が具現化されることになる。
 次に、出力部504は、異常変動判断部502で判断された判断結果を出力するように構成されている。例えば、出力部504は、異常変動判断部502で判断された判断結果が異常変動であるという判断結果の場合、音声で警告を出したり、表示装置に警告文や画像を表示することができるように構成されている。出力部504からの出力方法は、予め条件設定部501で設定しておくことができる。
 図9には、出力部504から出力される表示の一例が示されている。これにより、測定者は、前処理反応において、反応過程データに異常変動が生じていることを把握することができる。さらに、本実施の形態における自動分析装置100は、異常変動判断部502で反応過程データの変動が「影響変動」であると判断された場合、検体に含まれる特定成分の濃度の測定を中断するように構成された測定中断部505を有する。この測定中断部505によって測定を中断するか否かは、予め条件設定部501で設定することができる。
 以上のことから、本実施の形態における自動分析装置100によれば、特定成分の濃度測定の早い段階(前処理反応の段階)で反応過程データの異常変動を検出することができるため、その後の対応を迅速に実施できる。すなわち、本実施の形態における自動分析装置100によれば、本反応よりも前の前処理反応の段階で反応過程データの異常変動を検出できることから、測定を即時中断して、再測定が必要か、あるいは、自動分析装置を停止する必要があるかを測定の早い段階で判断することできる。したがって、前処理反応の段階で反応過程データの「影響変動」を検出する技術的思想は、検査結果報告時間の短縮と自動分析装置の状態管理を可能とする観点から非常に有用であることがわかる。
 <自動分析装置の動作>
 続いて、自動分析装置100の動作について説明する。
 図10は、自動分析装置100での反応過程データの異常変動を検出する全体動作の流れを示すフローチャートである。図10において、まず、条件を設定する(S101)。具体的には、条件設定部501において、図5に示す吸光度に関する条件を含む初期条件を設定するとともに、図6に示す例外条件を設定する。その後、条件設定部501において、判断結果の出力方法を設定する(S102)。例えば、判断結果の出力方法としては、ブザーによる警告や警告文の表示が考えられる。そして、反応過程データの解析を開始する(S103)。以下では、反応過程データの解析動作について説明する。
 図11および図12は、反応過程データの異常変動を検出するための解析動作の流れを説明するフローチャートである。なお、本実施の形態では、反応過程データの異常変動を検出するための方法として、測定する吸光度と時間との関係を一次関数(回帰直線)で近似することにより、反応過程データを解析する方法を示す。
 まず、光度計で検体と第1試薬を混合した反応液の吸光度を測定する(S201)。これにより、前処理反応における反応過程データが取得される(S202)。取得された反応過程データは、自動分析装置100のデータ記憶部506に記憶される(S203)。ここで、例えば、データ記憶部506は、自動分析装置100に含まれている構成を前提としているが、これに限らず、データ記憶部506は、自動分析装置100とネットワーク接続されたサーバなどに搭載されていてもよい。
 次に、前処理反応における反応過程データの解析に必要な測定ポイント(測光区間)の反応過程データが取得できたかを判断する(S204)。必要な反応過程データが取得できている場合には、次の処理に進む。一方、必要な反応過程データが取得できていない場合には、反応過程データがそろうまで反応液の吸光度測定を継続する。
 続いて、取得した反応過程データに基づいて、吸光度幅を算出する(S205)。例えば、吸光度幅は、吸光度の最大値と最小値の差から算出することができる。その後、例えば、図5に示す測光ポイントで指定された測光区間の反応過程データ(吸光度)と測定時間から、「Y」を吸光度、「X」を測定時間としたときの回帰直線「Y=aX+b」の傾き「a」とY切片「b」を算出する(S206)。
 そして、算出された回帰直線の傾きとY切片から許容幅を算出する(S207)。許容幅は、例えば、図5に示す「ばらつき許容値」(Aとする)を回帰直線の両側に設定するため、許容幅は、「Y=aX+b±A」となる。本実施の形態では、「ばらつき許容値」に任意の値を設定できるようにしているが、「ばらつき許容値」は、過去の検体や精度管理試料の反応過程データにおける標準偏差に基づいて設定されてもよい。
 その後、算出した許容幅で特定される許容範囲外のデータ数を算出して、算出したデータ数をデータ記憶部506に記憶する(S208)。
 さらに、反応過程データと回帰直線との二乗誤差(Err)を算出してデータ記憶部506に記憶する(S209)。二乗誤差は、測定した吸光度(反応過程データ)と算出した回帰直線とを比較することによって算出される。二乗誤差は、反応過程データの変動が検体自体に起因する変動か、あるいは、自動分析装置100の不具合に起因する変動かを区別するために算出される。例えば、反応過程データの変動が検体の濁り成分に起因する場合、反応過程データは、一定時間間隔で徐々に増加あるいは減少する傾向がある。一方、反応過程データの変動が自動分析装置100の光学系における不具合に起因する場合、変動の傾向が一律にならずにばらつきが大きくなることが多い。
