WO2022011663A1 - 一种低碳钢表面致密耐磨涂层的制备方法 - Google Patents

一种低碳钢表面致密耐磨涂层的制备方法 Download PDF

Info

Publication number
WO2022011663A1
WO2022011663A1 PCT/CN2020/102579 CN2020102579W WO2022011663A1 WO 2022011663 A1 WO2022011663 A1 WO 2022011663A1 CN 2020102579 W CN2020102579 W CN 2020102579W WO 2022011663 A1 WO2022011663 A1 WO 2022011663A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon steel
resistant coating
low
wear
powder
Prior art date
Application number
PCT/CN2020/102579
Other languages
English (en)
French (fr)
Inventor
孟君晟
于利民
史晓萍
王永东
金国
王铀
Original Assignee
山东交通学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东交通学院 filed Critical 山东交通学院
Priority to PCT/CN2020/102579 priority Critical patent/WO2022011663A1/zh
Priority to CN202080006607.4A priority patent/CN113166918B/zh
Priority to JP2023503178A priority patent/JP7457427B2/ja
Publication of WO2022011663A1 publication Critical patent/WO2022011663A1/zh
Priority to ZA2022/03916A priority patent/ZA202203916B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention relates to the technical field of metal surface coating, in particular to a preparation method of a compact wear-resistant coating on the surface of low carbon steel.
  • Wear and corrosion are the main forms of failure of metal materials, especially machine parts under working conditions, such as gears, cylinder liners, and crankshafts of various engines.
  • the performance of high temperature oxidation resistance is an important factor in determining the length of the machine's service life. Therefore, the use of advanced surface strengthening technology to prepare the required wear-resistant coating on the surface of ordinary materials is an effective method to prevent the surface wear of metal materials. This method can significantly improve the service life of parts and save energy materials and energy.
  • Thermal spraying technology is one of the common surface repair and protection technologies at present. It has the advantages of high production efficiency, simple operation, good economic benefits, and high material utilization rate.
  • thermal spraying technologies among which supersonic arc spraying is one of the typical technologies of thermal spraying, although supersonic spraying coatings can obtain higher wear resistance.
  • defects such as pores, cracks, small coating thickness, and poor bonding with the substrate in the spray coating, resulting in poor compactness of the spray coating, and cracking may occur in harsh environments (such as high stress, high temperature and cyclic fatigue). or peeling, limiting its application range.
  • the purpose of the present invention is to provide a preparation method of a compact wear-resistant coating on the surface of a low carbon steel, so as to solve the problem of poor compactness of the wear-resistant coating prepared by supersonic spraying in the prior art.
  • the present invention provides the following scheme:
  • a preparation method of a dense wear-resistant coating on a low-carbon steel surface comprising:
  • the Si, W, Ti, Al, Cr, Ni, La and Fe elemental powders are weighed according to the preset ratio; the preset ratio is: the Si is 8.5-10.5wt.%, and the W is 6.5 ⁇ 8.5wt.%, the Ti is 4.5 ⁇ 7.5wt.%, the Al is 2.5 ⁇ 4.5wt.%, the Cr is 12 ⁇ 20wt.%, the Ni is 5.5 ⁇ 10.5wt.%, so the The La is 1-2% wt.%, and the balance is the Fe;
  • the weighed powder is ball-milled and mixed in a ball mill, and then dried to obtain a filling powder;
  • the filling powder is placed in a U-shaped steel strip groove;
  • the U-shaped steel strip groove is made of cold-rolled strip steel;
  • the rust on the surface of the low carbon steel to be coated is removed to obtain the decontaminated low carbon steel to be coated;
  • the coating is remelted by a non-melting tungsten argon arc machine to obtain a dense wear-resistant coating.
  • the mixing time of the ball milling is 4-6 hours, the drying temperature is 120-150° C., and the drying time is 1-2 hours.
  • the ball mill is a planetary ball mill.
  • the weight ratio of the filling powder to the U-shaped steel strip groove is (0.4-0.6):1.
  • the wire drawing speed of the wire drawing machine is 160-220 mm/s, and the preset diameter of the powder core wire material is 2 mm.
  • the rust on the surface of the low carbon steel to be coated is removed to obtain the decontaminated low carbon steel to be coated, which specifically includes:
  • the 14-25 mesh brown corundum is used for sand blasting under the air pressure of 0.7MPa to remove the rust on the surface of the low carbon steel to be coated, and the decontaminated low carbon steel to be coated is obtained.
  • the parameters of the supersonic arc spraying equipment in spraying are: the spraying voltage of the supersonic arc spraying equipment is 25-30V, the spraying current of the supersonic arc spraying equipment is 150-180A, and the spraying air pressure of the supersonic arc spraying equipment. 0.7 ⁇ 1.2MPa, the spraying distance of the supersonic arc spraying equipment is 180 ⁇ 220mm, the wire feeding speed of the supersonic arc spraying equipment is 78 ⁇ 85cm/min, the moving speed of the spray gun is 12 ⁇ 18mm/s, and the spraying thickness is 1.5mm ⁇ 2.5mm.
  • the parameters of the non-melting tungsten argon arc machine in remelting are: remelting current 100-150A, remelting voltage 18-24V, remelting speed 100-150mm/min, argon gas flow 8- 12L/min.
  • the ball milling mixing time is 5h
  • the drying temperature is 130°C
  • the drying time is 1.5h.
  • the weight ratio of the filling powder to the U-shaped steel strip groove is 0.5:1.
  • the present invention discloses the following technical effects:
  • the invention provides a method for preparing a dense wear-resistant coating on the surface of low carbon steel.
  • the element powder is weighed according to a preset ratio, the weighed powder is ball-milled, mixed, dried, and then placed on a U-shaped steel belt.
  • the wire drawing machine is used to draw the powder core wire; the supersonic arc spraying equipment is used to spray the prepared powder core wire to the treated low carbon steel surface to form a spray coating, and finally the spray coating is carried out by argon arc remelting.
