WO2022007720A1 - 可穿戴设备的佩戴检测方法、装置及电子设备 - Google Patents

可穿戴设备的佩戴检测方法、装置及电子设备 Download PDF

Info

Publication number
WO2022007720A1
WO2022007720A1 PCT/CN2021/104325 CN2021104325W WO2022007720A1 WO 2022007720 A1 WO2022007720 A1 WO 2022007720A1 CN 2021104325 W CN2021104325 W CN 2021104325W WO 2022007720 A1 WO2022007720 A1 WO 2022007720A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearing
wearable device
wearing state
electronic device
state
Prior art date
Application number
PCT/CN2021/104325
Other languages
English (en)
French (fr)
Inventor
张孝甜
陈勇
聂帅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022007720A1 publication Critical patent/WO2022007720A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially

Definitions

  • the present application relates to the technical field of smart wearable devices, and in particular, to a wearable device detection method, device, and electronic device.
  • Smart wearable devices represented by smart bracelets and watches are a newly emerging technology field. Smart wearable devices can track users' daily activities, sleep and eating habits.
  • User data collected by smart wearable devices can be synchronized with iOS devices, Android (Android) devices, and/or cloud platforms, etc., to help users understand and improve their health status, obtain exercise data, and so on.
  • iOS devices Samsung (Android) devices
  • cloud platforms etc.
  • the smart wearable device judges the user's health, exercise and other conditions by detecting the user's real-time or period of time data.
  • the measurement results will be affected by the way of wearing. For example, in heart health research, more than 15% of the detection failures are caused by wearing errors, and the user is wearing the wearer. When using the device, sometimes you can't tell if you're wearing it correctly.
  • the embodiments of the present application provide a wear detection method for a wearable device, which can solve the problem of insufficient accuracy of wear detection in the related art.
  • an embodiment of the present application provides a method for detecting wearing of a wearable device, which is applied to a wearable device.
  • the method for detecting a wearable device includes: the wearable device acquires one or more physiological parameter data; the wearable device obtains data of one or more physiological parameters; The wearing state of the wearable device is acquired according to the one or more physiological parameter data; the wearable device pushes a wearing suggestion according to the wearing state.
  • the wearing state is obtained according to one or more physiological parameter data obtained by the wearable device, and then the wearing suggestion is pushed to the user according to the wearing state.
  • verifying the wearing state according to one or more physiological parameter data can adapt to more application scenarios.
  • information of multiple dimensions is utilized, which improves the accuracy of the wearing verification result.
  • giving the user wearing advice based on the wearing verification result can guide the user to wear the wearable device correctly and improve the accuracy of subsequent data collection.
  • the method for detecting wearing of a wearable device provided in the first aspect may also be applied to an electronic device that establishes a wireless communication connection with the wearable device.
  • an electronic device such as a mobile phone or a tablet computer or the like.
  • the wearable device pushes a wearing suggestion according to the wearing state, including:
  • the wearable device determines that the wearing state satisfies the first condition, push a wearing suggestion according to the wearing state;
  • the wearing detection method further includes:
  • the wearable device determines that the wearing state satisfies the second condition, no wearing suggestion is pushed.
  • the wearable device determines that the wearing state satisfies a certain condition, that is, the first condition will push the wearing suggestion; the wearable device determines that the wearing state satisfies a certain condition, that is, the second condition does not push the wearing suggestion.
  • Wearable devices do not push wearing suggestions to users every time they obtain the wearing status, which can reduce the number of times of pushing wearing suggestions to users, reduce interaction costs, and improve user experience.
  • the wearing state includes wrong wearing or correct wearing
  • the wearable device determines that the wearing state satisfies the first condition, including:
  • the wearable device determines that the cumulative number of times that the wearing state is a wearing error is equal to or greater than a preset number of times threshold, or determines that the wearing state is a wearing error;
  • the wearable device determines that the wearing state satisfies the second condition, including:
  • the wearable device determines that the cumulative number of times that the wearing state is incorrectly worn is less than the preset number of times threshold, or determines that the wearing state is correctly worn.
  • the wearable device determines that the cumulative number of wearing errors is equal to or greater than the preset number of times threshold before the wearable device pushes the wearing suggestion, otherwise it does not push the wearing suggestion. Wearable devices will not push wearing suggestions to users every time a wearing error is detected, which can reduce the number of times of pushing wearing suggestions to users, reduce interaction costs, and improve user experience.
  • the wearable device pushes a wearing suggestion according to the wearing state, including:
  • the wearable device determines that the wearing state is misplaced, and pushes a wearing suggestion for adjusting the wearing position; or, the wearable device determines that the wearing state is too loose, and pushes a wearing suggestion for a tightening device.
  • the wearable device determines that the wearing state is misplaced or too loose, and pushes a corresponding wearing suggestion, which can guide the user to adjust the wearing state in a more targeted manner and improve the accuracy of subsequent measurements.
  • the wearable device acquires the wearing state of the wearable device according to one physiological parameter data, including:
  • the wearable device determines a first abnormal time period in which the physiological parameter data is abnormal
  • the duration of the first abnormal time period is equal to or greater than the first preset duration, it is determined that the wearing state of the wearable device is a wearing error.
  • the wearable device acquires the wearing state of the wearable device according to multiple physiological parameter data, including:
  • the wearable device determines a second abnormal time period in which multiple physiological parameter data are abnormal at the same time
  • the duration of the second abnormal time period is equal to or greater than the preset time period, it is determined that the wearing state of the wearable device is a wearing error.
  • a quantitative method of how to obtain the wearing state of the wearable device according to a plurality of physiological parameter data is provided, and the computing power cost is low, which makes the solution easy to implement.
  • the time period in which multiple physiological parameter data are abnormal at the same time is considered, and the threshold for the duration is set to ensure the accuracy of the wearing verification result.
  • the wearable device includes a sensor, and the sensor is used to collect the plurality of physiological parameter data.
  • the sensor may be an optical sensor.
  • the physiological parameter data used for verifying the wearing state comes from the same hardware, the correlation between different physiological parameter data is very high. Changes in the wearing state of wearable devices will be reflected in different physiological parameter data at the same time. That is to say, wrong wearing state will cause abnormal physiological parameter data at the same time. Therefore, in this implementation manner, the wearing state of the wearable device is verified based on the physiological parameter data collected by the same hardware, which can make the wearing verification result more accurate.
  • the one or more physiological parameter data includes one or more of heart rate data, blood oxygen data and blood pressure data.
  • the wearing detection method further includes:
  • the wearable device pushes a query to confirm the wearing status
  • the wearable device pushes a wearing instruction corresponding to the wearing state in response to the received first operation input by the user.
  • the wearable device verifies the wearing state and pushes wearing suggestions, and on the other hand, it combines user confirmation. After the user confirms whether there is a detected wearing error behavior, the wearable device pushes the wearing instructions corresponding to the wearing state.
  • the wearable device pushing a query for confirming the wearing state includes: the wearable device pushing a query whether the wearable device is worn.
  • the wearable device pushes a query on whether to wear the wearable device to the user, and determines that the wearable device is in the wearing state on the basis of , which can push wearing instructions in a targeted manner to guide users to wear wearable devices efficiently and accurately.
  • the wearing error includes wearing in a wrong position or wearing too loosely.
  • the wearing detection method further includes:
  • the wearable device determines that the wearing state is correct, and does not push a wearing suggestion.
  • the wearable device acquires one or more physiological parameter data, including:
  • the wearable device is determined to be worn by the user, and obtains one or more physiological parameter data.
  • the wearable device may include sensors that can be used to detect whether the wearable device is worn by the user. Based on the detection data from these sensors, it can be determined whether the wearable device is worn by the user.
  • the wearing state is verified, which can save computing power costs.
  • the wearable device includes at least one of a proximity light sensor, a distance sensor, a pressure sensor, a temperature sensor, and a resistance sensor. Based on detection signals derived from them, it can be determined whether the wearable device is worn by the user.
  • the embodiment of the present application provides a wearing detection device of a wearable device, which is configured in the wearable device, and the wearing detection device includes:
  • an acquisition module for acquiring one or more physiological parameter data
  • a verification module configured to obtain the wearing state of the wearable device according to the one or more physiological parameter data
  • the push module is used to push the wearing suggestion according to the wearing state.
  • the push module is specifically used for:
  • the wearing suggestion is not pushed.
  • the wearing state includes wrong wearing or correct wearing
  • Determining that the wearing state satisfies the first condition includes: the wearing state is that the cumulative number of wearing errors is equal to or greater than a preset number of times threshold, or, determining that the wearing state is wearing errors;
  • Determining that the wearing state satisfies the second condition includes: determining that the cumulative number of times the wearing state is incorrectly worn is less than the preset number of times threshold, or determining that the wearing state is correct wearing.
  • the push module is specifically used for:
  • the verification module includes: a first verification sub-module for acquiring the wearing state of the wearable device according to a piece of physiological parameter data, and/or for A second syndrome module for acquiring the wearing state of the wearable device according to a plurality of physiological parameter data;
  • the first syndrome module is specifically used for:
  • the duration of the first abnormal time period is equal to or greater than the first preset duration, determining that the wearing state of the wearable device is a wearing error
  • the second syndrome module is specifically used for:
  • the duration of the second abnormal time period is equal to or greater than the preset time period, it is determined that the wearing state of the wearable device is a wearing error.
  • the wearing detection apparatus further includes an inquiry module, and the inquiry module is configured to push an inquiry about whether to wear the wearable device.
  • the one or more physiological parameter data includes one or more of heart rate data, blood oxygen data and blood pressure data.
  • the obtaining module is specifically used for:
  • the wearable device is worn by the user, and one or more physiological parameter data are acquired.
  • an embodiment of the present application provides a wear detection method for a wearable device, which is applied to an electronic device and a wearable device, where the electronic device is connected to the wearable device through a wireless communication technology, and the wear detection method include:
  • the wearable device acquires one or more physiological parameter data
  • the electronic device receives one or more physiological parameter data sent by the wearable device, and the electronic device acquires the wearing state of the wearable device according to the one or more physiological parameter data;
  • the electronic device pushes a wearing suggestion according to the wearing state.
  • the electronic device acquires the wearing state according to one or more physiological parameter data sent by the wearable device, and then pushes a wearing suggestion to the user according to the wearing state.
  • verifying the wearing state according to one or more physiological parameter data can adapt to more application scenarios.
  • information of multiple dimensions is utilized, which improves the accuracy of the wearing verification result.
  • giving the user wearing advice based on the wearing verification result can guide the user to wear the wearable device correctly and improve the accuracy of subsequent data collection.
  • the electronic device pushes a wearing suggestion according to the wearing state, including:
  • the electronic device determines that the wearing state satisfies the first condition, push a wearing suggestion according to the wearing state;
  • the wearing detection method further includes:
  • the electronic device determines that the wearing state satisfies the second condition, it does not push the wearing suggestion.
  • the electronic device only pushes the wearing suggestion after determining that the wearing state meets certain conditions, and the electronic device does not push the wearing suggestion to the user every time the wearing state is obtained, which can reduce the number of times of pushing the wearing suggestion to the user and reduce the interaction cost and improve user experience.
  • the wearing state includes wrong wearing or correct wearing
  • the electronic device determines that the wearing state satisfies the first condition, including:
  • the electronic device determines that the cumulative number of times that the wearing state is a wearing error is equal to or greater than a preset number of times threshold, or determines that the wearing state is a wearing error;
  • the electronic device determines that the wearing state satisfies the second condition, including:
  • the electronic device determines that the wearing state is that the cumulative number of incorrect wearing times is less than the preset number of times threshold, or the electronic device determines that the wearing state is that the wearing state is correct.
  • the electronic device only pushes the wearing suggestion when the accumulated number of times the electronic device determines that the wearing state is the wearing error is equal to or greater than the preset number of times threshold.
  • the electronic device will not push a wearing suggestion to the user every time a wearing error is detected, which can reduce the number of times of pushing the wearing suggestion to the user, reduce the interaction cost, and improve the user experience.
  • the electronic device pushes a wearing suggestion according to the wearing state, including:
  • the electronic device determines that the wearing state is misplaced, and pushes a wearing suggestion for adjusting the wearing position; or, the electronic device determines that the wearing state is too loose, and pushes a wearing suggestion for a tightening device.
  • acquiring the wearing state of the wearable device according to one physiological parameter data includes:
  • the duration of the first abnormal time period is equal to or greater than the first preset duration, it is determined that the wearing state of the wearable device is a wearing error.
  • acquiring the wearing state of the wearable device according to multiple physiological parameter data includes:
  • the duration of the second abnormal time period is equal to or greater than the preset time period, it is determined that the wearing state of the wearable device is a wearing error.
  • a quantitative method of how to obtain the wearing state of the wearable device according to a plurality of physiological parameter data is provided, and the computing power cost is low, which makes the solution easy to implement.
  • the time period in which multiple physiological parameter data are abnormal at the same time is considered, and the threshold for the duration is set to ensure the accuracy of the wearing verification result.
  • the wearable device includes a sensor, and the sensor is used to collect the plurality of physiological parameter data.
  • the sensor may be an optical sensor.
  • the physiological parameter data used for verifying the wearing state comes from the same hardware, the correlation between different physiological parameter data is very high. Changes in the wearing state of wearable devices will be reflected in different physiological parameter data at the same time. That is to say, wrong wearing state will cause abnormal physiological parameter data at the same time. Therefore, in this implementation manner, the wearing state of the wearable device is verified based on the physiological parameter data collected by the same hardware, which can make the wearing verification result more accurate.
  • the one or more physiological parameter data includes one or more of heart rate data, blood oxygen data and blood pressure data.
  • the wearing detection method further includes:
  • the electronic device pushes an inquiry to confirm the wearing status
  • the electronic device pushes a wearing instruction corresponding to the wearing state in response to the received first operation input by the user.
  • the electronic device verifies the wearing state and pushes wearing suggestions, and on the other hand, in combination with user confirmation, after the user confirms whether there is a detected wrong wearing behavior, it pushes the wearing instructions corresponding to the wearing state.
  • the electronic device pushing a query for confirming the wearing state includes: the electronic device pushing a query whether the wearable device is worn.
  • the electronic device pushes a query on whether to wear a wearable device to the user, and on the basis of determining whether the wearable device is wearing or not,
  • the wearing instructions can be pushed in a targeted manner to guide the user to wear the wearable device efficiently and accurately.
  • the wearing error includes wearing in a wrong position or wearing too loosely.
  • the wearing detection method further includes:
  • the electronic device determines that the wearing state is correct, and does not push a wearing suggestion.
  • the wearable device acquires one or more physiological parameter data, including:
  • the wearable device is determined to be worn by the user, and obtains one or more physiological parameter data.
  • the wearable device may include sensors that can be used to detect whether the wearable device is worn by the user. Based on the detection data from these sensors, it can be determined whether the wearable device is worn by the user.
  • the wearing state is verified, which can save computing power costs.
  • the wearable device includes at least one of a proximity light sensor, a distance sensor, a pressure sensor, a temperature sensor, and a resistance sensor. Based on detection signals derived from them, it can be determined whether the wearable device is worn by the user.
  • an embodiment of the present application provides a wear detection system for a wearable device, including an electronic device and a wearable device, the electronic device is connected to the wearable device through a wireless communication technology, and the wearable device uses a for obtaining data on one or more physiological parameters;
  • the electronic device is used to: receive one or more physiological parameter data sent by the wearable device, acquire the wearing state of the wearable device according to the one or more physiological parameter data; Wearing advice.
  • the electronic device is configured to: if it is determined that the wearing state satisfies the first condition, push a wearing suggestion according to the wearing state;
  • the electronic device is further configured to: if it is determined that the wearing state satisfies the second condition, not to push a wearing suggestion.
  • the wearing state includes wrong wearing or correct wearing
  • Determining that the wearing state satisfies the first condition includes: determining that the cumulative number of times the wearing state is a wearing error is equal to or greater than a preset number of times threshold, or, determining that the wearing state is a wearing error;
  • Determining that the wearing state satisfies the second condition includes:
  • the wearing state is that the cumulative number of incorrect wearing times is less than the preset number of times threshold, or the wearing state is determined that the wearing state is correct wearing.
  • the electronic device is used for:
  • the electronic device is configured to acquire the wearing state of the wearable device according to one physiological parameter data, including:
  • the electronic device is used to determine a first abnormal time period in which the physiological parameter data is abnormal; if the duration of the first abnormal time period is equal to or greater than the first preset time period, the wearing state of the wearable device is determined For wearing wrong.
  • the electronic device is configured to acquire the wearing state of the wearable device according to multiple physiological parameter data, including:
  • the electronic device is used to determine a second abnormal time period in which multiple physiological parameter data are abnormal at the same time; if the duration of the second abnormal time period is equal to or greater than a preset time period, the wearing state of the wearable device is determined For wearing wrong.
  • the wearable device includes a sensor, and the wearable device collects the one or more physiological parameter data through the sensor.
  • the senor may be an optical sensor.
  • the one or more physiological parameter data includes one or more of heart rate data, blood oxygen data, and blood pressure data.
  • the electronic device is further configured to:
  • Pushing a query for confirming the wearing state in response to the received first operation input by the user, pushing the wearing instructions corresponding to the wearing state.
  • the electronic device is configured to push a query for confirming the wearing state, including: the electronic device is configured to push a query of whether to wear the wearable device.
  • the wearing error includes wearing in a wrong position or wearing too loosely.
  • the electronic device is further configured to: if it is determined that the wearing state is correct wearing, not push a wearing suggestion.
  • the wearable device is configured to acquire one or more physiological parameter data, including:
  • the wearable device is used to determine that the wearable device is worn by the user and obtain one or more physiological parameter data.