 次に、反応過程データの変動が異常変動であるいか否かを判断する(S210)。例えば、算出した許容範囲外のデータ数「B」と、算出した吸光度幅「C」と、算出した二乗誤差「Err」を、例えば、図5に示す表のように設定したポイント数「D」と、Err許容値「E」と、前処理反応の吸光度幅「F」と比較する。例えば、「B>D」かつ「Err>E」かつ「C>F」のとき、反応過程データの変動が異常変動であると判断される。ここで、判定方法は、例えば、図5の判定方法の欄に設定することができる。例えば、「OR」と設定されている場合は、「B>D」または「Err>E」または「C>F」の条件が満たされている場合に、反応過程データの変動が異常変動であると判断される。一方、例えば、「AND」と設定されている場合は、「B>D」かつ「Err>E」かつ「C>F」の条件が満たされている場合に、反応過程データの変動が異常変動であると判断される。
 反応過程データの変動が異常変動ではないと判断された場合は、処理を終了する。一方、反応過程データの変動が異常変動であると判断された場合、次に処理に進む。
 続いて、反応過程データの変動が例外項目に該当するか否かが判断される(S211)。これは、反応過程データの変動が「非影響変動」である場合には、反応過程データの変動が異常変動であると判断しないことを考慮したものである。つまり、反応過程データの変動が「非影響変動」である事例を予め例外項目に登録しておくことによって、「非影響変動」を異常変動として判断されることを防止できる。
 例えば、例外項目は、図6に示す表のように設定される。例外項目は、例えば、検体に含まれる夾雑物を前処理反応で除去するような測定項目を示しており、前処理反応中に吸光度の変化が生じる項目を指している。各項目の前処理反応における反応過程データの変動は、基本的に図5に示すパラメータに基づいて判断される。しかしながら、「LDL-C」のような項目においては、前処理反応において目的となる特定成分以外の成分を除去するために吸光度変化が生じる(例えば、図3の検体300B参照)。これ以外にも、前処理反応において吸光度変化(「非影響変動」)が生じる項目について、予め例外条件として登録しておくことができる。このような反応過程データの変動は、項目に特有の反応過程データの変動であって「非影響変動」であることから、例外項目として追加しておき、「影響変動」と区別することができる。
 まず、例外項目に該当する場合、例えば、図6のように設定された測光区間をセットする(S212)。そして、セットされた測光区間において、反応過程データの変化方向(変化傾向)が図6のように設定された「変化方向」と一致するか否か判断される(S213)。一致する場合には、図6のように設定された吸光度の変化率と回帰直線の傾き「a」とを比較して、設定値以下であるか否かが判断される(S214)。設定値以下である場合には、反応過程データの変動が「非影響変動」であるとみなして警告対象から除外する。なお、本実施の形態では、変化方向のみに言及しているが、例えば、前処理反応における測定開始吸光度や前処理反応における反応過程データの中で濃度算出ポイントにあたる吸光度を判断材料とすることもできる。
 それ以外の場合は、前処理反応における反応過程データの変動が異常変動(「影響変動」)であることを表示して(S215)、測定者に通知する。この通知方法は、図9に示すような表示例に限定されず、例えば、反応過程データに異常を示すアラームを付加する方法や自動分析装置100から警告音を鳴らす方法などによって警告することもできる。
 続いて、例えば、図5の「測定継続」の欄を参照して、測定中断設定がされているか否かを判断する(S216)。「停止」と設定されていた場合には、測定を中止する(S217)。一方、「継続」と設定されていた場合は、測定を継続して特定成分の濃度を算出する(S218)。以上のようにして、反応過程データの解析動作が終了する。
 <動作の変形例>
 上述した動作では、例外条件を設定することにより、反応過程データの「非影響変動」を反応過程データの異常変動とは判断しない例を説明したが、例外条件を設定するのではなく、反応過程データの異常変動を判断する条件に例外条件を組み込むこともできる。
 図13は、動作の変形例を説明するフローチャートである。
 本変形例では、図11に示すフローチャートに示す動作を実施した後、反応過程データの変動の変化方向を特定する(S301)。例えば、反応過程データの変動が「単調減少」や「単調増加」や「増減の繰り返し」などであるかを特定する。その後、本変形例では、反応過程データの異常変動であるか否かを判断する(S302)。ここでの判断は、実施の形態で使用した判断条件だけではなく、反応過程データの変動の変化方向と変化率に関する例外条件に相当する条件も加味されて、反応過程データの変動が異常変動であるか否かが判断される。例えば、S302での変化方向に関する判断は、S301で特定された変化方向に基づいて行われ、かつ、S302での変化率に関する判断は、S206で算出した回帰直線の傾きが設定値以下であるか否かに基づいて行われる。これにより、本変形例においても、反応過程データの「非影響変動」を反応過程データの異常変動とは判断しないようにすることができる。その後の動作は、図12に示す実施の形態と同様なので説明は省略する。以上のようにして、本変形例の動作が行われる。
 <反応過程データの変動原因の推定>
 例えば、反応過程データの変動は、自動分析装置に起因する光学系が原因の場合、ランダムに変動することが多い。一方、検体中に含まれる夾雑物は、試薬成分と反応しているため、異常な反応であるが、一定方向に吸光度が上昇/低下するなどの特徴的な変化をすることが多い。さらには、反応過程データの変動が検体の濁り成分に起因する場合、反応過程データは、一定時間間隔で徐々に増加あるいは減少する傾向がある。一方、反応過程データの変動が自動分析装置の光学系における不具合に起因する場合、変動の傾向が一律にならずにばらつきが大きくなることが多い。
