WO2022000679A1 - 一种轨道车辆碰撞测试的集成控制***以及控制方法 - Google Patents

一种轨道车辆碰撞测试的集成控制***以及控制方法 Download PDF

Info

Publication number
WO2022000679A1
WO2022000679A1 PCT/CN2020/106062 CN2020106062W WO2022000679A1 WO 2022000679 A1 WO2022000679 A1 WO 2022000679A1 CN 2020106062 W CN2020106062 W CN 2020106062W WO 2022000679 A1 WO2022000679 A1 WO 2022000679A1
Authority
WO
WIPO (PCT)
Prior art keywords
subsystem
control
rail vehicle
send
real
Prior art date
Application number
PCT/CN2020/106062
Other languages
English (en)
French (fr)
Inventor
王璐
刘艳文
刘春艳
胡忠安
Original Assignee
中车长春轨道客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车长春轨道客车股份有限公司 filed Critical 中车长春轨道客车股份有限公司
Priority to EP20934895.2A priority Critical patent/EP3961328A4/en
Publication of WO2022000679A1 publication Critical patent/WO2022000679A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/0078Shock-testing of vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the invention relates to the technical field of vehicle performance testing, in particular to an integrated control system and a control method for collision testing of rail vehicles.
  • the current rail vehicle crash test platform includes a number of independent sub-control systems such as an intelligent drive subsystem, a lighting control subsystem, a high-speed camera subsystem, a dynamic force measurement subsystem, an on-board test subsystem, and a collision trolley subsystem.
  • each sub-control system performs independent control, and there is no signal and data interaction between multiple sub-control systems, and its system coordination performance is poor.
  • the embodiments of the present invention provide an integrated control system and a control method for a rail vehicle crash test, which can realize signal interaction between subsystems and improve the system coordination performance of a rail vehicle crash test platform.
  • An integrated control system for rail vehicle crash testing comprising:
  • An industrial control subsystem includes one or more of a collision trolley subsystem, a high-speed camera subsystem, a lighting control subsystem, a dynamic force measurement subsystem, an on-board testing subsystem, an intelligent drive subsystem, and a synchronous trigger subsystem a subsystem, configured to send the system status of the subsystem to the control room subsystem of the centralized control center, and perform corresponding operations based on the control signal sent by the control room subsystem of the centralized control center, where the control signal includes a synchronization signal , trigger signal and emergency stop signal;
  • the video surveillance and wireless network integration subsystem is used to obtain the shooting video of the crash test of the rail vehicle to be tested, and create a network for transmitting data, and transmit the shooting video to the control room subsystem of the centralized control center through the network and the database subsystem;
  • a database subsystem for storing the shooting video
  • the ground speed measurement and positioning subsystem is used to obtain the real-time speed of the rail vehicle to be tested when it passes through the preset position point during the collision test, and send the real-time speed and the positioning information of the preset position point to the control room of the centralized control center a subsystem, which receives the control instructions sent by the control room subsystem of the centralized control center;
  • the central control center control room subsystem is used to display the shooting video, obtain the system status of the subsystem, and send control signals to the industrial control subsystem based on the system status or experimental requirements of the subsystem.
  • the real-time speed and the positioning information of the preset position point send the control command.
  • the centralized control center control room subsystem obtains the system state of the subsystem, and sends a control signal to the industrial control subsystem based on the system state of the subsystem or experimental requirements, specifically including:
  • the centralized control center control room subsystem sends the control command based on the real-time speed and the positioning information of the preset position point, specifically including:
  • the emergency stop signal is not received within a preset time period, and the collision trolley subsystem controls the rail vehicle to be tested to perform a decoupling action.
  • the collision trolley subsystem sends the decoupling state to the centralized control center control room subsystem.
  • An integrated control method for a rail vehicle crash test which is applied to any one of the above-mentioned integrated control systems for a rail vehicle crash test, the integrated control method comprising:
  • control signal includes a synchronization signal, a trigger signal and an emergency stop signal.
  • the acquiring the system state of each subsystem, and determining the control signal based on the system state or experimental requirements including:
  • the determining a control instruction based on the real-time speed and the positioning information of the preset position point includes:
  • the emergency stop signal is not received within a preset time period, and the rail vehicle to be tested is controlled to perform a decoupling action.
