WO2022007674A1 - 净水*** - Google Patents

净水*** Download PDF

Info

Publication number
WO2022007674A1
WO2022007674A1 PCT/CN2021/103432 CN2021103432W WO2022007674A1 WO 2022007674 A1 WO2022007674 A1 WO 2022007674A1 CN 2021103432 W CN2021103432 W CN 2021103432W WO 2022007674 A1 WO2022007674 A1 WO 2022007674A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
concentrated
valve
flow
ion concentration
Prior art date
Application number
PCT/CN2021/103432
Other languages
English (en)
French (fr)
Inventor
刘果
刘小菡
Original Assignee
南京菡束环保设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京菡束环保设备有限公司 filed Critical 南京菡束环保设备有限公司
Publication of WO2022007674A1 publication Critical patent/WO2022007674A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus

Definitions

  • the invention relates to the technical field of water purification, in particular to a water purification system.
  • the Chinese patent with the patent application number of 2020102712896 discloses a device and method for adjusting the water quality of purified water and a water purification system.
  • the patent discloses the following technical solutions:
  • a concentrated water tank and a raw water tank arranged side by side are added, and a vertical column is opened on the partition between the concentrated water tank and the raw water tank.
  • the concentrated water in the concentrated water chamber on the side of the permeable membrane in the purification device is continuously transported to the concentrated water tank, and the concentrated water entering the concentrated water tank enters the original concentrated water part through the narrow and long channel.
  • the initial water such as tap water
  • the initial water sent to the raw water tank by the initial liquid input pipe to form raw water.
  • a concentrated water discharge pipe is arranged at the bottom of the raw water tank, a liquid level sensor for detecting the position of the liquid level is arranged at the narrow and long channel, and an ion concentration sensor for detecting the ion concentration of the raw water is arranged in the raw water tank (referred to as raw water in this patent). Measurer).
  • the concentrated water discharge pipe When the ion concentration sensor detects that the ion concentration of the raw water is lower than the required concentration range, the concentrated water discharge pipe is controlled to close, the liquid level of the concentrated water in the concentrated water tank rises, so that the flow of the concentrated water entering the raw water tank increases, the original The proportion of concentrated water in the water tank increases, which can increase the ion concentration of the raw water; when the ion concentration sensor detects that the ion concentration of the raw water is higher than the required concentration range, the concentrated water discharge pipe is controlled to open, and the concentrated water in the concentrated water tank is opened. When the liquid level drops, the flow rate of concentrated water entering the raw water tank decreases, and the proportion of initial water in the raw water tank increases, thereby reducing the ion concentration of the raw water.
  • the liquid level of the concentrated water in the concentrated water tank is usually between the highest point and the lowest point of the long and narrow channel, and the flow of the concentrated water that passes through the long and narrow channel and enters the raw water tank varies with the liquid level of the concentrated water in the concentrated water tank It increases with the increase of concentrated water, and decreases with the decrease of the liquid level of concentrated water. Therefore, within the required concentration range, establish the ion concentration detected by the ion concentration sensor and the ion concentration detected by the liquid level sensor.
  • the sensitivity to the adjustment of the ion concentration of the raw water is poor.
  • the above-mentioned patent increases the flow section of the concentrated water through the narrow and long channel by raising the liquid level of the concentrated water in the concentrated water tank.
  • the narrow and long channel has a great throttling effect on the concentrated water, which leads to the inability of the concentrated water to be replenished to the raw water tank in a timely and sufficient amount through the narrow and long channel, which in turn causes the concentration of raw water in the raw water tank to rise slowly.
  • increasing the width of the elongated channel led to the problem that the flow rate of concentrated water flowing through the elongated channel was difficult to control.
  • embodiments of the present invention provide a water purification system.
  • a water purification system comprising:
  • a water purification device which has a permeable membrane and a concentrated water chamber and a water purification chamber located on both sides of the permeable membrane;
  • a mixed water tank which has a first water inlet, a second water inlet and a water return port, the first water inlet is used to guide initial water into the mixed water tank, and the return water port communicates with the concentrated water cavity of the water purification device ;
  • a pumping device which is arranged between the water return port and the concentrated water chamber;
  • the valve mechanism communicates with the concentrated water chamber to guide the concentrated water in the concentrated water chamber to flow out, and divides the guided concentrated water into a variable flow distribution ratio for use by the second inlet water
  • the first tributary concentrated water and the second tributary concentrated water for excretion are supplied into the mixed water tank; the pumping device is used for pumping the first tributary concentrated water and the initial water in the mixed water tank through the first tributary concentrated water and the initial water.
  • the raw water formed by mixing is re-supplied to the concentrated water chamber.
  • valve mechanism is further configured to:
  • the valve mechanism can adjust the sum flow of the concentrated water of the first branch and the concentrated water of the second branch.
  • valve mechanism is further configured to:
  • the process of adjusting the sum flow of the concentrated water by the valve mechanism and the process of adjusting the distribution ratio of the concentrated water are independent of each other.
  • the water purification system further includes an ion concentration sensor
  • the ion concentration sensor is at least used to detect the ion concentration of the purified water, so as to control the valve mechanism based on the detection result of the ion concentration sensor to adjust the flow rate of the concentrated water of the first branch.
  • the ion concentration sensor is also used to simultaneously detect the ion concentration of the raw water and the ion concentration of the purified water in the water purification chamber, so as to establish the ion concentration of the purified water in the purification chamber and the raw water. Correspondence between ion concentrations.
  • the ion concentration of the purified water in the purified water chamber detected by the ion concentration sensor is within the required purified water concentration range, establish the relationship between the ion concentration of the purified water in the purified water chamber and the raw water. Correspondence between ion concentrations for obtaining the raw water concentration range with the required purified water concentration range;
  • the ion concentration of purified water is limited within the required purified water ion concentration range.
  • an ion concentration sensor for detecting the ion concentration of raw water is arranged in the mixing tank.
  • an ion concentration sensor for detecting the ion concentration of purified water is arranged in the water purification chamber or on an output pipeline for drawing out the purified water.
  • the valve mechanism includes at least two flow valves respectively used to control the flow rate of the concentrated water in the first branch and the concentrated water flow in the second branch.
  • the valve mechanism includes a reversing valve, and based on the reversing valve, the sum flow of the concentrated concentrated water of the first branch and the concentrated water of the second branch, and the concentrated concentrated water of the first branch and the concentrated water of the first branch are controlled.
  • the flow distribution ratio of the second tributary concentrated water is controlled.
  • the reversing valve includes:
  • valve body in which a valve cavity is formed, and the valve body is provided with a water inlet, a first water outlet and a second water outlet;
  • a first valve component which is at least partially disposed in the valve cavity
  • the first valve member cooperates with the second valve member to define a first flow channel for connecting the first water outlet of the valve body with the water inlet of the valve body and a first flow channel for connecting the first water outlet of the valve body to the water inlet of the valve body.
  • a second flow channel connecting the two water outlets with the water inlet of the valve body;
  • the first valve member is rotatable and has a rotation stroke, and the first valve member is rotated within the rotation stroke for changing the sum of the flow cross sections of the first flow passage and the second flow passage. size;
  • the second valve member is movable and has a movement stroke, and the second valve member is moved within the movement stroke for changing the respective flow cross sections of the first flow passage and the second flow passage. size;
  • the water inlet of the valve body is communicated with the concentrated water cavity, so that the concentrated water enters the valve body and is limited and distributed by the flow cross-sections of the first flow channel and the second flow channel, and corresponds to the first flow passage of the valve body.
  • a water outlet and a second water outlet of the valve body fluids the first branch concentrated water and the second branch concentrated water.
  • the mixing tank includes:
  • the first branch concentrated water enters the first cavity through the second water inlet of the mixing tank, and the initial water enters the first cavity through the first water inlet of the mixing tank;
  • the mixed water flow channel the first end of which is communicated with the first cavity, and the second end of the mixed water flow channel forms the return port of the mixed water tank or the first end of the mixed water flow channel. Connected at both ends;
  • the mixed water flow channel is used to change the water flow direction of the water passing through it at least twice, so as to mix the initial water and the concentrated water into raw water.
  • each of the baffles is correspondingly formed with a flow gap through which the water supply passes, and a plurality of the overflow gaps are formed in the mixed water flow channel.
  • the four directions of the cross section are arranged up and down and/or left and right.
  • the mixed water tank further comprises a second cavity, and the second cavity is communicated with the second end of the mixed water flow channel for receiving the raw water flowing out from the second end of the mixed water flow channel;
  • the water return port is formed in the second cavity.
  • an ion concentration sensor for checking the ion concentration of the raw water is provided at the port of the second end of the mixed water flow channel and/or in the second cavity.
  • the first water inlet of the mixed water tank and the second water inlet of the mixed water tank are arranged below and above; wherein:
  • the second water inlet of the mixed water tank is located above the first water inlet of the mixed water tank.
  • a one-way valve is provided at the first water inlet of the mixing tank, and the one-way valve includes:
  • valve core which is pivotally connected to the side wall of the first cavity, the valve core blocks the first water inlet of the mixed water tank or opens the first water inlet of the mixed water tank by pivoting ;
  • the float is used to float on the liquid surface in the first chamber, so as to control the valve core to block the first part of the mixing tank based on the liquid surface height
  • the water inlet or the first water inlet of the mixing tank is opened.
  • the flow of the concentrated water entering the mixing tank can be accurately adjusted, and the pressure provided by the pumping device can be used. , so that the flow can be more accurately adjusted, and then the mixing ratio of initial water and concentrated water can be accurately adjusted, and then the ion concentration of raw water can be accurately adjusted, and finally the ion concentration of purified water can be accurately adjusted.
  • FIG. 1 is a schematic diagram of a water purification system provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a water purification system provided by another embodiment of the present invention.
  • FIG. 3 is a view of the use state of the reversing valve provided by the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along line A-A of FIG. 3 .
  • FIG. 5 is a C-C cross-sectional view of FIG. 3 .
  • FIG. 6 is a view from the direction B of FIG. 3 .
  • FIG. 7 is a schematic structural diagram of a water mixing tank of a structure provided by an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line D-D in FIG. 7 .
  • FIG. 9 is a schematic structural diagram of a mixing tank of another structure provided by an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along the line F-F in FIG. 9 .
  • 100-directional valve 110-first valve part; 111-valve sleeve; 1111-first annular groove; 1112-second annular groove; 1113-third annular groove; 1114-third valve sleeve hole; 112-first a driven part; 120-second valve part; 121-valve stem; 1211-guide cavity; 122-second driven part; 130-valve body; 131-first water outlet; 132-second water outlet; 133 - water inlet; 141 - first flow channel; 1411 - first valve stem hole; 1412 - first valve sleeve hole; 142 - second flow channel; 1421 - second valve stem hole; 1422 - second valve sleeve hole; 151-first drive mechanism; 1513-motor; 152-second drive mechanism; 1521-first bevel gear; 1522-second bevel gear; 1523-motor; 1524-rotating part; 200-mixing tank; 210-first 220-mixed water flow channel; 221-partition plate; 222
  • the embodiment of the present invention discloses a water purification system, the water purification system is used to make the initial water such as tap water form purified water that can be directly consumed by people.
  • the The purification system includes: a water purification device, a water mixing tank 200 , a pumping device 400 and a valve mechanism 600 .
  • a permeable membrane 303 is arranged in the water purification device, and a concentrated water chamber 301 and a water purification chamber 302 are respectively formed on both sides of the permeable membrane 303.
  • the function of the permeable membrane 303 is: when the water in the concentrated water chamber 301 passes through the permeable membrane Part of the ions are intercepted, thereby reducing the ion concentration of the water flowing into the water purification chamber 302 through the permeable membrane 303 .
  • the purified water is not absolutely pure water without ions, and the purified water still has ions of a certain concentration. Water with a certain concentration of ions is beneficial to the human body.
  • the water entering the concentrated water chamber 301 is mixed with the separated solute to obtain a water with a higher ion concentration, which is usually called concentrated water.
  • concentrated water does not mean that the ion concentration of the water is extremely high. It is only used to illustrate that the ion concentration of this water is higher than that of purified water.
  • the mixing tank 200 has a first water inlet 232, a second water inlet 231 and a water return port 241.
  • the water return port 241 (not shown in FIG. 1 and FIG. 2) is communicated with the concentrated water chamber 301, and the initial water such as tap water passes through the first water inlet.
  • a water inlet 232 enters the mixing tank 200;
  • the pumping device 400 is arranged on the pipeline (pipeline, channel) between the water return port 241 and the concentrated water cavity 301, and the pumping device 400 is used to pump the water in the mixing tank 200 (the raw water described below) flows out from the water return port 241 and pumps the water into the concentrated water chamber 301 at a certain pressure. Therefore, the pumping device 400 makes the concentrated water in the concentrated water chamber 301 have a certain pressure, and the pressure This is a necessary condition for the permeable membrane 303 to be able to filter.
