WO2022012374A1 - Ar装置中的光波导件装配方法以及ar装置 - Google Patents

Ar装置中的光波导件装配方法以及ar装置 Download PDF

Info

Publication number
WO2022012374A1
WO2022012374A1 PCT/CN2021/104693 CN2021104693W WO2022012374A1 WO 2022012374 A1 WO2022012374 A1 WO 2022012374A1 CN 2021104693 W CN2021104693 W CN 2021104693W WO 2022012374 A1 WO2022012374 A1 WO 2022012374A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
gap
bracket
image
relative position
Prior art date
Application number
PCT/CN2021/104693
Other languages
English (en)
French (fr)
Inventor
李泓
卢超
杜佳玮
赵瑜
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202180060909.4A priority Critical patent/CN116235096A/zh
Publication of WO2022012374A1 publication Critical patent/WO2022012374A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0161Head-up displays characterised by mechanical features characterised by the relative positioning of the constitutive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0169Supporting or connecting means other than the external walls
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the invention relates to the technical field of optical imaging, and in particular, to a method for assembling an optical waveguide in an AR device and an AR device.
  • AR technology can build a virtual scene based on the real physical environment, thus bringing users a new experience.
  • AR technology includes a light source, a projection lens plus an optical waveguide, and the traditional Birdbath solution.
  • For the former solution only one optical waveguide is needed in front of the user, so it is more compact and beautiful, and the user experience is better.
  • For the latter solution Due to the large size, difficult to further improve the field of view, and relatively poor experience, it is difficult to win the favor of users.
  • the scheme using the optical waveguide sheet generally includes an optical machine and an optical waveguide sheet.
  • the image is projected into the optical waveguide sheet through the optical mechanism, and then the optical waveguide sheet dilates the image two-dimensionally before projecting it into the human eye.
  • the image quality of opto-mechanical projection directly determines the quality of the image received by the human eye, and the waveguide sheet also has angular requirements for receiving light when performing two-dimensional pupil dilation on the image.
  • the traditional separate physical alignment method is usually used to determine the relative position between the optical machine and the optical waveguide sheet, and the final optical quality is not necessarily the best, especially under the conditions of mass production, it is difficult to guarantee batch production. products with good or optimal optical quality.
  • the present invention provides an optical waveguide assembly method in an AR device and an AR device, so as to solve or at least alleviate one or more of the above problems and other problems.
  • the AR device includes a bracket, an optical machine and an optical waveguide, which includes the steps of:
  • the current relative position is fixed by applying glue at least in at least a part of the gap, thereby fixing the optical waveguide to the support.
  • the bracket is provided with an accommodating space, and the optical waveguide to be assembled is partially inserted into the accommodating space, and then the optical waveguide is partially inserted into the accommodating space by aligning the light The position of the waveguide in the accommodating space is adjusted to determine the current relative position.
  • the gap is set to 0.25mm-1mm, preferably 0.55mm.
  • the preset image space attitude and distortion tolerance criteria include: whether the outgoing image received by the image receiving device is consistent with the image receiving device is aligned with a preset reference image in , the preset reference image includes a cross image.
  • the preset image space attitude and distortion tolerance criteria further include: whether the brightness and darkness of the received outgoing image conform to the preset image Brightness uniformity standard.
  • the AR device includes a bracket, an optical machine and an optical waveguide, which includes the steps:
  • the current relative position is fixed by applying glue at least in at least a part of the gap, thereby fixing the optical waveguide to the support.
  • the bracket is provided with an accommodating space, and the corresponding identification portion includes matching matching parts respectively provided on the optical waveguide and the bracket.
  • the optical waveguide to be assembled is partially inserted into the accommodating space, and then based on the first and second identification parts, the optical waveguide and the The bracket performs an alignment operation to determine and maintain the current relative position.
  • the gap is set to be 30 ⁇ m-50 ⁇ m.
  • an adhesive coating area is provided on at least one side of the optical waveguide, and one or more The through hole corresponding to the glue distribution area, and after the current relative position is determined, glue is applied to the glue distribution area through the through hole and the gap to fix the current relative position.
  • the bracket is configured to have:
  • an adhesive overflow part which is communicated with the gap and is used for accommodating the adhesive overflowing from the gap;
  • an overflow prevention part which is provided at the edge of the bracket for preventing the glue from overflowing from the gap onto the optical waveguide;
  • the adhesion enhancing part is arranged on the opposite surface of the bracket and the optical waveguide, and is used for increasing the contact area of the adhesive between the bracket and the optical waveguide.
  • the glue overflow portion is configured in a groove shape, and/or the outer contour shape of the bonding enhancement portion includes a continuous shape.
  • the protrusion shape includes a rectangle, a triangle, a circular arc, or a combination thereof.
  • the bracket is configured as a separate type, which includes a first part and at least one second part that are independent of each other, and the first part is independent of the other part.
  • the optical machine is connected to the optical waveguide, the second part is at least connected to the optical waveguide, the first part and the second part are respectively located on both sides of the optical waveguide and are connected to the optical waveguide.
  • the waveguides are respectively separated from a first gap and a second gap, and the first gap and the second gap are equal or unequal.
  • both the optical machine and the optical waveguide are arranged in parallel or perpendicularly, and/or the optical machine is arranged
  • the receiving position of the outgoing image coupled out of the optical waveguide via it is located on the same side or the opposite side of the optical waveguide.
  • the method further includes the steps of:
  • One or more prisms are assembled in the AR device and arranged between the opto-mechanical and the optical waveguide, so that the light outputted by the opto-mechanical is refracted and then coupled through the prisms into the optical waveguide.
  • the optical machine and the bracket are positioned relative to each other through a limiting structure, and at least glue is applied to fix the optical waveguide The relative position between the machine and the bracket.
  • the limiting structure includes a stepped bearing surface and a positioning hole disposed on the optical machine and/or the bracket, And/or a glue cloth area is arranged on the bracket, and the relative position between the optical machine and the bracket is fixed by applying glue to the glue cloth area.
  • an AR device comprising a support and an optical-mechanical and optical waveguide connected to the support, a gap is set between the optical waveguide and the support, and a gap is provided between the optical waveguide and the support.
  • the current relative position is determined In order to make the outgoing image coupled out from the optical waveguide via the optical machine conform to the preset image space attitude and distortion tolerance standards.
  • the bracket is provided with an accommodating space for partially inserting it into the accommodating space when assembling the optical waveguide, and then by aligning the optical waveguide
  • the current relative position is determined by performing an adjustment operation on the position in the accommodating space
  • the bracket is provided with an accommodating space, and the optical waveguide and the bracket are respectively provided with a first identification part and a second identification part for positioning and matching, so as to partially attach the optical waveguide when assembling the optical waveguide. Inserting into the accommodating space, and then performing an alignment operation on the optical waveguide and the bracket based on the first identification portion and the second identification portion to determine the current relative position.
  • the gap is set to 0.25mm-1mm, which is preferably 0.55mm; or, in the alignment operation mode, the gap is set to 30 ⁇ m -50 ⁇ m.
  • the preset image space attitude and distortion tolerance criteria include: whether the outgoing image received by the image receiving device is in agreement with a preset reference image in the image receiving device standard, the preset reference image includes a cross image.
  • the preset image space attitude and distortion tolerance criteria further include: whether the brightness of the outgoing image received by the image receiving device conforms to the preset image brightness uniformity standard.
  • At least one side of the optical waveguide is provided with an adhesive tape area, and one or more through holes corresponding to the adhesive tape area are provided on the support, After the current relative position is determined, glue is applied to the glue area through the through hole and the gap to fix the current relative position.
  • the bracket is configured to have:
  • an adhesive overflow part which is communicated with the gap and is used for accommodating the adhesive overflowing from the gap;
  • an overflow prevention part which is provided at the edge of the bracket for preventing the glue from overflowing from the gap onto the optical waveguide;
  • the adhesion enhancing part is arranged on the opposite surface of the bracket and the optical waveguide, and is used for increasing the contact area of the adhesive between the bracket and the optical waveguide.
  • the glue overflowing portion is configured in a groove shape, and/or the outer contour shape of the adhesion enhancing portion includes a continuous protruding shape, and the protruding shape includes a rectangle. , triangle, arc, or a combination thereof.
  • the bracket is configured as a separate type, which includes a first part and at least one second part independent of each other, the first part being connected to the optical machine and the optical waveguide the second part is connected to at least the optical waveguide, the first part and the second part are respectively located on both sides of the optical waveguide and are respectively separated from the optical waveguide by a first gap and a second gap, the first gap and the second gap being equal or unequal.
  • both the optical machine and the optical waveguide are arranged in parallel or vertically, and/or the optical machine is arranged to be located at the receiving position of the outgoing image the same side or the different side of the optical waveguide.
  • the AR device further includes one or more prisms, which are disposed between the opto-mechanical and the optical waveguide, and are used to make the output via the opto-mechanical The light is refracted by the prism and then coupled into the optical waveguide.
  • the optical machine and the bracket are positioned relative to each other through a limiting structure, and the relative position between the two is fixed at least by gluing.
  • the limiting structure includes a step bearing surface and a positioning hole provided on the optomechanical and/or the support, and/or the support is provided with In the glue distribution area, the relative position between the optical machine and the bracket is fixed by applying glue to the glue distribution area.
  • an AR device comprising a support and an optical machine and an optical waveguide connected to the support, characterized in that, the optical waveguide and the support are arranged between the support There is a gap, and the gap is set to 0.25mm-1mm for fixing at least by applying glue in at least a part of the gap according to the current relative position between the optical waveguide and the bracket determined during assembly The current relative position is determined such that the outgoing image coupled out from the optical waveguide via the optical machine complies with preset image space pose and distortion tolerance standards.
  • the bracket is provided with an accommodating space for partially inserting it into the accommodating space when assembling the optical waveguide, and then by aligning the optical waveguide
  • the current relative position is determined by performing an adjustment operation on the position in the accommodating space
  • the bracket is provided with an accommodating space, and the optical waveguide and the bracket are respectively provided with a first identification part and a second identification part for positioning and matching, so as to partially attach the optical waveguide when assembling the optical waveguide. Inserting into the accommodating space, and then performing an alignment operation on the optical waveguide and the bracket based on the first identification portion and the second identification portion to determine the current relative position.
  • the gap is set to 0.55mm.
  • the preset image space attitude and distortion tolerance criteria include: whether the outgoing image received by the image receiving device is in agreement with a preset reference image in the image receiving device standard, the preset reference image includes a cross image.
  • the preset image space attitude and distortion tolerance criteria further include: whether the brightness of the outgoing image received by the image receiving device conforms to the preset image brightness uniformity standard.
  • At least one side of the optical waveguide is provided with an adhesive tape area, and one or more through holes corresponding to the adhesive tape area are provided on the support, After the current relative position is determined, glue is applied to the glue area through the through hole and the gap to fix the current relative position.