 このように反応過程データの変動には、検体に含まれる夾雑物に起因する変動と自動分析装置の機構や測定条件に起因する変動がある。したがって、反応過程データの変動が、検体自体に起因しているのか、あるいは、自動分析装置の機構や測定条件に起因しているのかを特定することができれば、反応過程データの変動原因を突き止めることができるので、その後の対応が容易となる。
 この点に関し、1テスト単位の解析では、検体自体に起因しているのか、あるいは、自動分析装置の機構や測定条件に起因しているのかを特定することは困難である。
 そこで、本実施の形態では、1テスト単位(1つの検体に対する反応過程データ単位)の解析の他に、複数の検体に対する反応過程データを蓄積し、この蓄積した複数の検体に対する反応過程データを解析することにより、反応過程データの変動原因を推定している。
 以下では、この技術的思想を具現化した自動分析装置について説明する。
 図4において、自動分析装置100は、特定条件設定部600と変動原因推定部601とを有している。特定条件設定部600は、反応過程データの変動原因を特定するための特定条件を設定するように構成されている。例えば、特定条件設定部600では、図14に示す特定条件が設定される。図14において、例えば、「HDL」では、「チェック値」として二乗誤差(Err)が「50」に設定され、かつ、「チェックルール」が「連続5回」に設定されている。これは、「HDL」に対する蓄積された反応過程データにおいて、二乗誤差が「50」以上である反応過程データが連続して5回以上検出された場合(「チェックルール」に違反した場合)、反応過程データの変動が自動分析装置の機構や測定条件に起因すると判断するものである。なぜなら、連続して5回以上もばらつきの大きな反応過程データが測定されるのは、検体自体が変動原因とは考えにくく、自動分析装置の機構や測定条件が変動原因である蓋然性が高いと考えられるからである。また、「LDL」では、「チェック値」として、幅(吸光度幅)が「100」に設定され、かつ、「集計単位」が「1000テスト」に設定され、かつ、「チェックルール」が「集計単位:1%」に設定されている。これは、「LDL」に対する蓄積された反応過程データにおいて、吸光度幅が「100」以上である反応過程データが1000テストのうちの1%以上の高頻度で測定された場合(「チェックルール」に違反した場合)、反応過程データの変動が自動分析装置の機構や測定条件に起因すると判断するものである。なぜなら、高頻度で吸光度幅の大きな反応過程データが測定されるのは、検体自体が変動原因とは考えにくく、自動分析装置の機構や測定条件が変動原因であると考えられるからである。
 そして、変動原因推定部601は、特定条件設定部600で設定した特定条件(図14参照)に基づいて、検体自体に起因しているのか、あるいは、自動分析装置の機構や測定条件に起因しているのかを特定するように構成されている。
 変動原因推定部601による反応過程データの変動原因の推定は、例えば、図15に示すフローチャートにしたがって行われる。図15は、反応過程データの変動原因を推定する動作を説明するフローチャートである。図15において、まず、例えば、反応過程データを解析することにより、図14に示す「チェック値」に設定された項目のデータを取得してデータ記憶部506に記憶する(S401)。
 次に、所定数のデータが蓄積されたか否かを判断する(S402)。例えば、図14に示す「HDL」の場合、5個以上の「二乗誤差」が蓄積されているか否かが判断される。また、図14に示す「LDL」の場合、1000個以上の「幅(吸光度幅)」が蓄積されているか否かが判断される。
 続いて、蓄積されたデータが所定数以上に達した場合、図14に示す「チェックルール」に違反しているか否かが判断される(S403)。「チェックルール」に違反している場合には、反応過程データの変動が自動分析装置の機構や測定条件に起因すると推定して、警告を表示する(S404)。図16は、警告表示の一例を示す図である。
 このようにして、前処理反応における反応過程データの変動が連続で発生、あるいは、高頻度で発生している場合は、検体の夾雑物が変動原因ではなく、自動分析装置の機構や測定条件が変動原因である蓋然性が高いことから、警告を表示して、自動分析装置の機構の点検や測定条件の見直しを促すことができる。
 <応用例>
 本実施の形態における技術的思想を具現化するための反応過程データの解析手法の1つとして、直線近似法を例に挙げて説明したが、反応過程データの解析手法としては、これに限らず、例えば、以下に示す解析手法を挙げることもできる。
 この解析手法とは、前処理反応での反応過程データの解析対象区間において、対象となる測光ポイントにおける吸光度とその直前の測光ポイントにおける吸光度との差分を計算して、前処理反応での反応過程データを解析する手法である。
 図17は、UA(尿酸)の反応過程データの例を示すグラフである。この反応過程データでは、「測光ポイント1」から「測光ポイント19」までの時間が前処理反応に対応し、「測光ポイント20」から「測光ポイント38」までの範囲が本反応に対応している。
 検体700Aに対するグラフでは前処理反応における反応過程データはほぼフラットである。これは、前処理反応における反応過程データの変動が少なく正常であることを示している。これに対し、検体700Bに対するグラフでは、前処理反応における反応過程データがフラットではなく増加傾向にある。通常、前処理反応における反応過程データはフラットであるため、増加傾向を示す検体700Bの反応過程データは異常である。これは前述の通り、「影響変動」に該当する。
