WO2022007464A1 - 平衡装置及手术机器人 - Google Patents

平衡装置及手术机器人 Download PDF

Info

Publication number
WO2022007464A1
WO2022007464A1 PCT/CN2021/087677 CN2021087677W WO2022007464A1 WO 2022007464 A1 WO2022007464 A1 WO 2022007464A1 CN 2021087677 W CN2021087677 W CN 2021087677W WO 2022007464 A1 WO2022007464 A1 WO 2022007464A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
sliding rod
rotating assembly
guide block
support rod
Prior art date
Application number
PCT/CN2021/087677
Other languages
English (en)
French (fr)
Inventor
徐凯
刘旭
许阳
Original Assignee
北京术锐技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京术锐技术有限公司 filed Critical 北京术锐技术有限公司
Publication of WO2022007464A1 publication Critical patent/WO2022007464A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the present disclosure relates to the field of medical devices, and in particular, to a balancing device and a surgical robot.
  • the main manipulator is the input device of the surgical robot system, which directly affects the surgical operator, such as the doctor's operating experience and action effect.
  • the surgical operator remotely controls the surgical instruments at the end of the surgical platform through the handle of the main manipulator to perform surgery. Since the surgical process often lasts for several hours and requires a high degree of concentration, the experience of human-computer interaction during the operation and the ease of operation Sex is even more important.
  • the self-weight of the main operator should be reduced, and at the same time, the inertia of the main operator's own gravity should be overcome. Especially damping against the direction of motion.
  • the methods for realizing the above functions mainly include a counterweight method, a motor compensation method, and the like.
  • the counterweight method will increase the weight of the overall structure and affect the experience of human-computer interaction;
  • the motor compensation method greatly increases the complexity of the control system.
  • finding a motor with sufficient torque will make it difficult to reduce the overall volume, and at the same time The real-time requirements of the system are higher, and the failure rate will also increase accordingly.
  • the present disclosure provides a balancing device, comprising: a support rod; a rotating assembly, at least a part of which is rotatably connected with the support rod; a guide block, hinged with one of the support rod and the rotating assembly ; sliding rod, one end of the sliding rod is hinged with the support rod and the other in the rotating assembly to form a hinged end, the other end of the sliding rod forms a free end, the sliding rod and the guide block A sliding connection, the sliding rod, the supporting rod and the rotating assembly form a triangle; a force balance piece, one end of the force balance piece is connected with the guide block, and the other end is connected with the hinged end or free end of the sliding rod end connection.
  • the present disclosure provides a surgical robot, comprising: a surgical platform, the surgical platform includes a positioning arm and a surgical instrument disposed at the end of the positioning arm; a main manipulator, the main manipulator includes a main manipulator A manipulator moving arm and a handle provided at the end of the main manipulator moving arm, the main manipulator is used for receiving manipulation actions to control the synchronous movement of the surgical instrument; the main manipulator moving arm and/or the positioning arm It includes a balance device, the balance device includes: a support rod; a rotating assembly, at least a part of which is rotatably connected with the support rod; a guide block, hinged with one of the support rod and the rotating assembly; a sliding rod, the sliding rod One end of the rod is hinged with the support rod and the other of the rotating assembly to form a hinged end, the other end of the sliding rod forms a free end, the sliding rod is slidably connected with the guide block, and the sliding rod , the support rod and the rotating assembly form a triangle; a
  • FIG. 1( a ) shows a schematic structural diagram of a balancing device according to some embodiments of the present disclosure
  • Figure 1(b) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • FIG. 1( c ) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • FIG. 1(d) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • FIG. 2 shows a schematic diagram of the principle of a balancing device according to some embodiments of the present disclosure
  • Figure 3(a) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 3(b) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 4(a) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 4(b) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 5(a) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 5(b) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 6(a) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 6(b) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 7(a) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 7(b) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 8(a) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 8(b) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 8(c) shows a schematic three-dimensional structure diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 9(a) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure.
  • Figure 9(b) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure.
  • Figure 10(a) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • Figure 10(b) shows a schematic structural diagram of another balancing device according to some embodiments of the present disclosure
  • FIG. 11 shows a schematic structural diagram of a surgical robot according to some embodiments of the present disclosure.
  • the terms “installed”, “connected”, “connected” and “coupled” should be understood in a broad sense, for example, it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • installed e.g., it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the end close to the operator is defined as proximal, proximal or posterior, posterior, and the end close to the surgical patient is defined as distal, distal or anterior, anterior.
  • proximal, proximal or posterior, posterior and the end close to the surgical patient is defined as distal, distal or anterior, anterior.
  • FIGS. 1( a ) to 1 ( d ) respectively show schematic structural diagrams of balancing devices 100 a , 100 b , 100 c and 100 d according to some embodiments of the present disclosure.
  • the balancing device 100 a may include a rotating assembly 110 a , a support rod 120 a , a guide block 130 a , a sliding rod 140 a and a force balancer 150 a .
  • the support rod 120a may extend longitudinally.
  • the support rod 120a can extend in the longitudinal direction and be fixed on the base (not shown in the figure) or the support rod 120a can be directly integrally formed with the base.
  • the support rods 120a may be connected by a plurality of rods to maintain the support rods 120a extending longitudinally, eg, in a parallelogram fashion, so that the support rods 120a are disposed parallel to the base.
  • the longitudinal direction may be a direction perpendicular to the horizontal, or may be a height direction of a device (eg, a surgical robot) on which the balancing device 100a is installed. At least a portion of the rotating assembly 110a may be rotatably connected with the support rod 120a.
  • the rotating assembly 110a may include a rod or rods.
  • the support rod 120a is fixed to the base, and the rotating assembly 110a can be connected with a load (not shown in the figure, such as a component to be balanced by gravity or torque).
  • the support rod 120a extends longitudinally and is parallel to the longitudinal axis of the base, and the rotating assembly 110a or the support rod 120a can be connected to a load (not shown).
  • the guide block 130a can be hinged to the support rod 120a, one end of the sliding rod 140a can be hinged to the rotating assembly 110a to form a hinged end M, and the other end of the sliding rod 140a is free terminal N.
  • the sliding rod 140a is slidably connected with the guide block 130a.
  • the guide block 130a may be provided with a through hole through which the sliding rod 140a passes and may slide along the through hole.
  • the guide block 130a may also be provided with a guide rail, and the sliding rod 140a may include a slider, and the slider cooperates with the guide rail to realize the sliding connection between the sliding rod 140a and the guide block 130a.
  • the guide block 130a can also be hinged to the rotating assembly 110a, the sliding rod 140a can be hinged to the support rod 120a, and the sliding rod 140a is slidably connected to the guide block 130a.
  • the sliding rod 140a, the supporting rod 120a and the rotating assembly 110a form a triangle.
  • the force balance member 150a may include a pressure-bearing elastic member.
  • the pressure-bearing elastic member may be a compression spring, which is sleeved on the sliding rod 140a. One end of the compression spring is connected to the guide block 130a, and the other end is connected to the hinged end M or the free end N of the sliding rod 140a.
  • the material of the compression spring is convenient to obtain and the cost is low, and the manufacturing cost of the balancing device or the surgical robot can be saved.
  • the pressure-bearing elastic member can also be a gas spring in a compressed state, the gas spring can be arranged in parallel with the sliding rod 140a, one end of the gas spring is connected with the guide block 130a, and the other end is connected with the hinged end M of the sliding rod 140a or free end N connection.
  • the elastic performance of the gas spring is stable, which can prolong the service life of the balance device or the surgical robot, and can be better applied to the high-end surgical robot.
  • one end of the force balance member 150a may be connected with the guide block 130a, and the other end may be connected with the free end N of the sliding rod 140a.
  • the connection between the force balancer 150a and the guide block 130a, the free end N or the hinged end M of the sliding rod 140a may include various forms, including but not limited to, fixed connection (such as welding, screw fixing, snapping, etc.), Removable connection or abutment.
  • the free end N of the sliding rod 140a includes a stopper, and the force balancer 150a can abut against the stopper.
  • the rotating assembly 110a or the support rod 120a may be connected to the load.
  • the support rod 120a can be fixedly disposed, and the rotating assembly 110a can be connected with a load (not shown in the figure), for example, the load can be disposed at the end of the rotating assembly 110a away from the support rod 120a .
  • the balancing device 100b may include a rotating assembly 110b, a support rod 120b, a guide block 130b, a sliding rod 140b and a force balancer 150b.
  • the sliding rod 140b, the supporting rod 120b and the rotating assembly 110b are connected to form a triangle.
  • the force balance member 150b may include a magnetic member.
  • the force balance member 150b (eg, a magnetic member) may include, but is not limited to, two magnets 151b and 152b opposite to the same pole, eg, the magnets 151b and 152b may be electromagnets, permanent magnets, or a combination of both. As shown in FIG.
  • the magnets 151b and 152b may be electromagnets, respectively, and the electromagnets may include a conductor rod wound around an energized coil.
  • the magnet 151b may be connected with the guide block 130b
  • the magnet 152b may be connected with the hinged end M or the free end N of the sliding rod 140b.
  • the magnetic spring can be arranged on the free end of the guide block 130b and the sliding rod 140b between N.
  • the magnetic component adopts an electromagnet, the structure is convenient and the cost is low, and the manufacturing cost of the balancing device can be saved.
  • the magnetic parts can adjust the current size according to the actual needs to meet the needs of gravity balance, and have stable performance, low noise or no mechanical noise, which can prolong the service life of the balance device (or surgical robot), and can be better applied to high-end equipment or equipment. surgical robot.
  • the balancing device 100c may include a rotating assembly 110c, a support rod 120c, a guide block 130c, a sliding rod 140c and a force balancer 150c.
  • the sliding rod 140c, the supporting rod 120c and the rotating assembly 110c are connected to form a triangle.
  • the force balance member 150c may comprise a magnetic member, such as a magnetic spring.
  • the magnetic spring can be sleeved by an inner cylindrical conductor and an outer cylindrical conductor, and the inner cylindrical conductor and the outer cylindrical conductor can slide and displace each other in the axial direction.
  • the inner cylindrical conductor and the outer cylindrical conductor are arranged coaxially with the sliding rod 140c, one of which (eg, the outer cylindrical conductor) is connected to the guide block 130c, and the other (eg, the inner cylindrical conductor) is connected to the hinged end of the sliding rod 140c M or free end N connection.
  • the magnetic spring can be arranged between the guide block 130c and the free end N of the sliding rod 140c, as shown in FIG. 1(c) Show.
  • the magnetic spring has stable performance, and the mechanical properties can be selected according to the needs, which can improve the adaptability, overall life and stability of the magnetic parts.
  • the magnetic spring can realize the function of the compression spring on the one hand, and the function of the tension spring on the other hand.
  • the magnetic spring is a tension spring
  • the magnetic force also increases (for example, increases linearly) as the spring stretches, and its setting position can also be set according to Actual assembly varies accordingly.
  • the balancing device 100d may include a rotating assembly 110d, a support rod 120d, a guide block 130d, a sliding rod 140d and a force balancer 150d.
  • the sliding rod 140d, the supporting rod 120d and the rotating assembly 110d are connected to form a triangle.
  • the force balance member 150d may include a magnetic member, and the magnetic member may include a large diameter magnetic ring 151d and a small diameter magnetic ring 152d.
  • the large diameter magnetic ring 151d and the small diameter magnetic ring 152d may be permanent magnets.
  • Both the large-diameter magnetic ring 151d and the small-diameter magnetic ring 152d are magnetized axially and opposite to each other in the same magnetic pole direction to generate a repulsive force.
  • the large-diameter magnetic ring 151d and the small-diameter magnetic ring 152d can be coaxially arranged through an insulating shaft, and can slide relative to each other.
  • the large-diameter magnetic ring 151d and the small-diameter magnetic ring 152d are disposed coaxially with the sliding rod 140d, one of which (eg, the small-diameter magnetic ring 152d) is connected to the guide block 130d, and the other (eg, the large-diameter magnetic ring 151d) is connected to the sliding rod
  • the hinged end M or the free end N of 140d is connected.
  • the force balancer 150d can improve the overall life and stability of the balance device 100d, and the magnitude of the restoring force of the force balancer 150d can be set by adjusting the magnetic ring as required. For example, parameters such as the distance between the two magnetic rings, the size of the magnetic rings, and the thickness of the magnetic rings can be adjusted. For example, it is possible to increase the diameter of the large diameter magnetic ring and/or the small diameter magnetic ring, or reduce the diameter difference between the large diameter magnetic ring and the small diameter magnetic ring, or increase the axial height of the large diameter magnetic ring and/or the small diameter magnetic ring etc. to increase the restoring force of the magnetic parts. Thereby, the adaptability of the balancing device can be improved.
  • the magnetic ring can be made of rare earth magnetic material, so as to achieve a strong restoring force without generating vibration noise, which can increase the stability and reliability of the system.
  • Figure 2 shows a schematic diagram of the principle of a balancing device 100a (or 100b, 100c, 100d) according to some embodiments.
  • the support rod 120a (or 120b, 120c, 120d) may be fixed longitudinally (eg, may be fixedly arranged on the base).
  • the rotating assembly 110a (or 110b, 110c, 110d) can be hinged with the support rod 120a at point O
  • the guide block 130a can be hinged with the support rod 120a at point B
  • the sliding rod 140a can be hinged with the rotating assembly 110a at point A.
  • the sliding rod 140a is slidably connected with the guide block 130a, and the sliding rod 140a, the support rod 120a and the rotating assembly 110a form a triangle.
  • An angle is formed between the support rod 120a and the rotating assembly 110a included angle Opposite to slide bar 140a.
  • the hinge point O of the rotating assembly 110a and the support rod 120a is longitudinally lower than the hinge point B of the guide block 130a and the support rod 120a, for example, the rotating assembly 110a is hinged to the support rod 120a the bottom part and can be connected to the load.
  • the guide block 130a is hinged to the middle portion of the support rod 120a. It should be understood that the guide block 130a can also be hinged to the rotating assembly 110a, and the sliding rod 140a can be hinged to the support rod 120a.
  • One end of the force balance piece 150a may be connected with the guide block 130a, and the other end of the force balance piece 150a may be connected with the free end N of the sliding rod 140a.
  • the distance between the force balance members 150a may vary with the movement of the sliding rod 140a.
  • the load drives the rotating assembly 110a to rotate clockwise, and the included angle formed between the support rod 120a and the rotating assembly 110a and opposite to the sliding rod 140a It tends to increase under the action of the gravitational moment of the load, and makes the sliding rod 140a slide obliquely downward to the right (the plane shown in FIG. 2 ).
  • the balancing device realizes the gravitational balancing effect within the range of motion through the force balancing element, and has a simple structure, small occupied volume and good operating experience.
  • the force balancing member of the balancing device adopts a magnetic member, which can further improve the adaptability of the balancing device and reduce or eliminate mechanical noise.
  • the force balance member 150a of the balance device 100a may also be a tension spring.
  • the setting position of the tension spring is different from that of the pressure-bearing elastic member.
  • the position of the hinge point O of the support rod 120a and the rotating assembly 110a in the longitudinal direction is lower than the hinge point B of the support rod 120a and the guide block 130a, the clamp formed between the support rod 120a and the rotating assembly 110a and opposite to the sliding rod 140a Horn
  • the tension spring is located between the guide block 130a and the hinged end M of the sliding rod 140a.
  • the force balancing member 150a may include a magnetic member for generating a restoring force capable of balancing the tensile force.