  • the bracket is configured to have:
  • an adhesive overflow part which is communicated with the gap and is used for accommodating the adhesive overflowing from the gap;
  • an overflow prevention part which is provided at the edge of the bracket for preventing the glue from overflowing from the gap onto the optical waveguide;
  • an adhesive enhancement part which is provided on the surface of the support and the optical waveguide opposite to the optical waveguide, and is used for increasing the contact area of the adhesive between the support and the optical waveguide;
  • the support is constructed in a single piece comprising a first part independent of each other and at least one second part, the first part being connected to the optical machine and the optical waveguide, the second part being at least connected to the optical waveguide
  • the first part and the second part are respectively located on both sides of the optical waveguide and are separated from the optical waveguide by a first gap and a second gap, the first gap and the The second gaps are equal or unequal.
  • an AR device comprising a support and an optical machine and an optical waveguide connected to the support, characterized in that, the optical waveguide and the support are arranged between the support There is a gap for fixing the current relative position at least by applying glue in at least a part of the gap according to the current relative position between the optical waveguide and the bracket determined during assembly, and the current relative position is The relative position is determined so that the outgoing image coupled out from the optical waveguide via the optical machine complies with the preset image space attitude and distortion tolerance standards, wherein at least one side of the optical waveguide is provided with a glue area , and one or more through holes corresponding to the adhesive area are arranged on the bracket, so as to apply the adhesive to the adhesive area through the through holes and the gap after the current relative position is determined. glue to fix the current relative position.
  • the bracket is provided with an accommodating space for partially inserting it into the accommodating space when assembling the optical waveguide, and then by aligning the optical waveguide
  • the current relative position is determined by performing an adjustment operation on the position in the accommodating space
  • the bracket is provided with an accommodating space, and the optical waveguide and the bracket are respectively provided with a first identification part and a second identification part for positioning and matching, so as to partially attach the optical waveguide when assembling the optical waveguide. Inserting into the accommodating space, and then performing an alignment operation on the optical waveguide and the bracket based on the first identification portion and the second identification portion to determine the current relative position.
  • the gap is set to 0.25mm-1mm, which is preferably 0.55mm; or, in the alignment operation mode, the gap is set to 30 ⁇ m -50 ⁇ m.
  • the preset image space attitude and distortion tolerance criteria include: whether the outgoing image received by the image receiving device is in agreement with a preset reference image in the image receiving device standard, the preset reference image includes a cross image.
  • the preset image space attitude and distortion tolerance criteria further include: whether the brightness of the outgoing image received by the image receiving device conforms to the preset image brightness uniformity standard.
  • the bracket is configured to have:
  • an adhesive overflow part which is communicated with the gap and is used for accommodating the adhesive overflowing from the gap;
  • an overflow prevention part which is provided at the edge of the bracket for preventing the glue from overflowing from the gap onto the optical waveguide;
  • an adhesive enhancement part which is provided on the surface of the support and the optical waveguide opposite to the optical waveguide, and is used for increasing the contact area of the adhesive between the support and the optical waveguide;
  • the support is constructed in a single piece comprising a first part independent of each other and at least one second part, the first part being connected to the optical machine and the optical waveguide, the second part being at least connected to the optical waveguide
  • the first part and the second part are respectively located on both sides of the optical waveguide and are separated from the optical waveguide by a first gap and a second gap, the first gap and the The second gaps are equal or unequal.
  • the invention has simple structure and process, convenient assembly and operation, and can ensure that the coupled light and the surface of the optical waveguide are incident at an optimal angle by performing real-time calibration or alignment operation on the optical waveguide, and effectively reduce or eliminate problems such as assembly tolerance and grating engraving.
  • Errors, adhesive deformation, etc. have adverse effects on the imaging quality of AR devices, and improve the efficiency of optical waveguides for light transmission, which will help to manufacture AR devices with higher imaging quality, thereby improving product competitiveness and user usage. experience.
  • FIG. 1A is a flowchart of an embodiment of a method for assembling an optical waveguide in an AR device according to the present invention.
  • FIG. 1B is a flowchart of another embodiment of a method for assembling an optical waveguide in an AR device according to the present invention.
  • FIG. 2 , FIG. 3 and FIG. 4 are respectively two different three-dimensional structural schematic diagrams and a top-view structural schematic diagram of the first embodiment of the AR device according to the present invention.
  • Fig. 5 is a partial three-dimensional structural schematic diagram of the optical machine and the support in the first embodiment of the AR device according to the present invention.
  • FIG. 6 and FIG. 7 are respectively schematic three-dimensional structural diagrams of the optical waveguide in the first embodiment of the AR device according to the present invention viewed from different side perspectives.
  • FIG. 8 is a partial side structural schematic diagram of the optical waveguide and the support in the first embodiment of the AR device according to the present invention.
  • FIG. 9 is a partial top plan view of the structure of the optical waveguide and the support in the first embodiment of the AR device according to the present invention.
  • FIG. 10 is a partial perspective structural diagram of an alternative example of the optomechanical and the support shown in FIG. 9 .
  • 11 to 13 are respectively schematic diagrams for explaining three different examples of performing calibration in the embodiment of the optical waveguide assembly method in the AR device according to the present invention.
  • FIG. 14 , FIG. 15 and FIG. 16 are respectively two different three-dimensional structural schematic diagrams and a top-view structural schematic diagram of the second embodiment of the AR device according to the present invention.
  • FIG. 17 is a partial three-dimensional structural schematic diagram of the optomechanical, prism and support in the second embodiment of the AR device.
  • FIG. 18 and FIG. 19 are respectively schematic three-dimensional structural diagrams of the optical waveguide in the second embodiment of the AR device according to the present invention seen from different side views.
  • FIG. 20 , FIG. 21 and FIG. 22 are respectively two different three-dimensional structural schematic diagrams and a top-view structural schematic diagram of the third embodiment of the AR device according to the present invention.
  • FIG. 23 and FIG. 24 are respectively a schematic three-dimensional structure diagram and a top-view structure diagram of the fourth embodiment of the AR device according to the present invention.
  • the technical term “connected (or connected, etc.)” covers the direct connection of a particular component to another component and/or indirect connection to another component
  • the technical terms “upper”, “lower”, “right”, “left” ”, “vertical”, “horizontal” and their derivatives are to be associated with the orientations in the various figures, and it is to be understood that the invention may take a variety of alternative orientations
  • the technical term “substantially” is intended to include association with the measurement of a particular quantity The insubstantial error may include ⁇ 8%, ⁇ 5% or ⁇ 2% of the given value.
  • FIGS. 1A and 1B Flow charts of two different embodiments of the optical waveguide assembly method in an AR device according to the present invention are given by way of example in FIGS. 1A and 1B, respectively, and several are also shown in FIGS. 2 to 24.
  • FIGS. 2 to 24 Flow charts of two different embodiments of the optical waveguide assembly method in an AR device according to the present invention are given by way of example in FIGS. 1A and 1B, respectively, and several are also shown in FIGS. 2 to 24.
  • the embodiments of the AR device according to the present invention and the technical solutions of the present invention will be described in detail below through these exemplary specific examples.
  • FIG. 1A in conjunction with the AR device embodiments shown in other drawings, in this given embodiment of the optical waveguide assembly method, it can be fabricated by the following steps to include an opto-mechanical, a support and an optical AR devices for waveguides:
  • the optical machine 1 may be assembled to the bracket 2 first, so that the two form a fixed connection.
  • the method of the present invention does not limit the specific structures, dimensions, materials used, etc. of the optomechanical 1 and the bracket 2 themselves, nor does it limit the specific ways of how to assemble them together (such as screwing, gluing, laser welding, etc., or any combination thereof) with any limitation.
  • the method shown in FIG. 5 or FIG. 17 can be used to set any feasible limiting structure on the opto-mechanical 1 and/or the opto-mechanical 1 (for example, the step bearing surface 26 provided on the bracket 2 ).
  • the optical waveguide 3 to be assembled may be arranged relative to the bracket 2, and a gap 4 exists between them after the arrangement.
  • the optical waveguide 3 can have a gap only between one side of the optical waveguide 3 and the bracket 2, or can have a gap between both sides and the bracket 2 at the same time, and the gaps on both sides can be Allows to be set to be equal or unequal in size to each other according to application requirements.
  • such a gap is actively provided not only to reserve space for the glue 5 used to connect the optical waveguide 3 and the bracket 2 together, but to enable the subsequent assembly process
  • an operable space is provided.
  • there may be a certain gap between the optical waveguide and the bracket but this is completely passive and based on the consideration of mechanical connection, because the coated adhesive material needs to occupy a certain space, Otherwise such gaps will be removed.
  • the gaps in the present invention will be discussed in more detail later.
  • step S13 judgment and analysis of the imaging situation of the outgoing image coupled out from the optical waveguide 3 through the optical machine 1 can be performed, so as to determine the arrangement Whether the position meets the expected requirements according to the inventive concept, for example, it can be determined whether the currently obtained outgoing image meets the preset image space pose and distortion tolerance standards.
  • the optical waveguide 3 is usually provided with an in-coupling area 31 , a turning and out-coupling area 32 , and the coupling-in area 31 is used to receive the light projected by the optical machine 1 , so that it transmits and transmits light in the optical waveguide 3 .
  • Two-dimensional pupil dilation, the final image light goes through the turning and coupling-out area 32 and then exits.
  • step S14 the gap 4 can be used In the provided operable space, the relative position between the optical waveguide 3 and the bracket 2 is adjusted until it can be determined that the current outgoing image has met the image space attitude and distortion tolerance standards after adjustment.
  • the above adjustment process may be completed after one or two operations, of course, it may take more operations to achieve the goal.
  • the current relative position between the optical waveguide 3 and the bracket 2 is determined and maintained, so that the above relative position can be fixed in subsequent steps.
  • an image receiving device can be used to receive the above-mentioned outgoing image and align it with a reference image (such as a cross image, a dot, etc.) preset in the image receiving device.
  • a reference image such as a cross image, a dot, etc.
  • the image receiving device receives the cross image A' after the action of the optical waveguide 3, and then compares it with the cross image A in the image receiving device. Identify the location.
  • the inclination angle of the optical waveguide 3 can be adjusted to surround the Y axis and By rotating the Z-axis (refer to Figure 2 or Figure 3), the FOV (Field of View) pointing of the image can be adjusted in the above two degrees of freedom (which is expressed as the offset feature of the image in the image receiving device) until the above two degrees of freedom are used.
  • the two cross images A' and A are aligned and coincident. It should be understood that the above-mentioned cross image can be replaced by any other suitable image, for example, the five dot images shown in FIG. 12 or the five small cross images shown in FIG. 13, etc., the basic adjustment principle is the same or similar.
  • the above-mentioned image space attitude and distortion tolerance criteria may further include judging whether the brightness level of the outgoing image received by the image receiving device complies with a preset image brightness uniformity standard. For example, when the brightness of the received outgoing image does not reach the uniform standard, the optical waveguide 3 can be adjusted to translate in the Y-axis and Z-axis directions (refer to FIG. 2 or FIG. 3 ) until the received outgoing image is The brightness reaches the standard, and the optical waveguide 3 is adjusted in four degrees of freedom in the above process. By using the above optional light-dark degree test adjustment operation, it is possible to further optimize and determine a better relative position between the optical waveguide 3 and the bracket 2 . For example, as shown in FIG.
