WO2022257862A1 - 净水*** - Google Patents

净水*** Download PDF

Info

Publication number
WO2022257862A1
WO2022257862A1 PCT/CN2022/097020 CN2022097020W WO2022257862A1 WO 2022257862 A1 WO2022257862 A1 WO 2022257862A1 CN 2022097020 W CN2022097020 W CN 2022097020W WO 2022257862 A1 WO2022257862 A1 WO 2022257862A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
chamber
concentrated
purification system
water inlet
Prior art date
Application number
PCT/CN2022/097020
Other languages
English (en)
French (fr)
Inventor
刘果
刘小菡
Original Assignee
南京菡束环保设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京菡束环保设备有限公司 filed Critical 南京菡束环保设备有限公司
Publication of WO2022257862A1 publication Critical patent/WO2022257862A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/2132Concentration, pH, pOH, p(ION) or oxygen-demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2211Amount of delivered fluid during a period
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2214Speed during the operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • B01F35/833Flow control by valves, e.g. opening intermittently
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/88Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise
    • B01F35/883Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise using flow rate controls for feeding the substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the invention relates to the technical field of water purification, in particular to a water purification system.
  • the concentrated water on the concentrated water side in the filter membrane is divided into two paths through the reversing valve, one path is discharged as waste water, and the other path is mixed with tap water and then supplied to the filter element to participate in the preparation of direct drinking water again.
  • tap water and concentrated water are usually mixed in the following two ways.
  • the first one use a tee to connect the tap water pipe and the return water pipe.
  • the tap water from the tap water pipe and the concentrated water from the return water pipe enter the tee, and then flow out from the outlet port of the tee to feed the filter membrane.
  • both the tap water pipe and the return water pipe are connected to the water tank, the tap water from the tap water pipe and the concentrated water from the return water pipe first enter the water tank, and then feed into the filter membrane pieces.
  • an embodiment of the present invention provides a water purification system.
  • a water purification system comprising:
  • a filter membrane which has a filter membrane, and the filter membrane makes the filter membrane form a concentrated water side and a clean water side;
  • a reversing valve which communicates with the concentrated water side of the filter membrane element through the first return water pipeline, and the reversing valve has a waste water port and a water return port;
  • a water mixing device which includes a columnar housing, which has a columnar chamber and a concentrated water inlet, a tap water inlet, and a liquid outlet communicated with the columnar chamber, and the concentrated water inlet It communicates with the water return port of the reversing valve through the second return line; the tap water pipe is connected to the tap water inlet, and the liquid outlet of the columnar housing is connected to the filter membrane through the third return line.
  • the concentrated water side of the component is connected;
  • a water pump which is arranged on the third return water pipeline; wherein:
  • Both the tap water inlet and the concentrated water inlet are tangent to and communicate with the columnar chamber, and the tap water inlet and the concentrated water inlet are located on the same plane.
  • the cylindrical chamber decreases in radial size from the tail to the head of the cylindrical housing.
  • the tap water inlet and the concentrated water inlet are formed on the shell wall close to the tail of the cylindrical casing; the liquid outlet is formed on the end surface of the head of the cylindrical casing.
  • the columnar chamber is provided with a plurality of partitions, and the plurality of partitions divide the columnar chamber into a plurality of sub-chambers arranged in the axial direction; wherein:
  • the separator is provided with holes for fluid to pass through.
  • a flow valve and an electromagnetic switching valve are arranged in parallel on the running water pipe, and the running water pipe is firstly connected through the electromagnetic switching valve.
  • a first flow meter is provided on the tap water pipe, and a second flow meter is provided on the second return water pipe; The flow ratio of tap water to concentrated water in the room.
  • a filter is provided on the tap water pipe upstream of the first flow meter.
  • the water purification side of the membrane filter is connected with a direct drinking water outlet pipeline, and the direct drinking water outlet pipeline includes a first water outlet pipeline and/or a second water outlet pipeline; wherein:
  • a sterilizer is arranged on the first water outlet pipeline, and the second water outlet pipeline extends into the direct drinking water storage tank.
  • the hole includes a hollow hole and flow holes; the hollow hole in the center and the flow holes arranged in multiple circles around the edge are respectively formed on two adjacent separators;
  • the hollow hole is formed in the center of the partition adjacent to the subchamber located at the tail.
  • the edge of the partition adjacent to the sub-chamber at the tail is formed with multiple circles of air holes arranged in the circumferential direction to allow gas to pass through.
  • the water mixing device in the water purification system can effectively reduce the throttling pressure and improve the control accuracy of the reversing valve on the flow rate and flow of concentrated water.
  • the mixing ratio of tap water and concentrated water and the total supply of water can be adjusted.
  • the columnar chamber is divided into multiple sub-chambers by setting partitions in the columnar chamber, and the adjacent partitions are opened with hollow holes in the center and flow holes at the edges, so that the flow of water passing through the sub-chambers The direction is constantly changed, further improving the uniformity of water mixing.
  • An ultraviolet sterilizing lamp is installed at the tail of the columnar shell, the sterilizing lamp can effectively kill bacteria in the water, and can effectively inhibit the breeding of bacteria in the columnar chamber.
  • Opening air holes on the partition can discharge the gas in the circular motion water to a greater extent, reducing the influence of gas on the water mixing process. Setting the stomata into a trumpet shape is beneficial to gather more gas.
  • FIG. 1 is a schematic structural diagram of a water purification system provided by Embodiment 1 of the present invention.
