WO2022011654A1 - 时间提前量指示、上行信号发送方法和装置 - Google Patents

时间提前量指示、上行信号发送方法和装置 Download PDF

Info

Publication number
WO2022011654A1
WO2022011654A1 PCT/CN2020/102497 CN2020102497W WO2022011654A1 WO 2022011654 A1 WO2022011654 A1 WO 2022011654A1 CN 2020102497 W CN2020102497 W CN 2020102497W WO 2022011654 A1 WO2022011654 A1 WO 2022011654A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
timing advance
network device
adjustment command
round
Prior art date
Application number
PCT/CN2020/102497
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/011,812 priority Critical patent/US20230254799A1/en
Priority to CN202080001535.4A priority patent/CN114270727B/zh
Priority to PCT/CN2020/102497 priority patent/WO2022011654A1/zh
Publication of WO2022011654A1 publication Critical patent/WO2022011654A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • H04W56/009Closed loop measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a timing advance indication method, a timing advance indication apparatus, an uplink signal transmission method, an uplink signal transmission apparatus, an electronic device, and a computer-readable storage medium.
  • the base station can send a timing advance (TA) to the terminal, so that the uplink signal frame sent by the terminal corresponds to the downlink signal frame sent by the base station, and can also send a timing advance adjustment command to the terminal .
  • TA timing advance
  • Non-Terrestrial Network NTN for short
  • NTN non-Terrestrial Network
  • the base station communicates with the terminal through the satellite
  • the time The advance is set according to the time delay, so the timing advance is larger, and when a larger timing advance is sent, the signaling overhead is larger.
  • the high-speed movement of satellites can also cause rapid changes in the timing advance.
  • the embodiments of the present disclosure propose a timing advance indication method, a timing advance indication device, an uplink signal transmission method, an uplink signal transmission device, an electronic device, and a computer-readable storage medium to solve the technical problems in the related art .
  • a method for indicating a timing advance is proposed, which is applicable to a network device located in the air in a non-terrestrial network, and the method includes:
  • the initial timing advance is sent to the terminal.
  • a method for sending an uplink signal is proposed, which is suitable for a terminal in a non-terrestrial network, and the method includes:
  • the initial timing advance is based on the first round-trip transmission delay from the network device to the terminal, and the network device to the ground reference point
  • the second round-trip transmission delay is determined, and the transmission speed of the signal between the network device and the terminal is determined;
  • a timing advance indication apparatus which is suitable for network equipment located in the air in a non-terrestrial network, and the apparatus includes:
  • a first determining module configured to determine a first round-trip transmission delay from the network device to the terminal, and a first distance from the network device to a ground reference point;
  • a second determining module configured to determine a second round-trip transmission delay according to the first distance and the transmission speed of the signal between the network device and the terminal;
  • a third determining module configured to determine an initial timing advance according to the difference between the first round-trip transmission delay and the second round-trip transmission delay
  • the first sending module is configured to send the initial timing advance to the terminal.
  • an uplink signal sending apparatus which is suitable for terminals in a non-terrestrial network, and the apparatus includes:
  • a first receiving module configured to receive an initial timing advance sent by a network device located in the air in a non-terrestrial network, wherein the initial timing advance is based on a first round-trip transmission delay from the network device to the terminal, and determining the second round-trip transmission delay from the network device to the ground reference point, and the transmission speed of the signal between the network device and the terminal;
  • the uplink sending module is configured to send the uplink signal frame to the network device according to the initial timing advance.
  • an electronic device including:
  • memory for storing processor-executable instructions
  • the processor is configured to implement the timing advance indication method described in any of the foregoing embodiments, and/or the uplink signal transmission method described in any of the foregoing embodiments.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the timing advance indication method described in any of the foregoing embodiments, and/or or the steps in the uplink signal sending method described in any of the above embodiments.
  • the initial timing advance indicated to the terminal is not only determined according to the first round-trip transmission delay from the network device to the terminal, but may be determined according to the first round-trip transmission delay and the second round-trip transmission delay
  • the difference is determined by the difference of the transmission delay, and the difference is smaller than the first round-trip transmission delay, so the number of bits required to be occupied is also less, so the number of bits required to indicate the initial timing advance is less, which is beneficial to save signaling overhead.
  • FIG. 1 is a schematic flowchart of a timing advance indication method according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of an initial timing advance amount in the related art.
  • FIG. 3 is a schematic diagram of an initial timing advance according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of another timing advance indication method according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic flowchart of yet another timing advance indication method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of yet another timing advance indication method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of yet another method for indicating timing advance according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of yet another timing advance indication method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of yet another timing advance indication method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of yet another timing advance indication method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of a method for sending an uplink signal according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of another method for sending an uplink signal according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart of yet another method for sending an uplink signal according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic flowchart of yet another method for sending an uplink signal according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic flowchart of yet another method for sending an uplink signal according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic flowchart of yet another method for sending an uplink signal according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic flowchart of yet another method for sending an uplink signal according to an embodiment of the present disclosure.
  • Fig. 18 is a schematic block diagram of a timing advance indicating device according to an embodiment of the present disclosure.
  • Fig. 19 is a schematic block diagram of another timing advance indicating device according to an embodiment of the present disclosure.
  • Fig. 20 is a schematic block diagram of another timing advance indicating device according to an embodiment of the present disclosure.
  • Fig. 21 is a schematic block diagram of another timing advance indicating device according to an embodiment of the present disclosure.
  • Fig. 22 is a schematic block diagram of another timing advance indicating device according to an embodiment of the present disclosure.
  • Fig. 23 is a schematic block diagram of another timing advance indicating device according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic block diagram of an apparatus for transmitting an uplink signal according to an embodiment of the present disclosure.
  • FIG. 25 is a schematic block diagram of another apparatus for transmitting an uplink signal according to an embodiment of the present disclosure.
  • FIG. 26 is a schematic block diagram of yet another apparatus for sending an uplink signal according to an embodiment of the present disclosure.
  • FIG. 27 is a schematic block diagram of yet another apparatus for sending an uplink signal according to an embodiment of the present disclosure.
  • FIG. 28 is a schematic block diagram of yet another apparatus for sending an uplink signal according to an embodiment of the present disclosure.
  • FIG. 29 is a schematic block diagram of an apparatus for sending uplink signals according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of a timing advance indication method according to an embodiment of the present disclosure.
  • the method shown in this embodiment can be applied to a network device located in the air in a non-terrestrial network (also referred to as a non-terrestrial network device), and the network device can be a satellite or an aerial platform.
  • the network device can communicate with the terminal and the base station, for example, can send information from the base station to the terminal, the terminal includes but is not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, Internet of Things devices, etc.
  • the base station can be a 5G base station or a 6G base station.
  • the method for indicating lead may include the following steps:
  • step S101 determine the first round-trip transmission delay from the network device to the terminal, and the first distance from the network device to the ground reference point;
  • step S102 a second round-trip transmission delay is determined according to the first distance and the transmission speed of the signal between the network device and the terminal;
  • step S103 an initial timing advance is determined according to the difference between the first round-trip transmission delay and the second round-trip transmission delay
  • step S104 the initial timing advance is sent to the terminal.
  • the network device may receive the signal from the terminal, and determine the first round-trip transmission delay according to the difference between the reception time of the received signal and the transmission time of the signal (for example, it can be carried in the signal); it may also be determined first The distance from the network device to the terminal, and then the first round-trip transmission delay is determined according to the quotient of the distance and the transmission speed of the signal (eg, the speed of light).
  • the network device can determine the first distance to the ground reference point, where the ground reference point is a point on the ground with a known location of the network device, for example, it can be a projection point of the network device on the ground, or it can be a pre-stored point in the network device. one point. Furthermore, the network device may determine the second round-trip transmission delay according to the first distance and the transmission speed of the signal between the network device and the terminal. Then, the initial timing advance is determined according to the difference between the first round-trip transmission delay and the second round-trip transmission delay, and then the initial timing advance is sent to the terminal.
  • the signal transmission speed is c
  • the initial timing advance ue_TA 2 (d ue -d 1 ) / c.
  • FIG. 2 is a schematic diagram of an initial timing advance amount in the related art.
  • FIG. 3 is a schematic diagram of an initial timing advance according to an embodiment of the present disclosure.
  • the grids therein represent signal frames, and the filled grids represent corresponding signal frames, for example, signal frames with the same sequence number.
  • the existing delay is Delay, so that after the base station sends the uplink signal frame, the uplink signal frame received by the base station can match the Corresponding to the downlink signal frame sent by the base station, the initial time advance TA indicated by the base station to the terminal is 2 times the Delay, so the delay from the terminal sending the uplink signal frame to the base station to the base station receiving the uplink signal frame is also Delay, but the terminal is advanced in advance.
  • the uplink signal frame is sent to the base station with twice the delay, so the uplink signal frame received by the base station corresponds to the downlink signal frame sent by the base station, and the number of bits to be occupied by the indication TA is determined according to the double delay.
  • the above-mentioned delay is relatively large.
  • the delay is about 1 millisecond, which is generally less than 1 millisecond.
  • the delay can be approximately understood as a network device. trip transmission delay to a first terminal, for example, d ue / c, can reach several tens of milliseconds or hundreds of milliseconds, then the TA indicating the required number of bits occupied by increases rapidly, resulting in a large signaling overhead.
  • the initial timing advance indicated to the terminal is not only determined according to the first round-trip transmission delay from the network device to the terminal, but may be determined according to the first round-trip transmission delay and the second round-trip transmission delay
  • the difference is determined by the difference of the transmission delay, and the difference is smaller than the first round-trip transmission delay, so the number of bits required to be occupied is also less, so the number of bits required to indicate the initial timing advance is less, which is beneficial to save signaling overhead.
  • the delay from the terminal sending the uplink signal frame to the base station and the base station receiving the uplink signal frame is not equal to the delay.
  • Delay the delay from the base station sending the uplink signal frame to the base station receiving the uplink signal frame can be shown in Figure 3, which is the delay of the base station's downlink and uplink signal frames, abbreviated as common_TA.
  • common_TA can be understood as 2 times the Delay minus the value in this embodiment.
  • the initial time advance of The manner of determining common_TA will be described in subsequent embodiments.
  • FIG. 4 is a schematic flowchart of another timing advance indication method according to an embodiment of the present disclosure.
  • the network device is used to implement the function of the base station in the non-terrestrial network.
  • the network device is a satellite, this situation can be called on-satellite signal regeneration.
  • the method further includes:
  • step S105 after sending the first downlink signal frame to the terminal, according to the time of sending the first downlink signal frame and the second round-trip transmission delay, it is determined that the received data sent by the terminal is the same as the one sent by the terminal. the time of the first uplink signal frame corresponding to the first downlink signal frame.
  • the network device when the network device implements the function of the base station in the non-terrestrial network, the network device is equivalent to the base station communicating directly with the terminal, then the delay Delay of the communication between the terminal and the base station is equal to the delay of the communication between the terminal and the network device, That is, the first round-trip transmission delay.
  • common_TA can be understood as 2 times of Delay minus the initial time advance in this embodiment, then 2 times of Delay is the first round-trip transmission delay, and common_TA is equal to the first round-trip transmission delay Subtract the initial timing advance, which is:
  • the base station waits for the second round-trip transmission delay 2d 1 /c in the time domain, and then the received first uplink signal frame sent by the terminal is the same as the first downlink signal. corresponding to the frame.
  • Fig. 5 is a schematic flowchart of yet another timing advance indication method according to an embodiment of the present disclosure.
  • the network device is configured to transmit the information sent by the base station in the non-terrestrial network to the terminal, and the method further includes:
  • step S106 determine the second distance from the network device to the base station
  • step S107 a third round-trip transmission delay is determined according to the sum of the first distance and the second distance, and the transmission speed;
  • step S108 after sending the second downlink signal frame to the terminal, it is determined to receive the second uplink signal frame corresponding to the second downlink signal frame sent by the terminal according to the third round-trip transmission delay moment.
  • the network device when the network device is used to transmit the information sent by the base station in the non-terrestrial network to the terminal, the communication between the base station and the terminal needs to be transmitted through the network device.