 図18は、CRE(クレアチニン)の反応過程データの例を示すグラフである。検体800Aに対するグラフでは、前処理反応における反応過程データは、ほぼフラットである。これは、前処理反応における反応過程データの変動が少なく正常であることを示している。一方、検体800Bでは、5ポイント付近の測光ポイントに突発的な吸光度上昇がある。この吸光度の変動はCREの濃度計算に影響しない「非影響変動」に該当する。ただし、このような変動は、その頻度が高頻度であるか否かによって自動分析装置自体の光学系に原因があることもある。
 このような反応過程データを解析するための条件が条件設定部501で設定される。例えば、図19は、条件設定部501で設定される初期条件の一例を示す表である。図19において、「項目」ごとに設定される条件には、「測光ポイント」、「変動許容値」、「ばらつき許容吸光度差」、「ポイント数」、「判定方法」、「測定継続」がある。
 「測光ポイント」には、反応過程データの解析に使用される測光区間が規定される。例えば「測光ポイント」に「5-19」と記載されている場合。「測光ポイント5」から「測光ポイント19」の反応過程データを使用して、反応過程データの解析が行われる。
 「変動許容値」には、「測光ポイント」で指定した区間における変動量の許容値が規定される。例えば「±200」と記載されている場合、指定した区間内で許容される変動の範囲は「±200」であることを意味する。「変動許容値」に「15%」と百分率で記載されている場合、指定した区間内で許容される変動の範囲は、解析対象の反応過程データの吸光度幅の「15%」であることを意味する。
 ここで、例えば、「変動許容値」が絶対数値で記載されている場合、本反応における反応過程データを測定することなく、前処理反応における反応過程データを測定した段階(測定の早い段階)で異常の有無を判断することできる。
 一方、「変動許容値」が解析対象の反応過程データの吸光度幅に対する百分率で記載されている場合、前処理反応と本反応を合わせた全体の反応過程データを測定した段階でないと、「変動許容値」に基づく異常の有無を判断することができないが、「変動許容値」を絶対数値で表現することが困難な場合に有効である。
 「ばらつき許容吸光度差」には、「測光ポイント」で規定した区間における隣り合う吸光度の差の許容される範囲が規定される。例えば「ばらつき許容吸光度差」に「100」と記載されている場合、「測光ポイント」で規定した区間における隣り合う吸光度の差の許容値が「100」であることを意味する。「ばらつき許容吸光度差」に「15%」と記載されている場合、「測光ポイント」で指定した区間における隣り合う吸光度の差の許容値は、解析対象の反応過程データの全体の吸光度変化量の「15%」であることを意味する。この場合においても、「変動許容値」と同様に、条件を絶対数値で表現した場合には、本反応における反応過程データを測定することなく、前処理反応における反応過程データを測定した段階(測定の早い段階)で異常の有無を判断することできる。一方、条件を百分率で表現することは、「ばらつき許容吸光度差」を絶対数値で表現することが困難な場合に有効である。
 「ポイント数」には、「測光ポイント」で規定した区間における隣り合う吸光度の差の中で、「ばらつき許容吸光度差」の範囲外にあるデータ個数が規定される。例えば、「ポイント数」が「2」と記載されている場合、「測光ポイント」で規定した区間における隣り合う吸光度の差が、「ばらつき許容吸光度差」の範囲外にあるデータ数が「2」以下であれば許容範囲内であることを意味する。言い換えれば、「測光ポイント」で規定した区間における隣り合う吸光度の差が、「ばらつき許容吸光度差」の範囲外にあるデータ数が「2」よりも多ければ許容範囲外であることを意味する。
 「判定方法」には解析に関する複数の条件を「AND条件」で判定するか、あるいは、「OR条件」として使用するのかについて規定される。
 「測定継続」には、反応過程データに異常変動があった場合に測定を継続するか、あるいは、測定を中断するのかについて規定される。
 次に、近似関数を使用した反応過程データの解析手法と同様に、本解析手法においても、自動分析装置100において「影響変動」を異常変動として検出する一方、「非影響変動」を異常変動として検出しないために、条件設定部501において、図19に示す条件だけでなく、図20に示すような例外条件も使用する。
 図20は、例外条件の一例を示す表である。図20において、「項目」には、濃度の測定対象となる成分が設定される。例えば、「項目」に「AST」が設定されている場合、「AST」の反応過程データを異常変動としないための例外条件が規定される。この例外条件には「測光ポイント」、「変化方向」、「変動許容値」がある。
 「測光ポイント」には、反応過程データの測光区間が規定される。例えば、「測光ポイント」に「5-19」と記載されている場合、「測光ポイント5」から「測光ポイント19」の反応過程データが例外条件の適用範囲となることを意味している。
 「変化方向」には、例外条件となる反応過程データの変化の方向が規定される。例えば、「変化方向」が「連続減少」である場合に例外条件が適用されることを意味している。
 「変動許容値」には、例外条件となる反応過程データの許容値が規定される。例えば「変動許容値」が「-400」と記載されている場合、「-400」以上であれば例外条件が適用されることを意味している。
 なお、「コメント」の欄には、反応過程データの変動が生じる要因を端的に記載することができる。「コメント」の欄に「弱乳び影響」と記載されている場合には「弱乳び」によって、反応過程データに例外条件に該当する変動が生じていると理解できる。
 条件設定部501で設定された吸光度解析に関する条件(図19および図20)は、データ記憶部506に記憶される。そして、異常変動判断部502では、条件設定部501で設定された吸光度解析に関する条件に基づいて、以下に示す判断処理が行われる。