  • the position of the optical waveguide 3 on the YOX plane and the YOZ plane can be adjusted based on the above-mentioned judgment criteria for alignment, and then based on the above-mentioned light-dark judgment criteria.
  • the position of the optical waveguide 3 is adjusted on the Y-axis, the X-axis, and the Z-axis, so as to further ensure the uniformity of the brightness.
  • the image space pose and distortion tolerance criteria fully allow any other suitable content to be included without departing from the gist of the present invention.
  • the above-mentioned image receiving device is generally an industrial camera, and its specific parameter selection is related to the AR device to be manufactured. It is hoped that it can simulate the human eye as much as possible (indicated schematically by the number 7 in Figure 3). For example, it is usually required.
  • the entrance pupil is in front, the higher the resolution, the better, the field of view angle is larger than that of the AR device, and the distance between it and the optical waveguide is arranged to be 1cm-2cm (simulating the human eye distance), etc.
  • the optical waveguide can be fixed by, for example, gluing a part or all of the gap 4 3 and the current relative position between the bracket 2, thereby fixing them together, thereby completing the AR device in which the optical machine 1, the optical waveguide 3 and the bracket 2 are assembled into one.
  • the relative position between the optical waveguide and the support can be actively adjusted based on the image space attitude and distortion tolerance criteria, so that the coupled light and the surface of the optical waveguide can be substantially adjusted
  • the optimum angle of incidence will effectively avoid problems such as affecting the transmission efficiency of the optical waveguide due to the inappropriate coupling angle between the incident light and the surface of the optical waveguide, and causing distortion of the observed outgoing image. Therefore, the assembled The latter AR device can stably provide images of high imaging quality.
  • the inventor of the present application has noticed that since the adhesive may be deformed during assembly, when the deformation acts on the optical waveguide, the incident light will form an angular deviation when entering the optical waveguide, which may cause The final projected image will be distorted when it reaches the human eye, and will reduce the efficiency of light transmission by the optical waveguide.
  • there are gaps between both sides of the optical waveguide and the bracket for applying glue so that the effect of the adhesive deformation on the optical waveguide can be effectively balanced, thereby promoting The incident light can form a suitable coupling angle with the surface of the optical waveguide to obtain the best outgoing image quality.
  • the relative position between the optical waveguide and the bracket can be adjusted in various feasible ways when assembling the optical waveguide.
  • the bracket 2 in the AR device may be configured to have a receiving space 21 to allow the optical waveguide to be assembled during assembly 3 is partially inserted into the accommodating space 21, and then the optical waveguide 3 located in the accommodating space 21 can be adjusted in position (for example, two, three, four, five degrees of freedom can be adjusted, or in the Y-axis , X axis, Z axis, YOX plane, YOZ plane, YOZ plane (active calibration on the six degrees of freedom) to determine the appropriate relative position between it and the bracket 2, in order to achieve the desired image space attitude and distortion tolerance standards .
  • the one-sided gap or the two-sided gap between the optical waveguide and the support can be optionally set to 0.25mm-1mm (for example, it can be preferably set to be substantially 0.55mm).
  • the above gap distance when the above gap distance is used, it will help to avoid interference between the optical waveguide and the bracket due to insufficient reserved adjustment space, and to avoid the difficulty caused by excessive glue due to excessive gap. Curing, the shrinkage during curing is relatively large, which causes problems such as reliability decline.
  • FIG. 1B also shows the general steps of another embodiment of the optical waveguide assembly method in the AR device according to the present invention, unless otherwise specified, the same or similar processing steps as those in the example of FIG. 1A
  • FIG. 1B For content, reference may be made to the foregoing description and will not be repeated here.
  • step S21 the optical machine can be fixedly mounted on the bracket
  • step S22 the optical waveguides to be assembled may be arranged relative to the bracket, with a gap therebetween;
  • an alignment operation can be performed on both the optical waveguide and the bracket based on, for example, corresponding identification portions that can be respectively provided on the optical waveguide and the bracket for positioning and matching between them, such that The alignment operation may require one, two or more operations to complete in actual execution, so that the current relative position between them can be determined and maintained;
  • step S24 for example, gluing may be performed in a part or the whole of the gap between the optical waveguide and the support, so as to fix the above-determined current relative position, so that the optical waveguide can be glued.
  • the components are fixed on the bracket to complete the assembly of the optical waveguide components in the AR device.
  • the bracket 2 may be configured to have a accommodating space 21 , and a first identification portion (for example, provided on the optical waveguide 3 respectively) may be provided on the optical waveguide 3 . Two or more identification points at the two opposite corners of the two or more positions, etc.), and at the same time, a second identification portion that is adapted to the above-mentioned first identification portion is provided on the bracket 2, so that these identifications can be used during assembly. part to realize the alignment and matching operation between the optical waveguide 3 and the bracket 2 .
  • a first identification portion for example, provided on the optical waveguide 3 respectively
  • a second identification portion that is adapted to the above-mentioned first identification portion is provided on the bracket 2, so that these identifications can be used during assembly. part to realize the alignment and matching operation between the optical waveguide 3 and the bracket 2 .
  • the use of Visual alignment equipment is used to perform alignment operations on them, so as to determine the appropriate relative position between the optical waveguide 3 and the bracket 2 to meet the expected image space posture and distortion tolerance standards.
  • the existing visual alignment equipment usually adopts several cyclic processes of "photographic alignment recognition--adjustment-photographic alignment recognition--adjustment--...--photographic alignment recognition" in the entire alignment process, that is, as long as If the alignment between the target objects is found to be inaccurate, the previous steps are repeated until the final alignment is accurate.
  • the one-sided gap or the two-sided gap between the optical waveguide and the bracket can be optionally set to 30 ⁇ m-50 ⁇ m, and the specific setting value can be selected and set according to the specific application situation. This is beneficial to avoid the undesired influences that may be caused by interference during assembly, reducing the reliability of installation quality, etc. due to insufficient or excessively large clearance distance reservation as mentioned above.
  • one or more prisms 6 can be optionally added between the optical machine 1 and the optical waveguide 3 when assembling the AR device, so that such prisms 6 can be used to The light outputted by the optical machine 1 is refracted and then coupled into the optical waveguide 3 .
  • the prism 6 and the bracket 2 can be pre-connected by any suitable limiting structure, and can be fixed to the bracket 2 by a suitable method such as applying glue in the glue groove 28 .
  • the optical machine 1 and the optical waveguide 3 can be selectively assembled in a vertical arrangement according to the actual situation (Fig. 2), or they can be arranged in parallel (Fig. 14).
  • the method of the present invention also allows the optical machine 1 to be arranged on the same side of the optical waveguide 3 as the receiving position of the outgoing image, or on two different sides.
  • the gluing area 33 (its specific shape, size, and size) may be provided at a suitable position on one or both sides of the optical waveguide 3. and layout can be flexibly set according to the specific situation), and one or more through holes 22 (the specific number, shape, size and layout, etc. can also be selected on the bracket 2 corresponding to the above-mentioned glue area 33) setting) to implement, so that after determining the appropriate relative position between the optical waveguide 3 and the bracket 2, the adhesive 5 can be easily applied to the fabric of the optical waveguide 3 through the through hole 22 and the gap 4.
  • the optical waveguide 3 and the bracket 2 can be fixedly mounted together as described above.
  • the method of the present invention also allows the gluing operation to be performed from one or both sides, top and/or bottom of the receiving space 21 communicating with the gap 4 .
  • the method of the present invention also allows the gluing operation to be performed from one or both sides, top and/or bottom of the receiving space 21 communicating with the gap 4 .
  • the bracket 2 may be configured to have an adhesive reinforcement portion 23 , a glue overflow portion 24 and/or an overflow prevention portion.
  • the adhesion enhancement part 23 it can be arranged on the surface of the bracket 2 opposite to the optical waveguide 3, so as to increase the contact area of the adhesive 5 between them to improve the adhesion force.
  • the outer contour shape of the bonding reinforcement portion 23 may be configured to include but not limited to, for example, continuous triangular/zigzag protrusions, rectangular protrusions, circular arc protrusions, or combinations thereof, which are illustrated in FIGS. 9 and 10 . Sexual display.
  • the glue overflow part 24 is set to communicate with the gap 4 in order to accommodate the excess glue that may overflow from the gap 4.
  • the glue overflow part 24 can be configured as groove or other suitable shape.
  • the overflow prevention part it can be arranged at the edge of the bracket 2 to prevent the glue 5 from overflowing from the gap 4 to the optical waveguide 3 so as to avoid contaminating the optical area of the optical waveguide 3 .
  • the bracket 2 can also be constructed as a separate structure, that is, it will include a body part 2 and an additional part 2 ′, the latter and the former being separated from each other and respectively disposed in the optical waveguide
  • the two sides of the component 3 are connected to it, and there are gaps 4' and 4 respectively between them and the optical waveguide component 3, and the distances between the two gaps may be equal or unequal.
  • additional parts 2' it is possible to provide two, three or more at the same time in practical applications, and such designs may be very beneficial in some occasions.
  • the additional part 2' can also be further connected to the body part 2 by suitable structural connection means such as screws.
  • the method of the present invention does not make any particular limitation on its specific type, curing method and the like.
  • the adhesive can be any suitable adhesive material, such as UV adhesive, thermosetting adhesive, UV thermosetting adhesive, or other types of adhesives that are cured by natural light or moisture.
  • the method of the present invention also allows consideration of the additional application of one or more other connection means (eg screw connection, magnetic connection, etc.) in the case where the connection has already been achieved using glue.
  • an AR device is also provided according to the design concept of the present invention, which may include an optical machine, a bracket and an optical waveguide that are assembled to form an integral body, wherein the optical waveguide and the bracket are between the optical waveguide and the bracket.
  • a gap is set between them, so that when the optical waveguide is assembled on the bracket, the outgoing image coupled out from the optical waveguide via the optical machine installed on the bracket can meet the image space attitude and distortion tolerance standards.
  • AR device embodiments namely AR devices 100, 200, 300 and 400 are respectively illustrated in Figures 2-24, wherein the first embodiment adopts a monolithic structure, and the optomechanical 1 and the bracket 2 are respectively It is arranged along the X axis and the Y axis to form a vertical layout, and there is a double-sided gap between the optical waveguide 3 and the optical machine 1; the second embodiment also adopts an integral structure, but the optical machine 1 and the support 2 are both It is arranged along the Y axis to form a parallel layout, and there is a double-sided gap between the optical waveguide 3 and the optical machine 1; the third embodiment also adopts an integral structure, and the optical machine 1 and the bracket 2 are respectively along the X axis.
  • the axis and the Y axis are arranged to form a vertical layout, and there is only a single-sided gap between the optical waveguide 3 and the optical machine 1; the fourth embodiment adopts a split structure, and the optical machine 1 and the bracket 2 are along the
  • the X axis and the Y axis are arranged to form a vertical layout, and there is a double-sided gap between the optical waveguide 3 and the optical machine 1 .
  • the optical waveguide and the bracket are assembled together by means of adhesive, and due to the volume of the adhesive, the optical waveguide and the bracket are passively present in appearance between the optical waveguide and the bracket.
  • these existing AR devices are not as concerned with the present invention that the coupled light cannot be adjusted to the desired coupling with the surface of the optical waveguide due to many possible reasons.
  • the incident light coupled into the optical waveguide and the surface of the optical waveguide form, for example, an optimal coupling angle, so that AR device products with high imaging quality can be manufactured in batches stably and reliably.
  • an optimal coupling angle for example, an optimal coupling angle

