WO2023171425A1 - Polyoxyalkylene-based polymer mixture and curable composition - Google Patents

Polyoxyalkylene-based polymer mixture and curable composition Download PDF

Info

Publication number
WO2023171425A1
WO2023171425A1 PCT/JP2023/006849 JP2023006849W WO2023171425A1 WO 2023171425 A1 WO2023171425 A1 WO 2023171425A1 JP 2023006849 W JP2023006849 W JP 2023006849W WO 2023171425 A1 WO2023171425 A1 WO 2023171425A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
polyoxyalkylene
hydrolyzable silyl
polyoxyalkylene polymer
Prior art date
Application number
PCT/JP2023/006849
Other languages
French (fr)
Japanese (ja)
Inventor
翔大 神谷
丈尋 伊丹
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023171425A1 publication Critical patent/WO2023171425A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a mixture of polyoxyalkylene polymers having a hydrolyzable silyl group, and a curable composition containing the mixture.
  • Polymers with hydrolyzable silyl groups are known as moisture-reactive polymers, and their curable compositions are used in many industrial products such as adhesives, sealants, coatings, paints, and adhesives. It is used in a wide range of fields.
  • such a curable composition is preferably one that develops adhesiveness and hardness in a short time and has excellent rising properties. Specifically, it is desirable to exhibit adhesive strength comparable to the final strength one day after construction.
  • methods are known that use polymers having trialkoxysilyl groups (see, for example, Patent Document 1). ).
  • Patent Document 2 provides a method of using a polymer having a dialkoxylyl group and a polymer having a trialkoxysilyl group in combination.
  • the above-mentioned method requires the use of a polymer having a trialkoxysilyl group, and the use of only a polymer having a dimethoxysilyl group was insufficient to increase adhesive strength. Further, even when used in combination with a trialkoxysilyl group, there is still room for improvement in the rise of adhesive strength.
  • the present invention provides a mixture of a hydrolyzable silyl group-containing polyoxyalkylene polymer with improved adhesive strength rise, a curable composition containing the same, and a method for curing the curable composition.
  • the purpose is to provide a cured product.
  • the present inventors have created a mixture of hydrolyzable silyl group-containing polyoxyalkylene polymers having a specific molecular weight, a specific main chain structure, and a specific hydrolyzable silyl group introduction rate.
  • the inventors have found that the adhesive strength increases faster and exhibits better curability than when these polymers are used alone, leading to the completion of the present invention.
  • the present invention has a main chain structure of polyoxyalkylene and a terminal structure bonded to the terminal of the main chain structure, and the terminal structure has a hydrolyzable silyl group, a terminal olefin group, and/or an internal A mixture of a polyoxyalkylene polymer (A) and a polyoxyalkylene polymer (B) having an olefin group,
  • the polyoxyalkylene polymer (A) has a linear main chain structure and has one terminal structure in one molecule,
  • the number of moles of hydrolyzable silyl group/(total number of moles of hydrolyzable silyl group, terminal olefin group, and internal olefin group) is 0.50 or more and less than 1.00,
  • the number average molecular weight is 1,000 or more and 8,000 or less
  • the polyoxyalkylene polymer (B) has a branched main chain structure, The number of moles of the hydrolyzable silyl group/(the total number of mo
  • a mixture of a hydrolyzable silyl group-containing polyoxyalkylene polymer with improved rise in adhesive strength, a curable composition containing the same, and a cured product obtained by curing the curable composition can be provided.
  • the mixture of hydrolyzable silyl group-containing polyoxyalkylene polymers according to the present embodiment includes a polyoxyalkylene polymer (A) and a polyoxyalkylene polymer (B).
  • the mixture according to this embodiment refers to one that substantially contains only the polyoxyalkylene polymers (A) and (B). Since the polyoxyalkylene polymers (A) and (B) each have a hydrolyzable silyl group, the mixture exhibits curability based on hydrolysis and dehydration condensation reactions of the hydrolyzable silyl group.
  • Both polyoxyalkylene polymers (A) and (B) have a main chain structure of polyoxyalkylene and a terminal structure bonded to the end of the main chain structure, and the terminal structure is a hydrolyzable silyl. group and a terminal olefinic group and/or an internal olefinic group.
  • the main chain structure refers to a polymer main chain (also referred to as a polymer skeleton) composed of oxyalkylene repeating units.
  • the oxyalkylene repeating unit refers to a repeating unit constituting a polyether, and refers to, for example, an oxyalkylene unit having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms.
  • the main chain structure is not particularly limited and includes, for example, polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer. Examples include merging. Among them, polyoxypropylene is preferred.
  • linear main chain structure described below refers to a main chain structure that is linear.
  • branched main chain structure described below refers to a main chain structure that is branched.
  • the number average molecular weight and weight average molecular weight in this specification are polystyrene equivalent molecular weights obtained by gel permeation chromatography (GPC) measurement using tetrahydrofuran (THF) as a developing solvent.
  • the molecular weight distribution is a value calculated from the number average molecular weight and the weight average molecular weight, and is the value obtained by dividing the weight average molecular weight by the number average molecular weight.
  • the terminal structure refers to a site located at the end of the polyoxyalkylene polymer. Further, the terminal structure has a hydrolyzable silyl group, a terminal olefin group, and/or an internal olefin group. Examples of the terminal olefin group include an active hydrogen group-containing group and an unsaturated group. As the active hydrogen-containing group, a hydroxyl group is preferred. The unsaturated group is preferably an allyl group or a methallyl group, and more preferably an allyl group.
  • the polyoxyalkylene polymers (A) and (B) have a hydrolyzable silyl group.
  • the hydrolyzable silyl group refers to a silicon group that has a hydroxyl group or a hydrolyzable group on a silicon atom and can form a siloxane bond through a hydrolysis/condensation reaction. Specifically, it is represented by the following general formula (2).
  • R 2 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a triorganosiloxy group represented by -OSi(R') 3 .
  • R' is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R's may be the same or different.
  • X represents a hydroxyl group or a hydrolyzable group, When two or more Xs exist, they may be the same or different.
  • a is 1, 2 or 3).
  • the hydrocarbon group of R 2 preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and even more preferably 1 to 3 carbon atoms.
  • Specific examples of R 3 include, for example, a methyl group, an ethyl group, a chloromethyl group, a methoxymethyl group, and an N,N-diethylaminomethyl group. Preferred are methyl group, ethyl group, chloromethyl group, and methoxymethyl group, more preferred are methyl group and methoxymethyl group.
  • the hydrolyzable silyl group possessed by the polyoxyalkylene polymer (A) and the polyoxyalkylene polymer (B) includes a structure represented by the following general formula (1).
  • -R 1 -CH 2 -CH 2 -Si(R 2 3-a )X a (1)
  • R 1 represents a divalent organic group having 1 to 20 carbon atoms containing one or more constituent atoms selected from the group consisting of hydrogen, carbon, and nitrogen
  • R 2 , X, and a are The formula (2) is as described above.
  • R 1 is preferably CH 2 and a is 2.
  • the hydrolyzable group of the above X is not particularly limited, and may be any conventionally known hydrolyzable group. Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. Among these, alkoxy groups such as methoxy group and ethoxy group are more preferable, and methoxy group and ethoxy group are particularly preferable because they are mildly hydrolyzable and easy to handle.
  • the hydrolyzable silyl group includes a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group, and a dimethoxyethyl group.
  • Silyl group (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N,N-diethylaminomethyl)dimethoxysilyl group, ( Examples include, but are not limited to, N,N-diethylaminomethyl)diethoxysilyl group.
  • methyldimethoxysilyl group, trimethoxysilyl group, triethoxysilyl group, (chloromethyl)dimethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N,N- A diethylaminomethyl) dimethoxysilyl group is preferred because it exhibits high activity and provides a cured product with good mechanical properties.
  • Methyldimethoxysilyl group is preferred because it has excellent shape retention after coating.
  • a trimethoxysilyl group is preferred because it exhibits good initial strength and provides a cured product with high rigidity.
  • the polyoxyalkylene polymer (A) has a linear main chain structure. Moreover, the polyoxyalkylene polymer (A) has only one terminal structure in one molecule.
  • Such a polyoxyalkylene polymer (A) is obtained by ring-opening addition polymerization of an alkylene oxide monomer to an initiator having one active hydrogen in the presence of an alkylene oxide ring-opening polymerization catalyst.
  • the polyoxyalkylene polymer (A) has a linear structure, but is composed of only a main chain structure containing an initiator and an oxyalkylene repeating unit, and one terminal structure.
  • the active hydrogen in the initiator is preferably based on a hydroxyl group.
  • the initiator may be a compound having one active hydrogen, preferably a compound having one hydroxyl group.
  • Specific examples of compounds having one hydroxyl group include methanol, ethanol, propanol, butanol, pentanol, hexanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene monomethyl ether, and triethylene monomethyl ether.
  • propylene glycol monomethyl ether propylene glycol monoethyl ether, propylene glycol monopropyl ether, dipropylene monomethyl ether, tripropylene monomethyl ether, allyl alcohol, ethylene glycol monoallyl ether, and the like.
  • butanol is particularly preferred.
  • an initiator may be synthesized from the compound having one hydroxyl group and an alkylene oxide monomer.
  • the synthesized initiator is obtained by ring-opening addition polymerization of an alkylene oxide monomer to the compound having one hydroxyl group, and preferably has a number average molecular weight of 100 to 10,000.
  • One type of initiator may be used alone or two or more types may be used in combination.
  • the polyoxyalkylene polymer (A) only needs to have one terminal in one molecule, and has one or less hydrolyzable silyl group on average in one terminal structure. It may have more than one hydrolyzable silyl group. Furthermore, one terminal structure may contain a polyoxyalkylene having two or more hydrolyzable silyl groups.
  • the terminal structure having two or more hydrolyzable silyl groups can be represented by the following general formula (3), for example.
  • R 3 and R 5 each independently represent a divalent bonding group having 1 to 6 carbon atoms, and the atoms bonded to each carbon atom adjacent to R 3 and R 5 are carbon, oxygen, nitrogen, R 4 and R 6 each independently represent hydrogen or a hydrocarbon group having 1 to 10 carbon atoms.
  • n is an integer of 1 to 10.
  • R 2 , X, and a are any of the above-mentioned general (Formula (1) is as described above.)
  • R 3 and R 5 may be a divalent organic group having 1 to 6 carbon atoms, or a hydrocarbon group which may contain an oxygen atom.
  • the hydrocarbon group preferably has 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms, and even more preferably 1 to 2 carbon atoms.
  • Specific examples of R 3 include -CH 2 OCH 2 -, -CH 2 O-, and -CH 2 -, with preference given to -CH 2 OCH 2 -.
  • Specific examples of R 5 include -CH 2 - and -CH 2 CH 2 -, with -CH 2 - being preferred.
  • the number of carbon atoms in the hydrocarbon group of R 4 and R 6 is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1 to 2.
  • Specific examples of R 4 and R 6 include a hydrogen atom, a methyl group, and an ethyl group, preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R 3 is -CH 2 OCH 2 -
  • R 5 is -CH 2 -
  • R 4 and R 6 are each a hydrogen atom. It is.
  • n is preferably an integer of 1 to 5, more preferably 1 to 3, and even more preferably 1 or 2.
  • n is not limited to one value, and may be a mixture of a plurality of values.
  • the terminal structure represented by general formula (3) represents one terminal structure bonded to one terminal of the main chain structure. Although two or more reactive silyl groups are shown in formula (3), formula (3) does not indicate two or more terminals, but rather two or more reactive silyl groups in one terminal structure. This indicates the presence of a silyl group. Further, formula (3) does not include a main chain structure (polymer skeleton) composed of oxyalkylene repeating units. In other words, the n structures in parentheses in formula (3) do not correspond to oxyalkylene repeating units in the main chain structure (polymer skeleton).
  • number of moles of hydrolyzable silyl group/(total number of moles of hydrolyzable silyl group, terminal olefin group, and internal olefin group) is 0.50 or more, 1. It is preferably less than 0.00, more preferably 0.70 or more and less than 1.00.
  • number of moles of hydrolyzable silyl group/(total number of moles of hydrolyzable silyl group, terminal olefin group, and internal olefin group) means that the number of moles of hydrolyzable silyl group is means the ratio of terminal olefin groups and internal olefin groups to the total number of moles.
  • hydrolyzable silyl group introduction rate can also be expressed as "hydrolyzable silyl group introduction rate.” Further, the ratio can also be expressed as a percentage; for example, the ratio of 0.5 and 50% have the same meaning.
  • the ratio can be determined by 1 H NMR.
  • the terminal olefin group is an allyl group and a hydrolyzable silyl group is introduced into the terminal structure by subjecting a hydrosilane compound having a hydrolyzable silyl group to a hydrosilylation reaction as described below, each of the following signals Calculation can be done using an integral value.
  • ⁇ Hydrolyzable silyl group CH 2 bonded to the silyl group (around 0.6 ppm, 2H)
  • ⁇ Terminal olefin group CH 2 of methylidene group (around 5.2 ppm, 2H)
  • Internal olefin group CH bonded to the terminal CH 3 group (total of around 4.3 ppm and around 4.8 ppm, 1H) Note that when other signals overlap, the integral value of that signal is excluded from calculation.
  • the number average molecular weight of the polyoxyalkylene polymer (A) may be 1,000 or more and 8,000 or less, but is preferably 2,000 or more and 5,000 or less in terms of polystyrene equivalent molecular weight in GPC. Within the latter range, the adhesive strength will increase quickly and the curable composition will have good workability.
  • the molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (A) is not particularly limited, but is preferably narrow, specifically less than 2.0, more preferably 1.6 or less, 1. It is more preferably 5 or less, even more preferably 1.4 or less, and particularly preferably 1.2 or less.
  • the molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (A) can be determined from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
  • the polyoxyalkylene polymer (A) may have a hydrolyzable silyl group in addition to the terminal structure, but having it only in the terminal structure will result in a rubber-like cured product with high elongation and low elastic modulus. This is preferred because it is easier to obtain.
  • the method for synthesizing the polyoxyalkylene polymer (A) is not particularly limited.
  • an epoxy compound is polymerized with an initiator having a hydroxyl group to obtain a hydroxyl group-terminated polymer.
  • an alkali metal salt e.g., sodium methoxide
  • a halogenated hydrocarbon compound e.g., allyl chloride
  • a hydrolyzable silyl group-containing polyoxyalkylene polymer (A) can be obtained by reacting a hydrolyzable silyl group-containing hydrosilane compound (for example, dimethoxymethylsilane, trimethoxysilane).
  • a hydrolyzable silyl group-containing hydrosilane compound for example, dimethoxymethylsilane, trimethoxysilane.
  • a polyoxyalkylene polymer (A) containing a polyoxyalkylene polymer having two or more hydrolyzable silyl groups in one terminal structure which is a preferred embodiment, is obtained as follows. be able to. After the alkali metal salt is made to act on the hydroxyl group of the hydroxyl group-terminated polymer in the same manner as above, an epoxy compound having a carbon-carbon unsaturated bond (for example, allyl glycidyl ether) is reacted, and then the carbon-carbon unsaturated bond is reacted with the epoxy compound (for example, allyl glycidyl ether).
  • an epoxy compound having a carbon-carbon unsaturated bond for example, allyl glycidyl ether
  • Two or more carbon-carbon unsaturated bonds are introduced into one terminal by reacting a halogenated hydrocarbon compound (for example, allyl chloride) having a saturated bond. Thereafter, a hydrolyzable silyl group-containing hydrosilane compound may be reacted.
  • a halogenated hydrocarbon compound for example, allyl chloride
  • hydrolysable silyl group into the polymer by using a hydrolysable silyl group-containing mercaptosilane instead of the hydrolysable silyl group-containing hydrosilane compound.
  • a cured product obtained from a curable composition containing a polyoxyalkylene polymer (A) containing an ester bond or an amide segment may have high hardness and strength due to the action of hydrogen bonds, etc.
  • the polyoxyalkylene polymer (A) containing an amide segment or the like may be cleaved by heat or the like.
  • a curable composition containing a polyoxyalkylene polymer (A) containing an amide segment or the like tends to have a high viscosity.
  • polyoxyalkylene containing amide segments etc. may be used as the polyoxyalkylene polymer (A), or polyoxyalkylene containing no amide segments etc. may be used. You may.
  • the amide segment represented by the general formula (4) includes, for example, a reaction between an isocyanate group and a hydroxyl group, a reaction between an amino group and a carbonate, a reaction between an isocyanate group and an amino group, a reaction between an isocyanate group and a mercapto group. Examples include those formed by, etc. Moreover, those formed by the reaction of the above-mentioned amide segment containing an active hydrogen atom with an isocyanate group are also included in the amide segment represented by the general formula (4).
  • An example of a method for producing a polyoxyalkylene polymer (A) containing an amide segment is to react a polyoxyalkylene having an active hydrogen-containing group at the end with a polyisocyanate compound to form a polyoxyalkylene polymer having an isocyanate group at the end.
  • a functional group that can react with the isocyanate group for example, a hydroxyl group, a carboxy group, a mercapto group, a primary amino group, or a secondary amino group
  • Examples include methods of reacting compounds.
  • Another example is a method in which a polyoxyalkylene having an active hydrogen-containing group at its terminal is reacted with a hydrolyzable silyl group-containing isocyanate compound.
  • the number (average value) of amide segments per molecule of the polyoxyalkylene polymer (A) is preferably 1 to 10, and 1.5 to 5. is more preferred, and 2 to 3 are particularly preferred. If this number is less than 1, the curability may not be sufficient, and if it is greater than 10, the polyoxyalkylene polymer (A) may have a high viscosity and become difficult to handle. There is. In order to lower the viscosity of the curable composition and improve workability, the polyoxyalkylene polymer (A) preferably does not contain an amide segment.
  • the polyoxyalkylene polymer (B) has a branched main chain structure.
  • Such a polyoxyalkylene polymer (B) is obtained by ring-opening addition polymerization of an alkylene oxide monomer to an initiator having three or more active hydrogen atoms in the presence of an alkylene oxide ring-opening polymerization catalyst. is preferred.
  • the active hydrogen in the initiator is preferably based on a hydroxyl group.
  • the initiator may be a compound having three or more active hydrogens, and preferably a compound having three or more hydroxyl groups.
  • Specific examples of compounds having three or more hydroxyl groups include glycerin, trimethylolpropane, trimethylolethane, sorbitol, and pentaerythritol. Among these, glycerin is particularly preferred.
  • an initiator may be synthesized using the compound having three or more hydroxyl groups and an alkylene oxide monomer.
  • the synthesized initiator is obtained by ring-opening addition polymerization of an alkylene oxide monomer to the compound having three hydroxyl groups, and preferably has a number average molecular weight of 100 to 10,000.
  • One type of initiator may be used alone or two or more types may be used in combination.
  • the polyoxyalkylene polymer (B) preferably has 1 to 4 branched chains from the viewpoint of availability of raw materials, and most preferably has 1 branched chain because good strength and elongation can be obtained.
  • the polyoxyalkylene polymer (B) may have hydrolyzable silyl groups in a plurality of terminal structures among the terminal structures present in one molecule. Moreover, it may have one or less hydrolyzable silyl groups on average in one terminal structure, or it may contain polyoxyalkylene having two or more hydrolyzable silyl groups in one terminal structure. It's okay if it is.
  • the terminal structure having two or more hydrolyzable silyl groups can be represented by the above general formula (3), for example.
  • the general formula (3), terminal structure, etc. are the same as those for the polyoxyalkylene polymer (A) described above.
  • polyoxyalkylene polymer (B) "number of moles of hydrolyzable silyl group/(total number of moles of hydrolyzable silyl group, terminal olefin group, and internal olefin group)" is 0.60 or more, 1. It is preferably less than 0.00, more preferably 0.70 or more and less than 1.00.
  • the explanation of the formula etc. is the same as that of the polyoxyalkylene polymer (A) mentioned above.
  • the number average molecular weight of the polyoxyalkylene polymer (B) may be 6,000 or more and 15,000 or less, but is preferably 9,000 or more and 14,000 or less in terms of polystyrene equivalent molecular weight in GPC. Within the latter range, adhesive strength develops quickly and workability when handling the curable composition can be improved.
  • the molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (B) is not particularly limited, but is preferably narrow, specifically less than 2.0, more preferably 1.6 or less, 1. It is more preferably 5 or less, even more preferably 1.4 or less, and particularly preferably 1.2 or less.
  • the molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (B) can be determined from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
  • the polyoxyalkylene polymer (B) may have a hydrolyzable silyl group in addition to the terminal structure, but having it only in the terminal structure will result in a rubber-like cured product with high elongation and low elastic modulus. This is preferred because it is easier to obtain.
  • the method for synthesizing the polyoxyalkylene polymer (B) is not particularly limited.
  • an epoxy compound is polymerized with an initiator having a hydroxyl group to obtain a hydroxyl group-terminated polymer.
  • an alkali metal salt e.g., sodium methoxide
  • a halogenated hydrocarbon compound e.g., allyl chloride
  • hydrolyzable silyl group-containing hydrosilane compound for example, dimethoxymethylsilane, trimethoxysilane
  • a hydrolyzable silyl group-containing polyoxyalkylene polymer (B) can be obtained.
  • a polyoxyalkylene polymer (B) containing a polyoxyalkylene polymer having two or more hydrolyzable silyl groups in one terminal structure which is a preferred embodiment, can be obtained as follows. be able to. After the alkali metal salt is made to act on the hydroxyl group of the hydroxyl group-terminated polymer in the same manner as above, an epoxy compound having a carbon-carbon unsaturated bond (for example, allyl glycidyl ether) is reacted, and then the carbon-carbon unsaturated bond is reacted with the epoxy compound (for example, allyl glycidyl ether).
  • an epoxy compound having a carbon-carbon unsaturated bond for example, allyl glycidyl ether
  • Two or more carbon-carbon unsaturated bonds are introduced into one terminal by reacting a halogenated hydrocarbon compound (for example, allyl chloride) having a saturated bond. Thereafter, a hydrolyzable silyl group-containing hydrosilane compound may be reacted.
  • a halogenated hydrocarbon compound for example, allyl chloride
  • hydrolysable silyl group into the polymer by using a hydrolysable silyl group-containing mercaptosilane instead of the hydrolysable silyl group-containing hydrosilane compound.
  • the main chain structure of the polyoxyalkylene polymer (B) may include an ester bond or an amide segment represented by general formula (4).
  • a cured product obtained from a curable composition containing a polyoxyalkylene polymer (B) containing an ester bond or an amide segment may have high hardness and strength due to the action of hydrogen bonds, etc.
  • the polyoxyalkylene polymer (B) containing an amide segment or the like may be cleaved by heat or the like.
  • a curable composition containing a polyoxyalkylene polymer (B) containing an amide segment or the like tends to have a high viscosity.
  • polyoxyalkylene containing amide segments etc. may be used as the polyoxyalkylene polymer (B), or polyoxyalkylene containing no amide segments etc. may be used. You may.
  • the amide segment represented by the general formula (4) includes, for example, a reaction between an isocyanate group and a hydroxyl group, a reaction between an amino group and a carbonate, a reaction between an isocyanate group and an amino group, a reaction between an isocyanate group and a mercapto group. Examples include those formed by, etc. Moreover, those formed by the reaction of the above-mentioned amide segment containing an active hydrogen atom with an isocyanate group are also included in the amide segment represented by the general formula (4).
  • An example of a method for producing a polyoxyalkylene polymer (B) containing an amide segment is to react a polyoxyalkylene having an active hydrogen-containing group at the end with a polyisocyanate compound to form a polyoxyalkylene polymer having an isocyanate group at the end.
  • a functional group that can react with the isocyanate group for example, a hydroxyl group, a carboxy group, a mercapto group, a primary amino group, or a secondary amino group
  • Examples include methods of reacting compounds.
  • Another example is a method in which a polyoxyalkylene having an active hydrogen-containing group at its terminal is reacted with a hydrolyzable silyl group-containing isocyanate compound.
  • the number (average value) of amide segments per molecule of the polyoxyalkylene polymer (B) is preferably 1 to 10, and 1.5 to 5. is more preferred, and 2 to 3 are particularly preferred. If this number is less than 1, the curability may not be sufficient, and if it is greater than 10, the polyoxyalkylene polymer (B) may have a high viscosity and become difficult to handle. There is. In order to lower the viscosity of the curable composition and improve workability, the polyoxyalkylene polymer (B) preferably does not contain an amide segment.
  • the weight ratio of the polyoxyalkylene polymer (A) and the polyoxyalkylene polymer (B) (A):(B) is preferably 5:95 to 60:40, and 10:90 to The ratio is more preferably 40:60, and even more preferably 10:90 to 25:75.
  • the mass ratio of the contents of the polyoxyalkylene polymers (A) and (B) is within the above range, the adhesive strength tends to rise quickly.
  • the viscosity at 23°C of the mixture containing the polyoxyalkylene polymers (A) and (B) is preferably 0.5 Pa ⁇ s to 5.0 Pa ⁇ s, and preferably 1.0 Pa ⁇ s to 3.5 Pa ⁇ s. - It is more preferable that it is s.
  • the viscosity of the mixture of polyoxyalkylene polymers (A) and (B) is within the above range, the adhesive strength tends to rise quickly.
  • the polyoxyalkylene polymers (A) and (B) may be polymerized by mixing their respective initiators in advance during polymerization, or may be mixed at the time of polymer synthesis, or may be polymerized using a curable composition. When manufacturing a product, it can be mixed in advance, or it can be mixed at the time of construction.
  • the present invention can provide a curable composition containing a mixture containing the polyoxyalkylene polymers (A) and (B).
  • the composition of the present invention contains additives such as a silanol condensation catalyst, a filler, an adhesion promoter, a plasticizer, a solvent, a diluent, and a sauce. Addition of inhibitors, antioxidants, light stabilizers, ultraviolet absorbers, physical property regulators, tackifying resins, compounds containing epoxy groups, photocurable substances, oxygen curing substances, epoxy resins, and other resins. It's okay. Furthermore, various additives may be added to the curable composition of the present invention as necessary for the purpose of adjusting various physical properties of the curable composition or cured product.
  • additives such as a silanol condensation catalyst, a filler, an adhesion promoter, a plasticizer, a solvent, a diluent, and a sauce. Addition of inhibitors, antioxidants, light stabilizers, ultraviolet absorbers, physical property regulators, tackifying resins, compounds containing epoxy groups, photocurable substances, oxygen curing substances, epoxy resins, and other resin
  • additives include, for example, surface improvers, blowing agents, curing modifiers, flame retardants, silicates, radical inhibitors, metal deactivators, antiozonants, phosphorous peroxides, etc.
  • examples include decomposers, lubricants, pigments, and fungicides.
  • ⁇ Silanol condensation catalyst> the reaction of hydrolyzing and condensing the hydrolysable silyl groups of polyoxyalkylene polymers (A) and (B) having hydrolysable silyl groups is promoted, that is, the curing reaction is promoted, and the polymer chain is extended.
  • a silanol condensation catalyst may be used for the purpose of crosslinking.
  • silanol condensation catalyst such as organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, alkoxy metals, and inorganic acids.
  • organotin compounds include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis(butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis(acetylacetonate), and dioctyltin bis(acetylacetonate).
  • dioctyltin dilaurate dioctyltin distearate, dioctyltin diacetate, dioctyltin oxide, reaction product of dibutyltin oxide and silicate compound, reaction product of dioctyltin oxide and silicate compound, dibutyltin oxide and phthalate ester
  • Examples include reactants of
  • carboxylic acid metal salts include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate, potassium carboxylate, calcium carboxylate, and the like.
  • carboxylic acid group the following carboxylic acids and various metals can be combined.
  • amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine; pyridine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1, Nitrogen-containing heterocyclic compounds such as 5-diazabicyclo[4,3,0]nonene-5 (DBN); guanidines such as guanidine, phenylguanidine, and diphenylguanidine; butyl biguanide, 1-o-tolyl biguanide, and 1- Examples include biguanides such as phenylbiguanide; amino group-containing silane coupling agents; ketimine compounds.
  • amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine
  • pyridine 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1, Nitrogen-containing
  • carboxylic acids include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
  • alkoxy metals include titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), diisopropoxy titanium bis (ethylacetocetate), aluminum tris (acetylacetonate), diisopropoxyaluminum ethylacetonate, etc.
  • titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), diisopropoxy titanium bis (ethylacetocetate), aluminum tris (acetylacetonate), diisopropoxyaluminum ethylacetonate, etc.
  • aluminum compounds such as acetate
  • zirconium compounds such as zirconium tetrakis (acetylacetonate).
  • fluorine anion-containing compounds As other silanol condensation catalysts, fluorine anion-containing compounds, photoacid generators, and photobase generators can also be used.
  • silanol condensation catalyst Only one type of silanol condensation catalyst may be used, or two or more types may be used in combination.
  • the above-mentioned amine compound and carboxylic acid, or the combination of the amine compound, carboxylic acid, and alkoxy metal Therefore, the effect of improving reactivity may be obtained.
  • the amount of the silanol condensation catalyst used is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, based on 100 parts by weight of the mixture of polyoxyalkylene polymers (A) and (B). is more preferable, and 0.01 to 10 parts by weight is particularly preferable.
  • Fillers include heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, calcined clay, talc, titanium oxide, fumed silica, precipitated silica, crystalline silica, fused silica, anhydrous silicic acid, and hydrated silica.
  • Examples include silicic acid, carbon black, ferric oxide, fine aluminum powder, zinc oxide, activated zinc white, PVC powder, PMMA powder, glass fiber, and filament.
  • the above-mentioned fillers may be used alone or in a mixture of two or more.
  • the amount of filler used is preferably 1 to 300 parts by weight, more preferably 10 to 250 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B).
  • An organic balloon or an inorganic balloon may be added for the purpose of making the composition lighter (lower specific gravity).
  • the balloon is made of a spherical filler and is hollow inside, and examples of the material for the balloon include inorganic materials such as glass and shirasu, and organic materials such as phenol resin, urea resin, polystyrene, and saran.
  • the amount of the balloon used is preferably 0.1 to 100 parts by weight, more preferably 1 to 20 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). .
  • An adhesion imparting agent can be added to the curable composition according to this embodiment.
  • the adhesion imparting agent include an amino group-containing silane coupling agent, an isocyanate group-containing silane coupling agent, a mercapto group-containing silane coupling agent, and an epoxy group-containing silane coupling agent.
  • the amino group-containing silane coupling agent is a compound that has both an amino group and a hydrolyzable silyl group. Specific examples include, but are not limited to, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltriisopropoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane.
  • ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2-aminoethyl)aminopropyltriethoxysilane, ⁇ -(2-aminoethyl) ) Aminopropylmethyldiethoxysilane, ⁇ -(2-aminoethyl)aminopropyltriisopropoxysilane, ⁇ -(6-aminohexyl)aminopropyltrimethoxysilane, 3-(N-ethylamino)-2-methylpropyl Trimethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, ⁇ -ure
  • adhesive properties include ⁇ -isocyanatepropyltrimethoxysilane, ⁇ -isocyanatepropyltriethoxysilane, ⁇ -isocyanatepropylmethyldimethoxysilane, ⁇ -isocyanatemethyltrimethoxysilane, ⁇ -isocyanatemethyldimethoxymethyl Isocyanate group-containing silanes such as silane; mercapto group-containing silanes such as ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane; ⁇ -glycidoxypropyltrimethoxysilane, Examples include epoxy group-containing silanes such as ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane.
  • reactants of various silane coupling agents can also be used. Only one type of adhesion imparting agent may be used, or two or more types may be used in combination.
  • the amount of adhesion imparting agent used is preferably 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). Parts by weight are more preferred.
  • the adhesion imparting agent is preferably an amino group-containing silane coupling agent, and the amount used is preferably 0.5 to 10 parts by weight.
  • plasticizer can be added to the curable composition according to this embodiment.
  • plasticizers include phthalate ester compounds such as dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), butylbenzyl phthalate; bis(2-ethylhexyl); )-Terephthalate ester compounds such as 1,4-benzenedicarboxylate; non-phthalate ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate, Aliphatic polyhydric carboxylic acid ester compounds such as acetyl tributyl citrate; unsaturated fatty acid ester compounds such
  • polymer plasticizers can be used.
  • polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol with a number average molecular weight of 500 or more; Examples include polyethers such as derivatives converted into polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene, and the like.
  • the amount of plasticizer used is preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). Particularly preferred is 20 to 100 parts by weight. If it is less than 5 parts by weight, it will not be effective as a plasticizer, and if it exceeds 150 parts by weight, the mechanical strength of the cured product will be insufficient. Plasticizers may be used alone or in combination of two or more.
  • Solvents or diluents can be added to the compositions of the invention.
  • the solvent and diluent are not particularly limited, but aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, ethers, and the like can be used.
  • the boiling point of the solvent is preferably 150°C or higher, more preferably 200°C or higher, particularly preferably 250°C or higher, in view of the problem of air pollution when the composition is used indoors.
  • the above solvents or diluents may be used alone or in combination of two or more.
  • Anti-sagging agent may be added to the curable composition according to this embodiment in order to prevent sagging and improve workability.
  • Anti-sagging agents include, but are not particularly limited to, polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
  • the amount of anti-sagging agent used is preferably 0.1 to 20 parts by weight based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B).
  • antioxidant antioxidant agent
  • Use of an antioxidant can improve the heat resistance and weather resistance of the cured product.
  • antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
  • the antioxidant in the mixture and curable composition according to the present embodiment is preferably a hindered phenol type antioxidant, and the amount used is 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B).
  • the amount is preferably 0.05 to 10.00 parts by weight, more preferably 0.1 to 5.0 parts by weight, and particularly preferably 0.2 to 2.5 parts by weight.
  • a light stabilizer may be added to the curable composition according to this embodiment.
  • Use of a light stabilizer can prevent photooxidative deterioration of the cured product.
  • Examples of light stabilizers include benzotriazole compounds, hindered amine compounds, and benzoate compounds, and hindered amine compounds are particularly preferred.
  • the amount of light stabilizer used is preferably 0.1 to 10 parts by weight, and preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). part is more preferable.
  • a UV absorber may be added to the curable composition according to this embodiment.
  • Use of an ultraviolet absorber can improve the surface weather resistance of the cured product.
  • the ultraviolet absorber include benzophenone, benzotriazole, salicylate, substituted acrylonitrile, and metal chelate compounds. Particularly preferred are benzotriazoles, and commercially available names include Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, and Tinuvin 571 (manufactured by BASF).
  • the amount of ultraviolet absorber used is preferably 0.1 to 10 parts by weight, and preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). part is more preferable.
  • the curable composition of the present invention may optionally contain a physical property modifier for adjusting the tensile properties of the resulting cured product.
  • Physical property modifiers are not particularly limited, but include, for example, alkyl alkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; diphenyldimethoxysilane, phenyltrimethoxysilane Aryl alkoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, ⁇ -glycidoxypropylmethyldiisopropenoxysilane; tris(trimethylsilyl)borate, tris(triethyl Trialkylsilyl borates such as silyl) borates; silicone varnishes; polysiloxanes, and
  • the physical property modifier By using the physical property modifier, it is possible to increase the hardness of the composition of the present invention when it is cured, or conversely to decrease the hardness and increase the elongation at break.
  • the above physical property modifiers may be used alone or in combination of two or more.
  • a compound that produces a compound having a monovalent silanol group in its molecule upon hydrolysis has the effect of lowering the modulus of the cured product without worsening the stickiness of the surface of the cured product.
  • Particularly preferred are compounds that produce trimethylsilanol.
  • Examples of compounds that produce compounds having a monovalent silanol group in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which produce silane monomers by hydrolysis. Mention may be made of silicon compounds that produce ol. Specific examples include phenoxytrimethylsilane and tris((trimethylsiloxy)methyl)propane.
  • the amount of the physical property modifier used is preferably 0.1 to 10 parts by weight, and preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). part is more preferable.
  • a tackifying resin can be added for the purpose of improving adhesion or adhesion to a base material, or for other purposes as necessary.
  • tackifying resin There are no particular restrictions on the tackifying resin, and commonly used tackifying resins can be used.
  • terpene resins aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenolic resins, phenolic resins, modified phenolic resins, xylene-phenolic resins, cyclopentadiene-phenolic resins, coumaron-indene resins, and rosin-based resins.
  • the amount of the tackifying resin used is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). More preferably, the amount is between 30 parts and 30 parts. If it is less than 2 parts by weight, it is difficult to obtain adhesion and adhesion effects to the substrate, and if it exceeds 100 parts by weight, the viscosity of the composition may become too high, making it difficult to handle.
  • Compounds containing epoxy groups can be used in the compositions of the invention. When a compound having an epoxy group is used, the restorability of the cured product can be improved.
  • compounds having an epoxy group include epoxidized unsaturated oils and fats, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives, and mixtures thereof. Specifically, epoxidized soybean oil, epoxidized linseed oil, bis(2-ethylhexyl)-4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxyoctyl stearate , epoxybutyl stearate, etc.
  • the epoxy compound is preferably used in an amount of 0.5 to 50 parts by weight based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B).
  • Photocurable materials can be used in the compositions of the present invention.
  • a photocurable material When a photocurable material is used, a film of the photocurable material is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved.
  • Many compounds of this type are known, including organic monomers, oligomers, resins, and compositions containing them.A typical example is one containing one or several acrylic or methacrylic unsaturated groups. Unsaturated acrylic compounds, polyvinyl cinnamates, azidated resins, etc., which are monomers, oligomers, or mixtures thereof, can be used.
  • the amount of photocurable substance used is in the range of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). If it is less than 0.1 part by weight, there is no effect of improving weather resistance, and if it is more than 20 parts by weight, the cured product becomes too hard and tends to crack.
  • Oxygen curable materials can be used in the compositions of the present invention.
  • oxygen-curable substances include unsaturated compounds that can react with oxygen in the air, which reacts with oxygen in the air to form a cured film near the surface of the cured product, causing stickiness on the surface and dust on the surface of the cured product. It acts by preventing the adhesion of dirt and dust.
  • Specific examples of oxygen-curable substances include drying oils such as tung oil and linseed oil; various alkyd resins obtained by modifying these compounds; acrylic polymers and epoxy resins modified with drying oils.
  • silicone resin 1,2-polybutadiene, 1,4-polybutadiene, C5 to C8 diene polymers obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • liquid polymers These may be used alone or in combination of two or more.
  • the amount of the oxygen-curable substance used is preferably in the range of 0.1 to 20 parts by weight, and more preferably, based on 100 parts by weight of the total amount of the polyoxyalkylene polymers (A) and (B).
  • the amount is 0.5 to 10 parts by weight. If the amount used is less than 0.1 part by weight, the improvement in staining properties will not be sufficient, and if it exceeds 20 parts by weight, the tensile properties of the cured product will tend to be impaired.
  • oxygen-curable substances are preferably used in combination with photo-curable substances.
  • Epoxy resin may be added to the curable composition according to this embodiment.
  • Compositions containing epoxy resins are particularly preferred as adhesives for exterior wall tiles.
  • the epoxy resin include bisphenol A type epoxy resins and novolac type epoxy resins.
  • a curing agent for curing the epoxy resin can be used in combination with the adhesive composition according to the present embodiment.
  • the epoxy resin curing agent that can be used, and commonly used epoxy resin curing agents can be used.
  • the amount used is preferably in the range of 0.1 to 300 parts by weight per 100 parts by weight of the epoxy resin.
  • curable compositions have been known that are a blend of polyoxyalkylene polymers (A) and (B) having hydrolyzable silyl groups and (meth)acrylic polymers having hydrolyzable silyl groups. .
  • the curable composition according to the present embodiment may contain a (meth)acrylic polymer having a hydrolyzable silyl group, but it may not substantially contain the (meth)acrylic polymer. It's okay. Even when the (meth)acrylic polymer is not substantially contained, the adhesion to the polyester base material can be improved. In addition, when the (meth)acrylic polymer is not substantially contained, the curable composition can have a low viscosity, which provides the advantage of good workability.
  • the content of the (meth)acrylic polymer having a hydrolyzable silyl group may be 0 to 10 parts by weight based on 100 parts by weight of the total amount of the polyoxyalkylene polymers (A) and (B). , 0 to 5 parts by weight, or 0 to 1 part by weight. Further, the amount may be less than 1 part by weight, or less than 0.1 part by weight.
  • ⁇ Weight ratio of polyoxyalkylene polymers (A) and (B) in curable composition >>
  • the weight ratio of the total content of the polyoxyalkylene polymer (A) and the polyoxyalkylene polymer (B) in the curable composition is 15% when the total weight of the curable composition is 100%. It is preferably 50%, more preferably 20% to 35%. When the weight ratio of the total content of (A) and (B) is within the above range, curability is good and the rate of development of adhesive strength is likely to be excellent.
  • the viscosity of the curable composition containing the polyoxyalkylene polymers (A) and (B) at 23° C. is preferably 30 Pa ⁇ s to 400 Pa ⁇ s at a rotation speed of 10 rpm using a B-type viscometer.
  • the viscosity of the curable composition containing the polyoxyalkylene polymers (A) and (B) is within the above range, it will have good workability, excellent mechanical properties, and an excellent rate of development of adhesive strength. Cheap.
  • the curable composition of the present invention can also be prepared as a one-component type in which all the ingredients are mixed in advance and stored in a sealed container, and the composition is cured by moisture in the air after application. It is also possible to prepare a two-component product in which components such as a filler, a plasticizer, and water are mixed in advance and the blended materials and the organic polymer composition are mixed before use. From the viewpoint of workability, a one-component type is preferable.
  • the curable composition is a one-component type
  • all components are blended in advance, so components containing water are either dehydrated and dried before use, or dehydrated during compounding and kneading by reducing pressure, etc. is preferable.
  • Storage stability is further improved by adding an alkoxysilane compound such as silane or ⁇ -glycidoxypropyltrimethoxysilane.
  • the dehydrating agent partially condensed silane compounds such as Dynasylan 6490 manufactured by Evonik can also be suitably used from the viewpoint of safety and stability.
  • the amount of a dehydrating agent, particularly a silicon compound capable of reacting with water such as vinyltrimethoxysilane, to be used is 0.00 parts by weight based on 100 parts by weight of the total amount of the polyoxyalkylene polymers (A) and (B) of the present invention. It is preferably used in a range of 1 to 20 parts by weight, more preferably in a range of 0.5 to 10 parts by weight.
  • the polyoxyalkylene polymers (A) and (B) may be mixed in advance, or may be added and mixed when producing the curable composition, or may be added and mixed at the time of construction. You can also do that.
  • the method of pre-mixing the polyoxyalkylene polymers (A) and (B) is not particularly specified, but for example, the polyoxyalkylene polymers (A) and (B) are placed in a container equipped with a hook or stirring blade, and the A method of mixing with a stirrer or a stirring blade, or a method of mixing polyoxyalkylene polymers (A) and (B) in a container and mixing with a drill mixer or a stirrer, or a method of mixing polyoxyalkylene polymers (A) and (B) in a container. by mechanical mixing using a rotation-revolution mixer, or by convection by vigorously adding the other polyoxyalkylene polymer to the container containing polyoxyalkylene polymer (A) or (B). There are methods of mixing. If the amount is small, it can also be mixed by hand with a spatula or spatula. In any method, the mixing is preferably carried out under heating, at room temperature, or under cooling.
  • the curable composition of the present invention is suitable for adhesives, sealing materials for buildings, ships, automobiles, roads, etc., adhesives, waterproofing materials, coating film waterproofing materials, molding agents, vibration-proofing materials, damping materials, and soundproofing materials. , can be used as foam material, paint, spray material. Since the cured product obtained by curing the curable composition of the present invention has excellent flexibility and adhesive properties, it can be suitably used as a sealant or adhesive.
  • the curable composition of the present invention can be used for electrical/electronic component materials such as solar cell back sealing materials, electrical/electronic components such as insulating coating materials for electric wires and cables, electrical insulating materials for devices, acoustic insulating materials, Elastic adhesives, binders, contact adhesives, spray sealants, crack repair materials, tiling adhesives, asphalt waterproofing adhesives, powder coatings, casting materials, medical rubber materials, medical adhesives , medical adhesive sheets, medical device sealants, dental impression materials, food packaging materials, joint sealants for exterior materials such as sizing boards, coating materials, anti-slip covering materials, cushioning materials, primers, conductive materials for shielding electromagnetic waves, Thermal conductive materials, hot melt materials, electrical and electronic potting agents, films, gaskets, concrete reinforcing materials, temporary fixing adhesives, various molding materials, and rust prevention and cutting of wired glass and laminated glass edges (cut parts).
  • electrical/electronic component materials such as solar cell back sealing materials, electrical/electronic
  • waterproof sealants Used for various purposes such as waterproof sealants, liquid sealants used in automobile parts, large vehicle parts such as trucks and buses, train car parts, aircraft parts, marine parts, electrical parts, various mechanical parts, etc. It is possible. Taking automobiles as an example, it can be used in a wide variety of applications, such as attaching plastic covers, trims, flanges, bumpers, windows, and adhesively attaching interior and exterior parts. Furthermore, it can be used alone or with the aid of a primer to adhere to a wide range of substrates such as glass, porcelain, wood, metal, resin moldings, etc., and thus can be used in various types of sealing and adhesive compositions. .
  • the curable composition of the present invention can be used for interior panel adhesives, exterior panel adhesives, tiling adhesives, masonry adhesives, ceiling finishing adhesives, floor finishing adhesives, and wall finishing adhesives.
  • Adhesives adhesives for vehicle panels, adhesives for electrical, electronic and precision equipment assembly, adhesives for bonding leather, textiles, fabrics, paper, boards and rubber, reactive post-crosslinking pressure-sensitive adhesives, direct It can also be used as a sealant for glazing, a sealant for double-glazed glass, a sealant for SSG construction, a sealant for working joints in buildings, and a material for civil engineering and bridges.
  • it can be used as an adhesive material such as adhesive tape or adhesive sheet.
  • [Item 2] The mixture according to item 1, wherein the main chain structure of the polyoxyalkylene polymer (A) and the polyoxyalkylene polymer (B) is polyoxypropylene.
  • [Item 3] The mixture according to item 1 or 2, wherein the polyoxyalkylene polymer (B) has a number average molecular weight of 9,000 or more and 14,000 or less.
  • [Item 4] The mixture according to any one of items 1 to 3, wherein the viscosity of the mixture is 1.0 Pa ⁇ s or more and 3.5 Pa ⁇ s or less.
  • [Item 5] The mixture according to any one of items 1 to 4, wherein the polyoxyalkylene polymer (A) has a number average molecular weight of 2,000 or more and 5,000 or less.
  • the hydrolyzable silyl group has the general formula (1): -R 1 -CH 2 -CH 2 -Si(R 2 3-a )X a (1) (In the formula, R 1 represents a divalent organic group having 1 to 20 carbon atoms and containing one or more constituent atoms selected from the group consisting of hydrogen, carbon, and nitrogen, and R 2 represents a divalent organic group having 1 to 20 carbon atoms.
  • the number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
  • Liquid feeding system Tosoh HLC-8420GPC
  • Column Tosoh TSK-GEL H type
  • Solvent THF
  • the hydrolyzable silyl group introduction rate in the examples was calculated using the results of 1 H-NMR measurement (measured in CDCl 3 solvent) using the following nuclear magnetic resonance apparatus (NMR). . In this calculation, the calculation method described above was used.
  • allyl glycidyl ether was added to the hydroxyl groups of the polymer (P-1), and a reaction was carried out at 130° C. for 2 hours. Thereafter, 0.28 molar equivalent of a methanol solution of sodium methoxide was added to remove methanol, and 1.79 molar equivalent of allyl chloride was further added to convert the hydroxyl group to an allyl group.
  • polyoxypropylene (Q-1) having an allyl group in only one terminal structure was obtained.
  • 50 ⁇ l of platinum divinyldisiloxane complex (3% by weight 2-propanol solution in terms of platinum) was added, and while stirring, 23.5 g of dimethoxymethylsilane was slowly added dropwise. After reacting the mixed solution at 100°C for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain 1.
  • Polyoxypropylene (polymer A-1) having only one terminal structure in the molecule was obtained.
  • Synthesis example 7 Polyoxypropylene triol with a number average molecular weight of about 4,500 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to produce a polymer with a branched main chain structure and a hydroxyl group, a number average molecular weight of 11,000, and a molecular weight distribution Mw.
  • allyl glycidyl ether was added to the hydroxyl groups of the polymer (P-7), and a reaction was carried out at 130° C. for 2 hours. Thereafter, 0.28 molar equivalent of a methanol solution of sodium methoxide was added to remove methanol, and 1.79 molar equivalent of allyl chloride was further added to convert the terminal hydroxyl group to an allyl group.
  • polyoxypropylene (Q-7) having an allyl group at the terminal structure was obtained.
  • a platinum divinyldisiloxane complex solution (a 3% by weight isopropanol solution in terms of platinum) was added, and while stirring, 18.3 g of dimethoxymethylsilane was slowly added dropwise.
  • ⁇ Viscosity measurement method of mixture of polyoxyalkylene polymers (A) and (B)> Weigh out a total of 15 g of polyoxyalkylene polymers (A) and (B) into a 100 mL cup so that they have a predetermined weight ratio, and use a spatula to add 2. The mixture was thoroughly mixed by hand at room temperature for a minute. Thereafter, the mixture was transferred to a 20 mL screw bottle and left to stand at room temperature for 20 hours to remove bubbles.
  • each curable composition was filled into a moisture-proof cartridge-type container to produce each curable composition.
  • various test specimens were prepared and evaluated in a constant temperature and humidity atmosphere of 23° C. and 50% relative humidity.
  • Al A1050P board (manufactured by Nihon Takuto Co., Ltd.)