  • the network equipment only plays the role of transparent transmission, and does not process the information exchanged between the base station and the terminal (but it can be amplified in the analog domain), or the network equipment processes the information exchanged between the base station and the terminal, but does not process the information exchanged between the base station and the terminal. Play all the functions of the base station.
  • the delay of the communication between the base station and the terminal is equal to the sum of the delay of the communication between the base station and the network device and the delay of the communication between the network device and the terminal.
  • common_TA can be understood as 2 times of Delay minus the initial time advance in this embodiment, then 2 times of Delay is 2 times of the communication delay between the network device and the terminal and 2 times of the base station.
  • the sum of the delays in communication with the network device, for example, the second distance between the terminal and the network device is d 2 , then common_TA can be calculated as follows:
  • the common_TA in this embodiment may be called the third round-trip transmission delay. It can be seen that the third round-trip transmission delay may be determined according to the sum of the first distance d 1 and the second distance d 2 and the transmission speed c. Then, after sending the second downlink signal frame to the terminal, the base station waits for the third round-trip transmission delay 2(d 1 +d 2 )/c in the time domain, and then the second uplink signal frame sent by the terminal is the same as corresponding to the second downlink signal frame.
  • FIG. 6 is a schematic flowchart of yet another timing advance indication method according to an embodiment of the present disclosure. As shown in FIG. 6 , the sending the initial timing advance to the terminal includes:
  • step S1041 the initial timing advance is sent to the terminal through random access response information.
  • the initial timing advance may be sent to the terminal through random access response information (Random Access Response, RAR for short).
  • RAR Random Access Response
  • FIG. 7 is a schematic flowchart of yet another method for indicating timing advance according to an embodiment of the present disclosure. As shown in Figure 7, the method further includes:
  • step S109 an adjustment command of the initial timing advance is sent to the terminal.
  • an adjustment command for the initial timing advance may also be sent to the terminal, so that the terminal further advances or delays the initial timing advance, wherein the adjustment command may be sent by the base station to the terminal via a non-terrestrial network device, It can also be directly sent to the terminal by a non-terrestrial network device.
  • the adjustment command can be represented by ⁇ T, a positive value of ⁇ T indicates that the initial timing advance needs to be further advanced, and a negative value of ⁇ T indicates that the initial timing advance needs to be delayed.
  • FIG. 8 is a schematic flowchart of yet another timing advance indication method according to an embodiment of the present disclosure. As shown in FIG. 8 , sending the adjustment command of the initial timing advance to the terminal includes:
  • step S1091 the adjustment command is sent to the terminal through a medium access control layer control element and/or physical layer downlink control information.
  • the adjustment command may be sent to the terminal through a medium access control layer control element (MAC CE) and/or a physical layer downlink control information (DCI).
  • MAC CE medium access control layer control element
  • DCI physical layer downlink control information
  • the adjustment command is only sent to the terminal through the medium access control layer control element, but since the medium access control layer is above the physical layer, the transmission delay of the medium access control layer control element is relatively low compared to the transmission of downlink control information of the physical layer. greater delay.
  • the signal between the terminal and the base station needs to be sent through the satellite in the non-terrestrial network, since the satellite is moving at a high speed, the signal propagates through the satellite, and the delay will jitter. Large, it is difficult to track the jitter of the delay in time.
  • the adjustment command determined by the base station in the previous one, after sending the adjustment command to the terminal through the medium access control layer control element, is no longer applicable to the current state of the terminal.
  • An adjustment to the initial timing advance is required.
  • the adjustment command can be sent to the terminal through the downlink control information of the physical layer. Since the transmission delay of the downlink control information of the physical layer is relatively small, it is beneficial to ensure that the adjustment command is sent to the terminal through the downlink control information of the physical layer. Then, it can be applied to the adjustment of the initial timing advance currently required by the terminal.
  • FIG. 9 is a schematic flowchart of yet another timing advance indication method according to an embodiment of the present disclosure. As shown in FIG. 9, before sending the adjustment command to the terminal through the medium access control layer control element and/or the physical layer downlink control information, the method further includes:
  • step S110 sending a first delay change rate threshold to the terminal
  • the sending the adjustment command to the terminal through the medium access control layer control element and/or the physical layer downlink control information includes:
  • step S10911 in response to the delay change rate of the uplink signal frame being less than or equal to the first delay change rate threshold, the adjustment command is sent to the terminal through the medium access control layer control element;
  • step S10912 in response to the delay change rate of the uplink signal frame being greater than the first delay change rate threshold, the adjustment command is sent to the terminal through physical layer downlink control information.
  • the first delay change rate threshold may be sent to the terminal, where the first delay change rate threshold may be sent by the base station to the terminal via a non-terrestrial network device, or may be directly sent by the non-terrestrial network device for the terminal.
  • the delay change rate of the uplink signal frame is less than or equal to the first delay change rate threshold, it can be determined that the adjustment command sent through the medium access control layer control element is still applicable to the initial timing advance required by the terminal. adjustment, so adjustment commands can be sent to the terminal through the medium access control layer control element.
  • the terminal can be in the situation that the delay change rate of the downlink signal frame is less than or equal to the first delay change rate threshold
  • the adjustment command is obtained in the medium access control layer control element.
  • the delay change rate of the uplink signal frame is greater than the first delay change rate threshold, it can be determined that the adjustment command sent through the medium access control layer control element is no longer applicable to the initial timing advance required by the terminal. Therefore, the adjustment command can be sent to the terminal according to the downlink control information of the physical layer.
  • the terminal can The adjustment command is obtained in physical layer downlink control information.
  • FIG. 10 is a schematic flowchart of yet another timing advance indication method according to an embodiment of the present disclosure. As shown in FIG. 10, before sending the adjustment command to the terminal through the physical layer downlink control information, the method further includes:
  • step S111 whether the adjustment command exists in the physical layer downlink control information is indicated to the terminal through high layer signaling.
  • the high-level signaling may refer to medium access control layer signaling, or may refer to unlimited resource control layer signaling.
  • the high-level signaling may be sent by the base station to the terminal via a non-terrestrial network device, or may be directly Sent to the terminal by non-terrestrial network equipment.
  • Using high layer signaling to indicate whether there is an adjustment command in the physical layer downlink control information allows the terminal to determine whether there is an adjustment command in the physical layer downlink control information before trying to obtain the adjustment command from the physical layer downlink control information. If the adjustment command does not exist in the downlink control information of the physical layer, it is not necessary to obtain the adjustment command from the downlink control information of the physical layer, so as to obtain the wrong information as the adjustment command, which will cause the problem of erroneous adjustment; The adjustment command is obtained only from the downlink control information of the physical layer.
  • the network device located in the air includes at least one of the following:
  • Satellites aerial platforms.
  • FIG. 11 is a schematic flowchart of a method for sending an uplink signal according to an embodiment of the present disclosure.
  • the method shown in this embodiment can be applied to terminals in non-terrestrial networks, and the terminals include but are not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the network device may be a network device to which the above-mentioned lead indication method is applicable, such as a satellite or an aerial platform, and the base station may be a 5G base station or a 6G base station.
  • the method for sending an uplink signal may include the following steps:
  • step S201 an initial timing advance sent by a network device located in the air in a non-terrestrial network is received, wherein the initial timing advance is based on the first round-trip transmission delay from the network device to the terminal, and the network determining the second round-trip transmission delay from the device to the ground reference point, and the transmission speed of the signal between the network device and the terminal;
  • step S202 an uplink signal frame is sent to the network device according to the initial timing advance.
  • the terminal may send the uplink signal frame to the network device according to the initial timing advance indicated by the network device, where the initial timing advance is not only determined according to the first round-trip transmission delay from the network device to the terminal , but can be determined according to the difference between the first round-trip transmission delay and the second round-trip transmission delay, and the difference is smaller than the first round-trip transmission delay, so the number of occupied bits is also less, Therefore, the number of bits required to indicate the initial timing advance is less, which is beneficial to saving signaling overhead.
  • FIG. 12 is a schematic flowchart of another method for sending an uplink signal according to an embodiment of the present disclosure.
  • the initial timing advance sent by the network device in the air receiving the non-terrestrial network includes:
  • step S2011 receiving random access response information sent by the network device
  • step S2012 the initial timing advance is obtained from the random access response information.
  • the network device may send the initial timing advance to the terminal through random access response information, and the terminal may obtain the initial timing advance from the received random access response information.
  • FIG. 13 is a schematic flowchart of yet another method for sending an uplink signal according to an embodiment of the present disclosure. As shown in Figure 13, the method further includes:
  • step S203 an adjustment command of the initial timing advance sent by the network device is received.
  • the network device may also send an adjustment command of the initial timing advance to the terminal, and the terminal may further advance or delay the initial timing advance by adjusting the command, wherein the adjustment command may be sent by the base station to the terminal via the network device. , or it can be directly sent by the network device to the terminal.
  • the adjustment command can be represented by ⁇ T, a positive value of ⁇ T indicates that the initial timing advance needs to be further advanced, and a negative value of ⁇ T indicates that the initial timing advance needs to be delayed.
  • FIG. 14 is a schematic flowchart of yet another method for sending an uplink signal according to an embodiment of the present disclosure.
  • the receiving the adjustment command of the initial timing advance sent by the network device includes:
  • step S2031 receiving a medium access control layer control element and/or physical layer downlink control information
  • step S2032 the adjustment command is acquired from the medium access control layer control element and/or the physical layer downlink control information.
  • the network device can send the adjustment command to the terminal through the physical layer downlink control information. Since the transmission delay of the physical layer downlink control information is relatively small, it is beneficial to ensure that the adjustment command is sent to the terminal through the physical layer downlink control information. After the terminal is installed, it can be applied to the adjustment of the initial timing advance currently required by the terminal.
  • FIG. 15 is a schematic flowchart of yet another method for sending an uplink signal according to an embodiment of the present disclosure. As shown in FIG. 15 , before acquiring the adjustment command in the medium access control layer control element and/or the physical layer downlink control information, the method further includes:
  • step S204 receiving the first delay change rate threshold sent by the network device
  • the acquiring the adjustment command in the medium access control layer control element and/or the physical layer downlink control information includes:
  • step S20321 in response to the delay change rate of the downlink signal frame being less than or equal to the first delay change rate threshold, obtain the adjustment command in the medium access control layer control element;
  • step S20322 in response to the delay change rate of the downlink signal frame being greater than the first delay change rate threshold, the adjustment command is acquired in the physical layer downlink control information.
  • the network device may send the first delay change rate threshold to the terminal, where the first delay change rate threshold may be sent by the base station to the terminal via the network device, or may be directly sent by the network device to the terminal of.
  • the delay change rate of the uplink signal frame is less than or equal to the first delay change rate threshold, it can be determined that the adjustment command sent through the medium access control layer control element is still applicable to the initial timing advance required by the terminal. adjustment, so adjustment commands can be sent to the terminal through the medium access control layer control element.
  • the terminal can be in the situation that the delay change rate of the downlink signal frame is less than or equal to the first delay change rate threshold
  • the adjustment command is obtained in the medium access control layer control element.
  • the delay change rate of the uplink signal frame is greater than the first delay change rate threshold, it can be determined that the adjustment command sent through the medium access control layer control element is no longer applicable to the initial timing advance required by the terminal. Therefore, the adjustment command can be sent to the terminal according to the downlink control information of the physical layer.
  • the terminal can The adjustment command is obtained in physical layer downlink control information.
  • FIG. 16 is a schematic flowchart of yet another method for sending an uplink signal according to an embodiment of the present disclosure. As shown in FIG. 16, before acquiring the adjustment command in the medium access control layer control element and/or the physical layer downlink control information, the method further includes:
  • step S205 receive the high-level signaling sent by the network device
  • step S206 it is determined whether the adjustment command exists in the physical layer downlink control information according to the higher layer signaling.