  • the wearable device includes at least one of a proximity light sensor, a distance sensor, a pressure sensor, a temperature sensor, and a resistance sensor. Based on detection signals derived from them, it can be determined whether the wearable device is worn by the user.
  • an embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program , so that the electronic device implements the method according to any one of the first aspect and possible implementation manners of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the first aspect and the first aspect are possible. Implement the method described in any one of the modes.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on an electronic device, enables the electronic device to execute the method described in any one of the first aspect and possible implementations of the first aspect. .
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • 2A is an application scenario of a method for detecting wearing of a wearable device provided by an embodiment of the present application
  • FIG. 2B is another application scenario of the wear detection method for a wearable device provided by an embodiment of the present application.
  • FIG. 2C is another application scenario of the wearing detection method for a wearable device provided by an embodiment of the present application.
  • 2D is a schematic flowchart of a method for detecting wearing of a wearable device according to an embodiment of the present application
  • 3A is a schematic diagram of a user interface of a method for detecting wearing of a wearable device provided by an embodiment of the present application
  • 3B is another schematic diagram of a user interface of a method for detecting wearing of a wearable device provided by an embodiment of the present application;
  • FIG. 4A is a schematic diagram of another user interface of a method for detecting wearing of a wearable device provided by an embodiment of the present application;
  • 4B is another schematic diagram of a user interface of a wear detection method for a wearable device provided by an embodiment of the present application.
  • 5A is another schematic diagram of a user interface of a wear detection method for a wearable device provided by an embodiment of the present application
  • 5B is another schematic diagram of a user interface of a method for detecting wearing of a wearable device provided by an embodiment of the present application
  • FIG. 6 is another schematic diagram of a user interface of a method for detecting wearing of a wearable device provided by an embodiment of the present application
  • FIG. 7 is another schematic diagram of a user interface of a method for detecting wearing of a wearable device provided by an embodiment of the present application.
  • 8A and 8B are another application scenario of the wear detection method of the wearable device provided by an embodiment of the present application.
  • FIG. 9 is another application scenario of the wearing detection method of the wearable device provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a wear detection method for a wearable device provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a wear detection method for a wearable device provided by another embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a method for detecting wearing of a wearable device provided by another embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a method for detecting wearing of a wearable device provided by another embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a wear detection method for a wearable device provided by another embodiment of the present application.
  • FIG. 15 is a schematic flowchart of a wear detection method for a wearable device provided by another embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a wear detection device for a wearable device provided by an embodiment of the present application.
  • the term “comprising” indicates the presence of the described feature, integer, step, operation, element and/or component, but does not exclude one or more other features, integers , step, operation, element, component and/or the presence or addition of a collection thereof.
  • the term “if” may be contextually interpreted as “when” or “once” or “in response to determining” or “in response to detecting ".
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • the embodiment of the present application provides a method for detecting wearing of a wearable device.
  • user measurement data such as heart rate and/or blood oxygen
  • Advise the wearer to improve the accuracy of subsequent measurements.
  • the automatic measurement of wearing status is combined with user confirmation: by detecting the data such as blood oxygen and heart rate uploaded by the user, the user's wearing status is initially obtained, and after it is detected that the user is not wearing it correctly, the user will be pushed wearing suggestions; Confirm whether there is any wrong wearing behavior detected, and push the corresponding wearing instructions after the user confirms.
  • the wear detection method of the wearable device provided in the embodiment of the present application can be applied to electronic devices, and the electronic devices include but are not limited to mobile phones, wearable devices, vehicle-mounted devices, augmented reality (AR)/virtual reality (virtual reality, VR) devices, laptops, ultra-mobile personal computers (UMPCs), netbooks, personal digital assistants (PDAs), smart speakers, set top boxes (STBs) or TVs, etc.
  • the electronic devices include but are not limited to mobile phones, wearable devices, vehicle-mounted devices, augmented reality (AR)/virtual reality (virtual reality, VR) devices, laptops, ultra-mobile personal computers (UMPCs), netbooks, personal digital assistants (PDAs), smart speakers, set top boxes (STBs) or TVs, etc.
  • the embodiments of the present application do not limit any specific types of electronic devices.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100 .
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charge management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (subscriber identification module, SIM) card interface 195 and so on.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • neural-network processing unit neural-network processing unit
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus that includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may contain multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flash, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate with each other through the I2C bus interface, so as to realize the touch function of the electronic device 100 .
  • the I2S interface can be used for audio communication.
  • the processor 110 may contain multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communications, sampling, quantizing and encoding analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus may be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is typically used to connect the processor 110 with the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 110 communicates with the camera 193 through a CSI interface, so as to realize the photographing function of the electronic device 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to implement the display function of the electronic device 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface may be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and the like.
  • the GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through a wireless charging coil of the electronic device 100 . While the charging management module 140 charges the battery 142 , it can also supply power to the electronic device through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide wireless communication solutions including 2G/3G/4G/5G etc. applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through the audio module (not limited to the speaker 170A, the receiver 170B, etc.), or displays images or videos through the display screen 194 .
  • the modem processor may be a stand-alone device. In other embodiments, the modem processor may be independent of the processor 110, and be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellites Wireless communication solutions such as global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), and infrared technology (IR).
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna 2 .
  • the antenna 1 of the electronic device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (GLONASS), a Beidou navigation satellite system (BDS), a quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • a wireless communication connection may be established between electronic devices through the wireless communication module 160, so as to realize information exchange between electronic devices.
  • a mobile phone and a wristband establish a Bluetooth communication connection. Based on the Bluetooth communication connection, the mobile phone obtains information collected by wearable devices such as wristbands, earphones, rings or glasses, such as the user's physiological parameter data.
  • the electronic device 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the electronic device 100 may include one or N display screens 194 , where N is a positive integer greater than one.
  • the electronic device 100 may implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 193 .
  • the shutter is opened, the light is transmitted to the camera photosensitive element through the lens, the light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object is projected through the lens to generate an optical image onto the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the electronic device 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • a digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy and so on.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs.
  • the electronic device 100 can play or record videos of various encoding formats, such as: Moving Picture Experts Group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
  • MPEG Moving Picture Experts Group
  • MPEG2 moving picture experts group
  • MPEG3 MPEG4
  • MPEG4 Moving Picture Experts Group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the electronic device 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100 .
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the electronic device 100 and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • a computer program that can be run on the processor 110 is stored in the internal memory 121 or an external memory card.
  • the processor 110 executes the computer program, the electronic device implements the wearable wearable provided by the embodiment of the present application. The various steps of the wearing detection method of the device.
  • the electronic device 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like. Such as music playback, recording, etc.
  • the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110, or some functional modules of the audio module 170 may be provided in the processor 110.
  • Speaker 170A also referred to as a "speaker" is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also referred to as "earpiece" is used to convert audio electrical signals into sound signals.
  • the voice can be answered by placing the receiver 170B close to the human ear.
  • the electronic device may output sound signals through the audio module 170, not limited to the speaker 170A, the receiver 170B, and the like.
  • sound signals for example, voice broadcasts of wearing suggestions and/or wearing instructions, or voice broadcasts of wearing status confirmation reminders, etc.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through a human mouth, and input the sound signal into the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which can implement a noise reduction function in addition to collecting sound signals. In other embodiments, the electronic device 100 may further be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
  • the earphone jack 170D is used to connect wired earphones.
  • the earphone interface 170D can be the USB interface 130, or can be a 3.5mm open mobile terminal platform (OMTP) standard interface, a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense pressure signals, and can convert the pressure signals into electrical signals.
  • the pressure sensor 180A may be provided on the display screen 194 .
  • the capacitive pressure sensor may be comprised of at least two parallel plates of conductive material. When a force is applied to the pressure sensor 180A, the capacitance between the electrodes changes.
  • the electronic device 100 determines the intensity of the pressure according to the change in capacitance. When a touch operation acts on the display screen 194, the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example, when a touch operation whose intensity is less than the first pressure threshold acts on the short message application icon, the instruction for viewing the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, the instruction to create a new short message is executed.
  • the wearable device includes a pressure sensor 180A disposed on a side closer to the wearer. The wearable device can use the pressure sensor 180A to detect the intensity of the pressure, so as to detect whether the wearable device is worn by the user, and/or the tightness of the wearing, etc.
  • the gyro sensor 180B may be used to determine the motion attitude of the electronic device 100 .
  • the angular velocity of electronic device 100 about three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyro sensor 180B detects the shaking angle of the electronic device 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to offset the shaking of the electronic device 100 through reverse motion to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenarios.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 uses the air pressure value measured by the air pressure sensor 180C to calculate the altitude to aid in positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 can detect the opening and closing of the flip holster using the magnetic sensor 180D.
  • the electronic device 100 can detect the opening and closing of the flip according to the magnetic sensor 180D. Further, according to the detected opening and closing state of the leather case or the opening and closing state of the flip cover, characteristics such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in various directions (generally three axes).
  • the magnitude and direction of gravity can be detected when the electronic device 100 is stationary. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the electronic device 100 can measure the distance through infrared or laser.
  • the wearable device includes a distance sensor 180F disposed on a side closer to the wearer. The wearable device may utilize the distance sensor 180F for distance measurement to detect whether the wearable device is worn by the user.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the electronic device 100 emits infrared light to the outside through the light emitting diode.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100 . When insufficient reflected light is detected, the electronic device 100 may determine that there is no object near the electronic device 100 .
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user holds the electronic device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • Proximity light sensor 180G can also be used in holster mode, pocket mode automatically unlocks and locks the screen.
  • the wearable device includes a distance sensor 180F disposed on a side closer to the wearer. The wearable device may utilize the distance sensor 180F for distance measurement to detect whether the wearable device is worn by the user.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in a pocket, so as to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, accessing application locks, taking pictures with fingerprints, answering incoming calls with fingerprints, and the like.
  • the temperature sensor 180J is used to detect the temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold value, the electronic device 100 reduces the performance of the processor located near the temperature sensor 180J in order to reduce power consumption and implement thermal protection.
  • the electronic device 100 when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to avoid abnormal shutdown of the electronic device 100 caused by the low temperature.
  • the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • the wearable device includes a temperature sensor 180J, and the temperature sensor 180J is disposed on a side close to the wearer.
  • the wearable device can use the temperature sensor 180J to measure the user's body temperature, and can also detect whether the wearable device is worn by the user.
  • Touch sensor 180K also called “touch device”.
  • the touch sensor 180K may be disposed on the display screen 194 , and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to touch operations may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 , which is different from the location where the display screen 194 is located.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the pulse of the human body and receive the blood pressure beating signal.
  • the bone conduction sensor 180M can also be disposed in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vocal vibration bone block obtained by the bone conduction sensor 180M, so as to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beat signal obtained by the bone conduction sensor 180M, and realize the function of heart rate detection.
  • the wearable device may be an earphone, and the earphone may include the bone conduction sensor 180M.
  • the headset can analyze the user's heart rate data through the blood pressure beat signal obtained by the bone conduction sensor 180M.
  • the electronic device such as a wearable device, may include an optical sensor, and the optical sensor may measure the user's blood pressure, heart rate, and blood oxygen saturation (or blood oxygen) based on the absorption of light by the blood. More specifically, the optical sensor can determine the user's physiological parameters such as blood pressure, heart rate or blood oxygen saturation based on the absorption of light by hemoglobin contained in the blood.
  • the keys 190 include a power-on key, a volume key, and the like. Keys 190 may be mechanical keys. It can also be a touch key.
  • the electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 100 .
  • Motor 191 can generate vibrating cues.
  • the motor 191 can be used for vibrating alerts for incoming calls, and can also be used for touch vibration feedback.
  • touch operations acting on different applications can correspond to different vibration feedback effects.
  • the motor 191 can also correspond to different vibration feedback effects for touch operations on different areas of the display screen 194 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 can be an indicator light, which can be used to indicate the charging state, the change of the power, and can also be used to indicate a message, a missed call, a notification, and the like.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the electronic device 100 by inserting into the SIM card interface 195 or pulling out from the SIM card interface 195 .
  • the electronic device 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card and so on. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as call and data communication.
  • the electronic device 100 employs an eSIM, ie: an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100 .
  • FIG. 2A , FIG. 2B and FIG. 2C are schematic diagrams of application scenarios of the wearing detection method of the wearable device provided by the embodiment of the present application.
  • the wearable device is a bracelet.
  • the wearable device may be a general term for devices that can be intelligently designed for daily wear by applying wearable technology, such as glasses, goggles, finger rings, earphones, gloves, and watches. , clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to be used in conjunction with other devices such as smart phones. , such as various types of smart bracelets and smart jewelry that monitor physical signs.
  • FIG. 2A , FIG. 2B and FIG. 2C show the pairing process of the wristband 31 and the mobile phone 32 .
  • the user adds the bracelet 31 by entering the application of the mobile phone 32 to complete the pairing of the mobile phone 32 and the bracelet 31 .
  • the user enters the device adding interface 321A of the mobile phone 32 and triggers the adding device control 3211 in the device adding interface 321A.
  • the Bluetooth function of the mobile phone 32 is not enabled, the Bluetooth function of the mobile phone 32 is enabled.
  • the mobile phone 32 searches for the surrounding Bluetooth devices, and displays a list of the surrounding Bluetooth devices. After the user selects the bracelet 31 in the Bluetooth device list, the mobile phone 32 and the bracelet are completed. 31 pairings. It should be noted that, in some other embodiments of the present application, after the user selects the bracelet 31 in the Bluetooth device list, the user needs to input a correct password to complete the pairing of the mobile phone 32 and the bracelet 31 .
  • the bracelet 31 enables the Bluetooth function
  • the mobile phone 32 enables the NFC function and the Bluetooth function
  • the user taps the mobile phone 32 on the bracelet 31, and the mobile phone 32 automatically pops up a connection prompt interface 321B
  • the connection prompt interface 321B After the user selects confirmation on the connection prompt interface 321B, the pairing of the mobile phone 32 and the bracelet 31 is completed.
  • the one-touch interconnection simplifies the user operation. Compared with the complicated user operation in FIG. 2A , FIG. 2B greatly improves the pairing efficiency.
  • the user taps the mobile phone 32 on the bracelet 31, and the mobile phone 32 may not pop up the connection prompt interface 321B, that is, the connection between the mobile phone 32 and the bracelet 31 can be completed without the user selecting confirmation. pair.
  • the user is not required to perform connection confirmation, which further simplifies the user operation and further improves the pairing efficiency.
  • the user taps the mobile phone 32 on the bracelet 31, the mobile phone 32 may not pop up the connection prompt interface 321B, but a password input interface may pop up. Pairing of ring 31. In these embodiments, communication security is improved by setting a password.
  • the communication connection between the bracelet 31 and the mobile phone 32 is realized.
  • the status prompt information 3221 that the bracelet 31 and the mobile phone 32 are connected can be viewed. Functions such as data interaction can be implemented between the bracelet 31 and the mobile phone 32 .
  • FIG. 2A , FIG. 2B , and FIG. 2C are exemplary descriptions of various display interfaces, and cannot be construed as specific limitations on the embodiments of the present application. In an actual application scenario, each display interface may include more or less display content, which is not limited in this embodiment of the present application.
  • the bracelet can actively synchronize the collected detection data to the mobile phone, or the mobile phone can actively request the bracelet to synchronize the collected detection data to the mobile phone.
  • the mobile phone After the mobile phone obtains the detection data collected by the bracelet, on the one hand, the mobile phone automatically detects the wearing status of the bracelet. Specifically, according to the detection data collected by the wristband, such as heart rate and/or blood oxygen, the mobile phone can effectively verify whether the user is wearing the wristband 31 correctly, and give the wearer wearing suggestions according to the results of the wearing verification, such as , if the wear verification result is that the user does not wear the bracelet correctly, push the wearing suggestion to the wearer.
  • mobile phones can intelligently push wear instructions. After the mobile phone obtains the wearing verification result, it pushes a query to confirm the wearing status to the user, so that the user can confirm whether there is any wrong wearing behavior that can be detected by itself.
  • the bracelet itself may perform wearing verification according to the collected detection data, and give wearing suggestions according to the wearing verification results.
  • the bracelet itself can intelligently push wearing instructions. That is to say, in this embodiment of the present application, the electronic device that performs the wearing test may be a device that collects detection data, or may be an electronic device that synchronizes detection data.
  • the electronic device that pushes the wearing guide may be a device that collects detection data, or may be an electronic device that synchronizes detection data.
  • the mobile phone is used to perform the wearing test and push the wearing instruction as an example for description. Those skilled in the art can understand that the exemplary description cannot be interpreted as a specific limitation to the present application.
  • the bracelet can store a certain amount of detection data, and the detection data can be overwritten and updated in a certain period of time.
  • the bracelet will synchronize the unsynchronized detection data of the machine to the mobile phone.
  • the mobile phone can verify the wearing status of the bracelet in the historical time period or the current real-time based on the latest synchronized detection data, and give the user wearing suggestions according to the wearing verification results.
  • the mobile phone can also obtain the user's health monitoring result based on the latest synchronized detection data, so as to prompt the user to perform health management.
  • the bracelet can synchronize the collected detection data to the mobile phone, and the user can view the detection data through the user interface of the mobile phone.
  • the measurement data that can be displayed on the display interface 323 of the wristband detection data may include the following: number of steps, exercise state, sleep, heart rate and blood oxygen.
  • the sleep data display interface 324 can display two types of measurement data in the sleep state: heart rate and blood oxygen.
  • the mobile phone 32 can load the heart rate data display interface 325 in the sleep state, as shown in FIG. 4A .
  • the mobile phone 32 can load the heart rate data display interface 425 in the sleep state, as shown in FIG. 4B .
