WO2022007060A1 - 液晶显示面板及液晶显示装置 - Google Patents

液晶显示面板及液晶显示装置 Download PDF

Info

Publication number
WO2022007060A1
WO2022007060A1 PCT/CN2020/105803 CN2020105803W WO2022007060A1 WO 2022007060 A1 WO2022007060 A1 WO 2022007060A1 CN 2020105803 W CN2020105803 W CN 2020105803W WO 2022007060 A1 WO2022007060 A1 WO 2022007060A1
Authority
WO
WIPO (PCT)
Prior art keywords
black matrix
layer
array
liquid crystal
crystal display
Prior art date
Application number
PCT/CN2020/105803
Other languages
English (en)
French (fr)
Inventor
杨欢丽
查国伟
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to JP2021533269A priority Critical patent/JP7252340B2/ja
Priority to KR1020217023360A priority patent/KR20220007581A/ko
Priority to US16/970,961 priority patent/US11754868B2/en
Priority to EP20841849.1A priority patent/EP4180862A4/en
Publication of WO2022007060A1 publication Critical patent/WO2022007060A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Definitions

  • the present invention relates to the field of display technology, and in particular, to a liquid crystal display panel and a liquid crystal display device.
  • the liquid crystal display panel is a layered structure, and from top to bottom are cover glass, photoresist, color filter substrate side polarizer, color filter substrate, liquid crystal layer, thin film transistor array substrate and thin film transistor array substrate side polarizer.
  • fingerprint recognition technologies There are usually two types of fingerprint recognition technologies applied to liquid crystal display panels, namely under-screen fingerprint recognition technology and in-screen fingerprint recognition technology.
  • under-screen fingerprint recognition technology the in-screen fingerprint recognition technology has gradually become a future development trend because it can further reduce the size of the LCD screen.
  • the current in-screen fingerprint recognition technology collects too many interference signals while collecting valid fingerprint signals, resulting in low fingerprint recognition accuracy.
  • the present invention provides a liquid crystal display panel and a liquid crystal display device, which are used to solve the problem that the existing in-screen fingerprint identification technology collects too many interference signals while collecting effective fingerprint signals, resulting in low fingerprint identification accuracy. technical problem.
  • the present invention provides a liquid crystal display panel
  • the liquid crystal display panel includes a color filter substrate and an array substrate disposed opposite to each other, and a cover plate disposed on a side of the color filter substrate away from the array substrate
  • the The color filter substrate includes a substrate and a color resist layer disposed on the side of the substrate close to the array substrate
  • the liquid crystal display panel further includes:
  • a black matrix layer array arranged between the cover plate and the array substrate includes a plurality of black matrix layers arranged in layers, and the projection of each black matrix layer on the array substrate is equal to the The projections of the color resist layer on the array substrate do not overlap each other, and the black matrix layer array is provided with a plurality of through hole groups, each of the through hole groups includes a plurality of oppositely arranged through holes, and a plurality of the through hole groups are arranged.
  • the holes are correspondingly arranged in several of the black matrix layers;
  • microlens array disposed between the cover plate and the black matrix layer array, the microlens array includes a plurality of microlens units, and each of the microlens units is arranged corresponding to one of the through-hole groups;
  • a detector array is arranged between the black matrix layer array and the array substrate, the detector array includes a plurality of detector units, and each of the detector units is arranged corresponding to one of the through-hole groups.
  • the microlens array is disposed on a surface of the substrate close to the array substrate.
  • one of the black matrix layers among the plurality of black matrix layers is disposed in the same layer as the color resist layer.
  • the other black matrix layers are disposed between the microlens array and the color resist layer.
  • the detector array is disposed on a surface of the array substrate close to the color filter substrate.
  • the black matrix layer array includes two black matrix layers, the two black matrix layers are a first black matrix layer and a second black matrix layer respectively, and the second black matrix layer is the same as the second black matrix layer.
  • the color resist layers are arranged in the same layer; the liquid crystal display panel further includes a first flat layer and a second flat layer;
  • the first flat layer is disposed on the surface of the substrate close to the array substrate and covers the microlens array, and the first black matrix layer is disposed on the surface of the first flat layer close to the array substrate superior;
  • the second flat layer is disposed on the surface of the first black matrix layer close to the array substrate, and the second black matrix layer and the color resist layer are disposed on the second flat layer close to the array substrate on the surface.
  • the thicknesses of the first flat layer and the second flat layer range from 2 to 50 ⁇ m, and the distance from the second flat layer to the detector array ranges from 3 to 3 -15 ⁇ m.
  • the diameter of any one of the through holes in the first black matrix layer ranges from 8 to 28 ⁇ m, and the diameter of any one of the through holes in the second black matrix layer The value range is 3-16 ⁇ m.
  • the microlens unit includes a plurality of microlenses, the diameter of any one of the microlenses ranges from 3 to 30 ⁇ m, and the height of any one of the microlenses ranges from 2 to 10 ⁇ m.
  • the value range of the radius of curvature of any one of the microlenses is 5-15 ⁇ m.
  • the shape of the detector unit is a square or a circle, and the side length of the square detector unit or the diameter of the circular detector unit ranges from 5 to 18 ⁇ m.
  • the present invention provides a liquid crystal display device, the liquid crystal display device includes a liquid crystal display panel, the liquid crystal display panel includes a color filter substrate and an array substrate disposed opposite to each other, and a color filter substrate disposed on the color filter substrate away from the array A cover plate on one side of a substrate, the color filter substrate includes a substrate and a color resist layer disposed on the side of the substrate close to the array substrate, and the liquid crystal display panel further includes:
  • a black matrix layer array arranged between the cover plate and the array substrate includes a plurality of black matrix layers arranged in layers, and the projection of each black matrix layer on the array substrate is equal to the The projections of the color resist layer on the array substrate do not overlap each other, and the black matrix layer array is provided with a plurality of through hole groups, each of the through hole groups includes a plurality of oppositely arranged through holes, and a plurality of the through hole groups are arranged.
  • the holes are correspondingly arranged in several of the black matrix layers;
  • microlens array disposed between the cover plate and the black matrix layer array, the microlens array includes a plurality of microlens units, and each of the microlens units is arranged corresponding to one of the through-hole groups;
  • a detector array is arranged between the black matrix layer array and the array substrate, the detector array includes a plurality of detector units, and each of the detector units is arranged corresponding to one of the through-hole groups.
  • the microlens array is disposed on a surface of the substrate close to the array substrate.
  • one of the black matrix layers among the plurality of black matrix layers is disposed in the same layer as the color resist layer.
  • the other black matrix layers are disposed between the microlens array and the color resist layer.
  • the detector array is disposed on a surface of the array substrate close to the color filter substrate.
  • the black matrix layer array includes two black matrix layers, the two black matrix layers are a first black matrix layer and a second black matrix layer respectively, and the second black matrix layer is the same as the second black matrix layer.
  • the color resist layers are arranged in the same layer; the liquid crystal display panel further includes a first flat layer and a second flat layer;
  • the first flat layer is disposed on the surface of the substrate close to the array substrate and covers the microlens array, and the first black matrix layer is disposed on the surface of the first flat layer close to the array substrate superior;
  • the second flat layer is disposed on the surface of the first black matrix layer close to the array substrate, and the second black matrix layer and the color resist layer are disposed on the second flat layer close to the array substrate on the surface.
  • the thicknesses of the first flat layer and the second flat layer range from 2 to 50 ⁇ m, and the distance from the second flat layer to the detector array ranges from 3 to 3 -15 ⁇ m.
  • the diameter of any one of the through holes in the first black matrix layer ranges from 8 to 28 ⁇ m, and the diameter of any one of the through holes in the second black matrix layer The value range is 3-16 ⁇ m.
  • the microlens unit includes a plurality of microlenses, the diameter of any one of the microlenses ranges from 3 to 30 ⁇ m, and the height of any one of the microlenses ranges from 2 to 10 ⁇ m.
  • the value range of the radius of curvature of any one of the microlenses is 5-15 ⁇ m.
  • the shape of the detector unit is a square or a circle, and the side length of the square detector unit or the diameter of the circular detector unit ranges from 5 to 18 ⁇ m.
  • the microlens array, the black matrix layer array and the detector array are sequentially arranged between the cover plate and the array substrate, and the microlens array and the black matrix layer array cooperate to filter out the There is a lot of interference light, so that most of the light entering the detector array is the reflected light of the fingerprint, which improves the accuracy of fingerprint recognition.
  • FIG. 1 is a schematic diagram of a film layer of a liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 2 is a partial top view of the film layer of the liquid crystal display panel shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of a partial size of the liquid crystal display panel shown in FIG. 1 .
  • FIG. 4 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present invention.
  • an embodiment of the present invention provides a liquid crystal display panel 100
  • the liquid crystal display panel 100 includes a cover plate 10 , a color filter substrate 20 and a thin film transistor array substrate 30 (for ease of description, it is simply referred to as the array substrate 30 ) ).
  • the color filter substrate 20 and the array substrate 30 are disposed opposite to each other, the liquid crystal 80 is arranged between the color filter substrate 20 and the array substrate 30, and the cover plate 10 is arranged on the side of the color filter substrate 20 away from the array substrate 30.
  • the cover plate 10 and the color filter substrate A polarizer 90 is provided between 20 .
  • the color filter substrate 20 includes a substrate 201 and a color resist layer 202 , and the color resist layer 202 is disposed on the side of the substrate 201 close to the array substrate 30 .
  • the liquid crystal display panel 100 further includes a black matrix layer array 40 , a microlens array 50 and a detector array 60 .
  • the black matrix layer array 40 is disposed between the cover plate 10 and the array substrate 30 , and the black matrix layer array 40 includes a plurality of stacked black matrix layers. It should be noted that the black matrix layer array 40 shown in FIG. 1 includes two black matrix layers. For convenience of description, the black matrix layer close to the cover plate 10 is referred to as the first black matrix layer 401 , and the black matrix layer close to the array substrate 30 is referred to as the first black matrix layer 401 . The black matrix layer is referred to as the second black matrix layer 402 . In other embodiments, the number of black matrix layers may also be one layer, three layers or more than three layers, which is not limited here.