  • the terminal may determine whether there is an adjustment command in the downlink control information of the physical layer according to high-layer signaling, so that the terminal can identify the information in the downlink control information of the physical layer before attempting to acquire the adjustment command from the downlink control information of the physical layer. Whether there is an adjustment command. If the adjustment command does not exist in the downlink control information of the physical layer, it is not necessary to obtain the adjustment command from the downlink control information of the physical layer, so as to obtain the wrong information as the adjustment command, which will cause the problem of erroneous adjustment; The adjustment command is obtained only from the downlink control information of the physical layer.
  • FIG. 17 is a schematic flowchart of yet another method for sending an uplink signal according to an embodiment of the present disclosure. As shown in Figure 17, the method further includes:
  • step S207 in response to acquiring the adjustment command in the medium access control layer control element, or acquiring the adjustment command in the physical layer downlink control information, adjust the adjustment command according to the acquired adjustment command. initial time advance;
  • step S208 in response to acquiring the adjustment command in the medium access control layer control element and acquiring the adjustment command in the physical layer downlink control information, it is determined that the adjustment command is acquired in the medium access control layer control element
  • the first time of the adjustment command, and the second time of the adjustment command obtained from the downlink control information of the physical layer, the initial time is adjusted according to the adjustment command corresponding to the later of the first time and the second time advance amount.
  • the network device may send an adjustment command to the terminal in the medium access control layer control element, or send the adjustment command to the terminal in the physical layer downlink control information, then the terminal may obtain the adjustment command in the medium access control layer control element The adjustment command is obtained, or the adjustment command is obtained from the downlink control information of the physical layer, and then the initial timing advance can be adjusted based on the obtained adjustment command.
  • the network device may also send the adjustment command to the terminal in the medium access control layer control element, and send the adjustment command to the terminal in the physical layer downlink control information, then the terminal may send the adjustment command to the terminal in the medium access control layer control element The adjustment command is obtained, and the adjustment command is obtained in the downlink control information of the physical layer.
  • the first moment when the adjustment command is acquired in the medium access control layer control element and the second moment when the adjustment command is acquired in the physical layer downlink control information can be determined, and then according to the first moment and the second moment
  • the adjustment command corresponding to the later one of the times adjusts the initial timing advance. That is, selecting the adjustment command corresponding to the time closer to the current time to adjust the initial timing advance, accordingly, it is beneficial to ensure that the adjustment of the initial timing advance according to the adjustment command is suitable for the current delay situation of the terminal.
  • the present disclosure also provides embodiments of a timing advance indication apparatus and an uplink signal transmission apparatus.
  • Fig. 18 is a schematic block diagram of a timing advance indicating device according to an embodiment of the present disclosure.
  • the apparatus shown in this embodiment may be applicable to network equipment located in the air in a non-terrestrial network, and the network equipment may be a satellite or an aerial platform.
  • the network device can communicate with the terminal and the base station, for example, can send information from the base station to the terminal, the terminal includes but is not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, Internet of Things devices, etc.
  • the base station can be a 5G base station or a 6G base station.
  • the lead indicating device may include:
  • the first determining module 101 is configured to determine the first round-trip transmission delay from the network device to the terminal, and the first distance from the network device to the ground reference point;
  • the second determining module 102 is configured to determine the second round-trip transmission delay according to the first distance and the transmission speed of the signal between the network device and the terminal;
  • the third determining module 103 is configured to determine an initial timing advance according to the difference between the first round-trip transmission delay and the second round-trip transmission delay;
  • the first sending module 104 is configured to send the initial timing advance to the terminal.
  • Fig. 19 is a schematic block diagram of another timing advance indicating device according to an embodiment of the present disclosure.
  • the network device is configured to implement the function of the base station in the non-terrestrial network, and the apparatus further includes:
  • the fourth determining module 105 is configured to, after sending the first downlink signal frame to the terminal, determine to receive the terminal according to the moment of sending the first downlink signal frame and the second round-trip transmission delay The sent time of the first uplink signal frame corresponding to the first downlink signal frame.
  • Fig. 20 is a schematic block diagram of another timing advance indicating device according to an embodiment of the present disclosure.
  • the network device is configured to transmit the information sent by the base station in the non-terrestrial network to the terminal, and the apparatus further includes:
  • a fifth determining module 106 configured to determine a second distance from the network device to the base station
  • a sixth determining module 107 configured to determine a third round-trip transmission delay according to the sum of the first distance and the second distance and the transmission speed;
  • the seventh determining module 108 is configured to, after sending the second downlink signal frame to the terminal, determine, according to the third round-trip transmission delay, to receive the first downlink signal frame corresponding to the second downlink signal frame sent by the terminal. 2. The time of the uplink signal frame.
  • the first sending module is configured to send the initial timing advance to the terminal through random access response information.
  • Fig. 21 is a schematic block diagram of another timing advance indicating device according to an embodiment of the present disclosure. As shown in Figure 21, the device further includes:
  • the second sending module 108 is configured to send the adjustment command of the initial timing advance to the terminal.
  • the second sending module is configured to send the adjustment command to the terminal through a medium access control layer control element and/or physical layer downlink control information.
  • Fig. 22 is a schematic block diagram of another timing advance indicating device according to an embodiment of the present disclosure. As shown in Figure 22, the device further includes:
  • the third sending module 109 is configured to send the first delay change rate threshold to the terminal;
  • the second sending module is configured to, in response to the delay change rate of the uplink signal frame being less than or equal to the first delay change rate threshold, send the adjustment command to the the terminal; in response to the delay change rate of the uplink signal frame being greater than the first delay change rate threshold, the adjustment command is sent to the terminal through the physical layer downlink control information.
  • Fig. 23 is a schematic block diagram of another timing advance indicating device according to an embodiment of the present disclosure. As shown in Figure 23, the device further includes:
  • the instructing module 110 is configured to instruct the terminal whether the adjustment command exists in the physical layer downlink control information through high layer signaling.
  • the network device located in the air includes at least one of the following:
  • Satellites aerial platforms.
  • FIG. 24 is a schematic block diagram of an apparatus for transmitting an uplink signal according to an embodiment of the present disclosure.
  • the apparatus shown in this embodiment may be applicable to terminals in non-terrestrial networks, and the terminals include but are not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the network device may be a network device to which the above-mentioned lead indication method is applicable, such as a satellite or an aerial platform, and the base station may be a 5G base station or a 6G base station.
  • the uplink signal sending apparatus may include:
  • the first receiving module 201 is configured to receive an initial timing advance sent by a network device located in the air in a non-terrestrial network, where the initial timing advance is based on the first round-trip transmission delay from the network device to the terminal, And the second round-trip transmission delay from the network device to the ground reference point, and the transmission speed of the signal between the network device and the terminal is determined;
  • the uplink sending module 202 is configured to send an uplink signal frame to the network device according to the initial timing advance.
  • the first receiving module is configured to receive random access response information sent by the network device; and obtain the initial timing advance from the random access response information.
  • FIG. 25 is a schematic block diagram of another apparatus for transmitting an uplink signal according to an embodiment of the present disclosure. As shown in Figure 25, the device further includes:
  • the second receiving module 203 is configured to receive the adjustment command of the initial timing advance sent by the network device.
  • the second receiving module is configured to receive the medium access control layer control element and/or the physical layer downlink control information; obtain the information from the medium access control layer control element and/or the physical layer downlink control information. the adjustment command.
  • FIG. 26 is a schematic block diagram of yet another apparatus for sending an uplink signal according to an embodiment of the present disclosure. As shown in Figure 26, the device further includes:
  • the third receiving module 204 is configured to receive the first delay change rate threshold sent by the network device
  • the second receiving module is configured to obtain the adjustment command in the medium access control layer control element in response to the delay change rate of the downlink signal frame being less than or equal to the first delay change rate threshold ; In response to the delay change rate of the downlink signal frame being greater than the first delay change rate threshold, obtain the adjustment command in the physical layer downlink control information.
  • FIG. 27 is a schematic block diagram of yet another apparatus for sending an uplink signal according to an embodiment of the present disclosure. As shown in Figure 27, the device further includes:
  • the fourth receiving module 205 is configured to receive high-layer signaling sent by the network device; and determine whether the adjustment command exists in the physical layer downlink control information according to the high-layer signaling.
  • FIG. 28 is a schematic block diagram of yet another apparatus for sending an uplink signal according to an embodiment of the present disclosure. As shown in Figure 28, the device further includes:
  • the adjustment module 206 is configured to, in response to acquiring the adjustment command in the medium access control layer control element, or acquiring the adjustment command in the physical layer downlink control information, adjust the adjustment command according to the acquired adjustment command the initial timing advance;
  • the initial timing advance is adjusted according to the adjustment command corresponding to the later one of the first time and the second time.
  • An embodiment of the present disclosure also provides an electronic device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to implement the timing advance indication method described in any of the foregoing embodiments, and/or the uplink signal transmission method described in any of the foregoing embodiments.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, implements the timing advance indication method described in any of the foregoing embodiments, and/or any of the foregoing embodiments Steps in the uplink signal transmission method described in the example.
  • FIG. 29 is a schematic block diagram of an apparatus 2900 for sending uplink signals according to an embodiment of the present disclosure.
  • apparatus 2900 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • an apparatus 2900 may include one or more of the following components: a processing component 2902, a memory 2904, a power supply component 2906, a multimedia component 2908, an audio component 2910, an input/output (I/O) interface 2912, a sensor component 2914, and communication component 2916.
  • the processing component 2902 generally controls the overall operation of the device 2900, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 2902 may include one or more processors 2920 to execute the instructions to complete all or part of the steps of the above-mentioned uplink signal transmission method.
  • processing component 2902 may include one or more modules that facilitate interaction between processing component 2902 and other components.
  • processing component 2902 may include a multimedia module to facilitate interaction between multimedia component 2908 and processing component 2902.
  • Memory 2904 is configured to store various types of data to support operations at device 2900. Examples of such data include instructions for any application or method operating on device 2900, contact data, phonebook data, messages, pictures, videos, and the like. Memory 2904 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 2906 provides power to various components of device 2900.
  • Power components 2906 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 2900.
  • Multimedia component 2908 includes a screen that provides an output interface between the device 2900 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 2908 includes a front-facing camera and/or a rear-facing camera. When the apparatus 2900 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 2910 is configured to output and/or input audio signals.
  • audio component 2910 includes a microphone (MIC) that is configured to receive external audio signals when device 2900 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 2904 or transmitted via communication component 2916.
  • audio component 2910 also includes a speaker for outputting audio signals.
  • the I/O interface 2912 provides an interface between the processing component 2902 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 2914 includes one or more sensors for providing status assessment of various aspects of device 2900.
  • the sensor assembly 2914 can detect the open/closed state of the device 2900, the relative positioning of components, such as the display and keypad of the device 2900, and the sensor assembly 2914 can also detect a change in position of the device 2900 or a component of the device 2900 , the presence or absence of user contact with the device 2900 , the device 2900 orientation or acceleration/deceleration and the temperature change of the device 2900 .
  • Sensor assembly 2914 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 2914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 2914 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2916 is configured to facilitate wired or wireless communication between apparatus 2900 and other devices.
  • Device 2900 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, 4G LTE, 5G NR, or a combination thereof.
  • the communication component 2916 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 2916 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 2900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), a controller, a microcontroller, a microprocessor or other electronic components are implemented to perform the above-mentioned uplink signal transmission method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other electronic components are implemented to perform the above-mentioned uplink signal transmission method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 2904 including instructions, is also provided, and the instructions can be executed by the processor 2920 of the apparatus 2900 to complete the above uplink signaling method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及时间提前量指示方法,包括:确定网络设备到终端的第一往返传输时延,以及网络设备到地面参考点的第一距离;根据第一距离以及网络设备与终端之间信号的传输速度,确定第二往返传输时延;根据第一往返传输时延与第二往返传输时延的差值确定初始时间提前量;将初始时间提前量发送至终端。根据本公开的实施例,向终端指示的初始时间提前量,并不仅仅是根据网络设备到终端的第一往返传输时延来确定的,而是可以根据第一往返传输时延与第二往返传输时延的差值来确定,而该差值相对第一往返传输时延较小,因此所需占用比特位的数量也较少,因此指示初始时间提前量所需占用的比特位的数量就较少,有利于节省信令开销。