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种AR装置(100,200,300,400)中的光波导件(3)装配方法以及AR装置(100,200,300,400)。光波导件(3)装配方法包括步骤:将AR装置中(100,200,300,400)的光机(1)固装到AR装置(100,200,300,400)中的支架(2)上(S11);将待装配的光波导件(3)相对于支架(2)进行布置并使其间具有间隙(S12);判断经由光机(1)从光波导件(3)耦出的出射图像是否符合预设的图像空间姿态及失真容许标准(S13):如果不符合,则调整光波导件(3)与支架(2)之间的相对位置直至符合(S14);如果符合,则确定并保持光波导件(3)与支架(2)之间的当前相对位置;至少通过在间隙的至少一部分内施胶来固定当前相对位置,从而将光波导件(3)固装到支架(2)上(S15)。由于结构工艺简单、装配操作方便,可以有效提高AR装置(100,200,300,400)的成像质量,提升产品竞争力和用户使用体验。

Description

AR装置中的光波导件装配方法以及AR装置
相关申请的交叉引用
本申请要求于2020年7月14日递交于中国国家知识产权局(CNIPA)的、申请号为202010672434.1发明名称为“AR装置中的光波导件装配方法以及AR装置”的中国发明专利申请的优先权,上述申请通过引用整体并入本文。
技术领域
本发明涉及光学成像技术领域,尤其涉及AR装置中的光波导件装配方法以及AR装置。
背景技术
与虚拟现实(Virtual Reality,VR)技术相比,增强现实(Augmented Reality,AR)技术能够基于现实物理环境来构建虚拟景象,从而带给使用者全新体验,因此应用AR技术的近眼显示设备日益受到关注。AR技术包括光源、投影镜头加光波导片的方案以及传统的Birdbath方案,对于前一方案由于使用者眼前只需要一个光波导片,因此更为小巧美观,使用体验更佳,而对于后一方案由于体积较大、视场角难以进一步提升、相对较差的体验等原因而难以获得用户青睐。
采用光波导片的方案一般包括光机和光波导片,通过光机将图像投影到光波导片内,然后由光波导片将图像进行二维扩瞳后,再使其投射入人眼。光机投影的图像质量直接决定着人眼接收的图像质量,而波导片在对图像进行二维扩瞳时也对接收光线存在着角度要求。现有技术通常采用传统的单独物理对准方式来确定光机与光波导片之间的相对位置,最终的光学质量不一定是最佳的,尤其在大批量生产条件下难以保证批次生产出的产品都能具有良好或最佳的光学质量。
本节所描述内容是为方便理解本申请之用,因此不应假定仅由于将其包含在本节中而认为已经属于现有技术。
发明内容
有鉴于此,本发明提供了一种AR装置中的光波导件装配方法以及AR装置,从而能够解决或者至少缓解了以上问题和其他方面的问题中的一个或多个。
首先,根据本发明的第一方面,它提供了一种AR装置中的光波导件装配方法,所述AR装置包括支架、光机和光波导件,其包括步骤:
将所述光机固装到所述支架上;
将待装配的光波导件相对于所述支架进行布置并使其间具有间隙;
判断经由所述光机从所述光波导件耦出的出射图像是否符合预设的图像空间姿态及失真容许标准:如果不符合,则调整所述光波导件与所述支架之间的相对位置直至符合;如果符合,则确定并保持所述光波导件与所述支架之间的当前相对位置;以及
至少通过在所述间隙的至少一部分内施胶来固定所述当前相对位置,从而将所述光波导件固装到所述支架上。
在根据本发明的AR装置中的光波导件装配方法中,可选地,所述支架设置有容纳空间,将待装配的光波导件部分地***所述容纳空间中,然后通过对所述光波导件在所述容纳空间内的位置进行调整操作来确定所述当前相对位置。
在根据本发明的AR装置中的光波导件装配方法中,可选地,所述间隙设置为0.25mm-1mm,其优选为0.55mm。
在根据本发明的AR装置中的光波导件装配方法中,可选地,所述预设的图像空间姿态及失真容许标准包括:通过图像接收装置接收到的出射图像是否与所述图像接收装置中的预设参考图像对准,所述预设参考图像包括十字图像。
在根据本发明的AR装置中的光波导件装配方法中,可选地,所述预设的图像空间姿态及失真容许标准还包括:所接收到的出射图像的明暗程 度是否符合预设的图像亮度均匀标准。
其次,作为可替换方案,根据本发明的第二方面,还提供了一种AR装置中的光波导件装配方法,所述AR装置包括支架、光机和光波导件,其包括步骤:
将所述光机固装到所述支架上;
将待装配的光波导件相对于所述支架进行布置并使其间具有间隙;
将所述光波导件和所述支架基于用于二者之间定位匹配的对应标识部进行对位操作,以确定并保持所述光波导件和所述支架之间的当前相对位置;以及
至少通过在所述间隙的至少一部分内施胶来固定所述当前相对位置,从而将所述光波导件固装到所述支架上。
在根据本发明的AR装置中的光波导件装配方法中,可选地,所述支架设置有容纳空间,所述对应标识部包括分别设置在所述光波导件和所述支架上的相匹配的第一标识部和第二标识部,将待装配的光波导件部分地***所述容纳空间中,然后基于所述第一标识部和所述第二标识部对所述光波导件和所述支架进行对位操作来确定并保持所述当前相对位置。
在根据本发明的AR装置中的光波导件装配方法中,可选地,所述间隙设置为30μm-50μm。
另外,在上述的根据本发明的AR装置中的光波导件装配方法中,可选地,在所述光波导件的至少一侧设置布胶区,在所述支架上设置一个或多个与所述布胶区相对应的通孔,并且在确定所述当前相对位置后,经由所述通孔和所述间隙向所述布胶区施胶来固定所述当前相对位置。
在上述的根据本发明的AR装置中的光波导件装配方法中,可选地,所述支架被构造成具有:
溢胶部,其与所述间隙相连通,用于容纳从所述间隙中溢出的粘胶;
防溢部,其设置在所述支架的边缘处,用于防止粘胶从所述间隙溢出到所述光波导件上;和/或
粘接增强部,其设置在所述支架与所述光波导件相对置的表面上,用于增大粘胶在所述支架与所述光波导件之间的接触面积。
在上述的根据本发明的AR装置中的光波导件装配方法中,可选地,所述溢胶部被构造成槽状,并且/或者所述粘接增强部的外轮廓形状包括呈连续的突起形状,所述突起形状包括矩形、三角形、圆弧形或其组合。
在上述的根据本发明的AR装置中的光波导件装配方法中,可选地,所述支架被构造成分体式,其包括彼此独立的第一部分和至少一个第二部分,所述第一部分与所述光机和所述光波导件相连,所述第二部分至少与所述光波导件相连,所述第一部分和所述第二部分分别位于所述光波导件的两侧并且与所述光波导件之间分别相距第一间隙和第二间隙,所述第一间隙和所述第二间隙相等或不相等。
在上述的根据本发明的AR装置中的光波导件装配方法中,可选地,将所述光机与所述光波导件二者平行布置或者垂直布置,并且/或者将所述光机布置成与经由其从所述光波导件耦出的出射图像的接收位置位于所述光波导件的同侧或者异侧。
在上述的根据本发明的AR装置中的光波导件装配方法中,可选地,还包括步骤:
在所述AR装置中装配一个或多个棱镜,将其布置在所述光机和所述光波导件之间,用于使得经所述光机输出的光线经由所述棱镜进行折射后再耦入至所述光波导件。
在上述的根据本发明的AR装置中的光波导件装配方法中,可选地,所述光机与所述支架之间通过限位结构进行相对定位,并且至少通过施胶来固定所述光机与所述支架之间的相对位置。
在上述的根据本发明的AR装置中的光波导件装配方法中,可选地,所述限位结构包括设置于所述光机和/或所述支架上的台阶承靠面和定位孔,并且/或者在所述支架上设置有布胶区,通过向所述布胶区施胶来固定所述光机与所述支架之间的相对位置。
此外,根据本发明的第三方面,它还提供了一种AR装置,包括支架以及与所述支架相连的光机和光波导件,所述光波导件与所述支架之间设置有间隙,用以根据在装配时确定的所述光波导件与所述支架之间的当前相对位置,至少通过在所述间隙的至少一部分内施胶来固定所述当前相对 位置,所述当前相对位置被确定为使得经由所述光机从所述光波导件耦出的出射图像符合预设的图像空间姿态及失真容许标准。
在根据本发明的AR装置中,可选地,所述支架设置有容纳空间,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后通过对所述光波导件在所述容纳空间内的位置进行调整操作来确定所述当前相对位置;或者
所述支架设置有容纳空间,并且所述光波导件和所述支架上分别设置有用于定位匹配的第一标识部和第二标识部,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后基于所述第一标识部和所述第二标识部对所述光波导件和所述支架进行对位操作来确定所述当前相对位置。
在根据本发明的AR装置中,可选地,在调整操作方式下,所述间隙设置为0.25mm-1mm,其优选为0.55mm;或者,在对位操作方式下,所述间隙设置为30μm-50μm。
在根据本发明的AR装置中,可选地,所述预设的图像空间姿态及失真容许标准包括:通过图像接收装置接收到的出射图像是否与所述图像接收装置中的预设参考图像对准,所述预设参考图像包括十字图像。
在根据本发明的AR装置中,可选地,所述预设的图像空间姿态及失真容许标准还包括:通过所述图像接收装置接收到的出射图像的明暗程度是否符合预设的图像亮度均匀标准。
在根据本发明的AR装置中,可选地,所述光波导件的至少一侧设置有布胶区,并且所述支架上设置一个或多个与所述布胶区相对应的通孔,用以在确定所述当前相对位置后,经由所述通孔和所述间隙向所述布胶区施胶来固定所述当前相对位置。
在根据本发明的AR装置中,可选地,所述支架被构造成具有:
溢胶部,其与所述间隙相连通,用于容纳从所述间隙中溢出的粘胶;
防溢部,其设置在所述支架的边缘处,用于防止粘胶从所述间隙溢出到所述光波导件上;和/或
粘接增强部,其设置在所述支架与所述光波导件相对置的表面上,用于增大粘胶在所述支架与所述光波导件之间的接触面积。
在根据本发明的AR装置中,可选地,所述溢胶部被构造成槽状,并且/或者所述粘接增强部的外轮廓形状包括呈连续的突起形状,所述突起形状包括矩形、三角形、圆弧形或其组合。
在根据本发明的AR装置中,可选地,所述支架被构造成分体式,其包括彼此独立的第一部分和至少一个第二部分,所述第一部分与所述光机和所述光波导件相连,所述第二部分至少与所述光波导件相连,所述第一部分和所述第二部分分别位于所述光波导件的两侧并且与所述光波导件之间分别相距第一间隙和第二间隙,所述第一间隙和所述第二间隙相等或不相等。
在根据本发明的AR装置中,可选地,所述光机与所述光波导件二者平行布置或者垂直布置,并且/或者所述光机被布置成与所述出射图像的接收位置位于所述光波导件的同侧或者异侧。
在根据本发明的AR装置中,可选地,所述AR装置还包括一个或多个棱镜,其设置在所述光机和所述光波导件之间,用于使得经所述光机输出的光线经由所述棱镜进行折射后再耦入至所述光波导件。
在根据本发明的AR装置中,可选地,所述光机与所述支架之间通过限位结构进行相对定位,并且二者之间的相对位置至少通过施胶来进行固定。
在根据本发明的AR装置中,可选地,所述限位结构包括设置于所述光机和/或所述支架上的台阶承靠面和定位孔,并且/或者所述支架上设置有布胶区,通过向所述布胶区施胶来固定所述光机与所述支架之间的相对位置。
此外,根据本发明的第四方面,它还提供了一种AR装置,包括支架以及与所述支架相连的光机和光波导件,其特征在于,所述光波导件与所述支架之间设置有间隙,该间隙设置为0.25mm-1mm,用以根据在装配时确定的所述光波导件与所述支架之间的当前相对位置,至少通过在所述间隙的至少一部分内施胶来固定所述当前相对位置,所述当前相对位置被确定为使得经由所述光机从所述光波导件耦出的出射图像符合预设的图像空间姿态及失真容许标准。
在根据本发明的AR装置中,可选地,所述支架设置有容纳空间,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后通过对所述光波导件在所述容纳空间内的位置进行调整操作来确定所述当前相对位置;或者
所述支架设置有容纳空间,并且所述光波导件和所述支架上分别设置有用于定位匹配的第一标识部和第二标识部,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后基于所述第一标识部和所述第二标识部对所述光波导件和所述支架进行对位操作来确定所述当前相对位置。