  • each black matrix layer on the array substrate 30 and the projection of the color resist layer 202 on the array substrate 30 do not overlap each other. That is, neither the first black matrix layer 401 nor the second black matrix layer 402 blocks the color blocking layer 202 , and the light emitted by the light source through the color blocking layer 202 can be normally emitted from the liquid crystal display panel 100 to ensure the display effect of the liquid crystal display panel 100 .
  • the black matrix layer array 40 is provided with a plurality of through hole groups, each through hole group includes a plurality of oppositely disposed through holes 400 , and the plurality of through holes 400 are respectively correspondingly disposed in the plurality of black matrix layers. It should be noted that the relative arrangement of the plurality of through holes 400 means that the center points of the projections of the plurality of through holes 400 on the array substrate 30 are coincident or approximately coincident.
  • the black matrix layer array 40 in FIG. 1 is provided with four through-hole groups, each through-hole group includes two oppositely disposed through-holes 400 , one of the through-holes 400 is disposed in the first black-matrix layer 401 , and the other through-hole The holes 400 are provided in the second black matrix layer 402 .
  • the microlens array 50 is disposed between the cover plate 10 and the black matrix layer array 40 .
  • the microlens array 50 includes a plurality of microlens units 500 , and each microlens unit 500 is disposed corresponding to one of the through hole groups. That is, the center point of the projection of each microlens unit 500 in the microlens array 50 on the array substrate 30 and the center point of the projection of all the through holes 400 in the corresponding through hole group on the array substrate 30 are coincident or approximately coincident .
  • the microlens array 50 in FIG. 1 includes four microlens units 500 , and each microlens unit 500 is disposed corresponding to one of the four through-hole groups.
  • the detector array 60 is disposed between the black matrix layer array 40 and the array substrate 30 .
  • the detector array 60 includes a plurality of detector units 600 , and each detector unit 600 is disposed corresponding to one of the through-hole groups. That is, the center point of the projection of each detector unit 600 in the detector array 60 on the array substrate 30 and the center point of the projection of all the through holes 400 in the corresponding through hole group on the array substrate 30 are coincident or approximately coincident .
  • the detector array 60 of FIG. 1 includes four detector units 600 , and each detector unit 600 is disposed corresponding to one of the four through-hole groups.
  • any one of the micro-lens units 500 , the through-hole 400 in the first black matrix layer 401 in the through-hole group corresponding to the micro-lens unit 500 , and the through-hole group in the second black matrix layer The projected areas of the through holes 400 in 402 and the detector units 600 corresponding to the through hole group on the array substrate 30 tend to decrease (the latter is less than or equal to the former), and the through holes in the first black matrix layer 401
  • the projection of the hole 400 is within the projection of the microlens unit 500
  • the projection of the through hole 400 in the second black matrix layer 402 is within the projection of the through hole 400 in the first black matrix layer 401
  • the projection of the detector unit 600 is within the projection of the first black matrix layer 401.
  • the process of fingerprint recognition performed by the liquid crystal display panel 100 is as follows:
  • the light source is irradiated to the area where the fingerprint of the finger is located through the liquid crystal display panel 100, and reflected light is formed by the finger (for convenience of description, it is referred to as fingerprint reflected light for short), and the fingerprint reflected light is collected by the micro lens unit 500 and received by the detector unit 600. On the surface, the fingerprint recognition is performed by the detector unit 600 on the reflected light of the fingerprint.
  • the microlens unit 500 is used to change the path of the light reflected from the fingerprint that is inclined relative to the receiving surface of the detector unit 600 , and optimize the path of the inclined light so that it tends to be perpendicular to the receiving surface of the detector unit 600 . , in order to reduce the amount of reflected and refracted light and improve the light conversion efficiency and uniformity.
  • the detector unit 600 has a receiving surface for receiving the above-mentioned fingerprint reflected light, converting it into an electrical signal, and then forming an optical fingerprint pattern from the electrical signal, so as to perform fingerprint recognition based on the formed optical fingerprint pattern. It should be noted that, because the microlens unit 500 can improve the light conversion efficiency and uniformity, the optical fingerprint pattern formed by the detector unit 600 based on the received fingerprint reflected light is clearer, thereby improving the fingerprint recognition accuracy.
  • interference light 1 shown in Figure 1 ( Figure 1 is shown as a thick dashed line with an arrow) , Interference Light 2 (shown as a thicker dashed line with arrows in Figure 1), and Interference Light 3 (shown as a thin dashed line with arrows in Figure 1). It can be seen from FIG. 1 ( Figure 1 is shown as a thick dashed line with an arrow) , Interference Light 2 (shown as a thicker dashed line with arrows in Figure 1), and Interference Light 3 (shown as a thin dashed line with arrows in Figure 1). It can be seen from FIG.
  • the existence of the micro-lens unit 500 can filter out the interference light 1; after the interference light 2 passes through the micro-lens unit 500, it is blocked by the non-through hole area in the first black matrix layer 401 and cannot reach the detector. unit 600, so the existence of the first black matrix layer 401 can filter out the interference light 2; after the interference light 3 passes through the microlens unit 500, it is blocked by the non-through hole area in the second black matrix layer 402 and cannot be emitted to the detector unit 600, so the presence of the second black matrix layer 402 can filter out the interfering light 3. Understandably, if the number of black matrix layers is greater, the filtering effect of disturbing light is better.
  • the microlens array 50 , the black matrix layer array 40 and the detector array 60 are arranged between the cover plate 10 and the array substrate 30 in sequence, and the microlens array 50 and the black matrix layer are used.
  • the cooperation of the array 40 filters out more interference light, so that most of the light entering the detector array 60 is the reflected light of the fingerprint, which improves the accuracy of fingerprint identification.
  • the microlens array 50 is disposed on the surface of the substrate 201 close to the array substrate 30 . In other embodiments, the microlens array 50 may also be located on the surface of the substrate 201 away from the array substrate 30 .
  • one of the black matrix layers among the plurality of black matrix layers is provided in the same layer as the color resist layer 202 , except for one layer of the black matrix layer provided in the same layer as the color resist layer, Other black matrix layers are disposed between the microlens array 50 and the color resist layer 202 .
  • the black matrix layer array 40 shown in FIG. 1 includes two black matrix layers, which are a first black matrix layer 401 and a second black matrix layer 402 respectively.
  • the black matrix layer is disposed between the microlens array 50 and the color resist layer 202 .
  • the number of black matrix layers may also be one layer, three layers or more than three layers, which is not limited here.
  • the detector array 60 is disposed on the surface of the array substrate 30 close to the color filter substrate 20 .
  • the detector array 60 may be located on the surface of the pixel electrode layer of the array substrate 20 and be driven individually.
  • the film layers located on the side of the detector array 60 close to the color filter substrate 20 are all transparent film layers, so that the detector array 60 can receive the fingerprint reflected light formed by the surface fingerprint reflection of the liquid crystal display panel 100 .
  • the black matrix layer array 40 includes two black matrix layers, and the two black matrix layers are a first black matrix layer 401 and a second black matrix layer 402 respectively, wherein the second black matrix layer is The layer and the color resist layer 202 are arranged in the same layer, and the first black matrix layer is arranged between the microlens array 50 and the color resist layer 202 .
  • the liquid crystal display panel 100 further includes a first planarization layer 701 and a second planarization layer 702 .
  • the first planarization layer 701 is disposed on the surface of the substrate 201 close to the array substrate 30 and covers the microlens array 50 for planarizing and protecting the microlens array 50 .
  • the first black matrix layer 401 is disposed on the surface of the first flat layer 701 close to the array substrate 30 .
  • the material for making the first flat layer 701 can be OCA optical adhesive, which has high light transmittance, high adhesive force and high water resistance. Making it into the first flat layer 701 can not only ensure fingerprints When the reflected light passes through the first flat layer 701 , there is no or very little loss, and the microlens array 50 will not be moved or peeled off during long-term use.
  • the second flat layer 702 is disposed on the surface of the first black matrix layer 401 close to the array substrate 30 , and the second black matrix layer 402 and the color resist layer 202 are disposed on the surface of the second flat layer 702 close to the array substrate 30 . It should be noted that, the second flat layer 702 can be made of the same material as the first flat layer 701 , which will not be repeated here.
  • the thickness L1 of the first flat layer 701 and the thickness L2 of the second flat layer 702 are in the range of 2-50 ⁇ m, and the distance L3 from the second flat layer 702 to the detector array 60 The value range of 3-15 ⁇ m.
  • the diameter D1 of any one of the through holes 400 in the first black matrix layer 401 ranges from 8 to 28 ⁇ m, and the diameter of any one of the through holes 400 in the second black matrix layer 402 is in the range of 8-28 ⁇ m.
  • the value range of aperture D2 is 3-16 ⁇ m.
  • the microlens unit 500 includes several microlenses, for example, one microlens, or n ⁇ n microlenses distributed in n rows and n columns, where n is an integer greater than 1.
  • the value range of the aperture D of any microlens is 3-30 ⁇ m
  • the value range of the height H of any one microlens is 2-10 ⁇ m
  • the value range of the radius of curvature R of any one microlens is 5-15 ⁇ m.
  • the shape of the detector unit 600 is a square or a circle, and the value range of the side length of the square detector unit and the diameter of the circular detector unit is 5-18 ⁇ m.
  • the liquid crystal display device 200 includes a liquid crystal display panel 100 and a liquid crystal display panel 100 for providing uniform illumination for the liquid crystal display panel 100.
  • the liquid crystal display panel 100 includes a cover plate 10 , a color filter substrate 20 and a thin film transistor array substrate 30 (for ease of description, it is simply referred to as an array substrate 30 ).
  • the color filter substrate 20 and the array substrate 30 are disposed opposite to each other, the liquid crystal 80 is arranged between the color filter substrate 20 and the array substrate 30, and the cover plate 10 is arranged on the side of the color filter substrate 20 away from the array substrate 30.
  • the cover plate 10 and the color filter substrate A polarizer 90 is provided between 20 .
  • the color filter substrate 20 includes a substrate 201 and a color resist layer 202 , and the color resist layer 202 is disposed on the side of the substrate 201 close to the array substrate 30 .