  • Fig. 2 is a schematic structural diagram of the water purification system provided by Embodiment 2 of the present invention.
  • Fig. 3 is a schematic structural diagram of a water mixing device in the water purification system provided by Embodiment 2 of the present invention.
  • FIG. 4 is an enlarged view of part A of FIG. 3 .
  • Fig. 5 is a cross-sectional view taken along line B-B of Fig. 3 .
  • the present invention discloses a water purification system
  • the water purification system includes: a membrane filter 20, a reversing valve 50, a water mixing device 10, a water pump 30, a first return water pipeline 41, The second water return pipeline 42, the third water return pipeline 44, the water outlet pipeline, the tap water pipe 43, the flow valve 61, the electromagnetic switch valve 62, the first flow meter 81, the second flow meter 82, the filter 70 and the sterilizer 92 .
  • the membrane filter 20 is divided into a clean water side 21 and a concentrated water side 22 by the membrane inside it, and the water outlet pipeline is connected to the clean water side 21, and the water outlet pipeline is divided into two paths, namely, the first water outlet pipeline 441 and the second water outlet pipeline 441.
  • the water outlet pipeline 442, the first water outlet pipeline 441 extends to a direct drinking water outlet such as a faucet, and the second water outlet pipeline 442 extends into a direct drinking water storage tank 91 for storing direct drinking water.
  • the reversing valve 50 communicates with the outlet of the concentrated water side 22 of the filter membrane element 20 through the first return pipe 41.
  • the reversing valve 50 has a waste water port and a return water port.
  • a return pipe 41 passes through the reversing valve 50, and the reversing valve 50 allows a part of the concentrated water to be discharged as waste water through the waste water port, and the other part passes through the return water port to mix with the tap water flowing out of the tap water pipe 43 to pass through the concentrated water side again.
  • the inlet of 22 enters filter membrane part 20 and participates in preparing direct drinking water.
  • the water mixing device 10 includes a columnar housing 11, a tap water inlet 121, a concentrated water inlet 122, and a liquid outlet 123.
  • a columnar chamber is formed in the columnar housing 11, and tap water
  • the pipe 43 communicates with the tap water inlet 121
  • the return port of the reversing valve 50 communicates with the concentrated water inlet 122 through the second return pipe 42
  • the liquid outlet 123 communicates with the concentrated water side through the third return pipe 44.
  • the entrance of 22 is connected.
  • the tap water that comes from the tap water pipe 43 and enters the columnar chamber through the tap water inlet 121 and the concentrated water that enters the columnar chamber from the second return water line 42 and enters the columnar chamber through the concentrated water inlet 122 are in the columnar chamber. mixed, and then flow out from the liquid outlet 123 of the water mixing device 10 and enter the concentrated water side 22 of the membrane filter 20 to participate in the preparation of direct drinking water.
  • the liquid outlet 123 of the water mixing device 10 is formed on the end face of the head of the cylindrical housing 11, and the tap water inlet 121 and concentrated water inlet 122 of the water mixing device 10 have the following characteristics:
  • the tap water inlet 121 and the concentrated water inlet 122 are formed on the shell wall close to the inside of the cylindrical housing 11;
  • the liquid inlet 121 and the concentrated water inlet 122 are located on the same plane; the directions of the tap water inlet 121 and the concentrated water inlet 122 are opposite.
  • the throttle pressure in the chamber will be greatly reduced, especially the throttle pressure between the water mixing device 10 and the water return port of the reversing valve 50, that is, the pressure in the second return water pipeline 42, which makes the concentrated water flow from the water changer to
  • the more smooth flow out of the return port of the reversing valve 50 is conducive to the control of the concentrated water flow by the reversing valve 50, which can effectively improve the flow rate and flow rate of the concentrated water flowing through the concentrated water side 22 of the membrane element 20, and improve the direct drinking water. quality.
  • the water enters the cylindrical chamber and moves in a circle, which is beneficial to the full mixing of tap water and concentrated water, and improves the uniformity of water supplied to the concentrated water side 22 of the filter membrane element 20 .
  • the present invention provides two concrete structures of the mixing device 10:
  • the cylindrical chamber is configured as a tapered cylindrical chamber whose radial size decreases uniformly from the tail to the head.
  • water moves circularly in the tapered cylindrical chamber.
  • it also flows toward the liquid outlet 123 of the water mixing device 10 .
  • This structure enables the water to pass through the water mixing device 10 smoothly while being mixed.
  • the columnar chamber is configured as a columnar chamber whose radial size is reduced in sections from the tail to the head, and the water mixing device 10 with this feature will be described in detail below Concrete structure.
  • the columnar chamber is divided into five (segments) axially arranged subchambers by four partitions, that is, the first partition 131, the second partition 132, the third partition 133 and the fourth partition 134 will
  • the columnar chamber is divided into a first sub-chamber 141 , a second sub-chamber 142 , a third sub-chamber 143 , a fourth sub-chamber 144 and a fifth sub-chamber 145 arranged in sequence from the tail to the head. From the first sub-chamber 141 to the fifth sub-chamber 145 , the radial dimension of each chamber becomes gradually smaller.
  • the tap water inlet 121 and the concentrated water inlet 122 are formed on the cylindrical housing 11 corresponding to the first subchamber 141 .
  • the middle part of the first partition 131 is formed with a hollow hole 1311; the edge of the second partition 132 is formed with a plurality of circles of flow holes 1321 arranged circumferentially; the middle part of the third partition 133 is formed with a hollow hole 1331; the fourth partition The edge of the plate 134 is formed with multiple circles of flow holes 1341 arranged in the circumferential direction.
  • the third subchamber 143 adjacent to the second partition 132 is formed with a tapered structure; the fifth subchamber 145 adjacent to the fourth partition 134 is also formed with a tapered structure.
  • An ultraviolet germicidal lamp 15 capable of irradiating the first subchamber 141 is installed at the end face of the afterbody of the cylindrical housing 11;