在根据本发明的AR装置中,可选地,在调整操作方式下,所述间隙设置为0.55mm。
在根据本发明的AR装置中,可选地,所述预设的图像空间姿态及失真容许标准包括:通过图像接收装置接收到的出射图像是否与所述图像接收装置中的预设参考图像对准,所述预设参考图像包括十字图像。
在根据本发明的AR装置中,可选地,所述预设的图像空间姿态及失真容许标准还包括:通过所述图像接收装置接收到的出射图像的明暗程度是否符合预设的图像亮度均匀标准。
在根据本发明的AR装置中,可选地,所述光波导件的至少一侧设置有布胶区,并且所述支架上设置一个或多个与所述布胶区相对应的通孔,用以在确定所述当前相对位置后,经由所述通孔和所述间隙向所述布胶区施胶来固定所述当前相对位置。
在根据本发明的AR装置中,可选地,所述支架被构造成具有:
溢胶部,其与所述间隙相连通,用于容纳从所述间隙中溢出的粘胶;
防溢部,其设置在所述支架的边缘处,用于防止粘胶从所述间隙溢出到所述光波导件上;和/或
粘接增强部,其设置在所述支架与所述光波导件相对置的表面上,用于增大粘胶在所述支架与所述光波导件之间的接触面积;并且/或者
所述支架被构造成分体式,其包括彼此独立的第一部分和至少一个第二部分,所述第一部分与所述光机和所述光波导件相连,所述第二部分至少与所述光波导件相连,所述第一部分和所述第二部分分别位于所述光波 导件的两侧并且与所述光波导件之间分别相距第一间隙和第二间隙,所述第一间隙和所述第二间隙相等或不相等。
此外,根据本发明的第五方面,它还提供了一种AR装置,包括支架以及与所述支架相连的光机和光波导件,其特征在于,所述光波导件与所述支架之间设置有间隙,用以根据在装配时确定的所述光波导件与所述支架之间的当前相对位置,至少通过在所述间隙的至少一部分内施胶来固定所述当前相对位置,所述当前相对位置被确定为使得经由所述光机从所述光波导件耦出的出射图像符合预设的图像空间姿态及失真容许标准,其中,所述光波导件的至少一侧设置有布胶区,并且所述支架上设置一个或多个与所述布胶区相对应的通孔,用以在确定所述当前相对位置后,经由所述通孔和所述间隙向所述布胶区施胶来固定所述当前相对位置。
在根据本发明的AR装置中,可选地,所述支架设置有容纳空间,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后通过对所述光波导件在所述容纳空间内的位置进行调整操作来确定所述当前相对位置;或者
所述支架设置有容纳空间,并且所述光波导件和所述支架上分别设置有用于定位匹配的第一标识部和第二标识部,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后基于所述第一标识部和所述第二标识部对所述光波导件和所述支架进行对位操作来确定所述当前相对位置。
在根据本发明的AR装置中,可选地,在调整操作方式下,所述间隙设置为0.25mm-1mm,其优选为0.55mm;或者,在对位操作方式下,所述间隙设置为30μm-50μm。
在根据本发明的AR装置中,可选地,所述预设的图像空间姿态及失真容许标准包括:通过图像接收装置接收到的出射图像是否与所述图像接收装置中的预设参考图像对准,所述预设参考图像包括十字图像。
在根据本发明的AR装置中,可选地,所述预设的图像空间姿态及失真容许标准还包括:通过所述图像接收装置接收到的出射图像的明暗程度是否符合预设的图像亮度均匀标准。
在根据本发明的AR装置中,可选地,所述支架被构造成具有:
溢胶部,其与所述间隙相连通,用于容纳从所述间隙中溢出的粘胶;
防溢部,其设置在所述支架的边缘处,用于防止粘胶从所述间隙溢出到所述光波导件上;和/或
粘接增强部,其设置在所述支架与所述光波导件相对置的表面上,用于增大粘胶在所述支架与所述光波导件之间的接触面积;并且/或者
所述支架被构造成分体式,其包括彼此独立的第一部分和至少一个第二部分,所述第一部分与所述光机和所述光波导件相连,所述第二部分至少与所述光波导件相连,所述第一部分和所述第二部分分别位于所述光波导件的两侧并且与所述光波导件之间分别相距第一间隙和第二间隙,所述第一间隙和所述第二间隙相等或不相等。
从与附图相结合的以下详细描述中,将会清楚地理解根据本发明的各技术方案的原理、特点、特征以及优点等。本发明结构工艺简单、装配操作方便,可以通过对光波导件进行实时校准或对位操作来保证耦入光线与光波导件表面呈最佳角度入射,有效降低或消除诸如组装公差、光栅刻制误差、粘胶变形等方面对于AR装置成像质量的不利影响,提升光波导件对于光线传输的效率,这将有助于制造出具备更高成像质量的AR装置,从而提高产品竞争力和用户使用体验。
附图说明
以下将结合附图和实施例对本发明的技术方案作进一步的详细描述,但是应当知道,这些附图仅是出于解释目的进行阐释,因此不必按照比例进行绘制。
图1A是一个根据本发明的AR装置中的光波导件装配方法实施例的流程图。
图1B是另一个根据本发明的AR装置中的光波导件装配方法实施例的流程图。
图2、图3和图4分别是根据本发明的AR装置第一实施例的两个不同立体结构示意图以及一个俯视结构示意图。
图5是根据本发明的AR装置第一实施例中的光机和支架的局部立体 结构示意图。
图6和图7分别是根据本发明的AR装置第一实施例中的光波导件从不同侧视角看到的立体结构示意图。
图8是根据本发明的AR装置第一实施例中的光波导件和支架的局部侧视结构示意图。
图9是根据本发明的AR装置第一实施例中的光波导件和支架的局部俯视结构示意图。
图10是图9所示光机和支架的一个替换示例的局部立体结构示意图。
图11至图13分别是用于说明在根据本发明的AR装置中的光波导件装配方法实施例中进行实施校对的三个不同示例的示意图。
图14、图15和图16分别是根据本发明的AR装置第二实施例的两个不同立体结构示意图以及一个俯视结构示意图。
图17是AR装置第二实施例中的光机、棱镜和支架的局部立体结构示意图。
图18和图19分别是根据本发明的AR装置第二实施例中的光波导件从不同侧视角所见的立体结构示意图。
图20、图21和图22分别是根据本发明的AR装置第三实施例的两个不同立体结构示意图以及一个俯视结构示意图。
图23和图24分别是根据本发明的AR装置第四实施例的立体结构示意图和俯视结构示意图。
具体实施方式
首先,需要说明的是,以下将以示例方式来说明根据本发明的AR装置中的光波导件装配方法以及AR装置的步骤、组成、结构布置及优点等,然而所有的描述不应当用来对本发明构成任何限制。在本文中,技术用语“连接(或相连等)”涵盖了特定部件直接连接至另一部件和/或间接连接至另一部件,技术用语“上”、“下”、“右”、“左”、“垂直”、“水平”及其派生词应联系各附图中的定向,并应理解本发明可以采取多种替代定向,技术术语“基本上”旨在包括与特定量的测量相关联的非实 质性误差,可以包括给定值的±8%、±5%或±2%等范围。
此外,对于在本文的实施例中予以描述或隐含的任意单个技术特征,或者被显示或隐含在各附图中的任意单个技术特征,本发明仍然允许在这些技术特征(或其等同物)之间继续进行任意组合或者删减而不存在任何的技术障碍,从而应当认为这些根据本发明的更多实施例也是在本文的记载范围之内。另外,为了简洁起见,相同或相类似的零部件和特征在同一附图中可能仅在一处或若干处进行标示,并且在本文中不多赘述本领域技术人员已经公知的一般事项,例如现有的可供在AR装置装配过程中使用的各种装配工具、工业相机、视觉对位设备等。
在图1A和图1B中以示范方式分别给出了两个根据本发明的AR装置中的光波导件装配方法的不同实施例的流程图,并且还在图2至图24中展示出了若干个根据本发明的AR装置实施例,下面将通过这些示范性的具体示例来详细介绍本发明技术方案。
首先,请参阅图1A并结合参考在其他附图中所示的AR装置实施例,在这个给出的光波导件装配方法实施例中,它可采用以下步骤来制成包括光机、支架和光波导件的AR装置:
在步骤S11中,可以先将光机1装配到支架2上,以使得二者形成固定连接。在实际应用时,本发明方法不对光机1和支架2本身的具体构造、尺寸、使用材料等方面作出限制,也不会对如何将它们装配在一起的具体方式(如螺接、胶接、激光焊接等或其任意组合)进行任何限制。仅作为举例说明,例如可以参考采用图5或图17所示方式,通过在光机1和/或光机1上设置任何可行的限位结构(例如设于支架2上的台阶承靠面26和定位孔25)用来在装配时限定二者之间的相对位置,然后可通过诸如已经施加在支架2上的布胶槽27内的粘胶等任何可行的连接方式,用来将光机1和支架2之间的相对位置固定住,从而将它们固装在一起。
然后,在步骤S12中,可以将待装配的光波导件3相对于支架2进行布置,并且使得经过布置后在它们之间存在着间隙4。应当说明的是,根据不同应用场合,可以使光波导件3仅在其一侧与支架2之间具有间隙,也可以同时在两侧均与支架2之间具有间隙,并且位于两侧的间隙允许按 照应用要求来设置成彼此尺寸相等或者不相等。不同于现有技术,在本发明中主动提供这样的间隙并非仅是为了用于将光波导件3和支架2连接在一起的粘胶5预留出空间,而是在于能够在随后的装配过程中,当可能需要对光波导件3与支架2之间相对位置进行调整时提供可操作的空间。对于现有技术来讲,可能在光波导件与支架之间也存在着一定间隙,然而这完全是被动的且基于机械连接方面考虑,原因在于所涂覆的粘接材料需要占用一定的空间,否则这样的间隙将被去除掉。关于本发明中的间隙,随后将进行更加详细的讨论。
在初步布置形成了光波导件3与支架2之间的相对位置之后,就可以在步骤S13中对通过光机1从光波导件3耦出的出射图像成像情况进行判断分析,以便确定该布置位置是否符合根据本发明构思的预期要求,例如可以判断当前得到的出射图像是否符合预设的图像空间姿态及失真容许标准。
具体来讲,光波导件3通常设置有耦入区31、转折及耦出区32,耦入区31用来接收经由光机1投射出的光线,使其在光波导件3中进行传输和二维扩瞳,最终的图像光线经历转折及耦出区32后实现出射。如果对接收到的出射图像进行判断后发现尚不符合的话,由于在之前步骤中已经在光波导件3和支架2之间预留了间隙4,那么就可以在步骤S14中,借助于间隙4提供的可操作空间,对光波导件3与支架2之间的相对位置进行调整操作,直到能在调整后判定当前的出射图像已经符合了图像空间姿态及失真容许标准。以上调整过程或许经历一次或两次操作即可完成,当然也可能要耗费更多次操作才能达到目标。
反之,一旦判定了出射图像已经符合图像空间姿态及失真容许标准,那么就确定并且保持住光波导件3和支架2之间的当前相对位置,以便可在随后步骤中将以上相对位置固定住。
对于以上提到的图像空间姿态及失真容许标准,它可以按照各种不同的实际应用情况来进行灵活选择和设定。举例而言,例如在装配时可使用图像接收装置用来接收上述的出射图像,并将它与预设在该图像接收装置中的参考图像(如十字图像、圆点等)二者是否对准作为图像空间姿态及 失真容许标准,这在图11-13中对此进行了示范性展示。
例如图11所示,当光机1投射出十字图像之后,由图像接收装置接收经过光波导件3作用后的十字图像A',然后将它与图像接收装置中的十字图像A之间的相对位置进行识别判断。当这两个十字图像A'和A未对准重合时(虽然两个十字图像平行,但是二者中心存在距离差),则可以调整光波导件3的倾斜角度以使其围绕着Y轴和Z轴(参考图2或图3)进行旋转,即可在以上两个自由度上来调整图像的FOV(Field of View)pointing(其在图像接收装置中表现为图像的偏移特征),直到以上两个十字图像A'和A对准重合。应当理解,上述的十字图像可采用任何适宜的其他图像来替代,例如采用图12中示出的五个圆点图像或者图13中示出的五个小十字图像等,其基本调整原理是相同或类似的。
再举例说明,作为一种可选情形,上述的图像空间姿态及失真容许标准还可以进一步包括判断由图像接收装置接收到的出射图像的明暗程度是否符合预设的图像亮度均匀标准。例如,当接收到的出射图像的亮度未达到均匀标准时,则可以调整光波导件3以使其在Y轴和Z轴方向上(参考图2或图3)进行平移,直到接收到的出射图像亮度达标,在以上过程中通过在四个自由度上对光波导件3进行了调整。采用以上可选的明暗程度测试调整操作,可以进一步地优化确定光波导件3与支架2之间更佳的相对位置。例如图2所示,在具体调整操作时,可以先基于上述的是否对准的判断标准来针对光波导件3在YOX平面和YOZ平面上进行位置调整,然后再基于上述的明暗判断标准来针对光波导件3在Y轴、X轴、Z轴上进行位置调整,以进一步保证亮度的均匀性。当然,在不脱离本发明主旨的情况下,图像空间姿态及失真容许标准完全允许包括任何其他的适宜内容。