  • the liquid crystal display panel 100 further includes a black matrix layer array 40 , a microlens array 50 and a detector array 60 .
  • the black matrix layer array 40 is disposed between the cover plate 10 and the array substrate 30 , and the black matrix layer array 40 includes a plurality of stacked black matrix layers. It should be noted that the black matrix layer array 40 shown in FIG. 1 includes two black matrix layers. For convenience of description, the black matrix layer close to the cover plate 10 is referred to as the first black matrix layer 401 , and the black matrix layer close to the array substrate 30 is referred to as the first black matrix layer 401 . The black matrix layer is referred to as the second black matrix layer 402 . In other embodiments, the number of black matrix layers may also be one layer, three layers or more than three layers, which is not limited here.
  • each black matrix layer on the array substrate 30 and the projection of the color resist layer 202 on the array substrate 30 do not overlap each other. That is, neither the first black matrix layer 401 nor the second black matrix layer 402 blocks the color blocking layer 202 , and the light emitted by the light source through the color blocking layer 202 can be normally emitted from the liquid crystal display panel 100 to ensure the display effect of the liquid crystal display panel 100 .
  • the black matrix layer array 40 is provided with a plurality of through hole groups, each through hole group includes a plurality of oppositely disposed through holes 400 , and the plurality of through holes 400 are respectively correspondingly disposed in the plurality of black matrix layers. It should be noted that the relative arrangement of the plurality of through holes 400 means that the center points of the projections of the plurality of through holes 400 on the array substrate 30 are coincident or approximately coincident.
  • the black matrix layer array 40 in FIG. 1 is provided with four through-hole groups, each through-hole group includes two oppositely disposed through-holes 400 , one of the through-holes 400 is disposed in the first black-matrix layer 401 , and the other through-hole The holes 400 are provided in the second black matrix layer 402 .
  • the microlens array 50 is disposed between the cover plate 10 and the black matrix layer array 40 .
  • the microlens array 50 includes a plurality of microlens units 500 , and each microlens unit 500 is disposed corresponding to one of the through hole groups. That is, the center point of the projection of each microlens unit 500 in the microlens array 50 on the array substrate 30 and the center point of the projection of all the through holes 400 in the corresponding through hole group on the array substrate 30 are coincident or approximately coincident .
  • the microlens array 50 in FIG. 1 includes four microlens units 500 , and each microlens unit 500 is disposed corresponding to one of the four through-hole groups.
  • the detector array 60 is disposed between the black matrix layer array 40 and the array substrate 30 .
  • the detector array 60 includes a plurality of detector units 600 , and each detector unit 600 is disposed corresponding to one of the through-hole groups. That is, the center point of the projection of each detector unit 600 in the detector array 60 on the array substrate 30 and the center point of the projection of all the through holes 400 in the corresponding through hole group on the array substrate 30 are coincident or approximately coincident .
  • the detector array 60 of FIG. 1 includes four detector units 600 , and each detector unit 600 is disposed corresponding to one of the four through-hole groups.
  • any one of the micro-lens units 500 , the through-hole 400 in the first black matrix layer 401 in the through-hole group corresponding to the micro-lens unit 500 , and the through-hole group in the second black matrix layer The projected areas of the through holes 400 in 402 and the detector units 600 corresponding to the through hole group on the array substrate 30 tend to decrease (the latter is less than or equal to the former), and the through holes in the first black matrix layer 401
  • the projection of the hole 400 is within the projection of the microlens unit 500
  • the projection of the through hole 400 in the second black matrix layer 402 is within the projection of the through hole 400 in the first black matrix layer 401
  • the projection of the detector unit 600 is within the projection of the first black matrix layer 401.
  • the process of fingerprint recognition performed by the liquid crystal display panel 100 is as follows:
  • the light source is irradiated to the area where the fingerprint of the finger is located through the liquid crystal display panel 100, and reflected light is formed by the finger (for convenience of description, it is referred to as fingerprint reflected light for short), and the fingerprint reflected light is collected by the micro lens unit 500 and received by the detector unit 600. On the surface, the fingerprint recognition is performed by the detector unit 600 on the reflected light of the fingerprint.
  • the microlens unit 500 is used to change the path of the light reflected from the fingerprint that is inclined relative to the receiving surface of the detector unit 600 , and optimize the path of the inclined light so that it tends to be perpendicular to the receiving surface of the detector unit 600 . , in order to reduce the amount of reflected and refracted light and improve the light conversion efficiency and uniformity.
  • the detector unit 600 has a receiving surface for receiving the above-mentioned fingerprint reflected light, converting it into an electrical signal, and then forming an optical fingerprint pattern from the electrical signal, so as to perform fingerprint recognition based on the formed optical fingerprint pattern. It should be noted that, because the microlens unit 500 can improve the light conversion efficiency and uniformity, the optical fingerprint pattern formed by the detector unit 600 based on the received fingerprint reflected light is clearer, thereby improving the fingerprint recognition accuracy.
  • interference light 1 shown in Figure 1 ( Figure 1 is shown as a thick dashed line with an arrow) , Interference Light 2 (shown as a thicker dashed line with arrows in Figure 1), and Interference Light 3 (shown as a thin dashed line with arrows in Figure 1). It can be seen from FIG. 1 ( Figure 1 is shown as a thick dashed line with an arrow) , Interference Light 2 (shown as a thicker dashed line with arrows in Figure 1), and Interference Light 3 (shown as a thin dashed line with arrows in Figure 1). It can be seen from FIG.
  • the existence of the micro-lens unit 500 can filter out the interference light 1; after the interference light 2 passes through the micro-lens unit 500, it is blocked by the non-through hole area in the first black matrix layer 401 and cannot reach the detector. unit 600, so the existence of the first black matrix layer 401 can filter out the interference light 2; after the interference light 3 passes through the microlens unit 500, it is blocked by the non-through hole area in the second black matrix layer 402 and cannot be emitted to the detector unit 600, so the presence of the second black matrix layer 402 can filter out the interfering light 3. Understandably, if the number of black matrix layers is greater, the filtering effect of disturbing light is better.
  • the microlens array 50, the black matrix layer array 40 and the detector array 60 are sequentially arranged between the cover plate 10 and the array substrate 30, and the microlens array 50 and the black matrix layer are used.
  • the cooperation of the array 40 filters out more interference light, so that most of the light entering the detector array 60 is the reflected light of the fingerprint, which improves the accuracy of fingerprint identification.
  • the microlens array 50 is disposed on the surface of the substrate 201 close to the array substrate 30 . In other embodiments, the microlens array 50 may also be located on the surface of the substrate 201 away from the array substrate 30 .
  • one of the black matrix layers among the plurality of black matrix layers is provided in the same layer as the color resist layer 202 , except for one layer of the black matrix layer provided in the same layer as the color resist layer, Other black matrix layers are disposed between the microlens array 50 and the color resist layer 202 .
  • the black matrix layer array 40 shown in FIG. 1 includes two black matrix layers, which are a first black matrix layer 401 and a second black matrix layer 402 respectively.
  • the black matrix layer is disposed between the microlens array 50 and the color resist layer 202 .
  • the number of black matrix layers may also be one layer, three layers or more than three layers, which is not limited here.
  • the detector array 60 is disposed on the surface of the array substrate 30 close to the color filter substrate 20 .
  • the detector array 60 may be located on the surface of the pixel electrode layer of the array substrate 20 and be driven individually.
  • the film layers located on the side of the detector array 60 close to the color filter substrate 20 are all transparent film layers, so that the detector array 60 can receive the fingerprint reflected light formed by the surface fingerprint reflection of the liquid crystal display panel 100 .
  • the black matrix layer array 40 includes two black matrix layers, and the two black matrix layers are a first black matrix layer 401 and a second black matrix layer 402 respectively, wherein the second black matrix layer is The layer and the color resist layer 202 are arranged in the same layer, and the first black matrix layer is arranged between the microlens array 50 and the color resist layer 202 .
  • the liquid crystal display panel 100 further includes a first planarization layer 701 and a second planarization layer 702 .
  • the first planarization layer 701 is disposed on the surface of the substrate 201 close to the array substrate 30 and covers the microlens array 50 for planarizing and protecting the microlens array 50 .
  • the first black matrix layer 401 is disposed on the surface of the first flat layer 701 close to the array substrate 30 .
  • the material for making the first flat layer 701 can be OCA optical adhesive, which has high light transmittance, high adhesive force and high water resistance. Making it into the first flat layer 701 can not only ensure fingerprints When the reflected light passes through the first flat layer 701 , there is no or very little loss, and the microlens array 50 will not be moved or peeled off during long-term use.
  • the second flat layer 702 is disposed on the surface of the first black matrix layer 401 close to the array substrate 30 , and the second black matrix layer 402 and the color resist layer 202 are disposed on the surface of the second flat layer 702 close to the array substrate 30 . It should be noted that, the second flat layer 702 can be made of the same material as the first flat layer 701 , which will not be repeated here.
  • the thickness L1 of the first flat layer 701 and the thickness L2 of the second flat layer 702 are in the range of 2-50 ⁇ m, and the distance L3 from the second flat layer 702 to the detector array 60 The value range of 3-15 ⁇ m.
  • the diameter D1 of any one of the through holes 400 in the first black matrix layer 401 ranges from 8 to 28 ⁇ m, and the diameter of any one of the through holes 400 in the second black matrix layer 402 is in the range of 8-28 ⁇ m.
  • the value range of aperture D2 is 3-16 ⁇ m.
  • the microlens unit 500 includes several microlenses, for example, one microlens, or n ⁇ n microlenses distributed in n rows and n columns, where n is an integer greater than 1.
  • the value range of the aperture D of any microlens is 3-30 ⁇ m
  • the value range of the height H of any one microlens is 2-10 ⁇ m
  • the value range of the radius of curvature R of any one microlens is 5-15 ⁇ m.
  • the shape of the detector unit 600 is a square or a circle, and the value range of the side length of the square detector unit and the diameter of the circular detector unit is 5-18 ⁇ m.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板(100),通过在盖板(10)和阵列基板(30)之间依次设置微透镜阵列(50)、黑矩阵层阵列(40)和探测器阵列(60),利用微透镜阵列(50)和黑矩阵层阵列(40)的配合滤除较多的干扰光,使得射入至探测器阵列(60)中的光绝大部分均为指纹反射光,提高指纹识别的准确率。还提供一种包括该液晶显示面板(100)的液晶显示装置(200)。