  • the embodiments of the present invention provide an integrated control system and a control method for collision testing of rail vehicles.
  • the integrated control system includes an industrial control subsystem, a video surveillance and wireless network integration subsystem, a database subsystem, and a ground speed measurement and positioning system.
  • the video surveillance and wireless network integration subsystem obtains the shooting video of the crash test of the rail vehicle to be tested, and creates a network for transmitting data, and transmits the shooting video to the central control center control room subsystem and database subsystem through the network.
  • the database subsystem stores the captured video.
  • the ground speed measurement and positioning subsystem obtains the real-time speed of the rail vehicle to be tested passing through the preset position point during the collision test, and sends the real-time speed and the positioning information of the preset position point to the control room subsystem of the centralized control center, and receives the control room of the centralized control center Control commands sent by the subsystem.
  • the control room subsystem of the centralized control center displays the shooting video, obtains the system status of the subsystem, sends control signals to the industrial control subsystem based on the system status of the subsystem or experimental requirements, and sends control commands based on the real-time speed and the positioning information of the preset position point.
  • the integrated control system for the rail vehicle collision test provided by the embodiment of the present invention can realize the signal interaction between the various subsystems, and improve the system coordination performance of the rail vehicle collision test platform.
  • FIG. 1 is a schematic diagram of a network topology of an integrated control system for a rail vehicle crash test provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an industrial control subsystem provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an interface between a video surveillance and wireless network integration subsystem and other systems provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the architecture of a video surveillance and wireless network integration subsystem provided by an embodiment of the present invention.
  • FIG. 5 is a network architecture diagram in a video surveillance and wireless network integration subsystem provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a ground speed measurement and positioning subsystem provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a control room subsystem of a centralized control center provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a communication status interface of each subsystem in an integrated control system for a rail vehicle crash test provided by an embodiment of the present invention
  • FIG. 9 is a schematic test flow diagram of an integrated control system for a rail vehicle crash test provided by an embodiment of the present invention.
  • test parameter configuration component module provided by an embodiment of the present invention
  • FIG. 11 is a working flowchart of a test process data parameter component module provided by an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of an integrated control method for a rail vehicle crash test provided by an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a software layered structure of an integrated control system provided by an embodiment of the present invention.
  • FIG. 15 is a software operation flowchart of an integrated control system provided by an embodiment of the present invention.
  • the embodiments of the present invention provide an integrated control system and control method for a rail vehicle crash test, which can realize signal interaction between various subsystems and improve the system coordination performance of a rail vehicle crash test platform.
  • the solution needs to solve at least the following problems:
  • the control room station provides the computer host installation station for the integrated control system and the high-speed camera system, the lighting control system, the vehicle test system, and the dynamic force measurement system. A total of 5 subsystems are installed. Display is provided.
  • the large screen can display the program interface of the integrated control system, input on-site video monitoring signals and video signals from each subsystem computer, which can be mixed and displayed on demand or switched to a certain subsystem for independent display.
  • FIG. 1 is a schematic diagram of the network topology of an integrated control system for a rail vehicle crash test provided by an embodiment of the present invention.
  • the integrated control system for a rail vehicle crash test includes: an industrial control subsystem, a video Monitoring and wireless network integration subsystem, database subsystem, ground speed measurement and positioning subsystem and centralized control center control room subsystem.
  • the industrial control subsystem includes a collision trolley subsystem, a high-speed camera subsystem, a lighting control subsystem, a dynamic force measurement subsystem, an on-board testing subsystem, an intelligent drive subsystem, and a synchronous trigger subsystem.
  • one or more subsystems used to send the system status of the subsystem to the centralized control center control room subsystem, and perform corresponding operations based on the control signals sent by the centralized control center control room subsystem, the control The signals include synchronization signals, trigger signals, and emergency stop signals.
  • Figure 3 is a schematic diagram of the interface between the video monitoring and wireless network integration subsystem and other systems
  • Figure 4 is a schematic diagram of the architecture of the video monitoring and wireless network integration subsystem
  • Figure 5 is a video monitoring A diagram of the network architecture in the subsystem integrated with the wireless network.