  • the mobile phone 32 can load the blood oxygen data display interface 326 in the sleep state, as shown in FIG. 5A .
  • the mobile phone 32 can load the blood oxygen data display interface 426 in the sleep state, as shown in FIG. 5B .
  • the heart rate data display interface and the blood oxygen data display interface may include sliding controls.
  • the mobile phone receives the user's drag operation on the sliding control, and can display the heart rate or blood oxygen data at different times, or the data range.
  • the blood oxygen data display interface 426 includes a sliding control 4262 , the user drags the sliding control to the target position shown in FIG. 5B , and the mobile phone displays the blood oxygen data at the target time corresponding to the target position. Since the blood oxygen data at the target time is missing in the example shown in FIG. 5B , the mobile phone displays the blood oxygen data at the target time as "--".
  • FIG. 3A, FIG. 3B, FIG. 4A, FIG. 4B, FIG. 5A and FIG. 5B are exemplary descriptions of each display interface.
  • each display interface may adopt other layout forms and/or classification methods , the display interface may also include more or less types of measurement data, which is not limited in this application.
  • the user can view the heart rate data and blood oxygen data through the heart rate data display interface and blood oxygen data display interface of the mobile phone. According to the measurement data and monitoring results provided by the display interface, the user can intuitively see the measurement data at a certain moment, whether there is missing measurement data, whether there is any abnormal measurement data, etc., which is convenient for users to evaluate the wearing status of the bracelet and understand their own health. state.
  • the wearable device When a user uses a wearable device to collect measurement data such as heart rate and blood oxygen, the wearable device collects a data point of heart rate and blood oxygen at regular intervals, that is, a sampling period. The wrong way to wear it will lead to abnormal values in measurement data such as blood oxygen and heart rate. In the embodiment of the present application, it is determined whether the user wears the wearable device correctly according to the distribution of these abnormal values. If the user does not wear the wearable device correctly, the user is asked to confirm his wearing status, and a wearing suggestion is sent after the user confirms.
  • the mobile phone can detect the wearing state of the bracelet when the user is sleeping, and instruct the user to wear the wearable device correctly, so that the bracelet can collect more accurate measurement data.
  • the detection data of the sleep state includes heart rate and blood oxygen, and the user's wearing state can be verified according to the two measurement data of blood oxygen and heart rate. It can be seen that, in the embodiment of the present application, according to different scene requirements, corresponding indicators can be selected to perform wearing state verification, so as to meet the measurement requirements of the actual scene.
  • the wearable device can collect one or more measurement data specified by the user, in order to monitor the user's health. Then, in some embodiments of the present application, the wearing state of the user can be verified according to one or more specified measurement data, and wearing suggestions can be pushed, so as to more accurately collect the specified one or more measurement data.
  • the wristband is set to need to accurately detect measurement data of the sleep state specified by the user, such as heart rate and blood oxygen.
  • the system defaults that the bracelet needs to detect measurement data in the user's sleep state, such as heart rate and blood oxygen.
  • the bracelet detects that the user has fallen asleep and synchronizes the detected data, including heart rate data and blood oxygen data, to the mobile phone in real time.
  • the mobile phone can record the detection data synchronously, and automatically detect the wearing status of the bracelet in the user's current sleep state based on the heart rate data and blood oxygen data, and guide the user to wear the bracelet correctly, so as to collect heart rate data and blood oxygen more accurately in the subsequent sleep state. data.
  • the bracelet When the bracelet and the mobile phone are paired, the bracelet sends the collected heart rate data and blood oxygen data to the mobile phone in real time, or the mobile phone actively acquires the heart rate data and blood oxygen data collected by the bracelet in real time to realize the heart rate data of the bracelet Sync with blood oxygen data to your phone.
  • the bracelet detects that the user has ended the current sleep state and wakes up, the bracelet can send a notification to the mobile phone.
  • the mobile phone can automatically detect the wearing state of the bracelet in the current sleep state of the user based on the heart rate data and blood oxygen data synchronized with the bracelet in the current sleep state, and guide the user to wear the bracelet correctly, so that the heart rate can be more accurately collected in the subsequent sleep state. data and blood oxygen data.
  • the bracelet and the mobile phone When the bracelet and the mobile phone are not paired, after the bracelet is paired with the mobile phone, the bracelet will synchronize the measurement data of the user's sleep state collected in the historical time period but not synchronized to the mobile phone to the mobile phone.
  • the mobile phone obtains this part of the synchronized measurement data, detects the user's wearing state of the bracelet in the sleep state during the historical period, and instructs the user to wear the bracelet correctly.
  • FIG. 4A and FIG. 5A are the heart rate data and blood oxygen data of the user during the sleep time period from 00:29 to 09:36 collected by the bracelet, respectively.
  • FIG. 4B and FIG. 5B are the heart rate data and blood oxygen data of the user during the sleep period from 23:43 to 07:57 the next day, respectively, collected by the bracelet.
  • the wearable device is not properly worn, that is, the form of wrong wearing may include, but is not limited to, the wrong wearing position (or misplacement), or too loose.
  • Wearables that are not being worn correctly are reflected in two measurements, heart rate data and blood oxygen data. For example, data anomalies suddenly appear for a period of time in a steady state, and data anomalies include but are not limited to abnormal data or data loss.
  • the respective reasonable threshold ranges of the two measurement data may be preset on the mobile phone, and if the measurement data does not meet the corresponding reasonable threshold ranges, the data is considered abnormal.
  • the mobile phone in the event that the measurement data is determined to be abnormal, can also determine what form of wearing error the bracelet belongs to according to the abnormality of the measurement data, for example, it can be determined that the bracelet is worn too loosely or is misplaced.
  • the two measurement data in a certain period of time in the past, there is a certain error between the two measurement data and the reasonable data, and/or, the two measurement data are intermittent, that is, the data is not continuous, then the bracelet can be determined.
  • the wearing state is too loose.
  • both measurement data are lost within a certain period of time in the past, it can be determined that the wearing state of the bracelet is misplaced.
  • the wearing state of the user can be determined according to the distribution of the missing part of the heart rate data and the blood oxygen data. For example, analyze the heart rate and blood oxygen data, and find that there is a missing part in both the heart rate and blood oxygen data, calculate the overlap or intersection of the heart rate data and the missing part of the blood oxygen data, and obtain the overlapping time period. If the overlapping time period exceeds the preset threshold , it is considered that the user does not wear the bracelet correctly or wears it too loosely.
  • the heart rate data and the blood oxygen data are analyzed, and the abnormal time period of the heart rate data and the blood oxygen data overlaps or intersects, and lasts for a period of time, and the user can be identified within the period of time Wearing the wearable device incorrectly or too loosely, etc.
  • the data sampling interval can be set to once per minute, that is, each hour includes 60 data sampling points, and the heart rate data and blood oxygen data overlap or intersect abnormal time periods of more than 20 data points, that is, both At the same time, an abnormal time period that is abnormal and lasts for more than 20 minutes, and the duration of the abnormal time period (or cumulative time) reaches one hour, it can be recognized that the user is not wearing the wearable device correctly.
  • the abnormal data points of the user's heart rate data and blood oxygen data are recorded respectively, and the overlapping or intersecting time periods when abnormal values appear at the same time are determined.
  • the abnormal time period corresponding to abnormal data points in which heart rate data and blood oxygen data are abnormal at the same time and lasts for more than 20 data points is: [trS1,tr(S1+N1)],...,[trSn,tr(Sn +Nn)].
  • S1, N1, ..., Sn, and Nn are all positive integers
  • n is an integer greater than or equal to 1.
  • the duration is determined according to the above one or more abnormal time periods, that is, the union of the above one or more time periods [trS1,tr(S1+N1)],...,[trSn,tr(Sn+Nn)].
  • duration is equal to or more than one hour, it means that the user did not wear the bracelet correctly during the period.
  • Wearing suggestions include but are not limited to: wearing suggestions corresponding to incorrect wearing (ie wearing incorrectly), wrong wearing position (ie wearing misplaced), or wearing too loose and other wearing verification results.
  • a wearing suggestion display interface is displayed, and the wearing suggestion display interface includes a wearing suggestion corresponding to the wearing verification result.
  • the mobile phone 32 displays a wearing suggestion display interface 327, the mobile phone determines that the bracelet is too loosely worn, and the mobile phone 32 displays a wearing suggestion display interface 327, as shown in FIG. , please adjust".
  • the mobile phone detects that the user clicks on any blank area of the display interface, and exits the display interface; or, after the mobile phone displays the display interface for a preset duration, automatically exits the display interface.
  • the mobile phone determines that the bracelet is worn in the wrong position, and the wearing suggestion display interface can display the words "The bracelet is worn in the wrong position, please adjust it to the correct position".
  • the mobile phone determines that the bracelet is worn in the wrong position, and the wearing suggestion display interface may display the words "The bracelet is not properly worn, please adjust the wearing status of the bracelet”.
  • the wearing suggestion display interface 327 shown in FIG. 6 may further include a “detailed explanation” control, and the mobile phone can display the wristband wearing instructions after receiving the user’s click operation on the “detailed explanation” control. Users can learn more detailed wearing knowledge by reading the bracelet wearing instructions.
  • the bracelet wearing instructions may correspond to wearing suggestions, so as to more efficiently guide the user to correctly adjust the wearing state of the bracelet.
  • the bracelet wearing instructions can explain in detail the steps of how to wear the bracelet correctly; if the wearing recommendation is for wearing the bracelet in the wrong position, the bracelet wearing instructions You can introduce where to wear the bracelet; if the wearing recommendation is that the corresponding bracelet is too loose, the bracelet wearing instructions can introduce how to tighten the bracelet. More specifically, in some implementations, the instructions for wearing the bracelet can also be displayed through a combination of pictures and texts, video, or voice; or, the user can be informed about how much to tighten at least to achieve an accurate wearing state.
  • the mobile phone sends a wearing status confirmation reminder to the user, allowing the user to confirm whether there is a detected wearing error behavior. After the user confirms the wearing state, a wearing instruction corresponding to the wearing state can be pushed to the user.
  • the mobile phone 32 displays the wearing state confirmation interface 328, as shown in FIG.
  • a wearing instruction corresponding to the wearing state may be recommended to the user.
  • the wearing instructions may describe how to tighten the bracelet.
  • the mobile phone determines that the wearing status is misplaced
  • the mobile phone displays the wearing status confirmation interface
  • the wearing status confirmation interface displays the words "Please check whether the bracelet is worn in the wrong position?".
  • a wearing instruction corresponding to the wearing state may be recommended to the user.
  • the wearing instructions may describe where to wear the bracelet.
  • the mobile phone determines that the wearing state is incorrect
  • the mobile phone displays an inquiry interface for correct wearing, and the inquiry interface displays the words "Please confirm whether the bracelet is correctly worn?".
  • a wearing instruction corresponding to the wearing state may be recommended to the user.
  • the wearing instructions may introduce various steps on how to properly wear the bracelet; or, it may introduce general instructions for the bracelet, such as user instructions.
  • the abnormal time period in which the heart rate data and the blood oxygen data overlap or intersect is recorded, and the duration of the abnormal time period is recorded.
  • the duration is equal to or exceeds the preset duration, it is determined that the user is not wearing the wearable device correctly.
  • the overlapping or intersecting abnormal time periods are calculated based on the two measurement data. Since the wearing state of the wearable device is verified by considering the information of two dimensions at the same time, the accuracy of the verification result is improved, and misjudgment can be avoided; On the one hand, the duration is set for the abnormal time period, which further avoids misjudgment.
  • sampling time interval may be set to other time intervals, and the duration may also be other durations.
  • duration may also be other durations.
  • the wearing advice and/or wearing instructions may be pushed to the user in other forms, such as voice, video, image, text, or a combination of graphics and text.
  • the foregoing embodiments are merely exemplary descriptions and should not be construed as specific limitations to the present application.
  • the accumulated number of times may not be set, that is, there is no need to send a wearing suggestion to the user when the accumulated number of times exceeds the set threshold, but when it is determined that the user is not wearing the wearable device correctly, Wearing suggestions can be pushed to users.
  • the settings can be selected according to the actual situation.
  • the present embodiment is described by taking a scenario in which a finger ring and a mobile phone establish a communication connection as an example.
  • the finger ring 91 and the mobile phone 92 are paired to establish a communication connection, and the heart rate data and blood oxygen data collected by the finger ring 91 are synchronized to the mobile phone 92 . It should be understood that, for the process of pairing the finger ring 91 with the mobile phone 92, reference may be made to the foregoing process of pairing the bracelet with the mobile phone.
  • the mobile phone 92 performs wearing verification according to the heart rate data and blood oxygen data collected by the ring 91 in the past one hour.
  • the mobile phone 92 determines the heart rate data and blood oxygen data in the past hour. If both of them are abnormal at the same time and the abnormality lasts for more than 30 minutes, it can be determined that the ring 91 is not worn correctly or is too loosely worn.
  • the mobile phone 92 pushes the wearing suggestion to the user, and displays the wearing suggestion display interface. For example, as shown in FIG. 8A , the wearing suggestion display interface 921 of the mobile phone 92 displays the words "the ring is too loose, please change the wearing finger". After detecting that the user clicks on any blank area in the display interface, the mobile phone 92 exits the display interface. The user can accurately adjust the wearing state according to the wearing suggestion.
  • the mobile phone 92 can push the wearing status confirmation reminder at a preset time interval.
  • the reminder interface 922 of the mobile phone 92 displays the words “Please check whether the ring is worn too loosely?”. The user can confirm whether there is a detected wearing error behavior according to the reminder.
  • the mobile phone 92 receives the confirmation wearing state input by the user, for example, the user clicks the "Yes" control 9221 or "No" control 9222 shown in FIG. 8B , the mobile phone 92 can push the wearing instructions corresponding to the wearing state.
  • This embodiment is described by taking a scenario in which smart glasses and a mobile phone communicate and connect as an example.
  • the glasses 101 and the mobile phone 102 are paired to establish a communication connection, and the heart rate data and blood oxygen data collected by the glasses 101 are synchronized to the mobile phone 102 . It should be understood that, for the process of pairing the glasses 101 with the mobile phone 102, reference may be made to the foregoing process of pairing the bracelet with the mobile phone.
  • the mobile phone 102 performs wearing verification according to the heart rate data and blood oxygen data collected by the glasses 101 in the past ten minutes.
  • the mobile phone 102 determines the heart rate data and blood oxygen data of the past ten minutes, and there is a certain error between the two and the reasonable threshold, and there are occasional interruptions, so it can be determined that the glasses 101 are worn too loosely.
  • the mobile phone 102 can push the wearing status confirmation reminder to the user.
  • the reminder interface 1022 of the mobile phone 102 displays the words “Please check whether the glasses are worn too loosely?”.
  • the user can confirm whether there is a detected wearing error behavior according to the reminder.
  • the mobile phone 102 receives the confirmation wearing state input by the user, for example, the user clicks the "Yes" control 10221 or "No" control 10222 shown in FIG. 9 , the mobile phone 102 can push the wearing instructions corresponding to the wearing state.
  • the mobile phone 102 may no longer display the wearing status confirmation reminder, but broadcast the wearing status confirmation reminder in language.
  • the mobile phone 102 may send the wearing state to the glasses 101 .
  • the glasses 101 can voice broadcast the wearing state confirmation reminder, or push the wearing state confirmation reminder to the user. For example, "Please check whether the glasses are too loose?" is voiced through the microphone of the glasses 101 .
  • a reminder interface is displayed on the display screen of the glasses 101, and the reminder interface displays the words "Please check whether the glasses are worn too loosely?”. Therefore, the user can confirm whether there is a detected wearing error behavior according to the reminder.
  • the wearable device includes sensors that can be used to detect whether the wearable device is being worn by a user.
  • the wearable device includes a proximity light sensor, which can detect whether there is an object in the vicinity of the wearable device, and thus can be used to determine whether the wearable device is worn by the user; or, the wearable device includes a distance sensor, which can detect the The distance of the wearable device from the obstacle, so it can be used to determine whether the wearable device is worn by the user; or, the wearable device includes a pressure sensor, and the pressure sensor can be used to sense pressure signals, so it can be used to determine whether the wearable device is worn by the user.
  • the wearable device includes a temperature sensor, which can be used to measure temperature, and thus can be used to determine whether the wearable device is being worn by the user; alternatively, the wearable device includes a resistance sensor, which can be used to measure skin resistance, Thus, it can be used to determine whether the wearable device is worn by the user.
  • the back of glasses, finger rings, wristbands or watches that is, the side close to the user's skin, is provided with sensors such as proximity light sensors, distance sensors, pressure sensors, temperature sensors, and resistance sensors.
  • sensors such as proximity light sensors, distance sensors, pressure sensors, temperature sensors, and resistance sensors.
  • the wearable device In the case that it is determined that the wearable device is worn by the user, the user's wearing state of the wearable device is then verified. After the wearable device is determined to be worn by the user, it can collect heart rate and blood oxygen data. The wearable device itself can verify the wearing status of the wearable device according to the collected heart rate and blood oxygen data. The wearing status of the wearable device can also be verified by electronic devices such as mobile phones that have synchronized heart rate and blood oxygen data, according to the heart rate and blood oxygen data.
  • a wearing suggestion can be pushed to the user.
  • the user can also be allowed to confirm the wearing status by himself.
  • the combination of automatic detection and user confirmation can provide the accuracy of the detection results and give Users push more accurate wearing instructions.
  • the user can be asked to confirm the wearing state by himself.
  • the accuracy of the detection result can be improved, and more accurate wearing guidance can be pushed to the user.
  • the mobile phone can synchronize the heart rate and blood pressure collected by each wearable device. Oxygen data.