Description

液晶显示面板及液晶显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种液晶显示面板及液晶显示装置。
背景技术
液晶显示面板为层状结构,从上到下依次为盖板玻璃、光刻胶、彩膜基板侧偏光板、彩膜基板、液晶层、薄膜晶体管阵列基板和薄膜晶体管阵列基板侧偏光板。应用于液晶显示面板的指纹识别技术通常为两种,分别为屏下指纹识别技术和屏内指纹识别技术。其中,屏内指纹识别技术由于能够进一步减小液晶显示屏的尺寸逐渐成为了未来的发展趋势。而现阶段的屏内指纹识别技术在采集有效的指纹信号的同时还会采集到过多的干扰信号,导致指纹识别准确率低。
技术问题
本发明提供一种液晶显示面板及液晶显示装置,用以解决现有的屏内指纹识别技术由于在采集有效的指纹信号的同时还会采集到过多的干扰信号,导致指纹识别准确率低的技术问题。
技术解决方案
第一方面,本发明提供一种液晶显示面板,所述液晶显示面板包括相对设置彩膜基板和阵列基板,以及设于所述彩膜基板远离所述阵列基板的一侧的盖板,所述彩膜基板包括衬底和设于所述衬底靠近所述阵列基板的一侧的色阻层,所述液晶显示面板还包括:
设于所述盖板和所述阵列基板之间的黑矩阵层阵列,所述黑矩阵层阵列包括若干层叠设置的黑矩阵层,每一所述黑矩阵层在所述阵列基板上的投影和所述色阻层在所述阵列基板上的投影互不重叠,所述黑矩阵层阵列中设置有若干通孔组,每一所述通孔组包括若干相对设置的通孔,若干所述通孔分别对应设置在若干所述黑矩阵层中;
设于所述盖板和所述黑矩阵层阵列之间的微透镜阵列,所述微透镜阵列包括若干微透镜单元,每一所述微透镜单元与其中一个所述通孔组对应设置;
设于所述黑矩阵层阵列和所述阵列基板之间的探测器阵列,所述探测器阵列包括若干探测器单元,每一所述探测器单元与其中一个所述通孔组对应设置。
在一些实施例中,所述微透镜阵列设于所述衬底靠近所述阵列基板的表面上。
在一些实施例中,若干所述黑矩阵层中的其中一层所述黑矩阵层与所述色阻层同层设置。
在一些实施例中,除与所述色阻层同层设置的一层所述黑矩阵层外,其它的所述黑矩阵层设于所述微透镜阵列和所述色阻层之间。
在一些实施例中,所述探测器阵列设于所述阵列基板靠近所述彩膜基板的表面上。
在一些实施例中,所述黑矩阵层阵列包括两层所述黑矩阵层,两层所述黑矩阵层分别为第一黑矩阵层和第二黑矩阵层,所述第二黑矩阵层与所述色阻层同层设置;所述液晶显示面板还包括第一平坦层和第二平坦层;
所述第一平坦层设于所述衬底靠近所述阵列基板的表面上且覆盖所述微透镜阵列,所述第一黑矩阵层设于所述第一平坦层靠近所述阵列基板的表面上;
所述第二平坦层设于所述第一黑矩阵层靠近所述阵列基板的表面上,所述第二黑矩阵层和所述色阻层设于所述第二平坦层靠近所述阵列基板的表面上。
在一些实施例中,所述第一平坦层和所述第二平坦层的厚度的取值范围为2-50μm,所述第二平坦层到所述探测器阵列的距离的取值范围为3-15μm。
在一些实施例中,所述第一黑矩阵层中的任意一个所述通孔的口径的取值范围为8-28μm,所述第二黑矩阵层中的任意一个所述通孔的口径的取值范围为3-16μm。
在一些实施例中,所述微透镜单元包括若干微透镜,任意一个所述微透镜的口径的取值范围为3-30μm,任意一个所述微透镜的高度的取值范围为2-10μm,任意一个所述微透镜的曲率半径的取值范围为5-15μm。
在一些实施例中,所述探测器单元的形状为方形或圆形,方形的所述探测器单元的边长或圆形所述探测器单元的直径的取值范围为5-18μm。
第二方面,本发明提供一种液晶显示装置,所述液晶显示装置包括液晶显示面板,所述液晶显示面板包括相对设置彩膜基板和阵列基板,以及设于所述彩膜基板远离所述阵列基板的一侧的盖板,所述彩膜基板包括衬底和设于所述衬底靠近所述阵列基板的一侧的色阻层,所述液晶显示面板还包括:
设于所述盖板和所述阵列基板之间的黑矩阵层阵列,所述黑矩阵层阵列包括若干层叠设置的黑矩阵层,每一所述黑矩阵层在所述阵列基板上的投影和所述色阻层在所述阵列基板上的投影互不重叠,所述黑矩阵层阵列中设置有若干通孔组,每一所述通孔组包括若干相对设置的通孔,若干所述通孔分别对应设置在若干所述黑矩阵层中;
设于所述盖板和所述黑矩阵层阵列之间的微透镜阵列,所述微透镜阵列包括若干微透镜单元,每一所述微透镜单元与其中一个所述通孔组对应设置;
设于所述黑矩阵层阵列和所述阵列基板之间的探测器阵列,所述探测器阵列包括若干探测器单元,每一所述探测器单元与其中一个所述通孔组对应设置。
在一些实施例中,所述微透镜阵列设于所述衬底靠近所述阵列基板的表面上。
在一些实施例中,若干所述黑矩阵层中的其中一层所述黑矩阵层与所述色阻层同层设置。
在一些实施例中,除与所述色阻层同层设置的一层所述黑矩阵层外,其它的所述黑矩阵层设于所述微透镜阵列和所述色阻层之间。
在一些实施例中,所述探测器阵列设于所述阵列基板靠近所述彩膜基板的表面上。
在一些实施例中,所述黑矩阵层阵列包括两层所述黑矩阵层,两层所述黑矩阵层分别为第一黑矩阵层和第二黑矩阵层,所述第二黑矩阵层与所述色阻层同层设置;所述液晶显示面板还包括第一平坦层和第二平坦层;
所述第一平坦层设于所述衬底靠近所述阵列基板的表面上且覆盖所述微透镜阵列,所述第一黑矩阵层设于所述第一平坦层靠近所述阵列基板的表面上;
所述第二平坦层设于所述第一黑矩阵层靠近所述阵列基板的表面上,所述第二黑矩阵层和所述色阻层设于所述第二平坦层靠近所述阵列基板的表面上。
在一些实施例中,所述第一平坦层和所述第二平坦层的厚度的取值范围为2-50μm,所述第二平坦层到所述探测器阵列的距离的取值范围为3-15μm。
在一些实施例中,所述第一黑矩阵层中的任意一个所述通孔的口径的取值范围为8-28μm,所述第二黑矩阵层中的任意一个所述通孔的口径的取值范围为3-16μm。
在一些实施例中,所述微透镜单元包括若干微透镜,任意一个所述微透镜的口径的取值范围为3-30μm,任意一个所述微透镜的高度的取值范围为2-10μm,任意一个所述微透镜的曲率半径的取值范围为5-15μm。
在一些实施例中,所述探测器单元的形状为方形或圆形,方形的所述探测器单元的边长或圆形所述探测器单元的直径的取值范围为5-18μm。
有益效果
本发明提供的液晶显示面板及液晶显示装置,通过在盖板和阵列基板之间依次设置微透镜阵列、黑矩阵层阵列和探测器阵列,利用微透镜阵列和黑矩阵层阵列的配合滤除较多的干扰光,使得射入至探测器阵列中的光绝大部分均为指纹反射光,提高指纹识别的准确率。
附图说明
图1为本发明的实施例提供的一种液晶显示面板的膜层示意图。
图2为图1所示的液晶显示面板的局部膜层俯视图。
图3为图1所示的液晶显示面板的局部尺寸示意图。
图4为本发明的实施例提供的一种液晶显示装置的结构示意图。
本发明的实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
请参阅图1,本发明的实施例提供一种液晶显示面板100,该液晶显示面板100包括盖板10、彩膜基板20和薄膜晶体管阵列基板30(为了便于描述,将其简称为阵列基板30)。彩膜基板20和阵列基板30相对设置,彩膜基板20和阵列基板30之间设有液晶80,盖板10设于彩膜基板20远离阵列基板30的一侧,盖板10和彩膜基板20之间设有偏光片90。彩膜基板20包括衬底201和色阻层202,色阻层202设于衬底201靠近阵列基板30的一侧。
该液晶显示面板100还包括黑矩阵层阵列40、微透镜阵列50和探测器阵列60。
黑矩阵层阵列40设于盖板10和阵列基板30之间,黑矩阵层阵列40包括若干层叠设置的黑矩阵层。需要说明的是,图1所示的黑矩阵层阵列40包括两层黑矩阵层,为了便于描述,将靠近盖板10的黑矩阵层称为第一黑矩阵层401,将靠近阵列基板30的黑矩阵层称为第二黑矩阵层402。在其它实施例中,黑矩阵层的数量还可以为一层、三层或三层以上,此处不对其进行限定。
每一黑矩阵层在阵列基板30上的投影和色阻层202在阵列基板30上的投影互不重叠。即,第一黑矩阵层401和第二黑矩阵层402均未遮挡色阻层202,光源经过色阻层202射出的光能够从液晶显示面板100中正常射出,保证液晶显示面板100的显示效果。