 異常変動判断部502は、条件設定部501で設定された「測光ポイント」で演算処理を実施する。具体的に、「m-n」と指定されていた場合、測光ポイント「x」における吸光度「A(x)」とその直前の測光ポイント「x-1」における吸光度「A(x-1)の差{A(x)-A(x-1)}を測光ポイント「x=m」から測光ポイント「x=n」まで繰り返す。異常変動判断部502は、測光ポイント「x=m」から測光ポイント「x=n」まで{A(x)-A(x-1)}を計算した後、この演算した結果を合計して、「変動許容値」の範囲内に収まっているか否かを判断する。
 具体的な例を以下に示す。
 図21は、図17に示す反応過程データの前処理反応である測光ポイント「1」から測光ポイント「19」までの区間において、吸光度「A(x)」とその直前の吸光度「A(x-1)」との差{A(x)-A(x-1)}を計算して、時系列順にプロットしたグラフである。
 図17に示すように、検体700Aの場合、前処理反応における吸光度の変動がほとんどないため、図21に示す検体700Aでの吸光度「A(x)」とその直前の吸光度「A(x-1)」との差{(A(x)-A(x-1))は、「0」に近いデータで推移する。一方、検体700Bの場合、前処理反応において、時間経過に依存して吸光度が徐々に上昇している反応過程データであるため、図21に示す検体700Bのグラフは、常に「0」以上の値をとっている。このことから、検体700Bのような反応過程データの場合、測光ポイント「x=m」から測光ポイント「x=n」までの{A(x)-A(x-1)}を合計した値が大きくなる。なお、変動の方向が減少方向だった場合は、測光ポイント「x=m」から測光ポイント「x=n」までの{A(x)-A(x-1)}を計算した値を合計した値は小さくなる。異常判断部502は、条件設定部501で設定した「変動許容値」と、測光ポイント「x=m」から測光ポイント「x=n」までの{A(x)-A(x-1)}を合計した値とを比較して、前処理反応における反応過程データの変動が大きいか否かを評価する。
 次に、異常判断部502は、測光ポイント「x=m」から測光ポイント「x=n」まで{A(x)-A(x-1)}を計算したそれぞれの値の絶対値が、条件設定部501で設定された「ばらつき許容吸光度差」以下であるか否かを判定する。このとき、測光ポイント「x=m」から測光ポイント「x=n」まで{(A(x)-A(x-1))を計算したそれぞれの値の絶対値が「ばらつき許容吸光度差」を超えたデータ数が条件設定部501で設定された「ポイント数」を超えているか否かを確認する。
 図22は、図18に示す反応過程データの前処理反応である測光ポイント「1」から測光ポイント「19」の区間において、吸光度「A(x)」とその直前の吸光度A(x-1)の差{A(x)-A(x-1)}を計算して、時系列順にプロットしたグラフである。
 図18に示す検体800Aの場合、前処理反応における吸光度の変動がほとんどないため、図22に示す検体800Aでの吸光度A(x)とその直前の吸光度A(x-1)の差{A(x)-A(x-1)}は、「0」に近いデータで推移する。一方、図18に示す検体800Bの場合、前処理反応の区間において、数ポイントのばらつきがあるため、吸光度A(x)とその直前の吸光度A(x-1)の差{A(x)-A(x-1))は「0」付近で安定することなく、大きくばらついている。
 しかしながら、検体800Bでは、吸光度A(x)とその直前の吸光度A(x-1)の差{A(x)-A(x-1))がプラス側とマイナス側に変動しているため、測光ポイント「x=m」から測光ポイント「x=n」までの吸光度A(x)とその直前の吸光度A(x-1)の差{A(x)-A(x-1)}の合計値は、検体700Bの場合よりも小さくなる。このため、本解析手法でも、連続的な吸光度の上昇や減少と吸光度のばらつきを区別することができる。
 図22に示す破線は、条件設定部501で設定したCREの「ばらつき許容吸光度差」に設定した「±30」で描いている。検体800Aは全てのデータが破線の内側にあるため、異常なしと判断される。一方、検体800Bは条件設定部501において指定した「測光ポイント」において、4点のデータが破線を超えている。したがって、検体800Bは、条件設定部501で設定したCREの「ポイント数」である「2」よりも大きいため、異常と判断される。
 ここで、異常変動判断部502は、反応過程データの変動が条件設定部501で設定された例外条件(図20参照)に該当する場合、上述した結果にかかわらず、反応過程データの変動が異常変動ではないと判断する。
 なお、例えば、図19に示すように、条件設定部501で設定された「判定方法」に従って前処理反応における反応過程データが異常であるか否かが判定される。「判定方法」が「AND条件」で設定されていた場合、異常変動判断部502は、測光ポイント「x=m」から測光ポイント「x=n」まで{A(x)-A(x-1)}を計算した後、この演算した結果を合計した値が「変動許容値」を超えており、かつ、「ばらつき許容吸光度差」を超えたデータ数が「ポイント数」を上回っている場合に異常と判断する。
 これに対し、「OR条件」が設定されている場合、異常変動判断部502は、上述した2条件のいずれかが条件設定部501で設定された値を超えた場合に異常と判断する。
 異常判断部502は、このような判断を行った後、条件設定部501で設定された例外条件に該当するか否かを判断し、例外条件に該当する場合、異常判断部502は、前処理反応での反応過程データの変動が異常変動ではないと判断する。