  • the valve mechanism 600 communicates with the concentrated water chamber 301 for guiding the concentrated water in the concentrated water chamber 301 to flow out, and divides the guided concentrated water into a variable flow distribution ratio for use through the second water inlet 231 supplies the concentrated water of the first tributary to the mixing tank 200 and the concentrated water of the second tributary to be discharged into the waste water tank 500 .
  • the first tributary concentrated water entering the mixing tank 200 through the second water inlet 231 and the initial water entering the mixing tank 200 through the first water inlet 232 are mixed in the mixing tank 200, and the mixed water may be called raw water.
  • the raw water flows out from the return port 241 by the above-mentioned pumping device 400 and is pumped into the concentrated water chamber 301 (it is easy to understand that after the raw water is pumped into the concentrated water chamber 301, the osmotic membrane 303 intercepts part of the ions, so that the raw water forms an ion concentration higher concentrated water).
  • valve mechanism 600 that can change the distribution ratio of the concentrated water of the first tributary and the concentrated water of the second tributary, the flow of the concentrated water entering the mixing tank 200 can be accurately adjusted, and the pumping device 400 is used to adjust the flow of concentrated water.
  • the pressure provided enables the flow to be more accurately adjusted, and then the mixing ratio of the initial water and the concentrated water can be accurately adjusted, and then the ion concentration of the raw water can be accurately adjusted, and finally the ion concentration of the purified water can be accurately adjusted.
  • valve mechanism 600 is configured to function as follows:
  • the valve mechanism 600 can also adjust the sum flow of the concentrated water of the first branch and the concentrated water of the second branch, that is, the valve mechanism 600 can also adjust the output total amount of concentrated water flowing out of the concentrated water chamber 301 .
  • valve mechanism 600 The advantages of configuring the valve mechanism 600 to be able to adjust the total amount of concentrate output are:
  • the valve mechanism 600 can adapt to the permeable membranes 303 with different filtration efficiencies. If the permeable membrane 303 has a better filtering function, for example, when the permeable membrane 303 allows a larger flow rate of water per unit time, the valve mechanism 600 can be used to reduce the total output of concentrated water, thereby reducing the concentration of the second tributary The amount of water discharged and the amount of recycled concentrated water of the first tributary are reduced, which is conducive to saving water and can reduce the energy consumption of the entire system.
  • the total output of concentrated water can be increased through the valve mechanism 600, so that the concentrated water flowing through the concentrated water chamber 301 can be increased
  • the flow rate of the concentrated water chamber 301 is accelerated, which is bound to reduce the working pressure of the permeable membrane 303, and can avoid the extreme difference phenomenon to a greater extent.
  • the valve mechanism 600 can adapt to the pumping devices 400 with different operating efficiencies.
  • the total output of the concentrated water can be increased through the valve mechanism 600 to avoid the leakage of the concentrated water in the concentrated water chamber 301 .
  • the pressure of the water increases (excessive water pressure will affect the service life of the osmotic membrane 303 and the filtering effect); if the pumping device 400 has a small operating function, the total output of concentrated water can be reduced through the valve mechanism 600 to avoid the concentrated water
  • the pressure of the water in the cavity 301 becomes smaller (too small water pressure will affect the filtration efficiency of the permeable membrane 303).
  • valve mechanism 600 is further configured to perform the following functions:
  • the adjustment process of the valve mechanism 600 for the concentration and flow of concentrated water and the adjustment process for the distribution ratio of the concentrated water are independent of each other. That is to say, when the valve mechanism 600 adjusts the flow distribution ratio of the concentrated water in the first tributary and the concentrated water in the second tributary, the total output of the concentrated water will not change; when the valve mechanism 600 adjusts the total output of the concentrated water, the first The flow distribution ratio of the concentrated water in one branch and the concentrated water in the second branch will not change.
  • the concentrated water of the first branch and the concentrated water of the second branch are adjusted for some reasons (for example, the ion concentration of the raw water needs to be changed or the ion concentration of the purified water needs to be changed), the total output of the concentrated water will not change, Then, the pressure of the water in the concentrated water chamber 301 will not change, and therefore, the water in the concentrated water chamber 301 will not impact components such as the permeable membrane 303 due to the pressure change.
  • the purification system further includes a first ion concentration sensor, which is used to detect the ion concentration in the purified water, and is adjusted by the valve mechanism 600 based on the detection result of the first ion concentration sensor The flow of concentrated water in the first tributary.
  • a first ion concentration sensor which is used to detect the ion concentration in the purified water, and is adjusted by the valve mechanism 600 based on the detection result of the first ion concentration sensor The flow of concentrated water in the first tributary.
  • the valve mechanism 600 keeps the first branch concentrated water at the current flow rate;
  • the valve mechanism 600 is used to reduce the flow rate of the concentrated water in the first branch, for example , it can be achieved by keeping the total output of concentrated water unchanged and adjusting the flow distribution ratio of the concentrated water of the first tributary and the concentrated water of the second tributary; and when the actual ion concentration of the purified water detected by the first ion concentration sensor is When the concentration value is lower than the required ion concentration range of the purified water, the flow rate of the concentrated water in the first tributary is increased through the valve mechanism 600.
  • the concentration of the concentrated water in the first tributary can be adjusted by keeping the total output of the concentrated water unchanged.
  • the flow distribution ratio of the water and the concentrated water of the second tributary is realized.
  • the ion concentration sensor for detecting the ion concentration of purified water is arranged in the water purification chamber 302 or on the output pipeline for drawing out the purified water
  • the water purification system in addition to the first ion concentration sensor for checking the ion concentration of the purified water, the water purification system also adds a second ion concentration sensor 260 for detecting the ion concentration of the raw water, so as to be used for A corresponding relationship between the ion concentration of the purified water in the purification water chamber 302 and the ion concentration of the raw water is established.
  • the ion concentration of the purified water and the ion concentration of the raw water have a relatively constant functional relationship.
  • the raw water has a unique ion concentration A1 corresponding to it.
  • the first ion concentration sensor and the second ion concentration sensor 260 can be used to establish the corresponding relationship between the ion concentration of purified water and the ion concentration of raw water.
  • the purpose of controlling the ion concentration of the purified water can be achieved by adjusting the ion concentration of the raw water, and the ion concentration of the raw water can be adjusted through the function of adjusting the flow distribution ratio of the valve mechanism 600 .
  • the second ion concentration sensor 260 for detecting the ion concentration of the raw water is provided in the mixing tank 200 .
  • the purpose of controlling the ion concentration of the purified water can be achieved by controlling the ion concentration of the raw water, and the valve mechanism 600 can more directly and accurately control the ion concentration of the raw water, thus overcoming the flow of concentrated water to the greatest extent. Defects where the change lags the change in ion concentration.
  • the valve mechanism 600 can be formed in various structures.
  • the valve mechanism 600 can be composed of two flow valves 601 and a three-way joint 602 ; the water inlet 133 of the three-way joint 602 communicates with the concentrated water chamber 301 , the two water outlets of the three-way joint 602 are respectively communicated with the two flow valves 601, the first branch concentrated water and the second branch concentrated water pass through the two flow valves 601 respectively, and the flow valve 601 is used to control the flow of the branch concentrated water. .
  • the flow distribution ratio of the concentrated water in the first branch and the concentrated water in the second branch can be adjusted by simultaneously increasing the flow cross section of the opening of one flow valve 601 and reducing the flow cross section of the other flow valve 601 at the same time.
  • the output total amount of concentrated water can be adjusted by simultaneously increasing or decreasing the flow sections of the two flow valves 601 synchronously.
  • a reversing valve 100 with a special structure is provided as the valve mechanism 600 .
  • the reversing valve 100 includes a valve body 130 , a first valve member 110 , a second valve member 120 , and a first driving mechanism 151 and a second driving mechanism 152 .
  • the valve body 130 has a water inlet 133 , a first water outlet 131 and a second water outlet 132 ; the water inlet 133 , the first water outlet 131 and the second water outlet 132 are located on different axes of the valve body 130
  • the water inlet 133 is used to communicate with the concentrated water chamber 301, which makes the concentrated water in the concentrated water chamber 301 enter the valve body 130 through the water inlet 133, and the first outlet
  • the water port 131 is used to communicate with the second water inlet 231 of the mixing tank 200
  • the second water outlet 132 is used to communicate with the waste water tank 500 .
  • the first valve part 110 includes a valve sleeve 111 and a first driven part 112; the valve sleeve 111 extends into the valve cavity of the valve body 130, and the first driven part 112 extends from the first end of the valve body 130; from the valve sleeve
  • the end of the valve sleeve 111 is provided with an inner hole (blind hole) axially inward; the outer circumference of the valve sleeve 111 is respectively provided with a first ring at the axial position opposite to the first water outlet 131, the second water outlet 132 and the water inlet 133.
  • the groove 1111, the second annular groove 1112, the third annular groove 1113; and the groove bottoms of the first annular groove 1111, the second annular groove 1112 and the third annular groove 1113 are respectively provided with a first annular groove that can pass through the valve sleeve 111.
  • the valve sleeve hole 1412 , the second valve sleeve hole 1422 and the third valve sleeve hole 1114 are respectively provided with a first annular groove that can pass through the valve sleeve 111.
  • the valve sleeve hole 1412 , the second valve sleeve hole 1422 and the third valve sleeve hole 1114 are respectively provided with a first annular groove that can pass through the valve sleeve 111.
  • the valve sleeve hole 1412 , the second valve sleeve hole 1422 and the third valve sleeve hole 1114 are respectively provided with a first annular groove that can pass through the valve sleeve
  • both the first valve sleeve hole 1412 and the second valve sleeve hole 1422 include multiple, and the number is the same; the first valve sleeve hole 1412 and the second valve sleeve hole 1422 are circumferentially arranged cloth, and the cross sections of the first valve sleeve hole 1412 and the second valve sleeve hole 1422 in the same arrangement direction in the circumferential direction gradually become smaller or larger synchronously.
  • the first driving mechanism 151 is disposed at the first end of the valve body 130 , and the first driven portion 112 of the first valve member 110 is connected to the first driving mechanism 151 , and the first driving mechanism 151 is used for driving the valve sleeve 111 to rotate.
  • the first driving mechanism 151 is a motor 1513, such as a servo motor or a stepping motor.
  • the second valve member 120 includes a valve stem 121 and a second driven portion 122 ; the valve stem 121 extends from the second end of the valve body 130 into the inner hole of the valve sleeve 111 , and axially inwards from the end of the valve stem 121 There is a guide cavity 1211 at the beginning, which makes the concentrated water entering the valve body 130 through the water inlet 133 to enter the inner hole of the valve sleeve 111 through the third annular groove 1113 and the third valve sleeve hole 1114, and pass through the inner hole of the valve sleeve 111.
  • the hole enters the guide cavity 1211; the outer circumference of the valve stem 121 is provided with a first valve stem hole 1411 and a second valve stem hole 1421; both the first valve stem hole 1411 and the second valve stem hole 1421 pass through to the guide Cavity 1211.
  • the first valve sleeve hole 1412 is used to correspond to the first valve stem hole 1411
  • the second valve sleeve hole 1422 is used to correspond to the second valve stem hole 1421
  • the tributary concentrated water, the first tributary concentrated water will sequentially pass through the first valve stem hole 1411, the first valve sleeve hole 1412, and the first annular groove 1111, and then flow out from the first water outlet 131 and enter the mixing tank 200;
  • the second part is the second branch concentrated water mentioned above.
  • the second branch concentrated water will sequentially pass through the second valve stem hole 1421, the second valve sleeve hole 1422, and the second annular groove 1112, and then exit from the second outlet.
  • the water outlet 132 flows out into the waste water tank 500 .
  • first valve stem hole 1411 and the first valve sleeve hole 1412 and the second valve stem hole 1421 and the second valve sleeve hole 1422 respectively define correspondingly to make a part of the concentrated water form the first tributary concentrated water and A first flow channel 141 for the first branch concentrated water to flow out from the first water outlet 131 and a second channel for forming another part of the concentrated water to form the second branch concentrated water and for the second branch concentrated water to flow out from the second water outlet 132.
  • runner 142 .
  • the first valve sleeve 111 rotates so that the first valve sleeve hole 1412 and the second valve sleeve hole 1422 circumferentially correspond to the first valve stem hole 1411 and the second valve sleeve hole 1422 respectively, the first valve sleeve The hole 1412 and the first valve stem hole 1411 can be overlapped, and the second valve sleeve hole 1422 and the second valve stem hole 1421 can be overlapped synchronously.
  • the first valve sleeve hole 1412 and the first valve stem hole 1411 and the overlapping area of the second valve sleeve hole 1422 and the second valve stem hole 1421 can be changed at the same time.
  • the second flow passages 142 all form a minimum cross section at the overlap of the valve sleeve 111 hole and the valve stem 121 hole. Therefore, the overlapping area formed by the valve sleeve 111 hole and the valve stem 121 hole is the flow cross section of the flow passage. Therefore, by moving the valve rod 121 , the flow cross sections S1 and S2 of the first flow channel 141 and the second flow channel 142 can be changed, thereby changing the respective flow rates of the first branch concentrated water and the second branch concentrated water.