黑矩阵层阵列40中设置有若干通孔组,每一通孔组包括若干相对设置的通孔400,若干通孔400分别对应设置在若干黑矩阵层中。需要说明的是,若干通孔400相对设置指的是若干通孔400在阵列基板30上的投影的中心点重合或近似重合。图1中的黑矩阵层阵列40中设置有四个通孔组,每一通孔组包括两个相对设置的通孔400,其中一个通孔400设置在第一黑矩阵层401中,另外一个通孔400设置在第二黑矩阵层402中。
微透镜阵列50设于盖板10和黑矩阵层阵列40之间,微透镜阵列50包括若干微透镜单元500,每一微透镜单元500与其中一个通孔组对应设置。即,微透镜阵列50中的每一微透镜单元500在阵列基板30上的投影的中心点和对应的通孔组中的所有通孔400在阵列基板30上的投影的中心点重合或近似重合。图1的微透镜阵列50包括四个微透镜单元500,每一微透镜单元500与四个通孔组中的其中一个通孔组对应设置。
探测器阵列60设于黑矩阵层阵列40和阵列基板30之间,探测器阵列60包括若干探测器单元600,每一探测器单元600与其中一个通孔组对应设置。即,探测器阵列60中的每一探测器单元600在阵列基板30上的投影的中心点和对应的通孔组中的所有通孔400在阵列基板30上的投影的中心点重合或近似重合。图1的探测器阵列60包括四个探测器单元600,每一探测器单元600与四个通孔组中的其中一个通孔组对应设置。
优选地,请参阅图2,任意一个微透镜单元500、该微透镜单元500对应的通孔组中位于第一黑矩阵层401中的通孔400、该通孔组中位于第二黑矩阵层402中的通孔400以及该通孔组对应的探测器单元600这四者在阵列基板30上的投影面积呈递减(后者小于或等于前者)趋势,且第一黑矩阵层401中的通孔400的投影位于微透镜单元500的投影内,第二黑矩阵层402中的通孔400的投影位于第一黑矩阵层401中的通孔400的投影内,探测器单元600的投影位于第二黑矩阵层402中的通孔400的投影内。
该液晶显示面板100进行指纹识别的过程如下:
光源通过液晶显示面板100照射至手指的指纹所在区域,经过手指反射形成反射光(为了便于描述,将其简称为指纹反射光),指纹反射光经过微透镜单元500汇聚到探测器单元600的接收表面,通过探测器单元600对指纹反射光进行指纹识别。
其中,微透镜单元500用于改变指纹反射光中相对于探测器单元600的接收表面倾斜的光的路径,对倾斜的光的路径进行优化,使之趋于与探测器单元600的接收表面垂直,以减少发生反射和折射的光的数量,提高光转换效率及均匀性。
探测器单元600具有接收表面,用于接收上述的指纹反射光,并将其转换为电信号,再由电信号形成光学指纹图案,以基于所形成的光学指纹图案进行指纹识别。需要说明的是,由于微透镜单元500能够提高光转换效率及均匀性,因此探测器单元600基于接收到的指纹反射光所形成的光学指纹图案更加清晰,进而能够提高指纹识别准确率。
但是,对于图1所示的液晶显示面板100,很大角度范围内的光均可以射入微透镜单元500,这些光里面包含小角度范围内指纹反射光(图1所示为带箭头的实线),还包括大角度范围内的未经手指反射的光(为了便于描述,将其简称为干扰光),例如图1所示的干扰光1(图1所示为带箭头的粗虚线)、干扰光2(图1所示为带箭头的较粗虚线)和干扰光3(图1所示为带箭头的细虚线)。从图1中可以看出,指纹反射光依次经过微透镜单元500和通孔400后,汇聚至探测器单元600;干扰光1经过微透镜单元500和通孔400后,汇聚至探测器单元600之外的其它区域,因此微透镜单元500的存在可以滤除干扰光1;干扰光2经过微透镜单元500后,被第一黑矩阵层401中的非通孔区域遮挡,无法射至探测器单元600,因此第一黑矩阵层401的存在可以滤除干扰光2;干扰光3经过微透镜单元500后,被第二黑矩阵层402中的非通孔区域遮挡,无法射至探测器单元600,因此第二黑矩阵层402的存在可以滤除干扰光3。可以理解地,若黑色矩阵层的数量越多,则干扰光的滤除效果越好。
本发明的实施例提供的液晶显示面板100,通过在盖板10和阵列基板30之间依次设置微透镜阵列50、黑矩阵层阵列40和探测器阵列60,利用微透镜阵列50和黑矩阵层阵列40的配合滤除较多的干扰光,使得射入至探测器阵列60中的光绝大部分均为指纹反射光,提高指纹识别的准确率。
在一些实施例中,请参阅图1,微透镜阵列50设于衬底201靠近阵列基板30的表面上。在其它实施例中,微透镜阵列50还可以位于衬底201远离阵列基板30的表面上。
在一些实施例中,请参阅图1,若干黑矩阵层中的其中一层黑矩阵层与色阻层202同层设置,除与色阻层同层设置的一层所述黑矩阵层外,其它的黑矩阵层设于微透镜阵列50和色阻层202之间。图1所示黑矩阵层阵列40包括两层黑矩阵层,分别为第一黑矩阵层401和第二黑矩阵层402,其中,第二黑矩阵层与色阻层202同层设置,第一黑矩阵层设于微透镜阵列50和色阻层202之间。在其它实施例中,黑矩阵层的数量还可以为一层、三层或三层以上,此处不对其进行限定。
在一些实施例中,请参阅图1,探测器阵列60设于阵列基板30靠近彩膜基板20的表面上。例如,探测器阵列60可以位于阵列基板20的像素电极层的表面,并进行单独驱动。需要说明的是,位于探测器阵列60靠近彩膜基板20的一侧的膜层均为透明膜层,以便于探测器阵列60接收来自液晶显示面板100的表面指纹反射形成的指纹反射光。
在一些实施例中,请参阅图1,黑矩阵层阵列40包括两层黑矩阵层,两层黑矩阵层分别为第一黑矩阵层401和第二黑矩阵层402,其中,第二黑矩阵层与色阻层202同层设置,第一黑矩阵层设于微透镜阵列50和色阻层202之间。液晶显示面板100还包括第一平坦层701和第二平坦层702。
第一平坦层701设于衬底201靠近阵列基板30的表面上且覆盖微透镜阵列50,用于平坦化和保护微透镜阵列50。第一黑矩阵层401设于第一平坦层701靠近阵列基板30的表面上。需要说明的是,第一平坦层701的制作材料可以为OCA光学胶,OCA光学胶具有高透光性、高黏着力和高耐水性,将其制作成为第一平坦层701,既可以保证指纹反射光在经过第一平坦层701时不会发生损耗或仅发生极少的损耗,又可以保证微透镜阵列50在长时间的使用过程中不会发生移动或剥离的问题。
第二平坦层702设于第一黑矩阵层401靠近阵列基板30的表面上,第二黑矩阵层402和色阻层202设于第二平坦层702靠近阵列基板30的表面上。需要说明的是,第二平坦层702可以与第一平坦层701的制作材料相同,此处不再进行赘述。
在一些实施例中,请参阅图3,第一平坦层701的厚度L1和第二平坦层702的厚度L2的取值范围为2-50μm,第二平坦层702到探测器阵列60的距离L3的取值范围为3-15μm。
在一些实施例中,请参阅图3,第一黑矩阵层401中的任意一个通孔400的口径D1的取值范围为8-28μm,第二黑矩阵层402中的任意一个通孔400的口径D2的取值范围为3-16μm 。
在一些实施例中,微透镜单元500包括若干微透镜,例如包括1个微透镜,又例如包括呈n行n列分布的n×n个微透镜,其中,n为大于1的整数。请参阅图3,任意一个微透镜的口径D的取值范围为3-30μm,任意一个微透镜的高度H的取值范围为2-10μm,任意一个微透镜的曲率半径R的取值范围为5-15μm。
在一些实施例中,探测器单元600的形状为方形或圆形,方形的探测器单元的边长和圆形的探测器单元的直径的取值范围为5-18μm。
在上述任一实施例的基础上,本发明的实施例还提供一种液晶显示装置,请参阅图4,该液晶显示装置200包括液晶显示面板100和用于为液晶显示面板100提供光照均匀的面光源的背光模组300。请参阅图1,该液晶显示面板100包括盖板10、彩膜基板20和薄膜晶体管阵列基板30(为了便于描述,将其简称为阵列基板30)。彩膜基板20和阵列基板30相对设置,彩膜基板20和阵列基板30之间设有液晶80,盖板10设于彩膜基板20远离阵列基板30的一侧,盖板10和彩膜基板20之间设有偏光片90。彩膜基板20包括衬底201和色阻层202,色阻层202设于衬底201靠近阵列基板30的一侧。
该液晶显示面板100还包括黑矩阵层阵列40、微透镜阵列50和探测器阵列60。