 その他の特徴や動作に関しては近似関数を使用した解析手法と同様である。
 図23は、反応過程データの異常変動を上述した解析手法で検出するための流れを説明するフローチャートである。本応用例では、反応過程データで連続して測定される吸光度の差を用いることにより解析する手法を示す。
 まず、光度計で検体と第1試薬を混合した反応液の吸光度を測定する(S501)。これにより、前処理反応における反応過程データが取得される(S502)。取得された反応過程データは、自動分析装置100のデータ記憶部506に記憶される(S503)。ここで、例えば、データ記憶部506は、自動分析装置100に含まれている構成を前提としているが、これに限らず、データ記憶部506は、自動分析装置100とネットワーク接続されたサーバなどに搭載されていてもよい。
 次に、自動分析装置100は、前処理反応における反応過程データの解析に必要な測定ポイント(測光区間)の反応過程データが取得できたかを判断する(S504)。続いて、自動分析装置100は、条件設定部501で指定された「測光ポイント」の区間(「m-n」)において、測光ポイント「x=m」から測光ポイント「x=n」までの吸光度で吸光度差{A(x)-A(x-1)}を計算する(S505)。そして、自動分析装置100は、算出された吸光度差{A(x)-A(x-1)}の合計を計算する(S506)。
 次に、自動分析装置100は、許容値を算出する。例えば、図19に示すように、条件設定部501で「変動許容値」や「ばらつき許容吸光度差」を百分率で設定した場合は、解析対象の反応過程データの吸光度幅を基準として、許容値を計算する(S507)。そして、許容値と算出された吸光度差{A(x)-A(x-1)}の絶対値を比較して、許容範囲外となるデータ数を算出する(S508)。本応用例では、任意の数値を入力できるようにしているが、「変動許容値」と「ばらつき許容吸光度差」は過去の検体や精度管理試料の反応過程データを統計的に解析した値に基づいて設定されてもよい。
 反応過程データが異常変動であるか否かの判断は、例えば、図12の「S210」、図13の「S302」で実施する。本応用例では、条件設定部501に設定した「変動許容値」、「ポイント数」、「判定条件」に従って、異常判断部502で実施する。例えば、算出した吸光度差{A(x)-A(x-1)}の合計「G」と許容範囲外のデータ個数「H」を、条件設定部501で設定した変動許容値「I」と、ポイント数「K」とを比較する。「G>I」かつ「H>K」のとき、反応過程データは異常変動であると判定される。ここで「判定方法」に「OR」と設定されている場合は、「G>I」または「H>K」のとき、反応過程データは異常変動であると判定される。
 それ以降の判定処理は、近似直線を使用した解析手法(図12~図16)と同様の処理を行うことにより、反応過程データの変動原因の推定等を実現することができる。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 1 分析部
 2 検体容器
 3 検体ラック
 4 搬送ライン
 5 検体プローブ
 6 試薬プローブ
 7 試薬容器
 8 試薬ディスク
 9 反応容器
 10 反応ディスク
 11 撹拌部
 12 光度計
 13 洗浄部
 14 記憶部
 15 表示部
 16 操作部
 17 制御部
 100 自動分析装置
 200A 検体
 200B 検体
 300A 検体
 300B 検体
 500 反応過程データ取得部
 501 条件設定部
 502 異常変動判断部
 503 パラメータ決定部
 504 出力部
 505 測定中断部
 506 データ記憶部
 600 特定条件設定部
 601 変動原因推定部
 700A 検体
 700B 検体
 800A 検体
 800B 検体

Claims (15)

  1.  検体と試薬との反応液に対する吸光度に基づいて、前記検体に含まれる特定成分の濃度を測定するように構成された自動分析装置であって、
     前記検体と前記試薬との反応は、
     前記検体と第1の試薬とを反応させる前処理反応と、
     前記検体と前記第1の試薬以外の試薬とを反応させる本反応と、
     を含み、
     前記自動分析装置は、
     前記前処理反応において吸光度を時系列で測定することにより反応過程データを取得するように構成された反応過程データ取得部と、
     吸光度に関する条件を設定するように構成された条件設定部と、
     前記条件設定部で設定された前記条件に基づいて、前記前処理反応で取得された前記反応過程データの変動が前記本反応における前記特定成分の濃度の測定に影響を及ぼす変動であるか否かを判断するように構成された異常変動判断部と、
     前記異常変動判断部で判断された判断結果を出力するように構成された出力部と、
     を備える、自動分析装置。
  2.  請求項1に記載の自動分析装置において、
     吸光度に関する前記条件は、吸光度の範囲を示す吸光度幅を含む、自動分析装置。
  3.  請求項1に記載の自動分析装置において、
     前記異常変動判断部は、近似関数で前記反応過程データをフィッティングすることにより前記近似関数に含まれるパラメータを決定するように構成されたパラメータ決定部を有する、自動分析装置。
  4.  請求項3に記載の自動分析装置において、
     前記条件設定部は、前記近似関数からの許容されるずれの範囲を示す許容範囲を設定するように構成され、
     前記異常変動判断部は、前記許容範囲に基づいて、前記前処理反応で取得された前記反応過程データの変動が異常変動であるか否かを判断するように構成される、自動分析装置。
  5.  請求項3に記載の自動分析装置において、