  • the probe extends radially into the fifth sub-chamber 145 for detecting the ion concentration of the water therein.
  • a plurality of circles of air holes 1312 arranged circumferentially are opened at the edge of the first partition 131 , the air holes 1312 include a horn portion 13122 and a narrowing portion 13121 , and the horn portion 13122 faces the first sub-chamber 141 .
  • the tap water from the tap water pipe 43 enters the first subchamber 141 of the columnar casing 11 through the tap water inlet 121, and the concentrated water from the concentrated water side 22 enters the columnar casing through the concentrated water inlet.
  • 11 of the first sub-chamber 141 because the tap water inlet 121 and the concentrated water inlet 122 are both tangent to the first sub-chamber 141, and both are facing oppositely, which makes the The tap water and concentrated water make circular motions in the same direction in the first sub-chamber 141, which is beneficial to the mixing of tap water and concentrated water.
  • the ultraviolet germicidal lamp 15 sterilizes and disinfects the water in the first chamber.
  • the gas is collected by the trumpet portion 13122 of the air hole 1312 and discharged into the second sub-chamber 142 through the constriction portion 13121, thereby preventing the gas from remaining in the first sub-chamber 141 and affecting the circular motion of the water. Creates resistance that affects water mixing.
  • the water in the first sub-chamber 141 passes through the The hollow hole 1311 in the center of the partition 131 enters the second subchamber 142, and then enters the third subchamber 143 through the multi-circle flow holes 1321 located at the edge of the second partition 132, because the first The hollow hole 1311 of the partition 131 is located at the center, while the flow hole 1321 of the second partition 132 is located at the edge, which changes the direction of the water flow passing through the second sub-chamber 142 and improves the uniformity of water mixing to a certain extent. .
  • the water passes through the flow hole 1321 on the edge of the second partition 132 and then flows to the conical structure of the third sub-chamber 143.
  • the conical structure makes the water flow change direction and flow toward the middle of the third chamber, and the water that changes the flow direction passes through
  • the hollow hole 1331 in the center of the third partition 133 enters into the fourth sub-chamber 144 .
  • the flow direction is changed to improve the uniformity of water mixing.
  • the water enters the fourth chamber through the hollow hole 1331 of the third dividing plate 133, it enters into the fifth subchamber 145 through the flow hole 1341 on the edge of the fourth dividing plate 134, and the water enters the fifth subchamber 145.
  • the direction of water flow also changes, which further improves the uniformity of water mixing.
  • the water flows through the flow hole 1341 on the edge of the fourth partition 134 and then flows to the conical structure.
  • the conical structure changes the direction of the water flow and flows towards the middle of the fifth chamber, and finally flows out from the liquid outlet 123 directly or through A water pump 30 feeds the concentrate side 22 of the membrane element 20 .
  • the water mixing device 10 provided in Example 2 makes the uniformity of water mixing higher than that of the water mixing device 10 provided in Example 1.
  • the water mixing device 10 provided in embodiment 2 is less effective in reducing the throttling pressure than in embodiment 1, the water mixing device 10 provided in embodiment 2 is also sufficient to make the reversing valve 50 work at a lower throttling pressure , the reversing valve 50 can still control the flow and velocity of the concentrated water more accurately.
  • the water pump 30 is arranged on the third return water pipeline 44 , and the water pump 30 is a self-priming water pump 30 for supplying mixed water to the concentrated water side 22 of the filter membrane element 20 at a certain pressure.
  • the flow valve 61 and the electromagnetic switch valve 62 are arranged side by side on the tap water pipe 43.
  • the electromagnetic switch valve 62 is opened first, which makes the tap water flow quickly through the water mixing device 10 to the water pump 30 and feed into the filter membrane.
  • Part 20 to establish sufficient water pressure when the water pressure on the concentrated water side 22 is established, close the electromagnetic switch valve 62 to open the flow valve 61 and adjust the opening of the flow valve 61 to control the supply flow of tap water.
  • the first flow meter 81 is arranged on the tap water pipe 43, and the second flow meter 82 is arranged on the second return water pipeline 42; 82 is used to measure the flow rate of concentrated water supplied to the water mixing device 10, and combined with the flow valve 61, it can maintain the mixing ratio of tap water and concentrated water, adjust the mixing ratio of tap water and concentrated water, and maintain the total supply of water. For example, if the second flowmeter 82 detects that the flow rate of concentrated water decreases, the flow valve 61 is adjusted to increase the flow rate of tap water in order to maintain the total water supply.
  • the filter 70 is arranged on the tap water pipe 43 upstream of the first flow meter 81 , and the filter 70 is used to filter impurities in the tap water; the sterilizer 92 is arranged on the first water outlet pipeline 441 to sterilize the drinking water.
  • the water mixing device 10 in the water purification system can effectively reduce the throttling pressure and improve the control accuracy of the reversing valve 50 on the flow rate and flow of concentrated water.
  • the water mixing device 10 provided in Embodiment 2 has the following advantages:
  • the columnar chamber is divided into multiple sub-chambers by setting partitions in the columnar chamber, and the adjacent partitions are provided with hollow holes in the center and flow holes 1321 on the edges, so that the water flow through the sub-chambers
  • the direction of the water is constantly changing, which further improves the uniformity of water mixing.
  • An ultraviolet germicidal lamp 15 is installed at the tail of the columnar housing 11. This line of germicidal lamps can effectively kill bacteria in the water and effectively inhibit the growth of bacteria in the columnar chamber.
  • Opening air holes 1312 on the separator can discharge the gas in the circularly moving water to a greater extent, reducing the influence of the gas on the water mixing process. Setting the air hole 1312 in a trumpet shape is beneficial to gather more air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种净水***,包括:滤膜件,其内具有滤膜片,滤膜片使得滤膜件内形成浓水侧和净水侧;换向阀,其借由第一回水管路与滤膜件的浓水侧连通,换向阀具有废水口和回水口;混水装置,其包括柱状壳体,柱状壳体内具有柱状腔室以及与柱状腔室连通的浓水进液口、自来水进液口、出液口,浓水进液口借由第二回水管路与换向阀的回水口连通;自来水管连接至自来水进液口,柱状壳体的出液口借由第三回水管路与滤膜件的浓水侧连通;水泵,其设置于第三回水管路上;其中:自来水进液口与浓水进液口均与柱状腔室相切且连通,且自来水进液口与浓水进液口位于同一平面。