黑矩阵层阵列40设于盖板10和阵列基板30之间,黑矩阵层阵列40包括若干层叠设置的黑矩阵层。需要说明的是,图1所示的黑矩阵层阵列40包括两层黑矩阵层,为了便于描述,将靠近盖板10的黑矩阵层称为第一黑矩阵层401,将靠近阵列基板30的黑矩阵层称为第二黑矩阵层402。在其它实施例中,黑矩阵层的数量还可以为一层、三层或三层以上,此处不对其进行限定。
每一黑矩阵层在阵列基板30上的投影和色阻层202在阵列基板30上的投影互不重叠。即,第一黑矩阵层401和第二黑矩阵层402均未遮挡色阻层202,光源经过色阻层202射出的光能够从液晶显示面板100中正常射出,保证液晶显示面板100的显示效果。
黑矩阵层阵列40中设置有若干通孔组,每一通孔组包括若干相对设置的通孔400,若干通孔400分别对应设置在若干黑矩阵层中。需要说明的是,若干通孔400相对设置指的是若干通孔400在阵列基板30上的投影的中心点重合或近似重合。图1中的黑矩阵层阵列40中设置有四个通孔组,每一通孔组包括两个相对设置的通孔400,其中一个通孔400设置在第一黑矩阵层401中,另外一个通孔400设置在第二黑矩阵层402中。
微透镜阵列50设于盖板10和黑矩阵层阵列40之间,微透镜阵列50包括若干微透镜单元500,每一微透镜单元500与其中一个通孔组对应设置。即,微透镜阵列50中的每一微透镜单元500在阵列基板30上的投影的中心点和对应的通孔组中的所有通孔400在阵列基板30上的投影的中心点重合或近似重合。图1的微透镜阵列50包括四个微透镜单元500,每一微透镜单元500与四个通孔组中的其中一个通孔组对应设置。
探测器阵列60设于黑矩阵层阵列40和阵列基板30之间,探测器阵列60包括若干探测器单元600,每一探测器单元600与其中一个通孔组对应设置。即,探测器阵列60中的每一探测器单元600在阵列基板30上的投影的中心点和对应的通孔组中的所有通孔400在阵列基板30上的投影的中心点重合或近似重合。图1的探测器阵列60包括四个探测器单元600,每一探测器单元600与四个通孔组中的其中一个通孔组对应设置。
优选地,请参阅图2,任意一个微透镜单元500、该微透镜单元500对应的通孔组中位于第一黑矩阵层401中的通孔400、该通孔组中位于第二黑矩阵层402中的通孔400以及该通孔组对应的探测器单元600这四者在阵列基板30上的投影面积呈递减(后者小于或等于前者)趋势,且第一黑矩阵层401中的通孔400的投影位于微透镜单元500的投影内,第二黑矩阵层402中的通孔400的投影位于第一黑矩阵层401中的通孔400的投影内,探测器单元600的投影位于第二黑矩阵层402中的通孔400的投影内。
该液晶显示面板100进行指纹识别的过程如下:
光源通过液晶显示面板100照射至手指的指纹所在区域,经过手指反射形成反射光(为了便于描述,将其简称为指纹反射光),指纹反射光经过微透镜单元500汇聚到探测器单元600的接收表面,通过探测器单元600对指纹反射光进行指纹识别。
其中,微透镜单元500用于改变指纹反射光中相对于探测器单元600的接收表面倾斜的光的路径,对倾斜的光的路径进行优化,使之趋于与探测器单元600的接收表面垂直,以减少发生反射和折射的光的数量,提高光转换效率及均匀性。
探测器单元600具有接收表面,用于接收上述的指纹反射光,并将其转换为电信号,再由电信号形成光学指纹图案,以基于所形成的光学指纹图案进行指纹识别。需要说明的是,由于微透镜单元500能够提高光转换效率及均匀性,因此探测器单元600基于接收到的指纹反射光所形成的光学指纹图案更加清晰,进而能够提高指纹识别准确率。
但是,对于图1所示的液晶显示面板100,很大角度范围内的光均可以射入微透镜单元500,这些光里面包含小角度范围内指纹反射光(图1所示为带箭头的实线),还包括大角度范围内的未经手指反射的光(为了便于描述,将其简称为干扰光),例如图1所示的干扰光1(图1所示为带箭头的粗虚线)、干扰光2(图1所示为带箭头的较粗虚线)和干扰光3(图1所示为带箭头的细虚线)。从图1中可以看出,指纹反射光依次经过微透镜单元500和通孔400后,汇聚至探测器单元600;干扰光1经过微透镜单元500和通孔400后,汇聚至探测器单元600之外的其它区域,因此微透镜单元500的存在可以滤除干扰光1;干扰光2经过微透镜单元500后,被第一黑矩阵层401中的非通孔区域遮挡,无法射至探测器单元600,因此第一黑矩阵层401的存在可以滤除干扰光2;干扰光3经过微透镜单元500后,被第二黑矩阵层402中的非通孔区域遮挡,无法射至探测器单元600,因此第二黑矩阵层402的存在可以滤除干扰光3。可以理解地,若黑色矩阵层的数量越多,则干扰光的滤除效果越好。
本发明的实施例提供的液晶显示装置200,通过在盖板10和阵列基板30之间依次设置微透镜阵列50、黑矩阵层阵列40和探测器阵列60,利用微透镜阵列50和黑矩阵层阵列40的配合滤除较多的干扰光,使得射入至探测器阵列60中的光绝大部分均为指纹反射光,提高指纹识别的准确率。
在一些实施例中,请参阅图1,微透镜阵列50设于衬底201靠近阵列基板30的表面上。在其它实施例中,微透镜阵列50还可以位于衬底201远离阵列基板30的表面上。
在一些实施例中,请参阅图1,若干黑矩阵层中的其中一层黑矩阵层与色阻层202同层设置,除与色阻层同层设置的一层所述黑矩阵层外,其它的黑矩阵层设于微透镜阵列50和色阻层202之间。图1所示黑矩阵层阵列40包括两层黑矩阵层,分别为第一黑矩阵层401和第二黑矩阵层402,其中,第二黑矩阵层与色阻层202同层设置,第一黑矩阵层设于微透镜阵列50和色阻层202之间。在其它实施例中,黑矩阵层的数量还可以为一层、三层或三层以上,此处不对其进行限定。
在一些实施例中,请参阅图1,探测器阵列60设于阵列基板30靠近彩膜基板20的表面上。例如,探测器阵列60可以位于阵列基板20的像素电极层的表面,并进行单独驱动。需要说明的是,位于探测器阵列60靠近彩膜基板20的一侧的膜层均为透明膜层,以便于探测器阵列60接收来自液晶显示面板100的表面指纹反射形成的指纹反射光。
在一些实施例中,请参阅图1,黑矩阵层阵列40包括两层黑矩阵层,两层黑矩阵层分别为第一黑矩阵层401和第二黑矩阵层402,其中,第二黑矩阵层与色阻层202同层设置,第一黑矩阵层设于微透镜阵列50和色阻层202之间。液晶显示面板100还包括第一平坦层701和第二平坦层702。
第一平坦层701设于衬底201靠近阵列基板30的表面上且覆盖微透镜阵列50,用于平坦化和保护微透镜阵列50。第一黑矩阵层401设于第一平坦层701靠近阵列基板30的表面上。需要说明的是,第一平坦层701的制作材料可以为OCA光学胶,OCA光学胶具有高透光性、高黏着力和高耐水性,将其制作成为第一平坦层701,既可以保证指纹反射光在经过第一平坦层701时不会发生损耗或仅发生极少的损耗,又可以保证微透镜阵列50在长时间的使用过程中不会发生移动或剥离的问题。
第二平坦层702设于第一黑矩阵层401靠近阵列基板30的表面上,第二黑矩阵层402和色阻层202设于第二平坦层702靠近阵列基板30的表面上。需要说明的是,第二平坦层702可以与第一平坦层701的制作材料相同,此处不再进行赘述。
在一些实施例中,请参阅图3,第一平坦层701的厚度L1和第二平坦层702的厚度L2的取值范围为2-50μm,第二平坦层702到探测器阵列60的距离L3的取值范围为3-15μm。
在一些实施例中,请参阅图3,第一黑矩阵层401中的任意一个通孔400的口径D1的取值范围为8-28μm,第二黑矩阵层402中的任意一个通孔400的口径D2的取值范围为3-16μm 。
在一些实施例中,微透镜单元500包括若干微透镜,例如包括1个微透镜,又例如包括呈n行n列分布的n×n个微透镜,其中,n为大于1的整数。请参阅图3,任意一个微透镜的口径D的取值范围为3-30μm,任意一个微透镜的高度H的取值范围为2-10μm,任意一个微透镜的曲率半径R的取值范围为5-15μm。
在一些实施例中,探测器单元600的形状为方形或圆形,方形的探测器单元的边长和圆形的探测器单元的直径的取值范围为5-18μm。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (20)