Description

时间提前量指示、上行信号发送方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及时间提前量指示方法、时间提前量指示装置、上行信号发送方法、上行信号发送装置、电子设备和计算机可读存储介质。
背景技术
随着5G技术的正式商用,6G技术的研究已经提上日程。在6G中需要满足地面上任意位置的终端,都能够进行通信,但是由于目前网络中的基站位于地面,设置基站存在较多限制,难以通过地面基站覆盖地面,因此考虑结合卫星进行覆盖。
在地面网络中,基站可以通过向终端发送时间提前量(Timing Advance,简称TA),使得终端发送的上行信号帧与基站发送的下行信号帧相对应,还可以向终端发送时间提前量的调整命令。
但是在非地面网络(Non-Terrestrial Network,简称NTN)中结合卫星进行通信时,由于卫星在空中,并且是高速移动的,基站通过卫星与终端通信时,存在的时延就较大,而时间提前量是根据时延设置的,因此时间提前量也就较大,而发送较大的时间提前量,信令开销也就较大。此外,卫星的高速移动还会引起时间提前量的快速变化。
发明内容
有鉴于此,本公开的实施例提出了时间提前量指示方法、时间提前量指示装置、上行信号发送方法、上行信号发送装置、电子设备和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种时间提前量指示方法,适用于非地面网络中位于空中的网络设备,所述方法包括:
确定所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第一距离;
根据所述第一距离以及所述网络设备与所述终端之间信号的传输速度,确定第 二往返传输时延;
根据所述第一往返传输时延与所述第二往返传输时延的差值确定初始时间提前量;
将所述初始时间提前量发送至所述终端。
根据本公开实施例的第二方面,提出一种上行信号发送方法,适用于非陆地网络中的终端,所述方法包括:
接收非陆地网络中位于空中的网络设备发送的初始时间提前量,其中,所述初始时间提前量基于根据所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第二往返传输时延,以及所述网络设备所述终端之间信号的传输速度确定;
根据所述初始时间提前量,向所述网络设备发送上行信号帧。
根据本公开实施例的第三方面,提出一种时间提前量指示装置,适用于非地面网络中位于空中的网络设备,所述装置包括:
第一确定模块,被配置为确定所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第一距离;
第二确定模块,被配置为根据所述第一距离以及所述网络设备与所述终端之间信号的传输速度,确定第二往返传输时延;
第三确定模块,被配置为根据所述第一往返传输时延与所述第二往返传输时延的差值确定初始时间提前量;
第一发送模块,被配置为将所述初始时间提前量发送至所述终端。
根据本公开实施例的第四方面,提出一种上行信号发送装置,适用于非陆地网络中的终端,所述装置包括:
第一接收模块,被配置为接收非陆地网络中位于空中的网络设备发送的初始时间提前量,其中,所述初始时间提前量基于根据所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第二往返传输时延,以及所述网络设备所述终端之间信号的传输速度确定;
上行发送模块,被配置为根据所述初始时间提前量,向所述网络设备发送上行信号帧。
根据本公开实施例的第五方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的时间提前量指示方法,和/或上述任一实施例所述的上行信号发送方法。
根据本公开实施例的第六方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述的时间提前量指示方法,和/或上述任一实施例所述的上行信号发送方法中的步骤。
根据本公开的实施例,向终端指示的初始时间提前量,并不仅仅是根据网络设备到终端的第一往返传输时延来确定的,而是可以根据第一往返传输时延与第二往返传输时延的差值来确定,而该差值相对第一往返传输时延较小,因此所需占用比特位的数量也较少,因此指示初始时间提前量所需占用的比特位的数量就较少,有利于节省信令开销。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种时间提前量指示方法的示意流程图。
图2是相关技术中初始时间提前量的示意图。
图3是根据本公开的实施例示出的一种初始时间提前量的示意图。
图4是根据本公开的实施例示出的另一种时间提前量指示方法的示意流程图。
图5是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。
图6是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。
图7是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。
图8是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。
图9是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。
图10是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。
图11是根据本公开的实施例示出的一种上行信号发送方法的示意流程图。
图12是根据本公开的实施例示出的另一种上行信号发送方法的示意流程图。
图13是根据本公开的实施例示出的又一种上行信号发送方法的示意流程图。
图14是根据本公开的实施例示出的又一种上行信号发送方法的示意流程图。
图15是根据本公开的实施例示出的又一种上行信号发送方法的示意流程图。
图16是根据本公开的实施例示出的又一种上行信号发送方法的示意流程图。
图17是根据本公开的实施例示出的又一种上行信号发送方法的示意流程图。
图18是根据本公开的实施例示出的一种时间提前量指示装置的示意框图。
图19是根据本公开的实施例示出的另一种时间提前量指示装置的示意框图。
图20是根据本公开的实施例示出的另一种时间提前量指示装置的示意框图。
图21是根据本公开的实施例示出的另一种时间提前量指示装置的示意框图。
图22是根据本公开的实施例示出的另一种时间提前量指示装置的示意框图。
图23是根据本公开的实施例示出的另一种时间提前量指示装置的示意框图。
图24是根据本公开的实施例示出的一种上行信号发送装置的示意框图。
图25是根据本公开的实施例示出的另一种上行信号发送装置的示意框图。
图26是根据本公开的实施例示出的又一种上行信号发送装置的示意框图。
图27是根据本公开的实施例示出的又一种上行信号发送装置的示意框图。
图28是根据本公开的实施例示出的又一种上行信号发送装置的示意框图。
图29是根据本公开的实施例示出的一种用于上行信号发送的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例,都属于本公开保护的范围。
图1是根据本公开的实施例示出的一种时间提前量指示方法的示意流程图。本实施例所示的方法可以适用于非地面网络中位于空中的网络设备(也可以称作非地面网络设备),所述网络设备可以是卫星,也可以是空中平台。所述网络设备可以与终端和基站进行通信,例如可以将来自基站的信息发送至终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备,所述基站可以是5G基站,也可以是6G基站。
如图1所示,所述提前量指示方法可以包括以下步骤:
在步骤S101中,确定所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第一距离;
在步骤S102中,根据所述第一距离以及所述网络设备与所述终端之间信号的传输速度,确定第二往返传输时延;
在步骤S103中,根据所述第一往返传输时延与所述第二往返传输时延的差值确定初始时间提前量;
在步骤S104中,将所述初始时间提前量发送至所述终端。
在一个实施例中,网络设备可以接收来自终端的信号,并根据接收到信号的接收时刻和信号的发送时刻(例如可以携带信号中)的差值确定第一往返传输时延;也可以先确定网络设备到终端距离,进而根据该距离和信号的传输速度(例如光速)的商确定第一往返传输时延。
网络设备可以确定到地面参考点的第一距离,其中,地面参考点是地面上网络设备已知位置的点,例如可以是网络设备在地面的投影点,也可以是预先存储在网络设备中的一个点。进而网络设备可以根据第一距离以及网络设备与终端之间信号的传输速度,确定第二往返传输时延。再根据第一往返传输时延与第二往返传输时延的差值确定初始时间提前量,然后将初始时间提前量发送至终端。
例如网络设备到终端距离为d ue,第一距离为d 1,信号的传输速度为c,那么初始时间提前量ue_TA=2(d ue-d 1)/c。
图2是相关技术中初始时间提前量的示意图。图3是根据本公开的实施例示出的一种初始时间提前量的示意图。
如图2所示和图3所示,其中的格子表示信号帧,有填充的格子表示相对应的信号帧,例如具有相同序号的信号帧。
如图2所示,在相关技术中,基站发送下行信号帧,到终端接收到下行信号帧,存在的时延为Delay,为了使得基站发送上行信号帧后,基站接收到的上行信号帧能够与基站发送的下行信号帧相对应,基站向终端指示的初始时间提前量TA为2倍的Delay,从而终端向基站发送上行信号帧到基站接收到上行信号帧的时延也为Delay,但是终端提前了2倍的Delay向基站发送上行信号帧,所以使得基站接收到的上行信号帧与基站发送的下行信号帧相对应,其中指示TA需要占用比特位的数量是根据2倍的Delay确定的。
而在非地面网络中,上述时延Delay较大,例如在地面网络中的时延Delay在1毫秒左右,一般不到1毫秒,而在非地面网络中,时延Delay可以近似理解为网络设备到终端的第一往返传输时延,例如d ue/c,可以达到数十毫秒甚至上百毫秒,那么指示TA所需占用比特位的数量就会急剧增加,导致信令开销较大。
根据本公开的实施例,向终端指示的初始时间提前量,并不仅仅是根据网络设备到终端的第一往返传输时延来确定的,而是可以根据第一往返传输时延与第二往返传输时延的差值来确定,而该差值相对第一往返传输时延较小,因此所需占用比特位的数量也较少,因此指示初始时间提前量所需占用的比特位的数量就较少,有利于节省信令开销。
需要说明的是,由于本实施例中的初始时间提前量,与相关技术不同,并不等于2倍的Delay,所以终端向基站发送上行信号帧到基站接收到上行信号帧的时延也就不是Delay,该基站发送上行信号帧到基站接收到上行信号帧的时延可以如图3所示,为基站下行和上行信号帧的时延,简称为common_TA,基站为了保证发送的下行信号帧接收到的上行信号帧相对应,需要在发送下行信号帧后,在经过common_TA的时域位置接收终端发送的上行信号帧,根据图3可知,common_TA可以理解为是2倍的Delay减去本实施例中的初始时间提前量。有关common_TA的确定方式在后续实施例中进行描述。
图4是根据本公开的实施例示出的另一种时间提前量指示方法的示意流程图。如图4所示,所述网络设备用于实现所述非陆地网络中基站的功能,例如网络设备为卫星,那么这种情况可以称作星上信号再生,所述方法还包括:
在步骤S105中,在向所述终端发送第一下行信号帧后,根据发送所述第一下行信号帧的时刻和所述第二往返传输时延,确定接收所述终端发送的与所述第一下行信号帧对应的第一上行信号帧的时刻。
在一个实施例中,在网络设备实现非陆地网络中基站的功能时,网络设备相当于基站直接与终端进行通信,那么终端与基站通信的时延Delay就等于终端与网络设备通信的时延,也即第一往返传输时延。
而根据上述实施例可知,common_TA可以理解为是2倍的Delay减去本实施例中的初始时间提前量,那么2倍的Delay就是第一往返传输时延,common_TA就等于第一往返传输时延减去初始时间提前量,也即:
common_TA=2d ue/c-2(d ue-d 1)/c=2d 1/c。
那么基站在向终端发送第一下行信号帧后,在时域上等待第二往返传输时延2d 1/c,然后接收到的终端发送的第一上行信号帧,就是与第一下行信号帧相对应的。