  • the magnetic member may include a pair of magnets opposed to opposite poles or a restoring force that generates a restoring force in an elongated condition. Magnetic spring.
  • FIG. 3(a) and FIG. 3(b) are schematic structural diagrams of balancing devices 300a and 300b, respectively, according to some embodiments.
  • the balancing device 300a may include a rotating assembly 310a, a support rod 320a, a guide block 330a, a sliding rod 340a and a force balancer 350a.
  • the sliding rod 340a, the supporting rod 320a and the rotating assembly 310a are connected to form a triangle.
  • the force balance member 350a may include a pressure-bearing elastic member, such as a compression spring or a gas spring.
  • FIG. 1 a pressure-bearing elastic member
  • the support rod 320a may be fixedly disposed along the longitudinal direction (eg, may be fixedly disposed on the base).
  • one end of the force balance member 350a is connected with the guide block 330a, and the other end is connected with the hinged end M of the sliding rod 340a.
  • the rotating assembly 310a or the support rod 320a is used to connect with the load.
  • the balancing device 300b may include a rotating assembly 310b, a support rod 320b, a guide block 330b, a sliding rod 340b and a force balancer 350b.
  • the sliding rod 340b, the supporting rod 320b and the rotating assembly 310b are connected to form a triangle.
  • the force balancer 350b may comprise a magnetic force member (eg, the force balancer in the balance devices 100b-100d).
  • One end of the force balance member 350b is connected with the guide block 330b, and the other end is connected with the hinged end M of the sliding rod 340b.
  • the support rod 320b may be fixed longitudinally (e.g., may be fixed on the base).
  • the force balancer 350b may include magnets 351b and 352b, the magnet 351b is connected with the guide block 330b, and the magnet 352b is connected with the hinged end M of the sliding rod 340b.
  • the rotating assembly 310b or the support rod 320b is used to connect with the load.
  • the working principle of the balancing device 300a is as follows. As shown in Fig. 3(a), the hinge point O of the rotating assembly 310a (or 310b) and the support rod 320a (or 320b) is longitudinally higher than the hinge point B of the guide block 330a (or 330b) and the support rod 320a, For example, the rotating assembly 310a is hinged to the top portion of the support rod 320a, and the guide block 330a is hinged to the middle portion of the support rod 320a.
  • the guide block 330a (or 330b) can also be hinged to the rotating assembly 310a (or 310b), and the sliding rod 340a (340b) can be hinged to the support rod 320a (320b).
  • the rotating assembly 310a is connected to the load.
  • One end of the force balance piece 350a may be connected with the guide block 330a, and the other end of the force balance piece 350a may be connected with the hinge end M of the sliding rod 340a.
  • the load drives the rotating assembly 310a to rotate clockwise due to the action of gravity, and the included angle formed between the support rod 320a and the rotating assembly 310a and opposite to the sliding rod 340a Under the action of the gravitational moment of the load, it tends to decrease, and the sliding rod 340a slides obliquely to the lower left (the plane shown in Fig. 3(a) ).
  • the force balancer 350a is located between the guide block 330a and the hinged end M of the sliding rod 340a, the sliding rod 340a slides relative to the guide block 330a, and the force balancer 350a is compressed and approached, thereby generating a restoring force F obliquely upward to the right to balance the rotation Assembly 310a and the gravity of the load.
  • the force balance member 350a of the balance device 300a may also be a tension spring.
  • the setting position of the tension spring is different from that of the pressure-bearing elastic member.
  • the position of the hinge point O of the support rod 320a and the rotating assembly 310a in the longitudinal direction is higher than the hinge point B of the support rod 320a and the guide block 330a, and the clamp formed between the support rod 320a and the rotating assembly 310a and opposite to the sliding rod 340a Horn
  • the tension spring is located between the guide block 330a and the free end N of the sliding rod 340a when it tends to decrease under the action of the gravitational moment of the load.
  • the sliding rod 340a slides relative to the guide block 330a, so that the tension spring is stretched and deformed, thereby generating a restoring force F to balance the gravity of the rotating component 310a or the load.
  • Figure 4(a) shows a schematic structural diagram of a balancing device 400a according to some embodiments of the present disclosure.
  • the balancing device 400a may include a rotating assembly 410a, a support rod 420a, a guide block 430a, a sliding rod 440a and a force balancer 450a.
  • the force balance member 450a may include a pressure-bearing elastic member, such as a compression spring or a gas spring.
  • Rotation assembly 410a (or 110a) of balance device 400a (or balance device 100a) may include rod 411a, rod 412a, and rod 413a.
  • the two ends of the rod 412a are hinged with one end of the rod 411a and the rod 413a respectively, and the support rod 420a is hinged with the other end of the rod 411a and the rod 413a respectively.
  • the support rod 420a, the rod 411a, the rod 412a and the rod 413a form a parallelogram mechanism.
  • the support rod 420a or the rod 412a may be fixedly disposed on the base.
  • the balancing device 400a may be provided on the base.
  • the support rod 420a can be replaced with a base, and the rotating assembly 410a can be rotatably disposed on the base, or the support rod 420a can be fixedly disposed on the base, and the rotating assembly 410a can rotate relative to the support rod 420a.
  • the support rod 420a extends longitudinally and is fixedly arranged on the base (not shown in the figure).
  • the rod 411a, rod 412a or rod 413a of the rotating assembly 410a can be connected with a gravitational load (eg a part to be balanced), the rod 413a or rod 411a can be hinged with the sliding rod 440a, and the support rod 420a can be hinged with the guide block 430a.
  • rod 413a or rod 411a may be hinged with guide block 430a, and support rod 420a may be hinged with sliding rod 440a.
  • the force balance member 450a may include a pressure-bearing elastic member (for example, the pressure-bearing elastic member shown in FIG. 1( a ) and FIG. 3( a ), and one end of the force balance member 450a may be connected to
  • the guide block 430a is connected, and the other end can be connected with the free end N of the sliding rod 440a.
  • the sliding rod 440a is slidably connected with the guide block 430a, and the sliding rod 440a, the supporting rod 420a and the rod 413a are connected to form a triangle.
  • the rotating assembly 410a is driven to rotate clockwise relative to the support rod 420a, and the angle formed between the support rod 420a and the rod 413a of the rotating assembly 410a and opposite to the sliding rod 440a It tends to increase under the action of the gravitational moment of the load, and makes the sliding rod 440a slide obliquely downward to the right (the plane shown in FIG. 4(a) ).
  • One end of the force balance member 450a (or 150a) is connected to the guide block 430a, and the other end is connected to the free end N of the sliding rod 440a. , so as to generate a restoring force F inclined to the upper left to balance the gravity of the rotating assembly 410a and the load.
  • the parallelogram mechanism the translation of the load in the plane where the parallelogram mechanism is located is realized.
  • the force balance member 450a is changed from a pressure-bearing elastic member to a tension spring.
  • the setting position of the tension spring is different from that of the pressure-bearing elastic member.
  • the hinge point of the support rod 420a and the rod 413a is lower than the hinge point of the support rod 420a and the guide block 430a in the longitudinal direction, and the angle formed between the support rod 420a and the rod 413a and opposite to the sliding rod 440a
  • the tension spring is located between the guide block 430a and the hinged end M of the sliding rod 440a, which tends to increase under the action of the gravitational moment of the load.
  • FIG. 4(b) shows a schematic structural diagram of a balancing device 400b according to some embodiments of the present disclosure.
  • the balancing device 400b may include a rotating assembly 410b, a support rod 420b, a guide block 430b, a sliding rod 440b and a force balancer 450b.
  • rotational assembly 410b of balance device 400b may include rod 411b, rod 412b, and rod 413b.
  • the two ends of the rod 412b are hinged with one end of the rod 411b and the rod 413b respectively, and the support rod 420b is hinged with the other end of the rod 411b and the rod 413b respectively.
  • the support rod 420b, the rod 411b, the rod 412b and the rod 413b form a parallelogram mechanism.
  • the force balancing member 450b may include a magnetic member (eg, the force balancing member in the balancing devices 100b-100d and 300b, as shown in FIGS. 1(b)-1(d) ) at one end and may It is connected with the guide block 430b, and the other end can be connected with the free end N of the sliding rod 440b.
  • the sliding rod 440b is slidably connected with the guide block 430b, and the sliding rod 440b, the supporting rod 420b and the rod 413b are connected to form a triangle. In some embodiments, as shown in FIG.
  • the force balancer 450b may include magnets 451b and 452b, the magnet 451b is connected with the guide block 430b, and the magnet 452b is connected with the free end N of the sliding rod 440b.
  • the rotating assembly 410b or the support rod 420b is used to connect with the load.
  • the force balancing member 450b of the balancing device 400b may include any magnetic force member (for example, , as shown in Fig. 1(b)-Fig. 1(d) as the magnetic element).
  • rotating assembly 410a may also include another rod (not shown), rods 411a and 413a extending outwardly from the parallelogram mechanism and hinged to the other rod, respectively.
  • the support rod 420a, rod 411a, rod 413a and another rod form another parallelogram mechanism. It should be understood that the support rod 420a may be located within the new parallelogram mechanism or be one side of the new parallelogram mechanism.
  • the moving end By forming a parallelogram mechanism between the rotating component and the support rod, the moving end can be controlled.
  • the movement of the load is translation, for example, it moves in the longitudinal plane where the parallelogram mechanism is located, and is not affected by the change of the attitude of the load.
  • the failure and change of the gravity balance model caused by the shift of the center of gravity can increase the stability of the balance device.
  • FIG. 5(a) shows a schematic structural diagram of a balancing device 500a according to some embodiments of the present disclosure.
  • the balancing device 500a may include a rotating assembly 510a, a support rod 520a, a guide block 530a, a sliding rod 540a, and a force balancer 550a.
  • the rotating assembly 510a may include a rod 511a, a rod 512a, and a rod 513a.
  • Both ends of the rod 512a are hinged with one end of the rod 511a and the rod 513a, respectively, and the support rod 520a is hinged with the other ends of the rod 511a and the rod 513a, respectively.
  • the support rod 520a, rod 511a, rod 512a, and rod 513a form a parallelogram mechanism.
  • the rotating assembly 510a may be connected to a load.
  • the rod 513a or the rod 511a may be hinged with the sliding rod 540a, and the support rod 520a may be hinged with the guide block 530a.
  • rod 513a or rod 511a may be hinged with guide block 530a, and support rod 520a may be hinged with sliding rod 540a.
  • the sliding rod 540a can be hinged to the rod 511a, the sliding rod 540a is slidably connected with the guide block 530a, and the sliding rod 540a, the supporting rod 520a and the rod 511a form a triangle.
  • the hinge point of the support rod 520a and a rod 513a is higher than the hinge point of the support rod 520a and the guide block 530a in the longitudinal direction.
  • the force balance member 550a may include a pressure bearing elastic member (such as a compression spring or a gas spring), one end of the force balance member 550a may be connected with the guide block 530a, and the other end may be connected with the hinged end M of the sliding rod 540a.
  • the load drives the rotating assembly 510a to rotate clockwise relative to the support rod 520a, and the included angle formed between the support rod 520a and the rod 511a of the rotating assembly 510a and opposite to the sliding rod 540a
  • the force balancer 550a is located between the guide block 530a and the hinged end M of the sliding rod 540a, which compresses and deforms the force balancer 550a, thereby generating an upward and rightward restoring force F to balance the gravity of the rotating assembly 510a and the load.
  • the force balance member 550a is changed from a pressure-bearing elastic member to a tension spring.
  • the setting position of the tension spring is different from that of the pressure-bearing elastic member.
  • the hinge point of the support rod 520a and the rod 511a is higher than the hinge point of the support rod 520a and the guide block 530a in the longitudinal direction, and the included angle formed between the support rod 520a and the rod 511a and opposite to the sliding rod 540a
  • the tension spring is located between the guide block 530a and the free end N of the sliding rod 540a, which tends to decrease under the action of the gravitational moment of the load.
  • FIG. 5(b) shows a schematic structural diagram of a balancing device 500b according to some embodiments of the present disclosure.
  • the balancing device 500b may include a rotating assembly 510b, a support rod 520b, a guide block 530b, a sliding rod 540b and a force balance member 550b.
  • the rotating assembly 510b of the balance device 500b may include a rod 511b, a rod 512b, and a rod 513b.
  • the force balancer 550b may include magnets 551b and 552b, the magnet 551b may be connected with the guide block 530b, and the magnet 552b may be connected with the hinged end M of the sliding rod 540b.
  • the sliding rod 540b is slidably connected with the guide block 530b, and the sliding rod 540b, the supporting rod 520b and the rod 511b are connected to form a triangle.
  • the rotating assembly 510b is driven to rotate clockwise relative to the support rod 520b, and the angle formed between the support rod 520b and the rod 511b of the rotating assembly 510b and opposite to the sliding rod 540b
  • the sliding rod 540b slides obliquely to the lower left (the plane shown in Fig. 5(b) ).
  • the force balance member 550b is located between the guide block 530b and the hinged end M of the sliding rod 540b, and the sliding rod 540b slides relative to the guide block 530b to compress the force balance member 550b (such as a magnetic member), thereby generating a restoring force F obliquely upward to the right, to balance the gravity of the rotating assembly 510b and the load.
  • the force balance member 550b such as a magnetic member
  • FIG. 5(b) shows the specific structure and connection relationship of the force balancing member 550b of the balancing device 500b
  • the force balancing member 550b of the balancing device 500b may include any magnetic force member (for example, , as shown in Fig. 1(b)-Fig. 1(d) as the magnetic element).
  • FIG. 6(a) shows a schematic structural diagram of a balancing device 600a according to some embodiments of the present disclosure.
  • the balancing device 600a may include a rod or base 660a (in the following description, the base 660a is taken as an example), a rotating assembly 610a, a support rod 620a, a guide block 630a, a sliding Rod 640a and force balancer 650a.
  • the rotating assembly 610a may include a rod 611a and a rod 613a.
  • rod 611a and rod 613a are hinged to base 660a, respectively, and the hinge point of rod 611a and base 660a and the hinge point of rod 613a and base 660a are located on the same longitudinal axis.
  • the support rod 620a is parallel to the longitudinal axis, the two ends of the support rod 620a are hinged with the other ends of the rod 611a and the rod 613a, respectively, and the rod 611a, the support rod 620a and the rod 613a and the base 660a form a parallelogram mechanism.
  • the rod 613a or the rod 611a may be hinged with the sliding rod 640a, and the support rod 620a may be hinged with the guide block 630a.
  • rod 613a or rod 611a may be hinged with guide block 630a
  • support rod 620a may be hinged with sliding rod 640a.
  • the guide block 630a may be hinged to the support rod 620a.
  • the sliding rod 640a is hinged to the rod 611a, the sliding rod 640a is slidably connected with the guide block 630a, and the sliding rod 640a, the support rod 620a and the rod 611a form a triangle.
  • the force balance member 650a may include a pressure-bearing elastic member (such as a compression spring or a gas spring). One end of the force balance member 650a is connected with the guide block 630a, and the other end is connected with the free end N of the sliding rod 640a.
  • the rod 611a, rod 613a or support rod 620a of the rotating assembly 610a may be connected to the load.
  • the load may be connected to the rotating assembly 610a through the support rod 620a.
  • the rotating assembly 610a rotates clockwise, and the hinge point of the support rod 610a and the rod 611a is higher than the hinge point of the support rod 620a and the guide block 630a in the longitudinal direction.
  • the support rod 620a and the rod The angle formed between 611a and opposite to the sliding rod 640a Under the action of the gravitational moment of the load, it tends to increase, and the sliding rod 640a slides obliquely downward to the right (the plane shown in Fig. 6(a) ).
  • the force balancer 650a is compressed to generate a restoring force F obliquely to the upper left to balance the gravity of the support rod 620a, the rotating assembly 610a and the load.
  • the force balance member 650a is changed from a pressure-bearing elastic member to a tension spring.
  • the setting position of the tension spring is different from that of the pressure-bearing elastic member.
  • the hinge point of the support rod 620a and the rod 611a is higher than the hinge point of the support rod 620a and the guide block 630a in the longitudinal direction, and the angle formed between the support rod 620a and the rod 611a and opposite to the sliding rod 640a
  • the tension spring is located between the guide block 630a and the hinged end M of the sliding rod 640a, which tends to increase under the action of the gravitational moment of the load.
  • FIG. 6(b) respectively shows a schematic structural diagram of a balancing device 600b according to some embodiments of the present disclosure.
  • the balancing device 600b may include a rod or base 660b (in the following description, the base 660b is taken as an example), a rotating assembly 610b, a support rod 620b, a guide block 630b, Sliding rod 640b and force balancer 650b.
  • Rotation assembly 610b may include rod 611b and rod 613b.