     前記条件設定部は、前記近似関数と前記反応過程データとの二乗誤差の許容範囲を設定するように構成され、
     前記異常変動判断部は、前記許容範囲に基づいて、前記前処理反応で取得された前記反応過程データの変動が異常変動であるか否かを判断するように構成される、自動分析装置。
  6.  請求項1に記載の自動分析装置において、
     前記条件設定部で設定される吸光度に関する条件には、前記前処理反応で取得された前記反応過程データの変動が前記本反応における前記特定成分の濃度の測定に影響を及ぼさない変動であることを示す例外条件も含まれ、
     前記異常変動判断部は、前記前処理反応で取得された前記反応過程データの変動が前記例外条件に該当する場合、前記反応過程データの変動が異常変動ではないと判断するように構成される、自動分析装置。
  7.  請求項1に記載の自動分析装置において、
     前記自動分析装置は、前記異常変動判断部で前記反応過程データの変動が前記本反応における前記特定成分の濃度の測定に影響を及ぼす変動であると判断された場合、前記検体に含まれる特定成分の濃度の測定を中断するように構成された測定中断部を有する、自動分析装置。
  8.  請求項1に記載の自動分析装置において、
     前記前処理反応は、前記特定成分以外の成分であって前記本反応における前記吸光度の測定に影響を及ぼす妨害成分を除去する反応であり、
     前記本反応は、前記特定成分の濃度を測定するための反応である、自動分析装置。
  9.  請求項1に記載の自動分析装置において、
     前記自動分析装置は、前記本反応における吸光度と前記前処理反応における吸光度との差分に基づいて、前記特定成分の濃度を測定するように構成される、自動分析装置。
  10.  請求項1に記載の自動分析装置において、
     前記自動分析装置は、
     複数の前記検体のそれぞれに対する前記反応過程データを記憶するデータ記憶部と、
     前記データ記憶部に記憶されている複数の前記反応過程データの変動原因を特定するための特定条件を設定するように構成された特定条件設定部と、
     前記特定条件設定部で設定された前記特定条件に基づいて、前記反応過程データの変動原因を推定するように構成された変動原因推定部と、
     を有し、
     前記出力部は、前記変動原因推定部で推定された変動原因も出力するように構成される、自動分析装置。
  11.  請求項10に記載の自動分析装置において、
     前記特定条件は、前記反応過程データの変動が、前記検体に起因する変動であるのか、あるいは、前記自動分析装置に起因する変動であるのかを特定するための条件である、自動分析装置。
  12.  請求項1に記載の自動分析装置において、
     前記異常変動判断部は、時系列で測定された吸光度に含まれる互いに隣り合う第1測定ポイントの吸光度と第2測定ポイントの吸光度との吸光度差に基づいて、前記前処理反応で取得された前記反応過程データの変動が前記本反応における前記特定成分の濃度の測定に影響を及ぼす変動であるか否かを判断するように構成されている、自動分析装置。
  13.  請求項12に記載の自動分析装置において、
     前記異常変動判断部は、前記反応過程データの連続的な減少あるいは増加を判断可能に構成されている、自動分析装置。
  14.  請求項12に記載の自動分析装置において、
     前記異常変動判断部は、前記吸光度差の絶対値に基づいて、前記反応過程データの変動が許容範囲内の変動であるか否かを判断可能に構成されている、自動分析装置。
  15.  検体と試薬との反応液に対する吸光度に基づいて、前記検体に含まれる特定成分の濃度を測定する自動分析方法であって、
     前記検体と前記試薬との反応は、
     前記検体と第1の試薬とを反応させる前処理反応と、
     前記検体と前記第1の試薬以外の試薬とを反応させる本反応と、
     を含み、
     前記自動分析方法は、
     前記前処理反応において吸光度を時系列で測定することにより反応過程データを取得する反応過程データ取得工程と、
     吸光度に関する条件を設定する条件設定工程と、
     前記条件設定工程で設定された前記条件に基づいて、前記前処理反応で取得された前記反応過程データの変動が前記本反応における前記特定成分の濃度の測定に影響を及ぼす変動であるか否かを判断する異常変動判断工程と、
     前記異常変動判断工程で判断された判断結果を出力する出力工程と、
     を備える、自動分析方法。
PCT/JP2021/024619 2020-07-20 2021-06-29 自動分析装置および自動分析方法 WO2022019064A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022538661A JP7320137B2 (ja) 2020-07-20 2021-06-29 自動分析装置および自動分析方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020123484 2020-07-20
JP2020-123484 2020-07-20
JP2021092327 2021-06-01
JP2021-092327 2021-06-01

Publications (1)

Publication Number Publication Date
WO2022019064A1 true WO2022019064A1 (ja) 2022-01-27

Family