图5是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。如图5所示,所述网络设备用于将所述非陆地网络中基站发送的信息传输至所述终端,所述方法还包括:
在步骤S106中,确定所述网络设备到所述基站的第二距离;
在步骤S107中,根据所述第一距离与所述第二距离之和,以及所述传输速度确定第三往返传输时延;
在步骤S108中,在向所述终端发送第二下行信号帧后,根据所述第三往返传输时延,确定接收所述终端发送的与所述第二下行信号帧对应的第二上行信号帧的时刻。
在一个实施例中,在网络设备用于将非陆地网络中基站发送的信息传输至终端时,基站与终端的通信需要经过网络设备传输。例如网络设备仅起到透传作用,而不对基站与终端之间交互的信息进行处理(但是可以在模拟域进行放大),或者网络设备对基站与终端之间交互的信息处理的,但是并不起到基站的全部功能。由于基站与终端的通信需要经过网络设备传输,那么基站与终端之间通信的时延Delay就等于基站与网络设备通信的时延,以及网络设备与终端通信的时延之和。
而根据上述实施例可知,common_TA可以理解为是2倍的Delay减去本实施 例中的初始时间提前量,那么2倍的Delay就是2倍的网络设备与终端通信的时延与2倍的基站与网络设备通信的时延之和,例如终端与网络设备的第二距离为d 2,那么common_TA可以按照下述方式计算:
common_TA=2(d ue+d 2)/c-2(d ue-d 1)/c=2(d 1+d 2)/c。
本实施例中的common_TA可以称作第三往返传输时延,可见,第三往返传输时延可以根据第一距离d 1与第二距离d 2之和,以及所述传输速度c确定。那么基站在向终端发送第二下行信号帧后,在时域上等待第三往返传输时延2(d 1+d 2)/c,然后接收到的终端发送的第二上行信号帧,就是与第二下行信号帧相对应的。
图6是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。如图6所示,所述将所述初始时间提前量发送至所述终端包括:
在步骤S1041中,通过随机接入响应信息将所述初始时间提前量发送至所述终端。
在一个实施例中,可以通过随机接入响应信息(Random Access Response,简称RAR)将初始时间提前量发送至终端。
图7是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。如图7所示,所述方法还包括:
在步骤S109中,将所述初始时间提前量的调整命令发送至所述终端。
在一个实施例中,还可以向终端发送初始时间提前量的调整命令,以使终端将初始时间提前量进一步提前或者延后,其中,调整命令可以是基站经由非地面网络设备发送给终端的,也可以是直接由非地面网络设备发送给终端的。例如调整命令可以通过ΔT表示,ΔT为正数表示需要将初始时间提前量进一步提前,ΔT为负数表示需要将初始时间提前量延后。
图8是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。如图8所示,将所述初始时间提前量的调整命令发送至所述终端包括:
在步骤S1091中,通过介质访问控制层控制元素和/或物理层下行控制信息,将所述调整命令发送至所述终端。
在一个实施例中,可以通过介质访问控制层控制元素(MAC CE)和/或物理层下行控制信息(DCI),将调整命令发送至终端。
在相关技术中,仅通过介质访问控制层控制元素将调整命令发送至终端,但是由于介质访问控制层在物理层之上,介质访问控制层控制元素传输时延,相对物理层下行控制信息的传输时延更大。在非地面网络中需要通过卫星发送终端和基站之间的信号时,由于卫星是在高速移动的,所以信号经过卫星传播,时延会发生抖动,而由于介质访问控制层控制元素传输时延较大,难以及时跟踪时延的抖动。
简言之就是由于介质访问控制层控制元素传输时延较大,基站在前一个所确定的调整命令,在通过介质访问控制层控制元素将调整命令发送至终端后,已经不适用于终端目前所需的对初始时间提前量的调整了。
而在本实施例中,可以通过物理层下行控制信息将调整命令发送至终端,由于物理层下行控制信息的传输时延相对较小,有利于确保通过物理层下行控制信息将调整命令发送至终端后,能够适用于终端目前所需的对初始时间提前量的调整。
图9是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。如图9所示,在通过介质访问控制层控制元素和/或物理层下行控制信息,将所述调整命令发送至所述终端之前,所述方法还包括:
在步骤S110中,向所述终端发送第一时延变化率阈值;
其中,所述通过介质访问控制层控制元素和/或物理层下行控制信息,将所述调整命令发送至所述终端包括:
在步骤S10911中,响应于上行信号帧的时延变化率小于或等于所述第一时延变化率阈值,通过介质访问控制层控制元素将所述调整命令发送至所述终端;
在步骤S10912中,响应于上行信号帧的时延变化率大于所述第一时延变化率阈值,通过物理层下行控制信息将所述调整命令发送至所述终端。
在一个实施例中,可以向终端发送第一时延变化率阈值,其中,第一时延变化率阈值可以是基站经由非地面网络设备发送给终端的,也可以是直接由非地面网络设备发送给终端的。
在上行信号帧的时延变化率小于或等于第一时延变化率阈值的情况下,可以确定通过介质访问控制层控制元素发送调整命令,仍能适用于终端目前所需的对初始时间提前量的调整,因此可以通过介质访问控制层控制元素将调整命令发送至终端。
由于上行信号帧的变化率和下行信号帧的变化率可以理解为近似相等的,那么 对于终端而言,终端可以在下行信号帧的时延变化率小于或等于第一时延变化率阈值的情况下,在介质访问控制层控制元素中获取所述调整命令。
而在上行信号帧的时延变化率大于第一时延变化率阈值的情况下,可以确定通过介质访问控制层控制元素发送调整命令,已不能适用于终端目前所需的对初始时间提前量的调整,因此可以物理层下行控制信息将调整命令发送至终端。
由于上行信号帧的变化率和下行信号帧的变化率可以理解为近似相等的,那么对于终端而言,终端可以在下行信号帧的时延变化率大于第一时延变化率阈值的情况下,在物理层下行控制信息中获取所述调整命令。
图10是根据本公开的实施例示出的又一种时间提前量指示方法的示意流程图。如图10所示,在通过物理层下行控制信息将所述调整命令发送至所述终端之前,所述方法还包括:
在步骤S111中,通过高层信令指示所述终端在所述物理层下行控制信息中是否存在所述调整命令。
在一个实施例中,高层信令可以是指介质访问控制层信令,也可以是指无限资源控制层信令,高层信令可以是基站经由非地面网络设备发送给终端的,也可以是直接由非地面网络设备发送给终端的。
通过高层信令指示终端在物理层下行控制信息中是否存在调整命令,可以使得终端在尝试从物理层下行控制信息中获取调整命令之前,能够明确物理层下行控制信息中是否存在调整命令。若物理层下行控制信息中不存在调整命令,则无需从物理层下行控制信息中获取调整命令,以便获取到错误的信息作为调整命令,而引发误调整的问题;若物理层下行控制信息中存在调整命令,才从物理层下行控制信息中获取调整命令。
可选地,位于空中的网络设备包括以下至少之一:
卫星、空中平台。
图11是根据本公开的实施例示出的一种上行信号发送方法的示意流程图。本实施例所示的方法可以适用于非陆地网络中的终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备,所述终端可以通过网络设备与基站通信,所述网络设备可以是上述提前量指示方法所适用的网络设备,例如可以是卫星,也可以是空中平台,所述基站可以是5G基站,也可以是6G基站。
如图11所示,所述上行信号发送方法可以包括以下步骤:
在步骤S201中,接收非陆地网络中位于空中的网络设备发送的初始时间提前量,其中,所述初始时间提前量基于根据所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第二往返传输时延,以及所述网络设备所述终端之间信号的传输速度确定;
在步骤S202中,根据所述初始时间提前量,向所述网络设备发送上行信号帧。
根据本公开的实施例,终端可以根据网络设备指示的初始时间提前量向网络设备发送上行信号帧,其中初始时间提前量并不仅仅是根据网络设备到终端的第一往返传输时延来确定的,而是可以根据第一往返传输时延与第二往返传输时延的差值来确定,而该差值相对第一往返传输时延较小,因此所需占用比特位的数量也较少,因此指示初始时间提前量所需占用的比特位的数量就较少,有利于节省信令开销。
图12是根据本公开的实施例示出的另一种上行信号发送方法的示意流程图。如图12所示,所述接收非陆地网络中位于空中的网络设备发送的初始时间提前量包括:
在步骤S2011中,接收所述网络设备发送的随机接入响应信息;
在步骤S2012中,在所述随机接入响应信息中获取所述初始时间提前量。
在一个实施例中,网络设备可以通过随机接入响应信息将初始时间提前量发送至终端,终端则可以在接收到的随机接入响应信息中获取初始时间提前量。
图13是根据本公开的实施例示出的又一种上行信号发送方法的示意流程图。如图13所示,所述方法还包括:
在步骤S203中,接收所述网络设备发送的所述初始时间提前量的调整命令。
在一个实施例中,网络设备还可以向终端发送初始时间提前量的调整命令,终端可以调整命令将初始时间提前量进一步提前或者延后,其中,调整命令可以是基站经由网络设备发送给终端的,也可以是直接由网络设备发送给终端的。例如调整命令可以通过ΔT表示,ΔT为正数表示需要将初始时间提前量进一步提前,ΔT为负数表示需要将初始时间提前量延后。
图14是根据本公开的实施例示出的又一种上行信号发送方法的示意流程图。如图14所示,所述接收所述网络设备发送的所述初始时间提前量的调整命令包括:
在步骤S2031中,接收介质访问控制层控制元素和/或物理层下行控制信息;
在步骤S2032中,在所述介质访问控制层控制元素和/或物理层下行控制信息中获取所述调整命令。
在本实施例中,网络设备可以通过物理层下行控制信息将调整命令发送至终端,由于物理层下行控制信息的传输时延相对较小,有利于确保通过物理层下行控制信息将调整命令发送至终端后,能够适用于终端目前所需的对初始时间提前量的调整。
图15是根据本公开的实施例示出的又一种上行信号发送方法的示意流程图。如图15所示,在所述介质访问控制层控制元素和/或物理层下行控制信息中获取所述调整命令之前,所述方法还包括:
在步骤S204中,接收所述网络设备发送的第一时延变化率阈值;
其中,所述在所述介质访问控制层控制元素和/或物理层下行控制信息中获取所述调整命令包括:
在步骤S20321中,响应于下行信号帧的时延变化率小于或等于所述第一时延变化率阈值,在所述介质访问控制层控制元素中获取所述调整命令;
在步骤S20322中,响应于下行信号帧的时延变化率大于所述第一时延变化率阈值,在所述物理层下行控制信息中获取所述调整命令。
在一个实施例中,网络设备可以向终端发送第一时延变化率阈值,其中,第一时延变化率阈值可以是基站经由网络设备发送给终端的,也可以是直接由网络设备发送给终端的。
在上行信号帧的时延变化率小于或等于第一时延变化率阈值的情况下,可以确定通过介质访问控制层控制元素发送调整命令,仍能适用于终端目前所需的对初始时间提前量的调整,因此可以通过介质访问控制层控制元素将调整命令发送至终端。
由于上行信号帧的变化率和下行信号帧的变化率可以理解为近似相等的,那么对于终端而言,终端可以在下行信号帧的时延变化率小于或等于第一时延变化率阈值的情况下,在介质访问控制层控制元素中获取所述调整命令。
而在上行信号帧的时延变化率大于第一时延变化率阈值的情况下,可以确定通过介质访问控制层控制元素发送调整命令,已不能适用于终端目前所需的对初始时间提前量的调整,因此可以物理层下行控制信息将调整命令发送至终端。
由于上行信号帧的变化率和下行信号帧的变化率可以理解为近似相等的,那么对于终端而言,终端可以在下行信号帧的时延变化率大于第一时延变化率阈值的情况下,在物理层下行控制信息中获取所述调整命令。
图16是根据本公开的实施例示出的又一种上行信号发送方法的示意流程图。如图16所示,在所述介质访问控制层控制元素和/或物理层下行控制信息中获取所述调整命令之前,所述方法还包括:
在步骤S205中,接收所述网络设备发送的高层信令;
在步骤S206中,根据所述高层信令确定在所述物理层下行控制信息中是否存在所述调整命令。