  • the through-flow section refers to the section perpendicular to the direction of fluid flow.
  • the through-flow section refers to the section of the inner hole at any position in the pipeline.
  • the through-flow cross-section specifically refers to the smallest cross-section among all cross-sections perpendicular to the fluid flow direction, and the smallest cross-section is used to limit the flow of the fluid (water) flowing through the flow channel. The larger the flow cross-section, the greater the flow rate of the fluid flowing through the flow channel. Therefore, by moving the valve rod 121, the respective flow rates of the first branch concentrated water and the second branch concentrated water can be changed.
  • the overlapping area formed between the first valve stem hole 1411 and the corresponding first valve sleeve hole 1412 increases, thereby increasing the The flow cross section S1 increases, thereby increasing the flow rate of the concentrated water of the first branch flowing through the first flow channel 141 ; and at the same time, the gap formed between the second valve stem hole 1421 and the corresponding second valve sleeve hole 1422 .
  • the overlapping area is reduced, thereby reducing the flow cross section S2 of the second flow channel 142 , thereby reducing the flow rate of the second branch concentrated water flowing through the second flow channel 142 . Therefore, the flow distribution ratio of the water flow can be adjusted by the movement of the valve stem 121 .
  • first valve sleeve hole 1412 corresponding to the first valve stem hole 1411 and the second valve sleeve hole 1422 corresponding to the second valve stem hole 1421 are exactly the same, and by placing the valve sleeve 111 hole
  • the two hole walls in the circumferential direction are arranged in a structure in which the two hole walls are parallel to each other.
  • the hole of the valve sleeve 111 is arranged as a wire groove structure extending along the axis, so that when the valve stem 121 is moved, the flow section of the first flow channel 141 has a The change amount is equal to the change amount of the flow cross section of the second flow channel 142 , thereby ensuring that the total amount of concentrated water conveyed remains unchanged when adjusting the flow distribution ratio of the water flow.
  • first valve sleeve hole 1412 and the second valve sleeve hole 1422 are synchronously reduced or gradually enlarged in the same circumferential direction; by rotating the valve sleeve 111 , the first valve stem hole 1411 and the The different first valve sleeve holes 1412 correspond and the second valve stem holes 1421 correspond to different second valve sleeve holes 1422 , so that the flow cross section of the first flow channel 141 and the flow cross section of the second flow channel 142 are increased synchronously Or synchronous reduction, and then the total output of water can be adjusted by rotating the valve sleeve 111 .
  • the flow distribution ratio of concentrated water can be changed by axially moving the valve stem 121, and the total output of concentrated water can be changed by rotating the valve sleeve 111, and the adjustment of the flow distribution ratio is related to the total output.
  • the adjustments are independent of each other and do not affect each other, so that the functional requirements of the valve mechanism 600 described above can be met.
  • the second driving mechanism 152 is used to drive the valve stem 121 to move axially. Specifically, the second driven portion 122 protrudes from the second end of the valve body 130 .
  • the second driving mechanism 152 includes a rotating member 1524 and a motor 1523 .
  • the rotating part 1524 is sleeved on the extending end of the second driven part 122 and forms a screw drive with the extending end of the second driven part 122 ; the motor 1523 is used to drive the rotating part 1524 to rotate to drive the second driven part 122
  • the motor 1523 may preferably be a stepper motor or a servo motor.
  • a first bevel gear 1521 is formed on the rotating member 1524; a second bevel gear 1522 is formed on the output shaft of the motor 1523, and the second bevel gear 1522 meshes with the first bevel gear 1521; wherein: the first bevel gear 1521
  • the number of teeth is greater than the number of teeth of the second bevel gear 1522 .
  • the reversing valve 100 can make the first branch concentrated water and the second branch concentrated water formed inside the valve body 130, and can adjust the output total amount and the diversion of the water by controlling the rotation of the first valve member 110 and the movement of the second valve member 120. Therefore, only the reversing valve 100 can be used to adjust the flow distribution ratio and the total output of concentrated water, thereby replacing two flow valves 601 and a three-way joint 602, and to a certain extent It reduces the difficulty of controlling the flow regulation, and is conducive to realizing the intensive design of the water purification system.
  • the mixed water tank 200 at least includes a first cavity 210 , a mixed water flow channel 220 and a water return port 241 .
  • the first water inlet 232 and the second water inlet 231 of the mixing tank 200 are communicated with the first chamber 210 , the initial water enters the first chamber 210 through the first water inlet 232 , and the concentrated water of the first tributary distributed by the valve mechanism 600
  • the first chamber 210 is entered through the second water inlet 231, and the first chamber 210 has the function of temporarily storing the initial water and the concentrated water of the first tributary.
  • the initial water and the concentrated water of the first tributary can be preliminarily mixed by free diffusion after entering the first chamber 210 .
  • One end of the mixed water flow channel 220 is formed with a water inlet port 2231, the water inlet port 2231 is communicated with the first cavity 210, and the other end of the mixed water flow channel 220 is communicated with the return port 241 of the mixed water tank 200, and is connected to the concentrated water of the water purification device.
  • the pumping effect of the pumping device 400 between the water cavity 301 and the water return port 241 on the mixing tank 200 makes the water temporarily stored in the first cavity 210 flow through the mixing water channel 220 at a certain flow rate, and finally from the return water port 241 outflow.
  • a blocking structure or blocking member is arranged in the mixed water flow channel 220 , and the water containing the initial water and the concentrated water of the first tributary is forcibly changed when passing through the mixed water flow channel 220 by arranging the blocking structure or the blocking member in the mixed water flow channel 220 .
  • flow direction which will inevitably accelerate the mutual fusion of the initial water with concentration difference and the concentrated water, so that in the process of changing the flow direction, the initial water and the first tributary concentrated water are fully mixed to form raw water.
  • the mixed water flow channel 220 for the water supply to flow in the mixed water tank 200 By setting the mixed water flow channel 220 for the water supply to flow in the mixed water tank 200 , the water is forced to change the flow direction during the process of flowing through the mixed water flow channel 220 , so that the water can be fully mixed.
  • the partition plate 221 is selected as the blocking member for changing the water flow direction. Specifically, a plurality of partition plates 221 are arranged in the mixed water flow channel 220 , and the plurality of partition plates 221 are arranged at intervals along the extending direction of the mixed water flow channel 220 . , and make each partition 221 correspondingly form a flow gap 222 allowing water to pass through, and make a plurality of flow gaps 222 arranged up, down, left and right in the four directions of the cross section of the water mixing channel 220 .
  • the overflow gaps 222 corresponding to the two partition plates 221 near the first chamber 210 are horizontal gaps, and the two overflow gaps 222 are located in the mixed water flow channel 220 .
  • the cross-sectional direction is arranged up and down; the flow gaps 222 corresponding to the two partitions 221 away from the first chamber 210 are vertical gaps, and the two filter gaps are arranged left and right on the cross-section of the mixing channel 220 . In this way, this causes the water to first flow diagonally upward through the first flow gap 222, then flow diagonally downward through the second flow gap 222, and then flow diagonally to the left through the third flow gap 222.
  • the first flow gap 222 and then flows diagonally to the right through the fourth flow gap 222 .
  • the present invention does not limit the arrangement and the number of the overcurrent slits 222.
  • the overcurrent slits 222 may also adopt horizontal slits (upper or lower)-vertical slits (left or right)-horizontal slits (lower or lower) top) - the arrangement of vertical slits (right or right); for another example, six partitions 221 are arranged in the mixed water flow channel 220 to form four overflow slits 222 or an integer multiple of the four partitions 221. 221 to form an integral multiple of the four overcurrent slits 222 .
  • the flow gap 222 can be formed in a variety of ways, two of which are listed below:
  • the first type (not shown in the drawings): open the overcurrent slit 222 directly on the partition plate 221, for example, open a horizontal slit in the upper part of the partition plate 221 as the overcurrent slit 222, and open a horizontal slit in the lower part of the partition plate 221
  • a vertical slit is opened on the left side of the partition plate 221 as the overcurrent slit 222
  • a vertical slit is opened on the left side of the partition plate 221 as the overcurrent slit 222 .
  • the upper side of the partition plate 221 and the top wall of the mixed water channel 220 define a horizontal gap as the overflow gap 222.
  • the lower side of the plate 221 and the top wall of the mixed water flow channel 220 define a horizontal gap as an overflow gap 222, and the left side of the partition plate 221 and the left side wall of the mixed water channel 220 define a vertical gap as an overflow gap.
  • the slit 222 , the right side of the partition plate 221 and the right side of the water mixing channel 220 define a vertical slit as the overflow slit 222 .
  • the mixing tank 200 may only include the first cavity 210 , however, the mixing tank 200 may also include both the first cavity 210 and the second cavity 240 at the same time.
  • FIG. 7 shows the structure of the mixing tank 200 including only the first cavity 210.
  • a water outlet port 2232 is formed at one end of the mixing flow channel 220 away from the first cavity 210, and the water outlet port 2232 serves as a mixing
  • the water return port 241 of the water tank 200 is communicated with the pumping device 400 .
  • the raw water formed by the mixed water flow channel 220 flows out of the mixed water tank 200 from the water outlet port 2232 and is pumped into the concentrated water chamber 301 of the purification device 300 by the pumping device 400 .
  • FIG. 9 shows the structure of the mixing tank 200 including both the first chamber 210 and the second chamber 240, and, in a preferred solution, the second chamber 240 and the first chamber 210 are arranged in parallel, and both A side wall is shared.
  • the water outlet port 2232 at the end of the mixing channel 220 away from the first cavity 210 communicates with the second cavity 240
  • the water return port 241 of the mixing tank 200 is formed in the second cavity 240
  • the pumping device 400 is communicated with the water return port 241 on the side wall of the water mixing channel 220, so that the raw water formed by the mixed water flow channel 220 flows out from the end of the mixing water channel 220 away from the first cavity 210 and flows into the second cavity 240,
  • the water entering the second chamber 240 flows out from the water return port 241 on the side wall and is pumped into the concentrated water chamber 301 of the purification device 300 by the pumping device 400 .
  • the mixed water flow channel 220 is arranged as a straight channel, and the mixed water flow channel 220 is arranged on the bottom side of the first cavity 210 , and when the mixed water tank 200 includes the second cavity 240 , the mixed water flow The channel 220 also passes under the second cavity 240 .
  • an exhaust hole 2233 is opened between the mixed water flow channel 220 and the second cavity 240 , and the exhaust hole 2233 is used to discharge air bubbles generated in the mixed water flow channel into the second cavity 240 , and the air bubbles discharged into the second cavity 240 will diffuse to the outside through buoyancy.
  • the first water inlet 232 is located below the second water purification inlet, the density of the concentrated water of the first tributary is relatively high, and the density of the initial water is relatively small, so that the concentrated water of the first tributary diffuses downward. , and the initial water diffuses upward, so that the concentrated water of the first tributary and the initial water are in contact with each other in an opposite motion, which is beneficial for the two to be preliminarily mixed in the first chamber 210 .
  • the first water inlet 232 is formed on the side wall of the first chamber 210
  • the second water inlet 231 can be formed on the side wall of the first chamber 210 , or one can vertically extend into the first chamber 210
  • the lower port of the water inlet pipe is used as the second water inlet 231 .
  • a one-way valve 250 is further provided at the first water inlet 232 .
  • the one-way valve 250 includes: a valve core 251 and a float 252 .
  • the valve core 251 is pivotally connected to the side wall of the first chamber 210 , and the valve core 251 blocks the first water inlet 232 or opens the first water inlet 232 by pivoting;
  • the float 252 is connected to the valve core 251 , and the float 252 It is used to float on the liquid level in the first chamber 210 to control the valve core 251 to block the first water inlet 232 or open the first water inlet 232 based on the liquid level height.
  • the buoyancy of the water on the float 252 forces the first water inlet 232 to close, the initial water will not flow into the first chamber 210, and when the first chamber 210 When the water in the 210 is lower than another height, the float 252 opens the valve core 251 due to the drop of the liquid level, so that the initial water can flow into the first cavity 210 .
  • the function of the one-way valve 250 is: when the water flowing out of the first chamber 210 remains unchanged, and the concentrated water of the first branch flowing in through the second water inlet 231 increases, the one-way valve 250 will reduce the initial flow of water Alternatively, the initial water flow into the first cavity 210 may be prevented.
  • the one-way valve 250 will increase the initial water flow, thereby maintaining the water in the first chamber 210 .
  • the volume of the first chamber 210 is smaller than the volume of the second chamber 240 , which facilitates preliminary mixing of the initial water and the concentrated water of the first tributary in the first chamber 210 .
  • the second ion concentration sensor 260 includes a plurality of second ion concentration sensors 260, for example, includes three second ion concentration sensors 260, wherein one second ion concentration sensor 260 is disposed at In the middle of the mixed water flow channel 220 , the other one is arranged at the end of the mixed water flow channel 220 , and the third one is arranged in the second cavity 240 .
  • the three second ion concentration sensors 260 By taking the average value of the results detected by the three second ion concentration sensors 260 as the detection value of the ion concentration value of the raw water, it effectively compensates for the large difference between the detection result and the actual concentration caused by the detection error of a single sensor. defect.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明实用新型公开了一种净水***,包括:净水装置,其具有渗透膜以及位于所述渗透膜的两侧的浓水腔和净水腔;混水箱,其具有第一进水口、第二进水口以及回水口,所述第一进水口用于引导初始水进入所述混水箱,所述回水口与所述净水装置的浓水腔连通;泵送装置,其设置于所述回水口与所述浓水腔之间;阀机构;其中:所述阀机构与所述浓水腔连通以引导所述浓水腔中的浓水流出,并将引导出的所述浓水可改变流量分配比例地分成用于借由所述第二进水口供入所述混水箱的第一支流浓水以及用于***的第二支流浓水;所述泵送装置用于将所述混水箱中借由所述第一支流浓水与所述初始水混合形成的原水重新供入所述浓水腔。