  • the coating is remelted to obtain a dense wear-resistant coating.
  • the preparation method of the invention is simple, the prepared dense wear-resistant coating has a certain thickness and dense structure, can realize automatic production, and has low cost, and provides a new way for supersonic spraying to prepare the wear-resistant coating.
  • Fig. 1 is the flow chart of the preparation method of a kind of low carbon steel surface dense wear-resistant coating provided by the first embodiment of the present invention
  • Fig. 2 is the metallographic micrograph of the dense wear-resistant coating prepared by the second embodiment of the present invention.
  • Fig. 3 is the metallographic micrograph of the dense wear-resistant coating prepared by Example 3 of the present invention.
  • Fig. 4 is the microhardness diagram of the dense wear-resistant coating prepared according to the third embodiment of the present invention.
  • FIG. 5 is a graph of relative wear resistance of the prepared dense wear-resistant coating provided in Example 3 of the present invention.
  • the purpose of the present invention is to provide a preparation method of a compact wear-resistant coating on the surface of a low carbon steel, so as to solve the problem of poor compactness of the wear-resistant coating prepared by supersonic spraying in the prior art.
  • FIG. 1 is a flowchart of a method for preparing a dense wear-resistant coating on a low-carbon steel surface according to Embodiment 1 of the present invention. As shown in FIG. 1 , a preparation method of a dense and wear-resistant coating on a low-carbon steel surface of the present invention Methods include:
  • the preset ratio is: the Si is 8.5-10.5wt.%, the W is 6.5-8.5wt.%, the Ti is 4.5-7.5wt.%, the Al is 2.5-4.5wt.%, the Cr is 12-20wt.%, and the Ni is 5.5-10.5wt.% , the La is 1-2% wt.%, and the balance is the Fe.
  • the weighed powder is ball-milled and mixed in a ball mill, and the mixed powder is uniformly dried to obtain a filling powder.
  • the weighed powder is placed in a planetary ball mill, and ball-milled and mixed at room temperature for 4-6 hours. After mixing, drying is performed at a temperature of 120-150° C. for 1-2 hours to obtain the filling powder.
  • the U-shaped steel strip groove is made of cold-rolled strip steel.
  • cold-rolled strip steel is selected as the coating layer of the powder core wire, and the filling powder is added into the U-shaped steel strip groove, and the weight ratio of the filling powder to the U-shaped steel strip groove is (0.4-0.6 ):1.
  • the prepared powder core wire is sprayed onto the surface of the treated mild steel by using a supersonic arc spraying equipment to form a coating.
  • the parameters of the spraying process are the spraying voltage of the supersonic arc spraying equipment of 25 to 30V, the spraying current of the supersonic arc spraying equipment of 150 to 180A, the spraying pressure of the The spraying distance is 180-220mm, the wire feeding speed of the supersonic arc spraying equipment is 78-85cm/min, the moving speed of the spray gun is 12-18mm/s, and the spraying thickness is 1.5mm-2.5mm.
  • the coating is remelted by using a non-melting tungsten argon arc machine to obtain a wear-resistant coating.
  • a non-melting electrode tungsten electrode argon arc machine is used to remelt the sprayed coating to obtain a wear-resistant coating.
  • the parameters of the argon arc remelting process are: remelting current 100-150A, remelting voltage 18-24V, remelting speed 100-150mm/min, and argon flow rate 8-12L/min.
  • the ball milling mixing time is 5h
  • the drying temperature is 130°C
  • the drying time is 1.5h.
  • the weight ratio of the filling powder to the U-shaped steel strip groove is 0.5:1.
  • the wire drawing speed of the wire drawing machine is 200 mm/s.
  • the parameters of the supersonic arc spraying equipment in spraying are: the spraying voltage of the supersonic arc spraying equipment is 28V, the spraying current of the supersonic arc spraying equipment is 160A, the spraying air pressure of the supersonic arc spraying equipment is 1.0MPa, the The spraying distance of the arc spraying equipment is 190mm, the wire feeding speed of the supersonic arc spraying equipment is 80cm/min, and the moving speed of the spray gun is 15mm/s.
  • the parameters of the non-melting tungsten argon arc machine in remelting are: remelting current 120A, remelting voltage 20V, remelting speed 120mm/min, and argon flow rate 10L/min.
  • the present invention provides Embodiment 2.
  • the low-carbon steel is Q235 steel.
  • the preparation method includes the preparation of powder core wire material and the preparation of wear-resistant coating.
  • the powder core wire material is sprayed on the surface of carbon steel first, and then argon arc remelting is performed.
  • the powder core wire is prepared by filling powder and U-shaped steel belt groove, and the weight percentage of the filling powder is: 9.5wt.% Si, 7wt.% W, 5.5wt.% Ti, 3wt.% Al, 15% wt. % Cr, 7.5 wt. % Ni, 1% wt. % La, the balance is Fe, the diameter of the core wire is 2.0 mm, and the filling rate is 42%.
  • a preparation method of a compact wear-resistant coating on a low-carbon steel surface of the present invention comprises the following steps:
  • step 201 the powder is weighed according to the above proportion, and the weighed powder is placed in a planetary ball mill for ball-milling and mixing at room temperature for 5 hours;
  • Step 202 selecting cold-rolled strip steel as the coating layer of the powder core wire, adding filling powder into the U-shaped steel strip groove, and the weight ratio of the filling powder to the U-shaped steel strip groove is 0.5:1.
  • step 203 the U-shaped groove covered with the filling powder is closed, and then drawn on a wire drawing machine through a wire drawing die to form a tubular welding wire at a speed of 160-220 mm/s to obtain a powder core wire with a diameter of 2.0 mm.