Abstract

Provided is a mixture of polyoxyalkylene-based polymers which contain hydrolyzable silyl groups and with which a buildup in adhesion strength is improved. Specifically provided is a mixture of polyoxyalkylene-based polymers (A) and (B), wherein the terminal structures of both have a hydrolyzable silyl group as well as a terminal olefin group and/or an internal olefin group. Polymer (A) has a linear main chain structure, has only one terminal structure in each molecule, and has a number average molecular weight of 1,000-8,000. Polymer (B) has a branched main chain structure and has a number average molecular weight of 6,000-15,000. The mole number of the hydrolyzable silyl group divided by the total mole number of the hydrolyzable silyl group, the terminal olefin group, and the internal olefin group is at least 0.50 and less than 1.00 for polymer (A) and is at least 0.60 and less than 1.00 for polymer (B). In the mixture, the weight ratio of polymer (A) to polymer (B) is 5:95 to 60:40.

Description

ポリオキシアルキレン系重合体の混合物および硬化性組成物Polyoxyalkylene polymer mixture and curable composition
 本発明は、加水分解性シリル基を有するポリオキシアルキレン系重合体の混合物、および、該混合物を含む硬化性組成物に関する。 The present invention relates to a mixture of polyoxyalkylene polymers having a hydrolyzable silyl group, and a curable composition containing the mixture.
 加水分解性シリル基を有する重合体は、湿分反応性ポリマーとして知られており、その硬化性組成物は、接着剤、シーリング材、コーティング材、塗料、粘着剤等の多くの工業製品として、幅広い分野で利用されている。 Polymers with hydrolyzable silyl groups are known as moisture-reactive polymers, and their curable compositions are used in many industrial products such as adhesives, sealants, coatings, paints, and adhesives. It is used in a wide range of fields.
 こうした硬化性組成物は作業性の観点から接着性や硬度を短時間で発現する、立ち上がりに優れるものが好ましい。具体的には、施工1日後に最終強度に匹敵する接着強度を示すことが望ましい。加水分解性シリル基を有するポリオキシアルキレン系重合体の硬化性を改善することを目的に、トリアルコキシシリル基を有する重合体を使用する手法などが知られている(例えば、特許文献1を参照)。 From the viewpoint of workability, such a curable composition is preferably one that develops adhesiveness and hardness in a short time and has excellent rising properties. Specifically, it is desirable to exhibit adhesive strength comparable to the final strength one day after construction. For the purpose of improving the curability of polyoxyalkylene polymers having hydrolyzable silyl groups, methods are known that use polymers having trialkoxysilyl groups (see, for example, Patent Document 1). ).
 加水分解性シリル基を有する重合体は、加水分解性ケイ素基の種類や量によって硬化物の物性も調整することが可能であることが知られている。例えば、ジアルコキシシリル基を有する重合体は、柔軟で強靭な硬化物を与えることができ、トリアルコキシシリル基を有する重合体は高い硬化性を有し、高硬度の硬化物を与える傾向がある。従って、トリアルコキシシリル基を有する重合体は硬化性に優れるが、伸びや柔軟性が低下してしまうという課題があった。そこで、特許文献2ではジアルコキシリル基を有する重合体と、トリアルコキシシリル基を有する重合体を併用する方法を提供している。 It is known that the physical properties of a cured product of a polymer having a hydrolyzable silyl group can be adjusted by adjusting the type and amount of the hydrolyzable silicon group. For example, a polymer having a dialkoxysilyl group can give a cured product that is flexible and tough, and a polymer having a trialkoxysilyl group has high curability and tends to give a cured product with high hardness. . Therefore, although polymers having trialkoxysilyl groups have excellent curability, they have the problem of reduced elongation and flexibility. Therefore, Patent Document 2 provides a method of using a polymer having a dialkoxylyl group and a polymer having a trialkoxysilyl group in combination.
特開2003-147192号公報Japanese Patent Application Publication No. 2003-147192 特開2014-198791号公報Japanese Patent Application Publication No. 2014-198791
 しかしながら、上述した方法はトリアルコキシシリル基を有する重合体の使用を必須としており、ジメトキシシリル基を有する重合体のみでは接着強度の立ち上がりが不十分であった。また、トリアルコキシシリル基と併用した場合であっても、接着強度の立ち上がりには改善の余地があった。 However, the above-mentioned method requires the use of a polymer having a trialkoxysilyl group, and the use of only a polymer having a dimethoxysilyl group was insufficient to increase adhesive strength. Further, even when used in combination with a trialkoxysilyl group, there is still room for improvement in the rise of adhesive strength.
 本発明は、上記現状に鑑み、接着強度の立ち上がりが改善された加水分解性シリル基含有ポリオキシアルキレン系重合体の混合物、それを含有する硬化性組成物、およびその硬化性組成物を硬化させた硬化物を提供することを目的とする。 In view of the above-mentioned current situation, the present invention provides a mixture of a hydrolyzable silyl group-containing polyoxyalkylene polymer with improved adhesive strength rise, a curable composition containing the same, and a method for curing the curable composition. The purpose is to provide a cured product.
 本発明者らは、鋭意検討した結果、特定の分子量、特定の主鎖構造および特定の加水分解性シリル基導入率を有する加水分解性シリル基含有ポリオキシアルキレン系重合体を組み合わせた混合物とすることにより、それらの重合体を単独使用する場合よりも接着強度の立ち上がりが早く、良好な硬化性を示すことを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have created a mixture of hydrolyzable silyl group-containing polyoxyalkylene polymers having a specific molecular weight, a specific main chain structure, and a specific hydrolyzable silyl group introduction rate. As a result, the inventors have found that the adhesive strength increases faster and exhibits better curability than when these polymers are used alone, leading to the completion of the present invention.
 すなわち本発明は、いずれもポリオキシアルキレンの主鎖構造と、前記主鎖構造の末端に結合した末端構造を有し、前記末端構造が、加水分解性シリル基並びに、末端オレフィン基及び/又は内部オレフィン基とを有する、ポリオキシアルキレン系重合体(A)およびポリオキシアルキレン系重合体(B)の混合物であって、
 前記ポリオキシアルキレン系重合体(A)は、直鎖主鎖構造を有し、1分子中に1つの前記末端構造を有し、
 加水分解性シリル基のモル数/(加水分解性シリル基、末端オレフィン基および内部オレフィン基の合計モル数)が0.50以上、1.00未満であり、
 数平均分子量が1,000以上8,000以下であり、
 前記ポリオキシアルキレン系重合体(B)は、分岐主鎖構造を有し、
 加水分解性シリル基のモル数/(加水分解性シリル基、末端オレフィン基および内部オレフィン基の合計モル数)が0.60以上、1.00未満であり、
 数平均分子量が6,000以上15,000以下であり、
 前記混合物において、前記ポリオキシアルキレン系重合体(A):前記ポリオキシアルキレン系重合体(B)の重量比が5:95~60:40である混合物に関する。
 また本発明は、前記混合物を含む硬化性組成物にも関する。
 さらにまた、本発明は、前記硬化性組成物を硬化することで得られる硬化物にも関する。
That is, the present invention has a main chain structure of polyoxyalkylene and a terminal structure bonded to the terminal of the main chain structure, and the terminal structure has a hydrolyzable silyl group, a terminal olefin group, and/or an internal A mixture of a polyoxyalkylene polymer (A) and a polyoxyalkylene polymer (B) having an olefin group,
The polyoxyalkylene polymer (A) has a linear main chain structure and has one terminal structure in one molecule,
The number of moles of hydrolyzable silyl group/(total number of moles of hydrolyzable silyl group, terminal olefin group, and internal olefin group) is 0.50 or more and less than 1.00,
The number average molecular weight is 1,000 or more and 8,000 or less,
The polyoxyalkylene polymer (B) has a branched main chain structure,
The number of moles of the hydrolyzable silyl group/(the total number of moles of the hydrolyzable silyl group, terminal olefin group, and internal olefin group) is 0.60 or more and less than 1.00,
The number average molecular weight is 6,000 or more and 15,000 or less,
The present invention relates to a mixture in which the weight ratio of the polyoxyalkylene polymer (A) to the polyoxyalkylene polymer (B) is 5:95 to 60:40.
The invention also relates to a curable composition containing the mixture.
Furthermore, the present invention also relates to a cured product obtained by curing the curable composition.
 本発明によれば、接着強度の立ち上がりが改善された加水分解性シリル基含有ポリオキシアルキレン系重合体の混合物、それを含有する硬化性組成物、およびその硬化性組成物を硬化させた硬化物を提供することができる。 According to the present invention, a mixture of a hydrolyzable silyl group-containing polyoxyalkylene polymer with improved rise in adhesive strength, a curable composition containing the same, and a cured product obtained by curing the curable composition can be provided.
 以下に本発明の実施形態を具体的に説明するが、本発明はこれら実施形態に限定されるものではない。 Embodiments of the present invention will be specifically described below, but the present invention is not limited to these embodiments.
 (ポリオキシアルキレン系重合体(A)及び(B)の混合物)
 本実施形態に係る加水分解性シリル基含有ポリオキシアルキレン系重合体の混合物は、ポリオキシアルキレン系重合体(A)およびポリオキシアルキレン系重合体(B)を含む。本実施形態に係る混合物とは、実質的に、ポリオキシアルキレン系重合体(A)と(B)のみを含むものを指す。前記混合物は、ポリオキシアルキレン系重合体(A)および(B)がそれぞれ加水分解性シリル基を有することによって、加水分解性シリル基の加水分解および脱水縮合反応に基づく硬化性を示す。
(Mixture of polyoxyalkylene polymers (A) and (B))
The mixture of hydrolyzable silyl group-containing polyoxyalkylene polymers according to the present embodiment includes a polyoxyalkylene polymer (A) and a polyoxyalkylene polymer (B). The mixture according to this embodiment refers to one that substantially contains only the polyoxyalkylene polymers (A) and (B). Since the polyoxyalkylene polymers (A) and (B) each have a hydrolyzable silyl group, the mixture exhibits curability based on hydrolysis and dehydration condensation reactions of the hydrolyzable silyl group.
 ポリオキシアルキレン系重合体(A)および(B)は、いずれもポリオキシアルキレンの主鎖構造と、前記主鎖構造の末端に結合した末端構造を有し、前記末端構造が、加水分解性シリル基並びに、末端オレフィン基および/又は内部オレフィン基とを有する。 Both polyoxyalkylene polymers (A) and (B) have a main chain structure of polyoxyalkylene and a terminal structure bonded to the end of the main chain structure, and the terminal structure is a hydrolyzable silyl. group and a terminal olefinic group and/or an internal olefinic group.
 <<主鎖構造>>
 前記主鎖構造とは、オキシアルキレン繰り返し単位から構成される重合体主鎖(重合体骨格ともいう)のことをいう。互いに連結した複数のオキシアルキレン繰り返し単位のみから構成される重合体骨格であるか、または、当該複数のオキシアルキレン繰り返し単位に加えて、重合時に使用される開始剤に由来する構造を含み、これらのみから構成される重合体骨格であることが好ましい。ここで、オキシアルキレン繰り返し単位とは、ポリエーテルを構成する繰り返し単位を指し、例えば、炭素数2~6、好ましくは炭素数2~4のオキシアルキレン単位のことをいう。
 前記主鎖構造には特に制限はなく、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体などが挙げられる。その中でも、ポリオキシプロピレンが好ましい。
 なお、後述する「直鎖主鎖構造」とは、直鎖状となっている主鎖構造のことをいう。また、後述する「分岐主鎖構造」とは、分岐状となっている主鎖構造のことをいう。
<<Main chain structure>>
The main chain structure refers to a polymer main chain (also referred to as a polymer skeleton) composed of oxyalkylene repeating units. A polymer skeleton consisting only of multiple oxyalkylene repeating units connected to each other, or containing a structure derived from the initiator used during polymerization in addition to the multiple oxyalkylene repeating units, and only these It is preferable that the polymer skeleton is composed of. Here, the oxyalkylene repeating unit refers to a repeating unit constituting a polyether, and refers to, for example, an oxyalkylene unit having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms.
The main chain structure is not particularly limited and includes, for example, polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer. Examples include merging. Among them, polyoxypropylene is preferred.
Note that the "linear main chain structure" described below refers to a main chain structure that is linear. Further, the "branched main chain structure" described below refers to a main chain structure that is branched.
 本明細書における数平均分子量及び重量平均分子量は、展開溶媒がテトラヒドロフラン(THF)である、ゲル浸透クロマトグラフィー(GPC)測定によって得られるポリスチレン換算分子量である。分子量分布は、数平均分子量と重量平均分子量より算出した値であり、重量平均分子量を数平均分子量で割った値である。 The number average molecular weight and weight average molecular weight in this specification are polystyrene equivalent molecular weights obtained by gel permeation chromatography (GPC) measurement using tetrahydrofuran (THF) as a developing solvent. The molecular weight distribution is a value calculated from the number average molecular weight and the weight average molecular weight, and is the value obtained by dividing the weight average molecular weight by the number average molecular weight.
 <<末端構造>>
 前記末端構造とは、ポリオキシアルキレン系重合体の末端に位置する部位を指す。また、前記末端構造は、加水分解性シリル基並びに、末端オレフィン基および/または内部オレフィン基とを有する。末端オレフィン基としては、例えば、活性水素基含有基、不飽和基などが挙げられる。活性水素含有基としては、水酸基が好ましい。不飽和基としては、アリル基あるいはメタリル基が好ましく、アリル基がより好ましい。
<<Terminal structure>>
The terminal structure refers to a site located at the end of the polyoxyalkylene polymer. Further, the terminal structure has a hydrolyzable silyl group, a terminal olefin group, and/or an internal olefin group. Examples of the terminal olefin group include an active hydrogen group-containing group and an unsaturated group. As the active hydrogen-containing group, a hydroxyl group is preferred. The unsaturated group is preferably an allyl group or a methallyl group, and more preferably an allyl group.
 ポリオキシアルキレン系重合体(A)および(B)の末端構造の詳細については各々後述する。 Details of the terminal structures of the polyoxyalkylene polymers (A) and (B) will be described later.
 <加水分解性シリル基>
 ポリオキシアルキレン系重合体(A)および(B)は、加水分解性シリル基を有する。
該加水分解性シリル基とは、ケイ素原子上に水酸基または加水分解性基を有し、加水分解・縮合反応によってシロキサン結合を形成し得るケイ素基のことをいう。具体的には、下記一般式(2)で表される。
-SiR 3-a  (2)
(式中、Rは炭素数1から20のアルキル基、炭素数6から20のアリール基、炭素数7から20のアラルキル基または-OSi(R’)で示されるトリオルガノシロキシ基を示す。ここでR’は炭素数1から20の一価の炭化水素基であり3個のR’は同一であってもよく、異なっていてもよい。Xは水酸基または加水分解性基を示し、Xが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは1、2または3である。)。
<Hydrolyzable silyl group>
The polyoxyalkylene polymers (A) and (B) have a hydrolyzable silyl group.
The hydrolyzable silyl group refers to a silicon group that has a hydroxyl group or a hydrolyzable group on a silicon atom and can form a siloxane bond through a hydrolysis/condensation reaction. Specifically, it is represented by the following general formula (2).
-SiR 2 3-a X a (2)
(In the formula, R 2 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a triorganosiloxy group represented by -OSi(R') 3 .Here, R' is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R's may be the same or different.X represents a hydroxyl group or a hydrolyzable group, When two or more Xs exist, they may be the same or different. a is 1, 2 or 3).
 Rの炭化水素基の炭素数は1~10が好ましく、1~5がより好ましく、1~3がさらに好ましい。Rの具体例としては、例えば、メチル基、エチル基、クロロメチル基、メトキシメチル基、N,N-ジエチルアミノメチル基を挙げることができる。好ましくは、メチル基、エチル基、クロロメチル基、メトキシメチル基であり、より好ましくは、メチル基、メトキシメチル基である。 The hydrocarbon group of R 2 preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and even more preferably 1 to 3 carbon atoms. Specific examples of R 3 include, for example, a methyl group, an ethyl group, a chloromethyl group, a methoxymethyl group, and an N,N-diethylaminomethyl group. Preferred are methyl group, ethyl group, chloromethyl group, and methoxymethyl group, more preferred are methyl group and methoxymethyl group.
 ポリオキシアルキレン系重合体(A)およびポリオキシアルキレン系重合体(B)が有する加水分解性シリル基は、下記一般式(1)で表される構造を含むことがより好ましい。
-R-CH-CH-Si(R 3-a)X  (1)
(式中、Rは水素、炭素、および窒素からなる群より選択される1種以上を構成原子として含有する炭素数1から20の2価の有機基を示し、R、X、aは前記式(2)について上述のとおりである。
It is more preferable that the hydrolyzable silyl group possessed by the polyoxyalkylene polymer (A) and the polyoxyalkylene polymer (B) includes a structure represented by the following general formula (1).
-R 1 -CH 2 -CH 2 -Si(R 2 3-a )X a (1)
(In the formula, R 1 represents a divalent organic group having 1 to 20 carbon atoms containing one or more constituent atoms selected from the group consisting of hydrogen, carbon, and nitrogen, and R 2 , X, and a are The formula (2) is as described above.
 前記一般式(1)において、RがCHであり、aが2であることが好ましい。 In the general formula (1), R 1 is preferably CH 2 and a is 2.
 上記Xの加水分解性基は特に限定されず、従来公知の加水分解性基であればよい。具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基などが挙げられる。これらの中では、加水分解性が穏やかで取扱いやすいことから、メトキシ基、エトキシ基などのアルコキシ基がより好ましく、メトキシ基、エトキシ基が特に好ましい。 The hydrolyzable group of the above X is not particularly limited, and may be any conventionally known hydrolyzable group. Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. Among these, alkoxy groups such as methoxy group and ethoxy group are more preferable, and methoxy group and ethoxy group are particularly preferable because they are mildly hydrolyzable and easy to handle.
 加水分解性シリル基は、具体的には、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジエトキシシリル基などが挙げられるが、これらに限定されない。これらの中では、メチルジメトキシシリル基、トリメトキシシリル基、トリエトキシシリル基、(クロロメチル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基が高い活性を示し、良好な機械物性を有する硬化物が得られるため好ましい。塗布後の形状維持性に優れることからメチルジメトキシシリル基が好ましい。初期強度の発現が良好であること、また高剛性の硬化物が得られることからトリメトキシシリル基が好ましい。 Specifically, the hydrolyzable silyl group includes a trimethoxysilyl group, a triethoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group, and a dimethoxyethyl group. Silyl group, (chloromethyl)dimethoxysilyl group, (chloromethyl)diethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N,N-diethylaminomethyl)dimethoxysilyl group, ( Examples include, but are not limited to, N,N-diethylaminomethyl)diethoxysilyl group. Among these, methyldimethoxysilyl group, trimethoxysilyl group, triethoxysilyl group, (chloromethyl)dimethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (N,N- A diethylaminomethyl) dimethoxysilyl group is preferred because it exhibits high activity and provides a cured product with good mechanical properties. Methyldimethoxysilyl group is preferred because it has excellent shape retention after coating. A trimethoxysilyl group is preferred because it exhibits good initial strength and provides a cured product with high rigidity.
 <<ポリオキシアルキレン系重合体(A)>>
 ポリオキシアルキレン系重合体(A)は、直鎖主鎖構造を有する。また、ポリオキシアルキレン系重合体(A)は、1分子中に1つの末端構造のみを有する。
<<Polyoxyalkylene polymer (A)>>
The polyoxyalkylene polymer (A) has a linear main chain structure. Moreover, the polyoxyalkylene polymer (A) has only one terminal structure in one molecule.
 このようなポリオキシアルキレン系重合体(A)は、アルキレンオキシド開環重合触媒の存在下で、活性水素を1個有する開始剤にアルキレンオキシド単量体を開環付加重合させて得られるものが好ましい。この場合、ポリオキシアルキレン系重合体(A)は直鎖構造であるが、開始剤及びオキシアルキレン繰り返し単位を含む主鎖構造と、1つの末端構造のみから構成される。 Such a polyoxyalkylene polymer (A) is obtained by ring-opening addition polymerization of an alkylene oxide monomer to an initiator having one active hydrogen in the presence of an alkylene oxide ring-opening polymerization catalyst. preferable. In this case, the polyoxyalkylene polymer (A) has a linear structure, but is composed of only a main chain structure containing an initiator and an oxyalkylene repeating unit, and one terminal structure.
 前記開始剤における活性水素は、水酸基に基づくものであることが好ましい。
 言い換えると、前記開始剤は、活性水素を1個有する化合物であってよく、水酸基を1個有する化合物が好ましい。水酸基を1個有する化合物の具体例としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレンモノメチルエーテル、トリエチレンモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレンモノメチルエーテル、トリプロピレンモノメチルエーテル、アリルアルコール、エチレングリコールモノアリルエーテルなどが挙げられる。これらのうちで特にブタノールが好ましい。
The active hydrogen in the initiator is preferably based on a hydroxyl group.
In other words, the initiator may be a compound having one active hydrogen, preferably a compound having one hydroxyl group. Specific examples of compounds having one hydroxyl group include methanol, ethanol, propanol, butanol, pentanol, hexanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene monomethyl ether, and triethylene monomethyl ether. , propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, dipropylene monomethyl ether, tripropylene monomethyl ether, allyl alcohol, ethylene glycol monoallyl ether, and the like. Among these, butanol is particularly preferred.
 また、前記水酸基を1個有する化合物とアルキレンオキシド単量体とで開始剤を合成しても良い。合成された開始剤は、前記水酸基を1個有する化合物にアルキレンオキシド単量体を開環付加重合させたものであって、数平均分子量が100~10,000であるものが好ましい。 Alternatively, an initiator may be synthesized from the compound having one hydroxyl group and an alkylene oxide monomer. The synthesized initiator is obtained by ring-opening addition polymerization of an alkylene oxide monomer to the compound having one hydroxyl group, and preferably has a number average molecular weight of 100 to 10,000.
 開始剤は1種類を単独で使用してもよく2種類以上を併用しても良い。 One type of initiator may be used alone or two or more types may be used in combination.
 ポリオキシアルキレン系重合体(A)は、1分子中に1つの末端のみを有していればよく、1つの末端構造に平均して1個以下の加水分解性シリル基を有するものであっても良いし、1個よりも多くの加水分解性シリル基を有していても良い。また、1つの末端構造に2個以上の加水分解性シリル基を有するポリオキシアルキレンが含まれていても良い。 The polyoxyalkylene polymer (A) only needs to have one terminal in one molecule, and has one or less hydrolyzable silyl group on average in one terminal structure. It may have more than one hydrolyzable silyl group. Furthermore, one terminal structure may contain a polyoxyalkylene having two or more hydrolyzable silyl groups.
 2個以上の加水分解性シリル基を有する末端構造は、例えば、下記一般式(3)で表すことができる。 The terminal structure having two or more hydrolyzable silyl groups can be represented by the following general formula (3), for example.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、R,Rはそれぞれ独立に2価の炭素数1~6の結合基を表し、R、Rに隣接するそれぞれの炭素原子と結合する原子は、炭素、酸素、窒素のいずれかである。R,Rはそれぞれ独立に、水素、または炭素数1~10の炭化水素基を表す。nは1~10の整数である。R、X、aは前記一般式(1)について上述のとおりである。) (In the formula, R 3 and R 5 each independently represent a divalent bonding group having 1 to 6 carbon atoms, and the atoms bonded to each carbon atom adjacent to R 3 and R 5 are carbon, oxygen, nitrogen, R 4 and R 6 each independently represent hydrogen or a hydrocarbon group having 1 to 10 carbon atoms. n is an integer of 1 to 10. R 2 , X, and a are any of the above-mentioned general (Formula (1) is as described above.)
 R、Rとしては、2価の炭素数1~6の有機基であってよく、酸素原子を含んでもよい炭化水素基であってもよい。該炭化水素基の炭素数は1~4が好ましく、1~3がより好ましく、1~2がさらに好ましい。Rの具体例としては、例えば、-CHOCH-、-CHO-、-CH-を挙げることができるが、好ましくは、-CHOCH-である。Rの具体例としては、例えば、-CH-、-CHCH-を挙げることができるが、好ましくは、-CH-である。 R 3 and R 5 may be a divalent organic group having 1 to 6 carbon atoms, or a hydrocarbon group which may contain an oxygen atom. The hydrocarbon group preferably has 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms, and even more preferably 1 to 2 carbon atoms. Specific examples of R 3 include -CH 2 OCH 2 -, -CH 2 O-, and -CH 2 -, with preference given to -CH 2 OCH 2 -. Specific examples of R 5 include -CH 2 - and -CH 2 CH 2 -, with -CH 2 - being preferred.
 R、Rの炭化水素基の炭素数としては1~5が好ましく、1~3がより好ましく、1~2がさらに好ましい。R、Rの具体例としては、例えば、水素原子、メチル基、エチル基を挙げることができるが、好ましくは、水素原子、メチル基であり、より好ましくは水素原子である。 The number of carbon atoms in the hydrocarbon group of R 4 and R 6 is preferably 1 to 5, more preferably 1 to 3, and even more preferably 1 to 2. Specific examples of R 4 and R 6 include a hydrogen atom, a methyl group, and an ethyl group, preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
 一般式(3)で表される末端構造は、特に好ましい態様によると、Rが-CHOCH-であり、Rが-CH-であり、RおよびRがそれぞれ水素原子である。nは1~5の整数が好ましく、1~3の整数がより好ましく、1又は2がさらに好ましい。ただし、nは、1つの値に限定されるものではなく、複数の値が混在していてもよい。 According to a particularly preferred embodiment of the terminal structure represented by general formula (3), R 3 is -CH 2 OCH 2 -, R 5 is -CH 2 -, and R 4 and R 6 are each a hydrogen atom. It is. n is preferably an integer of 1 to 5, more preferably 1 to 3, and even more preferably 1 or 2. However, n is not limited to one value, and may be a mixture of a plurality of values.
 一般式(3)で表される末端構造は、主鎖構造の1つの末端に結合した1つの末端構造を表すものである。式(3)中には2以上の反応性シリル基が示されているが、式(3)は、2以上の末端を示すものではなく、1つの末端構造の中に、2以上の反応性シリル基が存在していることを示すものである。また、式(3)中には、オキシアルキレン繰り返し単位から構成される主鎖構造(重合体骨格)は含まれていない。つまり、式(3)中にn個存在するカッコ内の構造は、主鎖構造(重合体骨格)中のオキシアルキレン繰り返し単位に該当するものではない。 The terminal structure represented by general formula (3) represents one terminal structure bonded to one terminal of the main chain structure. Although two or more reactive silyl groups are shown in formula (3), formula (3) does not indicate two or more terminals, but rather two or more reactive silyl groups in one terminal structure. This indicates the presence of a silyl group. Further, formula (3) does not include a main chain structure (polymer skeleton) composed of oxyalkylene repeating units. In other words, the n structures in parentheses in formula (3) do not correspond to oxyalkylene repeating units in the main chain structure (polymer skeleton).
 ポリオキシアルキレン系重合体(A)において、「加水分解性シリル基のモル数/(加水分解性シリル基、末端オレフィン基および内部オレフィン基の合計モル数)」は、0.50以上、1.00未満が好ましく、0.70以上、1.00未満がより好ましい。なお、「加水分解性シリル基のモル数/(加水分解性シリル基、末端オレフィン基および内部オレフィン基の合計モル数)」とは、加水分解性シリル基のモル数が、加水分解性シリル基と、末端オレフィン基と、内部オレフィン基の合計モル数に対して占める割合を意味する。
 また、「加水分解性シリル基のモル数/(加水分解性シリル基、末端オレフィン基および内部オレフィン基の合計モル数)」は、「加水分解性シリル基導入率」としても表すこともできる。また、前記比率はパーセンテージで表すこともでき、例えば前記比率が0.5であることと50%であることは同じ意味である。
In the polyoxyalkylene polymer (A), "number of moles of hydrolyzable silyl group/(total number of moles of hydrolyzable silyl group, terminal olefin group, and internal olefin group)" is 0.50 or more, 1. It is preferably less than 0.00, more preferably 0.70 or more and less than 1.00. In addition, "number of moles of hydrolyzable silyl group/(total number of moles of hydrolyzable silyl group, terminal olefin group, and internal olefin group)" means that the number of moles of hydrolyzable silyl group is means the ratio of terminal olefin groups and internal olefin groups to the total number of moles.
Moreover, "number of moles of hydrolyzable silyl group/(total number of moles of hydrolyzable silyl group, terminal olefin group, and internal olefin group)" can also be expressed as "hydrolyzable silyl group introduction rate." Further, the ratio can also be expressed as a percentage; for example, the ratio of 0.5 and 50% have the same meaning.
 ポリオキシアルキレン系重合体(A)に該当する重合体が2種以上含まれる場合、それらの重合体全体における平均の加水分解性シリル基導入率が上記の範囲内であればよい。 When two or more types of polymers corresponding to the polyoxyalkylene polymer (A) are included, it is sufficient that the average hydrolyzable silyl group introduction rate in all of these polymers is within the above range.