  • rod 611b and rod 613b is hinged with base 660b, respectively, and the hinge point of rod 611b and base 660b and the hinge point of rod 613b and base 660b are located on the same longitudinal axis.
  • Two ends of the support rod 620b are hinged with the other ends of the rod 611b and the rod 613b respectively, and the rod 611b, the support rod 620b and the rod 613b and the base 660b form a parallelogram mechanism.
  • the force balance member 650b may include any of the balance devices 100b-100d, or magnetic members 300b-500b (eg, FIGS.
  • the shown magnetic force piece), one end of the force balance piece 650b can be connected with the guide block 630b, and the other end can be connected with the free end N of the sliding rod 640b.
  • the sliding rod 640b is slidably connected with the guide block 630b, and the sliding rod 640b, the supporting rod 620b and the rod 611b are connected to form a triangle.
  • the load drives the rotating assembly 610b to rotate clockwise relative to the base 660b, and the included angle formed between the support rod 620b and the rotating assembly 610b and opposite to the sliding rod 640b It tends to increase under the action of the gravitational moment of the load, and makes the sliding rod 640b slide obliquely downward to the right (the plane shown in Fig. 6(b) ).
  • the magnetic member 650b is deformed, thereby generating a restoring force F obliquely to the upper left, so as to balance the gravity of the rotating assembly 610b, the support rod 620b and the load.
  • FIG. 7(a) shows a schematic structural diagram of a balancing device 700a according to some embodiments of the present disclosure.
  • the balancing device 700a may include a rod or base 760a (in the following description, the base 760a is taken as an example), a rotating assembly 710a, a support rod 720a, a guide block 730a, a sliding Rod 740a and force balancer 750a.
  • the rod 713 in the rotating assembly 710 forms a triangle with the support rod 720 and the sliding rod 740 .
  • the force balance member 750a may include a pressure-bearing elastic member (for example, the pressure-bearing elastic member shown in FIG. 1(a), FIG.
  • one end of the force balance member 750a may be connected with the guide block 730a connected, and the other end can be connected with the hinged end M of the sliding rod 740a.
  • the load drives the rotating assembly 710a to rotate clockwise relative to the base, and the included angle formed between the support rod 720a and the rod 713a and opposite to the sliding rod 740a
  • the force balancer 750a is compressed and deformed to generate a restoring force F diagonally upward to the right to balance the rotating assembly 710a and the support rod 720a and the gravity of the load.
  • the force balance member 750a is changed from a pressure-bearing elastic member to a tension spring.
  • the setting position of the tension spring is different from that of the pressure-bearing elastic member.
  • the angle formed between the support rod 720a and the rod 713a and opposite to the sliding rod 740a The tension spring is located between the guide block 730a and the free end N of the sliding rod 740a, which tends to decrease under the action of the gravitational moment of the load.
  • FIG. 7( b ) respectively shows a schematic structural diagram of a balancing device 700 b according to some embodiments of the present disclosure.
  • the balancing device 700b may include a rod or base 760b, a rotating assembly 710b, a support rod 720b, a guide block 730b, a sliding rod 740b, and a force balancer 750b.
  • the rod 713b in the rotating assembly 710b forms a triangle with the support rod 720b and the sliding rod 740b.
  • the force balancing member 750b may include any magnetic member in the balancing devices 100b-100d, or 300b-600b (eg, the magnetic force shown in FIGS. 1(b)-1(d), 3(b)-6(b) piece), one end of the force balance piece 750b may be connected with the guide block 730b, and the other end may be connected with the hinged end M of the sliding rod 740b.
  • the load drives the rotating assembly 710b to rotate clockwise relative to the base 760b, and the included angle formed between the support rod 720b and the rotating assembly 710b and opposite to the sliding rod 740b
  • the sliding rod 740b slides obliquely to the left and down
  • the magnetic member 750b is compressed and deformed to generate a restoring force F obliquely to the upper right, so as to balance the rotating assembly 710b, the support rod 720b and the gravity of the load.
  • Figure 8(a) shows a schematic structural diagram of a balancing device 800a (or a modification of the balancing device 600a in Figure 6(a)) according to some embodiments of the present disclosure.
  • the balancing device 800a may include a rod or base 860a (in the following description, the base 860a is taken as an example), a rotating assembly 810a, a support rod 820a, a guide block 830a, a slide Rod 840a and force balancer 850a.
  • the rotating assembly 810a (or 610a) may include a rod 811a, a rod 813a, and a rod 814a.
  • rod 811a and rod 813a is hinged with base 860a, respectively, and the hinge point of rod 811a and base 860a and the hinge point of rod 813a and base 860a are located on the same longitudinal axis.
  • Two ends of the support rod 820a are hinged with the other ends of the rod 811a and the rod 813a respectively, and the rod 811a, the support rod 820a and the rod 813a and the base 860a form a parallelogram mechanism.
  • the rod 811a and the rod 813a respectively extend in the direction away from the base 860a, and are respectively hinged with both ends of the rod 814a on the side of the support rod 820a away from the base 860a.
  • Rod 811a, rod 814a, and rod 813a form a parallelogram mechanism with base 860a.
  • rod 811a in rotating assembly 810a forms a triangle with support rod 820a and sliding rod 840a.
  • the force balance member 850a may include a pressure-bearing elastic member (for example, the pressure-bearing elastic member shown in FIG. 1(a), FIG. 3(a)-FIG. 7(a)), and one end of the force balance member 850a may be connected with the guide block 830a. connected, and the other end can be connected with the free end N of the sliding rod 840a.
  • FIG. 8( b ) respectively shows a schematic structural diagram of a balancing device 800 b (or a modification of the balancing device 600 b in FIG. 6 ( b )) according to some embodiments of the present disclosure.
  • the balancing device 800b may include a rod or base 860b (in the following description, the base 860b is taken as an example), a rotating assembly 810b, a support rod 820b, a guide block 830b, Sliding rod 840b and force balancer 850b.
  • the rotating assembly 810b may include a rod 811b, a rod 813b, and a rod 814b.
  • the rod 811b, the support rod 820b and the rod 813b are hinged in sequence and form a parallelogram mechanism with the base 860b.
  • the rod 811b and the rod 813b respectively extend in the direction away from the base 860b, and are respectively hinged with both ends of the rod 814b on the side of the support rod 820b away from the base 860b.
  • Rod 811b, rod 814b, and rod 813b and base 860b form a parallelogram mechanism. As shown in Fig.
  • the force balance member 850b may include any magnetic force member of the balance devices 100b-100d, or 300b-700b (eg, the magnetic force shown in FIGS. 1(b)-1(d), 3(b)-7(b) piece), one end of the force balance piece 850b may be connected with the guide block 830b, and the other end may be connected with the free end N of the sliding rod 840b.
  • FIG. 8( c ) shows a schematic three-dimensional structure diagram of a balancing device 800 a according to some embodiments of the present disclosure.
  • the balancing device 800a may include a force balancing member 850a, such as a pressure-bearing elastic member.
  • Rod 811a, rod 813a, rod 814a, or support rod 820a may be connected to load 870a.
  • rod 814a may be connected to load 870a. It can be understood that although FIG.
  • the balance device 800a may include a pressure-bearing elastic member or a magnetic member according to any embodiment of the present application (for example, for example, FIG. 1( b) - Figure 1 (d), Figure 3 (b), Figure 4 (b), Figure 5 (b), Figure 6 (b), Figure 7 (b) The magnetic components shown in Figure 7 (b)) and the connection relationship (for example, 8 (a), FIG. 9 (a) and FIG. 10 (a) shown in the connection relationship).
  • the load 870a drives the rotating assembly 810a to rotate clockwise relative to the base 860a, and the included angle formed between the support rod 820a and the rod 811a and opposite to the sliding rod 840a Under the action of the gravitational moment of the load 870a, it tends to increase, and the sliding rod 840a slides diagonally downward to the right.
  • the force balancer 850a is compressed by force, thereby generating a restoring force F obliquely to the upper left to balance the gravity of the rotating assembly 810a, the support rod 820a and the load 870a.
  • the force balance member 850a is changed from a pressure-bearing elastic member to a tension spring.
  • the setting position of the tension spring is different from that of the pressure-bearing elastic member.
  • the angle formed between the support rod 820a and the rod 811a and opposite to the sliding rod 840a The force balancer 850a is located between the guide block 830a and the hinged end M of the sliding rod 840a, which tends to increase under the action of the gravitational moment of the load 870a.
  • the structures such as the support rod 820a and the force balancer 850a can be hidden in the parallelogram mechanism, and the extra space is small, which can avoid affecting the assembly and operation of other components.
  • the movement can realize the miniaturization and lightness of the surgical robot, and can improve the safety and stability of the structure.
  • Fig. 9(a) shows a schematic structural diagram of a balancing device 900a (or a modification of the balancing device 700a in Fig. 7(a)) according to some embodiments of the present disclosure.
  • the balancing device 900a may include a rod or base 960a (in the following description, the base 960a is taken as an example), a rotating assembly 910a, a support rod 920a, a guide block 930a, Sliding rod 940a and force balancer 950a.
  • Rod 911a, support rod 920a, and rod 913a and base 960a form a parallelogram mechanism.
  • Rod 911a, rod 914a, and rod 913a and base 960a form a parallelogram mechanism.
  • the rod 913a, the support rod 920a and the sliding rod 940a in the rotating assembly 910a form a triangle.
  • the force balance member 950a may include a pressure-bearing elastic member (for example, the pressure-bearing elastic member shown in FIG. 1(a), FIG. 3(a)-FIG. 8(a)), and one end of the force balance member 950a may be connected with the guide block 930a , and the other end can be connected with the hinged end M of the sliding rod 940a.
  • the load drives the rotating assembly 910a to rotate clockwise relative to the base 960a, and the included angle formed between the support rod 920a and the rod 913a and opposite to the sliding rod 940a Under the action of the gravitational moment of the load, it tends to decrease, and the sliding rod 940a slides obliquely to the lower left.
  • the force balancer 950a is compressed and deformed to generate a restoring force F obliquely upward and rightward to balance the gravity of the rotating assembly 910a, the support rod 920a and the load.
  • the force balance member 950a is changed from a pressure-bearing elastic member to a tension spring.
  • the setting position of the tension spring is different from that of the pressure-bearing elastic member.
  • the angle formed between the support rod 920a and the rod 913a and opposite to the sliding rod 940a The force balancer 950a is located between the guide block 930a and the free end N of the sliding rod 940a, which tends to decrease under the action of the gravitational moment of the load.
  • Figure 9(b) shows a schematic structural diagram of a balancing device 900b (or a modification of the balancing device 700b in Figure 7(b)) according to some embodiments of the present disclosure.
  • the balancing device 900b may include a rod or base 960b (in the following description, the base 960b is taken as an example), a rotating assembly 910b, a support rod 920b, a guide block 930b, a sliding Rod 940b and force balancer 950b.
  • Rod 911b, support rod 920b, and rod 913b and base 960b form a parallelogram mechanism.
  • Rod 911b, rod 914b, and rod 913b and base 960b form a parallelogram mechanism.
  • the force balance member 950b may include any magnetic force member of the balance devices 100b-100d, or 300b-800b (eg, the magnetic force shown in FIGS. 1(b)-1(d), 3(b)-8(b) piece), one end of the force balance piece 950b may be connected with the guide block 930b, and the other end may be connected with the hinged end M of the sliding rod 940b.
  • the load drives the rotating assembly 910b to rotate clockwise relative to the base 960b, and the included angle formed between the support rod 920b and the rod 913b and opposite to the sliding rod 940b Under the action of the gravitational moment of the load, it tends to decrease, and the sliding rod 940b slides obliquely to the lower left.
  • the magnetic member 950b is compressed and deformed to generate a restoring force F obliquely upward to the right, so as to balance the gravity of the rotating assembly 910b, the support rod 920b and the load.
  • FIG. 10( a ) shows a schematic structural diagram of a balancing device 1000 a according to some embodiments of the present disclosure.
  • the balancing device 1000a may include a rod or base 1060a, a rotating assembly 1010a, a support rod 1020a, a guide block 1030a, a sliding rod 1040a, and a force balancer 1050a.
  • Rod 1011a, support rod 1020a, and rod 1013a and base 1060a form a parallelogram mechanism.
  • Rod 1011a, rod 1014a, and rod 1013a and base 1060a form a parallelogram mechanism.
  • the force balance member 1050a may include a pressure-bearing elastic member (for example, the pressure-bearing elastic member shown in FIG. 1(a), FIG. 3(a)- FIG. 9(a) ), and the force balance member 1050a is disposed on the guide block 1030a and the sliding rod Between the hinged ends M of 1040a.
  • the load drives the rotating assembly 1010a to rotate clockwise relative to the base 1060a, and the included angle formed between the support rod 1020a and the rod 1011a and opposite to the sliding rod 1040a Under the action of the gravitational moment of the load, it tends to decrease, and the sliding rod 1040a slides obliquely downward to the left.
  • the force balancer 1050a is compressed and deformed to generate a restoring force F obliquely upward and rightward to balance the gravity of the rotating assembly 1010a, the support rod 1040a and the load.
  • the force balance member 1050a is changed from a pressure-bearing elastic member to a tension spring.
  • the setting position of the tension spring is different from that of the pressure-bearing elastic member.
  • the angle formed between the support rod 1020a and the rod 1011a and opposite to the sliding rod 1040a The force balancer 1050a is located between the guide block 1030a and the free end N of the sliding rod 1040a, which tends to decrease under the action of the gravitational moment of the load.
  • FIG. 10(b) shows a schematic structural diagram of a balancing device 1000b according to some embodiments of the present disclosure.
  • the balancing device 1000b may include a rod or base 1060b, a rotating assembly 1010b, a support rod 1020b, a guide block 1030b, a sliding rod 1040b, and a force balancer 1050b.
  • Rod 1011b, support rod 1020b, and rod 1013b and base 1060b form a parallelogram mechanism.
  • Rod 1011b, rod 1014b, and rod 1013b and base 1060b form a parallelogram mechanism.
  • FIG. 10(b) shows a schematic structural diagram of a balancing device 1000b according to some embodiments of the present disclosure.
  • the balancing device 1000b may include a rod or base 1060b, a rotating assembly 1010b, a support rod 1020b, a guide block 1030b, a sliding rod 1040b, and a force balancer 1050b.
  • the force balance member 1050b may include any magnetic force member of the balance devices 100b-100d, or 300b-900b (eg, the magnetic force shown in FIGS. 1(b)-1(d), 3(b)-9(b)
  • One end of the force balance piece 1050b can be connected with the guide block 1030b, and the other end can be connected with the hinged end M of the sliding rod 1040b.
  • the load drives the rotating assembly 1010b to rotate clockwise relative to the base 1060b, and the included angle formed between the support rod 1020b and the rod 1011b and opposite to the sliding rod 1040b It tends to decrease under the action of the gravitational moment of the load, and the sliding rod 1040b slides obliquely to the lower left.
  • the force balancer 1050b is compressed and deformed to generate a restoring force F obliquely upward to the right, so as to balance the gravity of the rotating assembly 1010b, the support rod 1040b and the load.
  • FIG. 11 shows a schematic structural diagram of a surgical robot 1100 according to some embodiments of the present disclosure.
  • the surgical robot 1100 may include a main manipulator 10 , a surgical platform 20 and a control device 30 .
  • the main operator 10 may include a main operator moving arm 101 and a handle 102 disposed at the end of the main operator moving arm 101 .
  • the main manipulator moving arm 101 may include a multi-section arm body and a plurality of joints connecting the multi-section arm bodies.
  • the master manipulator kinematic arm 101 has multiple degrees of freedom.
  • the handle 102 may be an operator's hand to operate a placement area, such as a gripping end.
  • the surgical platform 20 may include a positioning arm 201 and a surgical instrument 202 disposed at the end of the positioning arm 201 .
  • the positioning arm 201 may include a multi-section arm body and a plurality of joints, and have a plurality of degrees of freedom.
  • Surgical instruments 202 may include surgical tools or endoscopes.
  • the end of the surgical instrument 202 is connected with an end instrument 2021, for example, the end instrument 2021 may include a surgical implement disposed at the end of the surgical tool and/or an illumination device or an image acquisition device disposed at the end of the endoscope.
  • the control device 30 is configured to control the synchronous movement of the surgical instrument 202 based on the manipulation action of the main manipulator 10 , so as to realize the remote operation of the surgical instrument 202 by the user through the manipulation of the main manipulator 10 .
  • Master manipulator 10 eg master manipulator motion arm 101
  • surgical platform 20 eg positioning arm 201
  • handle 102 may be a load connected to balancing devices 100a-d (or 200-1000a-b).
  • the balancing device provided by some embodiments of the present disclosure can reduce the inertial influence caused by gravity, improve the stability and accuracy of the surgical robot, occupy a small additional space, avoid affecting the assembly and movement of other components, and realize surgery.
  • the miniaturization and portability of the robot have lower requirements and restrictions on machining accuracy and structural design, smaller volume, better gravity balance effect, and no need for motor cooperation.
  • the balancing device provided by some embodiments of the present disclosure can reduce noise by using a magnetic element, and has strong adjustability and applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