  1. 一种液晶显示面板,所述液晶显示面板包括相对设置彩膜基板和阵列基板,以及设于所述彩膜基板远离所述阵列基板的一侧的盖板,所述彩膜基板包括衬底和设于所述衬底靠近所述阵列基板的一侧的色阻层,其中,所述液晶显示面板还包括:
    设于所述盖板和所述阵列基板之间的黑矩阵层阵列,所述黑矩阵层阵列包括若干层叠设置的黑矩阵层,每一所述黑矩阵层在所述阵列基板上的投影和所述色阻层在所述阵列基板上的投影互不重叠,所述黑矩阵层阵列中设置有若干通孔组,每一所述通孔组包括若干相对设置的通孔,若干所述通孔分别对应设置在若干所述黑矩阵层中;
    设于所述盖板和所述黑矩阵层阵列之间的微透镜阵列,所述微透镜阵列包括若干微透镜单元,每一所述微透镜单元与其中一个所述通孔组对应设置;
    设于所述黑矩阵层阵列和所述阵列基板之间的探测器阵列,所述探测器阵列包括若干探测器单元,每一所述探测器单元与其中一个所述通孔组对应设置。
  2. 如权利要求1所述的液晶显示面板,其中,所述微透镜阵列设于所述衬底靠近所述阵列基板的表面上。
  3. 如权利要求2所述的液晶显示面板,其中,若干所述黑矩阵层中的其中一层所述黑矩阵层与所述色阻层同层设置。
  4. 如权利要求3所述的液晶显示面板,其中,除与所述色阻层同层设置的一层所述黑矩阵层外,其它的所述黑矩阵层设于所述微透镜阵列和所述色阻层之间。
  5. 如权利要求4所述的液晶显示面板,其中,所述探测器阵列设于所述阵列基板靠近所述彩膜基板的表面上。
  6. 如权利要求5所述的液晶显示面板,其中,所述黑矩阵层阵列包括两层所述黑矩阵层,两层所述黑矩阵层分别为第一黑矩阵层和第二黑矩阵层,所述第二黑矩阵层与所述色阻层同层设置;所述液晶显示面板还包括第一平坦层和第二平坦层;
    所述第一平坦层设于所述衬底靠近所述阵列基板的表面上且覆盖所述微透镜阵列,所述第一黑矩阵层设于所述第一平坦层靠近所述阵列基板的表面上;
    所述第二平坦层设于所述第一黑矩阵层靠近所述阵列基板的表面上,所述第二黑矩阵层和所述色阻层设于所述第二平坦层靠近所述阵列基板的表面上。
  7. 如权利要求6所述的液晶显示面板,其中,所述第一平坦层和所述第二平坦层的厚度的取值范围为2-50μm,所述第二平坦层到所述探测器阵列的距离的取值范围为3-15μm。
  8. 如权利要求6所述的液晶显示面板,其中,所述第一黑矩阵层中的任意一个所述通孔的口径的取值范围为8-28μm,所述第二黑矩阵层中的任意一个所述通孔的口径的取值范围为3-16μm。
  9. 如权利要求6所述的液晶显示面板,其中,所述微透镜单元包括若干微透镜,任意一个所述微透镜的口径的取值范围为3-30μm,任意一个所述微透镜的高度的取值范围为2-10μm,任意一个所述微透镜的曲率半径的取值范围为5-15μm。
  10. 如权利要求6所述的液晶显示面板,其中,所述探测器单元的形状为方形或圆形,方形的所述探测器单元的边长或圆形所述探测器单元的直径的取值范围为5-18μm。
  11. 一种液晶显示装置,所述液晶显示装置包括液晶显示面板,所述液晶显示面板包括相对设置彩膜基板和阵列基板,以及设于所述彩膜基板远离所述阵列基板的一侧的盖板,所述彩膜基板包括衬底和设于所述衬底靠近所述阵列基板的一侧的色阻层,其中,所述液晶显示面板还包括:
    设于所述盖板和所述阵列基板之间的黑矩阵层阵列,所述黑矩阵层阵列包括若干层叠设置的黑矩阵层,每一所述黑矩阵层在所述阵列基板上的投影和所述色阻层在所述阵列基板上的投影互不重叠,所述黑矩阵层阵列中设置有若干通孔组,每一所述通孔组包括若干相对设置的通孔,若干所述通孔分别对应设置在若干所述黑矩阵层中;
    设于所述盖板和所述黑矩阵层阵列之间的微透镜阵列,所述微透镜阵列包括若干微透镜单元,每一所述微透镜单元与其中一个所述通孔组对应设置;
    设于所述黑矩阵层阵列和所述阵列基板之间的探测器阵列,所述探测器阵列包括若干探测器单元,每一所述探测器单元与其中一个所述通孔组对应设置。
  12. 如权利要求11所述的液晶显示装置,其中,所述微透镜阵列设于所述衬底靠近所述阵列基板的表面上。
  13. 如权利要求12所述的液晶显示装置,其中,若干所述黑矩阵层中的其中一层所述黑矩阵层与所述色阻层同层设置。
  14. 如权利要求13所述的液晶显示装置,其中,除与所述色阻层同层设置的一层所述黑矩阵层外,其它的所述黑矩阵层设于所述微透镜阵列和所述色阻层之间。
  15. 如权利要求14所述的液晶显示装置,其中,所述探测器阵列设于所述阵列基板靠近所述彩膜基板的表面上。
  16. 如权利要求15所述的液晶显示装置,其中,所述黑矩阵层阵列包括两层所述黑矩阵层,两层所述黑矩阵层分别为第一黑矩阵层和第二黑矩阵层,所述第二黑矩阵层与所述色阻层同层设置;所述液晶显示面板还包括第一平坦层和第二平坦层;
    所述第一平坦层设于所述衬底靠近所述阵列基板的表面上且覆盖所述微透镜阵列,所述第一黑矩阵层设于所述第一平坦层靠近所述阵列基板的表面上;
    所述第二平坦层设于所述第一黑矩阵层靠近所述阵列基板的表面上,所述第二黑矩阵层和所述色阻层设于所述第二平坦层靠近所述阵列基板的表面上。
  17. 如权利要求16所述的液晶显示装置,其中,所述第一平坦层和所述第二平坦层的厚度的取值范围为2-50μm,所述第二平坦层到所述探测器阵列的距离的取值范围为3-15μm。
  18. 如权利要求16所述的液晶显示装置,其中,所述第一黑矩阵层中的任意一个所述通孔的口径的取值范围为8-28μm,所述第二黑矩阵层中的任意一个所述通孔的口径的取值范围为3-16μm。
  19. 如权利要求16所述的液晶显示装置,其中,所述微透镜单元包括若干微透镜,任意一个所述微透镜的口径的取值范围为3-30μm,任意一个所述微透镜的高度的取值范围为2-10μm,任意一个所述微透镜的曲率半径的取值范围为5-15μm。
  20. 如权利要求16所述的液晶显示装置,其中,所述探测器单元的形状为方形或圆形,方形的所述探测器单元的边长或圆形所述探测器单元的直径的取值范围为5-18μm。
PCT/CN2020/105803 2020-07-09 2020-07-30 液晶显示面板及液晶显示装置 WO2022007060A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021533269A JP7252340B2 (ja) 2020-07-09 2020-07-30 液晶ディスプレイパネル及び液晶表示装置
KR1020217023360A KR20220007581A (ko) 2020-07-09 2020-07-30 액정 디스플레이 패널 및 액정 디스플레이 장치
US16/970,961 US11754868B2 (en) 2020-07-09 2020-07-30 Liquid crystal display panel and liquid crystal display device
EP20841849.1A EP4180862A4 (en) 2020-07-09 2020-07-30 LIQUID CRYSTAL DISPLAY PANEL AND LIQUID CRYSTAL DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010654544.5 2020-07-09
CN202010654544.5A CN111752028A (zh) 2020-07-09 2020-07-09 液晶显示面板