 本発明において、前記比率は、H NMRにより決定することができる。例えば、末端オレフィン基がアリル基であり、後述のように加水分解性シリル基を有するヒドロシラン化合物をヒドロシリル化反応させることで、加水分解性シリル基を末端構造に導入する場合、以下の各シグナルの積分値を用いて計算すればよい。
・加水分解性シリル基:シリル基に結合したCH(0.6ppm付近、2H)
・末端オレフィン基:メチリデン基のCH(5.2ppm付近、2H)
・内部オレフィン基:末端CH基に結合したCH(4.3ppm付近と4.8ppm付近の合計、1H)
 なお、他のシグナルが重なる場合、そのシグナルの積分値については除外して計算する。
In the present invention, the ratio can be determined by 1 H NMR. For example, when the terminal olefin group is an allyl group and a hydrolyzable silyl group is introduced into the terminal structure by subjecting a hydrosilane compound having a hydrolyzable silyl group to a hydrosilylation reaction as described below, each of the following signals Calculation can be done using an integral value.
・Hydrolyzable silyl group: CH 2 bonded to the silyl group (around 0.6 ppm, 2H)
・Terminal olefin group: CH 2 of methylidene group (around 5.2 ppm, 2H)
・Internal olefin group: CH bonded to the terminal CH 3 group (total of around 4.3 ppm and around 4.8 ppm, 1H)
Note that when other signals overlap, the integral value of that signal is excluded from calculation.
 ポリオキシアルキレン系重合体(A)の数平均分子量は、GPCにおけるポリスチレン換算分子量において、1,000以上8,000以下であってよいが、2,000以上5,000以下であることが好ましい。後者の範囲内では、接着強度の立ち上がりが早く、硬化性組成物を扱う時の作業性を良好なものとすることができる。 The number average molecular weight of the polyoxyalkylene polymer (A) may be 1,000 or more and 8,000 or less, but is preferably 2,000 or more and 5,000 or less in terms of polystyrene equivalent molecular weight in GPC. Within the latter range, the adhesive strength will increase quickly and the curable composition will have good workability.
 ポリオキシアルキレン系重合体(A)の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましく、具体的には、2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下がよりさらに好ましく、1.2以下が特に好ましい。ポリオキシアルキレン系重合体(A)の分子量分布(Mw/Mn)は、GPC測定により得られる数平均分子量と重量平均分子量から求めることができる。 The molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (A) is not particularly limited, but is preferably narrow, specifically less than 2.0, more preferably 1.6 or less, 1. It is more preferably 5 or less, even more preferably 1.4 or less, and particularly preferably 1.2 or less. The molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (A) can be determined from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
 ポリオキシアルキレン系重合体(A)は、末端構造以外に加水分解性シリル基を有しても良いが、末端構造にのみ有することが、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなるため好ましい。 The polyoxyalkylene polymer (A) may have a hydrolyzable silyl group in addition to the terminal structure, but having it only in the terminal structure will result in a rubber-like cured product with high elongation and low elastic modulus. This is preferred because it is easier to obtain.
 <ポリオキシアルキレン系重合体(A)の合成方法>
 ポリオキシアルキレン系重合体(A)の合成方法は特に限定されない。一例を説明すると、まず、水酸基を有する開始剤にエポキシ化合物を重合させて水酸基末端重合体を得る。該重合体の水酸基にアルカリ金属塩(例えばナトリウムメトキシド)を作用させた後、炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物(例えば塩化アリル)を反応させて、重合体末端に炭素-炭素不飽和結合を導入する。次いで、加水分解性シリル基含有ヒドロシラン化合物(例えば、ジメトキメチルシラン、トリメトキシシラン)を反応させることで、加水分解性シリル基含有ポリオキシアルキレン系重合体(A)を得ることができる。
<Synthesis method of polyoxyalkylene polymer (A)>
The method for synthesizing the polyoxyalkylene polymer (A) is not particularly limited. To explain one example, first, an epoxy compound is polymerized with an initiator having a hydroxyl group to obtain a hydroxyl group-terminated polymer. After reacting an alkali metal salt (e.g., sodium methoxide) with the hydroxyl groups of the polymer, a halogenated hydrocarbon compound (e.g., allyl chloride) having a carbon-carbon unsaturated bond is reacted to add carbon- Introducing carbon unsaturated bonds. Next, a hydrolyzable silyl group-containing polyoxyalkylene polymer (A) can be obtained by reacting a hydrolyzable silyl group-containing hydrosilane compound (for example, dimethoxymethylsilane, trimethoxysilane).
 好適な一実施形態である1つの末端構造に2個以上の加水分解性シリル基を有しているポリオキシアルキレン系重合体を含むポリオキシアルキレン系重合体(A)は次のようにして得ることができる。上記と同様に前記水酸基末端重合体の水酸基に前記アルカリ金属塩を作用させた後、まず炭素-炭素不飽和結合を有するエポキシ化合物(例えば、アリルグリシジルエーテル)を反応させ、次いで前記炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物(例えば塩化アリル)を反応させることで、1つの末端に2個以上の炭素-炭素不飽和結合を導入する。その後、加水分解性シリル基含有ヒドロシラン化合物を反応させればよい。 A polyoxyalkylene polymer (A) containing a polyoxyalkylene polymer having two or more hydrolyzable silyl groups in one terminal structure, which is a preferred embodiment, is obtained as follows. be able to. After the alkali metal salt is made to act on the hydroxyl group of the hydroxyl group-terminated polymer in the same manner as above, an epoxy compound having a carbon-carbon unsaturated bond (for example, allyl glycidyl ether) is reacted, and then the carbon-carbon unsaturated bond is reacted with the epoxy compound (for example, allyl glycidyl ether). Two or more carbon-carbon unsaturated bonds are introduced into one terminal by reacting a halogenated hydrocarbon compound (for example, allyl chloride) having a saturated bond. Thereafter, a hydrolyzable silyl group-containing hydrosilane compound may be reacted.
 また、前記加水分解性シリル基含有ヒドロシラン化合物の代わりに、加水分解性シリル基含有メルカプトシラン類を用いることで、重合体に加水分解性シリル基を導入することも可能である。 Furthermore, it is also possible to introduce a hydrolysable silyl group into the polymer by using a hydrolysable silyl group-containing mercaptosilane instead of the hydrolysable silyl group-containing hydrosilane compound.
 ポリオキシアルキレン系重合体(A)の主鎖構造は、エステル結合、または、一般式(4):
-NR-C(=O)-  (4)
(式中、Rは炭素数1~10の有機基または水素原子を表す)
で表されるアミドセグメントを含んでいてもよい。
The main chain structure of the polyoxyalkylene polymer (A) is an ester bond or the general formula (4):
-NR 7 -C(=O)- (4)
(In the formula, R 7 represents an organic group having 1 to 10 carbon atoms or a hydrogen atom)
It may contain an amide segment represented by
 エステル結合またはアミドセグメントを含有するポリオキシアルキレン系重合体(A)を含む硬化性組成物から得られる硬化物は、水素結合の作用等により、高い硬度および強度を有する場合がある。しかし、アミドセグメント等を含有するポリオキシアルキレン系重合体(A)は、熱等により開裂する可能性がある。また、アミドセグメント等を含有するポリオキシアルキレン系重合体(A)を含む硬化性組成物は、粘度が高くなる傾向がある。以上のようなメリットおよびデメリットを考慮して、ポリオキシアルキレン系重合体(A)として、アミドセグメント等を含有するポリオキシアルキレンを使用してもよく、アミドセグメント等を含有しないポリオキシアルキレンを使用してもよい。 A cured product obtained from a curable composition containing a polyoxyalkylene polymer (A) containing an ester bond or an amide segment may have high hardness and strength due to the action of hydrogen bonds, etc. However, the polyoxyalkylene polymer (A) containing an amide segment or the like may be cleaved by heat or the like. Further, a curable composition containing a polyoxyalkylene polymer (A) containing an amide segment or the like tends to have a high viscosity. Considering the above advantages and disadvantages, polyoxyalkylene containing amide segments etc. may be used as the polyoxyalkylene polymer (A), or polyoxyalkylene containing no amide segments etc. may be used. You may.
 前記一般式(4)で表されるアミドセグメントとしては、例えば、イソシアネート基と水酸基との反応、アミノ基とカーボネートとの反応、イソシアネート基とアミノ基との反応、イソシアネート基とメルカプト基との反応等により形成されるものを挙げることができる。また、活性水素原子を含む前記アミドセグメントとイソシアネート基との反応により形成されるものも、一般式(4)で表されるアミドセグメントに含まれる。 The amide segment represented by the general formula (4) includes, for example, a reaction between an isocyanate group and a hydroxyl group, a reaction between an amino group and a carbonate, a reaction between an isocyanate group and an amino group, a reaction between an isocyanate group and a mercapto group. Examples include those formed by, etc. Moreover, those formed by the reaction of the above-mentioned amide segment containing an active hydrogen atom with an isocyanate group are also included in the amide segment represented by the general formula (4).
 アミドセグメントを含有するポリオキシアルキレン系重合体(A)の製造方法の一例としては、末端に活性水素含有基を有するポリオキシアルキレンに、ポリイソシアネート化合物を反応させて、末端にイソシアネート基を有する重合体を合成した後、またはその合成と同時に、該イソシアネート基と反応し得る官能基(例えば、水酸基、カルボキシ基、メルカプト基、1級アミノ基または2級アミノ基)と加水分解性シリル基を併せ持つ化合物を反応させる方法を挙げることができる。また、別の例として、末端に活性水素含有基を有するポリオキシアルキレンに、加水分解性シリル基含有イソシアネート化合物を反応させる方法を挙げることができる。 An example of a method for producing a polyoxyalkylene polymer (A) containing an amide segment is to react a polyoxyalkylene having an active hydrogen-containing group at the end with a polyisocyanate compound to form a polyoxyalkylene polymer having an isocyanate group at the end. After or simultaneously with the synthesis of the compound, it has both a functional group that can react with the isocyanate group (for example, a hydroxyl group, a carboxy group, a mercapto group, a primary amino group, or a secondary amino group) and a hydrolyzable silyl group. Examples include methods of reacting compounds. Another example is a method in which a polyoxyalkylene having an active hydrogen-containing group at its terminal is reacted with a hydrolyzable silyl group-containing isocyanate compound.
 ポリオキシアルキレン系重合体(A)がアミドセグメントを含む場合、ポリオキシアルキレン系重合体(A)1分子あたりのアミドセグメントの数(平均値)は、1~10が好ましく、1.5~5がより好ましく、2~3が特に好ましい。この数が1よりも少ない場合には、硬化性が十分ではない場合があり、逆に10よりも大きい場合には、ポリオキシアルキレン系重合体(A)が高粘度となり、取り扱い難くなる可能性がある。硬化性組成物の粘度を低くし、作業性を改善するためには、ポリオキシアルキレン系重合体(A)は、アミドセグメントを含まないことが好ましい。 When the polyoxyalkylene polymer (A) contains an amide segment, the number (average value) of amide segments per molecule of the polyoxyalkylene polymer (A) is preferably 1 to 10, and 1.5 to 5. is more preferred, and 2 to 3 are particularly preferred. If this number is less than 1, the curability may not be sufficient, and if it is greater than 10, the polyoxyalkylene polymer (A) may have a high viscosity and become difficult to handle. There is. In order to lower the viscosity of the curable composition and improve workability, the polyoxyalkylene polymer (A) preferably does not contain an amide segment.
 <<ポリオキシアルキレン系重合体(B)>>
 ポリオキシアルキレン系重合体(B)は、分岐主鎖構造を有する。このようなポリオキシアルキレン系重合体(B)は、アルキレンオキシド開環重合触媒の存在下で、活性水素を3個以上有する開始剤にアルキレンオキシド単量体を開環付加重合させて得られるものが好ましい。前記開始剤における活性水素は、水酸基に基づくものであることが好ましい。
<<Polyoxyalkylene polymer (B)>>
The polyoxyalkylene polymer (B) has a branched main chain structure. Such a polyoxyalkylene polymer (B) is obtained by ring-opening addition polymerization of an alkylene oxide monomer to an initiator having three or more active hydrogen atoms in the presence of an alkylene oxide ring-opening polymerization catalyst. is preferred. The active hydrogen in the initiator is preferably based on a hydroxyl group.
 前記開始剤は、活性水素を3個以上有する化合物であってよく、水酸基を3個以上有する化合物が好ましい。水酸基を3個以上有する化合物の具体例としては、グリセリン、トリメチロールプロパン、トリメチロールエタン、ソルビトール、ペンタエリスリトールなどが挙げられる。これらのうちで特にグリセリンが好ましい。 The initiator may be a compound having three or more active hydrogens, and preferably a compound having three or more hydroxyl groups. Specific examples of compounds having three or more hydroxyl groups include glycerin, trimethylolpropane, trimethylolethane, sorbitol, and pentaerythritol. Among these, glycerin is particularly preferred.
 また、前記水酸基を3個以上有する化合物とアルキレンオキシド単量体とで開始剤を合成しても良い。合成された開始剤は、前記水酸基を3個有する化合物にアルキレンオキシド単量体を開環付加重合させたものであって、数平均分子量が100~10,000であるものが好ましい。 Furthermore, an initiator may be synthesized using the compound having three or more hydroxyl groups and an alkylene oxide monomer. The synthesized initiator is obtained by ring-opening addition polymerization of an alkylene oxide monomer to the compound having three hydroxyl groups, and preferably has a number average molecular weight of 100 to 10,000.
 開始剤は1種類を単独で使用してもよく2種類以上を併用しても良い。 One type of initiator may be used alone or two or more types may be used in combination.
 ポリオキシアルキレン系重合体(B)は、分岐鎖数が1~4個が原料の入手性から好ましく、分岐鎖数が1個が良好な強度と伸びが得られることから最も好ましい。 The polyoxyalkylene polymer (B) preferably has 1 to 4 branched chains from the viewpoint of availability of raw materials, and most preferably has 1 branched chain because good strength and elongation can be obtained.
 ポリオキシアルキレン系重合体(B)は、1分子中に存在する末端構造のうち、複数の末端構造に対して加水分解性シリル基を有してもよい。また、1つの末端構造に平均して1個以下の加水分解性シリル基を有するものであっても良いし、1つの末端構造に2個以上の加水分解性シリル基を有するポリオキシアルキレンが含まれていても良い。 The polyoxyalkylene polymer (B) may have hydrolyzable silyl groups in a plurality of terminal structures among the terminal structures present in one molecule. Moreover, it may have one or less hydrolyzable silyl groups on average in one terminal structure, or it may contain polyoxyalkylene having two or more hydrolyzable silyl groups in one terminal structure. It's okay if it is.
 2個以上の加水分解性シリル基を有する末端構造は、例えば、上記一般式(3)で表すことができる。なお、一般式(3)や末端構造等の説明は上述したポリオキシアルキレン系重合体(A)での説明と同様である。 The terminal structure having two or more hydrolyzable silyl groups can be represented by the above general formula (3), for example. The general formula (3), terminal structure, etc. are the same as those for the polyoxyalkylene polymer (A) described above.
 ポリオキシアルキレン系重合体(B)において、「加水分解性シリル基のモル数/(加水分解性シリル基、末端オレフィン基および内部オレフィン基の合計モル数)」は、0.60以上、1.00未満が好ましく、0.70以上、1.00未満がより好ましい。なお、式等の説明は上述したポリオキシアルキレン系重合体(A)での説明と同様である。 In the polyoxyalkylene polymer (B), "number of moles of hydrolyzable silyl group/(total number of moles of hydrolyzable silyl group, terminal olefin group, and internal olefin group)" is 0.60 or more, 1. It is preferably less than 0.00, more preferably 0.70 or more and less than 1.00. In addition, the explanation of the formula etc. is the same as that of the polyoxyalkylene polymer (A) mentioned above.
 ポリオキシアルキレン系重合体(B)に該当する重合体を2種以上含有する場合、これらの重合体全体における平均の加水分解性シリル基導入率が上記の範囲内であればよい。 When containing two or more types of polymers corresponding to the polyoxyalkylene polymer (B), it is sufficient that the average hydrolyzable silyl group introduction rate in all of these polymers is within the above range.
 ポリオキシアルキレン系重合体(B)の数平均分子量は、GPCにおけるポリスチレン換算分子量において、6,000以上15,000以下であってよいが、9,000以上14,000以下であることが好ましい。後者の範囲内では、接着強度の発現が早く、硬化性組成物を扱う時の作業性を良好なものとすることができる。 The number average molecular weight of the polyoxyalkylene polymer (B) may be 6,000 or more and 15,000 or less, but is preferably 9,000 or more and 14,000 or less in terms of polystyrene equivalent molecular weight in GPC. Within the latter range, adhesive strength develops quickly and workability when handling the curable composition can be improved.
 ポリオキシアルキレン系重合体(B)の分子量分布(Mw/Mn)は特に限定されないが、狭いことが好ましく、具体的には、2.0未満が好ましく、1.6以下がより好ましく、1.5以下がさらに好ましく、1.4以下がよりさらに好ましく、1.2以下が特に好ましい。ポリオキシアルキレン系重合体(B)の分子量分布(Mw/Mn)は、GPC測定により得られる数平均分子量と重量平均分子量から求めることができる。 The molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (B) is not particularly limited, but is preferably narrow, specifically less than 2.0, more preferably 1.6 or less, 1. It is more preferably 5 or less, even more preferably 1.4 or less, and particularly preferably 1.2 or less. The molecular weight distribution (Mw/Mn) of the polyoxyalkylene polymer (B) can be determined from the number average molecular weight and weight average molecular weight obtained by GPC measurement.
 ポリオキシアルキレン系重合体(B)は、末端構造以外に加水分解性シリル基を有しても良いが、末端構造にのみ有することが、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなるため好ましい。 The polyoxyalkylene polymer (B) may have a hydrolyzable silyl group in addition to the terminal structure, but having it only in the terminal structure will result in a rubber-like cured product with high elongation and low elastic modulus. This is preferred because it is easier to obtain.
 <ポリオキシアルキレン系重合体(B)の合成方法>
 ポリオキシアルキレン系重合体(B)の合成方法は特に限定されない。一例を説明すると、まず、水酸基を有する開始剤にエポキシ化合物を重合させて水酸基末端重合体を得る。該重合体の水酸基にアルカリ金属塩(例えばナトリウムメトキシド)を作用させた後、炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物(例えば塩化アリル)を反応させて、重合体末端に炭素-炭素不飽和結合を導入する。次いで、加水分解性シリル基含有ヒドロシラン化合物(例えば、ジメトキメチルシラン、トリメトキシシラン)を反応させることで、加水分解性シリル基含有ポリオキシアルキレン系重合体(B)を得ることができる。
<Synthesis method of polyoxyalkylene polymer (B)>
The method for synthesizing the polyoxyalkylene polymer (B) is not particularly limited. To explain one example, first, an epoxy compound is polymerized with an initiator having a hydroxyl group to obtain a hydroxyl group-terminated polymer. After reacting an alkali metal salt (e.g., sodium methoxide) with the hydroxyl groups of the polymer, a halogenated hydrocarbon compound (e.g., allyl chloride) having a carbon-carbon unsaturated bond is reacted to add carbon- Introducing carbon unsaturated bonds. Next, by reacting a hydrolyzable silyl group-containing hydrosilane compound (for example, dimethoxymethylsilane, trimethoxysilane), a hydrolyzable silyl group-containing polyoxyalkylene polymer (B) can be obtained.
 好適な一実施形態である1つの末端構造に2個以上の加水分解性シリル基を有しているポリオキシアルキレン系重合体を含むポリオキシアルキレン系重合体(B)は次のようにして得ることができる。上記と同様に前記水酸基末端重合体の水酸基に前記アルカリ金属塩を作用させた後、まず炭素-炭素不飽和結合を有するエポキシ化合物(例えば、アリルグリシジルエーテル)を反応させ、次いで前記炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物(例えば塩化アリル)を反応させることで、1つの末端に2個以上の炭素-炭素不飽和結合を導入する。その後、加水分解性シリル基含有ヒドロシラン化合物を反応させればよい。 A polyoxyalkylene polymer (B) containing a polyoxyalkylene polymer having two or more hydrolyzable silyl groups in one terminal structure, which is a preferred embodiment, can be obtained as follows. be able to. After the alkali metal salt is made to act on the hydroxyl group of the hydroxyl group-terminated polymer in the same manner as above, an epoxy compound having a carbon-carbon unsaturated bond (for example, allyl glycidyl ether) is reacted, and then the carbon-carbon unsaturated bond is reacted with the epoxy compound (for example, allyl glycidyl ether). Two or more carbon-carbon unsaturated bonds are introduced into one terminal by reacting a halogenated hydrocarbon compound (for example, allyl chloride) having a saturated bond. Thereafter, a hydrolyzable silyl group-containing hydrosilane compound may be reacted.
 また、前記加水分解性シリル基含有ヒドロシラン化合物の代わりに、加水分解性シリル基含有メルカプトシラン類を用いることで、重合体に加水分解性シリル基を導入することも可能である。 Furthermore, it is also possible to introduce a hydrolysable silyl group into the polymer by using a hydrolysable silyl group-containing mercaptosilane instead of the hydrolysable silyl group-containing hydrosilane compound.
 ポリオキシアルキレン系重合体(B)の主鎖構造は、エステル結合、または、一般式(4)で表されるアミドセグメントを含んでいてもよい。 The main chain structure of the polyoxyalkylene polymer (B) may include an ester bond or an amide segment represented by general formula (4).
 エステル結合またはアミドセグメントを含有するポリオキシアルキレン系重合体(B)を含む硬化性組成物から得られる硬化物は、水素結合の作用等により、高い硬度および強度を有する場合がある。しかし、アミドセグメント等を含有するポリオキシアルキレン系重合体(B)は、熱等により開裂する可能性がある。また、アミドセグメント等を含有するポリオキシアルキレン系重合体(B)を含む硬化性組成物は、粘度が高くなる傾向がある。以上のようなメリットおよびデメリットを考慮して、ポリオキシアルキレン系重合体(B)として、アミドセグメント等を含有するポリオキシアルキレンを使用してもよく、アミドセグメント等を含有しないポリオキシアルキレンを使用してもよい。 A cured product obtained from a curable composition containing a polyoxyalkylene polymer (B) containing an ester bond or an amide segment may have high hardness and strength due to the action of hydrogen bonds, etc. However, the polyoxyalkylene polymer (B) containing an amide segment or the like may be cleaved by heat or the like. Further, a curable composition containing a polyoxyalkylene polymer (B) containing an amide segment or the like tends to have a high viscosity. Considering the above advantages and disadvantages, polyoxyalkylene containing amide segments etc. may be used as the polyoxyalkylene polymer (B), or polyoxyalkylene containing no amide segments etc. may be used. You may.
 前記一般式(4)で表されるアミドセグメントとしては、例えば、イソシアネート基と水酸基との反応、アミノ基とカーボネートとの反応、イソシアネート基とアミノ基との反応、イソシアネート基とメルカプト基との反応等により形成されるものを挙げることができる。また、活性水素原子を含む前記アミドセグメントとイソシアネート基との反応により形成されるものも、一般式(4)で表されるアミドセグメントに含まれる。 The amide segment represented by the general formula (4) includes, for example, a reaction between an isocyanate group and a hydroxyl group, a reaction between an amino group and a carbonate, a reaction between an isocyanate group and an amino group, a reaction between an isocyanate group and a mercapto group. Examples include those formed by, etc. Moreover, those formed by the reaction of the above-mentioned amide segment containing an active hydrogen atom with an isocyanate group are also included in the amide segment represented by the general formula (4).
 アミドセグメントを含有するポリオキシアルキレン系重合体(B)の製造方法の一例としては、末端に活性水素含有基を有するポリオキシアルキレンに、ポリイソシアネート化合物を反応させて、末端にイソシアネート基を有する重合体を合成した後、またはその合成と同時に、該イソシアネート基と反応し得る官能基(例えば、水酸基、カルボキシ基、メルカプト基、1級アミノ基または2級アミノ基)と加水分解性シリル基を併せ持つ化合物を反応させる方法を挙げることができる。また、別の例として、末端に活性水素含有基を有するポリオキシアルキレンに、加水分解性シリル基含有イソシアネート化合物を反応させる方法を挙げることができる。 An example of a method for producing a polyoxyalkylene polymer (B) containing an amide segment is to react a polyoxyalkylene having an active hydrogen-containing group at the end with a polyisocyanate compound to form a polyoxyalkylene polymer having an isocyanate group at the end. After or simultaneously with the synthesis of the compound, it has both a functional group that can react with the isocyanate group (for example, a hydroxyl group, a carboxy group, a mercapto group, a primary amino group, or a secondary amino group) and a hydrolyzable silyl group. Examples include methods of reacting compounds. Another example is a method in which a polyoxyalkylene having an active hydrogen-containing group at its terminal is reacted with a hydrolyzable silyl group-containing isocyanate compound.
 ポリオキシアルキレン系重合体(B)がアミドセグメントを含む場合、ポリオキシアルキレン系重合体(B)1分子あたりのアミドセグメントの数(平均値)は、1~10が好ましく、1.5~5がより好ましく、2~3が特に好ましい。この数が1よりも少ない場合には、硬化性が十分ではない場合があり、逆に10よりも大きい場合には、ポリオキシアルキレン系重合体(B)が高粘度となり、取り扱い難くなる可能性がある。硬化性組成物の粘度を低くし、作業性を改善するためには、ポリオキシアルキレン系重合体(B)は、アミドセグメントを含まないことが好ましい。 When the polyoxyalkylene polymer (B) contains an amide segment, the number (average value) of amide segments per molecule of the polyoxyalkylene polymer (B) is preferably 1 to 10, and 1.5 to 5. is more preferred, and 2 to 3 are particularly preferred. If this number is less than 1, the curability may not be sufficient, and if it is greater than 10, the polyoxyalkylene polymer (B) may have a high viscosity and become difficult to handle. There is. In order to lower the viscosity of the curable composition and improve workability, the polyoxyalkylene polymer (B) preferably does not contain an amide segment.
 <<ポリオキシアルキレン系重合体(A)と(B)の含有量>>
 ポリオキシアルキレン系重合体(A)とポリオキシアルキレン系重合体(B)の重量比は、(A):(B)が、5:95~60:40であることが好ましく、10:90~40:60がより好ましく、10:90~25:75が更に好ましい。ポリオキシアルキレン系重合体(A)と(B)の含有量の質量比率が上記範囲内であると、接着強度の立ち上がりが早いものとなりやすい。
<<Content of polyoxyalkylene polymers (A) and (B)>>
The weight ratio of the polyoxyalkylene polymer (A) and the polyoxyalkylene polymer (B) (A):(B) is preferably 5:95 to 60:40, and 10:90 to The ratio is more preferably 40:60, and even more preferably 10:90 to 25:75. When the mass ratio of the contents of the polyoxyalkylene polymers (A) and (B) is within the above range, the adhesive strength tends to rise quickly.
 <ポリオキシアルキレン系重合体(A)と(B)を含む混合物の粘度>
 ポリオキシアルキレン系重合体(A)と(B)を含む混合物の23℃における粘度は、0.5Pa・s~5.0Pa・sがであることが好ましく、1.0Pa・s~3.5Pa・sであることがより好ましい。ポリオキシアルキレン系重合体(A)と(B)の混合物の粘度が上記範囲内であると、接着強度の立ち上がりが早いものとなりやすい。
<Viscosity of mixture containing polyoxyalkylene polymers (A) and (B)>
The viscosity at 23°C of the mixture containing the polyoxyalkylene polymers (A) and (B) is preferably 0.5 Pa·s to 5.0 Pa·s, and preferably 1.0 Pa·s to 3.5 Pa·s. - It is more preferable that it is s. When the viscosity of the mixture of polyoxyalkylene polymers (A) and (B) is within the above range, the adhesive strength tends to rise quickly.
 <<ポリオキシアルキレン系重合体(A)と(B)の混合方法>>
 ポリオキシアルキレン系重合体(A)と(B)は、重合体の重合時にそれぞれの開始剤を予め混合して重合してもよいし、重合体合成時に混合してもよいし、硬化性組成物を製造する際に、事前に混合させておくこともできるし、施工時に混合させることもできる。
<<Method of mixing polyoxyalkylene polymers (A) and (B)>>
The polyoxyalkylene polymers (A) and (B) may be polymerized by mixing their respective initiators in advance during polymerization, or may be mixed at the time of polymer synthesis, or may be polymerized using a curable composition. When manufacturing a product, it can be mixed in advance, or it can be mixed at the time of construction.
 (硬化性組成物)
 本発明は、前記ポリオキシアルキレン系重合体(A)と(B)を含む混合物を含有する硬化性組成物を提供することができる。
(Curable composition)
The present invention can provide a curable composition containing a mixture containing the polyoxyalkylene polymers (A) and (B).
 <<その他の添加剤>>
 本発明の組成物には、前記ポリオキシアルキレン系重合体(A)と(B)の他に添加剤として、シラノール縮合触媒、充填剤、接着性付与剤、可塑剤、溶剤、希釈剤、タレ防止剤、酸化防止剤、光安定剤、紫外線吸収剤、物性調整剤、粘着付与樹脂、エポキシ基を含有する化合物、光硬化性物質、酸素硬化性物質、エポキシ樹脂、その他の樹脂、を添加しても良い。また、本発明の硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、たとえば、表面性改良剤、発泡剤、硬化性調整剤、難燃剤、シリケート、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、防かび剤などが挙げられる。
<<Other additives>>
In addition to the polyoxyalkylene polymers (A) and (B), the composition of the present invention contains additives such as a silanol condensation catalyst, a filler, an adhesion promoter, a plasticizer, a solvent, a diluent, and a sauce. Addition of inhibitors, antioxidants, light stabilizers, ultraviolet absorbers, physical property regulators, tackifying resins, compounds containing epoxy groups, photocurable substances, oxygen curing substances, epoxy resins, and other resins. It's okay. Furthermore, various additives may be added to the curable composition of the present invention as necessary for the purpose of adjusting various physical properties of the curable composition or cured product. Examples of such additives include, for example, surface improvers, blowing agents, curing modifiers, flame retardants, silicates, radical inhibitors, metal deactivators, antiozonants, phosphorous peroxides, etc. Examples include decomposers, lubricants, pigments, and fungicides.