在一个实施例中,终端可以根据高层信令确定在物理层下行控制信息中是否存在调整命令,从而使得终端在尝试从物理层下行控制信息中获取调整命令之前,能够明确物理层下行控制信息中是否存在调整命令。若物理层下行控制信息中不存在调整命令,则无需从物理层下行控制信息中获取调整命令,以便获取到错误的信息作为调整命令,而引发误调整的问题;若物理层下行控制信息中存在调整命令,才从物理层下行控制信息中获取调整命令。
图17是根据本公开的实施例示出的又一种上行信号发送方法的示意流程图。如图17所示,所述方法还包括:
在步骤S207中,响应于在所述介质访问控制层控制元素中获取到所述调整命令,或在物理层下行控制信息中获取到所述调整命令,根据获取到的所述调整命令调整所述初始时间提前量;
在步骤S208中,响应于在所述介质访问控制层控制元素中获取到所述调整命令,且在物理层下行控制信息中获取到所述调整命令,确定在介质访问控制层控制元素中获取到调整命令的第一时刻,以及在物理层下行控制信息中获取到调整命的第二时刻,根据所述第一时刻和所述第二时刻中较晚的时刻对应的调整命令调整所述初始时间提前量。
在一个实施例中,网络设备可以在介质访问控制层控制元素中向终端发送调整命令,或在物理层下行控制信息中向终端发送调整命令,那么在终端可以在介质访问控制层控制元素中获取到调整命令,或在物理层下行控制信息中获取到调整命令,进而基于获取到的调整命令可以调整初始时间提前量。
在一个实施例中,网络设备也可以在介质访问控制层控制元素中向终端发送调整命令,且在物理层下行控制信息中向终端发送调整命令,那么在终端可以在介质访问控制层控制元素中获取到调整命令,且在物理层下行控制信息中获取到调整命令。
在这种情况下,可以确定在介质访问控制层控制元素中获取到调整命令的第一时刻,以及在物理层下行控制信息中获取到调整命的第二时刻,进而根据第一时刻和第二时刻中较晚的时刻对应的调整命令调整初始时间提前量。也即选择距离当前时刻较近的时刻对应的调整命令调整初始时间提前量,据此,有利于确保根据调整命令调整初始时间提前量适用于终端当前的时延情况。
与前述的时间提前量指示方法和上行信号发送方法的实施例相对应,本公开还提供了时间提前量指示装置和上行信号发送装置的实施例。
图18是根据本公开的实施例示出的一种时间提前量指示装置的示意框图。本实施例所示的装置可以适用于非地面网络中位于空中的网络设备,所述网络设备可以是卫星,也可以是空中平台。所述网络设备可以与终端和基站进行通信,例如可以将来自基站的信息发送至终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备,所述基站可以是5G基站,也可以是6G基站。
如图18所示,所述提前量指示装置可以包括:
第一确定模块101,被配置为确定所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第一距离;
第二确定模块102,被配置为根据所述第一距离以及所述网络设备与所述终端之间信号的传输速度,确定第二往返传输时延;
第三确定模块103,被配置为根据所述第一往返传输时延与所述第二往返传输时延的差值确定初始时间提前量;
第一发送模块104,被配置为将所述初始时间提前量发送至所述终端。
图19是根据本公开的实施例示出的另一种时间提前量指示装置的示意框图。如图19所示,所述网络设备用于实现所述非陆地网络中基站的功能,所述装置还包括:
第四确定模块105,被配置为在向所述终端发送第一下行信号帧后,根据发送所述第一下行信号帧的时刻和所述第二往返传输时延,确定接收所述终端发送的与所述第一下行信号帧对应的第一上行信号帧的时刻。
图20是根据本公开的实施例示出的另一种时间提前量指示装置的示意框图。如图20所示,所述网络设备用于将所述非陆地网络中基站发送的信息传输至所述终端,所述装置还包括:
第五确定模块106,被配置为确定所述网络设备到所述基站的第二距离;
第六确定模块107,被配置为根据所述第一距离与所述第二距离之和,以及所述传输速度确定第三往返传输时延;
第七确定模块108,被配置为在向所述终端发送第二下行信号帧后,根据所述第三往返传输时延,确定接收所述终端发送的与所述第二下行信号帧对应的第二上行信号帧的时刻。
可选地,所述第一发送模块,被配置为通过随机接入响应信息将所述初始时间提前量发送至所述终端。
图21是根据本公开的实施例示出的另一种时间提前量指示装置的示意框图。如图21所示,所述装置还包括:
第二发送模块108,被配置为将所述初始时间提前量的调整命令发送至所述终端。
可选地,所述第二发送模块,被配置为通过介质访问控制层控制元素和/或物理层下行控制信息,将所述调整命令发送至所述终端。
图22是根据本公开的实施例示出的另一种时间提前量指示装置的示意框图。如图22所示,所述装置还包括:
第三发送模块109,被配置为向所述终端发送第一时延变化率阈值;
其中,所述第二发送模块,被配置为响应于上行信号帧的时延变化率小于或等于所述第一时延变化率阈值,通过介质访问控制层控制元素将所述调整命令发送至所述终端;响应于上行信号帧的时延变化率大于所述第一时延变化率阈值,通过物理层下行控制信息将所述调整命令发送至所述终端。
图23是根据本公开的实施例示出的另一种时间提前量指示装置的示意框图。如图23所示,所述装置还包括:
指示模块110,被配置为通过高层信令指示所述终端在所述物理层下行控制信息中是否存在所述调整命令。
可选地,位于空中的网络设备包括以下至少之一:
卫星、空中平台。
图24是根据本公开的实施例示出的一种上行信号发送装置的示意框图。本实施例所示的装置可以适用于非陆地网络中的终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备,所述终端可以通过网络设备与基站通信,所述网络设备可以是上述提前量指示方法所适用的网络设备,例如可以是卫星,也可以是空中平台,所述基站可以是5G基站,也可以是6G基站。
如图24所示,所述上行信号发送装置可以包括:
第一接收模块201,被配置为接收非陆地网络中位于空中的网络设备发送的初始时间提前量,其中,所述初始时间提前量基于根据所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第二往返传输时延,以及所述网络设备所述终端之间信号的传输速度确定;
上行发送模块202,被配置为根据所述初始时间提前量,向所述网络设备发送上行信号帧。
可选地,所述第一接收模块,被配置为接收所述网络设备发送的随机接入响应信息;在所述随机接入响应信息中获取所述初始时间提前量。
图25是根据本公开的实施例示出的另一种上行信号发送装置的示意框图。如图25所示,所述装置还包括:
第二接收模块203,被配置为接收所述网络设备发送的所述初始时间提前量的调整命令。
可选地,所述第二接收模块,被配置为接收介质访问控制层控制元素和/或物理层下行控制信息;在所述介质访问控制层控制元素和/或物理层下行控制信息中获取所述调整命令。
图26是根据本公开的实施例示出的又一种上行信号发送装置的示意框图。如图26所示,所述装置还包括:
第三接收模块204,被配置为接收所述网络设备发送的第一时延变化率阈值;
其中,所述第二接收模块,被配置为响应于下行信号帧的时延变化率小于或等于所述第一时延变化率阈值,在所述介质访问控制层控制元素中获取所述调整命令; 响应于下行信号帧的时延变化率大于所述第一时延变化率阈值,在所述物理层下行控制信息中获取所述调整命令。
图27是根据本公开的实施例示出的又一种上行信号发送装置的示意框图。如图27所示,所述装置还包括:
第四接收模块205,被配置为接收所述网络设备发送的高层信令;根据所述高层信令确定在所述物理层下行控制信息中是否存在所述调整命令。
图28是根据本公开的实施例示出的又一种上行信号发送装置的示意框图。如图28所示,所述装置还包括:
调整模块206,被配置为响应于在所述介质访问控制层控制元素中获取到所述调整命令,或在物理层下行控制信息中获取到所述调整命令,根据获取到的所述调整命令调整所述初始时间提前量;
以及响应于在所述介质访问控制层控制元素中获取到所述调整命令,且在物理层下行控制信息中获取到所述调整命令,确定在介质访问控制层控制元素中获取到调整命令的第一时刻,以及在物理层下行控制信息中获取到调整命的第二时刻,根据所述第一时刻和所述第二时刻中较晚的时刻对应的调整命令调整所述初始时间提前量。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开实施例还提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的时间提前量指示方法,和/或上述任一实施例所述的上行信号发送方法。
本公开实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述的时间提前量指示方法,和/或上述任一实施例所述的上行信号发送方法中的步骤。
图29是根据本公开的实施例示出的一种用于上行信号发送的装置2900的示意框图。例如,装置2900可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图29,装置2900可以包括以下一个或多个组件:处理组件2902,存储器2904,电源组件2906,多媒体组件2908,音频组件2910,输入/输出(I/O)的接口2912,传感器组件2914,以及通信组件2916。
处理组件2902通常控制装置2900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2902可以包括一个或多个处理器2920来执行指令,以完成上述的上行信号发送方法的全部或部分步骤。此外,处理组件2902可以包括一个或多个模块,便于处理组件2902和其他组件之间的交互。例如,处理组件2902可以包括多媒体模块,以方便多媒体组件2908和处理组件2902之间的交互。
存储器2904被配置为存储各种类型的数据以支持在装置2900的操作。这些数据的示例包括用于在装置2900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2906为装置2900的各种组件提供电力。电源组件2906可以包括电源管理***,一个或多个电源,及其他与为装置2900生成、管理和分配电力相关联的组件。
多媒体组件2908包括在所述装置2900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续 时间和压力。在一些实施例中,多媒体组件2908包括一个前置摄像头和/或后置摄像头。当装置2900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件2910被配置为输出和/或输入音频信号。例如,音频组件2910包括一个麦克风(MIC),当装置2900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2904或经由通信组件2916发送。在一些实施例中,音频组件2910还包括一个扬声器,用于输出音频信号。
I/O接口2912为处理组件2902和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2914包括一个或多个传感器,用于为装置2900提供各个方面的状态评估。例如,传感器组件2914可以检测到装置2900的打开/关闭状态,组件的相对定位,例如所述组件为装置2900的显示器和小键盘,传感器组件2914还可以检测装置2900或装置2900一个组件的位置改变,用户与装置2900接触的存在或不存在,装置2900方位或加速/减速和装置2900的温度变化。传感器组件2914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2916被配置为便于装置2900和其他设备之间有线或无线方式的通信。装置2900可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件2916经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、 现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述上行信号发送方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2904,上述指令可由装置2900的处理器2920执行以完成上述上行信号发送方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (20)