一种涉及医疗器械领域的平衡装置(100a、100b、100c、100d、300a、300b、400a、400b、500a、500b、600a、600b、700a、700b、800a、800b、900a、900b、1000a、1000b)及手术机器人(1100),平衡装置包括支撑杆(120a、120b、120c、120d、320a、320b、420a、420b、520a、520b、620a、620b、720a、720b、820a、820b、920a、920b、1020a、1020b)、转动组件(110a、110b、110c、110d、310a、310b、410a、410b、510a、510b、610a、610b、710a、710b、810a、810b、910a、910b、1010a、1010b)、导向块(130a、130b、130c、130d、330a、330b、430a、430b、530a、530b、630a、630b、730a、730b、830a、830b、930a、930b、1030a、1030b)、滑动杆(140a、140b、140c、140d、340a、340b、440a、440b、540a、540b、640a、640b、740a、740b、840a、840b、940a、940b、1040a、1040b)和力平衡件(150a、150b、150c、150d、350a、350b、450a、450b、550a、550b、650a、650b、750a、750b、850a、850b、950a、950b、1050a、1050b)。转动组件至少一部分与支撑杆转动连接,导向块与支撑杆和转动组件中的一个铰接,滑动杆的一端与支撑杆和转动组件中的另一个铰接,形成铰接端,滑动杆的另一端形成自由端,滑动杆与导向块滑动连接,滑动杆、支撑杆以及转动组件形成三角形,力平衡件的一端与导向块连接,另一端与滑动杆的铰接端或自由端连接。手术机器人包括上述的平衡装置。平衡装置能够减小重力所带来的惯性影响,提高了手术机器人的稳定性和准确性,额外占用空间小,实现了手术机器人的小型化和轻便化。

Description

平衡装置及手术机器人
相关申请的交叉引用
本申请要求于2020年7月10日提交的、申请号为2020106628166、发明名称为“一种重力平衡结构及手术机器人”,2020年7月22日提交的、申请号为202010712554X、发明名称为“一种重力平衡结构及手术机器人”的中国专利申请的优先权,这些申请的全文以引用方式整体结合于此。
技术领域
本公开涉及医疗器械领域,尤其涉及一种平衡装置及手术机器人。
背景技术
主操作器是手术机器人***的输入设备,直接影响手术操作者,例如医生的操作感受和动作效果。手术操作者通过主操作器的手柄远程控制手术平台末端的手术器械进行手术,由于手术过程常常持续长达数小时,且要求精神高度集中,这样,操作过程中人机互动的感受和操作的轻便性就显得尤为重要了。在操作过程中,一方面要降低主操作器的自重,同时还要克服主操作器自身重力的惯性,自重越大运动惯性越大,另外在主操作器运动的过程中还要减小阻尼,尤其是与运动方向相反的阻尼。
现有技术中,实现上述功能的方法主要包括配重法、电机补偿法等。但是,配重法会增加整体结构的重量且对人机互动的体验感有影响;电机补偿法大大增加了控制***的复杂程度,一方面找到足够力矩的电机会导致整体体积难以减小,同时对***的实时性要求较高,且故障率也会相应提高。
发明内容
在一些实施例中,本公开提供了一种平衡装置,包括:支撑杆;转动组件,至少一部分与所述支撑杆转动连接;导向块,与所述支撑杆和所述转动组件中的一个铰接;滑动杆,所述滑动杆的一端与所述支撑杆和所述转动组件中的另一个铰接,形成铰接端,所述滑动杆的另一端形成自由端,所述滑动杆与所述导向块滑动连接,所述滑动杆、所述支撑杆以及所述转动组件形成三角形;力平衡件,所述力平衡件的一端与所述导向块连接,另一端与所述滑动杆的铰接端或自由端连接。
在一些实施例中,本公开提供了一种手术机器人,包括:手术平台,所述手术平台包括定位臂以及设置在所述定位臂末端的手术器械;主操作器,所述主操作器包括主操作器运动臂以及设置在所述主操作器运动臂末端的手柄,所述主操作器用于接收操控动作以控制所述手术器械同步运动;所述主操作器运动臂和/或所述定位臂包括平衡装置,所述平衡装置包括:支撑杆;转动组件,至少一部分与所述支撑杆转动连接;导向块,与所述支撑杆和所述转动组件中的一个铰接;滑动杆,所述滑动杆的一端与所述支撑杆和所述转动组件中的另一个铰接,形成铰接端,所述滑动杆的另一端形成自由端,所述滑动杆与所述导向块滑动连接,所述滑动杆、所述支撑杆以及所述转动组件形成三角形;力平衡件,所述力平衡件的一端与所述导向块连接,另一端与所述滑动杆的铰接端或自由端连接。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单的介绍。下面描述中的附图仅仅示出本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本公开实施例的内容和这些附图获得其他的实施例。
图1(a)示出根据本公开一些实施例的平衡装置的结构示意图;
图1(b)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图1(c)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图1(d)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图2示出根据本公开一些实施例的平衡装置的原理示意图;
图3(a)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图3(b)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图4(a)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图4(b)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图5(a)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图5(b)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图6(a)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图6(b)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图7(a)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图7(b)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图8(a)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图8(b)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图8(c)示出根据本公开一些实施例的另一平衡装置的立体结构示意图;
图9(a)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图9(b)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图10(a)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图10(b)示出根据本公开一些实施例的另一平衡装置的结构示意图;
图11示出根据本公开一些实施例的手术机器人的结构示意图。
具体实施方式
为使本公开解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本公开实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本公开示例性实施例,而不是全部的实施例。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“耦合”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连;可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。在本公开中,定义靠近操作者(例如医生)的一端为近端、近部或后端、后部,靠近手术患者的一端为远端、远部或前端、前部。本领域技术人员可以理解,本公开的实施例可以用于医疗器械或手术机器人,也可以用于其他非医疗装置,例如机械控制、机器人等等。
本公开的一些实施例提供了一种平衡装置。图1(a)-图1(d)分别示出根据本公开一些实施例的平衡装置100a、100b、100c和100d的结构示意图。如图1(a)所示,平衡装置100a可以包括转动组件110a、支撑杆120a、导向块130a、滑动杆140a和力平衡件150a。在一些实施例中,支撑杆120a可以沿纵向延伸。例如,支撑杆120a可以沿纵向延伸,并固定于基座(图中未示)上或支撑杆120a直接与基座一体成型。在一些实施例中,支撑杆120a可以通过多根杆连接,以保持支撑杆120a沿纵向延伸, 例如以平行四边形的方式连接,以使支撑杆120a平行于基座设置。应当理解,纵向可以为垂直于水平的方向,或者可以为平衡装置100a所安装的设备(例如手术机器人)的高度方向。转动组件110a的至少一部分可以与支撑杆120a转动连接。在一些实施例中,转动组件110a可以包括一根杆或者多根杆。在一些实施例中,支撑杆120a固定于基座,转动组件110a可以与负载(图中未示,例如待重力平衡或扭矩平衡的部件)连接。在一些实施例中,支撑杆120a沿纵向延伸,并与基座纵向轴线平行,转动组件110a或支撑杆120a可以与负载(图中未示)连接。
在一些实施例中,如图1(a)所示,导向块130a可以铰接于支撑杆120a,滑动杆140a的一端可以铰接于转动组件110a,形成铰接端M,滑动杆140a的另一端形成自由端N。滑动杆140a与导向块130a滑动连接。例如,导向块130a可以设置通孔,滑动杆140a穿过该通孔,并可以沿该通孔滑动。应当理解,导向块130a也可以设导轨,滑动杆140a可以包括滑块,滑块与导轨配合,实现滑动杆140a与导向块130a滑动连接。在一些实施例中,导向块130a也可以铰接于转动组件110a,滑动杆140a可以铰接于支撑杆120a,滑动杆140a与导向块130a滑动连接。滑动杆140a、支撑杆120a以及转动组件110a形成三角形。
在一些实施例中,力平衡件150a可以包括承压弹性件。例如承压弹性件可以为压簧,压簧套设于滑动杆140a上,压簧的一端与导向块130a连接,另一端与滑动杆140a的铰接端M或自由端N连接。压簧取材方便,成本低,能够节省平衡装置或手术机器人的制造成本。在一些实施例中,承压弹性件也可以为处于压缩状态的气弹簧,气弹簧可以平行设置于滑动杆140a,气弹簧的一端与导向块130a连接,另一端与滑动杆140a的铰接端M或自由端N连接。气弹簧的弹性性能稳定,可以延长平衡装置或手术机器人的使用寿命长,可以更好的适用于高端手术机器人。
如图1(a)所示,力平衡件150a(例如承压弹性件)的一端可以与导向块130a 连接,而另一端可以与滑动杆140a的自由端N连接。可以理解,力平衡件150a与导向块130a、滑动杆140a的自由端N或铰接端M的连接可以包括各种形式,包括但不限于,固定连接(例如焊接、螺丝固定、卡合等)、可拆卸连接或者抵接。例如,如图1(a)所示,滑动杆140a的自由端N包括挡块,力平衡件150a可以与挡块抵接。转动组件110a或支撑杆120a可以与负载连接。在一些实施例中,如图1(a)所示,支撑杆120a可以固定设置,转动组件110a可以与负载(图中未示)连接,例如负载可以设置在转动组件110a远离支撑杆120a的一端。
如图1(b)所示,平衡装置100b可以包括转动组件110b、支撑杆120b、导向块130b、滑动杆140b和力平衡件150b。滑动杆140b、支撑杆120b以及转动组件110b连接形成三角形。在一些实施例中,力平衡件150b可以包括磁力件。力平衡件150b(例如磁力件)可以包括但不限于两个同极相对的磁体151b和152b,例如磁体151b和152b可以为电磁铁、永磁体或两者的组合。如图1(b)所示,磁体151b和152b可以分别为电磁体,电磁体可以包括通电线圈缠绕的导体棒。在一些实施例中,磁体151b可以与导向块130b连接,磁体152b可以与滑动杆140b的铰接端M或自由端N连接。如图1(b)所示,支撑杆120b与转动组件110b的铰接点O低于支撑杆120b与导向块130b的铰接点B时,磁弹簧可以设置在导向块130b与滑动杆140b的自由端N之间。磁力件采用电磁铁,结构取材方便,成本低,能够节省平衡装置的制造成本。磁力件可根据实际需要调整电流大小以适应重力平衡需求,且性能稳定,噪音小或无机械噪音,可以延长平衡装置(或手术机器人)的使用寿命长,可以更好的适用于高端器械设备或手术机器人。
如图1(c)所示,平衡装置100c可以包括转动组件110c、支撑杆120c、导向块130c、滑动杆140c和力平衡件150c。滑动杆140c、支撑杆120c以及转动组件110c连接形成三角形。在一些实施例中,力平衡件150c可以包括磁力件,例如磁弹簧。在 一些实施例中,磁弹簧可以由内筒状导体和外筒状导体套设而成,内筒状导体和外筒状导体可以彼此沿轴向滑动位移。内筒状导体和外筒状导体与滑动杆140c同轴设置,其中一个(例如,外筒状导体)与导向块130c连接,另一个(例如,内筒状导体)与滑动杆140c的铰接端M或者自由端N连接。支撑杆120c与转动组件110c的铰接点低于支撑杆120c与导向块130c的铰接点时,磁弹簧可以设置在导向块130c与滑动杆140c的自由端N之间,如图1(c)所示。磁弹簧性能稳定,且力学性能可根据需要选配,可以提高磁力件的适应性、整体寿命和稳定性。且磁弹簧一方面可以实现压簧的功能,另一方面也可以实现拉簧的功能,当磁弹簧为拉簧,磁力随弹簧拉伸也增加(例如,线性增加),其设置位置也可以根据实际装配相应变化。
如图1(d)所示,平衡装置100d可以包括转动组件110d、支撑杆120d、导向块130d、滑动杆140d和力平衡件150d。滑动杆140d、支撑杆120d以及转动组件110d连接形成三角形。在一些实施例中,力平衡件150d可以包括磁力件,磁力件可以包括大直径磁环151d和小直径磁环152d。大直径磁环151d和小直径磁环152d可以为永磁体。大直径磁环151d和小直径磁环152d均轴向充磁且相同磁极方向相对,以产生排斥力。大直径磁环151d和小直径磁环152d可以通过绝缘轴同轴设置,且彼此可相对滑动。大直径磁环151d和小直径磁环152d与滑动杆140d同轴设置,其中一个(例如,小直径磁环152d)与导向块130d连接,另一个(例如,大直径磁环151d)与滑动杆140d的铰接端M或者自由端N连接。支撑杆120d与转动组件110d的铰接点低于支撑杆120d与导向块130d的铰接点时,力平衡件150d可以设置在导向块130d与滑动杆140d的自由端N之间,如图1(d)所示。力平衡件150d可以提高平衡装置100d的整体寿命和稳定性,并且力平衡件150d恢复力的大小可以根据需要调节磁环进行设置。例如,可以调节两磁环的间距,磁环大小,磁环厚度等参数。例如,可以通过增加大直径磁环和/或小直径磁环的直径,或缩小大直径磁环和小直径磁环的直径 差,或增加大直径磁环和/或小直径磁环轴向高度等来增加磁力件的恢复力。从而可以提高平衡装置的适应性。在一些实施例中,磁环可以采用稀土类磁性材料,以达到较强的恢复力,且不会产生振动噪声,可以增加***的稳定性及可靠性。
图2示出根据一些实施例的平衡装置100a(或者100b、100c、100d)的原理示意图。在一些实施例中,如图2所示,支撑杆120a(或者120b、120c、120d)可以沿纵向固定设置(例如可以固定设置在基座上)。转动组件110a(或者110b、110c、110d)可以与支撑杆120a铰接于O点,导向块130a可以与支撑杆120a铰接于B点,滑动杆140a可以与转动组件110a铰接于A点。滑动杆140a与导向块130a滑动连接,滑动杆140a、支撑杆120a以及转动组件110a形成三角形。支撑杆120a和转动组件110a之间形成夹角
Figure PCTCN2021087677-appb-000001
夹角
Figure PCTCN2021087677-appb-000002
与滑动杆140a相对。在一些实施例中,如图2所示,转动组件110a与支撑杆120a的铰接点O沿纵向的位置低于导向块130a与支撑杆120a的铰接点B,例如转动组件110a铰接于支撑杆120a的底端部分,并且可以与负载连接。导向块130a铰接于支撑杆120a的中间部分。应当理解,导向块130a也可以铰接于转动组件110a,滑动杆140a可以铰接于支撑杆120a。力平衡件150a的一端可以与导向块130a连接,力平衡件150a的另一端可以与滑动杆140a的自由端N连接。力平衡件150a之间的距离可随滑动杆140a的移动而改变。在操作时,负载由于重力作用,驱动转动组件110a顺时针转动,支撑杆120a和转动组件110a之间形成的且与滑动杆140a相对的夹角
Figure PCTCN2021087677-appb-000003
在负载的重力力矩的作用下趋于增大,并使滑动杆140a斜向右下(如图2所示平面)滑动。由于力平衡件150a的一端与导向块130a连接,另一端与滑动杆140a的自由端N连接,滑动杆140a相对导向块130a滑动,使力平衡件150a压缩靠近,力平衡件150a产生斜向左上恢复力F,以平衡转动组件110a和负载的重力。在一些实施例中,平衡装置通过力平衡件实现在活动范围内的重力平衡作用,结构简单,占用体积小,操作体验好。在一些实施例中,平衡装置的力平衡件采用磁力 件,可以进一步提高平衡装置的适应性,降低或无机械噪音。
在一些实施例中,平衡装置100a的力平衡件150a也可以为拉簧。在支撑杆120a、转动组件110a、滑动杆140a形成的三角形机构中,拉簧的设置位置与承压弹性件不同。例如,支撑杆120a与转动组件110a的铰接点O沿纵向的位置低于支撑杆120a与导向块130a的铰接点B,支撑杆120a和转动组件110a之间形成的且与滑动杆140a相对的夹角
Figure PCTCN2021087677-appb-000004