上述的图像接收装置一般为工业相机,其具体参数选择与所要制造的AR装置有关,希望能够通过它来尽可能地模拟人眼(在图3中以数字7进行示意性标示),比如通常需要入瞳前置、分辨率越高越好、视场角大于AR装置的视场角、将其与光波导件之间距离布置成1cm-2cm(模拟人眼距离)等等。
在通过以上步骤已经确定并保持光波导件3和支架2之间的当前相对位置之后,接下来就可以在步骤S15中,通过例如在间隙4的一部分或全部内施胶来固定住光波导件3和支架2之间的当前相对位置,由此就将它们固装在一起,从而制成了已将光机1、光波导件3和支架2组装成一体的AR装置。
由于在以上装配过程中,已经考虑了可以基于图像空间姿态及失真容许标准来对光波导件和支架之间的相对位置进行主动调整,从而可以促使耦入光线与光波导件表面基本上呈最佳角度入射,这将有效避免由于入射光线与光波导件表面形成不合适的耦入角度而会影响到光波导件的传输效率,并且导致所观测到的出射图像产生失真等问题,因此经装配后的AR装置能够稳定提供高成像质量的图像。
此外,还需要指出的是,本案发明人经过大量研究后发现,由于AR装置及其组成零部件在涉及到例如制造工艺、装配过程等方面的因素,它们可能会对AR装置的最终成像质量造成不利影响,然而业界人士由于对此早已司空见惯而未能充分关注,甚至完全忽视了这些不利影响。
例如,在对光波导件进行光栅刻制时或多或少地存在着工艺误差,而且在将光机、光波导件和支架组装在一起时也存在着组装公差,现有技术通常依赖于工艺设备精度、生产者技术水平等来将这些误差控制在预期的合理范围内,但是并未考虑过通过在装配期间对光波导件和支架之间的相对位置进行主动调整来尽可能地弥补或消除诸如工艺误差和/或组装公差等不利因素带来的影响。
又比如,本案发明人已经注意到,由于粘胶在装配时可能会产生变形,当这种变形作用到光波导件上后将会使得入射光线在进入光波导件时形成角度偏差,从而可能造成最终投影图像到达人眼时产生失真,并且会降低光波导件对光线传输的效率。如前所述,可以在一些实施方式下,通过使光波导件的两侧与支架之间均具有间隙用来施胶,由此能有效平衡粘胶变形对于光波导件产生的作用,从而促使入射光线能与光波导件表面形成合适的耦入角度以获得最佳的出射图像质量。
以上通过图1A示例示范性地介绍了根据本发明的AR装置中的光波导 件装配方法的大致步骤过程,应理解的是,在不违背本申请主旨的情况下,本发明允许根据实际应用情形来提供更多的实现方式,而无意于仅局限在以上讨论的这些方法步骤。
举例来讲,在不同场合下,在装配光波导件时可采用多种可行的方式来对其与支架之间的相对位置进行调整操作。例如,在一些实施方式下,如图2、图14、图20和图23等附图所示,可以将AR装置中的支架2构造成具有容纳空间21,以便允许在装配时将光波导件3部分地***到该容纳空间21中,然后可对位于容纳空间21内的光波导件3进行位置调整操作(例如可调整两个、三个、四个、五个自由度,或者在Y轴、X轴、Z轴、YOX平面、YOZ平面、YOZ平面这六个自由度上进行主动校准)来确定它与支架2之间合适的相对位置,以便达到所期望的图像空间姿态及失真容许标准。在采用上述的实时调整校对方式时,可以将光波导件与支架之间的单侧间隙或双侧间隙都可选地设置为0.25mm-1mm(如可将其优选地设置成基本上0.55mm),当采用以上间隙距离时将有助于避免由于预留的调整空间不足而可能导致光波导件和支架之间产生干涉,同时避免由于间隙过大而可能造成粘胶过多带来的不易固化、固化时收缩量较大而引起可靠性下降等方面问题。
此外,在图1B中还示出了另一个根据本发明的AR装置中的光波导件装配方法实施例的大致步骤,除非特别说明之外,其中与图1A示例中相同或相类似的处理步骤等内容,可以参照前文描述而不在此重复介绍。
首先,在步骤S21中,可以将光机固装到支架上;
然后,在步骤S22中,可以将待装配的光波导件相对于支架进行布置,并且使得它们之间具有间隙;
接下来,在步骤S23中,可以基于例如可分别设置在光波导件和支架上用于在它们之间进行定位匹配的对应标识部,对光波导件和支架二者进行对位操作,这样的对位操作在实际执行时可能需要一次、两次或更多次操作来完成,从而可由此确定并保持它们之间的当前相对位置;
随后,在步骤S24中,可采用例如在光波导件和支架之间间隙的一部分或全部内进行施胶的方式,用来将上述的已经确定的当前相对位置固定 住,由此可将光波导件固装到支架上,从而完成光波导件在AR装置中的装配。
对于以上方法实施例,作为进一步举例说明,在可选情形下,可将支架2构造成具有容纳空间21,并且可在光波导件3上设置第一标识部(例如分别设置在光波导件3的两个对角等位置处的两个或更多个标识点等),同时在支架2上设置与上述第一标识部相适配的第二标识部,以便可以在装配时借助于这些标识部来实现光波导件3和支架2之间的对位匹配操作。具体来讲,当将待装配的光波导件3部分地***到支架2的容纳空间21中后,可以基于光波导件3上的第一标识部和该支架2上的第二标识部,使用视觉对位设备来对它们进行对位操作,从而确定光波导件3和支架2之间合适的相对位置以符合预期的图像空间姿态及失真容许标准。现有的视觉对位设备在整个对位过程中通常是采用“拍照对位识别--调整--拍照对位识别--调整--…--拍照对位识别”的若干循环过程,即只要发现目标对象之间对位不准确,就重复之前的步骤直至最终准确对位。在采用以上对位操作方式时,可将光波导件与支架之间的单侧间隙或双侧间隙都可选地设置为30μm-50μm,具体设置数值可按照具体应用情形来进行选择设定,这就有利于避免如前所述地由于间隙距离预留不足或过大等原因而可能在装配时产生干涉、降低安装质量可靠性等方面带来的不期望影响。
应当说明的是,根据AR装置本身的零部件组成情况,本发明方法允许具有更多可能的实施方式。作为示例说明,例如图14-17所示,在装配AR装置时可将一个或多个棱镜6可选地加装在光机1和光波导件3之间,以便通过这样的棱镜6用来对经由光机1输出的光线进行折射处理之后,再使其耦入到光波导件3。作为可选情形,棱镜6和支架2之间可通过任何合适的限位结构进行预连接,并且可采用例如在布胶槽28中施胶等合适方式将其固定到支架2上。又比如,在AR装置的装配过程中,可以根据实际情况将光机1和光波导件3二者选择装配成垂直布置(图2),或者也可考虑将它们平行布置(图14)。再比如,在可选情形下,本发明方法也允许将光机1布置成与出射图像的接收位置位于光波导件3的同侧,或者分别布置在相异的两侧。
此外,在根据本发明方法的一些实施例中,当进行施胶操作时,这可以通过设置在光波导件3的一侧或两侧上适宜位置处的布胶区33(其具体形状、尺寸和布局等可按照具体情形来灵活设定),以及设置在支架2上的与上述布胶区33相对应的一个或多个通孔22(其具体数量、形状、尺寸和布局等也可选择设定)来具体实现,以便在确定了光波导件3与支架2之间的合适相对位置之后,就可以非常方便地将粘胶5经由通孔22及间隙4施加到光波导件3的布胶区33上,从而可以将光波导件3和支架2二者如前所述地固装在一起。另外,在一些实施例中,本发明方法也允许可以从与间隙4相连通的容纳空间21的一个或两个侧部、顶部和/或底部等位置处进行施胶操作。当然,在其他的实施例中,还有可能结合使用以上讨论的这些施胶操作方式。
考虑到便于施胶操作,本发明允许对AR装置中的支架2进行各种可能的结构优化设计。例如,作为可选情形,可以将支架2构造成具有粘接增强部23、溢胶部24和/或防溢部。对于粘接增强部23,可将其设置在支架2与光波导件3相对置的表面上,以便增大粘胶5在它们之间的接触面积来提高粘接力作用。作为举例,可以粘接增强部23的外轮廓形状构造成包括但不限于例如呈连续的三角形/锯齿形突起、矩形突起、圆弧形突起或其组合,这在图9和图10进行了示意性展示。再如图4等所示,溢胶部24是设置成与间隙4相连通,以便用来容纳可能会从间隙4中溢出的多余粘胶,在实际应用中可以将该溢胶部24构造成槽状或者其他的适宜形状。对于防溢部,可将其设置在支架2的边缘位置处,以此用来防止粘胶5可能会从间隙4溢出到光波导件3上,从而能够避免污染光波导件3的光学区域。
另外,作为可选情形,还可以例如图23-24所示地将支架2构造成分体式结构,即它将包括本体部分2和附加部分2',后者与前者彼此分离并分别设置在光波导件3的两侧与之相连,它们与光波导件3之间分别相距间隙4'和间隙4,这两个间隙距离可以相等,也可以不相等。此外,理解说明的是,对于上述附加部分2',其在实际应用中有可能同时设置两个、三个或更多个,此类设计在某些场合下可能是非常有益的。应说明的 是,附加部分2'还可以通过例如螺钉等合适的结构连接方式进一步地连接至本体部分2。应用以上分体式结构,可以更加方便、灵活地实施双面布胶,这能够有效地平衡粘胶5可能在固化后产生变形对于光波导件3造成的影响。
对于本文中各处提及的粘胶,本发明方法不会对它的具体种类、固化方式等方面做出特别限制。粘胶可以采用任何适宜的粘接性材料,例如UV胶、热固胶、UV热固胶或者使用自然光或湿气等进行固化的其他类型粘胶等。另外,在已使用粘胶实现连接的情况下,本发明方法还允许考虑再额外施加一种或多种其他的连接方式(如螺接、磁性连接等)。
作为明显优于现有技术的另一方面,根据本发明的设计思想还提供了一种AR装置,它可以包括经过装配形成一体的光机、支架和光波导件,其中在光波导件与支架之间设置有间隙,以便可由此在将光波导件装配到支架上时,根据经由已安装到支架上的光机从光波导件耦出的出射图像是否符合图像空间姿态及失真容许标准,用来调整并确定光波导件与支架之间合适的相对位置,然后至少通过在间隙的至少一部分内施胶来固定上述相对位置。
在图2-24中分别阐释了四个不同的AR装置实施例,即AR装置100、200、300和400,其中,第一个实施例采用了整体式结构,并且光机1和支架2分别沿着X轴和Y轴布置而形成垂直型布局,而且光波导件3与光机1之间具有双侧间隙;第二个实施例也采用了整体式结构,但是光机1和支架2均沿着Y轴布置而形成平行型布局,并且光波导件3与光机1之间具有双侧间隙;第三个实施例同样采用了整体式结构,并且光机1和支架2分别沿着X轴和Y轴布置而形成垂直型布局,而且光波导件3与光机1之间仅具有单侧间隙;第四个实施例则采用了分体式结构,并且光机1和支架2分别沿着X轴和Y轴布置而形成垂直型布局,而且光波导件3与光机1之间具有双侧间隙。除非特别指出之外,在这些不同实施例中使用相同附图标记的特征或结构是彼此相同或相类似的,由于在前文关于本发明方法的介绍中已经针对这些AR装置实施例的结构构造、组成、装配等情况进行了详尽描述,因此可以直接参阅前述相应部分的具体说明,在此 不再赘述。
应当指出的是,虽然在一些现有AR装置中也是采用粘接方式将光波导件与支架装配在一起,并且由于粘胶体积原因而在外观上被动地呈现出在光波导件和支架之间具有一定的间隙,然而如前文中已讨论的,这些现有AR装置没有如本发明这样地关注到由于诸多可能原因而导致耦入光线未能与光波导件表面形成被调整成所期望的耦入角度以提供高成像质量的图像,特别是在大批量生产条件下,通过检测已制成的现有AR装置产品,就可以发现它们无法成批量地像本发明的AR装置那样地由于能实现耦入至光波导件的入射光线与光波导件表面形成例如最佳的耦入角度,从而能够稳定可靠地成批量制造出具有高成像质量的AR装置产品,通过进行上述检测可以发现本发明的AR装置与现有AR装置之间的显著区别,并充分理解本发明相对于现有技术的突出优势。
以上仅以举例方式来详细阐明根据本发明的AR装置中的光波导件装配方法以及AR装置,这些个例仅供说明本发明的原理及其实施方式之用,而非对本发明的限制,在不脱离本发明的精神和范围的情况下,本领域技术人员还可以做出各种变形和改进。例如,尽管AR装置中在很多场合下普遍采用呈片状结构的光波导片,但是本发明中的光波导件同样允许采用除此之外的任何适宜结构形式,例如在局部形成凸块等其他形状。因此,所有等同的技术方案均应属于本发明的范畴并为本发明的各项权利要求所限定。