  1. 一种时间提前量指示方法,其特征在于,适用于非地面网络中位于空中的网络设备,所述方法包括:
    确定所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第一距离;
    根据所述第一距离以及所述网络设备与所述终端之间信号的传输速度,确定第二往返传输时延;
    根据所述第一往返传输时延与所述第二往返传输时延的差值确定初始时间提前量;
    将所述初始时间提前量发送至所述终端。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备用于实现所述非陆地网络中基站的功能,所述方法还包括:
    在向所述终端发送第一下行信号帧后,根据发送所述第一下行信号帧的时刻和所述第二往返传输时延,确定接收所述终端发送的与所述第一下行信号帧对应的第一上行信号帧的时刻。
  3. 根据权利要求1所述的方法,其特征在于,所述网络设备用于将所述非陆地网络中基站发送的信息传输至所述终端,所述方法还包括:
    确定所述网络设备到所述基站的第二距离;
    根据所述第一距离与所述第二距离之和,以及所述传输速度确定第三往返传输时延;
    在向所述终端发送第二下行信号帧后,根据所述第三往返传输时延,确定接收所述终端发送的与所述第二下行信号帧对应的第二上行信号帧的时刻。
  4. 根据权利要求1所述的方法,其特征在于,所述将所述初始时间提前量发送至所述终端包括:
    通过随机接入响应信息将所述初始时间提前量发送至所述终端。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    将所述初始时间提前量的调整命令发送至所述终端。
  6. 根据权利要求5所述的方法,其特征在于,将所述初始时间提前量的调整命令发送至所述终端包括:
    通过介质访问控制层控制元素和/或物理层下行控制信息,将所述调整命令发送至所述终端。
  7. 根据权利要求6所述的方法,其特征在于,在通过介质访问控制层控制元素和/或物理层下行控制信息,将所述调整命令发送至所述终端之前,所述方法还包括:
    向所述终端发送第一时延变化率阈值;
    其中,所述通过介质访问控制层控制元素和/或物理层下行控制信息,将所述调整命令发送至所述终端包括:
    响应于上行信号帧的时延变化率小于或等于所述第一时延变化率阈值,通过介质访问控制层控制元素将所述调整命令发送至所述终端;
    响应于上行信号帧的时延变化率大于所述第一时延变化率阈值,通过物理层下行控制信息将所述调整命令发送至所述终端。
  8. 根据权利要求6所述的方法,其特征在于,在通过物理层下行控制信息将所述调整命令发送至所述终端之前,所述方法还包括:
    通过高层信令指示所述终端在所述物理层下行控制信息中是否存在所述调整命令。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,位于空中的网络设备包括以下至少之一:
    卫星、空中平台。
  10. 一种上行信号发送方法,其特征在于,适用于非陆地网络中的终端,所述方法包括:
    接收非陆地网络中位于空中的网络设备发送的初始时间提前量,其中,所述初始时间提前量基于根据所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第二往返传输时延,以及所述网络设备所述终端之间信号的传输速度确定;
    根据所述初始时间提前量,向所述网络设备发送上行信号帧。
  11. 根据权利要求10所述的方法,其特征在于,所述接收非陆地网络中位于空中的网络设备发送的初始时间提前量包括:
    接收所述网络设备发送的随机接入响应信息;
    在所述随机接入响应信息中获取所述初始时间提前量。
  12. 根据权利要求10和11中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述网络设备发送的所述初始时间提前量的调整命令。
  13. 根据权利要求12所述的方法,其特征在于,所述接收所述网络设备发送的所述初始时间提前量的调整命令包括:
    接收介质访问控制层控制元素和/或物理层下行控制信息;
    在所述介质访问控制层控制元素和/或物理层下行控制信息中获取所述调整命令。
  14. 根据权利要求13所述的方法,其特征在于,在所述介质访问控制层控制元素和/或物理层下行控制信息中获取所述调整命令之前,所述方法还包括:
    接收所述网络设备发送的第一时延变化率阈值;
    其中,所述在所述介质访问控制层控制元素和/或物理层下行控制信息中获取所述调整命令包括:
    响应于下行信号帧的时延变化率小于或等于所述第一时延变化率阈值,在所述介质访问控制层控制元素中获取所述调整命令;
    响应于下行信号帧的时延变化率大于所述第一时延变化率阈值,在所述物理层下行控制信息中获取所述调整命令。
  15. 根据权利要求13所述的方法,其特征在于,在所述介质访问控制层控制元素和/或物理层下行控制信息中获取所述调整命令之前,所述方法还包括:
    接收所述网络设备发送的高层信令;
    根据所述高层信令确定在所述物理层下行控制信息中是否存在所述调整命令。
  16. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    响应于在所述介质访问控制层控制元素中获取到所述调整命令,或在物理层下行控制信息中获取到所述调整命令,根据获取到的所述调整命令调整所述初始时间提前量;
    响应于在所述介质访问控制层控制元素中获取到所述调整命令,且在物理层下行控制信息中获取到所述调整命令,确定在介质访问控制层控制元素中获取到调整命令的第一时刻,以及在物理层下行控制信息中获取到调整命的第二时刻,根据所述第一时刻和所述第二时刻中较晚的时刻对应的调整命令调整所述初始时间提前量。
  17. 一种时间提前量指示装置,其特征在于,适用于非地面网络中位于空中的网络设备,所述装置包括:
    第一确定模块,被配置为确定所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第一距离;
    第二确定模块,被配置为根据所述第一距离以及所述网络设备与所述终端之间信号的传输速度,确定第二往返传输时延;
    第三确定模块,被配置为根据所述第一往返传输时延与所述第二往返传输时延的差值确定初始时间提前量;
    第一发送模块,被配置为将所述初始时间提前量发送至所述终端。
  18. 一种上行信号发送装置,其特征在于,适用于非陆地网络中的终端,所述装置包括:
    第一接收模块,被配置为接收非陆地网络中位于空中的网络设备发送的初始时间提前量,其中,所述初始时间提前量基于根据所述网络设备到终端的第一往返传输时延,以及所述网络设备到地面参考点的第二往返传输时延,以及所述网络设备所述终端之间信号的传输速度确定;
    上行发送模块,被配置为根据所述初始时间提前量,向所述网络设备发送上行信号帧。
  19. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为实现权利要求1至9中任一项所述的时间提前量指示方法,和/或权利要求10至16中任一项所述的上行信号发送方法。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至9中任一项所述的时间提前量指示方法,和/或权利要求10至16中任一项所述的上行信号发送方法中的步骤。
PCT/CN2020/102497 2020-07-16 2020-07-16 时间提前量指示、上行信号发送方法和装置 WO2022011654A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/011,812 US20230254799A1 (en) 2020-07-16 2020-07-16 Timing advance indication method and uplink signal sending method
CN202080001535.4A CN114270727B (zh) 2020-07-16 2020-07-16 定时提前量指示、上行信号发送方法和装置
PCT/CN2020/102497 WO2022011654A1 (zh) 2020-07-16 2020-07-16 时间提前量指示、上行信号发送方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102497 WO2022011654A1 (zh) 2020-07-16 2020-07-16 时间提前量指示、上行信号发送方法和装置