Description

净水*** 技术领域
本发明涉及水净化技术领域,尤其涉及一种净水***。
背景技术
在净水***中,滤膜件内的浓水侧的浓水经过换向阀分成两路,一路作为废水而排出,另一路与自来水混合后重新供入滤膜件以重新参与制备直饮水。
现有技术中通常采用如下两种方式使自来水与浓水进行混合。
第一种:利用三通连接自来水管与回水管路,来自自来水管的自来水与来自回水管路的浓水进入到三通,然后从三通的出水端口流出而供入滤膜件。
第二种:自来水管以及回水管路均连接至水箱,来自自来水管的自来水与来自回水管路的浓水首先进入到水箱中,而后供入滤膜件件。
现有技术中的上述两种混合方式存在如下缺陷:
1、由于三通具有较大的节流作用,这导致三通与换向阀之间的管路存在较大的节流压力,该节流压力严重影响换向阀对浓水流量的调控,例如,在换向阀的通流截面不变的情况下,节流压力使得从换向阀流出的用于重新参与制水的浓水的流量和流速均较小,进而导致滤膜件的浓水侧的水的流量和流速较小。另外,进入三通的自来水与浓水来不及混合便供入滤膜件,进而导致混合不均匀。
2、进入水箱中的自来水与浓水的流动性均不强,导致两者混合效果较差。
技术问题
针对现有技术中存在的上述技术问题,本发明的实施例提供了一种净水***。
技术解决方案
为解决上述技术问题,本发明的实施例采用的技术方案是:
一种净水***,包括:
滤膜件,其内具有滤膜片,所述滤膜片使得滤膜件内形成浓水侧和净水侧;
换向阀,其借由第一回水管路与所述滤膜件的浓水侧连通,所述换向阀具有废水口和回水口;
混水装置,其包括柱状壳体,所述柱状壳体内具有柱状腔室以及与所述柱状腔室连通的浓水进液口、自来水进液口、出液口,所述浓水进液口借由第二回水管路与所述换向阀的回水口连通;自来水管连接至所述自来水进液口,所述柱状壳体的出液口借由第三回水管路与所述滤膜件的浓水侧连通;
水泵,其设置于所述第三回水管路上;其中:
所述自来水进液口与所述浓水进液口均与所述柱状腔室相切且连通,且所述自来水进液口与所述浓水进液口位于同一平面。
优选地,所述柱状腔室自所述柱状壳体的尾部到头部径向尺寸减小。
优选地,所述自来水进液口和所述浓水进液口形成于靠近所述柱状壳体尾部的壳壁上;所述出液口形成于所述柱状壳体的头部的端面上。
优选地,所述柱状腔室中设置有多个隔板,多个所述隔板将所述柱状腔室分隔成沿轴向排布的多个子腔室;其中:
所述隔板上开设有供流体通过的孔洞。
优选地,所述自来水管上并联设置有流量阀和电磁开关阀,所述自来水管借由所述电磁开关阀而首先导通。
优选地,所述自来水管上设置有第一流量计,所述第二回水管路上设置有第二流量计;基于所述第一流量计和所述第二流量计控制进入到所述柱状腔室内的自来水与浓水的流量比例。
优选地,位于所述第一流量计上游的所述自来水管上设置有过滤器。
优选地,所述滤膜件的净水侧连接有直饮水出水管路,所述直饮水出水管路包括第一出水管路和/或第二出水管路;其中:
所述第一出水管路上设置有杀菌器,所述第二出水管路伸入至直饮水存水箱中。
优选地,所述孔洞包括镂空洞和过流孔;相邻的两个隔板上分别形成位于中央的所述镂空洞以及位于边缘的周向排布的多圈所述过流孔;
与位于尾部的所述子腔室相邻的隔板的中央形成所述镂空洞。
优选地,与位于尾部的所述子腔室相邻的所述隔板的边缘形成有周向排布的多圈气孔以允许气体通过。
有益效果
与现有技术相比,本发明公开的净水***的有益效果是:
1、净水***中的混水装置能够有效降低节流压力,提高换向阀对浓水流速和流量的控制精度。
2、通过设置流量阀、第一流量计和第二流量计而能够调节自来水与浓水的混合比例以及水的总供给量。
3、一些优选地的实施例所提供的混水装置具备如下优势:
1)、通过在柱状腔室内设置隔板而将柱状腔室分隔成多个子腔室,通过使相邻隔板在中央开设镂空洞和边缘开设过流孔,进而使得经过子腔室的水流的方向不断发生改变,进一步提高了水混合的均匀度。
2)、在柱状壳体的尾部装设紫外线杀菌灯,该杀菌灯能够有效杀灭水中的细菌,且能够有效抑制柱状腔室内滋生细菌。
3)、自来水与浓水在柱状腔室内获得均匀混合,这使得离子浓度器16所检测的离子浓度较准确,有效防止了检测数据出现漂移。
4)、经过混合装置所获得均匀度较佳的水通入滤膜件的浓水侧后能够有效降低滤膜件的极差化的程度,提高了直饮水的水质。
5)、在隔板上开设气孔能够更大程度的将作圆周运动的水中的气体排出,降低了气体对水混合过程的影响。将气孔设置成喇叭状有利于收拢更多的气体。
应当理解,前面的一般描述和以下详细描述都仅是示例性和说明性的,而不是用于限制本发明。  
本发明中描述的技术的各种实现或示例的概述,并不是所公开技术的全部范围或所有特征的全面公开。
附图说明
在不一定按比例绘制的附图中,相同的附图标记可以在不同的视图中描述相似的部件。具有字母后缀或不同字母后缀的相同附图标记可以表示相似部件的不同实例。附图大体上通过举例而不是限制的方式示出各种实施例,并且与说明书以及权利要求书一起用于对所发明的实施例进行说明。在适当的时候,在所有附图中使用相同的附图标记指代同一或相似的部分。这样的实施例是例证性的,而并非旨在作为本装置或方法的穷尽或排他实施例。
图1为本发明的实施例1所提供的净水***的结构示意图。
图2为本发明的实施例2所提供的净水***的结构示意图。
图3为本发明的实施例2所提供的净水***中的混水装置的结构示意图。
图4为图3的局部A的放大视图。
图5为图3的B-B向截面视图。
附图标记:
10-混水装置;11-柱状壳体;121-自来水进液口;122-浓水进液口;123-出液口;131-第一隔板;1311-镂空洞;1312-气孔;13121-缩口部;13122-喇叭部;132-第二隔板;1321-过流孔;133-第三隔板;1331-镂空洞;134-第四隔板;1341-过流孔;141-第一子腔室;142-第二子腔室;143-第三子腔室;144-第四子腔室;145-第五子腔室;15-紫外线杀菌灯;16-离子浓度器;20-滤膜件;21-净水侧;22-浓水侧;30-水泵;41-第一回水管路;42-第二回水管路;43-自来水管;44-第三回水管路;441-第一出水管路;442-第二出水管路;50-换向阀;61-流量阀;62-电磁开关阀;70-过滤器;81-第一流量计;82-第二流量计;91-直饮水储水箱;92-杀菌器。
本发明的最佳实施方式
为了使得本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本发明使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本发明实施例的以下说明清楚且简明,本发明省略了已知功能和已知部件的详细说明。
如图1和图2所示,本发明公开了一种净水***,该净水***包括:滤膜件20、换向阀50、混水装置10、水泵30、第一回水管路41、第二回水管路42、第三回水管路44、出水管路、自来水管43、流量阀61、电磁开关阀62、第一流量计81、第二流量计82、过滤器70以及杀菌器92。
滤膜件20被其内的膜片分成净水侧21和浓水侧22,出水管路连接至净水侧21,该出水管路分成两路,即,第一出水管路441和第二出水管路442,第一出水管路441延伸至如水龙头等直饮水出水端口,第二出水管路442伸入至用于存储直饮水的直饮水储水箱91中。
换向阀50借由第一回水管路41与滤膜件20的浓水侧22的出口连通,该换向阀50具有废水口和回水口,从浓水侧22流出的浓水借由第一回水管路41而经过换向阀50,换向阀50使得该浓水一部分经过废水口作为废水而排出,另一部分经过回水口而与从自来水管43流出的自来水混合以重新通过浓水侧22的进口进入滤膜件20而参与制备直饮水。
如图1至图3所示,混水装置10包括柱状壳体11、自来水进液口121、浓水进液口122以及出液口123,该柱状壳体11内形成有柱状腔室,自来水管43与自来水进液口121连通,换向阀50的回水口借由第二回水管路42与浓水进液口122连通,出液口123借由第三回水管路44与浓水侧22的进口连通。如此,来自自来水管43且经过自来水进液口121进入到柱状腔室中的自来水与来自第二回水管路42且经过浓水进液口122进入到柱状腔室中的浓水在柱状腔室内混合,而后从混水装置10的出液口123流出而进入到滤膜件20的浓水侧22参与制备直饮水。
在本发明中,混水装置10的出液口123形成于柱状壳体11的头部的端面,而混水装置10的自来水进液口121和浓水进液口122具有如下特点:
自来水进液口121与浓水进液口122形成有靠近柱状壳体11内部的壳壁上;自来水进液口121与浓水进液口122均与柱状腔室相切且连通,且自来水进液口121与浓水进液口122位于同一平面;自来水进液口121与浓水进液口122的朝向相反。
基于上述特点可知:自来水经过自来水进液口121的导向作用以及浓水经过自浓水进液口122的导向作用均以切线方向进入到柱状腔室内并作圆周运动,以该方式进入到柱状腔室内会极大的降低节流压力,尤其是混水装置10与换向阀50的回水口之间的节流压力,即,第二回水管路42内的压力,这是使得浓水从换向阀50的回水口更顺畅的流出,有利于换向阀50对浓水流量的控制,能够有效提高流经滤膜件20的浓水侧22的浓水的流量和流速,提高了直饮水的品质。
另外,水进入到柱状腔室内作圆周运动,这有利于自来水与浓水的充分混合,提高供入滤膜件20的浓水侧22的水的均匀度。
本发明的实施方式
本发明提供了两种混水装置10的具体结构:
实施例1
如图1所示,在本实施例中,柱状腔室被配置成自尾部到头部径向尺寸均匀减小的锥柱状腔室,在该结构中,水在锥柱状腔室内作圆形运动的同时还朝向混水装置10的出液口123方向流动,该结构使得水能够在获得混合的同时还能够顺畅的经过混水装置10。
实施例2
如图2至图5所示,在本实施例中,柱状腔室被配置成自尾部到头部径向尺寸分段减小的柱状腔室,下面具体描述具有该特点的混水装置10的具体结构。
该柱状腔室由四个隔板分成五个(段)轴向排布的子腔室,即,第一隔板131、第二隔板132、第三隔板133以及第四隔板134将柱状腔室分成从尾部到头部依次排布的第一子腔室141、第二子腔室142、第三子腔室143、第四子腔室144以及第五子腔室145。自第一子腔室141到第五子腔室145,各腔室的径向尺寸分段变小。自来水进液口121和浓水进液口122形成于第一子腔室141所对应的柱状壳体11上。
第一隔板131的中部形成有镂空洞1311;第二隔板132的边缘形成有周向排布的多圈过流孔1321;第三隔板133的中部形成有镂空洞1331;第四隔板134的边缘形成有周向排布的多圈过流孔1341。
与第二隔板132相邻区域的第三子腔室143形成有锥形结构;与第四隔板134相邻区域的第五子腔室145也形成有锥形结构。
在柱状壳体11的尾部的端面处安装有能够照射第一子腔室141的紫外线杀菌灯15;在靠近柱状壳体11的头部的壳壁上装设离子浓度器16,该离子浓度器16的探头径向的伸入至第五子腔室145内以用于检测其中的水的离子浓度。
在第一隔板131的边缘处开设有周向排布的多圈气孔1312,该气孔1312包括喇叭部13122和缩口部13121,该喇叭部13122朝向第一子腔室141。