Description

净水*** 技术领域
本发明涉及水净化技术领域,尤其涉及一种净水***。
背景技术
专利申请号为2020102712896的中国专利公开了一种调节净水水质的装置和方法以及净水***,该专利公开了如下技术方案:
在具有渗透膜的净化装置(在该专利中所述的净化装置被称作了净化***)外增设并排设置的浓水箱和原水箱,在浓水箱和原水箱之间的隔板上开设有竖向延伸且贯通该隔板的狭长通道,净化装置中的渗透膜一侧的浓水腔中的浓水被持续的输送至浓水箱中,进入浓水箱中的浓水部分通过狭长通道而进入原水箱中,并与被初始液输入管输送至原水箱中的初始水(如自来水)混合而形成原水,该浓水参与混合而形成的原水被重新输送至渗透膜的浓水腔,通过如此的循环,进而解决了浓水极差化的问题,即,通过使渗透膜中的浓水至少部分的循环利用而解决了浓水腔中浓水极差化的问题。
为避免原水箱中的原水的离子浓度过低和过高以及为使原水箱中的原水的离子浓度维持在一个所要求的浓度范围内,该专利还公开了如下技术方案:
在原水箱的底部设置有浓水排放管,在狭长通道处设置有用于检测液面位置的液位传感器,在原水箱中设置用于检测原水的离子浓度的离子浓度传感器(在该专利中称为原水测量器)。
该专利中避免原水的离子浓度过低和过高的方法是:
当离子浓度传感器检测到原水的离子浓度低于所要求的浓度范围时,控制浓水排放管关闭,浓水箱的浓水的液面上升,使得进入原水箱中的浓水的流量增大,原水箱中浓水所占比例增大,进而能够提升原水的离子浓度;而当离子浓度传感器检测到原水的离子浓度高于所要求的浓度范围时,控制浓水排放管打开,浓水箱的浓水的液面下降,使得进入原水箱中的浓水的流量减小,原水箱中初始水所占比例增大,进而能够降低原水的离子浓度。
该专利中将原水的离子浓度维持在所要求浓度范围内的方法是:
由于浓水箱中的浓水的液面通常介于狭长通道的最高点与最低点之间,并且,经过狭长通道并进入原水箱的浓水的流量随着浓水箱中的浓水的液面高度的升高而增大,随着浓水的液面高度的降低而减小,因而,在所要求的浓度范围内,建立借由离子浓度传感器所检测到的离子浓度与借由液位传感器所检测到的浓水箱中浓水的液面高度之间的关系,以基于所建立的关系而获得与所要求的浓度范围对应的液面高度范围,进而通过将浓水的实际液面高度控制在该高度范围内而使得原水的浓度维持在所要求的浓度范围内。
然而,在实施该专利过程中,申请人发现该专利存在如下缺陷:
1、对原水的离子浓度调节的灵敏度较差,具体地,上述专利通过提升浓水箱中浓水的液面而增大浓水通过狭长通道的通流截面,然而,由于狭长通道的截面面积较小,狭长通道对浓水具有较大的节流作用,进而导致浓水不能通过狭长通道及时足量的补充到原水箱中,进而导致原水箱中的原水的浓度上升速度较慢。
申请人曾通过增大狭长通道的宽度的方式试图降低狭长通道的节流作用,然而,增大狭长通道的宽度后却又导致了浓水流经狭长通道的流量不易控制的问题。
2、流经狭长通道的浓水的流量与浓水箱中的液面高度之间的关系不稳定,进而导致原水箱中原水的离子浓度与浓水箱中的液面高度之间的关系不稳定(或称不确定),原因在于:浓水借由仅依靠自身重力所形成的压力提供动力而流经狭长通道,重力所形成的压力值很小,因而,浓水的密度(浓水的离子浓度会影响浓水的密度)、黏度、浓水中的杂质以及狭长通道的内壁的表面质量的改变均会影响浓水的流量,因而,不同时期的相同液面高度的浓水并不能保证具有相同的流量。因此,借由控制浓水的液面高度并不能准确的将原水箱中原水的离子浓度维持在所要求的浓度范围内。
3、浓水箱中仅靠近液面区域的浓水通过狭长通道进入原水箱中,其他区域的浓水流动性较差,导致容易滋生细菌。
技术问题
针对现有技术中存在的上述技术问题,本发明的实施例提供了一种净水***。
技术解决方案
为解决上述技术问题,本发明的实施例采用的技术方案是:
一种净水***,包括:
净水装置,其具有渗透膜以及位于所述渗透膜的两侧的浓水腔和净水腔;
混水箱,其具有第一进水口、第二进水口以及回水口,所述第一进水口用于引导初始水进入所述混水箱,所述回水口与所述净水装置的浓水腔连通;
泵送装置,其设置于所述回水口与所述浓水腔之间;
阀机构;其中:
所述阀机构与所述浓水腔连通以引导所述浓水腔中的浓水流出,并将引导出的所述浓水可改变流量分配比例地分成用于借由所述第二进水口供入所述混水箱的第一支流浓水以及用于***的第二支流浓水;所述泵送装置用于将所述混水箱中借由所述第一支流浓水与所述初始水混合形成的原水重新供入所述浓水腔。
优选地,所述阀机构还配置成:
所述阀机构能够调节所述第一支流浓水和所述第二支流浓水的和流量。
优选地,所述阀机构还配置成:
使所述阀机构对所述浓水的所述和流量的调节过程与对所述浓水的分配比例的调节过程彼此独立。
优选地,所述净水***还包括离子浓度传感器;
所述离子浓度传感器至少用于检测所述净化水的离子浓度,以基于所述离子浓度传感器的检测结果控制所述阀机构而调节所述第一支流浓水的流量。
优选地,所述离子浓度传感器还用于同时检测所述原水的离子浓度以及所述净水腔中的净化水的离子浓度,以用于建立净水腔中的净化水的离子浓度与原水的离子浓度之间的对应关系。
优选地,当所述离子浓度传感器所检测到的净水腔中的净化水的离子浓度位于所要求的净化水浓度范围内时,建立净水腔中的净化水的离子浓度与所述原水的离子浓度之间的对应关系,以用于获得与所要求的净化水浓度范围的原水浓度范围;其中:
通过控制所述原水浓度范围而将净化水的离子浓度限值在所要求的净化水离子浓度范围内。
优选地,用于检测原水的离子浓度的离子浓度传感器设置于所述混水箱中。
优选地,用于检测净化水的离子浓度的离子浓度传感器设置于所述净水腔中或者设置于用于引出净化水的输出管路上。
优选地,所述阀机构至少包括分别用于控制所述第一支流浓水的流量以及所述第二支流浓水流量的两个流量阀。
优选地,所述阀机构包括换向阀,基于所述换向阀控制所述第一支流浓水与所述第二支流浓水的所述和流量以及所述第一支流浓水与所述第二支流浓水的流量分配比例。
优选地,所述换向阀包括:
阀体,其内形成阀腔,所述阀体上具有用于进水口、第一出水口以及第二出水口;
第一阀部件,其至少部分的设置于所述阀腔中;
第二阀部件,其至少部分的设置于所述阀腔中;其中:
所述第一阀部件与所述第二阀部件配合而限定出用于使所述阀体的第一出水口与所述阀体的进水口连通的第一流道以及使所述阀体的第二出水口与所述阀体的进水口连通的第二流道;
所述第一阀部件能够转动并具有转动行程,所述第一阀部件通过在所述转动行程内转动以用于改变所述第一流道与所述第二流道的通流截面之和的大小;
所述第二阀部件能够移动并具有移动行程,所述第二阀部件通过在所述移动行程内移动以用于改变所述第一流道以及所述第二流道的各自的通流截面的大小;
所述阀体的进水口与所述浓水腔连通以使得浓水进入阀体内后而被所述第一流道和第二流道的通流截面限定分配并分别对应从所述阀体的第一出水口和所述阀体的第二出水口流体的所述第一支流浓水和所述第二支流浓水。
优选地,所述混水箱包括:
第一容腔,第一支流浓水借由所述混水箱的第二进水口进入所述第一容腔,初始水借由所述混水箱的第一进水口进入所述第一容腔;
混水流道,其第一端与所述第一容腔连通,所述混水流道的第二端形成所述混水箱的回水口或者所述混水箱的回水口与所述混水流道的第二端连通;其中:
所述混水流道用于使经过其内部的水至少改变两次水流方向以用于使所述初始水与所述浓水混合成原水。
优选地,所述混水流道内沿其延伸方向布置有多个隔板,每个所述隔板处均对应形成有供水通过的过流缝隙,多个所述过流缝隙在所述混水流道的截面的四个方向上上、下布置和/或左、右布置。
优选地,所述混水箱还包括第二容腔,所述第二容腔与所述混水流道的第二端连通以用于承接从所述混水流道的第二端流出的原水;所述回水口形成于所述第二容腔中。
优选地,用于检查原水的离子浓度的离子浓度传感器设置于所述混水流道的第二端的端口处和/或设置于所述第二容腔中。
优选地,所述混水箱的第一进水口和所述混水箱的第二进水口下、上布置;其中:
所述混水箱的第二进水口位于所述混水箱的第一进水口的上方。
优选地,所述混水箱的第一进水口处设置有单向阀,所述单向阀包括:
阀芯,其枢接于所述第一容腔的侧壁上,所述阀芯借由枢转而封堵所述混水箱的第一进水口或使所述混水箱的第一进水口打开;
浮子,其连接至所述阀芯,所述浮子用于漂浮于所述第一容腔中的液面上,以基于所述液面高度控制所述阀芯封堵所述混水箱的第一进水口或使所述混水箱的第一进水口打开。
有益效果
与现有技术相比,本发明公开的净水***的有益效果是:
1、持续的使浓水从浓水腔中引出,并使引出的浓水与初始水混合所形成的原水重新输送至渗透膜的浓水腔,通过如此的循环,进而解决了浓水极差化的问题,即,通过使渗透膜中的浓水至少部分的循环利用而解决了浓水腔中浓水极差化的问题。
2、通过增设可改变第一支流浓水与第二支流浓水的分配比例的阀机构,使得进入混水箱中的浓水的流量可以得到精确的调节,并且,利用泵送装置所提供的压力,使得流量得到更精确的调节,进而能够精确的调节初始水与浓水的混合比例,进而能够精确的调节原水的离子浓度,最终能够精确调节净化水的离子浓度。
应当理解,前面的一般描述和以下详细描述都仅是示例性和说明性的,而不是用于限制本发明。  
本发明中描述的技术的各种实现或示例的概述,并不是所公开技术的全部范围或所有特征的全面公开。
附图说明
在不一定按比例绘制的附图中,相同的附图标记可以在不同的视图中描述相似的部件。具有字母后缀或不同字母后缀的相同附图标记可以表示相似部件的不同实例。附图大体上通过举例而不是限制的方式示出各种实施例,并且与说明书以及权利要求书一起用于对所发明的实施例进行说明。在适当的时候,在所有附图中使用相同的附图标记指代同一或相似的部分。这样的实施例是例证性的,而并非旨在作为本装置或方法的穷尽或排他实施例。
图1为本发明的一个实施例所提供的净水***的示意图。
图2为本发明的另一个实施例所提供的净水***的示意图。
图3为本发明的实施例所提供的换向阀的使用状态视图。
图4为图3的A-A剖视图。
图5为图3的C-C剖视图。
图6为图3的B向视图。
图7为本发明的实施例所提供的一种结构的混水箱的结构示意图。
图8为图7的D-D向剖视图。
图9为本发明的实施例所提供的另一种结构的混水箱的结构示意图。
图10为图9的F-F向剖视图。
附图标记:
100-换向阀;110-第一阀部件;111-阀套;1111-第一环形槽;1112-第二环形槽;1113-第三环形槽;1114-第三阀套孔;112-第一受驱部; 120-第二阀部件;121-阀杆;1211-导流腔;122-第二受驱部; 130-阀体;131-第一出水口;132-第二出水口;133-进水口;141-第一流道;1411-第一阀杆孔;1412-第一阀套孔;142-第二流道;1421-第二阀杆孔;1422-第二阀套孔;151-第一驱动机构; 1513-电机;152-第二驱动机构;1521-第一锥齿轮;1522-第二锥齿轮;1523-电机;1524-转动部件; 200-混水箱;210-第一容腔;220-混水流道;221-隔板;222-过流缝隙;2231-进水端口;2232-出水端口;2233-排气孔;231-第二进水口;232-第一进水口;240-第二容腔;241-回水口;250-单向阀;251-阀芯;252-浮子;260-第二离子浓度传感器;300-净化装置;301-浓水腔;302-净水腔;303-渗透膜;400-泵送装置;500-废水池;600-阀机构;601-流量阀;602-三通接头。
本发明的最佳实施方式
为了使得本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本发明实施例的以下说明清楚且简明,本发明省略了已知功能和已知部件的详细说明。
本发明的实施方式
本发明的实施例公开了一种净水***,该净水***用于使如自来水之类的初始水形成能够供人直接饮用的净化水,具体地,如图1和图2所示,该净化***包括:净水装置、混水箱200、泵送装置400以及阀机构600。
净水装置内设置有渗透膜303,在该渗透膜303的两侧分别形成浓水腔301和净水腔302,渗透膜303的作用在于:浓水腔301中的水通过渗透膜303时,一部分离子被拦截,进而使得通过渗透膜303而流入净水腔302内的水的离子浓度降低。
应该说明:
1、通过渗透膜303而进入净水腔302的水虽然称为净化水,然而,该净化水并不非是不存在离子的绝对纯净的水,该净化水依然存在有一定浓度的离子,该具有一定浓度的离子的水对人体是有利的。
2、进入浓水腔301中的水与被分离的溶质混合后得到较高离子浓度的水通常称为浓水,将该水称为浓水并不是用于说明该水的离子浓度极高,而仅仅是用于说明该水的离子浓度比净化水的离子浓度高。
混水箱200具有第一进水口232、第二进水口231以及回水口241,回水口241(图1和图2中未标出)与浓水腔301连通,如自来水之类的初始水通过第一进水口232进入混水箱200中;泵送装置400设置在回水口241与浓水腔301之间的管路(管道、通道)上,该泵送装置400用于将混水箱200中的水(下文所述的原水)从回水口241流出并将该水以一定的压力泵入浓水腔301中,因而,该泵送装置400使得浓水腔301中的浓水具有一定压力,该压力是渗透膜303能够进行过滤工作的一个必要条件。
在本发明中,阀机构600与浓水腔301连通以用于引导浓水腔301中的浓水流出,并将引导出的浓水可改变流量分配比例地分成用于借由第二进水口231供入混水箱200的第一支流浓水以及用于排入废水池500的第二支流浓水。借由第二进水口231进入混水箱200中的第一支流浓水与借由第一进水口232进入混水箱200中的初始水在混水箱200中进行混合,混合后的水不妨称为原水,该原水借由上述的泵送装置400从回水口241流出而泵入浓水腔301(容易理解地,原水泵入浓水腔301后,因渗透膜303拦截部分离子而使得原水形成离子浓度更高的浓水)。
基于上述可知,本发明所提供的上述的净水***的优势在于:
1、持续的使浓水从浓水腔301中引出,并使引出的浓水与初始水混合所形成的原水重新输送至渗透膜303的浓水腔301,通过如此的循环,进而解决了浓水极差化的问题,即,通过使渗透膜303中的浓水至少部分的循环利用而解决了浓水腔301中浓水极差化的问题。
2、通过增设可改变第一支流浓水与第二支流浓水的分配比例的阀机构600,使得进入混水箱200中的浓水的流量可以得到精确的调节,并且,利用泵送装置400所提供的压力,使得流量得到更精确的调节,进而能够精确的调节初始水与浓水的混合比例,进而能够精确的调节原水的离子浓度,最终能够精确调节净化水的离子浓度。
在一些优选方案中,将阀机构600配置成如下功能:
使阀机构600还能够调节第一支流浓水与第二支流浓水的和流量,即,使阀机构600还能够调节从浓水腔301流出的浓水的输出总量。
使阀机构600配置成能够调节浓水的输出总量的优势在于:
1、阀机构600能够适应不同过滤效率的渗透膜303。若渗透膜303具有较佳的过滤功能,如,渗透膜303在单位时间内允许水通过的流量较大时,可通过阀机构600减小浓水的输出总量,进而减小第二支流浓水的排放量以及减小第一支流浓水的循环利用量,这有利于节约用水,且能够降低整个***的能量消耗。若渗透膜303具有较差的过滤功能或者对避免浓度极差化要求较高时,可通过阀机构600增大浓水的输出总量,如此,可增大流经浓水腔301的浓水的流量,使得浓水腔301的浓水的循环速度加快,这势必能够减轻渗透膜303的工作压力,且能够更大程度的避免出现极差化现象。
2、阀机构600能够适应不同运行效率的泵送装置400。
若泵送装置400的运行功率较大,即,单位时间内向浓水腔301泵入的水的流量较大,可通过阀机构600增大浓水的输出总量以避免浓水腔301内的水的压力增大(水压过大会影响渗透膜303的使用寿命以及过滤效果);若泵送装置400的运行功能较小,可通过阀机构600减小浓水的输出总量以避免浓水腔301内的水的压力变小(水压过小会影响渗透膜303的过滤效率)。
在一些优选方案中,将阀机构600还还配置成如下功能:
使阀机构600对浓水的和流量的调节过程与对浓水的分配比例的调节过程彼此独立。也就是说,阀机构600在调节第一支流浓水与第二支流浓水的流量分配比例时,浓水的输出总量不会改变;阀机构600在调节浓水的输出总量时,第一支流浓水与第二支流浓水的流量分配比例不会改变。
使阀机构600对浓水的和流量的调节过程与对浓水的分配比例的调节过程彼此独立的优势在于:
1、当因某些原因(例如,需要改变原水的离子浓度或需要改变净化水的离子浓度)而调节第一支流浓水与第二支流浓水时,浓水的输出总量不会改变,则浓水腔301中的水的压力不会改变,因而,不会使得浓水腔301中的水因压力改变而对渗透膜303之类的部件造成冲击。
2、因避免了浓水腔301中出现压力波动,进而能够提高渗透膜303的使用寿命,且保证了从渗透膜303流出的净化水的离子浓度不会出现波动。
在一些优选方案中,该净化***还包括第一离子浓度传感器,该第一离子浓度传感器用于检测净化水中的离子浓度,并且,基于该第一离子浓度传感器的检测结果来通过阀机构600调节第一支流浓水的流量。具体地,当第一离子浓度传感器所检测到的净化水的离子浓度的实际浓度值位于所要求的净化水的离子浓度范围内时,阀机构600使第一支流浓水保持在当前的流量;而当第一离子浓度传感器所检测到的净化水的离子浓度的实际浓度值高于所要求的净化水的离子浓度范围内时,通过阀机构600来减小第一支流浓水的流量,例如,可通过保持浓水的输出总量不变,调节第一支流浓水与第二支流浓水的流量分配比例来实现;而当第一离子浓度传感器所检测到的净化水的离子浓度的实际浓度值低于所要求的净化水的离子浓度范围内时,通过阀机构600来增大第一支流浓水的流量,例如,可通过保持浓水的输出总量不变,调节第一支流浓水与第二支流浓水的流量分配比例来实现。优选地,用于检测净化水的离子浓度的离子浓度传感器设置于净水腔302中或者设置于用于引出净化水的输出管路上
在一些更为优选的方案中,净水***除具有用于检查净化水的离子浓度的第一离子浓度传感器外,还增设用于检测原水的离子浓度的第二离子浓度传感器260,以用于建立净水腔302中的净化水的离子浓度与原水的离子浓度之间的对应关系。具体地,在渗透膜303的过滤效果不变,且浓水腔301中的压力不变的前提下,净化水的离子浓度与原水的离子浓度具有较为恒定的函数关系,例如,当净化水的离子浓度为A0时,原水具有与之唯一对应的离子浓度A1,如此,利用第一离子浓度传感器和第二离子浓度传感器260能够建立起净化水的离子浓度与原水的离子浓度之间的对应关系,如此,可通过调节原水的离子浓度来达到控制净化水的离子浓度的目的,而原水的离子浓度可通过阀机构600所具有的调节流量分配比例的功能来进行调节。优选地,用于检测原水的离子浓度的第二离子浓度传感器260设置于混水箱200中。
增设有第二离子浓度传感器260的净水***的优势在于:
1、能够建立净水腔302中的净化水的离子浓度与原水的离子浓度之间的对应关系。
2、基于所建立的对应关系,可通过控制原水的离子浓度来达到控制净化水的离子浓度的目的,而阀机构600更能够直接、精确的控制原水的离子浓度,最大程度克服了浓水流量改变滞后于离子浓度改变的缺陷。
阀机构600可以有多种结构形成,例如,如图1所示,阀机构600可以由两个流量阀601和一个三通接头602构成;三通接头602的进水口133与浓水腔301连通,三通接头602的两个出水口分别对应与两个流量阀601连通,第一支流浓水和第二支流浓水分别通过两个流量阀601,流量阀601用于控制支流浓水的流量。例如,可通过同时使一个流量阀601的开口的通流截面增大,而同时使另一个流量阀601的通流截面减小来调节第一支流浓水与第二支流浓水的流量分配比例;再例如,可通过同时使两个流量阀601的通流截面同步的增大或同步的减小来调节浓水的输出总量。
然而,可以理解地,采用两个流量阀601调节浓水的流量分配比例以及输出总量面临着难以获得同步性调节的难度,且,将两个流量阀601以及三通接头602装入净水***中不利于集约性设计。
在本发明的一个优选方案中,如图2并结合图3至图6所示,提供了一种特殊结构的换向阀100作为阀机构600。该换向阀100包括:阀体130、第一阀部件110、第二阀部件120以及第一驱动机构151、第二驱动机构152。
如图3所示,阀体130上具有进水口133、第一出水口131以及第二出水口132;进水口133、第一出水口131以及第二出水口132均位于阀体130的不同轴向位置,且均径向贯通至阀体130的内部;进水口133用于与浓水腔301连通,这使得浓水腔301的浓水通过进水口133进入阀体130中,而第一出水口131用于与混水箱200的第二进水口231连通,而第二出水口132用于与废水池500连通。
第一阀部件110包括阀套111以及第一受驱部112;阀套111伸入阀体130的阀腔中,而第一受驱部112伸出阀体130的第一端;自阀套111的端部轴向向内开设有内孔(盲孔);在阀套111的外周与第一出水口131、第二出水口132以及进水口133相对的轴向位置分别开设有第一环形槽1111、第二环形槽1112、第三环形槽1113;并且,在第一环形槽1111、第二环形槽1112以及第三环形槽1113的槽底分别对应开设有能够贯通阀套111的第一阀套孔1412、第二阀套孔1422以及第三阀套孔1114。并且:如图4和图5所示,第一阀套孔1412以及第二阀套孔1422均包括多个,且数量相同;第一阀套孔1412以及第二阀套孔1422均周向排布,且第一阀套孔1412以及第二阀套孔1422在周向同一排布方向上截面同步的逐渐变小或者逐渐变大。
第一驱动机构151设置于阀体130的第一端,第一阀部件110的第一受驱部112连接至第一驱动机构151,该第一驱动机构151用于驱动阀套111转动。优选地,第一驱动机构151为电机1513,例如,伺服电机或步进电机。
第二阀部件120包括阀杆121以及第二受驱部122;阀杆121自阀体130的第二端伸入至阀套111的内孔中,自阀杆121的端部轴向向内开始有导流腔1211,这使得通过进水口133进入阀体130内的浓水会通过第三环形槽1113、第三阀套孔1114进入阀套111的内孔,并经过阀套111的内孔进入到导流腔1211中;在阀杆121的外周上开设有第一阀杆孔1411和第二阀杆孔1421;第一阀杆孔1411和第二阀杆孔1421均贯通至导流腔1211。第一阀套孔1412用于与第一阀杆孔1411对应,第二阀套孔1422用于与第二阀杆孔1421对应,并且,当阀套111转动使得第一阀套孔1412和第二阀套孔1422分别周向对应第一阀杆孔1411和第二阀套孔1422时,进入导流腔1211中的浓水会分成两个部,第一部分便是上文所述的第一支流浓水,该第一支流浓水会依次经过第一阀杆孔1411、第一阀套孔1412、第一环形槽1111,进而从第一出水口131流出而进入到混水箱200中;而第二部分便是上文所述的第二支流浓水,该第二支流浓水会依次经过第二阀杆孔1421、第二阀套孔1422、第二环形槽1112,进而从第二出水口132流出而进入废水池500中。如此,可知,第一阀杆孔1411与第一阀套孔1412以及第二阀杆孔1421与第二阀套孔1422分别对应限定出了用于使浓水的一部分形成第一支流浓水且供第一支流浓水从第一出水口131流出的第一流道141以及用于使浓水的另一部分形成第二支流浓水且供第二支流浓水从第二出水口132流出的第二流道142。
在该换向阀100中,当阀套111转动使得第一阀套孔1412和第二阀套孔1422分别周向对应第一阀杆孔1411和第二阀套孔1422时,第一阀套孔1412与第一阀杆孔1411能够形成重叠,且第二阀套孔1422与第二阀杆孔1421能够同步的形成重叠。如此,若轴向移动阀杆121能够同时改变第一阀套孔1412和第一阀杆孔1411以及第二阀套孔1422与第二阀杆孔1421的重叠面积,而由于第一流道141和第二流道142均在阀套111孔与阀杆121孔的重叠处形成最小截面,因而,阀套111孔与阀杆121孔所形成的重叠面积便是流道的通流截面。因此,通过移动阀杆121能够改变第一流道141和第二流道142的通流截面S1,S2,进而改变第一支流浓水和第二支流浓水各自的流量。
应该说明:在流体力学中,通流截面是指垂直于流体流动方向的截面,例如,对于流体在管道中流动的情况,通流截面是指管道的任意位置的内孔的截面。而在本发明的下文中,所述的通流截面具体是指所有垂直于流体流动方向的截面中最小的截面,该最小截面用于限定流经流道的流体(水)的流量,所述的通流截面越大,流经该流道的流体的流量越大。因而,通过移动阀杆121能够改变第一支流浓水和第二支流浓水各自的流量。