Publications (1)

Publication Number Publication Date
WO2022007060A1 true WO2022007060A1 (zh) 2022-01-13

Family

ID=72710155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105803 WO2022007060A1 (zh) 2020-07-09 2020-07-30 液晶显示面板及液晶显示装置

Country Status (6)

Country Link
US (1) US11754868B2 (zh)
EP (1) EP4180862A4 (zh)
JP (1) JP7252340B2 (zh)
KR (1) KR20220007581A (zh)
CN (1) CN111752028A (zh)
WO (1) WO2022007060A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766731A (zh) * 2020-07-17 2020-10-13 武汉华星光电技术有限公司 显示面板及显示装置
CN112666737B (zh) * 2020-12-29 2022-10-04 武汉华星光电技术有限公司 液晶显示面板
CN112748598A (zh) * 2021-01-08 2021-05-04 武汉华星光电技术有限公司 一种阵列基板、显示面板以及显示装置
CN114815364B (zh) * 2021-01-18 2023-11-21 北京小米移动软件有限公司 显示屏及显示屏的制作方法、终端
CN112904609A (zh) * 2021-01-28 2021-06-04 武汉华星光电技术有限公司 显示面板和显示装置
CN113219691B (zh) * 2021-03-25 2023-01-24 武汉华星光电技术有限公司 液晶显示面板及显示装置
CN113093424A (zh) * 2021-03-30 2021-07-09 武汉华星光电技术有限公司 显示面板及其制备方法
CN113517265B (zh) * 2021-04-23 2023-06-02 豪威半导体(上海)有限责任公司 MicroLED显示面板及其形成方法
CN114578612A (zh) * 2022-03-25 2022-06-03 北京京东方显示技术有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514727A2 (en) * 2018-01-19 2019-07-24 Samsung Electronics Co., Ltd. Sensor and electronic apparatus for fingerprint recognition
CN209373637U (zh) * 2019-07-30 2019-09-10 上海菲戈恩微电子科技有限公司 一种屏下指纹图像信息采集装置及电子设备
CN110928017A (zh) * 2019-12-13 2020-03-27 武汉华星光电技术有限公司 显示面板
CN111160325A (zh) * 2019-11-11 2020-05-15 北京迈格威科技有限公司 光学指纹识别装置及其制备方法、触控终端
CN210721511U (zh) * 2019-12-16 2020-06-09 上海箩箕技术有限公司 指纹识别装置
CN111291719A (zh) * 2020-03-03 2020-06-16 北京迈格威科技有限公司 指纹识别装置、显示面板、设备及指纹识别方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100213968B1 (ko) * 1996-07-15 1999-08-02 구자홍 액정표시장치
JP2009134275A (ja) * 2007-11-02 2009-06-18 Sony Corp カラー液晶表示装置組立体及び光変換装置
TWI585959B (zh) * 2014-08-13 2017-06-01 精材科技股份有限公司 晶片封裝體及其製造方法
CN210270940U (zh) * 2018-05-07 2020-04-07 光波触控有限公司 紧凑型光学传感器***及含有该***的电子装置
CN110309705B (zh) * 2019-04-30 2022-04-19 厦门天马微电子有限公司 显示面板和显示装置
CN110308583B (zh) * 2019-07-05 2023-11-03 厦门天马微电子有限公司 显示面板及指纹识别显示装置
US20220004734A1 (en) * 2019-10-09 2022-01-06 Novatek Microelectronics Corp. Fingerprint recognition apparatus
CN112989885A (zh) * 2019-12-16 2021-06-18 北京小米移动软件有限公司 显示面板、显示屏、终端设备及显示面板的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514727A2 (en) * 2018-01-19 2019-07-24 Samsung Electronics Co., Ltd. Sensor and electronic apparatus for fingerprint recognition
CN209373637U (zh) * 2019-07-30 2019-09-10 上海菲戈恩微电子科技有限公司 一种屏下指纹图像信息采集装置及电子设备
CN111160325A (zh) * 2019-11-11 2020-05-15 北京迈格威科技有限公司 光学指纹识别装置及其制备方法、触控终端
CN110928017A (zh) * 2019-12-13 2020-03-27 武汉华星光电技术有限公司 显示面板
CN210721511U (zh) * 2019-12-16 2020-06-09 上海箩箕技术有限公司 指纹识别装置
CN111291719A (zh) * 2020-03-03 2020-06-16 北京迈格威科技有限公司 指纹识别装置、显示面板、设备及指纹识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4180862A4 *

Also Published As

Publication number Publication date
EP4180862A4 (en) 2024-06-26
EP4180862A1 (en) 2023-05-17
US20230132086A1 (en) 2023-04-27
CN111752028A (zh) 2020-10-09
KR20220007581A (ko) 2022-01-18
US11754868B2 (en) 2023-09-12
JP2022542528A (ja) 2022-10-05
JP7252340B2 (ja) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2022007060A1 (zh) 液晶显示面板及液晶显示装置
CN110441944B (zh) 显示面板及显示装置
CN106940488B (zh) 显示面板及显示装置
WO2017071404A1 (zh) 一种光学结构及其制作方法以及显示基板和显示器件
CN108845460B (zh) 一种背光模组及显示装置
CN108363235B (zh) 减反膜及其制备方法、阵列基板、显示装置
CN111160323B (zh) 一种显示面板及电子装置
WO2020107791A1 (zh) 触控显示装置
WO2022143535A1 (zh) 指纹模组及电子设备
CN112099280B (zh) 电致变色元件、显示装置及电致变色元件的制造方法
WO2021082063A1 (zh) 屏下光学指纹识别的装置
US20230105947A1 (en) Display screen and electronic device
WO2022011761A1 (zh) 显示面板及显示装置
US20230418111A1 (en) Liquid crystal display panel
WO2024040751A1 (zh) 显示面板及其制备方法、显示装置
CN212623470U (zh) 一种背光模组以及液晶显示装置
JP3954681B2 (ja) 液晶プロジェクター用の液晶デバイス及び液晶デバイス用の対向基板
TWM613999U (zh) 具有指紋感測功能的顯示裝置
CN113596308A (zh) 图像传感器以及优化成像效果的方法
JP2005215624A (ja) マイクロレンズの製造方法及びマイクロレンズ、並びにこれを備えた電気光学装置及び電子機器
CN111965932A (zh) 掩膜板及显示面板制备方法
EA046148B1 (ru) Жидкокристаллическая панель отображения и жидкокристаллическое устройство отображения
CN111752042A (zh) 一种液晶显示面板及其制备方法
CN111382700B (zh) 一种显示装置
WO2023065871A1 (zh) 显示模组及显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021533269

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020841849

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE