WO2022006713A1 - Cross-linkable masses based on silane-terminated polymers - Google Patents

Cross-linkable masses based on silane-terminated polymers Download PDF

Info

Publication number
WO2022006713A1
WO2022006713A1 PCT/CN2020/100447 CN2020100447W WO2022006713A1 WO 2022006713 A1 WO2022006713 A1 WO 2022006713A1 CN 2020100447 W CN2020100447 W CN 2020100447W WO 2022006713 A1 WO2022006713 A1 WO 2022006713A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
different
same
less
Prior art date
Application number
PCT/CN2020/100447
Other languages
French (fr)
Inventor
Jian NIE
Suwei SHI
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Priority to PCT/CN2020/100447 priority Critical patent/WO2022006713A1/en
Priority to CN202080102779.1A priority patent/CN115803354A/en
Publication of WO2022006713A1 publication Critical patent/WO2022006713A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/227Catalysts containing metal compounds of antimony, bismuth or arsenic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/718Monoisocyanates or monoisothiocyanates containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09J201/10Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups

Definitions

  • the invention relates to crosslinkable compositions based on silane-terminated polymers, to processes for preparation thereof and to the use thereof as gels and potting product.
  • CN105473632A discloses a crosslinkable composition containing double-ended alpha or gama silane terminated polyether and single-ended alpha or gama silane terminated polyether.
  • An elastomer with low modulus and good resilience could be obtained.
  • Ex3 discloses a sealant composition, which contains 30 parts of double-ended gama silane terminated polyether, 20 parts of single-ended gama silane terminated polyether and 105 parts of calcium carbonate filler, etc.;
  • Ex9 discloses a low modulus sealant composition which contains 46 parts of double-ended gama silane terminated polyether, 13 parts of single-ended alpha silane terminated polyether and 75 parts of filler.
  • the double-ended silane-terminated polyether is the main component of the composition.
  • CN101341216A discloses a crosslinkable composition containing double-ended gama silane terminated polyether, single-ended gama silane terminated polyether, curing catalyst, filler and amino functional siloxane. After moisture curing, the sealant composition can be obtained. The composition is characterized by improved residual tack and lower modulus.
  • the ratio of A1 double-ended gama silane-terminated polyether to A2 single-ended gama silane-terminated polyether can be between 1: 9-9: 1, and the typical dosage is 1: 1.
  • CN110087696A discloses a crosslinkable composition containing double-ended silane-terminated polyether and single-ended silane-terminated polyether.
  • a self-adhesive composition suitable for low surface energy surfaces application could be obtained.
  • one-pack systems which cure on contact with air humidity.
  • the crucial advantage of one-pack systems is, in particular, the very easy applicability thereof, since no mixing of various adhesive components by the user is required.
  • the invention provides condensation type curable gel compositions (M) which comprise a curable gel composition (M1) and a curable gel composition (M2) in following.
  • a curable gel composition (M1) , which includes
  • ⁇ Y is a divalent polymer radical
  • ⁇ R may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical
  • ⁇ R 1 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
  • ⁇ R 2 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
  • ⁇ x is 0 or 1
  • ⁇ a may be the same or different and is 0, 1 or 2, preferably 0, and
  • ⁇ Z is a divalent polymer radical having no hydroxyl group
  • ⁇ R 3 may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical
  • ⁇ R 4 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
  • ⁇ R 5 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
  • ⁇ R 6 is a monovalent, optionally substituted hydrocarbyl radical
  • ⁇ y is 0 or 1
  • ⁇ c may be the same or different and is 0, 1 or 2, preferably 1, and
  • ⁇ d may be the same or different and is an integer from 2 to 10, preferably 3 or 4, more preferably 3,
  • the curable gel composition (M1) containing of larger than or equal to 600 parts by weight of component (B) , preferably 600-5000 parts by weight, more preferably 700-4000 parts by weight, more preferably 750-2000 or 2500-3800 parts by weight, more preferably 750-1000 or 2800-3500 parts by weight, or 850, 950, 1050, 2700, 2900, 3000, 3100, 3300 parts by weight, based on 100 parts by weight of component (A1) .
  • a curable gel composition (M2) , which includes
  • ⁇ Y is a divalent polymer radical
  • ⁇ R may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical
  • ⁇ R 1 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
  • ⁇ R 2 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
  • ⁇ x is 0 or 1
  • ⁇ a may be the same or different and is 0, 1 or 2, preferably 0, and
  • ⁇ Z is a divalent polymer radical having no hydroxyl group
  • ⁇ R 3 may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical
  • ⁇ R 4 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
  • ⁇ R 5 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
  • ⁇ R 6 is a monovalent, optionally substituted hydrocarbyl radical
  • ⁇ y is 0 or 1
  • ⁇ c may be the same or different and is 0, 1 or 2, preferably 1, and
  • ⁇ d may be the same or different and is an integer from 2 to 10, preferably 3 or 4, more preferably 3,
  • the curable gel composition (M1) could contain component (A2) , under this situation the dosage of component (B) is larger than or equal to 600 parts by weight of component (B) , preferably 600-5000 parts by weight, more preferably 700-4000 parts by weight, more preferably 750-2000 or 2500-3800 parts by weight, more preferably 750-1000 or 2800-3500 parts by weight, or 850, 950, 1050, 1600, 1800, 2200, 2700, 2900, 3000, 3100, 3300 parts by weight, based on 100 parts by weight of component (A1) and (A2) ; and the weight ratio of component (A1) to (A2) is larger than or equal to 1, preferably lager than or equal to 2, more preferably lager than or equal to 5 or 6, 8, 10, 15, 20, 25, 30.
  • the curable gel composition (M2) could contain component (A1) , under this situation the dosage of component (B) is larger than or equal to 1000 parts by weight of component (B) , preferably1000-5000 parts by weight, more preferably 1200-4000 parts by weight, more preferably 2000-3800 parts by weight, more preferably 2800-3500 parts by weight, or 1050, 1500, 1800, 2200, 2400, 2500, 2700, 2900, 3000, 3100, 3300 parts by weight, based on 100 parts by weight of component (A1) and (A2) ; and the weight ratio of component (A2) to (A1) is larger than 1, preferably lager than or equal to 2, more preferably lager than or equal to 5 or 6, 8, 10, 15, 20, 25, 30.
  • R and R 3 radicals are each independently alkyl radicals such as the methyl, ethyl, n-propyl, isopropyl, 1-n-butyl, 2-n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl radical; hexyl radicals such as the n-hexyl radical; heptyl radicals such as the n-heptyl radical; octyl radicals such as the n-octyl radical, isooctyl radicals and the 2, 2, 4-trimethylpentyl radical; nonyl radicals such as the n-nonyl radical; decyl radicals such as the n-decyl radical; dodecyl radicals such as the n-dodecyl radical; octadecyl radicals such as the n-
  • substituted R and R 3 radicals are independently haloalkyl radicals such as the 3, 3, 3-trifluoro-n-propyl radical, the 2, 2, 2, 2′, 2′, 2′-hexafluoroisopropyl radical and the heptafluoroisopropyl radical, and haloaryl radicals such as the o-, m-and p-chlorophenyl radical.
  • the R and R 3 radicals are each independently monovalent hydrocarbyl radicals optionally substituted by halogen atoms and having 1 to 6 carbon atoms, more preferably alkyl radicals having 1 or 2 carbon atoms, especially the methyl radical.
  • R 2 and R 4 radicals are each independently a hydrogen atom, or the radicals specified for R.
  • the R 2 and R 4 radicals are each independently a hydrogen atom or a hydrocarbyl radical having 1 to 20 carbon atoms, especially a hydrogen atom.
  • R 2 and R 5 radicals are independently a hydrogen atom or the examples given for the R radical.
  • the R 2 and R 5 radicals are each independently a hydrogen atom or an alkyl radical optionally substituted by halogen atoms and having 1 to 10 carbon atoms, more preferably an alkyl radical having 1 to 4 carbon atoms, especially the methyl or ethyl radical.
  • R 6 radicals are the examples given for the R radical.
  • the R 6 radical comprises alkyl radicals optionally substituted by halogen atoms and having 1 to 10 carbon atoms, more preferably alkyl radicals having 1 to 6 carbon atoms, especially the methyl radical, ethyl radical, n-propyl or n-butyl radical.
  • polymer radicals Y and Z are independently polyester, polyether, polyurethane, polyalkylene and polyacrylate radicals.
  • the polymer radicals Y and Z are preferably each independently organic polymer radicals containing, as a polymer chain, polyoxyalkylene such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer and polyoxypropylene-polyoxybutylene copolymer; hydrocarbon polymers such as polyisobutylene and copolymers of polyisobutylene with isoprene; polychloroprenes; polyisoprenes; polyurethanes; polyesters; polyamides; polyacrylates; polymethacrylates; vinyl polymer and/or polycarbonates.
  • polyoxyalkylene such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer and polyoxypropylene-polyoxybutylene copolymer
  • hydrocarbon polymers such as polyisobutylene and copolymers of poly
  • the Y and Z radicals are each polyoxyalkylene radicals, more preferably linear polyoxyalkylene radicals.
  • polymers of the formula (I-1) or (I-2) used in accordance with the invention are preferably prepared by reacting polymers of the formula
  • polymers of the formula (II) used in accordance with the invention are preferably prepared by reacting polymers of the formula
  • the invention is therefore based, in particular, on the surprising finding that polymer systems in which virtually all the OH functions have been substantially completely terminated with isocyanate-functional silanes of the formulae (VI-1) / (VI-2) or (VII) have better curable gel properties.
  • Component (B) can be produced by equivalent processes which differ from the processes described in EP 1 535 940 B1 or EP 1 896 523 B1 merely in that the reactants used are monofunctional polyethers of the formula (IV) and the respective stoichiometries of the reactants are adjusted correspondingly.
  • component (B) is produced in the presence of a catalyst (KB) .
  • catalysts (KB) optionally usable are bismuth-containing catalysts, for example catalysts having the trade name Kat 22, Kat VP 0243 or Kat VP 0244 from Borchers GmbH, and also those compounds described below as curing catalysts (F) .
  • catalysts (KB) are used for production of component (B) , preferred amounts are from 0.001 to 5 parts by weight, especially amounts from 0.05 to 1 part by weight, based in each case on 100 parts by weight of component (B) .
  • the reactants of the formulae (IV) and (VII) are preferably used in such a molar ratio that, for 1 mol of hydroxyl function, 0.9 to 2.0 mol, preferably 0.95 to 1.6 mol and more preferably 1.0 mol to 1.4 mol of isocyanate groups are used.
  • the compounds (A1) / (A2) and (B) used in accordance with the invention may be prepared separately and not mixed with one another until the provision of the compositions (M) of the invention. However, they can also be prepared together by reacting a mixture of polyols of the formulae (IV) and (V) together with isocyanate-functional silanes of the formulae (VI-1) / (VI-2) and/or (VII) .
  • the mean molecular weights M n of the compounds (A1) / (A2) are preferably at least 10,000 g/mol, more preferably at least 11,000 g/mol, and preferably at most 30,000 g/mol, more preferably at most 24,000 g/mol and especially at most 22,000 g/mol.
  • the mean molecular weights M n of the compounds (B) are preferably at least 500 g/mol, more preferably at least 1000 g/mol, and preferably at most 30,000 g/mol, more preferably at most 18,000 g/mol and especially at most 12,000 g/mol.
  • the number-average molar mass M n was determined by means of size exclusion chromatography (SEC) against a polystyrene standard, in THF, at 60°C., flow rate 1.2 mL/min and RI detection (refractive index detector) on a Styragel HR3-HR4-HR5-HR5 column set from Waters Corp. USA with an injection volume of 100 ⁇ l.
  • SEC size exclusion chromatography
  • the viscosity of components (A1) / (A2) is preferably at least 0.2 Pas, more preferably at least 1 Pas, and most preferably at least 5 Pas, and preferably at most 700 Pas, more preferably at most 100 Pas, measured in each case at 20°C.
  • the viscosity of component (B) is preferably at least 0.2 Pas, more preferably at least 1 Pas, and most preferably at least 1.5 Pas, and preferably at most 700 Pas, more preferably at most 100 Pas, measured in each case at 20°C.
  • viscosity is determined with a Brookfield rotary viscometer.
  • the components (A1) / (A2) and (B) used in accordance with the invention may contain just one type of compound of the formula (I-1) / (I-2) or (II) , or else mixtures of different types of compounds of the formula (I-1) / (I-2) or (II) .
  • the compounds (A1) / (A2) used in accordance with the invention are commercial products or can be prepared by standard chemical methods.
  • Examples of commercially available compounds (A1) are the products of the STP-E 10, or STP-E 30 types from Wacker Chemie AG.
  • Examples of commercially available compounds (A2) are the products of the STP-E 15, or STP-E 35 types
  • the compounds (B) used in accordance with the invention can be prepared by standard chemical methods, for example those mentioned above.
  • compositions (M) of the invention may comprise, in addition to components (A1) / (A2) and (B) , further substances other than components (A1) / (A2) and (B) , for example (C) organosilicon compounds not having nitrogen atoms bonded directly to carbonyl groups, (D) fillers, (E) silicone resins, (F) catalysts, (G) adhesion promoters, (H) water scavengers, (I) unreactive plasticizers, (J) additives and (K) admixtures.
  • organosilicon compounds (C) not having nitrogen atoms bonded directly to carbonyl groups which are optionally present in the compositions (M) of the invention are preferably organosilicon compounds containing units of the formula
  • R 7 may be the same or different and is a hydrogen atom or optionally substituted hydrocarbyl radicals
  • D may be the same or different and is a monovalent, SiC-bonded radical not having nitrogen atoms bonded directly to a carbonyl group,
  • R 8 may be the same or different and is a monovalent, optionally substituted, SiC-bonded, nitrogen-free organic radical,
  • e 0, 1, 2, 3 or 4, preferably 1,
  • f is 0, 1, 2 or 3, preferably 1, 2 or 3, more preferably 2 or 3, and
  • g is 0, 1, 2 or 3, preferably 1 or 0,
  • R 7 examples of optionally substituted hydrocarbyl radicals R 7 are the examples given for the R radical.
  • the R 7 radicals are preferably a hydrogen atom or a hydrocarbyl radical optionally substituted by halogen atoms and having 1 to 18 carbon atoms, more preferably a hydrogen atom or a hydrocarbyl radical having 1 to 10 carbon atoms, especially the methyl or ethyl radical.
  • R 8 radical examples are the examples given for R.
  • the R 8 radical preferably comprises hydrocarbyl radicals optionally substituted by halogen atoms and having 1 to 18 carbon atoms, more preferably hydrocarbyl radicals having 1 to 5 carbon atoms, especially the methyl radical.
  • D radicals are radicals of the formulae H 2 N (CH 2 ) 3 -, H 2 N (CH 2 ) 2 NH (CH 2 ) 3 -, H 2 N (CH 2 ) 2 NH (CH 2 ) 2 NH (CH 2 ) 3 -, H 3 CNH (CH 2 ) 3 -, C 2 H 5 NH (CH 2 ) 3 -, C 3 H 7 NH (CH 2 ) 3 -, C 4 H 9 NH (CH 2 ) 3 -, C 5 H 11 NH (CH 2 ) 3 -, C 6 H 13 NH (CH 2 ) 3 -, C 7 H 15 NH (CH 2 ) 3 -, H 2 N (CH 2 ) 4 -, H 2 N-CH 2 -CH (CH 3 ) -CH 2 -, H 2 N (CH 2 ) 5 -, cyclo-C 5 H 9 NH (CH 2 ) 3 -, cyclo-C 6 H 11 NH (CH 2 ) 3
  • Examples of the silanes of the formula (III) optionally used in accordance with the invention are H 2 N (CH 2 ) 3 -Si (OCH 3 ) 3 , H 2 N (CH 2 ) 3 -Si (OC 2 H 5 ) 3 , H 2 N (CH 2 ) 3 -Si (OCH 3 ) 2 CH 3 , H 2 N (CH 2 ) 3 -Si (OC 2 H 5 ) 2 CH 3 , H 2 N (CH 2 ) 2 NH (CH 2 ) 3 -Si (OCH 3 ) 3 , H 2 N (CH 2 ) 2 NH (CH 2 ) 3 -Si (OC 2 H 5 ) 3 , H 2 N (CH 2 ) 2 NH (CH 2 ) 3 -Si (OC 2 H 5 ) 3 , H 2 N (CH 2 ) 2 NH (CH 2 ) 3 -Si (OCH 3 ) 2 CH 3 , H 2 N (CH 2 ) 2 NH (CH 2
  • organosilicon compounds (C) optionally used in accordance with the invention may also assume the function of a curing catalyst or cocatalyst in the compositions (M) of the invention.
  • organosilicon compounds (C) optionally used in accordance with the invention may act as adhesion promoters and/or as water scavengers.
  • organosilicon compounds (C) optionally used in accordance with the invention are commercial products or are preparable by the standard chemical methods.
  • compositions (M) of the invention contain component (C) , amounts thereof are preferably 0.01 to 25 parts by weight, more preferably 0.5 to 20 parts by weight, and especially 10 to 15 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) .
  • the compositions (M) of the invention preferably contain component (C) .
  • compositions (M) of the invention contain component (C) , amounts thereof are preferably 0.1 to 5 parts by weight, more preferably 0.3 to 3 parts by weight, and especially 0.5 to 2.5 parts by weight, based in each case on 100 parts by weight of component (B) .
  • the compositions (M) of the invention preferably contain component (C) .
  • the fillers (D) in the compositions (M) of the invention may be any desired fillers known to date.
  • fillers (D) include (D1) non-reinforcing fillers, i.e. fillers having a BET surface area of preferably up to 50 m 2 /g, such as quartz, diatomaceous earth, calcium silicate, zirconium silicate, talc, kaolin, zeolites, metal oxide powders, such as aluminum oxides, titanium oxides, iron oxides or zinc oxides, or the mixed oxides thereof, barium sulfate, precipitated and/or ground chalk which may be either coated or uncoated, gypsum, silicon nitride, silicon carbide, boron nitride, glass and polymer powder, such as polyacrylonitrile powder; and (D2) reinforcing fillers, i.e.
  • D1 non-reinforcing fillers i.e. fillers having a BET surface area of preferably up to 50 m 2 /g, such as quartz, diatomaceous earth, calcium silicate, zirconium silicate,
  • fillers having a BET surface area of more than 50 m 2 /g such as fumed silica, precipitated silica, precipitated chalk, carbon black, such as furnace black and acetylene black, and mixed silicon-aluminum oxides of high BET surface area; aluminum trihydroxide, fillers in the form of hollow spheres, such as ceramic microbeads, for example those obtainable under the Zeeospheres TM trade name from 3M GmbH in Neuss, Germany, elastic polymer beads, for example those obtainable under the trade name from AKZO NOBEL, Expancel in Sundsvall, Sweden, or glass beads; fibrous fillers, such as asbestos and polymer fibers.
  • the fillers mentioned may be hydrophobized, for example by treatment with organosilanes or -siloxanes or with stearic acid, or by etherification of hydroxyl groups to alkoxy groups.
  • the fillers (D) are ground and/or precipitated chalk which may be either coated or uncoated, talc, aluminum trihydroxide and silica, particular preference being given to calcium carbonate and aluminum trihydroxide.
  • Preferred calcium carbonate types are ground or precipitated calcium carbonate, optionally surface-treated with fatty acids such as stearic acid or salts thereof.
  • the preferred silica is preferably fumed silica.
  • the fillers (D) preferably have a moisture content of preferably less than 1%by weight, more preferably less than 0.5%by weight.
  • the compositions (M1) / (M2) of the invention contain non-reinforcing fillers (D1) , the amounts thereof are preferably less than or equal to 1000 parts by weight, more preferably less than or equal to 500 parts by weight, more preferably less than or equal to 100 parts by weight, and especially less than or equal to 1 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) .
  • the compositions (M) of the invention preferably do not contain non-reinforcing fillers (D1) .
  • the compositions (M1) / (M2) of the invention contain reinforcing fillers (D2) , the amounts thereof are preferably less than or equal to 50 parts by weight, more preferably less than or equal to 30 parts by weight, more preferably less than or equal to 10 parts by weight, and especially less than or equal to 1 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) .
  • the compositions (M) of the invention preferably do not contain reinforcing fillers (D2) .
  • compositions (M) of the invention comprise, as fillers (D) , calcium carbonate, aluminum trihydroxide and/or talc or else a combination of
  • silica especially fumed silica
  • compositions (M) of the invention comprise, as fillers (D) , a combination of
  • Any silicone resins (E) present in the compositions (M) of the invention are preferably phenylsilicone resins.
  • phenylsilicone resins usable as components (E) are commercial products, for example various grades from Wacker Chemie AG, such as IC 368, IC 678 or IC 231 or SY231.
  • compositions (M) of the invention contain resins (E) , the amounts thereof are at least 5 parts by weight, more preferably at least 10 parts by weight, and especially at least 50 parts by weight and preferably at most 1000 parts by weight, more preferably at most 500 parts by weight, and especially at most 300 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) .
  • Catalysts (F) used in the compositions (M) of the invention may be any desired catalysts known to date for compositions that cure through silane condensation.
  • Metal-containing curing catalysts (F) are selected from organic titanium and tin compounds, preferably selected from the group consists of titanic esters, tetrabutyl titanate, tetrapropyl titanate, tetraisopropyl titanate, titanium tetraacetylacetonate; dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin dioctanoate, dibutyltin acetylacetonate, dibutyltin oxides, and corresponding dioctyltin compounds.
  • Metal-free curing catalysts (F) are selected from basic compounds, preferably selected from the group consists of triethylamine, tributylamine, 1, 4-diazabicyclo [2.2.2] octane, 1, 5-diazabicyclo [4.3.0] non-5-ene, 1, 8-diazabicyclo [5.4.0] undec-7-ene, N, N-bis (N, N-dimethyl-2-amino-ethyl) methylamine, pentamethylguanidine, tetramethylguanidine and further guanidine derivatives, N, N-dimethylcyclohexylamine, N, N-dimethylphenylamine and N-ethylmorpholine.
  • basic compounds preferably selected from the group consists of triethylamine, tributylamine, 1, 4-diazabicyclo [2.2.2] octane, 1, 5-diazabicyclo [4.3.0] non-5-ene, 1, 8
  • catalyst (F) it is likewise possible to use, as catalyst (F) , acidic compounds, for example phosphoric acid and esters thereof, toluenesulfonic acid, sulfuric acid, nitric acid, or else organic carboxylic acids, for example acetic acid and benzoic acid.
  • acidic compounds for example phosphoric acid and esters thereof, toluenesulfonic acid, sulfuric acid, nitric acid, or else organic carboxylic acids, for example acetic acid and benzoic acid.
  • compositions (M) of the invention contain catalysts (F) , the amounts are preferably 0.01 to 20 parts by weight, more preferably 0.05 to 5 parts by weight, based in each case on 100 parts by weight of constituent (A1) / (A2) .
  • the adhesion promoters (G) used in the compositions (M) of the invention may be any desired adhesion promoters described to date for systems that cure through silane condensation.
  • adhesion promoters are epoxysilanes such as glycidoxypropyltrimethoxysilane, glycidoxypropylmethyldimethoxysilane, glycidoxypropyltriethoxysilane or glycidoxypropyl-methyldiethoxysilane, 2- (3-triethoxysilylpropyl) maleic anhydride, N- (3-trimethoxysilylpropyl) urea, N- (3-triethoxysilylpropyl) urea, N- (trimethoxysilylmethyl) urea, N- (methyl-dimethoxysilylmethyl) urea, N- (3-triethoxysilylmethyl) urea, N- (3-methyldiethoxysilylmethyl) urea, O- (methylcarbamatomethyl) -methyldimethoxysilane, O- (methylcarbamatomethyl) trimethoxysilane, O- (ethoxysilane
  • compositions (M) of the invention comprise adhesion promoters (G)
  • the amounts are preferably 0.5 to 30 parts by weight, more preferably 1 to 10 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) .
  • the compositions (M) of the invention preferably contain components (C) and/or (G) as adhesion promoters.
  • the water scavengers (H) used in the compositions (M) of the invention may be any desired water scavengers described for systems that cure through silane condensation.
  • water scavengers are silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyl-dimethoxysilane, O- (methylcarbamatomethyl) methyldimethoxysilane, O- (methylcarbamatomethyl) trimethoxysilane, O- (ethyl-carbamatomethyl) methyldiethoxysilane, and also O- (ethyl-carbamatomethyl) triethoxysilane, and/or the partial condensates thereof, and also orthoesters, such as 1, 1, 1-trimethoxyethane, 1, 1, 1-triethoxyethane, trimethoxymethane and triethoxymethane.
  • silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyl-dimethoxysilane, O- (methylcarbamatomethyl) trimethoxysilane, O- (ethyl-carbamatomethyl) methyl
  • compositions (M) of the invention comprise water scavengers (H)
  • the amounts are preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) .
  • the compositions of the invention preferably comprise water scavengers (H) .
  • the unreactive plasticizers (I) used in the compositions (M) of the invention may be any desired plasticizers that are known to date and are typical of silane-crosslinking systems.
  • Unreactive plasticizers (I) are selected from the group consists of phthalic esters (dioctyl phthalate, diisooctyl phthalate and diundecyl phthalate) , perhydrogenated phthalic esters (diisononyl cyclohexane-1, 2-dicarboxylate and dioctyl cyclohexane-1, 2-dicarboxylate) , adipic esters (dioctyl adipate) , benzoic esters, glycol esters, esters of saturated alkanediols (2, 2, 4-trimethylpentane-1, 3-diol monoisobutyrate and 2, 2, 4-trimethylpentane-1, 3-diol diisobutyrate) , phosphoric esters, sulfonic esters, polyesters, polyethers (polyethylene glycols and polypropylene glycols preferably having molar masses M n of
  • the compositions (M1) / (M2) of the invention contain unreactive plasticizers (I) , the amounts thereof are preferably less than 90 parts by weight, more preferably less than 50 parts by weight, more preferably less than 30 parts by weight, more preferably between 10-25 or less than 5 parts by weight, more preferably between 13-20 or less than 1 parts or 11, 12, 14, 15, 16, 17, 18, 19 by weight, based on 100 parts by weight of components (A1) and/or (A2) .
  • the unreactive plasticizer (I) is selected from group consisting of polyoxypropylene monohydric alcohol, polyoxypropylene glycol, polyoxyethylene monohydric alcohol, polyoxyethylene glycol, polyoxypropylene-polyoxyethylene block copolymer, polyether polyols and terminal modification of the above.
  • compositions (M) of the invention contain unreactive plasticizers (I) .
  • Additives (J) used in the compositions (M) of the invention may be any desired typical additives useful in silane-crosslinking systems.
  • the additives (J) used in accordance with the invention are preferably antioxidants, UV stabilizers, for example what are called HALS compounds, fungicides and pigments.
  • compositions (M) of the invention contain additives (J) , the amounts are preferably 0.01 to 30 parts by weight, more preferably 0.1 to 10 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) .
  • the compositions (M) of the invention preferably contain additives (J) .
  • the admixtures (K) used in accordance with the invention are preferably tetraalkoxysilanes, for example tetraethoxysilane, and/or partial condensates thereof, plasticizers, reactive plasticizers, rheology additives, flame retardants and organic solvents.
  • Preferred reactive plasticizers (K) are compounds containing alkyl chains having 6 to 40 carbon atoms and having a group reactive toward the compounds (A1) / (A2) .
  • Examples are isooctyltri-methoxysilane, isooctyltriethoxysilane, N-octyltrimethoxy-silane, N-octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, tetradecyltrimethoxysilane, tetradecyltriethoxysilane, hexadecyltrimethoxysilane and hexadecyltriethoxysilane.
  • the rheology additives (K) are preferably polyamide waxes, hydrogenated castor oils or stearates.
  • organic solvents (K) are low molecular weight ethers, esters, ketones, aromatic and aliphatic and optionally halogenated hydrocarbons and alcohols, preference being given to the latter.
  • organic solvents (K) are added to the compositions (M) of the invention.
  • the dosage of organic solvents (K) is less than 1 parts by weight, preferably less than 0.1 parts by weight, based on 100 parts by weight of components (A1) and/or (A2) .
  • compositions (M) of the invention contain one or more components (K) , the amounts of each are preferably 0.5 to 200 parts by weight, more preferably 1 to 100 parts by weight, especially 2 to 70 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) .
  • compositions (M) of the invention contain components (A1) / (A2) and (B) in total concentrations of preferably at most 99%by weight, more preferably at most 95%by weight, and most preferably at most 65%by weight in total, and preferably at least 10%by weight in total, more preferably at least 15%by weight in total, based in each case on the total weight of the composition (M) .
  • compositions (M1) of the invention are those comprising
  • compositions (M1) of the invention are more preferably those comprising
  • compositions (M1) of the invention are those comprising
  • compositions (M2) of the invention are those comprising
  • compositions (M2) of the invention are more preferably those comprising
  • compositions (M2) of the invention are those comprising
  • compositions (M) of the invention preferably do not contain any further constituents apart from components (A1) / (A2) to (K) .
  • the components used in accordance with the invention may each be one kind of such a component or else a mixture of at least two kinds of a particular component.
  • compositions (M) of the invention are moisture-curing, meaning that they are preferably liquid or pasty compositions which cure on contact with water and/or atmospheric humidity.
  • compositions (M) in curable gel composition.
  • composition (M) of the present invention can be cured under room temperature conditions and has a suitable pot life.
  • the pot life is shorter than 10 hours, preferably shorter than 5 hours.
  • the gel described in the present invention is a polymer system with a network structure and crosslinking points with a low crosslinking density. Under the condition of 1 atmosphere pressure at room temperature, it has a state of no flow, when the container is slowly turned to 90° or under no shear condition.
  • the gel described in the present invention refers to the GB/T269-91 standard and uses a 1/4 scale cone to measure the non-operating penetration (1/10mm) . Its penetration is greater than or equal to 50 and less than 200; preferably within 50-150, more preferably within 50-100, preferably within 60-90, more preferable within 65-85.
  • the gel described in the present invention is very soft and does not belong to rubber or elastomer.
  • the sample of the cured product cannot be prepared according to the standard DIN 53504-S1, nor can it be tested for its mechanical properties.
  • compositions of the invention (M) can be produced in any manner known per se, for instance by standard methods and mixing processes for production of moisture-curing compositions.
  • the present invention further provides a process for producing the compositions (M) of the invention by mixing the individual components in any desired sequence.
  • the catalytically active components (C) and (F) are not added until the end of the mixing operation.
  • This mixing operation can be effected at room temperature, i.e. at temperatures between 0 and 30°C., and pressure of the surrounding atmosphere, i.e. about 900 to 1100 hPa. If desired, this mixing can alternatively be effected at higher temperatures, for example at temperatures in the range from 30 to 130°C. In addition, it is possible to mix intermittently or constantly under reduced pressure, for example at absolute pressures of 30 to 500 hPa, in order to remove volatile compounds and/or air.
  • the mixing operation of the invention is preferably effected with exclusion of moisture.
  • the process of the invention can be performed continuously or batchwise.
  • compositions (M) of the invention are one-component compositions which are storable with exclusion of water and crosslinkable at room temperature on ingress of water.
  • the compositions (M) of the invention are one part of two-component crosslinking systems, in which OH-containing compounds, such as water, are added in a second component.
  • compositions (M1) / (M2) of the invention is two-component crosslinking system, wherein the weight ratio of the first component to the second component is (1-50) : 1, preferably between (1-30) : 1, more preferably (1-8) : 1 or (20-30) : 1, more preferably (3-7) : 1 or (25-30) : 1.
  • the first component contains: the composition (M1) / (M2) of the present invention,
  • the second component contains: a catalyst (F) and an OH compound, wherein the OH compound includes water, preferably the OH compound is water.
  • the second component could contain the composition (M1) / (M2) of the present invention or component (A1) / (A2) or component (B) .
  • compositions (M1) / (M2) of the invention is two-component crosslinking system, wherein the viscosity of the first component is between 1000-10 000 cP, preferably between 2000-8000 cP, more preferably between 2000-6000 cP.
  • the viscosity of the second component is between 100-30 000 cP, preferably between 200-10 000 cP, more preferably between 250-6000 cP or 300, 400, 500, 600, 700cP.
  • the water content in the compositions (M1) / (M2) of the invention is 0.01-10 parts by weight, preferably 0.01-5 parts by weight, more preferably 0.01-1 parts by weight, or 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 2, 3, 4 parts by weight, based on 100 parts by weight of components (A1) and/or (A2) .
  • a condensation type silicone gel could be produced by crosslinking the above composition (M1) / (M2) .
  • compositions (M) of the invention are preferably crosslinked at room temperature. They can, if desired, also be crosslinked at higher or lower temperatures than room temperature, for example at -5 to 15°C. or at 30 to 50°C. and/or by means of concentrations of water exceeding the normal water content of the air.
  • the substrate to be sealed may consist of a wide variety of different materials, for example of stone, concrete, mineral substrates, metals, glass, ceramic, wood and painted surfaces or substrates, but also plastics including PVC.
  • the flanks of substrate may consist either of identical materials or of different materials.
  • the shaped bodies of the invention may be any desired shaped bodies, for instance gels, potting, coatings, impregnations, encapsulations, or adhesive layers.
  • the invention further provides a method for bonding substrates, in which the composition (M) of the invention is applied to the surface of at least one substrate, then this surface is contacted with the second substrate to be bonded, and then left to crosslink.
  • Examples of substrates which can be bonded in accordance with the invention are concrete, mineral substrates, metals, glass, ceramic and painted surfaces, wood, but also plastics including PVC. It is possible here to bond either identical materials or different materials to one another.
  • the invention further provides a method of producing material composites, in which the composition of the invention is applied to at least one substrate or container and then left to crosslink.
  • the composition of the invention is applied to at least one substrate or container and then left to crosslink.
  • coatings and potting compounds for example for LEDs or other electronic components.
  • compositions (M) of the invention have the advantage that they can be used to produce gels having excellent properties and have the further advantage that they are easy to produce.
  • crosslinkable compositions (M) of the invention have following advantage: before crosslinking and curing, the viscosity of the product is low, and it is easy to flow and fill gaps. After crosslinking and curing, the gel product formed is very soft, and has a high penetration.
  • a 2000 mL reaction vessel with stirring, cooling, and heating devices was charged with 100 g (A1) sample, and while stirring, 800 g (B) sample and 13.1 g GF93 were added. Then mix well and set aside.
  • Table 1 shows the raw materials and amounts used in the examples and comparative examples.
  • test Brookfield viscosity of the samples with No. 6 spindle at 50rpm According to ISO 2555 standard, test Brookfield viscosity of the samples with No. 6 spindle at 50rpm.
  • the First component and the Second component are mixed in the proportions shown in Table 2 to obtain a curable composition, and the properties after curing are described in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A crosslinkable substance (M1), which contains (A1) 100 parts by weight of a silane-crosslinked polymer of the following formula: (HO)x-Y-[O-CO-NH-(CR1 2)b1-SiRa(OR2)3-a] 2-x (I-1), and (B) 600 or more parts by weight of silane cross-linked polymer: R6-O-Z- [O-CO-NH- (CR4 2)d-SiR3 c(OR5)3-c]1-y[OH]y (II). A method of preparing the composition, and the use of the composition as a curable gel product.

Description

Cross-linkable masses based on silane-terminated polymers Field of the Invention
The invention relates to crosslinkable compositions based on silane-terminated polymers, to processes for preparation thereof and to the use thereof as gels and potting product.
Description of the Related Art
CN105473632A discloses a crosslinkable composition containing double-ended alpha or gama silane terminated polyether and single-ended alpha or gama silane terminated polyether. An elastomer with low modulus and good resilience could be obtained. Ex3 discloses a sealant composition, which contains 30 parts of double-ended gama silane terminated polyether, 20 parts of single-ended gama silane terminated polyether and 105 parts of calcium carbonate filler, etc.; Ex9 discloses a low modulus sealant composition which contains 46 parts of double-ended gama silane terminated polyether, 13 parts of single-ended alpha silane terminated polyether and 75 parts of filler. In these examples, the double-ended silane-terminated polyether is the main component of the composition.
CN101341216A discloses a crosslinkable composition containing double-ended gama silane terminated polyether, single-ended gama silane terminated polyether, curing catalyst, filler and amino functional siloxane. After moisture curing, the sealant composition can be obtained. The composition is characterized by improved residual tack and lower modulus. The ratio of A1 double-ended gama silane-terminated polyether to A2 single-ended gama silane-terminated polyether can be between 1: 9-9: 1, and the typical dosage is 1: 1.
CN110087696A discloses a crosslinkable composition containing double-ended silane-terminated polyether and single-ended silane-terminated polyether. A self-adhesive composition suitable for low surface energy surfaces application could be obtained.
Polymer systems having reactive alkoxysilyl groups have long been known. On contact with water or the humidity of the air, these alkoxysilane-terminated polymers, even at room temperature, are capable of condensing with one another with elimination of the alkoxy groups. One of the most important uses of materials of this kind is the production of sealants and adhesives.
In many applications, preference is given to one-pack systems which cure on contact with air humidity. The crucial advantage of one-pack systems is, in particular, the very easy applicability thereof, since no mixing of various adhesive components by the user is required.
In the prior art, there are addition type silicone gel compositions or condensation-type sealant compositions. The prior art does not disclose condensation type silicone gel compositions.
SUMMARY OF THE INVENTION
The invention provides condensation type curable gel compositions (M) which comprise a curable gel composition (M1) and a curable gel composition (M2) in following.
Present invention provides a curable gel composition (M1) , which includes
● (A1) 100 parts by weight of silane-crosslinking polymers of the formula
(HO)  x-Y- [O-CO-NH- (CR 1 2b1-SiR a (OR 23-a2-x    (I-1)
○ where
○ Y is a divalent polymer radical,
○ R may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical,
○ R 1 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
○ R 2 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
○ x is 0 or 1,
○ a may be the same or different and is 0, 1 or 2, preferably 0, and
○ b1 is 1,
with the proviso that component (A1) includes less than 15 mol %, preferably less than 10 mol %, more preferably less than 5 mol %, of polymers of the formula (I-1) with x=1,
and
● (B) a silane-crosslinking polymers of the formula
R 6-O-Z- [O-CO-NH- (CR 4  2d-SiR 3  c (OR 53-c1-y [OH]  y    (II)
○ where
○ Z is a divalent polymer radical having no hydroxyl group,
○ R 3 may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical,
○ R 4 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
○ R 5 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
○ R 6 is a monovalent, optionally substituted hydrocarbyl radical,
○ y is 0 or 1,
○ c may be the same or different and is 0, 1 or 2, preferably 1, and
○ d may be the same or different and is an integer from 2 to 10, preferably 3 or 4, more preferably 3,
with the proviso that component (B) includes less than 15 mol %, preferably less  than 10 mol %, more preferably less than 5 mol %, of polymers of the formula (II) with y=1,
the curable gel composition (M1) containing of larger than or equal to 600 parts by weight of component (B) , preferably 600-5000 parts by weight, more preferably 700-4000 parts by weight, more preferably 750-2000 or 2500-3800 parts by weight, more preferably 750-1000 or 2800-3500 parts by weight, or 850, 950, 1050, 2700, 2900, 3000, 3100, 3300 parts by weight, based on 100 parts by weight of component (A1) .
Present invention provides a curable gel composition (M2) , which includes
● (A2) a silane-crosslinking polymers of the formula
(HO)  x-Y- [O-CO-NH- (CR 1 2b2-SiR a (OR 23-a2-x    (I-2)
○ where
○ Y is a divalent polymer radical,
○ R may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical,
○ R 1 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
○ R 2 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
○ x is 0 or 1,
○ a may be the same or different and is 0, 1 or 2, preferably 0, and
○ b2 is 3,
with the proviso that component (A2) includes less than 15 mol %, preferably less than 10 mol %, more preferably less than 5 mol %, of polymers of the formula (I-2) with x=1,
and
● (B) a silane-crosslinking polymers of the formula
R 6-O-Z- [O-CO-NH- (CR 4 2d-SiR 3  c (OR 53-c1-y [OH]  y    (II)
○ where
○ Z is a divalent polymer radical having no hydroxyl group,
○ R 3 may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical,
○ R 4 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
○ R 5 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
○ R 6 is a monovalent, optionally substituted hydrocarbyl radical,
○ y is 0 or 1,
○ c may be the same or different and is 0, 1 or 2, preferably 1, and
○ d may be the same or different and is an integer from 2 to 10, preferably 3 or 4, more preferably 3,
with the proviso that component (B) includes less than 15 mol %, preferably less than 10 mol %, more preferably less than 5 mol %, of polymers of the formula (II) with y=1,
the curable gel composition (M2) containing larger than or equal to 1000 parts by weight of component (B) , preferably1000-5000 parts by weight, more preferably 1200-4000 parts by weight, more preferably 2000-3800 parts by weight, more preferably 2800-3500 parts by weight, or 1050, 2700, 2900, 3000, 3100, 3300 parts by weight, based on 100 parts by weight of component (A2) .
The curable gel composition (M1) could contain component (A2) , under this situation the dosage of component (B) is larger than or equal to 600 parts by weight of component (B) , preferably 600-5000 parts by weight, more preferably 700-4000 parts by weight, more preferably 750-2000 or 2500-3800 parts by weight, more preferably 750-1000 or 2800-3500 parts by weight, or 850, 950, 1050, 1600, 1800, 2200, 2700, 2900, 3000, 3100, 3300 parts by weight, based on 100 parts by weight of component (A1) and (A2) ; and the weight ratio of component (A1) to (A2) is larger than or equal to 1, preferably lager than or equal to 2, more preferably lager than or equal to 5 or 6, 8, 10, 15, 20, 25, 30.
The curable gel composition (M2) could contain component (A1) , under this situation the dosage of component (B) is larger than or equal to 1000 parts by weight of component (B) , preferably1000-5000 parts by weight, more preferably 1200-4000 parts by weight, more preferably 2000-3800 parts by weight, more preferably 2800-3500 parts by weight, or 1050, 1500, 1800, 2200, 2400, 2500, 2700, 2900, 3000, 3100, 3300 parts by weight, based on 100 parts by weight of component (A1) and (A2) ; and the weight ratio of component (A2) to (A1) is larger than 1, preferably lager than or equal to 2, more preferably lager than or equal to 5 or 6, 8, 10, 15, 20, 25, 30.
Examples of R and R 3 radicals are each independently alkyl radicals such as the methyl, ethyl, n-propyl, isopropyl, 1-n-butyl, 2-n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl radical; hexyl radicals such as the n-hexyl radical; heptyl radicals such as the n-heptyl radical; octyl radicals such as the n-octyl radical, isooctyl radicals and the 2, 2, 4-trimethylpentyl radical; nonyl radicals such as the n-nonyl radical; decyl radicals such as the n-decyl radical; dodecyl radicals such as the n-dodecyl radical; octadecyl radicals such as the n-octadecyl radical; cycloalkyl radicals such as the cyclopentyl, cyclohexyl, cycloheptyl radical and methylcyclohexyl radicals; alkenyl radicals such as the vinyl, 1-propenyl and 2-propenyl radical; aryl radicals such as the phenyl, naphthyl, anthryl and phenanthryl radical; alkaryl radicals such as o-, m-, p-tolyl radicals; xylyl radicals and ethylphenyl radicals; and aralkyl radicals such as the benzyl radical and the α-and β-phenylethyl radicals.
Examples of substituted R and R 3 radicals are independently haloalkyl radicals such as the 3, 3, 3-trifluoro-n-propyl radical, the 2, 2, 2, 2′, 2′, 2′-hexafluoroisopropyl radical and the heptafluoroisopropyl radical, and haloaryl radicals such as the o-, m-and p-chlorophenyl radical.
Preferably, the R and R 3 radicals are each independently monovalent hydrocarbyl radicals optionally substituted by halogen atoms and having 1 to 6 carbon atoms, more preferably alkyl radicals having 1 or 2 carbon atoms, especially the methyl radical.
Examples of R 2 and R 4 radicals are each independently a hydrogen atom, or the radicals specified for R.
Preferably, the R 2 and R 4 radicals are each independently a hydrogen atom or a hydrocarbyl radical having 1 to 20 carbon atoms, especially a hydrogen atom.
Examples of R 2 and R 5 radicals are independently a hydrogen atom or the examples given for the R radical.
Preferably, the R 2 and R 5 radicals are each independently a hydrogen atom or an alkyl radical optionally substituted by halogen atoms and having 1 to 10 carbon atoms, more preferably an alkyl radical having 1 to 4 carbon atoms, especially the methyl or ethyl radical.
Examples of R 6 radicals are the examples given for the R radical.
Preferably, the R 6 radical comprises alkyl radicals optionally substituted by halogen atoms and having 1 to 10 carbon atoms, more preferably alkyl radicals having 1 to 6 carbon atoms, especially the methyl radical, ethyl radical, n-propyl or n-butyl radical.
Examples of polymer radicals Y and Z are independently polyester, polyether, polyurethane, polyalkylene and polyacrylate radicals.
The polymer radicals Y and Z are preferably each independently organic polymer radicals containing, as a polymer chain, polyoxyalkylene such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer and polyoxypropylene-polyoxybutylene copolymer; hydrocarbon polymers such as polyisobutylene and copolymers of polyisobutylene with isoprene; polychloroprenes; polyisoprenes; polyurethanes; polyesters; polyamides; polyacrylates; polymethacrylates; vinyl polymer and/or polycarbonates.
More preferably, the Y and Z radicals are each polyoxyalkylene radicals, more preferably linear polyoxyalkylene radicals.
The polymers of the formula (I-1) or (I-2) used in accordance with the invention are preferably prepared by reacting polymers of the formula
HO-Y-OH    (V)
with silanes of the formula
OCN- (CR 1 2b1-SiR a (OR 23-a    (VI-1) or
OCN- (CR 1 2b2-SiR a (OR 23-a    (VI-2)
where all the radicals and indices have one of the definitions given above. What is crucial is that this reaction achieves substantially complete termination of the chain ends present.
The polymers of the formula (II) used in accordance with the invention are preferably prepared by reacting polymers of the formula
R 6-O-Z-OH     (IV)
with silanes of the formula
OCN- (CR 4 2b2-Si 3R a (OR 53-a    (VII)
where all the radicals and indices have one of the definitions given above. What is crucial is that this reaction achieves substantially complete termination of the hydroxyl-functional chain ends present.
The invention is therefore based, in particular, on the surprising finding that polymer systems in which virtually all the OH functions have been substantially completely terminated with isocyanate-functional silanes of the formulae (VI-1) / (VI-2) or (VII) have better curable gel properties.
Suitable processes for preparing a corresponding component (A1) / (A2) and also examples of component (A1) / (A2) itself are described, inter alia, in EP 1 535 940 B1 (paragraphs [0005] - [0025] and examples 1-3 and comparative examples 1-4) or EP 1 896 523 B1 (paragraphs [0008] - [0047] ) , which form part of the disclosure content of the present application.
Component (B) can be produced by equivalent processes which differ from the processes described in EP 1 535 940 B1 or EP 1 896 523 B1 merely in that the reactants used are monofunctional polyethers of the formula (IV) and the respective stoichiometries of the reactants are adjusted correspondingly.
Preferably, component (B) is produced in the presence of a catalyst (KB) . Examples of catalysts (KB) optionally usable are bismuth-containing catalysts, for example catalysts having the trade name
Figure PCTCN2020100447-appb-000001
Kat 22, 
Figure PCTCN2020100447-appb-000002
Kat VP 0243 or
Figure PCTCN2020100447-appb-000003
Kat VP 0244 from Borchers GmbH, and also those compounds described below as curing catalysts (F) .
If catalysts (KB) are used for production of component (B) , preferred amounts are from 0.001 to 5 parts by weight, especially amounts from 0.05 to 1 part by weight, based in each case on 100 parts by weight of component (B) .
In the production of component (B) , the reactants of the formulae (IV) and (VII) are preferably used in such a molar ratio that, for 1 mol of hydroxyl function, 0.9 to 2.0 mol, preferably 0.95 to 1.6 mol and more preferably 1.0 mol to 1.4 mol of isocyanate groups are used.
The compounds (A1) / (A2) and (B) used in accordance with the invention may be prepared separately and not mixed with one another until the provision of the compositions (M) of the invention. However, they can also be prepared together by reacting a mixture of polyols of the formulae (IV) and (V) together with isocyanate-functional silanes of the formulae (VI-1) / (VI-2) and/or (VII) .
The mean molecular weights M n of the compounds (A1) / (A2) are preferably at least 10,000 g/mol, more preferably at least 11,000 g/mol, and preferably at most 30,000 g/mol, more preferably at most 24,000 g/mol and especially at most 22,000 g/mol.
The mean molecular weights M n of the compounds (B) are preferably at least 500 g/mol, more preferably at least 1000 g/mol, and preferably at most 30,000 g/mol, more preferably at most 18,000 g/mol and especially at most 12,000 g/mol.
The number-average molar mass M n was determined by means of size exclusion chromatography (SEC) against a polystyrene standard, in THF, at 60℃., flow rate 1.2 mL/min and RI detection (refractive index detector) on a Styragel HR3-HR4-HR5-HR5 column set from Waters Corp. USA with an injection volume of 100 μl.
The viscosity of components (A1) / (A2) is preferably at least 0.2 Pas, more preferably at least 1 Pas, and most preferably at least 5 Pas, and preferably at most 700 Pas, more preferably at most 100 Pas, measured in each case at 20℃.
The viscosity of component (B) is preferably at least 0.2 Pas, more preferably at least 1 Pas, and most preferably at least 1.5 Pas, and preferably at most 700 Pas, more preferably at most 100 Pas, measured in each case at 20℃.
In the context of the present invention, viscosity is determined with a Brookfield rotary viscometer.
The components (A1) / (A2) and (B) used in accordance with the invention may contain just one type of compound of the formula (I-1) / (I-2) or (II) , or else mixtures of different types of compounds of the formula (I-1) / (I-2) or (II) .
Preferably the silane end groups in the component (A1) is b1=1, R 1=H and a=1, and the silane end groups in the component (A2) is b2=3, R 1=H and a=0; and component (B) comprises compounds having silane end groups in which d=3, R 4=H and c=0.
In a particular embodiment, the compositions (M1) of the invention contain polymers (A1) in which, in at least 70%of all the silane end groups, preferably in at least 90%of all the silane end groups, b1= 1, R 1 = H and a = 1, and polymers (B) in which, in at least 70%of all the silane end groups, more preferably in at least 90%of all the silane end groups, d=3, R 4=H and c=0.
In a further particular embodiment, the compositions (M2) of the invention contain polymers (A2) in which, in at least 70%of all the silane end groups, preferably in at least 90%of all the  silane end groups, b2=3, R 1=H and a=0, and polymers (B) in which, in at least 70%of all the silane end groups, preferably in at least 90%of all the silane end groups, d=3, R 4=H and c=0.
The compounds (A1) / (A2) used in accordance with the invention are commercial products or can be prepared by standard chemical methods. Examples of commercially available compounds (A1) are the
Figure PCTCN2020100447-appb-000004
products of the STP-E 10, or STP-E 30 types from Wacker Chemie AG. Examples of commercially available compounds (A2) are the
Figure PCTCN2020100447-appb-000005
products of the STP-E 15, or STP-E 35 types
The compounds (B) used in accordance with the invention can be prepared by standard chemical methods, for example those mentioned above.
The compositions (M) of the invention may comprise, in addition to components (A1) / (A2) and (B) , further substances other than components (A1) / (A2) and (B) , for example (C) organosilicon compounds not having nitrogen atoms bonded directly to carbonyl groups, (D) fillers, (E) silicone resins, (F) catalysts, (G) adhesion promoters, (H) water scavengers, (I) unreactive plasticizers, (J) additives and (K) admixtures.
The organosilicon compounds (C) not having nitrogen atoms bonded directly to carbonyl groups which are optionally present in the compositions (M) of the invention are preferably organosilicon compounds containing units of the formula
D eSi (OR 7fR 8  g(4-e-f-g) /2    (III)
in which
R 7 may be the same or different and is a hydrogen atom or optionally substituted hydrocarbyl radicals,
D may be the same or different and is a monovalent, SiC-bonded radical not having nitrogen atoms bonded directly to a carbonyl group,
R 8 may be the same or different and is a monovalent, optionally substituted, SiC-bonded, nitrogen-free organic radical,
e is 0, 1, 2, 3 or 4, preferably 1,
f is 0, 1, 2 or 3, preferably 1, 2 or 3, more preferably 2 or 3, and
g is 0, 1, 2 or 3, preferably 1 or 0,
with the proviso that the sum total of e+f+g is less than or equal to 4 and at least one D radical is present per molecule.
The organosilicon compounds (C) used in accordance with the invention may be either silanes, i.e. compounds of the formula (VIII) with e+f+g=4, or siloxanes, i.e. compounds containing units of the formula (VII) with e+f+g≤3, preferably silanes.
Examples of optionally substituted hydrocarbyl radicals R 7 are the examples given for the R radical.
The R 7 radicals are preferably a hydrogen atom or a hydrocarbyl radical optionally substituted by halogen atoms and having 1 to 18 carbon atoms, more preferably a hydrogen atom or a hydrocarbyl radical having 1 to 10 carbon atoms, especially the methyl or ethyl radical.
Examples of the R 8 radical are the examples given for R.
The R 8 radical preferably comprises hydrocarbyl radicals optionally substituted by halogen atoms and having 1 to 18 carbon atoms, more preferably hydrocarbyl radicals having 1 to 5 carbon atoms, especially the methyl radical.
Examples of D radicals are radicals of the formulae H 2N (CH 23-, H 2N (CH 22NH (CH 23-, H 2N (CH 22NH (CH 22NH (CH 23-, H 3CNH (CH 23-, C 2H 5NH (CH 23-, C 3H 7NH (CH 23-, C 4H 9NH (CH 23-, C 5H 11NH (CH 23-, C 6H 13NH (CH 23-, C 7H 15NH (CH 23-, H 2N (CH 24-, H 2N-CH 2-CH (CH 3) -CH 2-, H 2N (CH 25-, cyclo-C 5H 9NH (CH 23-, cyclo-C 6H 11NH (CH 23-, phenyl-NH(CH 23-, (CH 32N (CH 23-, (C 2H 152N (CH 23-, (C 3H 72N (CH 23-, (C 4H 92N (CH 23, (C 5H 112N (CH 23, (C 6H 132N (CH 23, (C 7H 152N (CH 23-, H 2N (CH 2) -, H 2N (CH 22NH (CH 2) -, H 2N (CH 22NH (CH 22NH (CH 2) -, H 3CNH (CH 2) -, C 2H 5NH (CH 2) -, C 3H 7NH (CH 2) -, C 4H 9NH (CH 2) -, C 5H 11NH (CH 2) -, C 6H 13NH (CH 2) -, C 7H 15NH (CH 2) -, cyclo-C 5H 9NH (CH 2) -, cyclo-C 6H 11NH (CH 2) -, phenyl-NH (CH 2) -, (CH 32N (CH 2) -, (C 2H 52N (CH 2) -, (C 3H 72N (CH 2) -, (C 4H 92N (CH 2) -, (C 5H 112N (CH 2) -, (C 6H 132N (CH 2) -, (C 7H 152N (CH 2) -, (CH 3O)  3Si (CH 23NH (CH 23-, (C 2H 5O)  3Si (CH 23NH (CH 23-, (CH 3O)  2 (CH 3) Si (CH 23NH (CH 23-and (C 2H 5O)  2 (CH 3) Si (CH 23NH (CH 23-, and also reaction products of the abovementioned primary amino groups with compounds having epoxy groups or double bonds reactive toward primary amino groups. Preferably, the D radical is the H 2N (CH 23-, H 2N (CH 22NH (CH 23-or cyclo-C 6H 11NH (CH 23-radical.
Examples of the silanes of the formula (III) optionally used in accordance with the invention are H 2N (CH 23-Si (OCH 33, H 2N (CH 23-Si (OC 2H 53, H 2N (CH 23-Si (OCH 32CH 3, H 2N (CH 23-Si (OC 2H 52CH 3, H 2N (CH 22NH (CH 23-Si (OCH 33, H 2N (CH 22NH (CH 23-Si (OC 2H 53, H 2N (CH 22NH (CH 23-Si (OCH 32CH 3, H 2N (CH 22NH (CH 23-Si (OC 2H 52CH 3, H 2N (CH 22NH (CH 22NH (CH 23-Si (OCH 33, H 2N (CH 22NH (CH 22NH (CH 23-Si (OC 2H 53, cyclo-C 6H 11NH (CH 23-Si (OCH 33, cyclo-CH 11NH (CH 23-Si (OC 2H 53, cyclo-C 6H 11NH (CH 23-Si (OCH 32CH 3, cyclo-CH 11NH (CH 23-Si (OC 2H 52CH 3, phenyl-NH (CH 23-Si (OCH 33, phenyl-NH (CH 23-Si (OC 2H 53, phenyl-NH (CH 23-Si (OCH 32CH 3, phenyl-NH (CH 23-Si (OC 2H 52CH 3, HN ( (CH 23-Si (OCH 332, HN ( (CH 23-Si (OC 2H)  32 HN ( (CH 23-Si (OCH 32CH 32, HN ( (CH 23-Si (OC 2H 52CH 32, cyclo-C 6H 11NH (CH 2) -Si (OCH 33, cyclo-C 6H 11NH (CH 2) -Si (OC 2H 53, cyclo-CH 11NH (CH 2) -Si (OCH 32CH 3, cyclo-C 6H 11NH (CH 2) -Si (OC 2H 52CH 3, phenyl-NH (CH 2) -Si (OCH 33, phenyl-NH (CH 2) -Si (OC 2H 53, phenyl-NH (CH 2) -Si (OCH 32CH 3, phenyl-NH (CH 2) -Si (OC 2H 52CH 3, and also the partial hydrolyzates thereof, preference being given to H 2N (CH 23-Si (OCH 33, H 2N (CH 23-Si (OC 2H 53, H 2N (CH 23-Si (OCH 32CH 3, H 2N (CH 23-Si (OC 2H)  2CH 3, H 2N (CH 22NH (CH 23-Si (OCH 33, H 2N (CH 22NH (CH 23-Si (OC 2H 53,  H 2N (CH 22NH (CH 23-Si (OCH 32CH 3, cyclo-C 6H 11NH (CH 23-Si (OCH 33, cyclo-CH 11NH (CH 23-Si (OC 2H 53 and cyclo-CH 11NH (CH 23-Si (OCH 32CH 3 and the partial hydrolyzates of each, and particular preference to H 2N (CH 23-Si (OCH 33, H 2N (CH 23-Si (OC 2H 53, H 2N (CH 23-Si (OCH 32CH 3, H 2N (CH 23-Si (OC 2H 52CH 3, H 2N (CH 22NH (CH 23-Si (OCH 33, H 2N (CH 22NH (CH 23-Si (OCH 32CH 3, cyclo-C 6H 11NH (CH 23-Si (OCH 33, cyclo-CH 11NH (CH 23-Si (OCH 32CH 3 and the partial hydrolyzates of each.
The organosilicon compounds (C) optionally used in accordance with the invention may also assume the function of a curing catalyst or cocatalyst in the compositions (M) of the invention.
In addition, the organosilicon compounds (C) optionally used in accordance with the invention may act as adhesion promoters and/or as water scavengers.
The organosilicon compounds (C) optionally used in accordance with the invention are commercial products or are preparable by the standard chemical methods.
If the compositions (M) of the invention contain component (C) , amounts thereof are preferably 0.01 to 25 parts by weight, more preferably 0.5 to 20 parts by weight, and especially 10 to 15 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) . The compositions (M) of the invention preferably contain component (C) .
If the compositions (M) of the invention contain component (C) , amounts thereof are preferably 0.1 to 5 parts by weight, more preferably 0.3 to 3 parts by weight, and especially 0.5 to 2.5 parts by weight, based in each case on 100 parts by weight of component (B) . The compositions (M) of the invention preferably contain component (C) .
The fillers (D) in the compositions (M) of the invention may be any desired fillers known to date.
Examples of fillers (D) include (D1) non-reinforcing fillers, i.e. fillers having a BET surface area of preferably up to 50 m 2/g, such as quartz, diatomaceous earth, calcium silicate, zirconium silicate, talc, kaolin, zeolites, metal oxide powders, such as aluminum oxides, titanium oxides, iron oxides or zinc oxides, or the mixed oxides thereof, barium sulfate, precipitated and/or ground chalk which may be either coated or uncoated, gypsum, silicon nitride, silicon carbide, boron nitride, glass and polymer powder, such as polyacrylonitrile powder; and (D2) reinforcing fillers, i.e. fillers having a BET surface area of more than 50 m 2/g, such as fumed silica, precipitated silica, precipitated chalk, carbon black, such as furnace black and acetylene black, and mixed silicon-aluminum oxides of high BET surface area; aluminum trihydroxide, fillers in the form of hollow spheres, such as ceramic microbeads, for example those obtainable under the Zeeospheres TM trade name from 3M Deutschland GmbH in Neuss, Germany, elastic polymer beads, for example those obtainable under the
Figure PCTCN2020100447-appb-000006
trade name from AKZO NOBEL, Expancel in Sundsvall, Sweden, or glass beads; fibrous fillers, such as asbestos and polymer fibers. The fillers mentioned may be hydrophobized, for example by treatment with  organosilanes or -siloxanes or with stearic acid, or by etherification of hydroxyl groups to alkoxy groups.
Preferably, the fillers (D) are ground and/or precipitated chalk which may be either coated or uncoated, talc, aluminum trihydroxide and silica, particular preference being given to calcium carbonate and aluminum trihydroxide. Preferred calcium carbonate types are ground or precipitated calcium carbonate, optionally surface-treated with fatty acids such as stearic acid or salts thereof. The preferred silica is preferably fumed silica.
The fillers (D) preferably have a moisture content of preferably less than 1%by weight, more preferably less than 0.5%by weight.
Preferably, the compositions (M1) / (M2) of the invention contain non-reinforcing fillers (D1) , the amounts thereof are preferably less than or equal to 1000 parts by weight, more preferably less than or equal to 500 parts by weight, more preferably less than or equal to 100 parts by weight, and especially less than or equal to 1 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) . The compositions (M) of the invention preferably do not contain non-reinforcing fillers (D1) .
Preferably, the compositions (M1) / (M2) of the invention contain reinforcing fillers (D2) , the amounts thereof are preferably less than or equal to 50 parts by weight, more preferably less than or equal to 30 parts by weight, more preferably less than or equal to 10 parts by weight, and especially less than or equal to 1 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) . The compositions (M) of the invention preferably do not contain reinforcing fillers (D2) .
In a particular embodiment of the invention, the compositions (M) of the invention comprise, as fillers (D) , calcium carbonate, aluminum trihydroxide and/or talc or else a combination of
a) silica, especially fumed silica, and
b) calcium carbonate, aluminum trihydroxide and/or talc
in the dosage of less than 5 parts by weight, preferably less than 0.5 parts by weight.
In a further preferred embodiment of the invention, the compositions (M) of the invention comprise, as fillers (D) , a combination of
a) precipitated chalk, and
b) ground chalk
in the dosage of less than 5 parts by weight, preferably less than 0.5 parts by weight.
Any silicone resins (E) present in the compositions (M) of the invention are preferably phenylsilicone resins.
Examples of phenylsilicone resins usable as components (E) are commercial products, for example various
Figure PCTCN2020100447-appb-000007
grades from Wacker Chemie AG, such as
Figure PCTCN2020100447-appb-000008
IC 368, 
Figure PCTCN2020100447-appb-000009
IC 678 or
Figure PCTCN2020100447-appb-000010
IC 231 or
Figure PCTCN2020100447-appb-000011
SY231.
If the compositions (M) of the invention contain resins (E) , the amounts thereof are at least 5 parts by weight, more preferably at least 10 parts by weight, and especially at least 50 parts by weight and preferably at most 1000 parts by weight, more preferably at most 500 parts by weight, and especially at most 300 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) .
Catalysts (F) used in the compositions (M) of the invention may be any desired catalysts known to date for compositions that cure through silane condensation.
Metal-containing curing catalysts (F) are selected from organic titanium and tin compounds, preferably selected from the group consists of titanic esters, tetrabutyl titanate, tetrapropyl titanate, tetraisopropyl titanate, titanium tetraacetylacetonate; dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin dioctanoate, dibutyltin acetylacetonate, dibutyltin oxides, and corresponding dioctyltin compounds.
Metal-free curing catalysts (F) are selected from basic compounds, preferably selected from the group consists of triethylamine, tributylamine, 1, 4-diazabicyclo [2.2.2] octane, 1, 5-diazabicyclo [4.3.0] non-5-ene, 1, 8-diazabicyclo [5.4.0] undec-7-ene, N, N-bis (N, N-dimethyl-2-amino-ethyl) methylamine, pentamethylguanidine, tetramethylguanidine and further guanidine derivatives, N, N-dimethylcyclohexylamine, N, N-dimethylphenylamine and N-ethylmorpholine.
It is likewise possible to use, as catalyst (F) , acidic compounds, for example phosphoric acid and esters thereof, toluenesulfonic acid, sulfuric acid, nitric acid, or else organic carboxylic acids, for example acetic acid and benzoic acid.
If the compositions (M) of the invention contain catalysts (F) , the amounts are preferably 0.01 to 20 parts by weight, more preferably 0.05 to 5 parts by weight, based in each case on 100 parts by weight of constituent (A1) / (A2) .
The adhesion promoters (G) used in the compositions (M) of the invention may be any desired adhesion promoters described to date for systems that cure through silane condensation.
Examples of adhesion promoters (G) are epoxysilanes such as glycidoxypropyltrimethoxysilane, glycidoxypropylmethyldimethoxysilane, glycidoxypropyltriethoxysilane or glycidoxypropyl-methyldiethoxysilane, 2- (3-triethoxysilylpropyl) maleic anhydride, N- (3-trimethoxysilylpropyl) urea, N- (3-triethoxysilylpropyl) urea, N- (trimethoxysilylmethyl) urea, N- (methyl-dimethoxysilylmethyl) urea, N- (3-triethoxysilylmethyl) urea, N- (3-methyldiethoxysilylmethyl) urea, O- (methylcarbamatomethyl) -methyldimethoxysilane, O- (methylcarbamatomethyl) trimethoxysilane, O- (ethylcarbamatomethyl) methyldiethoxysilane, O- (ethyl-carbamatomethyl) -triethoxysilane, 3-methacryloyloxypropyltri-methoxysilane, methacryloyloxymethyltrimethoxysilane, methacryloyloxymethylmethyldimethoxysilane, methacryloyloxy-methyltriethoxysilane, methacryloyloxymethylmethyldiethoxy-silane, 3-acryloyloxypropyltrimethoxysilane, acryloyloxymethyl-trimethoxysilane, acryloyloxymethylmethyldimethoxysilane, acryloyloxymethyltriethoxysilane and acryloyloxymethyl-methyldiethoxysilane, and the partial condensates thereof.
If the compositions (M) of the invention comprise adhesion promoters (G) , the amounts are preferably 0.5 to 30 parts by weight, more preferably 1 to 10 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) . The compositions (M) of the invention preferably contain components (C) and/or (G) as adhesion promoters.
The water scavengers (H) used in the compositions (M) of the invention may be any desired water scavengers described for systems that cure through silane condensation.
Examples of water scavengers (H) are silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyl-dimethoxysilane, O- (methylcarbamatomethyl) methyldimethoxysilane, O- (methylcarbamatomethyl) trimethoxysilane, O- (ethyl-carbamatomethyl) methyldiethoxysilane, and also O- (ethyl-carbamatomethyl) triethoxysilane, and/or the partial condensates thereof, and also orthoesters, such as 1, 1, 1-trimethoxyethane, 1, 1, 1-triethoxyethane, trimethoxymethane and triethoxymethane.
If the compositions (M) of the invention comprise water scavengers (H) , the amounts are preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) . The compositions of the invention preferably comprise water scavengers (H) .
The unreactive plasticizers (I) used in the compositions (M) of the invention may be any desired plasticizers that are known to date and are typical of silane-crosslinking systems.
Unreactive plasticizers (I) are selected from the group consists of phthalic esters (dioctyl phthalate, diisooctyl phthalate and diundecyl phthalate) , perhydrogenated phthalic esters (diisononyl cyclohexane-1, 2-dicarboxylate and dioctyl cyclohexane-1, 2-dicarboxylate) , adipic esters (dioctyl adipate) , benzoic esters, glycol esters, esters of saturated alkanediols (2, 2, 4-trimethylpentane-1, 3-diol monoisobutyrate and 2, 2, 4-trimethylpentane-1, 3-diol diisobutyrate) , phosphoric esters, sulfonic esters, polyesters, polyethers (polyethylene glycols and polypropylene glycols preferably having molar masses M n of 400 to 10 000 g/mol) , polystyrenes, polybutadienes, polyisobutylenes, paraffinic hydrocarbons and high molecular weight branched hydrocarbons.
Preferably, the compositions (M1) / (M2) of the invention contain unreactive plasticizers (I) , the amounts thereof are preferably less than 90 parts by weight, more preferably less than 50 parts by weight, more preferably less than 30 parts by weight, more preferably between 10-25 or less than 5 parts by weight, more preferably between 13-20 or less than 1 parts or 11, 12, 14, 15, 16, 17, 18, 19 by weight, based on 100 parts by weight of components (A1) and/or (A2) .
Preferably, the unreactive plasticizer (I) is selected from group consisting of polyoxypropylene monohydric alcohol, polyoxypropylene glycol, polyoxyethylene monohydric alcohol, polyoxyethylene glycol, polyoxypropylene-polyoxyethylene block copolymer, polyether polyols and terminal modification of the above.
In a particularly advantageous embodiment of the invention, the compositions (M) of the invention contain unreactive plasticizers (I) .
Additives (J) used in the compositions (M) of the invention may be any desired typical additives useful in silane-crosslinking systems.
The additives (J) used in accordance with the invention are preferably antioxidants, UV stabilizers, for example what are called HALS compounds, fungicides and pigments.
If the compositions (M) of the invention contain additives (J) , the amounts are preferably 0.01 to 30 parts by weight, more preferably 0.1 to 10 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) . The compositions (M) of the invention preferably contain additives (J) .
The admixtures (K) used in accordance with the invention are preferably tetraalkoxysilanes, for example tetraethoxysilane, and/or partial condensates thereof, plasticizers, reactive plasticizers, rheology additives, flame retardants and organic solvents.
Preferred reactive plasticizers (K) are compounds containing alkyl chains having 6 to 40 carbon atoms and having a group reactive toward the compounds (A1) / (A2) . Examples are isooctyltri-methoxysilane, isooctyltriethoxysilane, N-octyltrimethoxy-silane, N-octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, tetradecyltrimethoxysilane, tetradecyltriethoxysilane, hexadecyltrimethoxysilane and hexadecyltriethoxysilane.
The rheology additives (K) are preferably polyamide waxes, hydrogenated castor oils or stearates.
Examples of organic solvents (K) are low molecular weight ethers, esters, ketones, aromatic and aliphatic and optionally halogenated hydrocarbons and alcohols, preference being given to the latter.
Preferably no organic solvents (K) are added to the compositions (M) of the invention. The dosage of organic solvents (K) is less than 1 parts by weight, preferably less than 0.1 parts by weight, based on 100 parts by weight of components (A1) and/or (A2) .
If the compositions (M) of the invention contain one or more components (K) , the amounts of each are preferably 0.5 to 200 parts by weight, more preferably 1 to 100 parts by weight, especially 2 to 70 parts by weight, based in each case on 100 parts by weight of components (A1) and/or (A2) .
The compositions (M) of the invention contain components (A1) / (A2) and (B) in total concentrations of preferably at most 99%by weight, more preferably at most 95%by weight, and most preferably at most 65%by weight in total, and preferably at least 10%by weight in total, more preferably at least 15%by weight in total, based in each case on the total weight of the composition (M) .
Preferably, the compositions (M1) of the invention are those comprising
(A1) 100 parts by weight of polymers (A1) ,
(B) 600 to 5000 parts by weight of polymers (B) ,
(C) 0.01 to 25 parts by weight of organosilicon compounds not having nitrogen atoms bonded directly to carbonyl groups,
optionally (D) fillers,
optionally (E) silicone resins,
optionally (F) catalysts,
optionally (G) adhesion promoters,
optionally (H) water scavengers,
optionally (I) unreactive plasticizers,
optionally (J) additives and
optionally (K) admixtures.
The compositions (M1) of the invention are more preferably those comprising
(A1) 100 parts by weight of polymers (A1) ,
(B) 700 to 4000 parts by weight of polymers (B) ,
(C) 0.15 to 20 parts by weight of organosilicon compounds not having nitrogen atoms bonded directly to carbonyl groups,
(D) less than 1 parts by weight of fillers,
optionally (E) silicone resins,
optionally (F) catalysts,
optionally (G) adhesion promoters,
optionally (H) water scavengers,
(I) 0.1-30 parts by weight of unreactive plasticizers,
optionally (J) additives,
0.01-5 parts by weight of water, and
optionally (K) admixtures.
In particular, the compositions (M1) of the invention are those comprising
(A1) 100 parts by weight of polymers (A1) ,
(B) 750 to 2000 parts of polymers (B) ,
(C) 0.5 to 15 parts by weight of organosilicon compounds not having nitrogen atoms bonded directly to carbonyl groups,
(D) less than 0.01 parts by weight of fillers,
optionally (E) silicone resins,
(F) 0.01-0.5 parts by weight of catalysts,
optionally (G) adhesion promoters,
optionally (H) water scavengers,
(I) 10-25 parts by weight of unreactive plasticizers,
optionally (J) additives,
0.01-1 parts by weight of water, and
optionally (K) admixtures.
Preferably, the compositions (M2) of the invention are those comprising
(A2) 100 parts by weight of polymers (A2) ,
(B) 1000 to 5000 parts by weight of polymers (B) ,
(C) 0.01 to 25 parts by weight of organosilicon compounds not having nitrogen atoms bonded directly to carbonyl groups,
optionally (D) fillers,
optionally (E) silicone resins,
optionally (F) catalysts,
optionally (G) adhesion promoters,
optionally (H) water scavengers,
optionally (I) unreactive plasticizers,
optionally (J) additives and
optionally (K) admixtures.
The compositions (M2) of the invention are more preferably those comprising
(A2) 100 parts by weight of polymers (A2) ,
(B) 1200 to 4000 parts by weight of polymers (B) ,
(C) 0.15 to 20 parts by weight of organosilicon compounds not having nitrogen atoms bonded directly to carbonyl groups,
(D) less than 1 parts by weight of fillers,
optionally (E) silicone resins,
optionally (F) catalysts,
optionally (G) adhesion promoters,
optionally (H) water scavengers,
(I) 0.1-30 parts by weight of unreactive plasticizers,
optionally (J) additives,
0.01-5 parts by weight of water, and
optionally (K) admixtures.
In particular, the compositions (M2) of the invention are those comprising
(A2) 100 parts by weight of polymers (A2) ,
(B) 2000 to 2800 parts of polymers (B) ,
(C) 0.5 to 15 parts by weight of organosilicon compounds not having nitrogen atoms bonded directly to carbonyl groups,
(D) less than 0.01 parts by weight of fillers,
optionally (E) silicone resins,
(F) 0.01-5 parts by weight of catalysts,
optionally (G) adhesion promoters,
optionally (H) water scavengers,
(I) 10-25 parts by weight of unreactive plasticizers,
optionally (J) additives,
0.01-5 parts by weight of water, and
optionally (K) admixtures.
The compositions (M) of the invention preferably do not contain any further constituents apart from components (A1) / (A2) to (K) .
The components used in accordance with the invention may each be one kind of such a component or else a mixture of at least two kinds of a particular component.
The compositions (M) of the invention are moisture-curing, meaning that they are preferably liquid or pasty compositions which cure on contact with water and/or atmospheric humidity.
The use of the compositions (M) in curable gel composition.
The composition (M) of the present invention can be cured under room temperature conditions and has a suitable pot life. The pot life is shorter than 10 hours, preferably shorter than 5 hours.
The gel described in the present invention is a polymer system with a network structure and crosslinking points with a low crosslinking density. Under the condition of 1 atmosphere pressure at room temperature, it has a state of no flow, when the container is slowly turned to 90° or under no shear condition. The gel described in the present invention refers to the GB/T269-91 standard and uses a 1/4 scale cone to measure the non-operating penetration (1/10mm) . Its penetration is greater than or equal to 50 and less than 200; preferably within 50-150, more preferably within 50-100, preferably within 60-90, more preferable within 65-85.
The gel described in the present invention is very soft and does not belong to rubber or elastomer. The sample of the cured product cannot be prepared according to the standard DIN 53504-S1, nor can it be tested for its mechanical properties.
The compositions of the invention (M) can be produced in any manner known per se, for instance by standard methods and mixing processes for production of moisture-curing compositions.
The present invention further provides a process for producing the compositions (M) of the invention by mixing the individual components in any desired sequence.
Preferably, the catalytically active components (C) and (F) are not added until the end of the mixing operation.
This mixing operation can be effected at room temperature, i.e. at temperatures between 0 and 30℃., and pressure of the surrounding atmosphere, i.e. about 900 to 1100 hPa. If desired, this mixing can alternatively be effected at higher temperatures, for example at temperatures in the range from 30 to 130℃. In addition, it is possible to mix intermittently or constantly under reduced pressure, for example at absolute pressures of 30 to 500 hPa, in order to remove volatile compounds and/or air.
The mixing operation of the invention is preferably effected with exclusion of moisture.
The process of the invention can be performed continuously or batchwise.
The compositions (M) of the invention are one-component compositions which are storable with exclusion of water and crosslinkable at room temperature on ingress of water. Alternatively,  the compositions (M) of the invention are one part of two-component crosslinking systems, in which OH-containing compounds, such as water, are added in a second component.
The compositions (M1) / (M2) of the invention is two-component crosslinking system, wherein the weight ratio of the first component to the second component is (1-50) : 1, preferably between (1-30) : 1, more preferably (1-8) : 1 or (20-30) : 1, more preferably (3-7) : 1 or (25-30) : 1.
The first component contains: the composition (M1) / (M2) of the present invention,
The second component contains: a catalyst (F) and an OH compound, wherein the OH compound includes water, preferably the OH compound is water.
In some cases, the second component could contain the composition (M1) / (M2) of the present invention or component (A1) / (A2) or component (B) .
The compositions (M1) / (M2) of the invention is two-component crosslinking system, wherein the viscosity of the first component is between 1000-10 000 cP, preferably between 2000-8000 cP, more preferably between 2000-6000 cP. The viscosity of the second component is between 100-30 000 cP, preferably between 200-10 000 cP, more preferably between 250-6000 cP or 300, 400, 500, 600, 700cP.
The water content in the compositions (M1) / (M2) of the invention is 0.01-10 parts by weight, preferably 0.01-5 parts by weight, more preferably 0.01-1 parts by weight, or 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 2, 3, 4 parts by weight, based on 100 parts by weight of components (A1) and/or (A2) .
A condensation type silicone gel could be produced by crosslinking the above composition (M1) / (M2) .
The typical water content of air is not sufficient for the crosslinking of the compositions (M) of the invention. The compositions (M) of the invention are preferably crosslinked at room temperature. They can, if desired, also be crosslinked at higher or lower temperatures than room temperature, for example at -5 to 15℃. or at 30 to 50℃. and/or by means of concentrations of water exceeding the normal water content of the air.
Preference is given to conducting the crosslinking at a pressure of 100 to 1100 hPa, especially under the pressure of the surrounding atmosphere, i.e. about 900 to 1100 hPa.
In the case of use of the compositions (M) as sealing compounds, the substrate to be sealed may consist of a wide variety of different materials, for example of stone, concrete, mineral substrates, metals, glass, ceramic, wood and painted surfaces or substrates, but also plastics including PVC. In this case, the flanks of substrate may consist either of identical materials or of different materials.
The shaped bodies of the invention may be any desired shaped bodies, for instance gels, potting, coatings, impregnations, encapsulations, or adhesive layers.
The invention further provides a method for bonding substrates, in which the composition (M) of the invention is applied to the surface of at least one substrate, then this surface is contacted with the second substrate to be bonded, and then left to crosslink.
Examples of substrates which can be bonded in accordance with the invention are concrete, mineral substrates, metals, glass, ceramic and painted surfaces, wood, but also plastics including PVC. It is possible here to bond either identical materials or different materials to one another.
The invention further provides a method of producing material composites, in which the composition of the invention is applied to at least one substrate or container and then left to crosslink. Examples thereof are coatings and potting compounds, for example for LEDs or other electronic components.
The compositions (M) of the invention have the advantage that they can be used to produce gels having excellent properties and have the further advantage that they are easy to produce.
Furthermore, the crosslinkable compositions (M) of the invention have following advantage: before crosslinking and curing, the viscosity of the product is low, and it is easy to flow and fill gaps. After crosslinking and curing, the gel product formed is very soft, and has a high penetration.
In the examples described hereinafter, all the viscosities are at a temperature of 25℃. Unless stated otherwise, the examples which follow are conducted at a pressure of the surrounding atmosphere, i.e. at about 1000 hPa, and at room temperature, i.e. at about 23℃., or at a temperature which is established on combination of the reactants at room temperature without additional heating or cooling, and at a relative air humidity of about 50%. In addition, all figures for parts and percentages, unless stated otherwise, are based on weight.
Embodiments
(A1) sample Polypropylene glycol with silane end capping at both ends and an average molar mass Mn of 18 000 g/mol and the formula -O-C (=O) -NH- (CH 2) -SiMe (OCH 32 as end groups
(A2) sample Polypropylene glycol with silane end capping at both ends and an average molar mass Mn of 18 000 g/mol and the formula -O-C (=O) -NH- (CH 23-Si (OCH 33 as end groups
C-sample Polypropylene glycol with silane end capping at one end and an average molar mass Mn of 18 000 g/mol and the formula -O-C (=O) -NH- (CH 2) -SiMe (OCH 32 as an end group
(B) sample Polypropylene glycol with silane end capping at both ends and an average molar mass Mn of 18 000 g/mol and the formula -O-C (=O) -NH- (CH 23-Si (OCH 33 as an end group
Figure PCTCN2020100447-appb-000012
GF 93 3-aminopropyl triethoxy silane
Above materials are provided by WACKER CHEMIE AG.
Preparation of the First component:
A 2000 mL reaction vessel with stirring, cooling, and heating devices was charged with 100 g (A1) sample, and while stirring, 800 g (B) sample and 13.1 g
Figure PCTCN2020100447-appb-000013
GF93 were added. Then mix well and set aside.
Prepare the Second component:
15g of polyether glycol plasticizer, 2g of hindered amine stabilizer, 1g of phosphite heat stabilizer, 0.2g of catalyst, and 0.5g of deionized water were added into the container and mix well.
Table 1 shows the raw materials and amounts used in the examples and comparative examples.
Table 1
Figure PCTCN2020100447-appb-000014
Figure PCTCN2020100447-appb-000015
According to ISO 2555 standard, test Brookfield viscosity of the samples with No. 6 spindle at 50rpm.
The First component and the Second component are mixed in the proportions shown in Table 2 to obtain a curable composition, and the properties after curing are described in Table 3.
Table 2
Figure PCTCN2020100447-appb-000016
Table 3
Figure PCTCN2020100447-appb-000017
*Pot life is considered in following method. Take mixing of the two-component curable composition as the starting point. The state where the viscosity of the mixture increases to 100,000cP is regarded as the end point. The time from the start point to the end point is calculated in hours.
**Gel time is considered in following method. Take mixing of the two-component curable composition as the starting point. After slowly turning the container containing the curable composition to 90 o, the state where the contents do not flow is regarded as the end point of the gel form. The time from the start point to the end point is calculated in hours.
It can be seen from Table 3 above:
In Ex. 1. Using (A1) double-ended alpha silane-terminated polyether to prepare a curable composition, a product with fast curing speed, very softness and suitable penetration can be obtained. The cured gel is soft and transparent, which can eliminate mechanical stress and has excellent shock absorption effect.
In Ex. 2, when the ratio of (B) single-ended gama silane-terminated polyether is further increased, even if the product does not contain any plasticizer, a softer gel product with a penetration of 82.1 can be obtained.
In C. Ex. 4, in the type like Ex. 1, when more fillers were added, the properties of the composition change, and the resulting product is in a rubbery state and cannot form a gel product.
In C. Ex. 5, (A2) double-ended gama silane-terminated polyether was used to prepare the curable composition, and when the dosage was 1: 8, the obtained gel product had a penetration of less than 50, and the product was hard, which is not the desired gel of the present invention.
In Ex. 6, (A2) double-ended gama silane terminated polyether was used to prepare the curable composition, but the amount of (B) single-ended gama silane terminated polyether was greatly increased. When (A2) : (B) was 1: 32, the desired gel of the present invention can be obtained
In C. Ex. 7 and C. Ex. 8, a single-terminal alpha silane-terminated polyether which is not belong to (B) was used to prepare the composition. After a long-term catalytic reaction, the gel product could not be obtained.

Claims (10)

  1. A curable gel composition (M1) , which includes
    · (A1) 100 parts by weight of silane-crosslinking polymers of the formula
    (HO)  x-Y- [O-CO-NH- (CR 1 2b1-SiR a (OR 23-a2-x  (I-1)
    ο where
    ο Y is a divalent polymer radical,
    ο R may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical,
    ο R 1 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
    ο R 2 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
    ο x is 0 or 1,
    ο a may be the same or different and is 0, 1 or 2, preferably 0, and
    ο b1 is 1,
    with the proviso that component (A1) includes less than 15 mol %, preferably less than 10 mol %, more preferably less than 5 mol %, of polymers of the formula (I-1) with x=1,
    and
    · (B) a silane-crosslinking polymers of the formula
    R 6-O-Z- [O-CO-NH- (CR 4 2d-SiR 3 c (OR 53-c1-y [OH]  y  (II)
    ο where
    ο Z is a divalent polymer radical having no hydroxyl group,
    ο R 3 may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical,
    ο R 4 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
    ο R 5 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
    ο R 6 is a monovalent, optionally substituted hydrocarbyl radical,
    ο y is 0 or 1,
    ο c may be the same or different and is 0, 1 or 2, preferably 1, and
    ο d may be the same or different and is an integer from 2 to 10, preferably 3 or 4, more preferably 3,
    with the proviso that component (B) includes less than 15 mol %, preferably less than 10 mol %, more preferably less than 5 mol %, of polymers of the formula (II) with y=1,
    the curable gel composition (M1) containing of larger than or equal to 600 parts by weight of component (B) , preferably 600-5000 parts by weight, more preferably 700-4000 parts by weight, more preferably 750-2000 or 2500-3800 parts by weight, more preferably 750-1000 or 2800-3500 parts by weight, based on 100 parts by weight of component (A1) .
  2. A curable gel composition (M2) , which includes
    · (A2) a silane-crosslinking polymers of the formula
    (HO)  x-Y- [O-CO-NH- (CR 1 2b2-SiR a (OR 23-a2-x  (I-2)
    ο where
    ο Y is a divalent polymer radical,
    ο R may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical,
    ο R 1 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
    ο R 2 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
    ο x is 0 or 1,
    ο a may be the same or different and is 0, 1 or 2, preferably 0, and
    ο b2 is 3,
    with the proviso that component (A2) includes less than 15 mol %, preferably less than 10 mol %, more preferably less than 5 mol %, of polymers of the formula (I-2) with x=1,
    and
    · (B) a silane-crosslinking polymers of the formula
    R 6-O-Z- [O-CO-NH- (CR 4 2d-SiR 3 c (OR 53-c1-y [OH]  y  (II)
    ο where
    ο Z is a divalent polymer radical having no hydroxyl group,
    ο R 3 may be the same or different and is a monovalent, optionally substituted hydrocarbyl radical,
    ο R 4 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
    ο R 5 may be the same or different and is a hydrogen atom or a monovalent, optionally substituted hydrocarbyl radical,
    ο R 6 is a monovalent, optionally substituted hydrocarbyl radical,
    ο y is 0 or 1,
    ο c may be the same or different and is 0, 1 or 2, preferably 1, and
    ο d may be the same or different and is an integer from 2 to 10, preferably 3 or 4, more preferably 3,
    with the proviso that component (B) includes less than 15 mol %, preferably less than 10 mol %, more preferably less than 5 mol %, of polymers of the formula (II) with y=1,
    the curable gel composition (M2) containing larger than or equal to 1000 parts by weight of component (B) , preferably1000-5000 parts by weight, more preferably 1200-4000 parts by weight, more preferably 2000-3800 parts by weight, more preferably 2800-3500 parts by weight, based on 100 parts by weight of component (A2) .
  3. The gel compositions (M1) / (M2) according to claim 1 or 2, which containing non-reinforcing fillers (D1) , the amounts thereof are preferably less than or equal to 1000 parts by weight, more preferably less than or equal to 500 parts by weight, more preferably less than or equal to 100 parts by weight, and especially less than or equal to 1 parts by weight, based in each case on 100 parts by weight of components (A1) / (A2) .
  4. The gel compositions (M1) / (M2) according to any of the claim 1-3, which containing reinforcing fillers (D2) , the amounts thereof are preferably less than or equal to 50 parts by weight, more preferably less than or equal to 30 parts by weight, more preferably less than or equal to 10 parts by weight, and especially less than or equal to 1 parts by weight, based in each case on 100 parts by weight of components (A1) / (A2) .
  5. The gel compositions (M1) / (M2) according to any of the claim 1-4, wherein unreactive plasticizers (I) are selected from the group consists of phthalic esters, perhydrogenated phthalic esters, adipic esters, benzoic esters, glycol esters, esters of saturated alkanediols, phosphoric esters, sulfonic esters, polyesters, polyethers, polystyrenes, polybutadienes, polyisobutylenes, paraffinic hydrocarbons and high molecular weight branched hydrocarbons.
  6. The gel compositions (M1) / (M2) according to any of the claim 1-5, which containing unreactive plasticizers (I) , the amounts thereof are preferably less than 90 parts by weight, more preferably less than 50 parts by weight, more preferably less than 30 parts by weight, more preferably between 10-25 or less than 5 parts by weight, more preferably between 13-20 or less than 1 parts by weight, based on 100 parts by weight of components (A1) / (A2) .
  7. The gel compositions (M1) / (M2) according to any of the claim 1-6, wherein the silane end groups in the component (A1) is b1=1, R 1=H and a=1, and the silane end groups in the component (A2) is b2=3, R 1=H and a=0; component (B) comprises compounds having silane end groups in which d=3, R 4=H and c=0.
  8. The gel compositions (M1) / (M2) according to any of the claim 1-7, wherein the water content is 0.01-10 parts by weight, preferably 0.01-5 parts by weight, more preferably 0.01-1 parts by weight, or 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 2, 3, 4 parts by weight, based on 100 parts by weight of components (A1) / (A2) .
  9. A condensation type silicone gel produced by crosslinking the composition (M1) / (M2) according to any of the claim 1-8.
  10. The gel according to claim 9, wherein referring to the GB/T269-91 standard and uses a 1/4 scale cone to measure the non-operating penetration (1/10mm) , with the penetration is greater than or equal to 50 and less than 200; preferably within 50-150, more preferably within 50-100, preferably within 60-90, more preferable within 65-85.
PCT/CN2020/100447 2020-07-06 2020-07-06 Cross-linkable masses based on silane-terminated polymers WO2022006713A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/100447 WO2022006713A1 (en) 2020-07-06 2020-07-06 Cross-linkable masses based on silane-terminated polymers
CN202080102779.1A CN115803354A (en) 2020-07-06 2020-07-06 Crosslinkable substances based on silane-terminated polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/100447 WO2022006713A1 (en) 2020-07-06 2020-07-06 Cross-linkable masses based on silane-terminated polymers

Publications (1)

Publication Number Publication Date
WO2022006713A1 true WO2022006713A1 (en) 2022-01-13

Family

ID=79553690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100447 WO2022006713A1 (en) 2020-07-06 2020-07-06 Cross-linkable masses based on silane-terminated polymers

Country Status (2)

Country Link
CN (1) CN115803354A (en)
WO (1) WO2022006713A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050119436A1 (en) * 2003-11-27 2005-06-02 Wacker-Chemie Gmbh Preparation of organyloxysilyl-terminated polymers
US20090088523A1 (en) * 2005-12-02 2009-04-02 Momentive Performance Materials Japan Llc Room Temperature Curable Silicon Group-Containing Polymer Composition
US20100016537A1 (en) * 2005-06-23 2010-01-21 Wacker Chemie Ag Continuous polymer-analogous reaction of reactive silane monomers with functionalized polymers
US20160160103A1 (en) * 2013-08-23 2016-06-09 Wacker Chemie Ag Cross-linkable masses based on organyl-oxysilane-terminated polymers
CN109897589A (en) * 2019-01-23 2019-06-18 雨中情防水技术集团有限责任公司 A kind of high-elastic sealant of environment-friendly type and preparation method thereof
US20190256745A1 (en) * 2016-10-28 2019-08-22 Bostik Sa Self-adhesive composition for the bonding of substrates with low surface energy
US20190315917A1 (en) * 2016-06-28 2019-10-17 Wacker Chemie Ag Crosslinkable materials based on organyloxysilane-terminated polymers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050119436A1 (en) * 2003-11-27 2005-06-02 Wacker-Chemie Gmbh Preparation of organyloxysilyl-terminated polymers
US20100016537A1 (en) * 2005-06-23 2010-01-21 Wacker Chemie Ag Continuous polymer-analogous reaction of reactive silane monomers with functionalized polymers
US20090088523A1 (en) * 2005-12-02 2009-04-02 Momentive Performance Materials Japan Llc Room Temperature Curable Silicon Group-Containing Polymer Composition
US20160160103A1 (en) * 2013-08-23 2016-06-09 Wacker Chemie Ag Cross-linkable masses based on organyl-oxysilane-terminated polymers
US20190315917A1 (en) * 2016-06-28 2019-10-17 Wacker Chemie Ag Crosslinkable materials based on organyloxysilane-terminated polymers
US20190256745A1 (en) * 2016-10-28 2019-08-22 Bostik Sa Self-adhesive composition for the bonding of substrates with low surface energy
CN109897589A (en) * 2019-01-23 2019-06-18 雨中情防水技术集团有限责任公司 A kind of high-elastic sealant of environment-friendly type and preparation method thereof

Also Published As

Publication number Publication date
CN115803354A (en) 2023-03-14

Similar Documents

Publication Publication Date Title
US10077386B2 (en) Compositions on the basis of organyloxysilane-terminated polymers
US9920229B2 (en) Cross-linkable masses based on organyl-oxysilane-terminated polymers
US9493689B2 (en) Crosslinkable compositions based on organyloxysilane-terminated polymers
US10745560B2 (en) Crosslinkable materials based on organyl oxysilane-terminated polymers
US10113092B2 (en) Multicomponent crosslinkable compositions based on organyloxysilane-terminated polymers
US20110028640A1 (en) Hardenable compositions based on silylated polyurethanes
JP6720340B2 (en) Crosslinkable Materials Based on Organyloxysilane Terminated Polymers
JP5757106B2 (en) Curable composition
US20100143712A1 (en) Silane-crosslinking adhesive or sealant comprising n-silylalkylamides and use thereof
JP2017514936A (en) Crosslinkable materials based on organyloxysilane-terminated polymers
WO2022006713A1 (en) Cross-linkable masses based on silane-terminated polymers
CN113166549A (en) Multicomponent crosslinkable materials based on organooxysilane-terminated polymers
WO2023056586A1 (en) A composition
CN114787299B (en) Crosslinkable compositions based on organooxysilane-terminated polymers
WO2023178473A1 (en) A composition
KR20230106675A (en) Process for preparing crosslinkable materials based on organyloxysilane-terminated polymers
WO2023171425A1 (en) Polyoxyalkylene-based polymer mixture and curable composition
JP2021109899A (en) Cross-linkable composition, floor coating composition containing the cross-linkable composition, and method for forming coating film using the floor coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944803

Country of ref document: EP

Kind code of ref document: A1