基于上述描述可知,如图3并结合图6所示,当阀杆121在第一移动方向(朝右移动)移动时,第一阀杆孔1411与所对应的第一阀套孔1412之间所形成的重叠面积减小,进而使得第一流道141的通流截面S1减小,进而使得流经第一流道141的第一支流浓水的流量减小;而同时,第二阀杆孔1421与所对应的第二阀套孔1422之间所形成的重叠面积增大,进而使得第二流道142的通流截面S2增大,进而使得流经第二流道142的第二支流浓水的流量增大。当阀杆121在第二移动方向(朝左移动)移动时,第一阀杆孔1411与所对应的第一阀套孔1412之间所形成的重叠面积增大,进而使得第一流道141的通流截面S1增大,进而使得流经第一流道141的第一支流浓水的流量增大;而同时,第二阀杆孔1421与所对应的第二阀套孔1422之间所形成的重叠面积减小,进而使得第二流道142的通流截面S2减小,进而使得流经第二流道142的第二支流浓水的流量减小。因此,通过阀杆121的移动能够调节水流的流量分配比例。
进一步的,由于第一阀杆孔1411所对应的第一阀套孔1412与第二阀杆孔1421所对应的第二阀套孔1422的外形、尺寸完全相同,并且,通过将阀套111孔设置成周向上的两个孔壁彼此平行相对的结构,例如,将阀套111孔设置成沿轴线延伸的线槽结构,使得:当移动阀杆121时,第一流道141的通流截面的改变量与第二流道142的通流截面的改变量相等,进而在调节水流的流量分配比例时保证浓水的输送总量不变。
由于第一阀套孔1412以及第二阀套孔1422在周向同一排布方向上截面同步的逐渐变小或者逐渐变大;通过转动阀套111而能够同步的切换第一阀杆孔1411与不同的第一阀套孔1412对应以及第二阀杆孔1421与不同的第二阀套孔1422对应,进而使得第一流道141的通流截面与第二流道142的通流截面同步的增加或者同步的减小,进而能够通过转动阀套111而调节水的输出总量。
基于上述可知,通过轴向移动阀杆121而能够改变浓水的流量分配比例,而通过转动阀套111能够改变浓水的输出总量,并且,对流量分配比例的调节与对输出总量的调节彼此独立,互不影响,进而能够满足上文所述的阀机构600的功能要求。
第二驱动机构152用于驱动阀杆121轴向移动,具体地,第二受驱部122伸出阀体130的第二端,第二驱动机构152包括:转动部件1524以及电机1523。转动部件1524套设于第二受驱部122的伸出端,并与第二受驱部122的伸出端形成螺旋传动;电机1523用于驱动转动部件1524转动以带动第二受驱部122轴向移动,电机1523可优选为步进电机或者伺服电机。优选地,转动部件1524上形成有第一锥齿轮1521;电机1523的输出轴上形成有第二锥齿轮1522,第二锥齿轮1522与第一锥齿轮1521啮合;其中:第一锥齿轮1521的齿数大于第二锥齿轮1522的齿数。通过使第一锥齿轮1521的齿数大于第二锥齿轮1522的齿数,进而能够降低转动部件1524的转动速度,进而能够降低第二受驱部122以及阀杆121的移动速度,进而能够有效降低阀杆121因移动而受到的冲击。
利用换向阀100作为阀机构600来调节浓水的流量分配比例以及浓水的输出总量的优势在于:
换向阀100能够使第一支流浓水和第二支流浓水在阀体130内部形成,且通过控制第一阀部件110转动以及控制第二阀部件120移动能够调整水的输出总量以及分流的水的流量分配比例,因此,仅利用该换向阀100便能调节浓水的流量分配比例以及输出总量,进而代替两个流量阀601以及一个三通接头602,并能够在一定程度上降低对流量调节的控制难度,并有利于实现净水***的集约化设计。
如图7至图10所示,该混水箱200至少包括第一容腔210、混水流道220以及回水口241。
混水箱200的第一进水口232、第二进水口231与第一容腔210连通,初始水通过第一进水口232进入第一容腔210,被阀机构600分配出的第一支流浓水通过第二进水口231进入第一容腔210,第一容腔210具有暂存初始水与第一支流浓水的作用。
可以理解地,初始水与第一支流浓水在进入第一容腔210后可通过自由扩散方式进行初步混合。
混水流道220的一端形成有进水端口2231,该进水端口2231与第一容腔210连通,混水流道220的另一端与混水箱200的回水口241连通,连接在净水装置的浓水腔301与回水口241之间的泵送装置400对混水箱200的抽吸作用使得暂存于第一容腔210中的水以一定流速流经混水流道220,并最终从回水口241流出。
在混水流道220内设置阻隔结构或阻隔部件,通过在混水流道220内设置阻隔结构或阻隔部件而使得含有初始水与第一支流浓水的水在经过混水流道220时被强制的改变流向,这势必加速了存在浓差的初始水与浓水的相互融合,进而使得在进行流向改变的过程中初始水与第一支流浓水实现充分混合而形成原水。
通过在混水箱200设置供水流通的混水流道220,并使水在流经混水流道220过程中被强制改变流向,进而使水获得充分混合的效果。
在一些优选实施例中,选用隔板221作为改变水流方向的阻隔部件,具体地,在混水流道220内设置多个隔板221,多个隔板221沿混水流道220的延伸方向间隔布置,并使每个隔板221处均对应形成允许水通过的过流缝隙222,且使多个过流缝隙222在混水流道220的截面的四个方向上上、下、左、右布置。
例如,在混水流道220内设置四个隔板221,靠近第一容腔210的两个隔板221所对应的过流缝隙222为水平缝隙,该两个过流缝隙222在混水流道220的截面方向上上、下布置;远离第一容腔210的两个隔板221所对应的过流缝隙222为竖直缝隙,该两个过滤缝隙在混水流道220的截面上左、右布置。如此,这使得水首先朝斜上方向流动而经过第一个过流缝隙222,然后,再朝斜下方流动而经过第二个过流缝隙222,然后,在朝斜左方流动而经过第三个过流缝隙222,然后,再朝斜右方流动而经过第四个过流缝隙222。
当然,本发明并不对过流缝隙222的布置方式以及个数进行限制,例如,过流缝隙222还可以采用水平缝隙(上或下)-竖直缝隙(左或右)-水平缝隙(下或上)-竖直缝隙(右或右)的布置方式;再例如,在混水流道220中设置六个隔板221以形成四个过流缝隙222或者四个隔板221的整数倍个隔板221以形成四个过流缝隙222的整数倍个过流缝隙222。
过流缝隙222可采用多种方式形成,下面列举两种形成方式:
第一种(附图中未示出):在隔板221上直接开设过流缝隙222,例如,在隔板221的上部开设水平缝隙作为过流缝隙222,在隔板221的下部开设水平缝隙作为过流缝隙222,在隔板221的左侧开设竖直缝隙作为过流缝隙222,在隔板221的左侧开设竖直缝隙作为过流缝隙222。
第二种:隔板221与混水流道220的内壁限定出过流缝隙222,例如,隔板221的上侧边与混水流道220的顶壁限定出水平缝隙以作为过流缝隙222,隔板221的下侧边与混水流道220的顶壁限定出水平缝隙以作为过流缝隙222,隔板221的左侧边与混水流道220的左侧壁限定出竖直缝隙以作为过流缝隙222,隔板221的右侧边与混水流道220的右侧边限定出竖直缝隙以作为过流缝隙222。
在本发明中,混水箱200可以仅包括第一容腔210,然而,混水箱200还可以同时既包括第一容腔210和第二容腔240。
图7示出了仅包括第一容腔210的混水箱200的结构,在这种结构中,混水流道220的远离第一容腔210的一端形成有出水端口2232,该出水端口2232作为混水箱200的回水口241与泵送装置400连通,如此,经过混水流道220所形成的原水从该出水端口2232流出混水箱200而被泵送装置400泵入净化装置300的浓水腔301中。
图9示出了既包括第一容腔210也包括第二容腔240的混水箱200的结构,并且,在优选方案中,第二容腔240与第一容腔210平行排列,且两者共用一侧壁,在这种结构中,混水流道220的远离第一容腔210的一端的出水端口2232与第二容腔240连通,混水箱200的回水口241形成在第二容腔240的侧壁上,泵送装置400与回水口241连通,如此,经过混水流道220所形成的原水从混水流道220的远离第一容腔210的一端流出而流入第二容腔240中,进入第二容腔240中的水从侧壁上的回水口241流出而被泵送装置400泵入净化装置300的浓水腔301中。
在一些优选方案中,使混水流道220设置成直流道,且使混水流道220设置在第一容腔210的底部一侧,并当混水箱200包括第二容腔240时,使混水流道220也经过第二容腔240的下方。
在一些优选实施例中,在混水流道220与第二容腔240之间开设有排气孔2233,该排气孔2233用于将混水流道中所产生的气泡排入第二容腔240中,而排入第二容腔240中的气泡会通过浮力而扩散到外界。通过将气泡从混水流道220中排走,进而能够降低因气体富集于混水流道220中而对水的流动的所造成的干扰。
在一些优选实施中,第一进水口232位于第二净水口的下方,第一支流浓水的密度相对较大,而初始水的密度相对较小,如此,第一支流浓水向下扩散,而初始水向上扩散,进而使得第一支流浓水与初始水获得以相反运动方式进行接触的结果,这有利于两者在第一容腔210内进行初步混合。
第一进水口232形成在第一容腔210的侧壁上,第二进水口231可以形成在第一容腔210的侧壁上,也可以由一个竖直伸入至第一容腔210中的进水管的下端口作为第二进水口231。
在一些优选实施例中,在第一进水口232处还设置有单向阀250,具体地,该单向阀250包括:阀芯251以及浮子252。阀芯251枢接于第一容腔210的侧壁上,阀芯251借由枢转而封堵第一进水口232或使第一进水口232打开;浮子252连接至阀芯251,浮子252用于漂浮于第一容腔210中的液面上,以基于液面高度控制阀芯251封堵第一进水口232或使第一进水口232打开。如此,当第一容腔210内的水升高至某一高度时,水对浮子252的浮力迫使第一进水口232关闭,初始水不会流入第一容腔210,而当第一容腔210内的水低于另一高度时,浮子252因随液面高度的下降而使得阀芯251打开,进而使得初始水能够流入第一容腔210中。该单向阀250的作用在于:当从第一容腔210中流出的水不变,且经过第二进水口231流入的第一支流浓水变多时,单向阀250会降低初始水的流量或者会阻止初始水流入第一容腔210。而当从第一容腔210中流出的水不变,且经过第二进水口231流入的浓水变少时,单向阀250会增大初始水的流量,进而维持第一容腔210中的水的总量的大致平衡。
优选地,使第一容腔210的容积小于第二容腔240的容积,这有利于初始水与第一支流浓水在第一容腔210内进行初步混合。
在一些优选实施例中,第二离子浓度传感器260包括多个,该第二离子浓度传感器260包括多个,例如,包括三个第二离子浓度传感器260,其中一个第二离子浓度传感器260设置在混水流道220的中部,另一个设置在混水流道220的末端,第三个设置在第二容腔240中。通过将三个第二离子浓度传感器260所检测的结果取平均值处理而作为对原水的离子浓度值的检测值,进而有效弥补了因单个传感器检测误差而造成检测结果与实际浓度相差过大的缺陷。
序列表自由内容
此外,尽管已经在本发明中描述了示例性实施例,其范围包括任何和所有基于本发明的具有等同元件、修改、省略、组合(例如,各种实施例交叉的方案)、改编或改变的实施例。权利要求书中的元件将被基于权利要求中采用的语言宽泛地解释,并不限于在本说明书中或本申请的实施期间所描述的示例,其示例将被解释为非排他性的。因此,本说明书和示例旨在仅被认为是示例,真正的范围和精神由以下权利要求以及其等同物的全部范围所指示。
以上描述旨在是说明性的而不是限制性的。例如,上述示例(或其一个或更多方案)可以彼此组合使用。例如本领域普通技术人员在阅读上述描述时可以使用其它实施例。另外,在上述具体实施方式中,各种特征可以被分组在一起以简单化本发明。这不应解释为一种不要求保护的公开的特征对于任一权利要求是必要的意图。相反,本发明的主题可以少于特定的公开的实施例的全部特征。从而,以下权利要求书作为示例或实施例在此并入具体实施方式中,其中每个权利要求独立地作为单独的实施例,并且考虑这些实施例可以以各种组合或排列彼此组合。本发明的范围应参照所附权利要求以及这些权利要求赋权的等同形式的全部范围来确定。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (17)