如图3所示,来自自来水管43的自来水经由自来水进液口121进入到柱状壳体11的第一子腔室141,来自浓水侧22的浓水经由浓水进水口进入到柱状壳体11的第一子腔室141,因自来水进液口121和浓水进液口122均与第一子腔室141相切,且两者朝向相反,这使得进入到第一子腔室141的自来水和浓水在第一子腔室141内作同向的圆周运动,这有利于自来水与浓水的混合。同时,紫外线杀菌灯15对第一腔室内的水进行杀菌消毒。
如图4所示,气体由气孔1312的喇叭部13122收拢并经由缩口部13121而排出到第二子腔室142中,进而避免气体存留于第一子腔室141内而对圆周运动的水产生阻力,影响水的混合。
在与柱状壳体11的出液口123连接的水泵30的负压吸附作用下和/或第一子腔室141内的水压作用下,第一子腔室141内的水通过位于第一隔板131中央的镂空洞1311进入到第二子腔室142内,然后,再通过位于第二隔板132的边缘的多圈过流孔1321进入到第三子腔室143中,由于第一隔板131的镂空洞1311位于中央,而第二隔板132的过流孔1321位于边缘,这使得经过第二子腔室142的水流改变了方向,在一定程度上提高了水混合的均匀度。
水通过第二隔板132的边缘的过流孔1321后流向第三子腔室143的锥形结构,该锥形结构使得水流改变方向而朝向第三腔室的中部流动,改变流向的水经过第三隔板133中央的镂空洞1331而进入到第四子腔室144中。水在经过第三子腔室143过程中因改变了流向而提高了水混合的均匀度。
同样地,水经过第三隔板133的镂空洞1331而进入到第四腔室后,再经过第四隔板134的边缘的过流孔1341而进入到第五子腔室145中,水在经过第四子腔室144时,水流方向也发生改变,进一步提高了水混合的均匀度。
水通过第四隔板134的边缘的过流孔1341后流向锥形结构,该锥形结构使得水流方向改变而朝向第五腔室的中部流动,最终从出液口123流出而直接或者借由水泵30供入滤膜件20的浓水侧22。
应该说明的是:
1、实施例2所提供的混水装置10使水的混合的均匀度要高于实施例1所提供的混水装置10。
2、虽然实施例2所提供混水装置10对降低节流压力的程度小于实施例1,但实施例2所提供混水装置10也足以令换向阀50在较低的节流压力下工作,换向阀50依然能够较准确的控制浓水的流量和流速。
水泵30设置在第三回水管路44上,该水泵30为自吸水泵30以用于将混合后的水以一定的压力供入滤膜件20的浓水侧22。
流量阀61和电磁开关阀62并列设置于自来水管43上,在需要制备直饮水时,首先使电磁开关阀62打开,这使得自来水迅速经过混水装置10而流向水泵30,并供入滤膜件20以建立足够的水压,当浓水侧22的水压建立后,关闭电磁开关阀62而使流量阀61打开并调节流量阀61的开度以控制自来水的供给流量。
第一流量计81设置于自来水管43上,第二流量计82设置在第二回水管路42上;第一流量计81用于测量供入混水装置10的自来水的流量,第二流量计82用于测量供入混水装置10的浓水的流量,并结合流量阀61可维持自来水与浓水的混合比例、调节自来水与浓水的混合比例以及维持水的总供给量。例如,若第二流量计82检测到浓水的流量降低,为了维持水的总供给量而调节流量阀61以提高自来水的流量。
过滤器70设置于第一流量计81的上游的自来水管43上,该过滤器70用于过滤自来水的杂质;杀菌器92设置在第一出水管路441上以用于对直饮水进行杀菌。
本发明所提供的净水***的优势在于:
1、净水***中的混水装置10能够有效降低节流压力,提高换向阀50对浓水流速和流量的控制精度。
2、通过设置流量阀61、第一流量计81和第二流量计82而能够调节自来水与浓水的混合比例以及水的总供给量。
3、实施例2所提供的混水装置10具备如下优势:
1)、通过在柱状腔室内设置隔板而将柱状腔室分隔成多个子腔室,通过使相邻隔板在中央开设镂空洞和边缘开设过流孔1321,进而使得经过子腔室的水流的方向不断发生改变,进一步提高了水混合的均匀度。
2)、在柱状壳体11的尾部装设紫外线杀菌灯15,该线杀菌灯能够有效杀灭水中的细菌,且能够有效抑制柱状腔室内滋生细菌。
3)、自来水与浓水在柱状腔室内获得均匀混合,这使得离子浓度器16所检测的离子浓度较准确,有效防止了检测数据出现漂移。
4)、经过混合装置所获得均匀度较佳的水通入滤膜件20的浓水侧22后能够有效降低滤膜件20的极差化的程度,提高了直饮水的水质。
5)、在隔板上开设气孔1312能够更大程度的将作圆周运动的水中的气体排出,降低了气体对水混合过程的影响。将气孔1312设置成喇叭状有利于收拢更多的气体。
序列表自由内容
此外,尽管已经在本发明中描述了示例性实施例,其范围包括任何和所有基于本发明的具有等同元件、修改、省略、组合(例如,各种实施例交叉的方案)、改编或改变的实施例。权利要求书中的元件将被基于权利要求中采用的语言宽泛地解释,并不限于在本说明书中或本申请的实施期间所描述的示例,其示例将被解释为非排他性的。因此,本说明书和示例旨在仅被认为是示例,真正的范围和精神由以下权利要求以及其等同物的全部范围所指示。
以上描述旨在是说明性的而不是限制性的。例如,上述示例(或其一个或更多方案)可以彼此组合使用。例如本领域普通技术人员在阅读上述描述时可以使用其它实施例。另外,在上述具体实施方式中,各种特征可以被分组在一起以简单化本发明。这不应解释为一种不要求保护的公开的特征对于任一权利要求是必要的意图。相反,本发明的主题可以少于特定的公开的实施例的全部特征。从而,以下权利要求书作为示例或实施例在此并入具体实施方式中,其中每个权利要求独立地作为单独的实施例,并且考虑这些实施例可以以各种组合或排列彼此组合。本发明的范围应参照所附权利要求以及这些权利要求赋权的等同形式的全部范围来确定。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (10)