Publications (1)

Publication Number Publication Date
WO2022011654A1 true WO2022011654A1 (zh) 2022-01-20

Family

ID=79554431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102497 WO2022011654A1 (zh) 2020-07-16 2020-07-16 时间提前量指示、上行信号发送方法和装置

Country Status (3)

Country Link
US (1) US20230254799A1 (zh)
CN (1) CN114270727B (zh)
WO (1) WO2022011654A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528628A (zh) * 2017-09-28 2017-12-29 中国电子科技集团公司第七研究所 卫星通信***的信号同步方法、装置和***
CN110876188A (zh) * 2018-08-31 2020-03-10 展讯通信(上海)有限公司 用户设备参数的确定方法及装置、存储介质、基站
US20200153500A1 (en) * 2018-11-13 2020-05-14 Electronics And Telecommunications Research Institute Method and apparatus for signal configuration for mobile base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528628A (zh) * 2017-09-28 2017-12-29 中国电子科技集团公司第七研究所 卫星通信***的信号同步方法、装置和***
CN110876188A (zh) * 2018-08-31 2020-03-10 展讯通信(上海)有限公司 用户设备参数的确定方法及装置、存储介质、基站
US20200153500A1 (en) * 2018-11-13 2020-05-14 Electronics And Telecommunications Research Institute Method and apparatus for signal configuration for mobile base station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Doppler Compensation, Uplink Timing Advance, Random Access and UE Location in NTN", 3GPP DRAFT; R1-1911220, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789991 *

Also Published As

Publication number Publication date
CN114270727B (zh) 2024-02-09
CN114270727A (zh) 2022-04-01
US20230254799A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
CN108401501B (zh) 数据传输方法、装置及无人机
WO2020211535A1 (zh) 网络延迟控制方法、装置、电子设备及存储介质
WO2020134559A1 (zh) 一种数据传输方法、装置、终端设备及存储介质
WO2022021292A1 (zh) 随机接入方法和装置、配置指示方法和装置
CN109698794B (zh) 一种拥塞控制方法、装置、电子设备及存储介质
WO2022141597A1 (zh) 上行定时提前量更新、更新配置确定方法和装置
WO2022027495A1 (zh) 调整指示方法和装置、调整接收方法和装置
WO2022021387A1 (zh) 偏移指示确定方法和装置、偏移确定方法和装置
CN109561356B (zh) 数据发送方法、数据发送装置、电子设备和计算机可读存储介质
WO2018133341A1 (zh) 发射上行信号的方法及装置
WO2022141598A1 (zh) 上行定时提前量确定、公共定时相关信息广播方法和装置
WO2022021405A1 (zh) 随机接入方法和装置、配置指示方法和装置
US20240063980A1 (en) System information reception method and apparatus, and system information transmission method and apparatus
US11178699B2 (en) Random access method and apparatus, user equipment, and computer readable storage medium
JP7137705B2 (ja) 同期信号ブロックの構成情報のブロードキャスト、受信方法及び装置
EP3751892B1 (en) Trigger hold method and trigger hold apparatus
US20230261790A1 (en) Retransmission request method and apparatus, and retransmitted data reception method and apparatus
WO2022027329A1 (zh) 频偏补偿、校准方法及装置、存储介质
WO2022011654A1 (zh) 时间提前量指示、上行信号发送方法和装置
WO2022021353A1 (zh) 定时提前量发送方法和装置
WO2022021059A1 (zh) 方式指示方法和装置、随机接入方法和装置
WO2022021060A1 (zh) 接收指示方法和装置、接收控制方法和装置
CN113796110A (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
WO2022226803A1 (zh) 上行定时调整方法、装置及存储介质
WO2022016454A1 (zh) 调度间隔指示方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944951

Country of ref document: EP

Kind code of ref document: A1