  • Step 204 the surface of the Q235 steel is sandblasted with 14-25 mesh brown corundum under a pressure of 0.7 MPa to remove the rust on the surface.
  • Step 205 the prepared powder core wire is sprayed on the treated Q235 steel surface by using supersonic arc spraying equipment to form a coating; wherein the parameters of the spraying process are spraying current 160A, spraying voltage 28V, spraying air pressure 1.0MPa, spraying distance 190mm, wire feeding speed 80cm/min, spray gun moving speed 15mm/s, spray thickness 2mm.
  • the parameters of the spraying process are spraying current 160A, spraying voltage 28V, spraying air pressure 1.0MPa, spraying distance 190mm, wire feeding speed 80cm/min, spray gun moving speed 15mm/s, spray thickness 2mm.
  • step 206 the sprayed coating is remelted by a non-melting tungsten argon arc machine to obtain a dense wear-resistant coating.
  • argon arc remelting process parameters are remelting current 120A, remelting voltage 20V, remelting speed 120mm/min, and argon gas flow rate 10L/min.
  • the cross-sectional morphology of the dense wear-resistant coating in this example was analyzed using an Axio Lab.Al analytical grade upright material microscope, and the results are shown in Figure 2.
  • the dense wear-resistant coating prepared in the embodiment of the present invention has a good metallurgical bond with the substrate, no defects such as pores are generated, and the structure is uniformly distributed in a dendritic shape.
  • the low-carbon steel is Q235 steel in a method for preparing a dense wear-resistant coating on a low-carbon steel surface.
  • the preparation method includes the preparation of powder core wire material and the preparation of wear-resistant coating.
  • the powder core wire material is sprayed on the surface of carbon steel first, and then argon arc remelting is performed.
  • the powder core wire material is prepared by filling powder and U-shaped steel belt groove, and the weight percentage of the powder core wire material is: 9.5wt.% Si, 7.5wt.% W, 6.5wt.% Ti, 3wt% % Al, 18% wt. % Cr, 8 wt. % Ni, 1.5 wt. % La, the balance is Fe, the diameter of the core wire is 2.0 mm, and the filling rate is 42%.
  • a preparation method of a compact wear-resistant coating on a low-carbon steel surface of the present invention comprises the following steps:
  • step 301 the powder is weighed according to the above proportion, and the weighed powder is placed in a planetary ball mill for ball milling and mixing at room temperature for 5 hours; the mixed powder after ball milling is kept at 130°C for 1.5 hours to obtain a filling powder.
  • Step 302 selecting cold-rolled strip steel as the coating layer of the powder core wire, adding filling powder into the U-shaped steel strip groove, and the weight ratio of the filling powder to the U-shaped steel strip groove is 0.5:1.
  • Step 303 the U-shaped groove covered with the powder filling is closed, and then drawn into a tubular welding wire at a speed of 160-220 mm/s through a wire drawing die on a wire drawing machine to obtain a powder core wire with a diameter of 2.0 mm.
  • Step 304 the surface of the Q235 steel is sandblasted with 14-25 mesh brown corundum under a pressure of 0.7 MPa to remove the rust on the surface.
  • Step 305 the prepared powder core wire is sprayed on the treated Q235 steel surface by using supersonic arc spraying equipment to form a coating; wherein the parameters of the spraying process are spraying current 160A, spraying voltage 28V, spraying air pressure 1.0MPa, spraying distance 190mm, wire feeding speed 80cm/min, spray gun moving speed 15mm/s, spray thickness 2mm.
  • the parameters of the spraying process are spraying current 160A, spraying voltage 28V, spraying air pressure 1.0MPa, spraying distance 190mm, wire feeding speed 80cm/min, spray gun moving speed 15mm/s, spray thickness 2mm.
  • step 306 the sprayed coating is remelted using a non-melting tungsten argon arc machine to obtain a dense wear-resistant coating.
  • argon arc remelting process parameters are remelting current 120A, remelting voltage 20V, remelting speed 120mm/min, and argon gas flow rate 10L/min.
  • the cross-sectional morphology of the dense wear-resistant coating in this example was analyzed using an Axio Lab.Al analytical grade upright material microscope, and the results are shown in Figure 3.
  • the dense wear-resistant coating prepared in the embodiment of the present invention has a good metallurgical bond with the substrate, no defects such as pores are generated, and the structure is uniformly distributed in a dendritic shape.
  • the HVST-1000 Vickers hardness tester is used to test the hardness of the dense wear-resistant coating in this example.
  • the test results are: the hardness of the supersonic spray coating is 515HV, and the hardness of the coating after argon arc remelting treatment is 848HV ⁇ 892HV, it can be seen that the hardness of the coating is increased by 1.6 to 1.7 times after argon arc remelting treatment, as shown in Figure 4.
  • the friction and wear of the dense wear-resistant coating in this example was tested by the MMS-2A friction and wear tester.
  • the test results are: the relative wear resistance after argon arc remelting is 7 times higher than that of the base Q235 steel, which is higher than that of the base Q235 steel.
  • the wear resistance of the HVAC sprayed coating is increased by a factor of 3, and the results are shown in Figure 5.
  • the invention provides a preparation method of the dense wear-resistant coating on the surface of low carbon steel, which adopts supersonic arc spraying and argon arc heavy
  • the melt-phase combination method can obtain coatings with high density and high hardness, thereby promoting the application of coatings in wear-resistant environments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种低碳钢表面致密耐磨涂层的制备方法,包括:将Si、W、Ti、Al、Cr、Ni、La和Fe元素粉末按预设配比称重;将称重后粉末在球磨机中球磨混合,混合均匀后进行烘干,得到填充粉末;将填充粉末放置于U形钢带槽中;将放置有填充粉末的U形钢带槽的开口端闭合,采用拔丝机将闭合后的U形钢带槽进行拉丝,得到预设直径的粉芯丝材;将待涂低碳钢表面的污锈去除,得到去污待涂低碳钢;采用超音速电弧喷涂设备将粉芯丝材喷涂在去污待涂低碳钢的表面形成涂层;采用非熔化极钨极氩弧机将涂层进行重熔,得到致密耐磨涂层。采用本发明的上述制备方法得到的致密耐磨涂层致密性好。