ID=79729452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024619 WO2022019064A1 (ja) 2020-07-20 2021-06-29 自動分析装置および自動分析方法

Country Status (2)

Country Link
JP (1) JP7320137B2 (ja)
WO (1) WO2022019064A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347385A (ja) * 2003-05-21 2004-12-09 Hitachi Ltd 異常検出システム及び異常検出方法
JP2005181106A (ja) * 2003-12-19 2005-07-07 Wako Pure Chem Ind Ltd 測定方法
JP2006023214A (ja) * 2004-07-09 2006-01-26 Hitachi High-Technologies Corp 測定反応過程の異常の有無判定方法,該方法を実行可能な自動分析装置及び該方法のプログラムを記憶した記憶媒体
JP2011149832A (ja) * 2010-01-22 2011-08-04 Hitachi High-Technologies Corp 自動分析装置
JP2013057587A (ja) * 2011-09-08 2013-03-28 Hitachi High-Technologies Corp 自動分析装置
JP2014145750A (ja) * 2013-01-30 2014-08-14 Shino-Test Corp 乳試料中の測定対象物質の比色測定方法、乳試料の前処理の方法及び試薬、並びに乳試料に由来する比色測定への影響の抑制方法
JP2015197370A (ja) * 2014-04-01 2015-11-09 株式会社日立ハイテクノロジーズ 自動分析装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347385A (ja) * 2003-05-21 2004-12-09 Hitachi Ltd 異常検出システム及び異常検出方法
JP2005181106A (ja) * 2003-12-19 2005-07-07 Wako Pure Chem Ind Ltd 測定方法
JP2006023214A (ja) * 2004-07-09 2006-01-26 Hitachi High-Technologies Corp 測定反応過程の異常の有無判定方法,該方法を実行可能な自動分析装置及び該方法のプログラムを記憶した記憶媒体
JP2011149832A (ja) * 2010-01-22 2011-08-04 Hitachi High-Technologies Corp 自動分析装置
JP2013057587A (ja) * 2011-09-08 2013-03-28 Hitachi High-Technologies Corp 自動分析装置
JP2014145750A (ja) * 2013-01-30 2014-08-14 Shino-Test Corp 乳試料中の測定対象物質の比色測定方法、乳試料の前処理の方法及び試薬、並びに乳試料に由来する比色測定への影響の抑制方法
JP2015197370A (ja) * 2014-04-01 2015-11-09 株式会社日立ハイテクノロジーズ 自動分析装置

Also Published As

Publication number Publication date
JP7320137B2 (ja) 2023-08-02
JPWO2022019064A1 (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
JP5193937B2 (ja) 自動分析装置、及び分析方法
US9383376B2 (en) Automatic analyzer
EP2096442B1 (en) Automatic analyzer
JP5520519B2 (ja) 自動分析装置及び分析方法
JP5795268B2 (ja) ネットワーク化された診断臨床分析装置の差し迫った分析故障を検出するための方法
EP2594944B1 (en) Automatic analysis device, analysis method and information processing device
JP4991586B2 (ja) 自動分析装置
JP4276894B2 (ja) 異常検出システム及び異常検出方法
JP5932540B2 (ja) 自動分析装置
JP6812577B2 (ja) 自動分析装置および自動分析方法
JP2010151519A (ja) 自動分析装置
JP2019086518A (ja) 血液凝固機能の評価方法
WO2022019064A1 (ja) 自動分析装置および自動分析方法
WO2020195783A1 (ja) データ解析方法、データ解析システム、および計算機
JP7299914B2 (ja) 異常判定方法、および自動分析装置
WO2022186381A1 (ja) 凝固時間延長要因の推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847397

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022538661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21847397

Country of ref document: EP

Kind code of ref document: A1