 <シラノール縮合触媒>
 本発明では、加水分解性シリル基を有するポリオキシアルキレン系重合体(A)と(B)の加水分解性シリル基を加水分解・縮合させる反応、すなわち硬化反応を促進し、重合体を鎖延長または架橋させる目的で、シラノール縮合触媒を使用しても良い。
<Silanol condensation catalyst>
In the present invention, the reaction of hydrolyzing and condensing the hydrolysable silyl groups of polyoxyalkylene polymers (A) and (B) having hydrolysable silyl groups is promoted, that is, the curing reaction is promoted, and the polymer chain is extended. Alternatively, a silanol condensation catalyst may be used for the purpose of crosslinking.
 シラノール縮合触媒としては、多数の触媒が使用できることがすでに公知となっており、例えば有機錫化合物、カルボン酸金属塩、アミン化合物、カルボン酸、アルコキシ金属、無機酸などがあげられる。 It is already known that a large number of catalysts can be used as the silanol condensation catalyst, such as organic tin compounds, carboxylic acid metal salts, amine compounds, carboxylic acids, alkoxy metals, and inorganic acids.
 有機錫化合物の具体例としては、ジブチル錫ジラウレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ジアセテート、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジオクチル錫ビス(アセチルアセトナート)、ジオクチル錫ジラウレート、ジオクチル錫ジステアレート、ジオクチル錫ジアセテート、ジオクチル錫オキサイド、ジブチル錫オキサイドとシリケート化合物との反応物、ジオクチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物などが挙げられる。 Specific examples of organotin compounds include dibutyltin dilaurate, dibutyltin dioctanoate, dibutyltin bis(butyl maleate), dibutyltin diacetate, dibutyltin oxide, dibutyltin bis(acetylacetonate), and dioctyltin bis(acetylacetonate). dioctyltin dilaurate, dioctyltin distearate, dioctyltin diacetate, dioctyltin oxide, reaction product of dibutyltin oxide and silicate compound, reaction product of dioctyltin oxide and silicate compound, dibutyltin oxide and phthalate ester Examples include reactants of
 カルボン酸金属塩の具体例としては、カルボン酸錫、カルボン酸ビスマス、カルボン酸チタン、カルボン酸ジルコニウム、カルボン酸鉄、カルボン酸カリウム、カルボン酸カルシウムなどが挙げられる。カルボン酸基としては下記のカルボン酸と各種金属を組み合わせることができる。 Specific examples of carboxylic acid metal salts include tin carboxylate, bismuth carboxylate, titanium carboxylate, zirconium carboxylate, iron carboxylate, potassium carboxylate, calcium carboxylate, and the like. As the carboxylic acid group, the following carboxylic acids and various metals can be combined.
 アミン化合物の具体例としては、オクチルアミン、2-エチルヘキシルアミン、ラウリルアミン、ステアリルアミン、などのアミン類;ピリジン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)、などの含窒素複素環式化合物;グアニジン、フェニルグアニジン、ジフェニルグアニジンなどのグアニジン類;ブチルビグアニド、1-o-トリルビグアニドや1-フェニルビグアニドなどのビグアニド類;アミノ基含有シランカップリング剤;ケチミン化合物などが挙げられる。 Specific examples of amine compounds include amines such as octylamine, 2-ethylhexylamine, laurylamine, and stearylamine; pyridine, 1,8-diazabicyclo[5,4,0]undecene-7 (DBU), 1, Nitrogen-containing heterocyclic compounds such as 5-diazabicyclo[4,3,0]nonene-5 (DBN); guanidines such as guanidine, phenylguanidine, and diphenylguanidine; butyl biguanide, 1-o-tolyl biguanide, and 1- Examples include biguanides such as phenylbiguanide; amino group-containing silane coupling agents; ketimine compounds.
 カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、2-エチルヘキサン酸、ラウリン酸、ステアリン酸、オレイン酸、リノール酸、ネオデカン酸、バーサチック酸などが挙げられる。 Specific examples of carboxylic acids include acetic acid, propionic acid, butyric acid, 2-ethylhexanoic acid, lauric acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, and versatic acid.
 アルコキシ金属の具体例としては、テトラブチルチタネート、チタンテトラキス(アセチルアセトナート)、ジイソプロポキシチタンビス(エチルアセトセテート)などのチタン化合物や、アルミニウムトリス(アセチルアセトナート)、ジイソプロポキシアルミニウムエチルアセトアセテートなどのアルミニウム化合物類、ジルコニウムテトラキス(アセチルアセトナート)などのジルコニウム化合物類が挙げられる。 Specific examples of alkoxy metals include titanium compounds such as tetrabutyl titanate, titanium tetrakis (acetylacetonate), diisopropoxy titanium bis (ethylacetocetate), aluminum tris (acetylacetonate), diisopropoxyaluminum ethylacetonate, etc. Examples include aluminum compounds such as acetate, and zirconium compounds such as zirconium tetrakis (acetylacetonate).
 その他のシラノール縮合触媒として、フッ素アニオン含有化合物、光酸発生剤や光塩基発生剤も使用できる。 As other silanol condensation catalysts, fluorine anion-containing compounds, photoacid generators, and photobase generators can also be used.
 シラノール縮合触媒は1種類のみを使用しても良いし、2種類以上を併用してもよく、例えば、前記のアミン系化合物とカルボン酸や、アミン系化合物とカルボン酸とアルコキシ金属を併用することで、反応性が向上する効果が得られる可能性がある。 Only one type of silanol condensation catalyst may be used, or two or more types may be used in combination. For example, the above-mentioned amine compound and carboxylic acid, or the combination of the amine compound, carboxylic acid, and alkoxy metal. Therefore, the effect of improving reactivity may be obtained.
 シラノール縮合触媒の使用量としては、ポリオキシアルキレン系重合体(A)と(B)の混合物100重量部に対して、0.001~20重量部が好ましく、更には0.01~15重量部がより好ましく、0.01~10重量部が特に好ましい。 The amount of the silanol condensation catalyst used is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 15 parts by weight, based on 100 parts by weight of the mixture of polyoxyalkylene polymers (A) and (B). is more preferable, and 0.01 to 10 parts by weight is particularly preferable.
 <充填剤>
 本発明の組成物には、種々の充填剤を配合することができる。充填剤としては、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、クレー、焼成クレー、タルク、酸化チタン、ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、無水ケイ酸、含水ケイ酸、カーボンブラック、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華、PVC粉末、PMMA粉末、ガラス繊維およびフィラメント等が挙げられる。上記充填剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。
<Filler>
Various fillers can be added to the composition of the present invention. Fillers include heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate, diatomaceous earth, clay, calcined clay, talc, titanium oxide, fumed silica, precipitated silica, crystalline silica, fused silica, anhydrous silicic acid, and hydrated silica. Examples include silicic acid, carbon black, ferric oxide, fine aluminum powder, zinc oxide, activated zinc white, PVC powder, PMMA powder, glass fiber, and filament. The above-mentioned fillers may be used alone or in a mixture of two or more.
 充填剤の使用量は、ポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して、1~300重量部であることが好ましく、10~250重量部がより好ましい。 The amount of filler used is preferably 1 to 300 parts by weight, more preferably 10 to 250 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B).
 組成物の軽量化(低比重化)の目的で、有機バルーン、又は無機バルーンを添加してもよい。バルーンは、球状体充填剤で内部が中空のものであり、このバルーンの材料としては、ガラス、シラス等の無機系材料、フェノール樹脂、尿素樹脂、ポリスチレン、サラン等の有機系材料が挙げられる。 An organic balloon or an inorganic balloon may be added for the purpose of making the composition lighter (lower specific gravity). The balloon is made of a spherical filler and is hollow inside, and examples of the material for the balloon include inorganic materials such as glass and shirasu, and organic materials such as phenol resin, urea resin, polystyrene, and saran.
 バルーンの使用量は、ポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して、0.1~100重量部であることが好ましく、1~20重量部がより好ましい。 The amount of the balloon used is preferably 0.1 to 100 parts by weight, more preferably 1 to 20 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). .
 <接着性付与剤>
 本実施形態に係る硬化性組成物には、接着性付与剤を添加することができる。
 接着性付与剤としては、アミノ基含有シランカップリング剤、イソシアネート基含有シランカップリング剤、メルカプト基含有シランカップリング剤、エポキシ基含有シランカップリング剤が例示できる。
<Adhesive agent>
An adhesion imparting agent can be added to the curable composition according to this embodiment.
Examples of the adhesion imparting agent include an amino group-containing silane coupling agent, an isocyanate group-containing silane coupling agent, a mercapto group-containing silane coupling agent, and an epoxy group-containing silane coupling agent.
 アミノ基含有シランカップリング剤は、アミノ基と、加水分解性シリル基を併せ持つ化合物である。具体例としては特に限定されないが、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-フェニルアミノメチルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン等が挙げられる。 The amino group-containing silane coupling agent is a compound that has both an amino group and a hydrolyzable silyl group. Specific examples include, but are not limited to, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriisopropoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane. , γ-(2-aminoethyl)aminopropyltrimethoxysilane, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-(2-aminoethyl)aminopropyltriethoxysilane, γ-(2-aminoethyl) ) Aminopropylmethyldiethoxysilane, γ-(2-aminoethyl)aminopropyltriisopropoxysilane, γ-(6-aminohexyl)aminopropyltrimethoxysilane, 3-(N-ethylamino)-2-methylpropyl Trimethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, N -Phenyl-γ-aminopropyltrimethoxysilane, N-phenylaminomethyltrimethoxysilane, N-benzyl-γ-aminopropyltrimethoxysilane, N-vinylbenzyl-γ-aminopropyltriethoxysilane, N,N'- Examples include bis[3-(trimethoxysilyl)propyl]ethylenediamine, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, and N-phenylaminomethyltrimethoxysilane.
 その他の接着性付与剤の具体例としては、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、α-イソシアネートメチルトリメトキシシラン、α-イソシアネートメチルジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類が挙げられる。また、各種シランカップリング剤の反応物も使用できる。接着性付与剤は1種類のみを使用しても良いし、2種類以上を併用しても良い。
 接着性付与剤の使用量は、ポリオキシアルキレン系重合体(A)および(B)の合計量100重量部に対して、0.1~20重量部であることが好ましく、0.5~10重量部がより好ましい。特に接着性付与剤としてはアミノ基含有シランカップリング剤が好ましく、その使用量は0.5~10重量部が好ましい。
Specific examples of other adhesive properties include γ-isocyanatepropyltrimethoxysilane, γ-isocyanatepropyltriethoxysilane, γ-isocyanatepropylmethyldimethoxysilane, α-isocyanatemethyltrimethoxysilane, α-isocyanatemethyldimethoxymethyl Isocyanate group-containing silanes such as silane; mercapto group-containing silanes such as γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane; γ-glycidoxypropyltrimethoxysilane, Examples include epoxy group-containing silanes such as β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. Moreover, reactants of various silane coupling agents can also be used. Only one type of adhesion imparting agent may be used, or two or more types may be used in combination.
The amount of adhesion imparting agent used is preferably 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). Parts by weight are more preferred. In particular, the adhesion imparting agent is preferably an amino group-containing silane coupling agent, and the amount used is preferably 0.5 to 10 parts by weight.
 <可塑剤>
 本実施形態に係る硬化性組成物には、可塑剤を添加することができる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、ブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、アセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、アセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル;リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシステアリン酸ベンジル、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレ-ト、エポキシブチルステアレ-トなどのエポキシ可塑剤等が挙げられる。
<Plasticizer>
A plasticizer can be added to the curable composition according to this embodiment. Specific examples of plasticizers include phthalate ester compounds such as dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), butylbenzyl phthalate; bis(2-ethylhexyl); )-Terephthalate ester compounds such as 1,4-benzenedicarboxylate; non-phthalate ester compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate, Aliphatic polyhydric carboxylic acid ester compounds such as acetyl tributyl citrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetyl ricinoleate; alkyl sulfonic acid phenyl esters; phosphoric acid ester compounds; trimellitic acid ester compounds; chlorination Paraffin; hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oils; epoxidized soybean oil, benzyl epoxystearate, bis(2-ethylhexyl)-4,5-epoxycyclohexane-1,2-dicarbohydrate Examples include epoxy plasticizers such as xylate (E-PS), epoxy octyl stearate, and epoxy butyl stearate.
 また、高分子可塑剤を使用することができる。高分子可塑剤の具体例としては、ビニル系重合体;ポリエステル系可塑剤;数平均分子量500以上のポリエチレングリコール、ポリプロピレングリコール等のポリエーテルポリオール、これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等が挙げられる。 Additionally, polymer plasticizers can be used. Specific examples of polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol with a number average molecular weight of 500 or more; Examples include polyethers such as derivatives converted into polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene, and the like.
 可塑剤の使用量は、ポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して、5~150重量部であることが好ましく、10~120重量部がより好ましく、20~100重量部が特に好ましい。5重量部未満では可塑剤としての効果が発現しなくなり、150重量部を超えると硬化物の機械強度が不足する。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。 The amount of plasticizer used is preferably 5 to 150 parts by weight, more preferably 10 to 120 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). Particularly preferred is 20 to 100 parts by weight. If it is less than 5 parts by weight, it will not be effective as a plasticizer, and if it exceeds 150 parts by weight, the mechanical strength of the cured product will be insufficient. Plasticizers may be used alone or in combination of two or more.
 <溶剤、希釈剤>
 本発明の組成物には溶剤または希釈剤を添加することができる。溶剤および希釈剤としては、特に限定されないが、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素、ハロゲン化炭化水素、アルコール、エステル、ケトン、エーテルなどを使用することができる。溶剤または希釈剤を使用する場合、組成物を屋内で使用した時の空気への汚染の問題から、溶剤の沸点は、150℃以上が好ましく、200℃以上がより好ましく、250℃以上が特に好ましい。上記溶剤または希釈剤は単独で用いてもよく、2種以上併用してもよい。
<Solvent, diluent>
Solvents or diluents can be added to the compositions of the invention. The solvent and diluent are not particularly limited, but aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, ethers, and the like can be used. When using a solvent or diluent, the boiling point of the solvent is preferably 150°C or higher, more preferably 200°C or higher, particularly preferably 250°C or higher, in view of the problem of air pollution when the composition is used indoors. . The above solvents or diluents may be used alone or in combination of two or more.
 <タレ防止剤>
 本実施形態に係る硬化性組成物には、タレを防止し、作業性を良くするためにタレ防止剤を添加しても良い。タレ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。これらタレ防止剤は単独で用いてもよく、2種以上を併用してもよい。
 タレ防止剤の使用量は、ポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して、0.1~20重量部であることが好ましい。
<Anti-sagging agent>
An anti-sagging agent may be added to the curable composition according to this embodiment in order to prevent sagging and improve workability. Anti-sagging agents include, but are not particularly limited to, polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
The amount of anti-sagging agent used is preferably 0.1 to 20 parts by weight based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B).
 <酸化防止剤>
 本実施形態に係る混合物および硬化性組成物には、酸化防止剤(老化防止剤)を添加してもよい。酸化防止剤を使用すると硬化物の耐熱性や耐候性を高めることができる。酸化防止剤としては、ヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できる。酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。
<Antioxidant>
An antioxidant (antiaging agent) may be added to the mixture and curable composition according to this embodiment. Use of an antioxidant can improve the heat resistance and weather resistance of the cured product. Examples of antioxidants include hindered phenols, monophenols, bisphenols, and polyphenols. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731.
 本実施形態に係る混合物および硬化性組成物の酸化防止剤としては、ヒンダードフェノール系のものが好ましく、その使用量はポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して、0.05~10.00重量部であることが好ましく、0.1~5.0重量部がより好ましく、0.2~2.5重量部が特に好ましい。 The antioxidant in the mixture and curable composition according to the present embodiment is preferably a hindered phenol type antioxidant, and the amount used is 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). The amount is preferably 0.05 to 10.00 parts by weight, more preferably 0.1 to 5.0 parts by weight, and particularly preferably 0.2 to 2.5 parts by weight.
 <光安定剤>
 本実施形態に係る硬化性組成物には、光安定剤を添加してもよい。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。
<Light stabilizer>
A light stabilizer may be added to the curable composition according to this embodiment. Use of a light stabilizer can prevent photooxidative deterioration of the cured product. Examples of light stabilizers include benzotriazole compounds, hindered amine compounds, and benzoate compounds, and hindered amine compounds are particularly preferred.
 光安定剤の使用量は、ポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して、0.1~10重量部であることが好ましく、0.2~5重量部がより好ましい。 The amount of light stabilizer used is preferably 0.1 to 10 parts by weight, and preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). part is more preferable.
 <紫外線吸収剤>
 本実施形態に係る硬化性組成物には、紫外線吸収剤を添加してもよい。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換アクリロニトリル系、金属キレート系化合物等が例示できる。特に、ベンゾトリアゾール系が好ましく、市販名チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、チヌビン571(以上、BASF製)が挙げられる。
<Ultraviolet absorber>
A UV absorber may be added to the curable composition according to this embodiment. Use of an ultraviolet absorber can improve the surface weather resistance of the cured product. Examples of the ultraviolet absorber include benzophenone, benzotriazole, salicylate, substituted acrylonitrile, and metal chelate compounds. Particularly preferred are benzotriazoles, and commercially available names include Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, and Tinuvin 571 (manufactured by BASF).
 紫外線吸収剤の使用量は、ポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して、0.1~10重量部であることが好ましく、0.2~5重量部がより好ましい。 The amount of ultraviolet absorber used is preferably 0.1 to 10 parts by weight, and preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). part is more preferable.
 <物性調整剤>
 本発明の硬化性組成物には、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、フェノキシトリメチルシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジフェニルジメトキシシラン、フェニルトリメトキシシランなどのアリールアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、トリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本発明の組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上併用してもよい。
<Physical property modifier>
The curable composition of the present invention may optionally contain a physical property modifier for adjusting the tensile properties of the resulting cured product. Physical property modifiers are not particularly limited, but include, for example, alkyl alkoxysilanes such as phenoxytrimethylsilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; diphenyldimethoxysilane, phenyltrimethoxysilane Aryl alkoxysilanes such as dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, γ-glycidoxypropylmethyldiisopropenoxysilane; tris(trimethylsilyl)borate, tris(triethyl Trialkylsilyl borates such as silyl) borates; silicone varnishes; polysiloxanes, and the like. By using the physical property modifier, it is possible to increase the hardness of the composition of the present invention when it is cured, or conversely to decrease the hardness and increase the elongation at break. The above physical property modifiers may be used alone or in combination of two or more.
 特に、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、ヘキサノール、オクタノール、フェノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトールなどのアルコールの誘導体であって加水分解によりシランモノオールを生成するシリコン化合物を挙げることができる。具体的には、フェノキシトリメチルシラン、トリス((トリメチルシロキシ)メチル)プロパン等が挙げられる。 In particular, a compound that produces a compound having a monovalent silanol group in its molecule upon hydrolysis has the effect of lowering the modulus of the cured product without worsening the stickiness of the surface of the cured product. Particularly preferred are compounds that produce trimethylsilanol. Examples of compounds that produce compounds having a monovalent silanol group in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, phenol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which produce silane monomers by hydrolysis. Mention may be made of silicon compounds that produce ol. Specific examples include phenoxytrimethylsilane and tris((trimethylsiloxy)methyl)propane.
 物性調整剤の使用量は、ポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して、0.1~10重量部であることが好ましく、0.5~5重量部がより好ましい。 The amount of the physical property modifier used is preferably 0.1 to 10 parts by weight, and preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). part is more preferable.
 <粘着付与樹脂>
 本発明には、基材への接着性や密着性を高める目的、あるいはその他必要に応じて粘着付与樹脂を添加できる。粘着付与樹脂としては、特に制限はなく通常使用されているものを使うことが出来る。
<Tackifying resin>
In the present invention, a tackifying resin can be added for the purpose of improving adhesion or adhesion to a base material, or for other purposes as necessary. There are no particular restrictions on the tackifying resin, and commonly used tackifying resins can be used.
 具体例としては、テルペン系樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂、テルペン-フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、スチレン系ブロック共重合体およびその水素添加物、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、DCPD樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。 Specific examples include terpene resins, aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenolic resins, phenolic resins, modified phenolic resins, xylene-phenolic resins, cyclopentadiene-phenolic resins, coumaron-indene resins, and rosin-based resins. Resins, rosin ester resins, hydrogenated rosin ester resins, xylene resins, low molecular weight polystyrene resins, styrene copolymer resins, styrene block copolymers and their hydrogenated products, petroleum resins (e.g. C5 hydrocarbon resins, C9 Hydrocarbon resins, C5C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, DCPD resins, and the like. These may be used alone or in combination of two or more.
 粘着付与樹脂の使用量はポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して2~100重量部が好ましく、5~50重量部であることがより好ましく、5~30部であることがさらに好ましい。2重量部より少ないと基材への接着、密着効果が得られにくく、また100重量部を超えると組成物の粘度が高くなりすぎ取扱いが困難となる場合がある。 The amount of the tackifying resin used is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). More preferably, the amount is between 30 parts and 30 parts. If it is less than 2 parts by weight, it is difficult to obtain adhesion and adhesion effects to the substrate, and if it exceeds 100 parts by weight, the viscosity of the composition may become too high, making it difficult to handle.
 <エポキシ基を含有する化合物>
 本発明の組成物においてはエポキシ基を含有する化合物を使用できる。エポキシ基を有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を有する化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物およびそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化あまに油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレ-ト、エポキシブチルステアレ-ト等があげられる。エポキシ化合物はポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して0.5~50重量部の範囲で使用するのがよい。
<Compound containing epoxy group>
Compounds containing epoxy groups can be used in the compositions of the invention. When a compound having an epoxy group is used, the restorability of the cured product can be improved. Examples of compounds having an epoxy group include epoxidized unsaturated oils and fats, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives, and mixtures thereof. Specifically, epoxidized soybean oil, epoxidized linseed oil, bis(2-ethylhexyl)-4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxyoctyl stearate , epoxybutyl stearate, etc. The epoxy compound is preferably used in an amount of 0.5 to 50 parts by weight based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B).
 <光硬化性物質>
 本発明の組成物には光硬化性物質を使用できる。光硬化性物資を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、代表的なものとしては、アクリル系又はメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物である不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。
<Photocurable substance>
Photocurable materials can be used in the compositions of the present invention. When a photocurable material is used, a film of the photocurable material is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved. Many compounds of this type are known, including organic monomers, oligomers, resins, and compositions containing them.A typical example is one containing one or several acrylic or methacrylic unsaturated groups. Unsaturated acrylic compounds, polyvinyl cinnamates, azidated resins, etc., which are monomers, oligomers, or mixtures thereof, can be used.
 光硬化性物質の使用量は、ポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して0.1~20重量部、好ましくは0.5~10重量部の範囲で使用するのがよく、0.1重量部以下では耐候性を高める効果はなく、20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。 The amount of photocurable substance used is in the range of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the total amount of polyoxyalkylene polymers (A) and (B). If it is less than 0.1 part by weight, there is no effect of improving weather resistance, and if it is more than 20 parts by weight, the cured product becomes too hard and tends to crack.
 <酸素硬化性物質>
 本発明の組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性してえられる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3-ペンタジエンなどのジエン系化合物を重合または共重合させてえられる1,2-ポリブタジエン、1,4-ポリブタジエン、C5~C8ジエンの重合体などの液状重合体などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