  • the mobile phone can verify the wearing status of each wearable device respectively, so as to push corresponding wearing suggestions to the user according to the detected wearing status of the user. It should be understood that for the process of verifying the wearing state of each wearable device respectively, reference may be made to the foregoing embodiments of verifying the wearing state of a wristband, a ring, or glasses, which will not be repeated here.
  • the embodiments of the present application provide a wear detection method for a wearable device, and the wear detection method can be performed by an electronic device.
  • the wearing detection method may be performed by one or more of a mobile phone, a wristband, a finger ring, or glasses in the aforementioned application scenarios.
  • the wearing detection method includes steps S110 to S130.
  • S120 Acquire a wearing state of the wearable device according to the one or more physiological parameter data.
  • the physiological parameter data may be the user's physiological parameter data collected by the wearable device.
  • Wearable devices can collect data on one or more physiological parameters through their own sensors. Multiple physiological parameter data can be collected by the same or different sensors.
  • the wear detection method of a wearable device may be applied to a wearable device, such as a wristband, a finger ring, or glasses.
  • the wearable device can collect one or more physiological parameter data through its own sensors, thereby obtaining one or more physiological parameter data; then, the wearable device obtains the wearing state of the wearable device according to the one or more physiological parameter data; Furthermore, the wearable device pushes wearing suggestions according to the wearing state.
  • the wear detection method of the wearable device may be applied to electronic devices, such as mobile phones or tablet computers.
  • Electronic devices are connected with wearable devices through wireless communication technology.
  • Wearable devices can acquire one or more physiological parameter data through their own sensors.
  • the electronic device obtains one or more physiological parameter data from the wearable device; then, the electronic device obtains the wearing state of the wearable device according to the one or more physiological parameter data; further, the electronic device pushes wearing suggestions according to the wearing state.
  • the wearing detection method of a wearable device can be applied to an electronic device and a wearable device, and the electronic device is connected to the wearable device through a wireless communication technology.
  • the wearable device can acquire one or more physiological parameter data through its own sensor, and send the one or more physiological parameter data to the electronic device.
  • the electronic device receives one or more physiological parameter data sent by the wearable device, and obtains the wearing state of the wearable device according to the one or more physiological parameter data; further, the electronic device pushes wearing suggestions according to the wearing state.
  • the wearable device When worn correctly, the wearable device can collect more accurate physiological parameter data. In the case of incorrect wearing, the physiological parameter data collected by the wearable device has certain errors and/or data anomalies such as data loss. Therefore, the embodiments of the present application verify the wearing state of the wearable device according to one or more physiological parameter data. In addition, according to the wear verification results, users are given corresponding wearing suggestions, which can guide users to wear the wearable device correctly and improve the accuracy of subsequent data collection.
  • wearable devices can simultaneously measure one or more physiological parameter data of the user, such as heart rate data, blood oxygen data, and blood pressure data.
  • physiological parameter data is usually affected by the wearing state of the wearable device.
  • the wearing state can be verified according to multiple physiological parameter data, and the wearing state can be verified based on information of multiple dimensions, which can further improve the accuracy of the wearing verification result.
  • the wearing detection method is provided, which is further limited based on the embodiment shown in FIG. 10 .
  • step S130 according to the wearing state, push a wearing suggestion, including:
  • a wearing suggestion is pushed according to the wearing state.
  • the wearing detection method further includes step S140 , if it is determined that the wearing state satisfies the second condition, no wearing suggestion is pushed.
  • the wearable device determines that the wearing state satisfies a certain condition, that is, the first condition will push the wearing suggestion; the wearable device determines that the wearing state satisfies a certain condition, that is, the second condition does not push the wearing suggestion.
  • Wearable devices do not push wearing suggestions to users every time they obtain the wearing status, which can reduce the number of times of pushing wearing suggestions to users, reduce interaction costs, and improve user experience.
  • the wearing state includes wrong wearing or correct wearing
  • Determining that the wearing state satisfies the first condition includes:
  • determining that the wearing state is a wearing error or, determining that the cumulative number of times that the wearing state is a wearing error is equal to or greater than a preset number of times threshold, or determining that the wearing state is a wearing error;
  • Determining that the wearing state satisfies the second condition includes:
  • the wearing state is that the cumulative number of incorrect wearing times is less than the preset number of times threshold, or the wearing state is determined that the wearing state is correct wearing.
  • the wearable device determines that the cumulative number of wearing errors is equal to or greater than the preset number of times threshold before the wearable device pushes the wearing suggestion, otherwise it does not push the wearing suggestion. Wearable devices will not push wearing suggestions to users every time a wearing error is detected, which can reduce the number of times of pushing wearing suggestions to users, reduce interaction costs, and improve user experience.
  • step S130 according to the wearing state, pushes wearing suggestions, including:
  • Step S131A determining that the wearing state is wearing misalignment, and pushing a wearing suggestion for adjusting the wearing position
  • Step S132A it is determined that the wearing state is too loose, and a wearing suggestion of the tightening device is pushed.
  • step S130 if it is determined that the wearing state satisfies the first condition, push a wearing suggestion according to the wearing state, including :
  • Step S131B if it is determined that the wearing state is wearing misalignment, push a wearing suggestion for adjusting the wearing position;
  • Step S132B if it is determined that the wearing state is too loose, push the wearing suggestion of the tightening device.
  • Step S140 includes: if it is determined that the wearing state is correct wearing, not pushing a wearing suggestion.
  • step S131B if it is determined that the wearing state is wearing misalignment, push a wearing suggestion for adjusting the wearing position, including:
  • the wearing state is dislocation, and the accumulated number of times that the wearing state is determined to be dislocation is equal to or greater than the preset number of times threshold, a wearing suggestion for adjusting the wearing position is pushed.
  • Step S132B if it is determined that the wearing state is too loose, push the wearing suggestion of the tightening device, including:
  • Step S140 includes: if it is determined that the wearing state is correctly worn, or, determining that the wearing state is dislocated, and determining that the cumulative number of times that the wearing state is dislocated is less than a preset number of times threshold, or, determining that the wearing If the wearing state is too loose, and it is determined that the cumulative number of times that the wearing state is too loose is less than the preset number of times threshold, the wearing suggestion is not pushed.
  • a corresponding wearing suggestion is pushed, which can guide the user to adjust the wearing state in a more targeted manner and improve the accuracy of subsequent measurements.
  • the corresponding wearing suggestion will be pushed, which can reduce the number of times of pushing the wearing suggestion to the user, reduce the interaction cost, and improve the user experience.
  • acquiring the wearing state of the wearable device according to one physiological parameter data includes:
  • the duration of the first abnormal time period is equal to or greater than the first preset duration, it is determined that the wearing state of the wearable device is a wearing error.
  • the wearing state of the wearable device is acquired according to multiple physiological parameter data, including:
  • the duration of the second abnormal time period is equal to or greater than the preset time period, it is determined that the wearing state of the wearable device is a wearing error.
  • a quantitative method of how to obtain the wearing state of the wearable device according to a plurality of physiological parameter data is provided, and the computing power cost is low, which makes the solution easy to implement.
  • the time period in which multiple physiological parameter data are abnormal at the same time is considered, and the threshold for the duration is set to ensure the accuracy of the wearing verification result.
  • the wearable device includes a sensor, and the sensor is used to collect the plurality of physiological parameter data. Since the correlation of several physiological parameter data from the same hardware is very high, when the wearing state changes, several target data will be affected synchronously. Therefore, this implementation can collect the data used to verify the wearing state based on the same hardware. Physiological parameter information, more accurate verification results can be obtained.
  • the senor may be an optical sensor.
  • the optical sensor can measure the user's heart rate data, blood oxygen data, blood oxygen data, etc. based on the reflection of light by the blood. At least two physiological parameter data from heart rate data, blood oxygen data, blood oxygen data, etc. from the same optical sensor are used as data for verifying the wearing state.
  • the physiological parameter data used for verifying the wearing state comes from the same hardware, the correlation between different physiological parameter data is very high. Changes in the wearing state of wearable devices will be reflected in different physiological parameter data at the same time. That is to say, wrong wearing state will cause abnormal physiological parameter data at the same time. Therefore, in this implementation manner, the wearing state of the wearable device is verified based on the physiological parameter data collected by the same hardware, which can make the wearing verification result more accurate.
  • the one or more physiological parameter data includes one or more of heart rate data, blood oxygen data and blood pressure data.
  • the wearing detection method further includes steps S150 and S160 .
  • steps S150 and S160 As shown in FIG. 15 , the improvement on the basis of FIG. 10 is taken as an example.
  • the wearing status is verified, and wearing suggestions are pushed, and on the other hand, the user confirms whether there is a detected wearing error, and then pushes the wearing instructions corresponding to the wearing status.
  • pushing a query for confirming the wearing state includes: pushing a query about whether to wear a wearable device.
  • the wearable device pushes a query on whether to wear the wearable device to the user, and determines that the wearable device is in the wearing state on the basis of , which can push wearing instructions in a targeted manner to guide users to wear wearable devices efficiently and accurately.
  • the wearing error includes wearing in a wrong position or wearing too loosely.
  • the wearing detection method further includes:
  • the wearing suggestion is not pushed.
  • one or more physiological parameter data are acquired, including:
  • the wearable device is worn by the user, and one or more physiological parameter data are obtained.
  • the wearable device may include a sensor for detecting whether the wearable device is worn by the user. Based on the detection data from these sensors, it can be determined whether the wearable device is worn by the user. In this implementation manner, when it is determined that the wearable device is worn by the user, the wearing state verification is performed, which can save computing power costs.
  • the wearable device includes at least one of a proximity light sensor, a distance sensor, a pressure sensor, a temperature sensor, and a resistance sensor. Based on detection signals derived from them, it can be determined whether the wearable device is worn by the user.
  • each module included in the wearing detection device of the wearable device may correspond to each step of implementing the wearing detection method of the wearable device.
  • the electronic device includes corresponding hardware and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functionality for each particular application in conjunction with the embodiments, but such implementations should not be considered beyond the scope of this application.
  • FIG. 16 a structural block diagram of a wearing detection apparatus for a wearable device provided by an embodiment of the present application is shown. For convenience of description, only parts related to this embodiment are shown.
  • the wear detection device of the wearable device can be configured on electronic devices such as wearable devices, mobile phones or tablet computers. 16, the wearing detection device includes:
  • a verification module 162 configured to acquire the wearing state of the wearable device according to the one or more physiological parameter data
  • the push module 163 is configured to push a wearing suggestion according to the wearing state.
  • Embodiments of the present application further provide an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program, the The electronic device implements the steps in each of the foregoing method embodiments.
  • the electronic device may be a wearable device, a mobile phone, a tablet computer, and the like.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented.
  • the embodiments of the present application provide a computer program product, when the computer program product runs on an electronic device, the steps in the foregoing method embodiments can be implemented when the electronic device executes.
  • the integrated modules/units if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above embodiments, which can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include at least: any entity or device capable of carrying the computer program code to the photographing device/electronic device, recording medium, computer memory, read-only memory (ROM), random access memory (Random Access Memory, RAM), electrical carrier signals, telecommunication signals, and software distribution media.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signals telecommunication signals
  • software distribution media For example, U disk, mobile hard disk, disk or CD, etc.
  • computer readable media may not be electrical carrier signals and telecommunications signals.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Power Engineering (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Databases & Information Systems (AREA)
  • Business, Economics & Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • User Interface Of Digital Computer (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本申请涉及智能穿戴设备技术领域,提供了一种可穿戴设备的佩戴检测方法、装置及电子设备。可穿戴设备的佩戴检测方法应用于可穿戴设备,佩戴检测方法包括:可穿戴设备获取一个或多个生理参数数据;可穿戴设备根据所述一个或多个生理参数数据获取所述可穿戴设备的佩戴状态;可穿戴设备根据所述佩戴状态,推送佩戴建议。本申请实施例根据佩戴状态的校验结果给予用户佩戴建议,可以指导用户正确佩戴可穿戴设备,提高后续数据采集的准确性。

Description

可穿戴设备的佩戴检测方法、装置及电子设备
本申请要求于2020年07月06日提交国家知识产权局、申请号为202010641297.5、申请名称为“可穿戴设备的佩戴检测方法、装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能穿戴设备技术领域,尤其涉及一种可穿戴设备的佩戴检测方法、装置及电子设备。
背景技术
以智能手环和手表等为代表的智能穿戴设备是新兴起的一个科技领域。智能穿戴设备可以跟踪用户的日常活动、睡眠情况和饮食习惯等。
智能穿戴设备采集的用户数据可以与iOS设备、安卓(Android)设备、和/或云平台等同步,帮助用户了解和改善自己的健康状况,获取运动数据等等。
通常情况下,智能穿戴设备通过检测用户实时的或者一段时间的数据对用户的健康、运动等情况进行判别。
然而当前使用手环或手表等智能穿戴设备采集用户数据时,测量结果会受到穿戴方式的影响,例如心脏健康研究中就有15%以上的检测失败是由于佩戴错误造成的,并且用户在佩戴穿戴设备时,有时候自己无法判断是否佩戴正确。
发明内容
本申请实施例提供了可穿戴设备的佩戴检测方法,可以解决相关技术中穿戴检测的准确度不够的问题。
第一方面,本申请实施例提供了一种可穿戴设备的佩戴检测方法,应用于可穿戴设备,佩戴检测方法包括:所述可穿戴设备获取一个或多个生理参数数据;所述可穿戴设备根据所述一个或多个生理参数数据获取所述可穿戴设备的佩戴状态;所述可穿戴设备根据所述佩戴状态,推送佩戴建议。
第一方面的实施例,根据可穿戴设备获取的一个或多个生理参数数据,获取佩戴状态,进而根据佩戴状态向用户推送佩戴建议。一方面,根据一个或多个生理参数数据校验佩戴状态,可适应更多的应用场景。当采用多个生理参数数据校验佩戴状态时,利用了多个维度的信息,提高了佩戴校验结果的准确性。另一方面,根据佩戴校验结果给予用户佩戴建议,可以指导用户正确佩戴可穿戴设备,提高后续数据采集的准确性。
应理解,在本申请一些实施例中,第一方面提供的可穿戴设备的佩戴检测方法,还可以应用于与可穿戴备设备建立无线通信连接的电子设备上。作为一示例,电子设备例如手机或平板电脑等。
在第一方面的一种可能的实现方式中,所述可穿戴设备根据所述佩戴状态,推送 佩戴建议,包括:
若所述可穿戴设备确定所述佩戴状态满足第一条件,根据所述佩戴状态,推送佩戴建议;
所述佩戴检测方法,还包括:
若所述可穿戴设备确定所述佩戴状态满足第二条件,不推送佩戴建议。
在本实现方式中,可穿戴设备确定佩戴状态满足一定条件,即第一条件才会推送佩戴建议;可穿戴设备确定佩戴状态满足一定条件,即第二条件不推送佩戴建议。可穿戴设备不会每次获取到佩戴状态就向用户推送佩戴建议,可以减少向用户推送佩戴建议的次数,减小交互成本,提高用户体验度。
在第一方面的一种可能的实现方式中,所述佩戴状态包括佩戴错误或佩戴正确;
所述可穿戴设备确定所述佩戴状态满足第一条件,包括:
所述可穿戴设备确定所述佩戴状态为佩戴错误的累计次数等于或大于预设次数阈值,或,确定所述佩戴状态为佩戴错误;
所述可穿戴设备确定所述佩戴状态满足第二条件,包括:
所述可穿戴设备确定所述佩戴状态为佩戴错误的累计次数小于所述预设次数阈值,或,确定所述佩戴状态为佩戴正确。
在本实现方式中,可穿戴设备确定佩戴状态为佩戴错误的累计次数等于或大于预设次数阈值,才会推送佩戴建议,否则不推送佩戴建议。可穿戴设备不会每次检测到佩戴错误就向用户推送佩戴建议,可以减少向用户推送佩戴建议的次数,减小交互成本,提高用户体验度。
在第一方面的一种可能的实现方式中,所述可穿戴设备根据所述佩戴状态,推送佩戴建议,包括:
所述可穿戴设备确定所述佩戴状态为佩戴错位,推送调整佩戴位置的佩戴建议;或,所述可穿戴设备确定所述佩戴状态为佩戴过松,推送调紧设备的佩戴建议。
在本实现方式中,可穿戴设备确定所述佩戴状态为佩戴错位或佩戴过松,推送对应的佩戴建议,可以更有针对性的指导用户调整佩戴状态,提高后续测量的准确性。
在第一方面的一种可能的实现方式中,所述可穿戴设备根据一个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
所述可穿戴设备确定一个生理参数数据出现异常的第一异常时间段;
若所述第一异常时间段的持续时长等于或大于第一预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误。
在本实现方式中,提供了一种如何根据一个生理参数数据获取所述可穿戴设备的佩戴状态的定量方式,算力成本低,使得方案易于实施。
在第一方面的一种可能的实现方式中,所述可穿戴设备根据多个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
所述可穿戴设备确定多个生理参数数据同时出现异常的第二异常时间段;
若所述第二异常时间段的持续时长等于或大于预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误。
在本实现方式中,提供了一种如何根据多个生理参数数据获取所述可穿戴设备的 佩戴状态的定量方式,算力成本低,使得方案易于实施。此外,考虑了多个生理参数数据同时出现异常的时间段,并且设置了持续时长的阈值,保证了佩戴校验结果的准确性。
在第一方面的一种可能的实现方式中,所述可穿戴设备包括传感器,所述传感器用于采集所述多个生理参数数据。作为一示例,该传感器可以为光学传感器。
在本实现方式中,由于用于校验佩戴状态的生理参数数据来源于同一硬件,不同生理参数数据之间的关联度非常高。可穿戴设备佩戴状态的变化将在不同生理参数数据中同时体现。也就是说,错误的佩戴状态将导致生理参数数据同时出现异常。因此,在本实现方式中,基于同一硬件采集到的生理参数数据校验可穿戴设备的佩戴状态,可以使得佩戴校验结果更准确。
在第一方面的一种可能的实现方式中,所述一个或多个生理参数数据包括心率数据、血氧数据和血压数据中的一个或多个。
在第一方面的一种可能的实现方式中,所述佩戴检测方法还包括:
所述可穿戴设备推送确认佩戴状态的问询;
所述可穿戴设备响应于接收到的用户输入的第一操作,推送所述佩戴状态对应的佩戴说明。
在本实现方式中,可穿戴设备一方面校验佩戴状态,推送佩戴建议,另一方面结合了用户确认,用户确认是否存在检测出的佩戴错误行为后,推送所述佩戴状态对应的佩戴说明。
在第一方面的一种可能的实现方式中,所述可穿戴设备推送确认佩戴状态的问询包括:所述可穿戴设备推送是否佩戴可穿戴设备的问询。
在本实现方式中,考虑到通常情形下用户可以准确确认自身是否佩戴了可穿戴设备,因而可穿戴设备推送是否佩戴可穿戴设备的问询给用户,确定可穿戴设备处于已佩戴状态的基础下,可以有针对性的推送佩戴说明,指导用户高效且准确地佩戴可穿戴设备。
在第一方面的一种可能的实现方式中,所述佩戴错误包括佩戴错位或佩戴过松。
在第一方面的一种可能的实现方式中,所述佩戴检测方法还包括:
所述可穿戴设备确定所述佩戴状态为佩戴正确,则不推送佩戴建议。
在第一方面的一种可能的实现方式中,所述可穿戴设备获取一个或多个生理参数数据,包括:
所述可穿戴设备确定被用户佩戴,获取一个或多个生理参数数据。
在实际应用中,可穿戴设备可以包括可用于检测可穿戴设备是否被用户佩戴的传感器。基于来源于这些传感器的检测数据,可以判断可穿戴设备是否被用户佩戴。
在本实现方式中,当确定可穿戴设备被用户佩戴的基础上,再校验佩戴状态,可以节省算力成本。
在一些示例中,可穿戴设备包括接近光传感器、距离传感器、压力传感器、温度传感器和电阻传感器中的至少一种。基于来源于它们的检测信号,可以判断可穿戴设备是否被用户佩戴。
第二方面,对应于第一方面提供的可穿戴设备的佩戴检测方法,本申请实施例提 供了一种可穿戴设备的佩戴检测装置,配置于可穿戴设备,佩戴检测装置包括:
获取模块,用于获取一个或多个生理参数数据;
校验模块,用于根据所述一个或多个生理参数数据获取所述可穿戴设备的佩戴状态;
推送模块,用于根据所述佩戴状态,推送佩戴建议。
在第二方面的一种可能的实现方式中,所述推送模块具体用于:
若确定所述佩戴状态满足第一条件,根据所述佩戴状态,推送佩戴建议;
若确定所述佩戴状态满足第二条件,不推送佩戴建议。
在第二方面的一种可能的实现方式中,所述佩戴状态包括佩戴错误或佩戴正确;
确定所述佩戴状态满足第一条件,包括:所述佩戴状态为佩戴错误的累计次数等于或大于预设次数阈值,或,确定所述佩戴状态为佩戴错误;
确定所述佩戴状态满足第二条件,包括:确定所述佩戴状态为佩戴错误的累计次数小于所述预设次数阈值,或,确定所述佩戴状态为佩戴正确。
在第二方面的一种可能的实现方式中,所述推送模块具体用于:
确定所述佩戴状态为佩戴错位,推送调整佩戴位置的佩戴建议;或,确定所述佩戴状态为佩戴过松,推送调紧设备的佩戴建议。
在第二方面的一种可能的实现方式中,所述校验模块包括:用于根据一个生理参数数据获取所述可穿戴设备的佩戴状态的第一校验子模块,和/或,用于根据多个生理参数数据获取所述可穿戴设备的佩戴状态的第二校验子模块;
所述第一校验子模块具体用于:
确定一个生理参数数据出现异常的第一异常时间段;
若所述第一异常时间段的持续时长等于或大于第一预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误;