Description

一种低碳钢表面致密耐磨涂层的制备方法 技术领域
本发明涉及金属表面镀膜技术领域,特别是涉及一种低碳钢表面致密耐磨涂层的制备方法。
背景技术
磨损与腐蚀是金属材料失效的主要形式,尤其是工况使用条件下的机器零件,如各种发动机的齿轮、缸套、曲轴的破坏都发生在零件的表面,其表面的耐磨、耐腐蚀、耐高温氧化的性能是决定机器使用寿命长短的重要因素。因此,采用先进的表面强化技术,在普通材料表面制备出所需的耐磨涂层则是一种防止金属材料表面磨损的有效方法,该方法在显著提高零件的服役寿命的同时,还可以节约材料和能源。
热喷涂技术是目前常见的表面修复与防护技术之一,其具有生产效率高、操作简单、经济效益好、材料利用率高等优点。热喷涂技术包括很多种类,其中超音速电弧喷涂是热喷涂的典型技术之一,虽然超音速喷涂涂层可以获得较高的耐磨能力。但是在喷涂涂层中存在孔隙、裂纹、涂层厚度小,与基体结合差等缺陷,导致喷涂涂层致密性差,在苛刻环境中(如高应力、高温和循环疲劳下会)可能会产生开裂或剥落,限制了其应用范围。
发明内容
本发明的目的是提供一种低碳钢表面致密耐磨涂层的制备方法,以解决现有技术中超音速喷涂制备耐磨涂层的致密性差的问题。
为实现上述目的,本发明提供了如下方案:
一种低碳钢表面致密耐磨涂层的制备方法,包括:
将Si、W、Ti、Al、Cr、Ni、La和Fe元素粉末按预设配比称重;所述预设配比为:所述Si为8.5~10.5wt.%,所述W为6.5~8.5wt.%,所述Ti为4.5~7.5wt.%,所述Al为2.5~4.5wt.%,所述Cr为12~20wt.%,所述Ni为5.5~10.5wt.%,所述La为1~2%wt.%,余量为所述Fe;
将称重后粉末在球磨机中球磨混合,混合均匀后进行烘干,得到填充粉末;
将所述填充粉末放置于U形钢带槽中;所述U形钢带槽是由冷轧带钢制作;
将放置有填充粉末的U形钢带槽的开口端闭合,采用拔丝机将闭合后的U形钢带槽进行拉丝,得到预设直径的粉芯丝材;
将待涂低碳钢表面的污锈去除,得到去污待涂低碳钢;
采用超音速电弧喷涂设备将所述粉芯丝材喷涂在所述去污待涂低碳钢的表面形成涂层;
采用非熔化极钨极氩弧机将所述涂层进行重熔,得到致密耐磨涂层。
可选的,所述球磨混合的时间为4~6h,所述烘干的温度为120~150℃,所述烘干的时间为1~2h。
可选的,所述球磨机为行星式球磨机。
可选的,所述填充粉末与所述U形钢带槽的重量比为(0.4~0.6):1。
可选的,所述拔丝机的拉丝速度为160~220mm/s,所述粉芯丝材的预设直径为2mm。
可选的,所述将待涂低碳钢表面的污锈去除,得到去污待涂低碳钢,具体包括:
采用14~25目的棕刚玉在0.7MPa的气压下进行喷砂以去除待涂低碳钢表面的污锈,得到去污待涂低碳钢。
可选的,所述超音速电弧喷涂设备在喷涂中的参数为:超音速电弧喷涂设备的喷涂电压25~30V,超音速电弧喷涂设备的喷涂电流150~180A,超音速电弧喷涂设备的喷涂气压0.7~1.2MPa,超音速电弧喷涂设备的喷涂距离180~220mm,超音速电弧喷涂设备的送丝速度78~85cm/min,喷枪移动速度12~18mm/s,喷涂厚度1.5mm~2.5mm。
可选的,所述非熔化极钨极氩弧机在重熔中的参数为:重熔电流100~150A,重熔电压18~24V,重熔速度100~150mm/min,氩气流量8~12L/min。
可选的,其特征在于,所述球磨混合时间为5h,所述烘干温度为130℃,所述烘干时间为1.5h。
可选的,其特征在于,所述填充粉末与所述U形钢带槽的重量比为0.5:1。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供了一种低碳钢表面致密耐磨涂层的制备方法,按预设配比将元素粉末进行称重,将称重后粉末进行球磨混合、烘干,然后置于U形钢带槽中,采用拔丝机拉拔成粉芯丝材;采用超音速电弧喷涂设备将制备的粉芯丝材喷涂至经过处理的低碳钢表面形成喷涂涂层,最后采用氩弧重熔方式对喷涂涂层进行重熔处理,得到致密耐磨涂层。本发明的制备方法简单,制备的致密耐磨涂层具有一定厚度且组织致密,能实现自动化生产,且成本低廉,为超音速喷涂制备耐磨涂层提供新的途径。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一所提供的一种低碳钢表面致密耐磨涂层的制备方法的流程图;
图2为本发明实施例二所提供的制备的致密耐磨涂层的金相显微照片;