<Oxygen curable substance>
Oxygen curable materials can be used in the compositions of the present invention. Examples of oxygen-curable substances include unsaturated compounds that can react with oxygen in the air, which reacts with oxygen in the air to form a cured film near the surface of the cured product, causing stickiness on the surface and dust on the surface of the cured product. It acts by preventing the adhesion of dirt and dust. Specific examples of oxygen-curable substances include drying oils such as tung oil and linseed oil; various alkyd resins obtained by modifying these compounds; acrylic polymers and epoxy resins modified with drying oils. , silicone resin; 1,2-polybutadiene, 1,4-polybutadiene, C5 to C8 diene polymers obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc. Examples include liquid polymers. These may be used alone or in combination of two or more.
 酸素硬化性物質の使用量は、ポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して0.1~20重量部の範囲で使用するのがよく、さらに好ましくは0.5~10重量部である。前記使用量が0.1重量部未満になると汚染性の改善が充分でなくなり、20重量部をこえると硬化物の引張り特性などが損なわれる傾向が生ずる。特開平3-160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。 The amount of the oxygen-curable substance used is preferably in the range of 0.1 to 20 parts by weight, and more preferably, based on 100 parts by weight of the total amount of the polyoxyalkylene polymers (A) and (B). The amount is 0.5 to 10 parts by weight. If the amount used is less than 0.1 part by weight, the improvement in staining properties will not be sufficient, and if it exceeds 20 parts by weight, the tensile properties of the cured product will tend to be impaired. As described in JP-A-3-160053, oxygen-curable substances are preferably used in combination with photo-curable substances.
 <エポキシ樹脂>
 本実施形態に係る硬化性組成物にはエポキシ樹脂を添加してもよい。エポキシ樹脂を添加した組成物は、特に外壁タイル用接着剤として好ましい。エポキシ樹脂としてはビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂などが挙げられる。
<Epoxy resin>
An epoxy resin may be added to the curable composition according to this embodiment. Compositions containing epoxy resins are particularly preferred as adhesives for exterior wall tiles. Examples of the epoxy resin include bisphenol A type epoxy resins and novolac type epoxy resins.
 これらのエポキシ樹脂と、ポリオキシアルキレン系重合体(A)と(B)の使用割合は、重量比で((A)+(B))/エポキシ樹脂=100/1~1/100の範囲であることが好ましい。((A)+(B))/エポキシ樹脂の割合が1/100以上であると、エポキシ樹脂硬化物の衝撃強度や強靱性の改良効果が得られやすく、((A)+(B))/エポキシ樹脂の割合が100/1以下であると、硬化物の強度が良好になり得る。 The usage ratio of these epoxy resins and polyoxyalkylene polymers (A) and (B) is within the range of ((A) + (B))/epoxy resin = 100/1 to 1/100 by weight. It is preferable that there be. When the ratio of ((A) + (B)) / epoxy resin is 1/100 or more, it is easy to obtain the effect of improving the impact strength and toughness of the cured epoxy resin, and ((A) + (B)) When the ratio of /epoxy resin is 100/1 or less, the strength of the cured product may be good.
 エポキシ樹脂を添加する場合、本実施形態に係る接着剤組成物には、エポキシ樹脂を硬化させる硬化剤を併用できる。使用し得るエポキシ樹脂硬化剤としては、特に制限はなく、一般に使用されているエポキシ樹脂硬化剤を使用できる。 When adding an epoxy resin, a curing agent for curing the epoxy resin can be used in combination with the adhesive composition according to the present embodiment. There are no particular limitations on the epoxy resin curing agent that can be used, and commonly used epoxy resin curing agents can be used.
 エポキシ樹脂の硬化剤を使用する場合、その使用量はエポキシ樹脂100重量部に対し、0.1~300重量部の範囲であることが好ましい。 When using an epoxy resin curing agent, the amount used is preferably in the range of 0.1 to 300 parts by weight per 100 parts by weight of the epoxy resin.
 <加水分解性シリル基を有する(メタ)アクリル系重合体>
 従来、加水分解性シリル基を有するポリオキシアルキレン系重合体(A)および(B)と、加水分解性シリル基を有する(メタ)アクリル系重合体をブレンドした硬化性組成物が知られている。
<(Meth)acrylic polymer having hydrolyzable silyl group>
Conventionally, curable compositions have been known that are a blend of polyoxyalkylene polymers (A) and (B) having hydrolyzable silyl groups and (meth)acrylic polymers having hydrolyzable silyl groups. .
 本実施形態に係る硬化性組成物は、加水分解性シリル基を有する(メタ)アクリル系重合体を含有してもよいが、当該(メタ)アクリル系重合体を実質的に含有しないものであってもよい。当該(メタ)アクリル系重合体を実質的に含有しない場合であっても、ポリエステル系基材に対する接着性を改善することができる。また、当該(メタ)アクリル系重合体を実質的に含有しない場合、硬化性組成物を低粘度のものとすることができ、作業性が良好になる利点を得ることができる。 The curable composition according to the present embodiment may contain a (meth)acrylic polymer having a hydrolyzable silyl group, but it may not substantially contain the (meth)acrylic polymer. It's okay. Even when the (meth)acrylic polymer is not substantially contained, the adhesion to the polyester base material can be improved. In addition, when the (meth)acrylic polymer is not substantially contained, the curable composition can have a low viscosity, which provides the advantage of good workability.
 加水分解性シリル基を有する(メタ)アクリル系重合体の含有量は、ポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して0~10重量部であってよく、0~5重量部であってもよく、0~1重量部であってもよい。また、1重量部未満であってもよく、0.1重量部未満であってもよい。 The content of the (meth)acrylic polymer having a hydrolyzable silyl group may be 0 to 10 parts by weight based on 100 parts by weight of the total amount of the polyoxyalkylene polymers (A) and (B). , 0 to 5 parts by weight, or 0 to 1 part by weight. Further, the amount may be less than 1 part by weight, or less than 0.1 part by weight.
 <<硬化性組成物中のポリオキシアルキレン系重合体(A)と(B)の重量比率>>
 硬化性組成物中のポリオキシアルキレン系重合体(A)とポリオキシアルキレン系重合体(B)の合計含有量の重量比率は、硬化性組成物全体重量を100%とした場合に、15%~50%であることが好ましく、20%~35%がより好ましい。(A)と(B)の合計含有量の重量比率が上記範囲内であると、硬化性が良好で、接着強度の発現速度が優れたものとなりやすい。
<<Weight ratio of polyoxyalkylene polymers (A) and (B) in curable composition>>
The weight ratio of the total content of the polyoxyalkylene polymer (A) and the polyoxyalkylene polymer (B) in the curable composition is 15% when the total weight of the curable composition is 100%. It is preferably 50%, more preferably 20% to 35%. When the weight ratio of the total content of (A) and (B) is within the above range, curability is good and the rate of development of adhesive strength is likely to be excellent.
 <<有機重合体(A)と(B)を含む硬化性組成物の粘度>>
 ポリオキシアルキレン系重合体(A)と(B)を含む硬化性組成物の23℃における粘度は、B型粘度計の回転数10rpmにて、30Pa・s~400Pa・sであることが好ましい。ポリオキシアルキレン系重合体(A)と(B)を含む硬化性組成物の粘度が上記範囲内であると、作業性が良好で、機械物性が優れ、接着強度の発現速度が優れたものとなりやすい。
<<Viscosity of curable composition containing organic polymers (A) and (B)>>
The viscosity of the curable composition containing the polyoxyalkylene polymers (A) and (B) at 23° C. is preferably 30 Pa·s to 400 Pa·s at a rotation speed of 10 rpm using a B-type viscometer. When the viscosity of the curable composition containing the polyoxyalkylene polymers (A) and (B) is within the above range, it will have good workability, excellent mechanical properties, and an excellent rate of development of adhesive strength. Cheap.
 <<硬化性組成物の調製>>
 本発明の硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する1成分型として調製することも可能であり、硬化剤として別途、シラノール縮合触媒、充填材、可塑剤、水等の成分を配合しておき、該配合材と有機重合体組成物を使用前に混合する2成分型として調製することもできる。作業性の点からは、1成分型が好ましい。
<<Preparation of curable composition>>
The curable composition of the present invention can also be prepared as a one-component type in which all the ingredients are mixed in advance and stored in a sealed container, and the composition is cured by moisture in the air after application. It is also possible to prepare a two-component product in which components such as a filler, a plasticizer, and water are mixed in advance and the blended materials and the organic polymer composition are mixed before use. From the viewpoint of workability, a one-component type is preferable.
 前記硬化性組成物が1成分型の場合、すべての配合成分が予め配合されるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。また、脱水乾燥法に加えてメチルトリメトキシシラン、フェニルトリメトキシシラン、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加することにより、さらに貯蔵安定性は向上する。脱水剤としては、Evonik社のDynasylan6490などの部分的に縮合したシラン化合物なども、安全性、安定性の観点で好適に使用できる。 When the curable composition is a one-component type, all components are blended in advance, so components containing water are either dehydrated and dried before use, or dehydrated during compounding and kneading by reducing pressure, etc. is preferable. In addition to the dehydration drying method, methyltrimethoxysilane, phenyltrimethoxysilane, n-propyltrimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, Storage stability is further improved by adding an alkoxysilane compound such as silane or γ-glycidoxypropyltrimethoxysilane. As the dehydrating agent, partially condensed silane compounds such as Dynasylan 6490 manufactured by Evonik can also be suitably used from the viewpoint of safety and stability.
 脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は、本発明のポリオキシアルキレン系重合体(A)と(B)の合計量100重量部に対して、0.1~20重量部の範囲で使用することが好ましく、より好ましくは0.5~10重量部の範囲である。 The amount of a dehydrating agent, particularly a silicon compound capable of reacting with water such as vinyltrimethoxysilane, to be used is 0.00 parts by weight based on 100 parts by weight of the total amount of the polyoxyalkylene polymers (A) and (B) of the present invention. It is preferably used in a range of 1 to 20 parts by weight, more preferably in a range of 0.5 to 10 parts by weight.
 なお、ポリオキシアルキレン系重合体(A)と(B)は、事前に混合しておいてもよく、硬化性組成物を製造する際に、添加混合させることもできるし、施工時に添加混合させることもできる。 The polyoxyalkylene polymers (A) and (B) may be mixed in advance, or may be added and mixed when producing the curable composition, or may be added and mixed at the time of construction. You can also do that.
 ポリオキシアルキレン系重合体(A)と(B)の事前混合方法は特に指定されないが、例えばフックや撹拌翼の付いた容器にポリオキシアルキレン系重合体(A)および(B)を仕込み、フックや撹拌翼によって混合する方法や、容器にポリオキシアルキレン系重合体(A)および(B)を仕込み、ドリルミキサーや撹拌機による混合、容器にポリオキシアルキレン系重合体(A)および(B)を仕込み、自転公転ミキサーなどによる機械混合、ポリオキシアルキレン系重合体(A)あるいは(B)が仕込まれている容器に、もう片方のポリオキシアルキレン系重合体を勢いよく添加することによる対流で混合する方法などがある。また少量であれば、スパチュラやヘラで手混ぜして混合することもできる。また混合は、いずれの方法においても加熱下、室温下、あるいは冷却下で行われることが好ましい。 The method of pre-mixing the polyoxyalkylene polymers (A) and (B) is not particularly specified, but for example, the polyoxyalkylene polymers (A) and (B) are placed in a container equipped with a hook or stirring blade, and the A method of mixing with a stirrer or a stirring blade, or a method of mixing polyoxyalkylene polymers (A) and (B) in a container and mixing with a drill mixer or a stirrer, or a method of mixing polyoxyalkylene polymers (A) and (B) in a container. by mechanical mixing using a rotation-revolution mixer, or by convection by vigorously adding the other polyoxyalkylene polymer to the container containing polyoxyalkylene polymer (A) or (B). There are methods of mixing. If the amount is small, it can also be mixed by hand with a spatula or spatula. In any method, the mixing is preferably carried out under heating, at room temperature, or under cooling.
 <<用途>>
 本発明の硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、防水材、塗膜防水材、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材として使用することができる。本発明の硬化性組成物を硬化して得られる硬化物は、柔軟性および接着性に優れることから、シーリング材または接着剤として好適に使用することができる。
<<Applications>>
The curable composition of the present invention is suitable for adhesives, sealing materials for buildings, ships, automobiles, roads, etc., adhesives, waterproofing materials, coating film waterproofing materials, molding agents, vibration-proofing materials, damping materials, and soundproofing materials. , can be used as foam material, paint, spray material. Since the cured product obtained by curing the curable composition of the present invention has excellent flexibility and adhesive properties, it can be suitably used as a sealant or adhesive.
 また本発明の硬化性組成物は、太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気・電子部品、装置の電気絶縁材料、音響学的絶縁材料、弾性接着剤、バインダー、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、アスファルト防水材用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療用粘着シート、医療機器シール材、歯科印象材料、食品包装材、サイジングボードなどの外装材の目地用シーリング材、コーティング材、防滑被覆材、緩衝材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、コンクリート補強材、仮止め用接着剤、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、トラック、バスなど大型車両部品、列車車両用部品、航空機部品、船舶用部品、電機部品、各種機械部品などにおいて使用される液状シール剤などの様々な用途に利用可能である。自動車を例にすると、プラスチックカバー、トリム、フランジ、バンパー、ウインドウ取付、内装部材、外装部品などの接着取付など多種多様に使用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本発明の硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、皮革、繊維製品、布地、紙、板およびゴムを結合するための接着剤、反応性後架橋感圧性接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用シーリング材、または、建築物のワーキングジョイント用シーリング材、土木用、橋梁用材料としても使用可能である。さらに、粘着テープや粘着シートなどの粘着材料としても使用可能である。 Further, the curable composition of the present invention can be used for electrical/electronic component materials such as solar cell back sealing materials, electrical/electronic components such as insulating coating materials for electric wires and cables, electrical insulating materials for devices, acoustic insulating materials, Elastic adhesives, binders, contact adhesives, spray sealants, crack repair materials, tiling adhesives, asphalt waterproofing adhesives, powder coatings, casting materials, medical rubber materials, medical adhesives , medical adhesive sheets, medical device sealants, dental impression materials, food packaging materials, joint sealants for exterior materials such as sizing boards, coating materials, anti-slip covering materials, cushioning materials, primers, conductive materials for shielding electromagnetic waves, Thermal conductive materials, hot melt materials, electrical and electronic potting agents, films, gaskets, concrete reinforcing materials, temporary fixing adhesives, various molding materials, and rust prevention and cutting of wired glass and laminated glass edges (cut parts). Used for various purposes such as waterproof sealants, liquid sealants used in automobile parts, large vehicle parts such as trucks and buses, train car parts, aircraft parts, marine parts, electrical parts, various mechanical parts, etc. It is possible. Taking automobiles as an example, it can be used in a wide variety of applications, such as attaching plastic covers, trims, flanges, bumpers, windows, and adhesively attaching interior and exterior parts. Furthermore, it can be used alone or with the aid of a primer to adhere to a wide range of substrates such as glass, porcelain, wood, metal, resin moldings, etc., and thus can be used in various types of sealing and adhesive compositions. . In addition, the curable composition of the present invention can be used for interior panel adhesives, exterior panel adhesives, tiling adhesives, masonry adhesives, ceiling finishing adhesives, floor finishing adhesives, and wall finishing adhesives. Adhesives, adhesives for vehicle panels, adhesives for electrical, electronic and precision equipment assembly, adhesives for bonding leather, textiles, fabrics, paper, boards and rubber, reactive post-crosslinking pressure-sensitive adhesives, direct It can also be used as a sealant for glazing, a sealant for double-glazed glass, a sealant for SSG construction, a sealant for working joints in buildings, and a material for civil engineering and bridges. Furthermore, it can be used as an adhesive material such as adhesive tape or adhesive sheet.
〔開示項目〕
 以下の各項目では、本開示における好ましい態様を列挙するが、本発明は以下の項目に限定されるものではない。
〔項目1〕
 いずれもポリオキシアルキレンの主鎖構造と、前記主鎖構造の末端に結合した末端構造を有し、前記末端構造が、加水分解性シリル基並びに、末端オレフィン基及び/又は内部オレフィン基とを有する、ポリオキシアルキレン系重合体(A)およびポリオキシアルキレン系重合体(B)の混合物であって、
 前記ポリオキシアルキレン系重合体(A)は、直鎖主鎖構造を有し、1分子中に1つの前記末端構造を有し、
 加水分解性シリル基のモル数/(加水分解性シリル基、末端オレフィン基および内部オレフィン基の合計モル数)が0.50以上、1.00未満であり、
 数平均分子量が1,000以上8,000以下であり、
 前記ポリオキシアルキレン系重合体(B)は、分岐主鎖構造を有し、
 加水分解性シリル基のモル数/(加水分解性シリル基、末端オレフィン基および内部オレフィン基の合計モル数)が0.60以上、1.00未満であり、
 数平均分子量が6,000以上15,000以下であり、
 前記混合物において、前記ポリオキシアルキレン系重合体(A):前記ポリオキシアルキレン系重合体(B)の重量比が5:95~60:40である混合物。
〔項目2〕
 前記ポリオキシアルキレン系重合体(A)およびポリオキシアルキレン系重合体(B)の主鎖構造がポリオキシプロピレンである、項目1に記載の混合物。
〔項目3〕
 前記ポリオキシアルキレン系重合体(B)の数平均分子量が9,000以上14,000以下である、項目1又は2に記載の混合物。
〔項目4〕
 前記混合物の粘度が1.0Pa・s以上3.5Pa・s以下である、項目1~3のいずれか1項に記載の混合物。
〔項目5〕
 前記ポリオキシアルキレン系重合体(A)の数平均分子量が2,000以上5,000以下である、項目1~4のいずれか1項に記載の混合物。
〔項目6〕
 前記混合物において、前記ポリオキシアルキレン系重合体(A):前記ポリオキシアルキレン系重合体(B)の重量比が10:90~40:60(重量部)である、項目1~5のいずれか1項に記載の混合物。
〔項目7〕
 前記加水分解性シリル基が、一般式(1):
-R-CH-CH-Si(R 3-a)X  (1)
(式中、Rは水素、炭素、および窒素からなる群より選択される1種以上を構成原子として含有する炭素数1から20の2価の有機基を示し、Rは炭素数1から20のアルキル基、炭素数6から20のアリール基、炭素数7から20のアラルキル基または-OSi(R’)で示されるトリオルガノシロキシ基を示す。ここでR’は炭素数1から20の一価の炭化水素基であり3個のR’は同一であってもよく、異なっていてもよい。Xは水酸基または加水分解性基を示し、Xが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは1~3の整数である。)
で示される、項目1~6のいずれか1項に記載の混合物。
〔項目8〕
 前記一般式(1)中に記載のR1がCHであることを特徴とする、項目7に記載の混合物。
〔項目9〕
 前記一般式(1)中に記載のaが2である、項目7または8のいずれか1項に記載の混合物。
〔項目10〕
 項目1~9のいずれか1項に記載の混合物を含む硬化性組成物。
〔項目11〕
 項目10に記載の硬化性組成物を硬化することで得られる硬化物。
[Disclosure items]
In each of the following items, preferred embodiments of the present disclosure are listed, but the present invention is not limited to the following items.
[Item 1]
Both have a main chain structure of polyoxyalkylene and a terminal structure bonded to the end of the main chain structure, and the terminal structure has a hydrolyzable silyl group, a terminal olefin group, and/or an internal olefin group. , a mixture of a polyoxyalkylene polymer (A) and a polyoxyalkylene polymer (B),
The polyoxyalkylene polymer (A) has a linear main chain structure and has one terminal structure in one molecule,
The number of moles of hydrolyzable silyl group/(total number of moles of hydrolyzable silyl group, terminal olefin group, and internal olefin group) is 0.50 or more and less than 1.00,
The number average molecular weight is 1,000 or more and 8,000 or less,
The polyoxyalkylene polymer (B) has a branched main chain structure,
The number of moles of the hydrolyzable silyl group/(the total number of moles of the hydrolyzable silyl group, terminal olefin group, and internal olefin group) is 0.60 or more and less than 1.00,
The number average molecular weight is 6,000 or more and 15,000 or less,
In the mixture, the weight ratio of the polyoxyalkylene polymer (A) to the polyoxyalkylene polymer (B) is 5:95 to 60:40.
[Item 2]
The mixture according to item 1, wherein the main chain structure of the polyoxyalkylene polymer (A) and the polyoxyalkylene polymer (B) is polyoxypropylene.
[Item 3]
The mixture according to item 1 or 2, wherein the polyoxyalkylene polymer (B) has a number average molecular weight of 9,000 or more and 14,000 or less.
[Item 4]
The mixture according to any one of items 1 to 3, wherein the viscosity of the mixture is 1.0 Pa·s or more and 3.5 Pa·s or less.
[Item 5]
The mixture according to any one of items 1 to 4, wherein the polyoxyalkylene polymer (A) has a number average molecular weight of 2,000 or more and 5,000 or less.
[Item 6]
Any one of items 1 to 5, wherein in the mixture, the weight ratio of the polyoxyalkylene polymer (A) to the polyoxyalkylene polymer (B) is 10:90 to 40:60 (parts by weight). The mixture according to item 1.
[Item 7]
The hydrolyzable silyl group has the general formula (1):
-R 1 -CH 2 -CH 2 -Si(R 2 3-a )X a (1)
(In the formula, R 1 represents a divalent organic group having 1 to 20 carbon atoms and containing one or more constituent atoms selected from the group consisting of hydrogen, carbon, and nitrogen, and R 2 represents a divalent organic group having 1 to 20 carbon atoms. 20 alkyl group, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a triorganosiloxy group represented by -OSi(R') 3 , where R' is an alkyl group having 1 to 20 carbon atoms. It is a monovalent hydrocarbon group, and the three R's may be the same or different. X represents a hydroxyl group or a hydrolyzable group, and when two or more They may be the same or different. a is an integer from 1 to 3.)
The mixture according to any one of items 1 to 6, represented by:
[Item 8]
8. The mixture according to item 7, wherein R 1 in the general formula (1) is CH 2 .
[Item 9]
The mixture according to any one of item 7 or 8, wherein a in the general formula (1) is 2.
[Item 10]
A curable composition comprising the mixture according to any one of items 1 to 9.
[Item 11]
A cured product obtained by curing the curable composition according to item 10.
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.
 (数平均分子量)
実施例中の数平均分子量は以下の条件で測定したGPC分子量である。
送液システム:東ソー製HLC-8420GPC
カラム:東ソー製TSK-GEL Hタイプ
溶媒:THF
分子量:ポリスチレン換算
測定温度:40℃
(number average molecular weight)
The number average molecular weight in the examples is the GPC molecular weight measured under the following conditions.
Liquid feeding system: Tosoh HLC-8420GPC
Column: Tosoh TSK-GEL H type Solvent: THF
Molecular weight: polystyrene equivalent Measurement temperature: 40°C
 (加水分解性シリル基導入率)
 実施例中の加水分解性シリル基導入率は、下記の核磁気共鳴装置(NMR)を用いてH―NMR測定(CDCl溶媒中で測定)をし、その測定の結果を用いて算出した。この算出では、上述した計算方法を用いた。
 装置:AVANCE III HD500型デジタル装置(BRUKER社製)
(Hydrolyzable silyl group introduction rate)
The hydrolyzable silyl group introduction rate in the examples was calculated using the results of 1 H-NMR measurement (measured in CDCl 3 solvent) using the following nuclear magnetic resonance apparatus (NMR). . In this calculation, the calculation method described above was used.
Equipment: AVANCE III HD500 digital equipment (manufactured by BRUKER)
(合成例1)
 1-ブタノールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、1分子中に1つの水酸基を有する数平均分子量4,400、分子量分布Mw/Mn=1.10のポリオキシプロピレン(P-1)を得た。続いてこの水酸基を有するポリオキシプロピレン(P-1)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-1)の水酸基に対して、0.5モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.79モル当量の塩化アリルを添加して水酸基をアリル基に変換した。得られた未精製のポリオキシプロピレンと、n-ヘキサンと、水とを混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、アリル基を1つの末端構造のみに有するポリオキシプロピレン(Q-1)を得た。得られた(Q-1)500gに対し白金ジビニルジシロキサン錯体(白金換算で3重量%の2-プロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン23.5gをゆっくりと滴下した。その混合溶液を100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、加水分解性シリル基導入率が79%、数平均分子量が5,000の、1分子中に1つの末端構造のみを有するポリオキシプロピレン(ポリマーA-1)を得た。
(Synthesis example 1)
Using 1-butanol as an initiator, propylene oxide is polymerized using a zinc hexacyanocobaltate glyme complex catalyst to produce a polymer with a number average molecular weight of 4,400 and a molecular weight distribution Mw/Mn=1.10, which has one hydroxyl group in one molecule. Polyoxypropylene (P-1) was obtained. Subsequently, 1.0 molar equivalent of sodium methoxide based on the hydroxyl groups of the polyoxypropylene (P-1) having hydroxyl groups was added as a 28% methanol solution. After methanol was distilled off by vacuum devolatilization, 0.5 molar equivalent of allyl glycidyl ether was added to the hydroxyl groups of the polymer (P-1), and a reaction was carried out at 130° C. for 2 hours. Thereafter, 0.28 molar equivalent of a methanol solution of sodium methoxide was added to remove methanol, and 1.79 molar equivalent of allyl chloride was further added to convert the hydroxyl group to an allyl group. After mixing and stirring the obtained unpurified polyoxypropylene, n-hexane, and water, the water is removed by centrifugation, and the hexane is devolatilized under reduced pressure from the obtained hexane solution to remove the metals in the polymer. Removed salt. Through the above steps, polyoxypropylene (Q-1) having an allyl group in only one terminal structure was obtained. To 500 g of the obtained (Q-1), 50 μl of platinum divinyldisiloxane complex (3% by weight 2-propanol solution in terms of platinum) was added, and while stirring, 23.5 g of dimethoxymethylsilane was slowly added dropwise. After reacting the mixed solution at 100°C for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain 1. Polyoxypropylene (polymer A-1) having only one terminal structure in the molecule was obtained.
 (合成例2)
 アリルグリシジルエーテルを使用せず、ジメトキシメチルシランの使用量が17.8gであること以外は合成例1と同様の手順を経ることにより、加水分解性シリル基導入率が79%、数平均分子量が4,400の、1分子中に1つの末端構造のみを有するポリオキシプロピレン(ポリマーA-2)を得た。
(Synthesis example 2)
By following the same procedure as in Synthesis Example 1 except that allyl glycidyl ether was not used and the amount of dimethoxymethylsilane used was 17.8 g, the hydrolyzable silyl group introduction rate was 79%, and the number average molecular weight was 4,400 polyoxypropylene (polymer A-2) having only one terminal structure in one molecule was obtained.
 (合成例3)
 アリルグリシジルエーテルを使用せず、ジメトキシメチルシランの代わりにトリメトキシシランを20.5g使用すること以外は合成例1と同様の手順を経ることにより、加水分解性シリル基導入率が79%、数平均分子量が4,400の、1分子中に1つの末端構造のみを有するポリオキシプロピレン(ポリマーA-3)を得た。
(Synthesis example 3)
By following the same procedure as in Synthesis Example 1 except that allyl glycidyl ether was not used and 20.5 g of trimethoxysilane was used instead of dimethoxymethylsilane, the introduction rate of hydrolyzable silyl groups was 79%. Polyoxypropylene (polymer A-3) having an average molecular weight of 4,400 and having only one terminal structure in one molecule was obtained.
 (合成例4)
 1-ブタノールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、1分子中に1つの水酸基を有する数平均分子量7,800、分子量分布Mw/Mn=1.25のポリオキシプロピレン(P-4)を得た。続いてこの水酸基を有するポリオキシプロピレン(P-4)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-4)の水酸基に対して、2.0モル当量の塩化アリルを添加して水酸基をアリル基に変換し、未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンと、n-ヘキサンと、水とを混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、アリル基を1つの末端構造のみに有するポリオキシプロピレン(Q-4)を得た。得られた(Q-4)500gに対し白金ジビニルジシロキサン錯体(白金換算で3重量%の2-プロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン9.5gをゆっくりと滴下した。その混合溶液を100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、加水分解性シリル基導入率が75%、数平均分子量が8,000の、1分子中に1つの末端構造のみを有するポリオキシプロピレン(ポリマーA-5)を得た。
(Synthesis example 4)
Using 1-butanol as an initiator, propylene oxide is polymerized using a zinc hexacyanocobaltate glyme complex catalyst to produce a polymer with a number average molecular weight of 7,800 and a molecular weight distribution Mw/Mn=1.25, which has one hydroxyl group in one molecule. Polyoxypropylene (P-4) was obtained. Subsequently, 1.2 molar equivalents of sodium methoxide based on the hydroxyl groups of the polyoxypropylene (P-4) having hydroxyl groups was added as a 28% methanol solution. After methanol is distilled off by vacuum devolatilization, 2.0 molar equivalents of allyl chloride are added to the hydroxyl groups of the polymer (P-4) to convert the hydroxyl groups into allyl groups, and unreacted allyl chloride is removed. It was removed by devolatilization under reduced pressure. After mixing and stirring the obtained unpurified polyoxypropylene, n-hexane, and water, the water is removed by centrifugation, and the hexane is devolatilized under reduced pressure from the obtained hexane solution to remove the metals in the polymer. Removed salt. Through the above steps, polyoxypropylene (Q-4) having an allyl group in only one terminal structure was obtained. To 500 g of the obtained (Q-4), 50 μl of platinum divinyldisiloxane complex (3% by weight 2-propanol solution in terms of platinum) was added, and while stirring, 9.5 g of dimethoxymethylsilane was slowly added dropwise. After reacting the mixed solution at 100°C for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain 1. Polyoxypropylene (polymer A-5) having only one terminal structure in the molecule was obtained.
 (合成例5)
 ジメトキシメチルシランを使用せず、代わりにトリエトキシシランを27.5g使用すること以外は合成例3と同様の手順を経ることにより、加水分解性シリル基導入率が75%、数平均分子量が8,000の、1分子中に1つの末端構造のみを有するポリオキシプロピレン(ポリマーA-6)を得た。
(Synthesis example 5)
By following the same procedure as in Synthesis Example 3 except that 27.5 g of triethoxysilane was used instead of dimethoxymethylsilane, the hydrolyzable silyl group introduction rate was 75% and the number average molecular weight was 8. ,000 polyoxypropylene (polymer A-6) having only one terminal structure in one molecule was obtained.
 (合成例6)
 1-ブタノールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、1分子中に1つの水酸基を有する数平均分子量2,000、分子量分布Mw/Mn=1.26のポリオキシプロピレン(P-6)を得た。続いてこの水酸基を有するポリオキシプロピレン(P-6)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-6)の水酸基に対して、2.0モル当量の塩化アリルを添加して水酸基をアリル基に変換し、未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンと、n-ヘキサンと、水とを混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、アリル基を1つの末端構造のみに有するポリオキシプロピレン(Q-6)を得た。得られた(Q-6)500gに対し白金ジビニルジシロキサン錯体(白金換算で3重量%の2-プロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン25.0gをゆっくりと滴下した。その混合溶液を100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、加水分解性シリル基導入率が70%、数平均分子量が2,200の、1分子中に1つの末端構造のみを有するポリオキシプロピレン(ポリマーA-7)を得た。
(Synthesis example 6)
Using 1-butanol as an initiator, propylene oxide is polymerized using a zinc hexacyanocobaltate glyme complex catalyst to produce a polymer with a number average molecular weight of 2,000 and a molecular weight distribution Mw/Mn=1.26, which has one hydroxyl group in one molecule. Polyoxypropylene (P-6) was obtained. Subsequently, 1.2 molar equivalents of sodium methoxide based on the hydroxyl groups of the polyoxypropylene (P-6) having hydroxyl groups was added as a 28% methanol solution. After methanol is distilled off by vacuum devolatilization, 2.0 molar equivalent of allyl chloride is added to the hydroxyl group of the polymer (P-6) to convert the hydroxyl group to an allyl group, and unreacted allyl chloride is removed. It was removed by devolatilization under reduced pressure. After mixing and stirring the obtained unpurified polyoxypropylene, n-hexane, and water, the water is removed by centrifugation, and the hexane is devolatilized under reduced pressure from the obtained hexane solution to remove the metals in the polymer. Removed salt. Through the above steps, polyoxypropylene (Q-6) having an allyl group in only one terminal structure was obtained. To 500 g of the obtained (Q-6), 50 μl of platinum divinyldisiloxane complex (3% by weight 2-propanol solution in terms of platinum) was added, and while stirring, 25.0 g of dimethoxymethylsilane was slowly added dropwise. After reacting the mixed solution at 100°C for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure. Polyoxypropylene (polymer A-7) having only one terminal structure in the molecule was obtained.
 (合成例7)
 数平均分子量が約4500のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、分岐主鎖構造で水酸基を有する数平均分子量11,000、分子量分布Mw/Mn=1.26のポリオキシプロピレン(P-7)を得た。続いてこの水酸基を有するポリオキシプロピレン(P-7)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-7)の水酸基に対して、0.3モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.79モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、アリル基を末端構造に有するポリオキシプロピレン(Q-7)を得た。この重合体(Q-7)500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン18.3gをゆっくりと滴下した。100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、分岐主鎖構造で、加水分解性シリル基導入率が79%、数平均分子量が13,000の、末端構造にジメトキシメチルシリル基を有するポリオキシプロピレン(ポリマーB-1)を得た。
(Synthesis example 7)
Polyoxypropylene triol with a number average molecular weight of about 4,500 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to produce a polymer with a branched main chain structure and a hydroxyl group, a number average molecular weight of 11,000, and a molecular weight distribution Mw. Polyoxypropylene (P-7) with /Mn=1.26 was obtained. Subsequently, 1.0 molar equivalent of sodium methoxide based on the hydroxyl groups of the polyoxypropylene (P-7) having hydroxyl groups was added as a 28% methanol solution. After methanol was distilled off by vacuum devolatilization, 0.3 molar equivalent of allyl glycidyl ether was added to the hydroxyl groups of the polymer (P-7), and a reaction was carried out at 130° C. for 2 hours. Thereafter, 0.28 molar equivalent of a methanol solution of sodium methoxide was added to remove methanol, and 1.79 molar equivalent of allyl chloride was further added to convert the terminal hydroxyl group to an allyl group. After mixing and stirring the obtained unpurified polyoxypropylene with n-hexane and water, the water was removed by centrifugation, and the metal salts in the polymer were removed from the obtained hexane solution by devolatilizing the hexane under reduced pressure. Removed. Through the above steps, polyoxypropylene (Q-7) having an allyl group at the terminal structure was obtained. To 500 g of this polymer (Q-7), 50 μl of a platinum divinyldisiloxane complex solution (a 3% by weight isopropanol solution in terms of platinum) was added, and while stirring, 18.3 g of dimethoxymethylsilane was slowly added dropwise. After reacting at 100°C for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a product with a branched main chain structure, a hydrolyzable silyl group introduction rate of 79%, and a number average molecular weight of 13,000. , polyoxypropylene (polymer B-1) having a dimethoxymethylsilyl group in the terminal structure was obtained.
 (合成例8)
 アリルグリシジルエーテルを使用せず、ジメトキシメチルシランの使用量が15.5gであること以外は合成例9と同様の手順を経ることにより、分岐主鎖構造で、加水分解性シリル基導入率が79%、数平均分子量が12,000の、末端構造にジメトキシメチルシリル基を有するポリオキシプロピレン(ポリマーB-2)を得た。
(Synthesis example 8)
By following the same procedure as in Synthesis Example 9 except that allyl glycidyl ether was not used and the amount of dimethoxymethylsilane used was 15.5 g, the hydrolyzable silyl group introduction rate was 79 with a branched main chain structure. % and a number average molecular weight of 12,000, polyoxypropylene (polymer B-2) having a dimethoxymethylsilyl group at the terminal structure was obtained.
 (合成例9)
 数平均分子量が約4500のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、分岐主鎖構造で、水酸基を有する数平均分子量13,100、分子量分布Mw/Mn=1.25のポリオキシプロピレン(P-9)を得た。続いてこの水酸基を有するポリオキシプロピレン(P-9)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-9)の水酸基に対して、2.0モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換し、未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、アリル基を末端構造に有するポリオキシプロピレン(Q-9)を得た。この重合体(Q-9)500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン13.0gをゆっくりと滴下した。100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、分岐主鎖構造で、加水分解性シリル基導入率が79%、数平均分子量が14,000の、末端構造にジメトキシメチルシリル基を有するポリオキシプロピレン(ポリマーB-3)を得た。
(Synthesis example 9)
Polyoxypropylene triol with a number average molecular weight of about 4500 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst, resulting in a branched main chain structure with a number average molecular weight of 13,100 and a molecular weight distribution that has a hydroxyl group. Polyoxypropylene (P-9) with Mw/Mn=1.25 was obtained. Subsequently, 1.2 molar equivalents of sodium methoxide based on the hydroxyl groups of the polyoxypropylene (P-9) having hydroxyl groups was added as a 28% methanol solution. After methanol is distilled off by vacuum devolatilization, 2.0 molar equivalent of allyl chloride is added to the hydroxyl group of the polymer (P-9) to convert the terminal hydroxyl group to an allyl group, and unreacted chloride is removed. Allyl was removed by devolatilization under reduced pressure. After mixing and stirring the obtained unpurified polyoxypropylene with n-hexane and water, the water was removed by centrifugation, and the metal salts in the polymer were removed from the obtained hexane solution by devolatilizing the hexane under reduced pressure. Removed. Through the above steps, polyoxypropylene (Q-9) having an allyl group at the terminal structure was obtained. To 500 g of this polymer (Q-9), 50 μl of a platinum divinyldisiloxane complex solution (a 3% by weight isopropanol solution in terms of platinum) was added, and while stirring, 13.0 g of dimethoxymethylsilane was slowly added dropwise. After reacting at 100°C for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a product with a branched main chain structure, a hydrolyzable silyl group introduction rate of 79%, and a number average molecular weight of 14,000. A polyoxypropylene (polymer B-3) having a dimethoxymethylsilyl group at the terminal structure was obtained.
 (合成例10)
 ポリオキシプロピレン(P-3)を開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、1分子中に1つの水酸基を有する数平均分子量15,500、分子量分布Mw/Mn=1.25のポリオキシプロピレン(P-10)を得た。続いてこの水酸基を有するポリオキシプロピレン(P-10)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-10)の水酸基に対して、2.0モル当量の塩化アリルを添加して水酸基をアリル基に変換し、未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンと、n-ヘキサンと、水とを混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、アリル基を1つの末端構造のみに有するポリオキシプロピレン(Q-10)を得た。得られた(Q-10)500gに対し白金ジビニルジシロキサン錯体(白金換算で3重量%の2-プロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン4.5gをゆっくりと滴下した。その混合溶液を100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、加水分解性シリル基導入率が79%、数平均分子量が16,000の、1分子中に1つの末端構造のみを有するポリオキシプロピレン(ポリマーX-1)を得た。
(Synthesis example 10)
Using polyoxypropylene (P-3) as an initiator, propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst, and the number average molecular weight is 15,500 and the molecular weight distribution Mw/Mn has one hydroxyl group in one molecule. Polyoxypropylene (P-10) with a polyoxypropylene content of 1.25 was obtained. Subsequently, 1.2 molar equivalents of sodium methoxide based on the hydroxyl groups of the polyoxypropylene (P-10) having hydroxyl groups was added as a 28% methanol solution. After methanol is distilled off by vacuum devolatilization, 2.0 molar equivalent of allyl chloride is added to the hydroxyl group of the polymer (P-10) to convert the hydroxyl group to an allyl group, and unreacted allyl chloride is removed. It was removed by devolatilization under reduced pressure. After mixing and stirring the obtained unpurified polyoxypropylene, n-hexane, and water, the water is removed by centrifugation, and the hexane is devolatilized under reduced pressure from the obtained hexane solution to remove the metals in the polymer. Removed salt. Through the above steps, polyoxypropylene (Q-10) having an allyl group in only one terminal structure was obtained. To 500 g of the obtained (Q-10), 50 μl of platinum divinyldisiloxane complex (3% by weight 2-propanol solution in terms of platinum) was added, and while stirring, 4.5 g of dimethoxymethylsilane was slowly added dropwise. After reacting the mixed solution at 100°C for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain 1. Polyoxypropylene (polymer X-1) having only one terminal structure in the molecule was obtained.
 (合成例11)
 数平均分子量が約4500のポリオキシプロピレントリオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、分岐主鎖構造で、水酸基を有する数平均分子量16400、分子量分布Mw/Mn=1.31のポリオキシプロピレン(P-11)を得た。得られた水酸基を有するポリオキシプロピレン(P-11)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-11)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して水酸基をアリル基に変換し、未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端構造にアリル基を有するポリオキシプロピレン(Q-11)を得た。この重合体(Q-11)500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン8.9gをゆっくりと滴下した。100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、分岐主鎖構造で、加水分解性シリル基導入率が71%、数平均分子量が16,400の末端構造にジメトキシメチルシリル基を有するポリオキシプロピレン(ポリマーX-2)を得た。
(Synthesis example 11)
Using polyoxypropylene triol with a number average molecular weight of about 4,500 as an initiator, propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to produce a polymer with a branched main chain structure and a hydroxyl group, a number average molecular weight of 16,400, and a molecular weight distribution Mw/ Polyoxypropylene (P-11) with Mn=1.31 was obtained. Sodium methoxide in an amount of 1.2 molar equivalents based on the hydroxyl groups of the obtained polyoxypropylene (P-11) having hydroxyl groups was added as a 28% methanol solution. After methanol is distilled off by vacuum devolatilization, 1.5 molar equivalent of allyl chloride is further added to the hydroxyl group of the polymer (P-11) to convert the hydroxyl group into an allyl group, and unreacted allyl chloride is removed. was removed by devolatilization under reduced pressure. After mixing and stirring the obtained unpurified polyoxypropylene with n-hexane and water, the water was removed by centrifugation, and the metal salts in the polymer were removed from the obtained hexane solution by devolatilizing the hexane under reduced pressure. Removed. Through the above steps, polyoxypropylene (Q-11) having an allyl group at the terminal structure was obtained. To 500 g of this polymer (Q-11), 50 μl of a platinum divinyldisiloxane complex solution (a 3% by weight isopropanol solution in terms of platinum) was added, and while stirring, 8.9 g of dimethoxymethylsilane was slowly added dropwise. After reacting at 100°C for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a product with a branched main chain structure, a hydrolyzable silyl group introduction rate of 71%, and a number average molecular weight of 16,400. Polyoxypropylene (polymer X-2) having a dimethoxymethylsilyl group at the terminal structure was obtained.
 (合成例12)
 数平均分子量が約4500のポリオキシプロピレングリコール(P-12)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-12)の水酸基に対して、さらに2.0モル当量の塩化アリルを添加して水酸基をアリル基に変換し、未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端構造にアリル基を有するポリオキシプロピレン(Q-12)を得た。この重合体(Q-12)500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン18.4gをゆっくりと滴下した。100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、直鎖構造で、加水分解性シリル基導入率が50%、数平均分子量が4,800の1分子中に2つの末端構造を有するポリオキシプロピレン(ポリマーX-3)を得た。
(Synthesis example 12)
Sodium methoxide in an amount of 1.2 molar equivalents to the hydroxyl group of polyoxypropylene glycol (P-12) having a number average molecular weight of about 4,500 was added as a 28% methanol solution. After methanol is distilled off by vacuum devolatilization, 2.0 molar equivalents of allyl chloride is further added to the hydroxyl groups of the polymer (P-12) to convert the hydroxyl groups into allyl groups, and unreacted allyl chloride is removed. was removed by devolatilization under reduced pressure. After mixing and stirring the obtained unpurified polyoxypropylene with n-hexane and water, the water was removed by centrifugation, and the metal salts in the polymer were removed from the obtained hexane solution by devolatilizing the hexane under reduced pressure. Removed. Through the above steps, polyoxypropylene (Q-12) having an allyl group in the terminal structure was obtained. To 500 g of this polymer (Q-12), 50 μl of a platinum divinyldisiloxane complex solution (a 3% by weight isopropanol solution in terms of platinum) was added, and while stirring, 18.4 g of dimethoxymethylsilane was slowly added dropwise. After reacting at 100°C for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a product with a linear structure, a hydrolyzable silyl group introduction rate of 50%, and a number average molecular weight of 4,800. Polyoxypropylene (polymer X-3) having two terminal structures in the molecule was obtained.
 (合成例13)
 合成例1と同様の手順を経ることにより、ポリオキシプロピレン(P-1)を得た。続いて、90℃で、重合体(P-1)100重量部に対して2-エチルヘキサン酸ビスマス(III)を含有する2-エチルヘキサン酸溶液(Bi:25%)30ppm、及び、重合体が有する水酸基に対して0.95モル当量の(イソシアネートメチル)ジメトキシメチルシランを添加し、重合体が有する水酸基に対しウレタン化反応を実施した。以上により、加水分解性シリル基導入率が93%、数平均分子量が4,500の、1分子中に1つの末端構造のみを有するポリオキシプロピレン(ポリマーA-4)を得た。
(Synthesis example 13)
Polyoxypropylene (P-1) was obtained through the same procedure as in Synthesis Example 1. Subsequently, at 90° C., 30 ppm of a 2-ethylhexanoic acid solution (Bi: 25%) containing bismuth (III) 2-ethylhexanoate and the polymer were added to 100 parts by weight of the polymer (P-1). 0.95 molar equivalent of (isocyanatemethyl)dimethoxymethylsilane was added to the hydroxyl groups possessed by the polymer, and a urethanization reaction was carried out on the hydroxyl groups possessed by the polymer. As a result, polyoxypropylene (polymer A-4) having only one terminal structure per molecule and having a hydrolyzable silyl group introduction rate of 93% and a number average molecular weight of 4,500 was obtained.
 <ポリオキシアルキレン系重合体(A)および(B)の混合物の粘度測定法>
 ポリオキシアルキレン系重合体(A)および(B)を所定の重量比率となるよう100mLカップに、ポリオキシアルキレン系重合体(A)および(B)合計で15gを量り取り、スパチュラを用いて2分間室温下で十分に手混ぜ混合した。その後、20mLのスクリュー瓶に移し替え、室温で20時間静置させることで泡抜きを行った。このポリオキシアルキレン系重合体(A)および(B)の混合物を0.5mL採取し、E型粘度計(東機産業社製、 製品名:RE-85U型)を用いて、測定温度23℃、ローターNo.4(3°×R14)の条件で粘度を測定した。校正用標準液としては、JS14000(日本グリース社製)を用いた。
<Viscosity measurement method of mixture of polyoxyalkylene polymers (A) and (B)>
Weigh out a total of 15 g of polyoxyalkylene polymers (A) and (B) into a 100 mL cup so that they have a predetermined weight ratio, and use a spatula to add 2. The mixture was thoroughly mixed by hand at room temperature for a minute. Thereafter, the mixture was transferred to a 20 mL screw bottle and left to stand at room temperature for 20 hours to remove bubbles. 0.5 mL of this mixture of polyoxyalkylene polymers (A) and (B) was sampled and measured at 23°C using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., product name: RE-85U model). , rotor no. The viscosity was measured under the conditions of 4 (3°×R14). JS14000 (manufactured by Nippon Grease Co., Ltd.) was used as a standard solution for calibration.
 <組成物物性の評価方法>
 各重合体は、下記表1に示す各成分のうち、ポリマー、充填剤、可塑剤、酸化防止剤を混合して十分混練りした後、3本ペイントロールに1回通して分散させた。ついでプラネタリーミキサーで120℃、0.2mmHgの減圧条件下で脱水させながら2時間混練した。室温まで冷却後、表1に示す割合で接着性付与剤、脱水剤、シラノール縮合触媒を添加し十分混合した。最後に0.2mmHgの減圧条件下で3分脱泡した後、配合物を防湿性のカートリッジ型容器に充填して、各硬化性組成物を作製した。作製した各硬化性組成物を用い、23℃、相対湿度50%の恒温恒湿雰囲気下にて各種試験体を作製し、評価を行った。
<Method for evaluating physical properties of composition>
For each polymer, among the components shown in Table 1 below, the polymer, filler, plasticizer, and antioxidant were mixed and sufficiently kneaded, and then passed through three paint rolls once to be dispersed. The mixture was then kneaded in a planetary mixer for 2 hours at 120° C. and under reduced pressure of 0.2 mmHg while dehydrating. After cooling to room temperature, an adhesion imparting agent, a dehydrating agent, and a silanol condensation catalyst were added in the proportions shown in Table 1 and thoroughly mixed. Finally, after defoaming for 3 minutes under a reduced pressure condition of 0.2 mmHg, the formulations were filled into a moisture-proof cartridge-type container to produce each curable composition. Using each of the prepared curable compositions, various test specimens were prepared and evaluated in a constant temperature and humidity atmosphere of 23° C. and 50% relative humidity.
 (せん断接着強度試験)
 試験基材(幅25mm、長さ100mm、厚さ3mm)に、得られた組成物を厚み50μm、幅25mm、長さ25mmで塗布し、2分のオープンタイムをとった後に基材同士を貼り合わせ5kgの重りを1分間のせて圧着した。以下<1><2>に示す養生条件でそれぞれ養生した後、オートグラフを用いて試験片の両端を逆方向に引張速度50mm/分で引っ張り、各養生条件でのせん断接着強度を測定した。
 <1>23℃相対湿度50%で20時間養生
 <2>23℃相対湿度50%で3日間、50℃の乾燥機内で4日間養生
(Shear adhesive strength test)
The obtained composition was applied to a test substrate (width 25 mm, length 100 mm, thickness 3 mm) to a thickness of 50 μm, width 25 mm, and length 25 mm, and after an open time of 2 minutes, the substrates were attached to each other. A total of 5 kg of weight was applied for 1 minute to bond the parts. After curing under the curing conditions shown below in <1> and <2>, both ends of the test piece were pulled in opposite directions at a pulling speed of 50 mm/min using an autograph, and the shear adhesive strength under each curing condition was measured.
<1> Cured for 20 hours at 23°C and 50% relative humidity. <2> Cured for 3 days at 23°C and 50% relative humidity and 4 days in a dryer at 50°C.
 (強度立ち上がり)
 上記<1>の条件で養生した後のせん断接着強度(単位:MPa)を、上記<2>の条件で養生した後のせん断接着強度(単位:MPa)で除し、100を乗じた値を強度立ち上がり(%)とした。
(strength rise)
Divide the shear adhesive strength (unit: MPa) after curing under the conditions of <1> above by the shear adhesive strength (unit: MPa) after curing under the conditions of <2> above, and multiply by 100. Strength rise (%).
 試験基材としては、以下を使用した。
Al:A1050P板 (日本タクト(株)製)
The following was used as the test base material.
Al: A1050P board (manufactured by Nihon Takuto Co., Ltd.)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1に示す成分は、以下に示すとおりである。
・充填剤:(i)脂肪酸処理沈降炭酸カルシウム(白艶華CCR、白石工業(株)製)、
(ii)重質炭酸カルシウム(ホワイトンSB、白石カルシウム(株)製)
・可塑剤:分子量3,000のポリプロピレングリコール系可塑剤(アクトコールP-23K、三井化学製)
・酸化防止剤:ヒンダードフェノール系酸化防止剤(Irganox1010、BASF製)
・接着性付与剤:3-(N-2-アミノエチルアミノ)プロピルトリメトキシシラン(A-1120、Momentive(株)製)
・脱水剤:ビニルトリメトキシシラン(A-171、Momentive(株)製)
・シラノール縮合触媒:ジブチル錫ジアセトアセトネート(U-220H、日東化成(株)製)
The components shown in Table 1 above are as shown below.
- Filler: (i) fatty acid-treated precipitated calcium carbonate (Hakuenka CCR, manufactured by Shiroishi Kogyo Co., Ltd.),
(ii) Heavy calcium carbonate (Whiten SB, manufactured by Shiroishi Calcium Co., Ltd.)
・Plasticizer: Polypropylene glycol plasticizer with a molecular weight of 3,000 (Actcol P-23K, manufactured by Mitsui Chemicals)
・Antioxidant: Hindered phenol antioxidant (Irganox1010, manufactured by BASF)
- Adhesive agent: 3-(N-2-aminoethylamino)propyltrimethoxysilane (A-1120, manufactured by Momentive Co., Ltd.)
・Dehydrating agent: Vinyltrimethoxysilane (A-171, manufactured by Momentive Co., Ltd.)
・Silanol condensation catalyst: dibutyltin diacetoacetonate (U-220H, manufactured by Nitto Kasei Co., Ltd.)
 表1より、実施例1~12では、本発明のポリオキシアルキレン系重合体(A)および(B)を配合した硬化性組成物を用いることで、比較例1、2のポリオキシアルキレン系重合体(B)のみを単独配合した硬化性組成物と比較し、強度の立ち上がりが早く、優れていることがわかる。また、数平均分子量が大きいことや1分子中の末端構造の個数が異なるため本発明の要件を満足しないポリオキシアルキレン系重合体を含む比較例3~5では強度立ち上がりが遅く、不十分であることがわかる。 From Table 1, in Examples 1 to 12, by using the curable composition containing the polyoxyalkylene polymers (A) and (B) of the present invention, the polyoxyalkylene polymers of Comparative Examples 1 and 2 were It can be seen that the strength rises quickly and is superior to the curable composition containing only the combination (B) alone. In addition, in Comparative Examples 3 to 5, which contain polyoxyalkylene polymers that do not satisfy the requirements of the present invention due to their large number average molecular weights and different numbers of terminal structures in one molecule, the strength rise was slow and insufficient. I understand that.

Claims (11)

  1.  いずれもポリオキシアルキレンの主鎖構造と、前記主鎖構造の末端に結合した末端構造を有し、前記末端構造が、加水分解性シリル基並びに、末端オレフィン基及び/又は内部オレフィン基とを有する、ポリオキシアルキレン系重合体(A)およびポリオキシアルキレン系重合体(B)の混合物であって、
     前記ポリオキシアルキレン系重合体(A)は、直鎖主鎖構造を有し、1分子中に1つの前記末端構造を有し、
     加水分解性シリル基のモル数/(加水分解性シリル基、末端オレフィン基および内部オレフィン基の合計モル数)が0.50以上、1.00未満であり、
     数平均分子量が1,000以上8,000以下であり、
     前記ポリオキシアルキレン系重合体(B)は、分岐主鎖構造を有し、
     加水分解性シリル基のモル数/(加水分解性シリル基、末端オレフィン基および内部オレフィン基の合計モル数)が0.60以上、1.00未満であり、
     数平均分子量が6,000以上15,000以下であり、
     前記混合物において、前記ポリオキシアルキレン系重合体(A):前記ポリオキシアルキレン系重合体(B)の重量比が5:95~60:40である混合物。
    Both have a main chain structure of polyoxyalkylene and a terminal structure bonded to the end of the main chain structure, and the terminal structure has a hydrolyzable silyl group, a terminal olefin group, and/or an internal olefin group. , a mixture of a polyoxyalkylene polymer (A) and a polyoxyalkylene polymer (B),
    The polyoxyalkylene polymer (A) has a linear main chain structure and has one terminal structure in one molecule,
    The number of moles of hydrolyzable silyl group/(total number of moles of hydrolyzable silyl group, terminal olefin group, and internal olefin group) is 0.50 or more and less than 1.00,
    The number average molecular weight is 1,000 or more and 8,000 or less,
    The polyoxyalkylene polymer (B) has a branched main chain structure,
    The number of moles of the hydrolyzable silyl group/(the total number of moles of the hydrolyzable silyl group, terminal olefin group, and internal olefin group) is 0.60 or more and less than 1.00,
    The number average molecular weight is 6,000 or more and 15,000 or less,
    In the mixture, the weight ratio of the polyoxyalkylene polymer (A) to the polyoxyalkylene polymer (B) is 5:95 to 60:40.
  2.  前記ポリオキシアルキレン系重合体(A)およびポリオキシアルキレン系重合体(B)の主鎖構造がポリオキシプロピレンである、請求項1に記載の混合物。 The mixture according to claim 1, wherein the main chain structure of the polyoxyalkylene polymer (A) and the polyoxyalkylene polymer (B) is polyoxypropylene.
  3.  前記ポリオキシアルキレン系重合体(B)の数平均分子量が9,000以上14,000以下である、請求項1又は2に記載の混合物。 The mixture according to claim 1 or 2, wherein the polyoxyalkylene polymer (B) has a number average molecular weight of 9,000 or more and 14,000 or less.
  4.  前記混合物の粘度が1.0Pa・s以上3.5Pa・s以下である、請求項1又は2に記載の混合物。 The mixture according to claim 1 or 2, wherein the viscosity of the mixture is 1.0 Pa·s or more and 3.5 Pa·s or less.
  5.  前記ポリオキシアルキレン系重合体(A)の数平均分子量が2,000以上5,000以下である、請求項1又は2に記載の混合物。 The mixture according to claim 1 or 2, wherein the polyoxyalkylene polymer (A) has a number average molecular weight of 2,000 or more and 5,000 or less.
  6.  前記混合物において、前記ポリオキシアルキレン系重合体(A):前記ポリオキシアルキレン系重合体(B)の重量比が10:90~40:60(重量部)である、請求項1又は2に記載の混合物。 According to claim 1 or 2, in the mixture, the weight ratio of the polyoxyalkylene polymer (A) to the polyoxyalkylene polymer (B) is 10:90 to 40:60 (parts by weight). A mixture of.
  7.  前記加水分解性シリル基が、一般式(1):
    -R-CH-CH-Si(R 3-a)X  (1)
    (式中、Rは水素、炭素、および窒素からなる群より選択される1種以上を構成原子として含有する炭素数1から20の2価の有機基を示し、Rは炭素数1から20のアルキル基、炭素数6から20のアリール基、炭素数7から20のアラルキル基または-OSi(R’)で示されるトリオルガノシロキシ基を示す。ここでR’は炭素数1から20の一価の炭化水素基であり3個のR’は同一であってもよく、異なっていてもよい。Xは水酸基または加水分解性基を示し、Xが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは1~3の整数である。)
    で示される、請求項1又は2に記載の混合物。
    The hydrolyzable silyl group has the general formula (1):
    -R 1 -CH 2 -CH 2 -Si(R 2 3-a )X a (1)
    (In the formula, R 1 represents a divalent organic group having 1 to 20 carbon atoms and containing one or more atoms selected from the group consisting of hydrogen, carbon, and nitrogen, and R 2 represents a divalent organic group having 1 to 20 carbon atoms. 20 alkyl group, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a triorganosiloxy group represented by -OSi(R') 3 , where R' is an alkyl group having 1 to 20 carbon atoms. It is a monovalent hydrocarbon group, and the three R's may be the same or different. X represents a hydroxyl group or a hydrolyzable group, and when two or more Xs exist, they They may be the same or different. a is an integer from 1 to 3.)
    The mixture according to claim 1 or 2, which is represented by:
  8.  前記一般式(1)中に記載のR1がCHであることを特徴とする、請求項7に記載の混合物。 The mixture according to claim 7, characterized in that R1 in the general formula (1) is CH2 .
  9.  前記一般式(1)中に記載のaが2である、請求項7に記載の混合物。 The mixture according to claim 7, wherein a in the general formula (1) is 2.
  10.  請求項1又は2に記載の混合物を含む硬化性組成物。 A curable composition comprising the mixture according to claim 1 or 2.
  11.  請求項10に記載の硬化性組成物を硬化することで得られる硬化物。 A cured product obtained by curing the curable composition according to claim 10.
PCT/JP2023/006849 2022-03-07 2023-02-24 Polyoxyalkylene-based polymer mixture and curable composition WO2023171425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-034571 2022-03-07
JP2022034571 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023171425A1 true WO2023171425A1 (en) 2023-09-14

Family

ID=87935099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006849 WO2023171425A1 (en) 2022-03-07 2023-02-24 Polyoxyalkylene-based polymer mixture and curable composition

Country Status (1)

Country Link
WO (1) WO2023171425A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073322A1 (en) * 2004-01-30 2005-08-11 Kaneka Corporation Hardenable composition
WO2018105704A1 (en) * 2016-12-07 2018-06-14 株式会社カネカ Liquid resin composition
WO2020066551A1 (en) * 2018-09-26 2020-04-02 Agc株式会社 Curable composition, cured product and sealing material
WO2022163562A1 (en) * 2021-01-29 2022-08-04 株式会社カネカ Polyoxyalkylene polymer mixture and curable composition
JP2022135913A (en) * 2021-03-03 2022-09-15 Agc株式会社 Curable composition and cured product thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073322A1 (en) * 2004-01-30 2005-08-11 Kaneka Corporation Hardenable composition
WO2018105704A1 (en) * 2016-12-07 2018-06-14 株式会社カネカ Liquid resin composition
WO2020066551A1 (en) * 2018-09-26 2020-04-02 Agc株式会社 Curable composition, cured product and sealing material
WO2022163562A1 (en) * 2021-01-29 2022-08-04 株式会社カネカ Polyoxyalkylene polymer mixture and curable composition
JP2022135913A (en) * 2021-03-03 2022-09-15 Agc株式会社 Curable composition and cured product thereof

Similar Documents

Publication Publication Date Title
JP6527589B2 (en) Curable composition
JP5744759B2 (en) Curable composition
JP6356123B2 (en) Curable composition
JP6682227B2 (en) Curable composition
JP7249998B2 (en) REACTIVE SILICON-CONTAINING POLYMER AND CURABLE COMPOSITION
WO2015105122A1 (en) Curable composition
WO2015080067A1 (en) Curable composition
JP7073167B2 (en) Curable composition
JP7285247B2 (en) REACTIVE SILICON-CONTAINING POLYMER AND CURABLE COMPOSITION
JP2014234396A (en) Room temperature-curable composition and cured product thereof
CN116997610A (en) Curable composition and cured product thereof
JP2024009271A (en) Polyoxyalkylene-based polymer and curable composition
US20230027947A1 (en) Mixture of polyoxyalkylene polymers and curable composition
JPWO2016047519A1 (en) Curable composition and cured product thereof
WO2022181545A1 (en) Manufacturing method for polymer comprising hydrolyzable silyl group, and polymer, curable composition, and cured product
WO2018199270A1 (en) Curable composition
JP6283509B2 (en) Reactive silicon group-containing polymer and curable composition
WO2023171425A1 (en) Polyoxyalkylene-based polymer mixture and curable composition
JP2021055013A (en) Reactive silicon group-containing polymer and curable composition
JP2021055017A (en) Curable composition
JP7469875B2 (en) Curable composition and cured product thereof
CN113795547B (en) Curable composition and cured product
JP2023149911A (en) Hydrolyzable silyl group-containing polyoxyalkylene polymer and method for producing the same, and composition thereof
WO2023162664A1 (en) Curable composition and use of same
WO2022202132A1 (en) Silane-crosslinkable-polymer-containing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766603

Country of ref document: EP

Kind code of ref document: A1