在负载的重力力矩的作用下趋于增大时,拉簧位于导向块130a与滑动杆140a的铰接端M之间。滑动杆140a相对导向块130a滑动,使拉簧受到拉伸,发生形变,从而产生恢复力F,以平衡转动组件110a或负载的重力。类似地,在一些实施例中,力平衡件150a可以包括用于产生能够平衡拉力的恢复力的磁力件,例如磁力件可以包括异极相对的一对磁体或者在拉长情况下产生恢复力的磁弹簧。
图3(a)和图3(b)分别示出根据一些实施例的平衡装置300a和300b的结构示意图。如图3(a)所示,平衡装置300a可以包括转动组件310a、支撑杆320a、导向块330a、滑动杆340a和力平衡件350a。滑动杆340a、支撑杆320a以及转动组件310a连接形成三角形。在一些实施例中,力平衡件350a可以包括承压弹性件,例如压簧或气弹簧。在一些实施例中,如图3(a)所示,支撑杆320a可以沿纵向固定设置(例如可以固定设置在基座上)。在一些实施例中,力平衡件350a的一端与导向块330a连接,另一端与滑动杆340a的铰接端M连接。转动组件310a或支撑杆320a用于与负载连接。
如图3(b)所示,平衡装置300b可以包括转动组件310b、支撑杆320b、导向块330b、滑动杆340b和力平衡件350b。滑动杆340b、支撑杆320b以及转动组件310b连接形成三角形。在一些实施例中,力平衡件350b可以包括磁力件(例如平衡装置100b-100d中的力平衡件)。力平衡件350b的一端与导向块330b连接,另一端与滑动杆340b的铰接端M连接。在一些实施例中,如图3(b)所示,支撑杆320b可以 沿纵向固定设置(例如可以固定设置在基座上)。在一些实施例中,如图3(b)所示,力平衡件350b可以包括磁体351b和352b,磁体351b与导向块330b连接,磁体352b与滑动杆340b的铰接端M连接。转动组件310b或支撑杆320b用于与负载连接。
平衡装置300a(或300b)的工作原理如下。如图3(a)所示,转动组件310a(或310b)与支撑杆320a(或320b)的铰接点O沿纵向的位置高于导向块330a(或330b)与支撑杆320a的铰接点B,例如转动组件310a铰接于支撑杆320a的顶端部分,导向块330a铰接于支撑杆320a的中间部分。在一些实施例中,导向块330a(或330b)也可以铰接于转动组件310a(或310b),滑动杆340a(340b)可以铰接于支撑杆320a(320b)。转动组件310a与负载连接。力平衡件350a的一端可以与导向块330a连接,力平衡件350a的另一端可以与滑动杆340a的铰接端M连接。这样在操作时,负载由于重力作用,驱动转动组件310a顺时针转动,支撑杆320a和转动组件310a之间形成的且与滑动杆340a相对的夹角
Figure PCTCN2021087677-appb-000005
在负载的重力力矩的作用下趋于减小,并使滑动杆340a斜向左下(如图3(a)所示平面)滑动。由于力平衡件350a位于导向块330a与滑动杆340a的铰接端M之间,滑动杆340a相对导向块330a滑动,力平衡件350a受到压缩靠近,从而产生斜向右上的恢复力F,以平衡转动组件310a和负载的重力。
在一些实施例中,平衡装置300a的力平衡件350a也可以为拉簧。在支撑杆320a、转动组件310a、滑动杆340a形成的三角形机构中,拉簧的设置位置与承压弹性件不同。例如,支撑杆320a与转动组件310a的铰接点O沿纵向的位置高于支撑杆320a与导向块330a的铰接点B,支撑杆320a和转动组件310a之间形成的且与滑动杆340a相对的夹角
Figure PCTCN2021087677-appb-000006
在负载的重力力矩的作用下趋于减小时,拉簧位于导向块330a与滑动杆340a的自由端N之间。滑动杆340a相对导向块330a滑动,使拉簧受到拉伸,发生形变,从而产生恢复力F,以平衡转动组件310a或负载的重力。
在一些实施例中,图4(a)示出根据本公开一些实施例的平衡装置400a的结构 示意。在一些实施例,如图4(a)所示,平衡装置400a可以包括转动组件410a、支撑杆420a、导向块430a、滑动杆440a和力平衡件450a。在一些实施例中,力平衡件450a可以包括承压弹性件,例如压簧或气弹簧。平衡装置400a(或平衡装置100a)的转动组件410a(或110a)可以包括杆411a、杆412a和杆413a。杆412a的两端分别与杆411a和杆413a的一端铰接,支撑杆420a分别与杆411a和杆413a的另一端铰接,支撑杆420a、杆411a、杆412a和杆413a形成平行四边形机构。在一些实施例中,支撑杆420a或杆412a可以固定设置于基座上。
在一些实施例中,平衡装置400a可以设置在基座上。例如,支撑杆420a可以替换为基座,转动组件410a可以转动设置于基座上,或者支撑杆420a可以固定设置在基座上,转动组件410a能相对于支撑杆420a转动。在一些实施例中,支撑杆420a沿纵向延伸,且固定设置于基座(图中未示)上。转动组件410a的杆411a、杆412a或杆413a可以与重力负载(例如待平衡的部件)连接,杆413a或杆411a可以与滑动杆440a铰接,支撑杆420a可以与导向块430a铰接。在一些实施例中,杆413a或杆411a可以与导向块430a铰接,支撑杆420a与滑动杆440a铰接。
如图4(a)所示,力平衡件件450a可以包括承压弹性件(例如图1(a)和图3(a)示出的承压弹性件),力平衡件450a的一端可以与导向块430a连接,另一端可以与滑动杆440a的自由端N连接。滑动杆440a与导向块430a滑动连接,滑动杆440a、支撑杆420a以及杆413a连接形成三角形。这样在操作时,由于负载的重力作用,驱动转动组件410a相对支撑杆420a顺时针转动,支撑杆420a和转动组件410a的杆413a之间形成的且与滑动杆440a相对的夹角
Figure PCTCN2021087677-appb-000007
在负载的重力力矩的作用下趋于增大,并使滑动杆440a斜向右下(如图4(a)所示平面)滑动。力平衡件450a(或150a)一端与导向块430a连接,另一端与滑动杆440a的自由端N连接,滑动杆440a相对导向块430a滑动,使力平衡件450a(例如承压弹性件)压缩形变,从而产生斜向左上的恢复 力F,以平衡转动组件410a和负载的重力。通过平行四边形机构,以实现负载在该平行四边形机构所在平面内的平动。
在一些实施例中,力平衡件450a由承压弹性件变为拉簧,在支撑杆420a、转动组件410a、滑动杆440a形成的三角形机构中,拉簧的设置位置与承压弹性件不同。例如,支撑杆420a与杆413a的铰接点在纵向的位置低于支撑杆420a与导向块430a的铰接点,支撑杆420a和杆413a之间形成的且与滑动杆440a相对的夹角
Figure PCTCN2021087677-appb-000008
在负载的重力力矩的作用下趋于增大,拉簧位于导向块430a与滑动杆440a的铰接端M之间。
图4(b)示出根据本公开一些实施例的平衡装置400b的结构示意。如图4(b)所示,平衡装置400b可以包括转动组件410b、支撑杆420b、导向块430b、滑动杆440b和力平衡件450b。在一些实施例中,平衡装置400b的转动组件410b可以包括杆411b、杆412b和杆413b。杆412b的两端分别与杆411b和杆413b的一端铰接,支撑杆420b分别与杆411b和杆413b的另一端铰接,支撑杆420b、杆411b、杆412b和杆413b形成平行四边形机构。在一些实施例中,力平衡件件450b可以包括磁力件(例如平衡装置100b-100d和300b中的力平衡件,如图1(b)-图1(d)示出的磁力件)一端可以与导向块430b连接,另一端可以与滑动杆440b的自由端N连接。滑动杆440b与导向块430b滑动连接,滑动杆440b、支撑杆420b以及杆413b连接形成三角形。在一些实施例中,如图4(b)所示,力平衡件450b可以包括磁体451b和452b,磁体451b与导向块430b连接,磁体452b与滑动杆440b的自由端N连接。转动组件410b或支撑杆420b用于与负载连接。
这样在操作时,由于负载的重力作用,驱动转动组件410b相对支撑杆420b顺时针转动,支撑杆420b和转动组件410b的杆413b之间形成的且与滑动杆440b相对的夹角
Figure PCTCN2021087677-appb-000009
在负载的重力力矩的作用下趋于增大,并使滑动杆440b斜向右下(如图4(b)所示平面)滑动。力平衡件450b一端与导向块430b连接,另一端与滑动杆440b的自 由端N连接,滑动杆440b相对导向块430b滑动,使力平衡件450b(例如磁力件)受力压缩,从而产生斜向左上的恢复力F,以平衡转动组件410b和负载的重力。应当理解,图4(b)虽然示出了平衡装置400b的力平衡件450b的具体结构和连接关系,但是平衡装置400b的力平衡件450b可以包括平衡装置100b-100d中任何的磁力件(例如,如图1(b)-图1(d)所示的磁力件)。
在一些实施例中,转动组件410a(或410b)还可以包括另一杆(图中未示),杆411a和杆413a从平行四边形机构向外延伸并且分别与另一杆铰接。支撑杆420a、杆411a、杆413a和另一杆形成另一平行四边形机构。应当理解,支撑杆420a可以位于该新的平行四边形机构内或者成为该新的平行四边形机构其中一边。
通过转动组件与支撑杆形成平行四边形机构,可以控制运动端,例如负载的运动方式为平动,例如在平行四边形机构所在的纵向平面内移动,且不受该负载因其自身姿态改变而导致的重心移动而造成的重力平衡模型的失效和改变,可以增加平衡装置的稳定性。
在一些实施例中,图5(a)示出根据本公开一些实施例的平衡装置500a的结构示意。在一些实施例,如图5(a)所示,平衡装置500a可以包括转动组件510a、支撑杆520a、导向块530a、滑动杆540a和力平衡件550a。在一些实施例,如图5(a)所示,转动组件510a可以包括杆511a、杆512a和杆513a。杆512a的两端分别与杆511a和杆513a的一端铰接,支撑杆520a分别与杆511a和杆513a的另一端铰接。支撑杆520a、杆511a、杆512a和杆513a形成平行四边形机构。转动组件510a可以与负载连接。杆513a或杆511a可以与滑动杆540a铰接,支撑杆520a可以与导向块530a铰接。在一些实施例中,杆513a或杆511a可以与导向块530a铰接,支撑杆520a与滑动杆540a铰接。
如图5(a)所示,滑动杆540a可以铰接于杆511a,滑动杆540a与导向块530a 滑动连接,滑动杆540a、支撑杆520a以及杆511a形成三角形。支撑杆520a与一杆513a的铰接点在纵向的位置高于支撑杆520a与导向块530a的铰接点。力平衡件550a可以包括承压弹性件(例如压簧或气弹簧),力平衡件550a的一端可以与导向块530a连接,而另一端可以与滑动杆540a的铰接端M连接。在操作时,负载驱动转动组件510a相对支撑杆520a顺时针转动,支撑杆520a和转动组件510a的杆511a之间形成的且与滑动杆540a相对的夹角
Figure PCTCN2021087677-appb-000010
在负载的重力力矩的作用下趋于减小,并使滑动杆540a斜向左下(如图5(a)所示平面)滑动。力平衡件550a位于导向块530a与滑动杆540a的铰接端M之间,使力平衡件550a压缩发生形变,从而产生斜向右上的恢复力F,以平衡转动组件510a和负载的重力。
在一些实施例中,力平衡件550a由承压弹性件变为拉簧,在支撑杆520a、转动组件510a、滑动杆540a形成的三角形机构中,拉簧的设置位置与承压弹性件不同。例如,支撑杆520a与杆511a的铰接点在纵向的位置高于支撑杆520a与导向块530a的铰接点,支撑杆520a和杆511a之间形成的且与滑动杆540a相对的夹角
Figure PCTCN2021087677-appb-000011
在负载的重力力矩的作用下趋于减小,拉簧位于导向块530a与滑动杆540a的自由端N之间。
图5(b)示出根据本公开一些实施例的平衡装置500b的结构示意。如图5(b)所示,平衡装置500b可以包括转动组件510b、支撑杆520b、导向块530b、滑动杆540b和力平衡件550b。在一些实施例,如图5(b)所示,平衡装置500b的转动组件510b可以包括杆511b、杆512b和杆513b。杆512b的两端分别与杆511b和杆513b的一端铰接,支撑杆520b分别与杆511b和杆513b的另一端铰接,支撑杆520b、杆511b、杆512b和杆513b形成平行四边形机构。在一些实施例中,如图5(b)所示,力平衡件550b可以包括磁体551b和552b,磁体551b可以与导向块530b连接,磁体552b可以与滑动杆540b的铰接端M连接。滑动杆540b与导向块530b滑动连接,滑动杆540b、支撑杆520b以及杆511b连接形成三角形。这样在操作时,由于负载的重力作 用,驱动转动组件510b相对支撑杆520b顺时针转动,支撑杆520b和转动组件510b的杆511b之间形成的且与滑动杆540b相对的夹角
Figure PCTCN2021087677-appb-000012
在负载的重力力矩的作用下趋于减小,并使滑动杆540b斜向左下(如图5(b)所示平面)滑动。力平衡件550b位于导向块530b和滑动杆540b的铰接端M之间,滑动杆540b相对导向块530b滑动,使力平衡件550b(例如磁力件)压缩,从而产生斜向右上的恢复力F,以平衡转动组件510b和负载的重力。应当理解,图5(b)虽然示出了平衡装置500b的力平衡件550b的具体结构和连接关系,但是平衡装置500b的力平衡件550b可以包括平衡装置100b-100d中任何的磁力件(例如,如图1(b)-图1(d)所示的磁力件)。
在一些实施例中,图6(a)示出根据本公开一些实施例的平衡装置600a的结构示意。在一些实施例,如图6(a)所示,平衡装置600a可以包括杆或基座660a(以下描述中,以基座660a为例)、转动组件610a、支撑杆620a、导向块630a、滑动杆640a和力平衡件650a。在一些实施例,如图6(a)所示,转动组件610a可以包括杆611a和杆613a。杆611a和杆613a的一端分别铰接于基座660a,杆611a与基座660a的铰接点和杆613a与基座660a的铰接点位于同一纵向轴线上。支撑杆620a与该纵向轴线平行,支撑杆620a的两端分别与杆611a和杆613a的另一端铰接,杆611a、支撑杆620a和杆613a与基座660a形成平行四边形机构。杆613a或杆611a可以与滑动杆640a铰接,支撑杆620a可以与导向块630a铰接。在一些实施例中,杆613a或杆611a可以与导向块630a铰接,支撑杆620a与滑动杆640a铰接。
如图6(a)所示,导向块630a可以铰接于支撑杆620a。滑动杆640a铰接于杆611a,滑动杆640a与导向块630a滑动连接,滑动杆640a、支撑杆620a以及杆611a形成三角形。力平衡件650a可以包括承压弹性件(例如压簧或气弹簧),力平衡件650a的一端与导向块630a连接,而另一端与滑动杆640a的自由端N连接。转动组件610a的杆611a、杆613a或支撑杆620a可以与负载连接。例如,负载可以通过支撑杆620a 与转动组件610a连接。在操作时,在负载的重力力矩作用下,转动组件610a顺时针转动,支撑杆610a与杆611a的铰接点在纵向的位置高于支撑杆620a与导向块630a的铰接点,支撑杆620a和杆611a之间形成的且与滑动杆640a相对的夹角
Figure PCTCN2021087677-appb-000013
在负载的重力力矩的作用下趋于增大,并使滑动杆640a斜向右下(如图6(a)所示平面)滑动,由于力平衡件650a(例如承压弹性件)设置于导向块630a与滑动杆640a的自由端N之间,力平衡件650a受到压缩,产生斜向左上的恢复力F,以平衡支撑杆620a、转动组件610a以及负载的重力。
在一些实施例中,力平衡件650a由承压弹性件变为拉簧,在支撑杆620a、转动组件610a、滑动杆640a形成的三角形机构中,拉簧的设置位置与承压弹性件不同。例如,支撑杆620a与杆611a的铰接点在纵向的位置高于支撑杆620a与导向块630a的铰接点,支撑杆620a和杆611a之间形成的且与滑动杆640a相对的夹角
Figure PCTCN2021087677-appb-000014
在负载的重力力矩的作用下趋于增大,拉簧位于导向块630a与滑动杆640a的铰接端M之间。