图3为本发明实施例三所提供的制备的致密耐磨涂层的金相显微照片;
图4为本发明实施例三所提供的制备的致密耐磨涂层的显微硬度图;
图5为本发明实施例三所提供的制备的致密耐磨涂层的相对耐磨性图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种低碳钢表面致密耐磨涂层的制备方法,以解决现有技术中超音速喷涂制备耐磨涂层的致密性差的问题。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例一
图1为本发明实施例一所提供的一种低碳钢表面致密耐磨涂层的制备方法的流程图,如图1所示,本发明一种低碳钢表面致密耐磨涂层的制备方法包括:
S101,将Si、W、Ti、Al、Cr、Ni、La和Fe元素粉末按预设配比称重;所述预设配比为:所述Si为8.5~10.5wt.%,所述W为6.5~8.5wt.%,所述Ti为4.5~7.5wt.%,所述Al为2.5~4.5wt.%,所述Cr为12~20wt.%,所述Ni为5.5~10.5wt.%,所述La为1~2%wt.%,余量为所述Fe。
S102,将称重后粉末在球磨机中球磨混合,混合均匀后进行烘干,得到填充粉末。具体的,将称重后粉末放置于行星式球磨机中,在室温下进行4~6h的球磨混合,混合均匀后,在温度为120~150℃下进行1~2h的烘干,获得填充粉末。
S103,将所述填充粉末放置于U形钢带槽中;所述U形钢带槽是由冷轧带钢制作。具体的,选用冷轧带钢作为粉芯丝材的包覆层,将填充粉末加入到U形钢带槽中,所述填充粉末与所述U形钢带槽的重量比为(0.4~0.6):1。
S104,将放置有填充粉末的U形钢带槽的开口端闭合,采用拔丝机将闭合后的U形钢带槽进行拉丝,得到预设直径的粉芯丝材。具体的,将包覆填充粉末的U形钢带槽闭合,在拔丝机上经过拉丝模将其以160~220mm/s的速度拉至成管状焊丝,得到预设直径为2.0mm的粉芯丝材。
S105,将待涂低碳钢表面的污锈去除,得到去污待涂低碳钢。具体的,采用14~25目的棕刚玉在0.7MPa的气压下进行喷砂以去除待涂低碳钢表面的污锈,得到去污待涂低碳钢。
S106,采用超音速电弧喷涂设备将所述粉芯丝材喷涂在所述去污待涂低碳钢的表面形成涂层。
具体的,采用超音速电弧喷涂设备将制备的粉芯丝材喷涂至经过处理的低碳钢表面形成涂层。其中,喷涂工艺的参数为超音速电弧喷涂设备的喷涂电压25~30V,超音速电弧喷涂设备的喷涂电流150~180A,超音速 电弧喷涂设备的喷涂气压0.7~1.2MPa,超音速电弧喷涂设备的喷涂距离180~220mm,超音速电弧喷涂设备的送丝速度78~85cm/min,喷枪移动速度12~18mm/s,喷涂厚度1.5mm~2.5mm。
S107,采用非熔化极钨极氩弧机将所述涂层进行重熔,得到耐磨涂层。具体的,采用非熔化极钨极氩弧机将喷涂后的涂层进行重熔,得到耐磨涂层。其中,氩弧重熔工艺参数为:重熔电流100~150A,重熔电压18~24V,重熔速度100~150mm/min,氩气流量8~12L/min。
优选的,所述球磨混合时间为5h,所述烘干温度为130℃,所述烘干时间为1.5h。
优选的,所述填充粉末与所述U形钢带槽的重量比为0.5:1。
优选的,所述拔丝机的拉丝速度为200mm/s。
优选的,所述超音速电弧喷涂设备在喷涂中的参数为:超音速电弧喷涂设备的喷涂电压28V,超音速电弧喷涂设备的喷涂电流160A,超音速电弧喷涂设备的喷涂气压1.0MPa,超音速电弧喷涂设备的喷涂距离190mm,超音速电弧喷涂设备的送丝速度80cm/min,喷枪移动速度15mm/s。
优选的,所述非熔化极钨极氩弧机在重熔中的参数为:重熔电流120A,重熔电压20V,重熔速度120mm/min,氩气流量10L/min。
实施例二
为实现本发明的上述目的,本发明提供了实施例二,本实施例的一种低碳钢表面致密耐磨涂层的制备方法中低碳钢为Q235钢。制备方法包括粉芯丝材的制备和耐磨涂层的制备,所述粉芯丝材先喷涂于碳钢表面,后进行氩弧重熔。所述粉芯丝材由填充粉末和U形钢带槽制备,所述填充粉末成分重量百分比为:9.5wt.%的Si、7wt.%的W、5.5wt.%的Ti、3wt.%的Al、15%wt.%的Cr、7.5wt.%的Ni,1%wt.%的La,余量为Fe,粉芯丝材直径为2.0mm,填充率为42%。
本发明一种低碳钢表面致密耐磨涂层的制备方法包括以下步骤:
步骤201,将粉末按上述配比称重,将称重后粉末置于行星式球磨机中进行室温下球磨混合5h;对球磨后的混合粉末在130℃下进行1.5h保温,得到填充粉末。