  1. 一种净水***,其特征在于,包括:
    净水装置,其具有渗透膜以及位于所述渗透膜的两侧的浓水腔和净水腔;
    混水箱,其具有第一进水口、第二进水口以及回水口,所述第一进水口用于引导初始水进入所述混水箱,所述回水口与所述净水装置的浓水腔连通;
    泵送装置,其设置于所述回水口与所述浓水腔之间;
    阀机构;其中:
    所述阀机构与所述浓水腔连通以引导所述浓水腔中的浓水流出,并将引导出的所述浓水可改变流量分配比例地分成用于借由所述第二进水口供入所述混水箱的第一支流浓水以及用于***的第二支流浓水;所述泵送装置用于将所述混水箱中借由所述第一支流浓水与所述初始水混合形成的原水重新供入所述浓水腔。
  2. 据权利要求1所述的净水***,其特征在于,所述阀机构还配置成:
    所述阀机构能够调节所述第一支流浓水和所述第二支流浓水的和流量。
  3. 根据权利要求2所述的净水***,其特征在于,所述阀机构还配置成:
    使所述阀机构对所述浓水的所述和流量的调节过程与对所述浓水的分配比例的调节过程彼此独立。
  4. 根据权利要求1所述的净水***,其特征在于,所述净水***还包括离子浓度传感器;
    所述离子浓度传感器至少用于检测净化水的离子浓度,以基于所述离子浓度传感器的检测结果控制所述阀机构而调节所述第一支流浓水的流量。
  5. 根据权利要求4所述的净水***,其特征在于,所述离子浓度传感器还用于同时检测所述原水的离子浓度以及所述净水腔中的净化水的离子浓度,以用于建立净水腔中的净化水的离子浓度与原水的离子浓度之间的对应关系。
  6. 根据权利要求5所述的净水***,其特征在于,当所述离子浓度传感器所检测到的净水腔中的净化水的离子浓度位于所要求的净化水浓度范围内时,建立净水腔中的净化水的离子浓度与所述原水的离子浓度之间的对应关系,以用于获得与所要求的净化水浓度范围的原水浓度范围;其中:
    通过控制所述原水浓度范围而将净化水的离子浓度限值在所要求的净化水离子浓度范围内。
  7. 根据权利要求5所述的净水***,其特征在于,用于检测原水的离子浓度的离子浓度传感器设置于所述混水箱中。
  8. 根据权利要求5所述的净水***,其特征在于,用于检测净化水的离子浓度的离子浓度传感器设置于所述净水腔中或者设置于用于引出净化水的输出管路上。
  9. 根据权利要求1所述的净水***,其特征在于,所述阀机构至少包括分别用于控制所述第一支流浓水的流量以及所述第二支流浓水流量的两个流量阀。
  10. 根据权利要求3所述的净水***,其特征在于,所述阀机构包括换向阀,基于所述换向阀控制所述第一支流浓水与所述第二支流浓水的所述和流量以及所述第一支流浓水与所述第二支流浓水的流量分配比例。
  11. 根据权利要求10所述的净水***,其特征在于,所述换向阀包括:
    阀体,其内形成阀腔,所述阀体上具有用于进水口、第一出水口以及第二出水口;
    第一阀部件,其至少部分的设置于所述阀腔中;
    第二阀部件,其至少部分的设置于所述阀腔中;其中:
    所述第一阀部件与所述第二阀部件配合而限定出用于使所述阀体的第一出水口与所述阀体的进水口连通的第一流道以及使所述阀体的第二出水口与所述阀体的进水口连通的第二流道;
    所述第一阀部件能够转动并具有转动行程,所述第一阀部件通过在所述转动行程内转动以用于改变所述第一流道与所述第二流道的通流截面之和的大小;
    所述第二阀部件能够移动并具有移动行程,所述第二阀部件通过在所述移动行程内移动以用于改变所述第一流道以及所述第二流道的各自的通流截面的大小;
    所述阀体的进水口与所述浓水腔连通以使得浓水进入阀体内后而被所述第一流道和第二流道的通流截面限定分配并分别对应从所述阀体的第一出水口和所述阀体的第二出水口流体的所述第一支流浓水和所述第二支流浓水。
  12. 根据权利要求1所述的净水***,其特征在于,所述混水箱包括:
    第一容腔,第一支流浓水借由所述混水箱的第二进水口进入所述第一容腔,初始水借由所述混水箱的第一进水口进入所述第一容腔;
    混水流道,其第一端与所述第一容腔连通,所述混水流道的第二端形成所述混水箱的回水口或者所述混水箱的回水口与所述混水流道的第二端连通;其中:
    所述混水流道用于使经过其内部的水至少改变两次水流方向以用于使所述初始水与所述浓水混合成原水。
  13. 根据权利要求12所述的净水***,其特征在于,所述混水流道内沿其延伸方向布置有多个隔板,每个所述隔板处均对应形成有供水通过的过流缝隙,多个所述过流缝隙在所述混水流道的截面的四个方向上上、下布置和/或左、右布置。
  14. 根据权利要求12所述的净水***,其特征在于,所述混水箱还包括第二容腔,所述第二容腔与所述混水流道的第二端连通以用于承接从所述混水流道的第二端流出的原水;所述回水口形成于所述第二容腔中。
  15. 根据权利要求14所述的净水***,其特征在于,用于检查原水的离子浓度的离子浓度传感器设置于所述混水流道的第二端的端口处和/或设置于所述第二容腔中。
  16. 根据权利要求12至14中任意一项所述的净水***,其特征在于,所述混水箱的第一进水口和所述混水箱的第二进水口下、上布置;其中:
    所述混水箱的第二进水口位于所述混水箱的第一进水口的上方。
  17. 根据权利要求16所述的净水***,其特征在于,所述混水箱的第一进水口处设置有单向阀,所述单向阀包括:
    阀芯,其枢接于所述第一容腔的侧壁上,所述阀芯借由枢转而封堵所述混水箱的第一进水口或使所述混水箱的第一进水口打开;
    浮子,其连接至所述阀芯,所述浮子用于漂浮于所述第一容腔中的液面上,以基于液面高度控制所述阀芯封堵所述混水箱的第一进水口或使所述混水箱的第一进水口打开。
PCT/CN2021/103432 2020-07-07 2021-06-30 净水*** WO2022007674A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010644059.X 2020-07-07
CN202010644059.XA CN113511704A (zh) 2020-07-07 2020-07-07 净水***

Publications (1)

Publication Number Publication Date
WO2022007674A1 true WO2022007674A1 (zh) 2022-01-13

Family

ID=78060733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103432 WO2022007674A1 (zh) 2020-07-07 2021-06-30 净水***

Country Status (2)

Country Link
CN (1) CN113511704A (zh)
WO (1) WO2022007674A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201348066Y (zh) * 2008-06-30 2009-11-18 王孙琪 一种混水阀
CN104556447A (zh) * 2014-12-22 2015-04-29 刘义 阻逆式反渗透净水设备
CN105443836A (zh) * 2015-12-04 2016-03-30 珠海格力电器股份有限公司 废水比调节阀和净水机
CN106396189A (zh) * 2016-11-17 2017-02-15 上海浩泽净水科技发展有限公司 一种带水质检测的免安装反渗透纯水机***
CN206255924U (zh) * 2016-11-17 2017-06-16 上海浩泽净水科技发展有限公司 一种带水质检测的免安装反渗透纯水机***
WO2017217008A1 (ja) * 2016-06-13 2017-12-21 三浦工業株式会社 逆浸透膜分離装置
CN208417587U (zh) * 2018-05-17 2019-01-22 九阳股份有限公司 一种废水比阀和净水机
CN208734890U (zh) * 2018-07-16 2019-04-12 宿迁菡束环保设备有限公司 一种废水流量调节阀
CN213416374U (zh) * 2020-07-07 2021-06-11 宿迁菡束环保设备有限公司 净水***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201348066Y (zh) * 2008-06-30 2009-11-18 王孙琪 一种混水阀
CN104556447A (zh) * 2014-12-22 2015-04-29 刘义 阻逆式反渗透净水设备
CN105443836A (zh) * 2015-12-04 2016-03-30 珠海格力电器股份有限公司 废水比调节阀和净水机
WO2017217008A1 (ja) * 2016-06-13 2017-12-21 三浦工業株式会社 逆浸透膜分離装置
CN106396189A (zh) * 2016-11-17 2017-02-15 上海浩泽净水科技发展有限公司 一种带水质检测的免安装反渗透纯水机***
CN206255924U (zh) * 2016-11-17 2017-06-16 上海浩泽净水科技发展有限公司 一种带水质检测的免安装反渗透纯水机***
CN208417587U (zh) * 2018-05-17 2019-01-22 九阳股份有限公司 一种废水比阀和净水机
CN208734890U (zh) * 2018-07-16 2019-04-12 宿迁菡束环保设备有限公司 一种废水流量调节阀
CN213416374U (zh) * 2020-07-07 2021-06-11 宿迁菡束环保设备有限公司 净水***

Also Published As

Publication number Publication date
CN113511704A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
KR101551166B1 (ko) 압력용기 내 다중 막을 갖춘 회분식 역삼투압 시스템
CN206103718U (zh) 一种避免tds超标的纯水机
EP2514721A1 (en) Seawater desalination system and energy exchange chamber
CN1466482A (zh) 用于过滤的薄膜过滤器设备和方法
CN110510712A (zh) 一种用于苦咸水脱盐的电渗析***及方法
CN106830398B (zh) 一种纯水回流型节水节能净水机
KR20110007090A (ko) 수동 압력원을 갖춘 회분식 역삼투압 시스템
CN213416374U (zh) 净水***
WO2022007674A1 (zh) 净水***
WO2022257862A1 (zh) 净水***
CN213738768U (zh) 一种一体式同步脉冲曝气装置
CN110339720A (zh) 一种基于中空纤维膜的垂直错流过滤集成装置
CN116099364B (zh) 一种反渗透膜过滤组件
CN107792914A (zh) 一种有机溶剂废水分离控制***
US20060196819A1 (en) External pressure hollow fibre membrane separation system
WO2023016070A1 (zh) 回流调节阀装置及净水***
CN215102597U (zh) 净水***
CN201268604Y (zh) 手动冲洗的废水比例控制器
CN211537266U (zh) 古龙酸钠发酵液连续过滤除杂装置
CN206145216U (zh) 一种废水比例调节器和***
CN109925886B (zh) 一种内压式中空纤维膜组件的使用方法及其装置
CN108502983B (zh) 一种内循环式反渗透净水装置
CN217029462U (zh) 一种流量可控的节流阀装置
CN210814740U (zh) 具有反冲洗功能的浸没式超滤***
KR100374203B1 (ko) 전기 투석장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838148

Country of ref document: EP

Kind code of ref document: A1