图6(b)分别示出根据本公开一些实施例的平衡装置600b的结构示意。在一些实施例中,如图6(b)所示,平衡装置600b可以包括杆或基座660b(以下描述中,以基座660b为例)、转动组件610b、支撑杆620b、导向块630b、滑动杆640b和力平衡件650b。转动组件610b可以包括杆611b和杆613b。杆611b和杆613b的一端分别与基座660b铰接,且杆611b与基座660b的铰接点和杆613b与基座660b的铰接点位于同一纵向轴线上。支撑杆620b的两端分别与杆611b和杆613b的另一端铰接,杆611b、支撑杆620b和杆613b与基座660b形成平行四边形机构。在一些实施例中,力平衡件650b可以包括平衡装置100b-100d、或300b-500b中任何的磁力件(例如图1(b)-图1(d)、图3(b)-图5(b)示出的磁力件),力平衡件650b的一端可以与导向块630b连接,另一端可以与滑动杆640b的自由端N连接。滑动杆640b与导向块630b滑动连接,滑动杆640b、支撑杆620b以及杆611b连接形成三角形。这样在 操作时,负载由于重力作用,驱动转动组件610b相对基座660b顺时针转动,支撑杆620b和转动组件610b之间形成的且与滑动杆640b相对的夹角
Figure PCTCN2021087677-appb-000015
在负载的重力力矩的作用下趋于增大,并使滑动杆640b斜向右下(如图6(b)所示平面)滑动。磁力件650b发生形变,从而产生斜向左上的恢复力F,以平衡转动组件610b、支撑杆620b和负载的重力。
图7(a)示出根据本公开一些实施例的平衡装置700a的结构示意。在一些实施例,如图7(a)所示,平衡装置700a可以包括杆或基座760a(以下描述中,以基座760a为例)、转动组件710a、支撑杆720a、导向块730a、滑动杆740a和力平衡件750a。转动组件710中的杆713与支撑杆720和滑动杆740形成三角形。力平衡件750a可以包括承压弹性件(例如,图1(a)、图3(a)和图5(a)示出的承压弹性件),力平衡件750a的一端可以与导向块730a连接,而另一端可以与滑动杆740a的铰接端M连接。这样在操作时,负载驱动转动组件710a相对基座顺时针转动,支撑杆720a和杆713a之间形成的且与滑动杆740a相对的夹角
Figure PCTCN2021087677-appb-000016
在负载的重力力矩的作用下趋于减小,并使滑动杆740a斜向左下滑动,力平衡件750a受到压缩发生形变,产生斜向右上的恢复力F,以平衡转动组件710a、支撑杆720a以及负载的重力。
在一些实施例中,力平衡件750a由承压弹性件变为拉簧,在支撑杆720a、转动组件710a、滑动杆740a形成的三角形机构中,拉簧的设置位置与承压弹性件不同。例如,支撑杆720a和杆713a之间形成的且与滑动杆740a相对的夹角
Figure PCTCN2021087677-appb-000017
在负载的重力力矩的作用下趋于减小,拉簧位于导向块730a与滑动杆740a的自由端N之间。
图7(b)分别示出根据本公开一些实施例的平衡装置700b的结构示意。在一些实施例中,如图7(b)所示,平衡装置700b可以包括杆或基座760b、转动组件710b、支撑杆720b、导向块730b、滑动杆740b和力平衡件750b。如图7(b)所示,转动组件710b中的杆713b与支撑杆720b和滑动杆740b形成三角形。力平衡件750b可以包 括平衡装置100b-100d、或300b-600b中任何的磁力件(例如图1(b)-图1(d)、图3(b)-图6(b)示出的磁力件),力平衡件750b的一端可以与导向块730b连接,而另一端可以与滑动杆740b的铰接端M连接。这样在操作时,负载驱动转动组件710b相对基座760b顺时针转动,支撑杆720b和转动组件710b之间形成的且与滑动杆740b相对的夹角
Figure PCTCN2021087677-appb-000018
在负载的重力力矩的作用下趋于减小,并使滑动杆740b斜向左下滑动,磁力件750b受到压缩发生形变,产生斜向右上的恢复力F,以平衡转动组件710b、支撑杆720b以及负载的重力。
图8(a)示出根据本公开一些实施例的平衡装置800a(或图6(a)中平衡装置600a的变型)的结构示意。在一些实施例,如图8(a)所示,平衡装置800a可以包括杆或基座860a(以下描述中,以基座860a为例)、转动组件810a、支撑杆820a、导向块830a、滑动杆840a和力平衡件850a。在一些实施例中,如图8(a)所示,转动组件810a(或610a)可以包括杆811a、杆813a和杆814a。杆811a和杆813a的一端分别与基座860a铰接,且杆811a与基座860a的铰接点和杆813a与基座860a的铰接点位于同一纵向轴线上。支撑杆820a的两端分别与杆811a和杆813a的另一端铰接,杆811a、支撑杆820a和杆813a与基座860a形成平行四边形机构。杆811a和杆813a分别向远离基座860a的方向延伸,并在支撑杆820a远离基座860a的一侧分别与杆814a的两端铰接。杆811a、杆814a和杆813a与基座860a形成平行四边形机构。在一些实施例中,转动组件810a中的杆811a与支撑杆820a和滑动杆840a形成三角形。力平衡件850a可以包括承压弹性件(例如,图1(a)、图3(a)-图7(a)示出的承压弹性件),力平衡件850a的一端可以与导向块830a连接,而另一端可以与滑动杆840a的自由端N连接。
图8(b)分别示出根据本公开一些实施例的平衡装置800b(或图6(b)中平衡装置600b的变型)的结构示意。在一些实施例中,如图8(b)所示,平衡装置800b 可以包括杆或基座860b(以下描述中,以基座860b为例)、转动组件810b、支撑杆820b、导向块830b、滑动杆840b和力平衡件850b。在一些实施例中,如图8(b)所示,转动组件810b(或610b)可以包括杆811b、杆813b和杆814b。杆811b、支撑杆820b和杆813b依次铰接并与基座860b形成平行四边形机构。杆811b和杆813b分别向远离基座860b的方向延伸,并在支撑杆820b远离基座860b的一侧分别与杆814b的两端铰接。杆811b、杆814b和杆813b与基座860b形成平行四边形机构。如图8(b)所示,转动组件810b中的杆811b与支撑杆820b和滑动杆840b形成三角形。力平衡件850b可以包括平衡装置100b-100d、或300b-700b中任何的磁力件(例如图1(b)-图1(d)、图3(b)-图7(b)示出的磁力件),力平衡件850b的一端可以与导向块830b连接,而另一端可以与滑动杆840b的自由端N连接。
图8(c)示出根据本公开一些实施例的平衡装置800a的立体结构示意图。如图8(c)所示,平衡装置800a可以包括力平衡件850a,例如承压弹性件。杆811a、杆813a、杆814a或支撑杆820a可以与负载870a连接。在一些实施例中,如图8(c)所示,杆814a可以与负载870a连接。可以理解,虽然图8(c)示出了力平衡件850a的具体结构和连接关系,但是平衡装置800a可以包括根据本申请任何实施例的承压弹性件或者磁力件(例如,例如图1(b)-图1(d)、图3(b)、图4(b)、图5(b)、图6(b)、图7(b)示出的磁力件)和连接关系(例如,如图8(a)、图9(a)和图10(a)所示的连接关系)。
平衡装置800a在操作时,负载870a驱动转动组件810a相对基座860a顺时针转动,支撑杆820a和杆811a之间形成的且与滑动杆840a相对的夹角
Figure PCTCN2021087677-appb-000019
在负载870a的重力力矩的作用下趋于增大,并使滑动杆840a斜向右下滑动。力平衡件850a受力压缩,从而产生斜向左上的恢复力F,以平衡转动组件810a、支撑杆820a和负载870a的重力。
在一些实施例中,力平衡件850a由承压弹性件变为拉簧,在支撑杆820a、转动组件810a、滑动杆840a形成的三角形机构中,拉簧的设置位置与承压弹性件不同。例如,支撑杆820a和杆811a之间形成的且与滑动杆840a相对的夹角
Figure PCTCN2021087677-appb-000020
在负载870a的重力力矩的作用下趋于增大,力平衡件850a位于导向块830a与滑动杆840a的铰接端M之间。
通过转动组件810a(或810b)与基座860a形成平行四边形机构,可以实现将支撑杆820a和力平衡件850a等结构隐藏于平行四边形机构内,额外占用空间小,可以避免影响其他部件的装配和运动,可以实现手术机器人的小型化和轻便化,以及可以提高结构的安全性和稳定性。
图9(a)示出根据本公开一些实施例的平衡装置900a(或图7(a)中平衡装置700a的变型)的结构示意。在一些实施例中,如图9(a)所示,平衡装置900a可以包括杆或基座960a(以下描述中,以基座960a为例)、转动组件910a、支撑杆920a、导向块930a、滑动杆940a和力平衡件950a。杆911a、支撑杆920a和杆913a与基座960a形成平行四边形机构。杆911a、杆914a和杆913a与基座960a形成平行四边形机构。如图9(a)所示,转动组件910a中的杆913a、支撑杆920a和滑动杆940a形成三角形。力平衡件950a可以包括承压弹性件(例如图1(a)、图3(a)-图8(a)示出的承压弹性件),力平衡件950a的一端可以与导向块930a连接,另一端可以与滑动杆940a的铰接端M连接。这样在操作时,负载驱动转动组件910a相对基座960a顺时针转动,支撑杆920a和杆913a之间形成的且与滑动杆940a相对的夹角
Figure PCTCN2021087677-appb-000021
在负载的重力力矩的作用下趋于减小,并使滑动杆940a斜向左下滑动。力平衡件950a受到压缩发生形变,产生斜向右上的恢复力F,以平衡转动组件910a、支撑杆920a以及负载的重力。
在一些实施例中,力平衡件950a由承压弹性件变为拉簧,在支撑杆920a、转动 组件910a、滑动杆940a形成的三角形机构中,拉簧的设置位置与承压弹性件不同。例如,支撑杆920a和杆913a之间形成的且与滑动杆940a相对的夹角
Figure PCTCN2021087677-appb-000022
在负载的重力力矩的作用下趋于减小,力平衡件950a位于导向块930a与滑动杆940a的自由端N之间。
图9(b)示出根据本公开一些实施例的平衡装置900b(或图7(b)中平衡装置700b的变型)的结构示意。在一些实施例,如图9(b)所示,平衡装置900b可以包括杆或基座960b(以下描述中,以基座960b为例)、转动组件910b、支撑杆920b、导向块930b、滑动杆940b和力平衡件950b。杆911b、支撑杆920b和杆913b与基座960b形成平行四边形机构。杆911b、杆914b和杆913b与基座960b形成平行四边形机构。如图9(b)所示,转动组件910b中的杆913b、支撑杆920b和滑动杆940b形成三角形。力平衡件950b可以包括平衡装置100b-100d、或300b-800b中任何的磁力件(例如图1(b)-图1(d)、图3(b)-图8(b)示出的磁力件),力平衡件950b的一端可以与导向块930b连接,而另一端可以与滑动杆940b的铰接端M连接。这样在操作时,负载驱动转动组件910b相对基座960b顺时针转动,支撑杆920b和杆913b之间形成的且与滑动杆940b相对的夹角
Figure PCTCN2021087677-appb-000023
在负载的重力力矩的作用下趋于减小,并使滑动杆940b斜向左下滑动。磁力件950b受到压缩发生形变,产生斜向右上的恢复力F,以平衡转动组件910b、支撑杆920b以及负载的重力。
图10(a)示出根据本公开一些实施例的平衡装置1000a的结构示意。在一些实施例中,如图10(a)所示,平衡装置1000a可以包括杆或基座1060a、转动组件1010a、支撑杆1020a、导向块1030a、滑动杆1040a和力平衡件1050a。杆1011a、支撑杆1020a和杆1013a与基座1060a形成平行四边形机构。杆1011a、杆1014a和杆1013a与基座1060a形成平行四边形机构。如图10(a)所示,转动组件1010a中的杆1011a与支撑杆1020a和滑动杆1040a形成三角形。力平衡件1050a可以包括承压弹性件(例如图 1(a)、图3(a)-图9(a)示出的承压弹性件),力平衡件1050a设置于导向块1030a与滑动杆1040a的铰接端M之间。这样在操作时,负载驱动转动组件1010a相对基座1060a顺时针转动,支撑杆1020a和杆1011a之间形成的且与滑动杆1040a相对的夹角
Figure PCTCN2021087677-appb-000024
在负载的重力力矩的作用下趋于减小,并使滑动杆1040a斜向左下滑动。力平衡件1050a受到压缩发生形变,产生斜向右上的恢复力F,以平衡转动组件1010a、支撑杆1040a以及负载的重力。
在一些实施例中,力平衡件1050a由承压弹性件变为拉簧,在支撑杆1020a、转动组件1010a、滑动杆1040a形成的三角形机构中,拉簧的设置位置与承压弹性件不同。例如,支撑杆1020a和杆1011a之间形成的且与滑动杆1040a相对的夹角
Figure PCTCN2021087677-appb-000025
在负载的重力力矩的作用下趋于减小,力平衡件1050a位于导向块1030a与滑动杆1040a的自由端N之间。
图10(b)示出根据本公开一些实施例的平衡装置1000b的结构示意。在一些实施例中,如图10(b)所示,平衡装置1000b可以包括杆或基座1060b、转动组件1010b、支撑杆1020b、导向块1030b、滑动杆1040b和力平衡件1050b。杆1011b、支撑杆1020b和杆1013b与基座1060b形成平行四边形机构。杆1011b、杆1014b和杆1013b与基座1060b形成平行四边形机构。如图10(b)所示,转动组件1010中的杆1011与支撑杆1020和滑动杆1040形成三角形。力平衡件1050b可以包括平衡装置100b-100d、或300b-900b中任何的磁力件(例如图1(b)-图1(d)、图3(b)-图9(b)示出的磁力件),力平衡件1050b的一端可以与导向块1030b连接,另一端可以与滑动杆1040b的铰接端M连接。这样在操作时,负载驱动转动组件1010b相对基座1060b顺时针转动,支撑杆1020b和杆1011b之间形成的且与滑动杆1040b相对的夹角
Figure PCTCN2021087677-appb-000026
在负载的重力力矩的作用下趋于减小,并使滑动杆1040b斜向左下滑动。力平衡件1050b受到压缩发生形变,产生斜向右上的恢复力F,以平衡转动组件1010b、支撑杆1040b以及负 载的重力。
本公开的一些实施例还提供了一种手术机器人。图11示出根据本公开一些实施例的手术机器人1100的结构示意图。如图11所示,手术机器人1100可以包括主操作器10、手术平台20和控制设备30。主操作器10可以包括主操作器运动臂101以及设置在主操作器运动臂101末端的手柄102。例如,主操作器运动臂101可以包括多节臂体以及连接多节臂体的多个关节。主操作器运动臂101具有多个自由度。手柄102可以为操作者的手操作放置区域,例如夹持端。手术平台20可以包括定位臂201以及设置在定位臂201末端的手术器械202。例如,定位臂201可以包括多节臂体以及多个关节,并且具有多个自由度。手术器械202可以包括手术工具或内窥镜。手术器械202的末端连接有末端器械2021,例如末端器械2021可以包括设置在手术工具末端的手术执行器和/或设置在内窥镜末端的照明装置或图像获取装置。控制设备30被设置为基于对主操作器10的操控动作,来控制手术器械202同步运动,以实现使用者通过对主操作器10的操作对手术器械202的遥操作。主操作器10(例如主操作器运动臂101)和/或手术平台20(例如定位臂201)可以包括上述的平衡装置100a-d(或200-1000a-b),平衡装置100a-d(或200-1000a-b)可以为多自由度运动臂或定位臂的一部分。在一些实施例中,手柄102可以是与平衡装置100a-d(或200-1000a-b)连接的负载。
本公开的一些实施例提供的平衡装置,能够减小重力所带来的惯性影响,提高了手术机器人的稳定性和准确性,额外占用空间小,避免影响其他部件的装配和运动,实现了手术机器人的小型化和轻便化,对于加工精度和结构设计的要求和限制较低,体积较小,重力平衡效果较佳,无需电动机配合。本公开的一些实施例提供的平衡装置,通过采用磁力件可以降低减轻噪声,且可调节性强,适用性强。
注意,上述仅为本公开的示例性实施例及所运用技术原理。本领域技术人员会理解,本公开不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变 化、重新调整和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构思的情况下,还可以包括更多其他等效实施例,而本公开的范围由所附的权利要求范围决定。

Claims (20)

  1. 一种平衡装置,包括:
    支撑杆;
    转动组件,至少一部分与所述支撑杆转动连接;
    导向块,与所述支撑杆和所述转动组件中的一个铰接;
    滑动杆,所述滑动杆的一端与所述支撑杆和所述转动组件中的另一个铰接,形成铰接端,所述滑动杆的另一端形成自由端,所述滑动杆与所述导向块滑动连接,所述滑动杆、所述支撑杆以及所述转动组件形成三角形;
    力平衡件,所述力平衡件的一端与所述导向块连接,另一端与所述滑动杆的铰接端或自由端连接。
  2. 根据权利要求1所述的平衡装置,其特征在于,所述力平衡件包括弹性件或磁力件,所述弹性件或磁力件的一端与所述导向块连接,而另一端与所述滑动杆的铰接端或自由端连接。
  3. 根据权利要求2所述的平衡装置,其特征在于,所述弹性件包括承压弹性件;
    所述支撑杆和所述转动组件之间形成的且与所述滑动杆相对的夹角在力矩作用下趋于减小,所述弹性件的一端与所述导向块连接,另一端与所述滑动杆的铰接端连接;或者
    所述支撑杆和所述转动组件之间形成的且与所述滑动杆相对的夹角在力矩作用下趋于增大,所述弹性件的一端与所述导向块连接,另一端与所述滑动杆的自由端连接。
  4. 根据权利要求3所述的平衡装置,其特征在于,所述承压弹性件为压簧,所述压簧套设于所述滑动杆上,所述压簧一端与所述导向块连接,另一端与所述滑动杆的铰接端或自由端连接;或者
    所述承压弹性件为处于压缩状态的气弹簧,所述气弹簧平行设置于所述滑动杆上,所述气弹簧一端与所述导向块连接,另一端与所述滑动杆的铰接端或自由端连接。
  5. 根据权利要求2所述的平衡装置,其特征在于,所述弹性件包括拉簧;
    所述支撑杆和所述转动组件之间形成的且与所述滑动杆相对的夹角在力矩作用下趋于减小,所述弹性件的一端与所述导向块连接,另一端与所述滑动杆的自由端连接;或者
    所述支撑杆和所述转动组件之间形成的且与所述滑动杆相对的夹角在力矩作用下趋于增大,所述弹性件的一端与所述导向块连接,另一端与所述滑动杆的铰接端连接。
  6. 根据权利要求2所述的平衡装置,其特征在于,所述支撑杆和所述转动组件之间形成的且与所述滑动杆相对的夹角在力矩作用下趋于减小,所述磁力件的一端与所述导向块连接,另一端与所述滑动杆的铰接端连接;或者
    所述支撑杆和所述转动组件之间形成的且与所述滑动杆相对的夹角在力矩作用下趋于增大,所述磁力件的一端与所述导向块连接,另一端与所述滑动杆的自由端连接。
  7. 根据权利要求2所述的平衡装置,其特征在于,所述磁力件包括第一磁体和第二磁体,所述第一磁体与所述导向块连接,所述第二磁体与所述滑动杆的铰接端或自由端连接。
  8. 根据权利要求7所述的平衡装置,其特征在于,所述第一磁体和第二磁体为永磁体、电磁体或两者的组合。
  9. 根据权利要求2所述的平衡装置,其特征在于,所述磁力件为磁弹簧,所述磁弹簧与滑动杆同轴设置,所述磁弹簧的一端与所述导向块连接,另一端与所述滑动杆的铰接端或自由端连接。
  10. 根据权利要求7所述的平衡装置,其特征在于,所述第一磁体包括第一磁环,所述第二磁体包括与所述第一磁环同轴设置的第二磁环,所述第一磁环和第二磁环具有不同的直径且同极相对。
  11. 根据权利要求1所述的平衡装置,其特征在于,所述转动组件包括:第一杆,所述第一杆与所述支撑杆铰接,所述滑动杆、所述支撑杆以及所述第一杆形成三角形。
  12. 根据权利要求11所述的平衡装置,其特征在于,所述转动组件还包括第二杆和第三杆,所述第二杆分别与所述第一杆和所述第三杆铰接,所述支撑杆分别与所述第一杆和所述第三杆铰接,并且
    所述支撑杆、所述第一杆、所述第二杆所述第三杆形成平行四边形机构。
  13. 根据权利要求12所述的平衡装置,其特征在于,所述转动组件还包括第四杆,所述第一杆和所述第三杆从所述平行四边形机构向外延伸并且分别与所述第四杆铰接。
  14. 根据权利要求12所述的平衡装置,其特征在于,所述转动组件还包括第五杆,所述第一杆和所述第五杆分别铰接于基座上,所述支撑杆分别与所述第一杆和所述第五杆铰接,所述第一杆、所述支撑杆、所述第五杆、以及所述第一杆与所述基座的铰接点和所述第五杆与所述基座的铰接点的连线形成平行四边形机构。
  15. 根据权利要求14所述的平衡装置,其特征在于,所述转动组件还包括第六杆,所述第一杆和所述第五杆从所述平行四边形机构沿远离所述基座的方向向外延伸并且分别与所述第六杆铰接。
  16. 根据权利要求1所述的平衡装置,其特征在于,所述支撑杆沿纵向设置,所述平衡装置是重力平衡装置。
  17. 一种手术机器人,包括:
    手术平台,所述手术平台包括定位臂以及设置在所述定位臂末端的手术器械;
    主操作器,所述主操作器包括主操作器运动臂以及设置在所述主操作器运动臂末端的手柄,所述主操作器用于接收操控动作以控制所述手术器械同步运动;
    所述主操作器运动臂和/或所述定位臂包括平衡装置,所述平衡装置包括:
    支撑杆;
    转动组件,至少一部分与所述支撑杆转动连接;
    导向块,与所述支撑杆和所述转动组件中的一个铰接;
    滑动杆,所述滑动杆的一端与所述支撑杆和所述转动组件中的另一个铰接,形成铰接端,所述滑动杆的另一端形成自由端,所述滑动杆与所述导向块滑动连接,所述滑动杆、所述支撑杆以及所述转动组件形成三角形;
    力平衡件,所述力平衡件的一端与所述导向块连接,另一端与所述滑动杆的铰接端或自由端连接。
  18. 根据权利要求17所述的手术机器人,其特征在于,所述力平衡件包括弹性件或磁力件,所述弹性件或磁力件的一端与所述导向块连接,而另一端与所述滑动杆的铰接端或自由端连接。
  19. 根据权利要求18所述的手术机器人,其特征在于,所述弹性件包括承压弹性件;
    所述支撑杆和所述转动组件之间形成的且与所述滑动杆相对的夹角在力矩作用下趋于减小,所述弹性件的一端与所述导向块连接,另一端与所述滑动杆的铰接端连接;或者
    所述支撑杆和所述转动组件之间形成的且与所述滑动杆相对的夹角在力矩作用下趋于增大,所述弹性件的一端与所述导向块连接,另一端与所述滑动杆的自由端连接。
  20. 根据权利要求17所述的手术机器人,其特征在于,所述转动组件包括:第一 杆,所述第一杆与所述支撑杆铰接,所述滑动杆、所述支撑杆以及所述第一杆形成三角形。
PCT/CN2021/087677 2020-07-10 2021-04-16 平衡装置及手术机器人 WO2022007464A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010662816.6 2020-07-10
CN202010662816 2020-07-10
CN202010712554.X 2020-07-22
CN202010712554 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022007464A1 true WO2022007464A1 (zh) 2022-01-13

Family

ID=79552252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087677 WO2022007464A1 (zh) 2020-07-10 2021-04-16 平衡装置及手术机器人

Country Status (1)

Country Link
WO (1) WO2022007464A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114699734A (zh) * 2022-04-27 2022-07-05 北京航空航天大学 一种参数可调的多任务床边上肢康复训练装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070156122A1 (en) * 2005-01-24 2007-07-05 Cooper Thomas G Compact counter balance for robotic surgical systems
CN102018574A (zh) * 2010-11-11 2011-04-20 北京理工大学 一种具有高负载能力的小体积医疗机械臂关节
CN102471043A (zh) * 2009-07-15 2012-05-23 学校法人庆应义塾 载荷补偿装置
CN104546147A (zh) * 2015-02-14 2015-04-29 中国科学院重庆绿色智能技术研究院 一种腹腔镜微创手术机器人机械臂rcm机构
CN206605511U (zh) * 2017-02-15 2017-11-03 湖南中医药大学 用于增加手指灵活度及长度的手指外接装置
CN107351120A (zh) * 2016-05-10 2017-11-17 尚可 重力负载平衡臂及机械臂
JP2018202032A (ja) * 2017-06-08 2018-12-27 株式会社メディカロイド 医療器具の遠隔操作装置
CN210567358U (zh) * 2019-06-10 2020-05-19 南通市久正人体工学股份有限公司 一种弹簧显示器支架

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070156122A1 (en) * 2005-01-24 2007-07-05 Cooper Thomas G Compact counter balance for robotic surgical systems
CN102471043A (zh) * 2009-07-15 2012-05-23 学校法人庆应义塾 载荷补偿装置
CN102018574A (zh) * 2010-11-11 2011-04-20 北京理工大学 一种具有高负载能力的小体积医疗机械臂关节
CN104546147A (zh) * 2015-02-14 2015-04-29 中国科学院重庆绿色智能技术研究院 一种腹腔镜微创手术机器人机械臂rcm机构
CN107351120A (zh) * 2016-05-10 2017-11-17 尚可 重力负载平衡臂及机械臂
CN206605511U (zh) * 2017-02-15 2017-11-03 湖南中医药大学 用于增加手指灵活度及长度的手指外接装置
JP2018202032A (ja) * 2017-06-08 2018-12-27 株式会社メディカロイド 医療器具の遠隔操作装置
CN210567358U (zh) * 2019-06-10 2020-05-19 南通市久正人体工学股份有限公司 一种弹簧显示器支架

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114699734A (zh) * 2022-04-27 2022-07-05 北京航空航天大学 一种参数可调的多任务床边上肢康复训练装置

Similar Documents

Publication Publication Date Title
JP7343921B2 (ja) 医療器具の製造方法
EP3479775A1 (en) Surgical robot and mechanical arm thereof
JP7315251B2 (ja) ロボット手術用の外科器具及びロボット外科手術アセンブリ
WO2022007464A1 (zh) 平衡装置及手术机器人
US11439377B2 (en) Articulated tool positioner and system employing same
US20220296319A1 (en) Robotic arms of a surgical robotic system
US11103319B2 (en) Surgical tool
CN109549775B (zh) 面向眼底视网膜显微手术的机器人操作臂
KR20160072197A (ko) 조절가능한 동공간 거리를 가지는 가상 또는 증강 현실 헤드셋들
CN218899904U (zh) 一种眼科手术机器人和眼科手术设备
JP2008537172A (ja) 機器の安定化支持体のための折り畳み及び調整ヒンジ
CN111588462B (zh) 一种用于显微外科手术的手持式防颤抖手术机器人
CN217366085U (zh) 一种主端操作装置和手术机器人
JP2017129649A (ja) 医療用観察装置、医療用観察システム及び画揺れ補正方法
CN113915305A (zh) 平衡装置及手术机器人
CN113967923B (zh) 平衡装置及手术机器人
WO2023124179A1 (zh) 一种主端操作装置和手术机器人
JP2021041037A (ja) 術具、手術支援システム、並びに手術用操作ユニット
JP2004079313A (ja) 試料ホルダ支持装置
TWI468154B (zh) 醫療器械的扶持裝置
CN109394343B (zh) 一种全被动型主操作手
JP2020059098A (ja) ロボットアーム
CN115300105A (zh) 一种用于微创手术机器人末端的rcm机构
WO2020055335A1 (en) System and method for monitoring a device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838871

Country of ref document: EP

Kind code of ref document: A1