步骤202,选用冷轧带钢作为粉芯丝材的包覆层,将填充粉末加入到U形钢带槽中,所述填充粉末与U形钢带槽的重量比为0.5∶1。
步骤203,将包覆填充粉末的U形槽闭合,然后在拔丝机上经过拉丝模将其以160~220mm/s的速度拉至成管状焊丝,得到直径为2.0mm的粉芯丝材。
步骤204,将Q235钢表面采用14~25目的棕刚玉在气压为0.7MPa下进行喷砂处理,去除表面污锈。
步骤205,将制备的粉芯丝材利用超音速电弧喷涂设备,喷涂至经过处理的Q235钢表面形成涂层;其中喷涂工艺的参数为喷涂电流160A,喷涂电压28V,喷涂气压1.0MPa,喷涂距离190mm,送丝速度80cm/min,喷枪移动速度15mm/s,喷涂厚度2mm。
步骤206,将喷涂后的涂层利用非熔化极钨极氩弧机进行重熔,得到致密耐磨涂层。其中,氩弧重熔工艺参数为重熔电流120A,重熔电压20V,重熔速度120mm/min,氩气流量10L/min。
采用Axio Lab.Al分析级正立式材料显微镜对本实施例中的致密耐磨涂层的横截面形貌进行分析,结果如图2所示。本发明实施例中制备的致密耐磨涂层与基体有良好的冶金结合,无气孔等缺陷的产生,组织呈枝晶状均匀分布。
实施例三
为实现本发明的上述目的,本发明提供了实施例三,本实施例中一种低碳钢表面致密耐磨涂层的制备方法中低碳钢为Q235钢。制备方法包括粉芯丝材的制备和耐磨涂层的制备,所述粉芯丝材先喷涂于碳钢表面,后进行氩弧重熔。所述粉芯丝材由填充粉末和U形钢带槽制备,所述粉芯丝材成分重量百分比为:9.5wt.%的Si、7.5wt.%的W、6.5wt.%的Ti、3wt.%的Al、18%wt.%的Cr、8wt.%的Ni,1.5wt.%的La,余量为Fe,粉芯丝材直径为2.0mm,填充率为42%。
本发明一种低碳钢表面致密耐磨涂层的制备方法包括以下步骤:
步骤301,将粉末按上述配比称重,将称重后粉末置于行星式球磨机中进行室温下球磨混合5h;对球磨后的混合粉末在130℃下进行1.5h保 温,得到填充粉末。
步骤302,选用冷轧带钢作为粉芯丝材的包覆层,将填充粉末加入到U形钢带槽中,所述填充粉末与所述U形钢带槽的重量比为0.5∶1。
步骤303,将包覆填充粉末的U形槽闭合,然后在拔丝机上经过拉丝模将其以160~220mm/s的速度拉至成管状焊丝,得到直径为2.0mm的粉芯丝材。
步骤304,将Q235钢表面采用14~25目的棕刚玉在气压为0.7MPa下进行喷砂处理,去除表面污锈。
步骤305,将制备的粉芯丝材利用超音速电弧喷涂设备,喷涂至经过处理的Q235钢表面形成涂层;其中喷涂工艺的参数为喷涂电流160A,喷涂电压28V,喷涂气压1.0MPa,喷涂距离190mm,送丝速度80cm/min,喷枪移动速度15mm/s,喷涂厚度2mm。
步骤306,将喷涂后的涂层利用非熔化极钨极氩弧机进行重熔,得到致密耐磨涂层。其中,氩弧重熔工艺参数为重熔电流120A,重熔电压20V,重熔速度120mm/min,氩气流量10L/min。
采用Axio Lab.Al分析级正立式材料显微镜对本实施例中的致密耐磨涂层的横截面形貌进行分析,结果如图3所示。本发明实施例中制备的致密耐磨涂层与基体有良好的冶金结合,无气孔等缺陷的产生,组织呈枝晶状均匀分布。
采用HVST-1000型维氏硬度计对本实施例中的致密耐磨涂层的硬度进行测试,测试结果为:超音速喷涂涂层硬度为515HV,氩弧重熔处理后涂层的硬度为848HV~892HV,可知,经过氩弧重熔处理后涂层的硬度提高了1.6~1.7倍,如图4所示。
采用MMS-2A型摩擦磨损试验机对本实施例中的致密耐磨涂层的摩擦磨进行损测试,测试结果为:氩弧重熔后的相对耐磨性较基体Q235钢提高了7倍,较超音速电弧喷涂涂层的耐磨性提高了3倍,结果如图5所示。
以上分析结果说明采超音速电弧喷涂技术与氩弧重熔结合制备的致密耐磨涂层具有结合强度高、组织致密、无污染和生产效率高的优点。并且由于粉末成本低廉因此制备的致密耐磨涂层的成本低。
为了解决超音速喷涂制备耐磨涂层的不致密、厚度小、孔隙率高等问题,本发明提供了一种低碳钢表面致密耐磨涂层的制备方法,采用超音速电弧喷涂和氩弧重熔相结合的方法,该方法可以获得高致密性和高硬度的涂层,从而促进涂层在耐磨环境方面的应用。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种低碳钢表面致密耐磨涂层的制备方法,其特征在于,包括:
    将Si、W、Ti、Al、Cr、Ni、La和Fe元素粉末按预设配比称重;所述预设配比为:所述Si为8.5~10.5wt.%,所述W为6.5~8.5wt.%,所述Ti为4.5~7.5wt.%,所述Al为2.5~4.5wt.%,所述Cr为12~20wt.%,所述Ni为5.5~10.5wt.%,所述La为1~2%wt.%,余量为所述Fe;
    将称重后粉末在球磨机中球磨混合,混合均匀后进行烘干,得到填充粉末;
    将所述填充粉末放置于U形钢带槽中;所述U形钢带槽是由冷轧带钢制作;
    将放置有填充粉末的U形钢带槽的开口端闭合,采用拔丝机将闭合后的U形钢带槽进行拉丝,得到预设直径的粉芯丝材;
    将待涂低碳钢表面的污锈去除,得到去污待涂低碳钢;
    采用超音速电弧喷涂设备将所述粉芯丝材喷涂在所述去污待涂低碳钢的表面形成涂层;
    采用非熔化极钨极氩弧机将所述涂层进行重熔,得到致密耐磨涂层。
  2. 根据权利要求1所述的低碳钢表面致密耐磨涂层的制备方法,其特征在于,所述球磨混合的时间为4~6h,所述烘干的温度为120~150℃,所述烘干的时间为1~2h。
  3. 根据权利要求1所述的低碳钢表面致密耐磨涂层的制备方法,其特征在于,所述球磨机为行星式球磨机。
  4. 根据权利要求1所述的低碳钢表面致密耐磨涂层的制备方法,其特征在于,所述填充粉末与所述U形钢带槽的重量比为(0.4~0.6):1。
  5. 根据权利要求1所述的低碳钢表面致密耐磨涂层的制备方法,其特征在于,所述拔丝机的拉丝速度为160~220mm/s,所述粉芯丝材的预设直径为2mm。
  6. 根据权利要求1所述的低碳钢表面致密耐磨涂层的制备方法,其特征在于,所述将待涂低碳钢表面的污锈去除,得到去污待涂低碳钢,具体包括:
    采用14~25目的棕刚玉在0.7MPa的气压下进行喷砂以去除待涂低碳 钢表面的污锈,得到去污待涂低碳钢。
  7. 根据权利要求1所述的低碳钢表面致密耐磨涂层的制备方法,其特征在于,所述超音速电弧喷涂设备在喷涂中的参数为:超音速电弧喷涂设备的喷涂电压25~30V,超音速电弧喷涂设备的喷涂电流150~180A,超音速电弧喷涂设备的喷涂气压0.7~1.2MPa,超音速电弧喷涂设备的喷涂距离180~220mm,超音速电弧喷涂设备的送丝速度78~85cm/min,喷枪移动速度12~18mm/s,喷涂厚度1.5mm~2.5mm。
  8. 根据权利要求1所述的低碳钢表面致密耐磨涂层的制备方法,其特征在于,所述非熔化极钨极氩弧机在重熔中的参数为:重熔电流100~150A,重熔电压18~24V,重熔速度100~150mm/min,氩气流量8~12L/min。
  9. 根据权利要求2所述的低碳钢表面致密耐磨涂层的制备方法,其特征在于,其特征在于,所述球磨混合时间为5h,所述烘干温度为130℃,所述烘干时间为1.5h。
  10. 根据权利要求4所述的低碳钢表面致密耐磨涂层的制备方法,其特征在于,其特征在于,所述填充粉末与所述U形钢带槽的重量比为0.5:1。
PCT/CN2020/102579 2020-07-17 2020-07-17 一种低碳钢表面致密耐磨涂层的制备方法 WO2022011663A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/102579 WO2022011663A1 (zh) 2020-07-17 2020-07-17 一种低碳钢表面致密耐磨涂层的制备方法
CN202080006607.4A CN113166918B (zh) 2020-07-17 2020-07-17 一种低碳钢表面致密耐磨涂层的制备方法
JP2023503178A JP7457427B2 (ja) 2020-07-17 2020-07-17 低炭素鋼表面の緻密な耐摩耗コーティングの製造方法
ZA2022/03916A ZA202203916B (en) 2020-07-17 2022-04-06 Method for preparing compact wear-resistant coating on low-carbon steel surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102579 WO2022011663A1 (zh) 2020-07-17 2020-07-17 一种低碳钢表面致密耐磨涂层的制备方法