Claims (31)

  1. 一种AR装置中的光波导件装配方法,所述AR装置包括支架、光机和光波导件,其特征在于,包括步骤:
    将所述光机固装到所述支架上;
    将待装配的光波导件相对于所述支架进行布置并使其间具有间隙;
    判断经由所述光机从所述光波导件耦出的出射图像是否符合预设的图像空间姿态及失真容许标准:如果不符合,则调整所述光波导件与所述支架之间的相对位置直至符合;如果符合,则确定并保持所述光波导件与所述支架之间的当前相对位置;以及
    至少通过在所述间隙的至少一部分内施胶来固定所述当前相对位置,从而将所述光波导件固装到所述支架上。
  2. 根据权利要求1所述的AR装置中的光波导件装配方法,其中,所述支架设置有容纳空间,将待装配的光波导件部分地***所述容纳空间中,然后通过对所述光波导件在所述容纳空间内的位置进行调整操作来确定所述当前相对位置;并且/或者,所述间隙设置为0.25mm-1mm,其优选为0.55mm。
  3. 根据权利要求1或2所述的AR装置中的光波导件装配方法,其中,所述预设的图像空间姿态及失真容许标准包括:通过图像接收装置接收到的出射图像是否与所述图像接收装置中的预设参考图像对准,所述预设参考图像包括十字图像。
  4. 根据权利要求3所述的AR装置中的光波导件装配方法,其中,所述预设的图像空间姿态及失真容许标准还包括:所接收到的出射图像的明暗程度是否符合预设的图像亮度均匀标准。
  5. 一种AR装置中的光波导件装配方法,所述AR装置包括支架、光机和光波导件,其特征在于,包括步骤:
    将所述光机固装到所述支架上;
    将待装配的光波导件相对于所述支架进行布置并使其间具有间隙;
    将所述光波导件和所述支架基于分别设置在各自之上用于定位匹配 的对应标识部进行对位操作,以确定并保持所述光波导件和所述支架之间的当前相对位置;以及
    至少通过在所述间隙的至少一部分内施胶来固定所述当前相对位置,从而将所述光波导件固装到所述支架上。
  6. 根据权利要求5所述的AR装置中的光波导件装配方法,其中,所述支架设置有容纳空间,所述光波导件和所述支架上分别设置有用于定位匹配的第一标识部和第二标识部,将待装配的光波导件部分地***所述容纳空间中,然后基于所述第一标识部和所述第二标识部对所述光波导件和所述支架进行对位操作来确定并保持所述当前相对位置;并且/或,所述间隙设置为30μm-50μm。
  7. 根据权利要求1-6中任一项所述的AR装置中的光波导件装配方法,其中,在所述光波导件的至少一侧设置布胶区,在所述支架上设置一个或多个与所述布胶区相对应的通孔,并且在确定所述当前相对位置后,经由所述通孔和所述间隙向所述布胶区施胶来固定所述当前相对位置。
  8. 根据权利要求1-7中任一项所述的AR装置中的光波导件装配方法,其中,所述支架被构造成具有:
    溢胶部,其与所述间隙相连通,用于容纳从所述间隙中溢出的粘胶;
    防溢部,其设置在所述支架的边缘处,用于防止粘胶从所述间隙溢出到所述光波导件上;和/或
    粘接增强部,其设置在所述支架与所述光波导件相对置的表面上,用于增大粘胶在所述支架与所述光波导件之间的接触面积;并且/或者
    所述支架被构造成分体式,其包括彼此独立的第一部分和至少一个第二部分,所述第一部分与所述光机和所述光波导件相连,所述第二部分至少与所述光波导件相连,所述第一部分和所述第二部分分别位于所述光波导件的两侧并且与所述光波导件之间分别相距第一间隙和第二间隙,所述第一间隙和所述第二间隙相等或不相等。
  9. 根据权利要求1-8中任一项所述的AR装置中的光波导件装配方法,其中,将所述光机与所述光波导件二者平行布置或者垂直布置,并且/或者将所述光机布置成与经由其从所述光波导件耦出的出射图像的接收位 置位于所述光波导件的同侧或者异侧。
  10. 根据权利要求9所述的AR装置中的光波导件装配方法,其中,还包括步骤:
    在所述AR装置中装配一个或多个棱镜,将其布置在所述光机和所述光波导件之间,用于使得经所述光机输出的光线经由所述棱镜进行折射后再耦入至所述光波导件。
  11. 根据权利要求1-10中任一项所述的AR装置中的光波导件装配方法,其中,所述光机与所述支架之间通过限位结构进行相对定位,并且至少通过施胶来固定所述光机与所述支架之间的相对位置。
  12. 一种AR装置,包括支架以及与所述支架相连的光机和光波导件,其特征在于,所述光波导件与所述支架之间设置有间隙,用以根据在装配时确定的所述光波导件与所述支架之间的当前相对位置,至少通过在所述间隙的至少一部分内施胶来固定所述当前相对位置,所述当前相对位置被确定为使得经由所述光机从所述光波导件耦出的出射图像符合预设的图像空间姿态及失真容许标准。
  13. 根据权利要求12所述的AR装置,其中,所述支架设置有容纳空间,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后通过对所述光波导件在所述容纳空间内的位置进行调整操作来确定所述当前相对位置;或者
    所述支架设置有容纳空间,并且所述光波导件和所述支架上分别设置有用于定位匹配的第一标识部和第二标识部,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后基于所述第一标识部和所述第二标识部对所述光波导件和所述支架进行对位操作来确定所述当前相对位置。
  14. 根据权利要求13所述的AR装置,其中,在调整操作方式下,所述间隙设置为0.25mm-1mm,其优选为0.55mm;或者,在对位操作方式下,所述间隙设置为30μm-50μm。
  15. 根据权利要求14所述的AR装置,其中,所述预设的图像空间姿态及失真容许标准包括:通过图像接收装置接收到的出射图像是否与所述图像接收装置中的预设参考图像对准,所述预设参考图像包括十字图像。
  16. 根据权利要求15所述的AR装置,其中,所述预设的图像空间姿态及失真容许标准还包括:通过所述图像接收装置接收到的出射图像的明暗程度是否符合预设的图像亮度均匀标准。
  17. 根据权利要求12-16中任一项所述的AR装置,其中,所述光波导件的至少一侧设置有布胶区,并且所述支架上设置一个或多个与所述布胶区相对应的通孔,用以在确定所述当前相对位置后,经由所述通孔和所述间隙向所述布胶区施胶来固定所述当前相对位置。
  18. 根据权利要求12-17中任一项所述的AR装置,其中,所述支架被构造成具有:
    溢胶部,其与所述间隙相连通,用于容纳从所述间隙中溢出的粘胶;
    防溢部,其设置在所述支架的边缘处,用于防止粘胶从所述间隙溢出到所述光波导件上;和/或
    粘接增强部,其设置在所述支架与所述光波导件相对置的表面上,用于增大粘胶在所述支架与所述光波导件之间的接触面积;并且/或者
    所述支架被构造成分体式,其包括彼此独立的第一部分和至少一个第二部分,所述第一部分与所述光机和所述光波导件相连,所述第二部分至少与所述光波导件相连,所述第一部分和所述第二部分分别位于所述光波导件的两侧并且与所述光波导件之间分别相距第一间隙和第二间隙,所述第一间隙和所述第二间隙相等或不相等。
  19. 一种AR装置,包括支架以及与所述支架相连的光机和光波导件,其特征在于,所述光波导件与所述支架之间设置有间隙,该间隙设置为0.25mm-1mm,用以根据在装配时确定的所述光波导件与所述支架之间的当前相对位置,至少通过在所述间隙的至少一部分内施胶来固定所述当前相对位置,所述当前相对位置被确定为使得经由所述光机从所述光波导件耦出的出射图像符合预设的图像空间姿态及失真容许标准。
  20. 根据权利要求19所述的AR装置,其中,所述支架设置有容纳空间,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后通过对所述光波导件在所述容纳空间内的位置进行调整操作来确定所述当前相对位置;或者
    所述支架设置有容纳空间,并且所述光波导件和所述支架上分别设置有用于定位匹配的第一标识部和第二标识部,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后基于所述第一标识部和所述第二标识部对所述光波导件和所述支架进行对位操作来确定所述当前相对位置。
  21. 根据权利要求20所述的AR装置,其中,在调整操作方式下,所述间隙设置为0.55mm。
  22. 根据权利要求21所述的AR装置,其中,所述预设的图像空间姿态及失真容许标准包括:通过图像接收装置接收到的出射图像是否与所述图像接收装置中的预设参考图像对准,所述预设参考图像包括十字图像。
  23. 根据权利要求22所述的AR装置,其中,所述预设的图像空间姿态及失真容许标准还包括:通过所述图像接收装置接收到的出射图像的明暗程度是否符合预设的图像亮度均匀标准。
  24. 根据权利要求19-23中任一项所述的AR装置,其中,所述光波导件的至少一侧设置有布胶区,并且所述支架上设置一个或多个与所述布胶区相对应的通孔,用以在确定所述当前相对位置后,经由所述通孔和所述间隙向所述布胶区施胶来固定所述当前相对位置。
  25. 根据权利要求19-24中任一项所述的AR装置,其中,所述支架被构造成具有:
    溢胶部,其与所述间隙相连通,用于容纳从所述间隙中溢出的粘胶;
    防溢部,其设置在所述支架的边缘处,用于防止粘胶从所述间隙溢出到所述光波导件上;和/或
    粘接增强部,其设置在所述支架与所述光波导件相对置的表面上,用于增大粘胶在所述支架与所述光波导件之间的接触面积;并且/或者
    所述支架被构造成分体式,其包括彼此独立的第一部分和至少一个第二部分,所述第一部分与所述光机和所述光波导件相连,所述第二部分至少与所述光波导件相连,所述第一部分和所述第二部分分别位于所述光波导件的两侧并且与所述光波导件之间分别相距第一间隙和第二间隙,所述第一间隙和所述第二间隙相等或不相等。
  26. 一种AR装置,包括支架以及与所述支架相连的光机和光波导件, 其特征在于,所述光波导件与所述支架之间设置有间隙,用以根据在装配时确定的所述光波导件与所述支架之间的当前相对位置,至少通过在所述间隙的至少一部分内施胶来固定所述当前相对位置,所述当前相对位置被确定为使得经由所述光机从所述光波导件耦出的出射图像符合预设的图像空间姿态及失真容许标准,其中,所述光波导件的至少一侧设置有布胶区,并且所述支架上设置一个或多个与所述布胶区相对应的通孔,用以在确定所述当前相对位置后,经由所述通孔和所述间隙向所述布胶区施胶来固定所述当前相对位置。
  27. 根据权利要求26所述的AR装置,其中,所述支架设置有容纳空间,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后通过对所述光波导件在所述容纳空间内的位置进行调整操作来确定所述当前相对位置;或者
    所述支架设置有容纳空间,并且所述光波导件和所述支架上分别设置有用于定位匹配的第一标识部和第二标识部,用以在装配所述光波导件时将其部分地***所述容纳空间中,然后基于所述第一标识部和所述第二标识部对所述光波导件和所述支架进行对位操作来确定所述当前相对位置。
  28. 根据权利要求27所述的AR装置,其中,在调整操作方式下,所述间隙设置为0.25mm-1mm,其优选为0.55mm;或者,在对位操作方式下,所述间隙设置为30μm-50μm。
  29. 根据权利要求28所述的AR装置,其中,所述预设的图像空间姿态及失真容许标准包括:通过图像接收装置接收到的出射图像是否与所述图像接收装置中的预设参考图像对准,所述预设参考图像包括十字图像。
  30. 根据权利要求29所述的AR装置,其中,所述预设的图像空间姿态及失真容许标准还包括:通过所述图像接收装置接收到的出射图像的明暗程度是否符合预设的图像亮度均匀标准。
  31. 根据权利要求26-30中任一项所述的AR装置,其中,所述支架被构造成具有:
    溢胶部,其与所述间隙相连通,用于容纳从所述间隙中溢出的粘胶;
    防溢部,其设置在所述支架的边缘处,用于防止粘胶从所述间隙溢出 到所述光波导件上;和/或
    粘接增强部,其设置在所述支架与所述光波导件相对置的表面上,用于增大粘胶在所述支架与所述光波导件之间的接触面积;并且/或者
    所述支架被构造成分体式,其包括彼此独立的第一部分和至少一个第二部分,所述第一部分与所述光机和所述光波导件相连,所述第二部分至少与所述光波导件相连,所述第一部分和所述第二部分分别位于所述光波导件的两侧并且与所述光波导件之间分别相距第一间隙和第二间隙,所述第一间隙和所述第二间隙相等或不相等。
PCT/CN2021/104693 2020-07-14 2021-07-06 Ar装置中的光波导件装配方法以及ar装置 WO2022012374A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180060909.4A CN116235096A (zh) 2020-07-14 2021-07-06 Ar装置中的光波导件装配方法以及ar装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010672434.1 2020-07-14
CN202010672434.1A CN113933991A (zh) 2020-07-14 2020-07-14 Ar装置中的光波导件装配方法以及ar装置