所述第二校验子模块具体用于:
确定多个生理参数数据同时出现异常的第二异常时间段;
若所述第二异常时间段的持续时长等于或大于预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误。
在第二方面的一种可能的实现方式中,所述佩戴检测装置还包括问询模块,所述问询模块,用于推送是否佩戴可穿戴设备的问询。
在第二方面的一种可能的实现方式中,所述一个或多个生理参数数据包括心率数据、血氧数据和血压数据中的一个或多个。
在第二方面的一种可能的实现方式中,所述获取模块具体用于:
确定所述可穿戴设备被用户佩戴,获取一个或多个生理参数数据。
可以理解的是,上述第二方面的有益效果可以参见上述第一方面中的相关描述。
第三方面,本申请实施例提供了一种可穿戴设备的佩戴检测方法,应用于电子设备和可穿戴设备,所述电子设备通过无线通信技术与所述可穿戴设备连接,所述佩戴检测方法包括:
所述可穿戴设备获取一个或多个生理参数数据;
所述电子设备接收所述可穿戴设备发送的一个或多个生理参数数据,所述电子设 备根据所述一个或多个生理参数数据获取所述可穿戴设备的佩戴状态;
所述电子设备根据所述佩戴状态,推送佩戴建议。
第三方面的实施例,电子设备根据可穿戴设备发送的一个或多个生理参数数据,获取佩戴状态,进而根据佩戴状态向用户推送佩戴建议。一方面,根据一个或多个生理参数数据校验佩戴状态,可适应更多的应用场景。当采用多个生理参数数据校验佩戴状态时,利用了多个维度的信息,提高了佩戴校验结果的准确性。另一方面,根据佩戴校验结果给予用户佩戴建议,可以指导用户正确佩戴可穿戴设备,提高后续数据采集的准确性。
在第三方面的一种可能的实现方式中,所述电子设备根据所述佩戴状态,推送佩戴建议,包括:
若所述电子设备确定所述佩戴状态满足第一条件,根据所述佩戴状态,推送佩戴建议;
所述佩戴检测方法,还包括:
若所述电子设备确定所述佩戴状态满足第二条件,不推送佩戴建议。
在本实现方式中,电子设备确定佩戴状态满足一定条件才会推送佩戴建议,电子设备不会每次获取到佩戴状态就向用户推送佩戴建议,可以减少向用户推送佩戴建议的次数,减小交互成本,提高用户体验度。
在第三方面的一种可能的实现方式中,所述佩戴状态包括佩戴错误或佩戴正确;
所述电子设备确定所述佩戴状态满足第一条件,包括:
所述电子设备确定所述佩戴状态为佩戴错误的累计次数等于或大于预设次数阈值,或,确定所述佩戴状态为佩戴错误;
所述电子设备确定所述佩戴状态满足第二条件,包括:
所述电子设备确定所述佩戴状态为佩戴错误的累计次数小于所述预设次数阈值,或,所述电子设备确定所述佩戴状态为佩戴正确。
在本实现方式中,电子设备确定佩戴状态为佩戴错误的累计次数等于或大于预设次数阈值,才会推送佩戴建议。电子设备不会每次检测到佩戴错误就向用户推送佩戴建议,可以减少向用户推送佩戴建议的次数,减小交互成本,提高用户体验度。
在第三方面的一种可能的实现方式中,所述电子设备根据所述佩戴状态,推送佩戴建议,包括:
所述电子设备确定所述佩戴状态为佩戴错位,推送调整佩戴位置的佩戴建议;或,所述电子设备确定所述佩戴状态为佩戴过松,推送调紧设备的佩戴建议。
在本实现方式中,确定所述佩戴状态为佩戴错位或佩戴过松,推送对应的佩戴建议,可以更有针对性的指导用户调整佩戴状态,提高后续测量的准确性。
在第三方面的一种可能的实现方式中,根据一个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
确定一个生理参数数据出现异常的第一异常时间段;
若所述第一异常时间段的持续时长等于或大于第一预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误。
在本实现方式中,提供了一种如何根据一个生理参数数据获取所述可穿戴设备的 佩戴状态的定量方式,算力成本低,使得方案易于实施。
在第三方面的一种可能的实现方式中,根据多个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
确定多个生理参数数据同时出现异常的第二异常时间段;
若所述第二异常时间段的持续时长等于或大于预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误。
在本实现方式中,提供了一种如何根据多个生理参数数据获取所述可穿戴设备的佩戴状态的定量方式,算力成本低,使得方案易于实施。此外,考虑了多个生理参数数据同时出现异常的时间段,并且设置了持续时长的阈值,保证了佩戴校验结果的准确性。
在第三方面的一种可能的实现方式中,所述可穿戴设备包括传感器,所述传感器用于采集所述多个生理参数数据。作为一示例,该传感器可以为光学传感器。
在本实现方式中,由于用于校验佩戴状态的生理参数数据来源于同一硬件,不同生理参数数据之间的关联度非常高。可穿戴设备佩戴状态的变化将在不同生理参数数据中同时体现。也就是说,错误的佩戴状态将导致生理参数数据同时出现异常。因此,在本实现方式中,基于同一硬件采集到的生理参数数据校验可穿戴设备的佩戴状态,可以使得佩戴校验结果更准确。
在第三方面的一种可能的实现方式中,所述一个或多个生理参数数据包括心率数据、血氧数据和血压数据中的一个或多个。
在第三方面的一种可能的实现方式中,所述佩戴检测方法还包括:
所述电子设备推送确认佩戴状态的问询;
所述电子设备响应于接收到的用户输入的第一操作,推送所述佩戴状态对应的佩戴说明。
在本实现方式中,电子设备一方面校验佩戴状态,推送佩戴建议,另一方面结合了用户确认,用户确认是否存在检测出的佩戴错误行为后,推送所述佩戴状态对应的佩戴说明。
在第三方面的一种可能的实现方式中,所述电子设备推送确认佩戴状态的问询包括:所述电子设备推送是否佩戴可穿戴设备的问询。
在本实现方式中,考虑到通常情形下用户可以准确确认自身是否佩戴了可穿戴设备,因而电子设备推送是否佩戴可穿戴设备的问询给用户,确定可穿戴设备佩戴与否状态的基础下,可以有针对性的推送佩戴说明,指导用户高效且准确地佩戴可穿戴设备。
在第三方面的一种可能的实现方式中,所述佩戴错误包括佩戴错位或佩戴过松。
在第三方面的一种可能的实现方式中,所述佩戴检测方法还包括:
所述电子设备确定所述佩戴状态为佩戴正确,则不推送佩戴建议。
在第三方面的一种可能的实现方式中,所述可穿戴设备获取一个或多个生理参数数据,包括:
所述可穿戴设备确定被用户佩戴,获取一个或多个生理参数数据。
在实际应用中,可穿戴设备可以包括可用于检测可穿戴设备是否被用户佩戴的传 感器。基于来源于这些传感器的检测数据,可以判断可穿戴设备是否被用户佩戴。
在本实现方式中,当确定可穿戴设备被用户佩戴的基础上,再校验佩戴状态,可以节省算力成本。
在一些示例中,可穿戴设备包括接近光传感器、距离传感器、压力传感器、温度传感器和电阻传感器中的至少一种。基于来源于它们的检测信号,可以判断可穿戴设备是否被用户佩戴。
第四方面,本申请实施例提供了一种可穿戴设备的佩戴检测***,包括电子设备和可穿戴设备,所述电子设备通过无线通信技术与所述可穿戴设备连接,所述可穿戴设备用于获取一个或多个生理参数数据;
所述电子设备用于:接收所述可穿戴设备发送的一个或多个生理参数数据,根据所述一个或多个生理参数数据获取所述可穿戴设备的佩戴状态;根据所述佩戴状态,推送佩戴建议。
在第四方面的一种可能的实现方式中,所述电子设备用于:若确定所述佩戴状态满足第一条件,根据所述佩戴状态,推送佩戴建议;
所述电子设备还用于:若确定所述佩戴状态满足第二条件,不推送佩戴建议。
在第四方面的一种可能的实现方式中,所述佩戴状态包括佩戴错误或佩戴正确;
确定所述佩戴状态满足第一条件,包括:确定所述佩戴状态为佩戴错误的累计次数等于或大于预设次数阈值,或,确定所述佩戴状态为佩戴错误;
确定所述佩戴状态满足第二条件,包括:
确定所述佩戴状态为佩戴错误的累计次数小于所述预设次数阈值,或,确定所述佩戴状态为佩戴正确。
在第四方面的一种可能的实现方式中,所述电子设备用于:
确定所述佩戴状态为佩戴错位,推送调整佩戴位置的佩戴建议;或,确定所述佩戴状态为佩戴过松,推送调紧设备的佩戴建议。
在第四方面的一种可能的实现方式中,所述电子设备用于根据一个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
所述电子设备用于确定一个生理参数数据出现异常的第一异常时间段;若所述第一异常时间段的持续时长等于或大于第一预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误。
在第四方面的一种可能的实现方式中,所述电子设备用于根据多个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
所述电子设备用于确定多个生理参数数据同时出现异常的第二异常时间段;若所述第二异常时间段的持续时长等于或大于预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误。
在第四方面的一种可能的实现方式中,所述可穿戴设备包括传感器,所述可穿戴设备通过所述传感器采集所述一个或多个生理参数数据。
作为一示例,该传感器可以为光学传感器。
在第四方面的一种可能的实现方式中,所述一个或多个生理参数数据包括心率数据、血氧数据和血压数据中的一个或多个。
在第四方面的一种可能的实现方式中,所述电子设备还用于:
推送确认佩戴状态的问询;响应于接收到的用户输入的第一操作,推送所述佩戴状态对应的佩戴说明。
在第四方面的一种可能的实现方式中,所述电子设备用于推送确认佩戴状态的问询,包括:所述电子设备用于推送是否佩戴可穿戴设备的问询。
在第四方面的一种可能的实现方式中,所述佩戴错误包括佩戴错位或佩戴过松。
在第四方面的一种可能的实现方式中,所述电子设备还用于:若确定所述佩戴状态为佩戴正确,则不推送佩戴建议。
在第四方面的一种可能的实现方式中,所述可穿戴设备用于获取一个或多个生理参数数据,包括:
所述可穿戴设备用于确定被用户佩戴,获取一个或多个生理参数数据。
在一些示例中,可穿戴设备包括接近光传感器、距离传感器、压力传感器、温度传感器和电阻传感器中的至少一种。基于来源于它们的检测信号,可以判断可穿戴设备是否被用户佩戴。
可以理解的是,上述第四方面的有益效果可以参见上述第三方面中的相关描述。
第五方面,本申请实施例提供了一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,使得所述电子设备实现如第一方面和第一方面可能的实现方式中任一所述的方法。
第六方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面和第一方面可能的实现方式中任一所述的方法。
第七方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在电子设备上运行时,使得电子设备执行上述第一方面和第一方面可能的实现方式中任一所述的方法。
可以理解的是,上述第五方面至第七方面的有益效果可以参见上述第一方面中的相关描述。
附图说明
图1是本申请实施例提供的电子设备的结构示意图;
图2A是本申请一实施例提供的可穿戴设备的佩戴检测方法的一应用场景;
图2B是本申请一实施例提供的可穿戴设备的佩戴检测方法的另一应用场景;
图2C是本申请一实施例提供的可穿戴设备的佩戴检测方法的另一应用场景;
图2D是本申请一实施例提供的可穿戴设备的佩戴检测方法的流程示意图;
图3A是本申请一实施例提供的可穿戴设备的佩戴检测方法的一用户界面示意图;
图3B是本申请一实施例提供的可穿戴设备的佩戴检测方法的另一用户界面示意图;
图4A是本申请一实施例提供的可穿戴设备的佩戴检测方法的另一用户界面示意图;
图4B是本申请一实施例提供的可穿戴设备的佩戴检测方法的另一用户界面示意 图;
图5A是本申请一实施例提供的可穿戴设备的佩戴检测方法的另一用户界面示意图;
图5B是本申请一实施例提供的可穿戴设备的佩戴检测方法的另一用户界面示意图;
图6是本申请一实施例提供的可穿戴设备的佩戴检测方法的另一用户界面示意图;
图7是本申请一实施例提供的可穿戴设备的佩戴检测方法的另一用户界面示意图;
图8A和图8B是本申请一实施例提供的可穿戴设备的佩戴检测方法的另一应用场景;
图9是本申请一实施例提供的可穿戴设备的佩戴检测方法的另一应用场景;
图10是本申请一实施例提供的可穿戴设备的佩戴检测方法的流程示意图;
图11是本申请另一实施例提供的可穿戴设备的佩戴检测方法的流程示意图;
图12是本申请另一实施例提供的可穿戴设备的佩戴检测方法的流程示意图;
图13是本申请另一实施例提供的可穿戴设备的佩戴检测方法的流程示意图;
图14是本申请另一实施例提供的可穿戴设备的佩戴检测方法的流程示意图;
图15是本申请另一实施例提供的可穿戴设备的佩戴检测方法的流程示意图;
图16是本申请一实施例提供的可穿戴设备的佩戴检测装置的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定***结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的***、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
还应当理解,在本申请实施例中,“若干个”和“一个或多个”是指一个、两个或两个以上;“和/或”,描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
如在本申请说明书和所附权利要求书中所使用的那样,术语“若”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个 或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了说明本申请的技术方案,下面通过具体实施例来进行说明。
当前使用手环或手表等智能穿戴设备采集用户数据时,测量结果会受到穿戴方式的影响。但是,用户在佩戴智能穿戴设备时,有时候自己无法判断是否佩戴正确。
本申请实施例,提供了一种可穿戴设备的佩戴检测方法,一方面,根据用户测量数据,例如心率和/或血氧等,对用户是否正确佩戴智能穿戴设备进行有效测量,并根据测量结果给予佩戴者建议以提高后续测量的准确性。另一方面,自动测量佩戴状态与用户确认相结合:通过对用户上传的血氧和心率等数据进行检测,初步获取用户的佩戴状态,检测出用户没有正确佩戴后,向用户推送佩戴建议;用户确认自己是否存在检测出的佩戴错误行为,待用户确认后推送相应的佩戴说明。
本申请实施例提供的可穿戴设备的佩戴检测方法可以应用于电子设备上,电子设备包括但不限于手机、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)、智能音箱、电视机顶盒(set top box,STB)或电视等。本申请实施例对电子设备的具体类型不作任何限制。
图1示出了电子设备100的结构示意图。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了***的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等***器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被 配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与***设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频模块(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于 处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。
在一些实施例中,电子设备间可以通过无线通信模块160建立无线通信连接,从而实现电子设备间的信息交互。例如,手机与手环建立蓝牙通信连接,基于该蓝牙通信连接,手机获取手环、耳机、指环或眼镜等可穿戴设备采集到的信息,如用户的生理参数数据等。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传 递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作***,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
在本申请一实施例中,内部存储器121或外部存储卡中存储有可在处理器110上运行的计算机程序,处理器110执行该计算机程序时,使得电子设备实现本申请实施例提供的可穿戴设备的佩戴检测方法的各个步骤。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模 块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
在本申请一实施例中,电子设备可以通过音频模块170,不限于扬声器170A,受话器170B等,输出声音信号。例如,语音播报佩戴建议和/或佩戴说明,或,语音播报佩戴状态确认提醒等。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。在一些实施例中,可穿戴设备包括压力传感器180A,压力传感器180A设置于靠近佩戴者的一侧。可穿戴设备可以利用压力传感器180A检测压力的强度,以检测可穿戴设备是否被用户佩戴,和/或,佩戴的松紧程度等。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感 器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,可穿戴设备包括距离传感器180F,距离传感器180F设置于靠近佩戴者的一侧。可穿戴设备可以利用距离传感器180F测距,以检测可穿戴设备是否被用户佩戴。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。在一些实施例中,可穿戴设备包括距离传感器180F,距离传感器180F设置于靠近佩戴者的一侧。可穿戴设备可以利用距离传感器180F测距以检测可穿戴设备是否被用户佩戴。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。在其他一些实施例中,可穿戴设备包括温度传感器180J,温度传感器180J设置于靠近佩戴者的一侧。可穿戴设备可以利用温度传感器180J测量用户体温,还可以检测可穿戴设备是否被用户佩戴等。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用 处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。在其他一些实施例中,可穿戴设备可以为耳机,耳机可以包括骨传导传感器180M。耳机可以通过骨传导传感器180M获取的血压跳动信号解析用户的心率数据。
在本申请其他一些实施例中,电子设备,例如可穿戴设备,可以包括光学传感器,光学传感器可以基于血液对光的吸收,测量用户的血压、心率和血氧饱和度(或血氧)。更具体地,光学传感器可以基于血液中所含血红蛋白对光的吸收,来确定用户的血压、心率或血氧饱和度等生理参数。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过***SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时***多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
先通过非限制示例对本申请实施例的应用场景和实现流程进行举例说明。
图2A、图2B和图2C所示,为本申请实施例提供的可穿戴设备的佩戴检测方法的应用场景示意图。在本应用场景中,可穿戴设备为手环。
需要说明的是,在本申请实施例中,可穿戴设备可以是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、眼罩、指环、耳机、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件 的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,如智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
图2A,图2B和图2C展示了手环31和手机32的配对过程。
在本申请一些实施例中,如图2A所示,手环31开启蓝牙功能后,用户通过进入手机32的应用来添加手环31,完成手机32与手环31的配对。例如,用户进入手机32的设备添加界面321A,触发设备添加界面321A中的添加设备控件3211。手机32若未开启蓝牙功能,则开启手机32的蓝牙功能,手机32搜索周边的蓝牙设备,显示周边的蓝牙设备列表,当用户在蓝牙设备列表中选择手环31后,完成手机32与手环31的配对。需要说明的是,在本申请其他一些实施例中,当用户在蓝牙设备列表中选择手环31后,需要用户输入正确的密码,可以完成手机32与手环31的配对。
在本申请另一些实施例中,如图2B所示,手环31开启蓝牙功能,手机32开启NFC功能和蓝牙功能,用户将手机32轻碰手环31,手机32自动弹出连接提示界面321B,当用户在连接提示界面321B选择确认后,完成手机32与手环31的配对。通过一碰互连,简化了用户操作,相比图2A的用户操作繁琐,图2B大大提高了配对效率。需要说明的是,在本申请其他一些实施例中,用户将手机32轻碰手环31,手机32可以不弹出连接提示界面321B,即不需要用户选择确认即可完成手机32与手环31的配对。在这些实施例中,不需要用户进行连接确认,进一步简化了用户操作,进一步提高了配对效率。在本申请其他一些实施例中,用户将手机32轻碰手环31,手机32可以不弹出连接提示界面321B,可以弹出密码输入界面,用户在密码输入界面输入正确密码,可以完成手机32与手环31的配对。在这些实施例中,通过设置密码提高了通信安全性。
如图2C所示,当手环31和手机32完成配对后,实现了手环31与手机32的通信连接。此外,在手机32的设备管理界面322可以查看到手环31与手机32已连接的状态提示信息3221。手环31与手机32之间可以实现数据交互等功能。
应理解,此处图2A、图2B和图2C为各个显示界面的示例性描述,不能解释为对本申请实施例的具体限制。在实际的应用场景中,各个显示界面可以包括更多或更少的显示内容,本申请实施例对此不予限制。
如图2D所示,在手环和手机完成配对后,手环可以主动将采集到的检测数据同步到手机,或者,手机可以主动要求手环将采集到的检测数据同步到手机。手机获取手环采集到的检测数据后,一方面,手机自动检测手环的佩戴状态。具体地,手机根据手环采集到的检测数据,例如心率和/或血氧等,对用户是否正确佩戴手环31进行有效地佩戴校验,并根据佩戴校验结果给予佩戴者佩戴建议,例如,若佩戴校验结果为用户没有正确佩戴手环后,向佩戴者推送佩戴建议。另一方面,手机可以智能推送穿戴指导。手机在获得佩戴校验结果后,向用户推送确认佩戴状态的问询,以供用户确认是否存在自身可检测出的佩戴错误行为,待用户确认后推送相应佩戴说明(或称佩戴指导)。
应理解的是,在本申请一些实施例中,手环自身可以根据采集到的检测数据进行佩戴校验,根据佩戴校验结果给予佩戴建议。或者,手环自身可以智能推送穿戴指导。也就是说,在本申请实施例中,进行佩戴检验的电子设备可以为采集检测数据的设备,也可以为同步有检测数据的电子设备。推送穿戴指导的电子设备可以为采集检测数据的设备,也可以为同步有检测数据的电子设备。为了描述的方便,在后续的示例或实施例中,以手机进行佩戴检验,以及推送穿戴指导为例进行说明,本领域技术人员可以理解,示例性描述不能解释为对本申请的具体限制。