  1. 一种净水***,其特征在于,包括:
    滤膜件,其内具有滤膜片,所述滤膜片使得滤膜件内形成浓水侧和净水侧;
    换向阀,其借由第一回水管路与所述滤膜件的浓水侧连通,所述换向阀具有废水口和回水口;
    混水装置,其包括柱状壳体,所述柱状壳体内具有柱状腔室以及与所述柱状腔室连通的浓水进液口、自来水进液口、出液口,所述浓水进液口借由第二回水管路与所述换向阀的回水口连通;自来水管连接至所述自来水进液口,所述柱状壳体的出液口借由第三回水管路与所述滤膜件的浓水侧连通;
    水泵,其设置于所述第三回水管路上;其中:
    所述自来水进液口与所述浓水进液口均与所述柱状腔室相切且连通,且所述自来水进液口与所述浓水进液口位于同一平面。
  2. 根据权利要求1所述的净水***,其特征在于,所述柱状腔室自所述柱状壳体的尾部到头部径向尺寸减小。
  3. 根据权利要求2所述的净水***,其特征在于,所述自来水进液口和所述浓水进液口形成于靠近所述柱状壳体尾部的壳壁上;所述出液口形成于所述柱状壳体的头部的端面上。
  4. 根据权利要求1所述的净水***,其特征在于,所述柱状腔室中设置有多个隔板,多个所述隔板将所述柱状腔室分隔成沿轴向排布的多个子腔室;其中:
    所述隔板上开设有供流体通过的孔洞。
  5. 根据权利要求1所述的净水***,其特征在于,所述自来水管上并联设置有流量阀和电磁开关阀,所述自来水管借由所述电磁开关阀而首先导通。
  6. 根据权利要求1所述的净水***,其特征在于,所述自来水管上设置有第一流量计,所述第二回水管路上设置有第二流量计;基于所述第一流量计和所述第二流量计控制进入到所述柱状腔室内的自来水与浓水的流量比例。
  7. 根据权利要求6所述的净水***,其特征在于,位于所述第一流量计上游的所述自来水管上设置有过滤器。
  8. 根据权利要求1所述的净水***,其特征在于,所述滤膜件的净水侧连接有直饮水出水管路,所述直饮水出水管路包括第一出水管路和/或第二出水管路;其中:
    所述第一出水管路上设置有杀菌器,所述第二出水管路伸入至直饮水存水箱中。
  9. 根据权利要求4所述的净水***,其特征在于,所述孔洞包括镂空洞和过流孔;相邻的两个隔板上分别形成位于中央的所述镂空洞以及位于边缘的周向排布的多圈所述过流孔;
    与位于尾部的所述子腔室相邻的隔板的中央形成所述镂空洞。
  10. 根据权利要求4所述的净水***,其特征在于,与位于尾部的所述子腔室相邻的所述隔板的边缘形成有周向排布的多圈气孔以允许气体通过。
PCT/CN2022/097020 2021-06-11 2022-06-03 净水*** WO2022257862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110656875.7A CN113213681A (zh) 2021-06-11 2021-06-11 净水***
CN202110656875.7 2021-06-11