Publications (1)

Publication Number Publication Date
WO2022011663A1 true WO2022011663A1 (zh) 2022-01-20

Family

ID=76879307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102579 WO2022011663A1 (zh) 2020-07-17 2020-07-17 一种低碳钢表面致密耐磨涂层的制备方法

Country Status (4)

Country Link
JP (1) JP7457427B2 (zh)
CN (1) CN113166918B (zh)
WO (1) WO2022011663A1 (zh)
ZA (1) ZA202203916B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117841A (en) * 1976-03-31 1977-10-03 Toyo Karoraijingu Kougiyou Kk Hot run table roller having wearrresisting coat
CN204805815U (zh) * 2015-06-26 2015-11-25 河北建投国融能源服务有限公司 一种密封连接接头的低温省煤器管
CN106435430A (zh) * 2016-12-13 2017-02-22 江西省科学院应用物理研究所 一种提高热喷涂MCrAlY涂层抗氧化性能的方法
CN110819931A (zh) * 2019-11-29 2020-02-21 山东交通学院 一种粉芯焊丝及其制备方法和应用、多孔涂层及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3925050A1 (de) * 1989-07-28 1991-01-31 Basf Ag Schutzschichten aus keramiken des germaniums
CN101532121B (zh) * 2009-04-13 2010-10-20 姚庆君 一种金属表面电弧喷熔加工工艺
JP6391154B2 (ja) 2013-09-20 2018-09-19 アイエヌジ商事株式会社 鉄基合金及び合金溶着方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117841A (en) * 1976-03-31 1977-10-03 Toyo Karoraijingu Kougiyou Kk Hot run table roller having wearrresisting coat
CN204805815U (zh) * 2015-06-26 2015-11-25 河北建投国融能源服务有限公司 一种密封连接接头的低温省煤器管
CN106435430A (zh) * 2016-12-13 2017-02-22 江西省科学院应用物理研究所 一种提高热喷涂MCrAlY涂层抗氧化性能的方法
CN110819931A (zh) * 2019-11-29 2020-02-21 山东交通学院 一种粉芯焊丝及其制备方法和应用、多孔涂层及其制备方法

Also Published As

Publication number Publication date
JP2023534301A (ja) 2023-08-08
CN113166918A (zh) 2021-07-23
JP7457427B2 (ja) 2024-03-28
CN113166918B (zh) 2022-10-14
ZA202203916B (en) 2022-05-25

Similar Documents

Publication Publication Date Title
CN105256259B (zh) 一种高热稳定性铁基非晶涂层及其制备方法
US6571472B2 (en) Restoration of thickness to load-bearing gas turbine engine components
CN108677129A (zh) 一种FeCoNiCrSiAl高熵合金涂层及其制备方法
CN102154609A (zh) 一种高精度辊件耐磨涂层的制备方法
CN106835112A (zh) 一种镁合金表面冷喷涂420不锈钢复合涂层的制备方法
CN105861974A (zh) 一种抗冲蚀及气蚀磨损复合涂层
CN107236331B (zh) 耐高温腐蚀涂料及其制备方法以及耐高温腐蚀涂层及其制备方法
CN106893961A (zh) 一种强化水轮机叶片表面的超音速火焰喷涂方法
CN106756717A (zh) 一种高强耐磨铜镍锡合金涂层的制备方法
CN109811294A (zh) 一种用超音速火焰喷涂增强水轮机叶片表面的方法
CN104831208A (zh) 高耐磨铁基热喷涂涂层材料及其制备方法
CN107419213B (zh) 一种金属基体的表面防腐方法
CN113355625A (zh) 一种NbC增强的高熵合金基复合涂层及其制备方法
CN105385978A (zh) 一种电弧喷涂方法
CN113215515B (zh) 一种镍基高温合金体积损伤多工艺复合再制造方法
WO2022011663A1 (zh) 一种低碳钢表面致密耐磨涂层的制备方法
CN113278960B (zh) 一种新型等离子堆焊Fe-Mo2FeB2过渡层的制备方法
CN111763939B (zh) 一种多尺度TiC陶瓷相增强TiAl3/TiAl双相复合涂层及其制备方法
WO2021103426A1 (zh) 一种粉芯焊丝及其制备方法和应用、多孔涂层及其制备方法
CN110195205A (zh) 一种材料表面防腐耐磨合金涂层的制备方法
CN111004991A (zh) 一种热作模具钢高耐磨高耐蚀保护层的制备方法
CN106756729A (zh) 一种FeB/Co耐锌液腐蚀耐磨金属陶瓷涂层及制备方法
CN110699627A (zh) 一种耐腐蚀电弧喷涂粉芯丝材及涂层制备方法
CN115287573A (zh) 铁基含Al2O3/B4C复合陶瓷的高速电弧喷涂粉芯丝材及涂层的制备方法
CN108265260B (zh) 一种镍铬硼硅耐磨耐疲劳涂层的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503178

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945185

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) - FORM 1205A (29.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20945185

Country of ref document: EP

Kind code of ref document: A1