还应理解的是,手环可以存储一定量的检测数据,检测数据可以以一定时间周期进行覆盖更新。当手环和手机连接时,手环将本机未同步的检测数据同步到手机上。一方面,手机可以基于最新同步的检测数据,对历史时间段内或当前实时的手环佩戴状态进行校验,根据佩戴校验结果给予用户佩戴建议。另一方面,手机也可以基于最新同步的检测数据得到用户健康监测结果,以提示用户进行健康管理。
在手环和手机完成配对后,手环可以将采集到的检测数据同步到手机,用户可以通过手机的用户界面查看检测数据。
作为一非限制性示例,如图3A所示,为手机32上手环检测数据的显示界面323。手环检测数据的显示界面323可显示的测量数据可以包括如下几种:步数、运动状态、睡眠、心率和血氧。
当手机接收到用户触发图3A所示手环检测数据的显示界面323中的睡眠控件3231,手机32加载睡眠数据的显示界面324,如图3B所示。睡眠数据的显示界面324可显示的睡眠状态下的测量数据包括两种:心率和血氧。
当手机接收到用户触发图3B所示睡眠数据的显示界面324中的心率控件3241,例如,手机32可以加载睡眠状态下的心率数据显示界面325,如图4A所示。又如,手机32可以加载睡眠状态下的心率数据显示界面425,如图4B所示。
当手机接收到用户触发图3B所示睡眠数据的显示界面324中的血氧控件3242,例如,手机32可以加载睡眠状态下的血氧数据显示界面326,如图5A所示。又如,手机32可以加载睡眠状态下的血氧数据显示界面426,如图5B所示。
需要说明的是,在本申请一些实施例中,心率数据显示界面和血氧数据显示界面可以包括滑动控件。手机接收到用户作用于滑动控件的拖曳操作,可以显示不同时刻的心率或血氧数据,或者,数据范围。例如,继续参见图5B所示,血氧数据显示界面426包括滑动控件4262,用户将滑动控件拖曳到图5B所示的目标位置,手机显示目标位置所对应的目标时刻的血氧数据。由于图5B所示示例中目标时刻的血氧数据缺失,因而手机显示目标时刻的血氧数据为“--”。
应理解,图3A、图3B、图4A、图4B、图5A和图5B为对各个显示界面的示例性描述,在实际的应用场景中,各个显示界面可以采用其他布局形式和/或分类方式,显示界面也可以包括更多或更少类型的测量数据,本申请对此不予限制。
手机同步手环的心率数据和血氧数据后,用户通过手机的心率数据显示界面和血氧数据显示界面可以查看心率数据和血氧数据。根据显示界面提供的测量数据和监测结果,用户可以直观地看到某一时刻的测量数据,是否有测量数据缺失,是否有测量数据出现异常等,方便用户评估手环的佩戴状态,了解自身健康状态。
接着详细介绍本申请实施例提供的一种可穿戴设备的佩戴检测方法的实现流程。在本实施例中以用户睡眠状态下手环采集的检测数据为例进行说明。
用户利用可穿戴设备采集心率和血氧等测量数据时,可穿戴设备每隔一段时间,即一个采样时长采集心率和血氧的一个数据点。而错误的佩戴方式会导致血氧和心率等测量数据都会出现异常值。在本申请实施例中根据这些异常值的分布情况来判别用户是否正确佩戴可穿戴设备,如果用户没有正确佩戴则让用户确认自己的佩戴状态,待用户确认后发送佩戴建议。
在本申请一些实施例中,手机可以检测用户睡眠状态下的手环佩戴状态,指导用户正确佩戴可穿戴设备,以使得手环可以采集更为准确的测量数据。睡眠状态的检测数据包括心率和血氧,可以根据血氧和心率这两个测量数据校验用户的佩戴状态。可见,在本申请实施例中,可以根据不同的场景需求,选择对应的指标进行佩戴状态校验,以满足实际场景的测量要求。
也就是说,如果依赖可穿戴设备采集用户指定的某个或多个测量数据,以便对用户的健康进行监测。那么,在本申请一些实施例中,可以根据指定的某个或多个测量数据来校验用户的佩戴状态,推送佩戴建议等,从而更为准确的采集指定的某个或多个测量数据。
在本申请一实现方式中,手环被设定成需要准确检测用户指定的睡眠状态的测量数据,例如心率和血氧。在本申请其他实现方式中,***默认手环需要检测用户睡眠状态下的测量数据,例如心率和血氧。
当手环和手机实现配对时,手环检测到用户入睡,实时将检测数据,包括心率数据和血氧数据,同步至手机。手机可以同步记录检测数据,并自动根据心率数据和血氧数据检测用户当前睡眠状态下的手环佩戴状态,指导用户正确佩戴手环,以便在后续睡眠状态下更准确地采集心率数据和血氧数据。
当手环和手机实现配对时,手环实时将采集到的心率数据和血氧数据发送至手机,或者,手机主动实时获取手环采集的心率数据和血氧数据,以实现手环的心率数据和血氧数据同步至手机。手环检测到用户结束当前睡眠状态,醒来,手环可以发送通知至手机。手机可以自动根据手环同步的当前睡眠状态下的心率数据和血氧数据,检测用户当前睡眠状态下的手环佩戴状态,指导用户正确佩戴手环,以便在后续睡眠状态下更准确地采集心率数据和血氧数据。
当手环和手机未实现配对时,在手环与手机实现配对后,手环将历史时间段内采集的,但未同步至手机的用户睡眠状态的测量数据,同步至手机。手机获取这部分同步后的测量数据,检测用户在历史时间段内的睡眠状态下的手环佩戴状态,指导用户正确佩戴手环。
继续参见图4A和图5A所示,分别为手环采集的用户在00:29至09:36这一睡眠时间段内的心率数据和血氧数据。继续参见图4B和图5B所示,分别为手环采集的用户在23:43至次日07:57这一睡眠时间段内的心率数据和血氧数据。
可穿戴设备未被正确佩戴,即佩戴错误的形式可以包括但不限于佩戴位置错误(或称错位)、或过松等。可穿戴设备未被正确佩戴,会在心率数据和血氧数据这两个测量数据中有所体现。例如,在平稳状态下突然出现一段时间的数据异常,数据异常包 括但不限于数据不正常或数据丢失等。在本申请一实现方式中,可以在手机预先设定两个测量数据各自的合理阈值范围,若测量数据不满足对应的合理阈值范围,则认为数据异常。在本申请一实现方式中,在确定测量数据异常的情形下,手机还可以根据测量数据的异常情况判断手环究竟属于何种形式的佩戴错误,例如可以确定手环佩戴过松或错位等。作为一示例,在过去某个时间段内,两个测量数据均与合理数据之间存在一定误差,和/或,两个测量数据都出现断断续续,即数据不连续的情形,则可以确定手环佩戴状态为佩戴过松。作为另一示例,在过去某个时间段内,两个测量数据都丢失,则可以确定手环佩戴状态为佩戴错位。
通过测量数据的统计图可以直观的看出是否存在数据异常,例如,继续参见图4B所示,在虚线框4251对应的一段时间内心率数据出现了丢失;又如,继续参见图5B所示,在虚线框4261对应的一段时间内血氧数据出现了丢失。因此,若测量数据在一段时间内突然出现异常,那么可以确定用户没有正确佩戴可穿戴设备。
在本申请一非限制性示例中,可以根据心率数据和血氧数据丢失部分的分布情况来判断用户的佩戴状态。例如,对心率和血氧数据进行分析,发现心率和血氧数据都存在一段丢失部分,计算心率数据和血氧数据丢失部分的重合或交叉,得到重合时间段,若重合时间段超过预设阈值,则认为用户未正确佩戴手环或佩戴过松等。
在本申请另一非限制性示例中,对心率数据和血氧数据进行分析,心率数据和血氧数据出现异常的时间段出现重合或交叉,并且持续一段时间,可以识别出用户该时间段内没有正确佩戴可穿戴设备或佩戴过松等。
例如,可以设定数据采样间隔为每分钟一次,即每一小时包括60个数据采样点,心率数据和血氧数据出现重合或交叉达到二十个以上个数据点的异常时间段,即两者同时出现异常且持续二十分钟以上的异常时间段,并且异常时间段的持续时长(或称累计时长)达到一个小时,可以识别用户没有正确佩戴可穿戴设备。
具体地,在对检测数据的分析过程中,分别记录用户的心率数据和血氧数据的异常数据点,确定两者同时出现异常值的重合或交叉时间段,例如,同时出现异常值且持续二十分钟以上的异常数据点对应的异常时间段。作为一示例,确定心率数据和血氧数据同时出现异常且持续二十个以上的异常数据点对应的异常时间段为:[trS1,tr(S1+N1)],…,[trSn,tr(Sn+Nn)]。其中,S1、N1、…、Sn、和Nn均为正整数,n为大于或等于1的整数。
根据上述一个或多个异常时间段确定持续时长,即取上述一个或多个时间段[trS1,tr(S1+N1)],…,[trSn,tr(Sn+Nn)]的并集。
若持续时长为等于或超过一个小时的时间段,则说明该用户在该时间段内没有正确佩戴手环。
记录用户在测量阶段没有正确佩戴手环的累计次数,若累计次数超过设定阈值,即向用户推送佩戴建议。通过这种设置,手机不会在每次检测到佩戴错误时就向用户推送佩戴建议,可以减少向用户推送佩戴建议的次数,减小交互成本,提高用户体验度。
佩戴建议包括但不限于:对应未正确佩戴(即佩戴错误),佩戴位置错误(即佩戴错位),或佩戴过松等佩戴校验结果的佩戴建议。在一些实施例中,手机完成佩戴 校验后,显示佩戴建议显示界面,佩戴建议显示界面包括与佩戴校验结果对应的佩戴建议。在一些实现方式中,手机32显示佩戴建议显示界面327,手机确定手环佩戴过松,手机32显示佩戴建议显示界面327,如图6所示,佩戴建议显示界面327显示“手环佩戴过松,请调整”的字样。手机检测到用户点击显示界面的任一空白区域,退出显示界面;或者,手机显示显示界面预设时长后,自动退出显示界面。在一些实现方式中,手机确定手环佩戴错位,佩戴建议显示界面可以显示“手环佩戴错位,请调整到正确位置”的字样。在一些实现方式中,手机确定手环佩戴错位,佩戴建议显示界面可以显示“手环未正确佩戴,请调整手环佩戴状态”的字样。
在其他一些实施例中,图6所示的佩戴建议显示界面327,还可以包括“详细说明”控件,手机接收到用户作用于“详细说明”控件的点击操作,可以显示手环佩戴说明。用户可以通过阅读手环佩戴说明,获知更为详细的佩戴知识。在一些实现方式中,手环佩戴说明可以与佩戴建议对应,以此更高效地指导用户正确调整手环的佩戴状态。例如,若佩戴建议为对应未正确佩戴手环的佩戴建议,手环佩戴说明可以详细介绍如何正确佩戴手环的各个步骤;若佩戴建议为对应手环佩戴位置错误的佩戴建议,手环佩戴说明可以介绍在哪个位置佩戴手环;若佩戴建议为对应手环佩戴过松的佩戴建议,手环佩戴说明可以介绍如何调紧手环。更具体地,在一些实现方式中,还可以通过图文结合或视频或语音等方式展示手环佩戴说明;或者,还可以告知用户具体需要至少调紧多少以达到准确的佩戴状态。
此外,手机发送佩戴状态确认提醒给用户,让用户确认是否存在检测出的佩戴错误行为。在用户确认佩戴状态后,可向用户推送与佩戴状态对应的佩戴说明。
例如,在手机确定佩戴状态为佩戴过松的情形下,手机32显示佩戴状态确认界面328,如图7所示,佩戴状态确认界面328显示“请检查手环是否佩戴过松?”的字样。在用户确认佩戴状态后,可向用户推荐与佩戴状态对应的佩戴说明。示例性地,佩戴说明可以介绍如何调紧手环。
又如,在手机确定佩戴状态为佩戴错位的情形下,手机显示佩戴状态确认界面,佩戴状态确认界面显示“请检查手环是否佩戴错位?”的字样。在用户确认佩戴状态后,可向用户推荐与佩戴状态对应的佩戴说明。示例性地,佩戴说明可以介绍在哪个位置佩戴手环。
再如,在手机确定佩戴状态为未正确佩戴的情形下,手机显示佩戴正确与否的问询界面,问询界面显示“请用户确认是否正确佩戴手环?”的字样。在用户确认佩戴状态后,可向用户推荐与佩戴状态对应的佩戴说明。示例性地,佩戴说明可以介绍如何正确佩戴手环的各个步骤;或者,可以介绍手环的通用说明,例如用户使用说明书。
在这个示例中,记录心率数据和血氧数据重合或交叉的异常时间段,并记录异常时间段的持续时长,当持续时长等于或超过预设时长时,判定用户未正确佩戴可穿戴设备。一方面基于两个测量数据计算重合或交叉的异常时间段,由于同时考虑两个维度的信息对可穿戴设备的佩戴状态进行校验,提高了校验结果的准确性,可以避免误判;另一方面,针对异常时间段设定了持续时长,进一步避免了误判。
应理解,在其他实施例中,采样时间间隔可以设定为其他时间间隔,持续时长也可以取其他时长。前述实施例仅为示例性描述,不能解释为对本申请的具体限制。
应理解,在其他实施例中,佩戴建议和/或佩戴说明可以采用其他的形式推送给用户,例如语音、视频、图像、文字或图文结合的形式等。前述实施例仅为示例性描述,不能解释为对本申请的具体限制。
需要说明的是,在其他实施例中,可以不设定累计次数,也就是说,无需在累计次数超过设定阈值时向用户发送佩戴建议,而是在判定用户未正确佩戴可穿戴设备时,就可以向用户推送佩戴建议。可以根据实际情况进行选择设置。
此处以指环和手机建立通信连接的场景为例来说明本实施例。
如图8A和图8B所示,指环91和手机92配对以建立通信连接,指环91采集的心率数据和血氧数据同步到手机92。应理解,指环91与手机92配对的过程可参见前述手环和手机配对的过程。
在本实施例中,手机92根据指环91采集的过去1个小时内的心率数据和血氧数据进行佩戴校验。手机92确定过去一小时内的心率数据和血氧数据,这两者同时出现异常且同时出现异常的持续时长超过三十分钟,可以确定指环91未正确佩戴或佩戴过松。手机92向用户推送佩戴建议,显示佩戴建议显示界面。例如,如图8A所示,手机92的佩戴建议显示界面921显示“指环佩戴过松,请更换佩戴手指”的字样。手机92检测到用户点击显示界面中任一空白区域后,退出显示界面。用户可以根据佩戴建议准确地调整佩戴状态。
退出佩戴建议显示界面后间隔一预设时长,手机92可以推送佩戴状态确认提醒。如图8B所示,手机92的提醒界面922显示“请检查指环是否佩戴过松?”的字样。用户可以根据提醒确认是否存在检测出的佩戴错误行为。在手机92接收到用户输入的确认佩戴状态,例如,用户点击图8B中所示的“是”控件9221或“否”控件9222,手机92可以推送与佩戴状态对应的佩戴说明。
需要说明的是,在其他实施例中,在判定用户未正确佩戴可穿戴设备,可以无需向用户发送佩戴建议。而是推送佩戴状态确认提醒,让用户确认是否存在检测出的佩戴错误行为。在用户确认佩戴状态后,可向用户推荐与佩戴状态对应的佩戴说明。
以智能眼镜和手机进行通信连接的场景为例来说明来说明本实施例。
如图9所示,眼镜101和手机102配对以建立通信连接,眼镜101采集的心率数据和血氧数据同步到手机102。应理解,眼镜101与手机102配对的过程可参见前述手环和手机配对的过程。
在本实施例中,手机102根据眼镜101过去十分钟采集的心率数据和血氧数据进行佩戴校验。手机102确定过去十分钟的心率数据和血氧数据,这两者与合理阈值间都出现一定误差,并偶有间断,可以确定眼镜101佩戴过松。手机102可以向用户推送佩戴状态确认提醒。如图9所示,手机102的提醒界面1022显示“请检查眼镜是否佩戴过松?”的字样。用户可以根据提醒确认是否存在检测出的佩戴错误行为。在手机102接收到用户输入的确认佩戴状态,例如,用户点击图9中所示的“是”控件10221或“否”控件10222,手机102可以推送与佩戴状态对应的佩戴说明。
在其他一些实施例中,存在用户戴上眼镜101后无法正常查看手机102的情形,在这一情形下,手机102可以不再显示佩戴状态确认提醒,而是用语言播报佩戴状态确认提醒。或者,手机102确定眼镜的佩戴状态后,可以发送佩戴状态给眼镜101。 眼镜101可以根据佩戴状态,语音播报佩戴状态确认提醒,或者,向用户推送佩戴状态确认提醒。例如,通过眼镜101的麦克风语音播“请检查眼镜是否佩戴过松?”。又如,在眼镜101的显示屏显示提醒界面,提醒界面显示“请检查眼镜是否佩戴过松?”的字样。因此,用户可以根据提醒确认是否存在检测出的佩戴错误行为。
在其他一些实施例中,可穿戴设备包括可用于检测可穿戴设备是否被用户佩戴的传感器。例如,可穿戴设备包括接近光传感器,接近光传感器可以检测可穿戴设备附近是否有物体,因而可以用于确定可穿戴设备是否被用户佩戴;或者,可穿戴设备包括距离传感器,距离传感器可以检测可穿戴设备距离障碍物的距离,因而可以用于确定可穿戴设备是否被用户佩戴;或者,可穿戴设备包括压力传感器,压力传感器可以用于感受压力信号,因而可以用于确定可穿戴设备是否被用户佩戴;或者,可穿戴设备包括温度传感器,温度传感器可以用于测量温度,因而可以用于确定可穿戴设备是否被用户佩戴;或者,可穿戴设备包括电阻传感器,电阻传感器可以用于测量皮肤电阻,因而可以用于确定可穿戴设备是否被用户佩戴。
作为一非限制性示例,眼镜、指环、手环或手表的背面,即靠近用户皮肤的一侧,设置有接近光传感器、距离传感器、压力传感器、温度传感器和电阻传感器等传感器中的一种或多种,基于传感器检测到的传感数据,可以确定可穿戴设备是否被用户佩戴。
在确定可穿戴设备被用户佩戴的情形下,再校验可穿戴设备的用户佩戴状态。可穿戴设备在确定被用户佩戴后,可以采集心率和血氧数据。可穿戴设备自身可以根据采集的心率和血氧数据,校验可穿戴设备的用户佩戴状态。也可以由同步了心率和血氧数据的手机等电子设备,根据心率和血氧数据的校验可穿戴设备的用户佩戴状态。
在一些示例中,在检测出用户佩戴状态后,可以推送佩戴建议给用户,此外,也可以让用户自己再确认佩戴状态,通过自动检测与用户确认结合的方式,提供检测结果的准确性,给用户推送更准确的佩戴指导。
在一些示例中,在检测出用户佩戴状态后,可以让用户自己再确认佩戴状态,通过自动检测与用户确认结合的方式,提高检测结果的准确性,给用户推送更准确的佩戴指导。
在实际应用场景中,可能存在同一用户具备多个可穿戴设备的情形,在这一情形下,若多个可穿戴设备均与用户的手机配对,手机可以同步各个可穿戴设备采集的心率和血氧数据。手机可以针对各个可穿戴设备,分别校验它们各自的用户佩戴状态,从而根据检测出的用户佩戴状态,推送相应的佩戴建议给用户。应理解,针对每个可穿戴设备,分别校验它们的用户佩戴状态的过程,可以参见前述校验手环、指环或眼镜等的佩戴状态的实施例,此处不再赘述。
结合上述实施例及相关附图,本申请实施例提供了一种可穿戴设备的佩戴检测方法,所述佩戴检测方法可以由电子设备执行。例如,所述佩戴检测方法可以由前述应用场景中的手机、手环、指环或眼镜等中的一个或多个执行。如图10所示,所述佩戴检测方法包括步骤S110至S130。
S110,获取一个或多个生理参数数据。
S120,根据所述一个或多个生理参数数据获取所述可穿戴设备的佩戴状态。
S130,根据所述佩戴状态,推送佩戴建议。
所述生理参数数据可以为可穿戴设备采集到的用户的生理参数数据。可穿戴设备可以通过自身的传感器采集一个或多个生理参数数据。多个生理参数数据可以由相同,也可以由不同的传感器采集。
在一些实施例中,可穿戴设备的佩戴检测方法可以应用于可穿戴设备,例如手环、指环或眼镜等。可穿戴设备可以通过自身的传感器采集一个或多个生理参数数据,从而获取到一个或多个生理参数数据;然后,可穿戴设备根据该一个或多个生理参数数据获取可穿戴设备的佩戴状态;进而,可穿戴设备根据佩戴状态,推送佩戴建议。
在其他一些实施例中,可穿戴设备的佩戴检测方法可以应用于电子设备,例如手机或平板电脑等。电子设备通过无线通信技术与可穿戴设备连接。可穿戴设备可以通过自身的传感器获取一个或多个生理参数数据。电子设备获取来自可穿戴设备的一个或多个生理参数数据;然后,电子设备根据该一个或多个生理参数数据获取可穿戴设备的佩戴状态;进而,电子设备根据佩戴状态,推送佩戴建议。
在其他一些实施例中,可穿戴设备的佩戴检测方法可以应用于电子设备和可穿戴设备,所述电子设备通过无线通信技术与所述可穿戴设备连接。可穿戴设备可以通过自身的传感器获取一个或多个生理参数数据,并将该一个或多个生理参数数据发送给电子设备。然后,电子设备接收可穿戴设备发送的一个或多个生理参数数据,根据该一个或多个生理参数数据获取可穿戴设备的佩戴状态;进而,电子设备根据佩戴状态,推送佩戴建议。
在佩戴正确的情形下,可穿戴设备可以采集到较为准确的生理参数数据。而在佩戴错误的情形下,可穿戴设备采集的生理参数数据存在一定的误差和/或存在数据丢失等数据异常情况。因而,本申请实施例根据一个或多个生理参数数据来校验可穿戴设备的佩戴状态。此外,根据佩戴校验结果给予用户相应的佩戴建议,可以指导用户正确佩戴可穿戴设备,提高后续数据采集的准确性。
一般情况下,可穿戴设备可以同时测量用户的一个或多个生理参数数据,例如心率数据、血氧数据和血压数据等。而在采集过程中,生理参数数据通常受到可穿戴设备佩戴状态的影响。本申请一些实施例中可以根据多个生理参数数据来校验佩戴状态,基于多个维度的信息来校验佩戴状态,可以进一步提高佩戴校验结果的准确性。
在一些可能的实现方式中,如图11所示提供了一种所述佩戴检测方法,基于图10所示实施例做了进一步限定。如图11所示,步骤S130,根据所述佩戴状态,推送佩戴建议,包括:
若确定所述佩戴状态满足第一条件,根据所述佩戴状态,推送佩戴建议。
在图11所示实施例中,所述佩戴检测方法还包括步骤S140,若确定所述佩戴状态满足第二条件,不推送佩戴建议。
在本实现方式中,可穿戴设备确定佩戴状态满足一定条件,即第一条件才会推送佩戴建议;可穿戴设备确定佩戴状态满足一定条件,即第二条件不推送佩戴建议。可穿戴设备不会每次获取到佩戴状态就向用户推送佩戴建议,可以减少向用户推送佩戴建议的次数,减小交互成本,提高用户体验度。
在图11所示实施例的基础上,在一些可能的实现方式中,所述佩戴状态包括佩戴 错误或佩戴正确;
确定所述佩戴状态满足第一条件,包括:
确定所述佩戴状态为佩戴错误,或,确定所述佩戴状态为佩戴错误的累计次数等于或大于预设次数阈值,或,确定所述佩戴状态为佩戴错误;
确定所述佩戴状态满足第二条件,包括:
确定所述佩戴状态为佩戴错误的累计次数小于所述预设次数阈值,或,确定所述佩戴状态为佩戴正确。
在本实现方式中,可穿戴设备确定佩戴状态为佩戴错误的累计次数等于或大于预设次数阈值,才会推送佩戴建议,否则不推送佩戴建议。可穿戴设备不会每次检测到佩戴错误就向用户推送佩戴建议,可以减少向用户推送佩戴建议的次数,减小交互成本,提高用户体验度。
在一些可能的实现方式中,在图10所示实施例的基础上,如图12所示,步骤S130,根据所述佩戴状态,推送佩戴建议,包括:
步骤S131A,确定所述佩戴状态为佩戴错位,推送调整佩戴位置的佩戴建议;或,
步骤S132A,确定所述佩戴状态为佩戴过松,推送调紧设备的佩戴建议。
在一些可能的实现方式中,在图11所示实施例的基础上,如图13所示,步骤S130,若确定所述佩戴状态满足第一条件,根据所述佩戴状态,推送佩戴建议,包括:
步骤S131B,若确定所述佩戴状态为佩戴错位,推送调整佩戴位置的佩戴建议;
步骤S132B,若确定所述佩戴状态为佩戴过松,推送调紧设备的佩戴建议。
步骤S140,包括:若确定所述佩戴状态为佩戴正确,不推送佩戴建议。
在本实现方式中,确定所述佩戴状态为佩戴错位或佩戴过松,推送对应的佩戴建议,可以更有针对性的指导用户调整佩戴状态,提高后续测量的准确性。
在一些可能的实现方式中,在图13所示实施例的基础上,如图14所示,步骤S131B,若确定所述佩戴状态为佩戴错位,推送调整佩戴位置的佩戴建议,包括:
若确定所述佩戴状态为佩戴错位,且确定所述佩戴状态为佩戴错位的累计次数等于或大于预设次数阈值,推送调整佩戴位置的佩戴建议。
步骤S132B,若确定所述佩戴状态为佩戴过松,推送调紧设备的佩戴建议,包括:
若确定所述佩戴状态为佩戴过松,且确定所述佩戴状态为佩戴过松的累计次数等于或大于预设次数阈值,推送调整佩戴位置的佩戴建议。
步骤S140,包括:若确定所述佩戴状态为佩戴正确,或,确定所述佩戴状态为佩戴错位,且确定所述佩戴状态为佩戴错位的累计次数小于预设次数阈值,或,确定所述佩戴状态为佩戴过松,且确定所述佩戴状态为佩戴过松的累计次数小于预设次数阈值,不推送佩戴建议。
在本实现方式中,确定所述佩戴状态为佩戴错位或佩戴过松,推送对应的佩戴建议,可以更有针对性的指导用户调整佩戴状态,提高后续测量的准确性。此外,佩戴错位或佩戴过松的累计次数等于或大于预设次数阈值,才会推送对应的佩戴建议,可以减少向用户推送佩戴建议的次数,减小交互成本,提高用户体验度。
在一种可能的实现方式中,根据一个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
确定一个生理参数数据出现异常的第一异常时间段;