Publications (1)

Publication Number Publication Date
WO2022257862A1 true WO2022257862A1 (zh) 2022-12-15

Family

ID=77081463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097020 WO2022257862A1 (zh) 2021-06-11 2022-06-03 净水***

Country Status (2)

Country Link
CN (1) CN113213681A (zh)
WO (1) WO2022257862A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213681A (zh) * 2021-06-11 2021-08-06 南京菡束环保设备有限公司 净水***
CN114542774B (zh) * 2021-08-12 2024-06-28 南京菡束环保设备有限公司 回流调节阀装置及净水***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205420033U (zh) * 2016-03-14 2016-08-03 北京伟思创科技股份有限公司 可调节废水回流的净水***
CN106396189A (zh) * 2016-11-17 2017-02-15 上海浩泽净水科技发展有限公司 一种带水质检测的免安装反渗透纯水机***
CN206255924U (zh) * 2016-11-17 2017-06-16 上海浩泽净水科技发展有限公司 一种带水质检测的免安装反渗透纯水机***
JP2017221878A (ja) * 2016-06-13 2017-12-21 三浦工業株式会社 逆浸透膜分離装置
CN207463015U (zh) * 2017-10-23 2018-06-08 科迈化工股份有限公司 一种液液混合配制装置
CN213314371U (zh) * 2020-07-07 2021-06-01 宿迁菡束环保设备有限公司 混水箱及净水***
CN113213681A (zh) * 2021-06-11 2021-08-06 南京菡束环保设备有限公司 净水***
CN215102597U (zh) * 2021-06-11 2021-12-10 南京菡束环保设备有限公司 净水***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205420033U (zh) * 2016-03-14 2016-08-03 北京伟思创科技股份有限公司 可调节废水回流的净水***
JP2017221878A (ja) * 2016-06-13 2017-12-21 三浦工業株式会社 逆浸透膜分離装置
CN106396189A (zh) * 2016-11-17 2017-02-15 上海浩泽净水科技发展有限公司 一种带水质检测的免安装反渗透纯水机***
CN206255924U (zh) * 2016-11-17 2017-06-16 上海浩泽净水科技发展有限公司 一种带水质检测的免安装反渗透纯水机***
CN207463015U (zh) * 2017-10-23 2018-06-08 科迈化工股份有限公司 一种液液混合配制装置
CN213314371U (zh) * 2020-07-07 2021-06-01 宿迁菡束环保设备有限公司 混水箱及净水***
CN113213681A (zh) * 2021-06-11 2021-08-06 南京菡束环保设备有限公司 净水***
CN215102597U (zh) * 2021-06-11 2021-12-10 南京菡束环保设备有限公司 净水***

Also Published As

Publication number Publication date
CN113213681A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2022257862A1 (zh) 净水***
CN104180023B (zh) 一种四通道分质供水水龙头
US6923893B2 (en) Liquid distributor
CN106039822A (zh) 节水***及其后置复合滤芯
CN215102597U (zh) 净水***
CN212198868U (zh) 一种节能水处理设备
CN203176370U (zh) 一种废水比电磁阀
KR101998320B1 (ko) 수처리 설비의 유량 분배 장치
JP4843339B2 (ja) オゾン水供給装置
CN114538637A (zh) 净水***
CN114538679A (zh) 混水装置
CN207412885U (zh) 循环污水过滤***
CN213112755U (zh) 水路结构
JP3405590B2 (ja) 電解イオン水生成装置
CN215102594U (zh) 混水装置
CN212931820U (zh) 一种电渗析设备内漏检测工装
CN107572707A (zh) 一种海滨城市分质供水的方法
CN220223797U (zh) 一种杀菌设备管路组件
CN207276268U (zh) 水处理***
CN206008496U (zh) 一种超滤膜断丝快速检测装置
CN205811515U (zh) 一种edi启动自动检测装置
TWM531485U (zh) 電解水設備
CN214218300U (zh) 一种生物接触氧化池
CN218653897U (zh) 纯水自洁滤芯及净水装置
JP3814357B2 (ja) 超純水の比抵抗調整方法および比抵抗調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22819460

Country of ref document: EP

Kind code of ref document: A1