Publications (1)

Publication Number Publication Date
WO2022012374A1 true WO2022012374A1 (zh) 2022-01-20

Family

ID=79272566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104693 WO2022012374A1 (zh) 2020-07-14 2021-07-06 Ar装置中的光波导件装配方法以及ar装置

Country Status (2)

Country Link
CN (4) CN113933994A (zh)
WO (1) WO2022012374A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885205A (zh) * 2021-10-07 2022-01-04 北京蜂巢世纪科技有限公司 一种智能眼镜及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933994A (zh) * 2020-07-14 2022-01-14 宁波舜宇光电信息有限公司 Ar装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762885B1 (en) * 1999-08-26 2004-07-13 Olympus Corporation Head-mounted display
CN109445035A (zh) * 2017-08-23 2019-03-08 弗莱克斯有限公司 波导组合件和对准设计及集成
CN209911660U (zh) * 2019-05-31 2020-01-07 深圳光启超材料技术有限公司 一种光波导显示模组调节结构、护目镜和头盔
CN110824611A (zh) * 2019-11-21 2020-02-21 歌尔股份有限公司 均匀性补偿方法、光波导***及增强现实设备
CN111133362A (zh) * 2017-10-22 2020-05-08 鲁姆斯有限公司 采用光具座的头戴式增强现实设备
CN111240023A (zh) * 2020-03-30 2020-06-05 杭州光粒科技有限公司 一种ar连接装置和ar眼镜装置及ar眼镜装配方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269046B2 (ja) * 2013-12-26 2018-01-31 セイコーエプソン株式会社 虚像表示装置
CN104267478A (zh) * 2014-10-13 2015-01-07 中山联合光电科技有限公司 一种滤光片的安装装置
CN106526855A (zh) * 2016-11-30 2017-03-22 深圳多哚新技术有限责任公司 一种vr眼镜的光学组件安装结构及调节方法
US11119328B2 (en) * 2017-08-23 2021-09-14 Flex Ltd. Light projection engine attachment and alignment
CN110780445A (zh) * 2018-11-12 2020-02-11 芋头科技(杭州)有限公司 用于装配光学成像***的主动校准的方法及***
CN110967169A (zh) * 2019-12-16 2020-04-07 塔普翊海(上海)智能科技有限公司 一种可透视ar眼镜光学模组的检测台及检测方法
CN113933994A (zh) * 2020-07-14 2022-01-14 宁波舜宇光电信息有限公司 Ar装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762885B1 (en) * 1999-08-26 2004-07-13 Olympus Corporation Head-mounted display
CN109445035A (zh) * 2017-08-23 2019-03-08 弗莱克斯有限公司 波导组合件和对准设计及集成
CN111133362A (zh) * 2017-10-22 2020-05-08 鲁姆斯有限公司 采用光具座的头戴式增强现实设备
CN209911660U (zh) * 2019-05-31 2020-01-07 深圳光启超材料技术有限公司 一种光波导显示模组调节结构、护目镜和头盔
CN110824611A (zh) * 2019-11-21 2020-02-21 歌尔股份有限公司 均匀性补偿方法、光波导***及增强现实设备
CN111240023A (zh) * 2020-03-30 2020-06-05 杭州光粒科技有限公司 一种ar连接装置和ar眼镜装置及ar眼镜装配方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885205A (zh) * 2021-10-07 2022-01-04 北京蜂巢世纪科技有限公司 一种智能眼镜及其制造方法

Also Published As

Publication number Publication date
CN113933993A (zh) 2022-01-14
CN113933994A (zh) 2022-01-14
CN113933991A (zh) 2022-01-14
CN116235096A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2022012374A1 (zh) Ar装置中的光波导件装配方法以及ar装置
WO2022022240A1 (zh) 投影模组及其组装方法和包括投影模组的近眼显示设备
US10114224B2 (en) Discrete laser fiber inputs for image projectors
JP2003086779A (ja) 固体撮像装置およびその製造方法、固体撮像ユニットおよびその製造方法、撮像機器
JPH09502313A (ja) 映写表示システムのための表示パネルマウント
WO2022042443A1 (zh) 增强现实设备装配方法和增强现实设备
US20060209297A1 (en) System and method for assembling optical components
US6847766B2 (en) Optical fiber alignment system
CN207663157U (zh) 光学模组组装设备
CN2935182Y (zh) 高转角精度的五角棱镜组
CN206725924U (zh) 相机镜筒及相机
CN112987150A (zh) 复合棱镜模块以及图像获取模块
CN101533157B (zh) 影像合成组件和液晶投影装置
CN117434742A (zh) 一种折转光路透镜同轴度装调方法及***
KR100442954B1 (ko) 광학엔진의 프리즘 정합구조 및 그 검사 방법
CN215449728U (zh) 镜头模组
CN212694240U (zh) 一种反射镜调节装置、投影光机及投影仪
CN221079075U (zh) 一种智能眼镜
TW202131027A (zh) 複合稜鏡模組、影像擷取模組以及複合稜鏡模組的組裝方法
JP2875933B2 (ja) 光学部品の角度調整装置
TWI414839B (zh) 鏡片及鏡頭模組
CN112987151A (zh) 复合棱镜模块、影像撷取模块以及复合棱镜模块的组装方法
TW202131026A (zh) 複合稜鏡模組以及影像擷取模組
JPH04157405A (ja) 光素子モジュール
CN108680996A (zh) 一种单镜头光纤熔接机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843394

Country of ref document: EP

Kind code of ref document: A1