若所述第一异常时间段的持续时长等于或大于第一预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误。
在本实现方式中,提供了一种如何根据一个生理参数数据获取所述可穿戴设备的佩戴状态的定量方式,算力成本低,使得方案易于实施。
在一种可能的实现方式中,根据多个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
确定多个生理参数数据同时出现异常的第二异常时间段;
若所述第二异常时间段的持续时长等于或大于预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误。
在本实现方式中,提供了一种如何根据多个生理参数数据获取所述可穿戴设备的佩戴状态的定量方式,算力成本低,使得方案易于实施。此外,考虑了多个生理参数数据同时出现异常的时间段,并且设置了持续时长的阈值,保证了佩戴校验结果的准确性。
在一种可能的实现方式中,所述可穿戴设备包括传感器,所述传感器用于采集所述多个生理参数数据。由于来源于同一硬件的几个生理参数数据的关联度非常高,当佩戴状态发生变化时,几个目标数据会同步受影响,因此本实现方式可以基于同一硬件来采集用于校验佩戴状态的生理参数信息,可以得到更为准确的校验结果。
作为一示例,该传感器可以为光学传感器。光学传感器可以基于血液对光的反射来测量用户的心率数据、血氧数据和血氧数据等。将来源于同一光学传感器的心率数据、血氧数据和血氧数据等中的至少两个生理参数数据作为校验佩戴状态的数据。
在本实现方式中,由于用于校验佩戴状态的生理参数数据来源于同一硬件,不同生理参数数据之间的关联度非常高。可穿戴设备佩戴状态的变化将在不同生理参数数据中同时体现。也就是说,错误的佩戴状态将导致生理参数数据同时出现异常。因此,在本实现方式中,基于同一硬件采集到的生理参数数据校验可穿戴设备的佩戴状态,可以使得佩戴校验结果更准确。
在一种可能的实现方式中,所述一个或多个生理参数数据包括心率数据、血氧数据和血压数据中的一个或多个。
在一种可能的实现方式中,在图10、图11、图12、图13或图14所示实施例的基础上,所述佩戴检测方法还包括步骤S150和S160。如图15所示,以在图10所示基础上进行改进为例进行说。
S150,推送确认佩戴状态的问询;
S160,响应于接收到的用户输入的第一操作,推送所述佩戴状态对应的佩戴说明。
在本实现方式中,一方面校验佩戴状态,推送佩戴建议,另一方面结合了用户确认,用户确认是否存在检测出的佩戴错误行为后,推送所述佩戴状态对应的佩戴说明。
在一种可能的实现方式中,步骤S150,推送确认佩戴状态的问询包括:推送是否佩戴可穿戴设备的问询。
在本实现方式中,考虑到通常情形下用户可以准确确认自身是否佩戴了可穿戴设备,因而可穿戴设备推送是否佩戴可穿戴设备的问询给用户,确定可穿戴设备处于已 佩戴状态的基础下,可以有针对性的推送佩戴说明,指导用户高效且准确地佩戴可穿戴设备。
在一种可能的实现方式中,所述佩戴错误包括佩戴错位或佩戴过松。
在一种可能的实现方式中,所述佩戴检测方法还包括:
确定所述佩戴状态为佩戴正确,则不推送佩戴建议。
在一种可能的实现方式中,获取一个或多个生理参数数据,包括:
确定所述可穿戴设备被用户佩戴,获取一个或多个生理参数数据。
在实际应用中,可穿戴设备可以包括用于检测可穿戴设备是否被用户佩戴的传感器。基于来源于这些传感器的检测数据,可以判断可穿戴设备是否被用户佩戴。在本实现方式中,当确定可穿戴设备被用户佩戴的基础上,再进行佩戴状态校验,可以节省算力成本。
在一些实现方式中,可穿戴设备包括接近光传感器、距离传感器、压力传感器、温度传感器和电阻传感器中的至少一种。基于来源于它们的检测信号,可以判断可穿戴设备是否被用户佩戴。
应理解,上述实施例中各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
对应于上文实施例所述的可穿戴设备的佩戴检测方法,可穿戴设备的佩戴检测装置包括的各个模块可以对应实现可穿戴设备的佩戴检测方法的各个步骤。
可以理解的是,电子设备为了实现上述功能,其包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例的描述,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不用方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
作为一示例性实施例,如图16所示,示出了本申请一实施例提供的可穿戴设备的佩戴检测装置的结构框图,为了便于说明,仅示出了与本实施例相关的部分。
可穿戴设备的佩戴检测装置,可以配置于可穿戴设备、手机或平板电脑等电子设备。参照图16,佩戴检测装置包括:
获取模块161,用于获取一个或多个生理参数数据;
校验模块162,用于根据所述一个或多个生理参数数据获取所述可穿戴设备的佩戴状态;
推送模块163,用于根据所述佩戴状态,推送佩戴建议。
需要说明的是,上述模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个 处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述***中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,使得所述电子设备实现上述各个方法实施例中的步骤。
作为一示例,电子设备可以为可穿戴设备、手机、平板电脑等。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在电子设备上运行时,使得电子设备执行时实现可实现上述各个方法实施例中的步骤。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/电子设备的任何实体或装置、记录介质、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的电子设备和方法,可以通过其它的方式实现。例如,以上所描述的电子设备实施例仅仅是示意性的。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例 方案的目的。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种可穿戴设备的佩戴检测方法,应用于可穿戴设备,其特征在于,所述佩戴检测方法包括:
    所述可穿戴设备获取一个或多个生理参数数据;
    所述可穿戴设备根据所述一个或多个生理参数数据获取所述可穿戴设备的佩戴状态;
    所述可穿戴设备根据所述佩戴状态,推送佩戴建议。
  2. 根据权利要求1所述的佩戴检测方法,其特征在于,所述可穿戴设备根据所述佩戴状态,推送佩戴建议,包括:
    若所述可穿戴设备确定所述佩戴状态满足第一条件,根据所述佩戴状态,推送佩戴建议;
    所述佩戴检测方法,还包括:
    若所述可穿戴设备确定所述佩戴状态满足第二条件,不推送佩戴建议。
  3. 根据权利要求1或2所述的佩戴检测方法,其特征在于,所述佩戴状态包括佩戴错误或佩戴正确;
    所述可穿戴设备确定所述佩戴状态满足第一条件,包括:
    所述可穿戴设备确定所述佩戴状态为佩戴错误的累计次数等于或大于预设次数阈值,或,确定所述佩戴状态为佩戴错误;
    所述可穿戴设备确定所述佩戴状态满足第二条件,包括:
    所述可穿戴设备确定所述佩戴状态为佩戴错误的累计次数小于所述预设次数阈值,或,确定所述佩戴状态为佩戴正确。
  4. 根据权利要求1或2所述的佩戴检测方法,其特征在于,所述可穿戴设备根据所述佩戴状态,推送佩戴建议,包括:
    所述可穿戴设备确定所述佩戴状态为佩戴错位,推送调整佩戴位置的佩戴建议;或,
    所述可穿戴设备确定所述佩戴状态为佩戴过松,推送调紧设备的佩戴建议。
  5. 根据权利要求1或2所述的佩戴检测方法,其特征在于,所述可穿戴设备根据一个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
    所述可穿戴设备确定一个生理参数数据出现异常的第一异常时间段;
    若所述第一异常时间段的持续时长等于或大于第一预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误;
    所述可穿戴设备根据多个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
    所述可穿戴设备确定多个生理参数数据同时出现异常的第二异常时间段;
    若所述第二异常时间段的持续时长等于或大于预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误。
  6. 根据权利要求1或2所述的佩戴检测方法,其特征在于,所述可穿戴设备包括传感器,所述传感器用于采集所述多个生理参数数据。
  7. 一种可穿戴设备的佩戴检测方法,应用于电子设备和可穿戴设备,所述电子设备通过无线通信技术与所述可穿戴设备连接,其特征在于,所述佩戴检测方法包括:
    所述可穿戴设备获取一个或多个生理参数数据;
    所述电子设备接收所述可穿戴设备发送的一个或多个生理参数数据,所述电子设备根据所述一个或多个生理参数数据获取所述可穿戴设备的佩戴状态;
    所述电子设备根据所述佩戴状态,推送佩戴建议。
  8. 根据权利要求7所述的佩戴检测方法,其特征在于,所述电子设备根据所述佩戴状态,推送佩戴建议,包括:
    若所述电子设备确定所述佩戴状态满足第一条件,根据所述佩戴状态,推送佩戴建议;
    所述佩戴检测方法,还包括:
    若所述电子设备确定所述佩戴状态满足第二条件,不推送佩戴建议。
  9. 根据权利要求7或8所述的佩戴检测方法,其特征在于,所述佩戴状态包括佩戴错误或佩戴正确;
    所述电子设备确定所述佩戴状态满足第一条件,包括:
    所述电子设备确定所述佩戴状态为佩戴错误的累计次数等于或大于预设次数阈值,或,确定所述佩戴状态为佩戴错误;
    所述电子设备确定所述佩戴状态满足第二条件,包括:
    所述电子设备确定所述佩戴状态为佩戴错误的累计次数小于所述预设次数阈值,或,确定所述佩戴状态为佩戴正确。
  10. 根据权利要求7或8所述的佩戴检测方法,其特征在于,所述电子设备根据所述佩戴状态,推送佩戴建议,包括:
    所述电子设备确定所述佩戴状态为佩戴错位,推送调整佩戴位置的佩戴建议;或,
    所述电子设备确定所述佩戴状态为佩戴过松,推送调紧设备的佩戴建议。
  11. 根据权利要求7或8所述的佩戴检测方法,其特征在于,所述电子设备根据一个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
    所述电子设备确定一个生理参数数据出现异常的第一异常时间段;
    若所述第一异常时间段的持续时长等于或大于第一预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误;
    所述电子设备根据多个生理参数数据获取所述可穿戴设备的佩戴状态,包括:
    所述电子设备确定多个生理参数数据同时出现异常的第二异常时间段;
    若所述第二异常时间段的持续时长等于或大于预设时长,则确定所述可穿戴设备的佩戴状态为佩戴错误。
  12. 根据权利要求7或8所述的佩戴检测方法,其特征在于,所述可穿戴设备包括传感器,所述传感器用于采集所述多个生理参数数据。
  13. 一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,使得所述电子设备实现如权利要求1至6任一项所述的佩戴检测方法。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述的佩戴检测方法。
PCT/CN2021/104325 2020-07-06 2021-07-02 可穿戴设备的佩戴检测方法、装置及电子设备 WO2022007720A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010641297.5 2020-07-06
CN202010641297.5A CN113892920B (zh) 2020-07-06 2020-07-06 可穿戴设备的佩戴检测方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022007720A1 true WO2022007720A1 (zh) 2022-01-13

Family

ID=79186614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104325 WO2022007720A1 (zh) 2020-07-06 2021-07-02 可穿戴设备的佩戴检测方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN113892920B (zh)
WO (1) WO2022007720A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115211852A (zh) * 2022-08-31 2022-10-21 深圳叩鼎科技有限责任公司 一款可以准确检测血氧的智能手表
CN116136611A (zh) * 2023-04-17 2023-05-19 浙江口碑网络技术有限公司 头盔佩戴检测方法、装置、电子设备与存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114366062B (zh) * 2022-03-18 2023-10-27 北京荣耀终端有限公司 可穿戴设备及其佩戴检测方法和介质
CN116344049B (zh) * 2023-03-08 2023-10-03 深圳市金东方电子有限公司 一种基于智能手表的健康管理***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104665820A (zh) * 2013-11-26 2015-06-03 三星电子株式会社 可穿戴式移动装置以及使用其测量生物信号的方法
US20160094899A1 (en) * 2014-09-27 2016-03-31 Valencell, Inc. Methods and Apparatus for Improving Signal Quality in Wearable Biometric Monitoring Devices
CN106644215A (zh) * 2016-10-18 2017-05-10 广东小天才科技有限公司 一种穿戴设备佩戴松紧性的确定方法及装置
CN106716295A (zh) * 2014-07-11 2017-05-24 威里利生命科学有限责任公司 定位用于数据收集的可穿戴设备
CN108697329A (zh) * 2017-06-29 2018-10-23 华为技术有限公司 可穿戴设备的检测方法及可穿戴设备
WO2019019029A1 (zh) * 2017-07-25 2019-01-31 华为技术有限公司 一种可穿戴设备的佩戴提示方法及装置
CN111134648A (zh) * 2018-11-01 2020-05-12 华为终端有限公司 心率检测方法及电子设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188569B1 (en) * 2014-10-15 2020-02-19 Huawei Technologies Co., Ltd. Method for detecting fall-off of wearable device, and wearable device
TWI615706B (zh) * 2015-03-25 2018-02-21 曦恩體感科技股份有限公司 穿戴裝置及其偵測方法
US20160278647A1 (en) * 2015-03-26 2016-09-29 Intel Corporation Misalignment detection of a wearable device
CN104983408B (zh) * 2015-08-04 2018-02-23 福建工程学院 一种意外昏迷诊断方法及***
CN205041401U (zh) * 2015-09-25 2016-02-24 广东乐源数字技术有限公司 设备佩戴检测装置及具有佩戴检测功能的监护装置
CN105533940A (zh) * 2015-12-01 2016-05-04 深圳还是威健康科技有限公司 一种终端调整提醒方法及智能手环
TW201726056A (zh) * 2016-01-22 2017-08-01 Sen Science Inc 穿戴式動態心血管活動監測裝置
CN106510719B (zh) * 2016-09-30 2023-11-28 歌尔股份有限公司 一种用户姿态监测方法和可穿戴设备
CN106645978B (zh) * 2016-10-28 2019-07-19 广东美的制冷设备有限公司 智能穿戴设备的穿戴状态检测方法及检测装置
CN108209929B (zh) * 2016-12-22 2021-08-13 欧普照明股份有限公司 一种坐姿识别***和坐姿识别方法
TWI725097B (zh) * 2016-12-27 2021-04-21 原相科技股份有限公司 偵測生理資訊之穿戴式裝置
CN107126202B (zh) * 2017-03-31 2019-01-18 上海掌门科技有限公司 一种心率异常数据检测及提示的方法及智能手表
CN107485380B (zh) * 2017-07-03 2021-06-08 中网联金乐盟科技(北京)有限公司 腕戴式心率监测装置及心率监测控制方法
CN107907916B (zh) * 2017-10-20 2019-04-02 歌尔科技有限公司 一种智能穿戴设备的佩戴状态检测方法及装置
CN107894840A (zh) * 2017-11-30 2018-04-10 武汉久乐科技有限公司 可穿戴设备及其佩戴检测方法、计算机可读存储介质
CN107961006B (zh) * 2017-12-28 2023-12-05 出门问问信息科技有限公司 腕式智能穿戴设备和信息提示方法
CN110496018A (zh) * 2019-07-19 2019-11-26 努比亚技术有限公司 可穿戴设备指引盲人的方法、可穿戴设备及存储介质
CN111309161A (zh) * 2020-01-20 2020-06-19 华为技术有限公司 可穿戴设备的佩戴状态检测方法、装置及可穿戴设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104665820A (zh) * 2013-11-26 2015-06-03 三星电子株式会社 可穿戴式移动装置以及使用其测量生物信号的方法
CN106716295A (zh) * 2014-07-11 2017-05-24 威里利生命科学有限责任公司 定位用于数据收集的可穿戴设备
US20160094899A1 (en) * 2014-09-27 2016-03-31 Valencell, Inc. Methods and Apparatus for Improving Signal Quality in Wearable Biometric Monitoring Devices
CN106644215A (zh) * 2016-10-18 2017-05-10 广东小天才科技有限公司 一种穿戴设备佩戴松紧性的确定方法及装置
CN108697329A (zh) * 2017-06-29 2018-10-23 华为技术有限公司 可穿戴设备的检测方法及可穿戴设备
WO2019019029A1 (zh) * 2017-07-25 2019-01-31 华为技术有限公司 一种可穿戴设备的佩戴提示方法及装置
CN111134648A (zh) * 2018-11-01 2020-05-12 华为终端有限公司 心率检测方法及电子设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115211852A (zh) * 2022-08-31 2022-10-21 深圳叩鼎科技有限责任公司 一款可以准确检测血氧的智能手表
CN115211852B (zh) * 2022-08-31 2023-05-16 深圳市爱保护科技有限公司 一款可以准确检测血氧的智能手表
CN116136611A (zh) * 2023-04-17 2023-05-19 浙江口碑网络技术有限公司 头盔佩戴检测方法、装置、电子设备与存储介质

Also Published As

Publication number Publication date
CN113892920B (zh) 2023-06-27
CN113892920A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2022007720A1 (zh) 可穿戴设备的佩戴检测方法、装置及电子设备
WO2021057873A1 (zh) 一种人体温度测量方法、电子设备与计算机可读存储介质
WO2021213165A1 (zh) 多源数据处理方法、电子设备和计算机可读存储介质
WO2021052214A1 (zh) 一种手势交互方法、装置及终端设备
CN113827185B (zh) 穿戴设备佩戴松紧程度的检测方法、装置及穿戴设备
WO2021169515A1 (zh) 一种设备间数据交互的方法及相关设备
WO2021023046A1 (zh) 一种电子设备控制方法及一种电子设备
WO2021213151A1 (zh) 显示控制方法和可穿戴设备
WO2020019355A1 (zh) 一种可穿戴设备的触控方法、可穿戴设备及***
CN111835907A (zh) 一种跨电子设备转接服务的方法、设备以及***
CN114422340A (zh) 日志上报方法、电子设备及存储介质
WO2022199613A1 (zh) 同步播放方法及装置
WO2022206825A1 (zh) 一种调节音量的方法、***及电子设备
WO2022100407A1 (zh) 智能眼罩、终端设备、健康管理方法与***
WO2022105830A1 (zh) 睡眠评估方法、电子设备及存储介质
CN114762588A (zh) 睡眠监测方法及相关装置
WO2020078267A1 (zh) 在线翻译过程中的语音数据处理方法及装置
WO2021204036A1 (zh) 睡眠风险监测方法、电子设备及存储介质
CN113509145B (zh) 睡眠风险监测方法、电子设备及存储介质
WO2021244186A1 (zh) 用户健康管控方法和电子设备
CN117093068A (zh) 基于穿戴设备的振动反馈方法、***、穿戴设备和电子设备
WO2021239079A1 (zh) 数据测量方法及相关装置
WO2023237087A1 (zh) 易孕期的预测方法、装置和电子设备
WO2023207862A1 (zh) 确定头部姿态的方法以及装置
WO2024055881A1 (zh) 时钟同步方法、电子设备、***及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837031

Country of ref document: EP

Kind code of ref document: A1