  • the video surveillance and wireless network integration subsystem is used to obtain the shot video of the rail vehicle to be tested for the crash test, and to create a data transmission network, and transmit the shot video to the centralized control center control room subsystem through the network and the database subsystem.
  • the database subsystem is used for storing the shooting video.
  • the ground speed measurement and positioning subsystem is used to obtain the real-time speed of the rail vehicle to be tested passing through a preset position point during the collision test, and send the real-time speed and the positioning information of the preset position point to the
  • the centralized control center control room subsystem receives the control instructions sent by the centralized control center control room subsystem.
  • control room subsystem of the centralized control center is used to display the shooting video, obtain the system status of the subsystem, and send control signals to the industrial controller based on the system status of the subsystem or experimental requirements
  • the system sends the control command based on the real-time speed and the positioning information of the preset position point.
  • the integrated control system of the rail vehicle crash test does not directly control the equipment of each subsystem, but plays a coordinating role.
  • a trigger signal is sent to the subsystem, and each subsystem sends each subsystem to the integrated control system.
  • System status the integrated control system detects that the subsystem status is abnormal, and will send an emergency cancel test command to all subsystems.
  • the trolley does not have brakes, the collision after decoupling cannot be avoided, so the main work that the centralized control system can do is before decoupling.
  • FIG. 8 is a schematic diagram of the communication status interface of each subsystem in the integrated control system for rail vehicle crash test provided by the embodiment of the present invention, and the test flow of the integrated control system is shown in FIG. 9 , as follows:
  • the large screen in the control room displays the video surveillance of the collision site and the status of each subsystem in real time during the entire test process
  • FIG. 10 is a working flowchart of the test parameter configuration component module.
  • FIG. 11 is a working flowchart of the data parameter component module of the test process.
  • the driving vehicle control system will control the driving vehicle to decouple as long as it does not receive the emergency stop command sent by the centralized control system.
  • the decoupling status will be sent to the integrated control system to check whether the decoupling status is normal.
  • the integrated control system issues an emergency braking command to the intelligent driving system and terminates the test;
  • the integrated control system sends the Boost trigger signal to the light system
  • the trigger band sends a Boost trigger signal to the lighting system
  • the trigger belt sends a trigger signal to each system
  • Fig. 12 is the working flow chart of the data parameter component module of the test conclusion.
  • the present invention includes industrial control subsystem, video monitoring and wireless network integration subsystem, database subsystem, ground speed measurement and positioning subsystem and centralized control center control room subsystem through design and development, and provides state monitoring display and control instructions for each subsystem. It provides a unified platform to provide support for the data transmission from each subsystem to the control room. Video monitoring, data display, and status control of the entire crash test process can be realized in the control room, which greatly improves the controllability of the crash test. Safety and stability provide a strong guarantee for the rail vehicle crash test platform to have the evaluation capabilities of rail vehicle crash test research, crash performance evaluation and crash accident restoration.
  • the embodiments of the present invention further provide a centralized control center control room subsystem to obtain the system status of the subsystem, and send a control signal to the subsystem based on the system status of the subsystem or experimental requirements.
  • the specific implementation of the industrial control subsystem including the steps:
  • the embodiment of the present invention further provides a specific implementation manner of sending the control command based on the real-time speed and the positioning information of the preset position point by the control room subsystem of the centralized control center, including the steps:
  • the emergency stop signal is not received within a preset time period, and the collision trolley subsystem controls the rail vehicle to be tested.
  • the test rail vehicle performs the decoupling action.
  • the collision trolley subsystem sends the decoupling state to the control room subsystem of the centralized control center.
  • the present embodiment also provides an integrated control method for a collision test of a rail vehicle, which is applied to any of the above-mentioned integrated control systems for a collision test of a rail vehicle.
  • the schematic diagram of the software layered structure of the system is shown in Figure 14, and the integrated control method includes:
  • control signal includes a synchronization signal, a trigger signal, and an emergency stop signal.
  • obtaining the system state of each subsystem and determining the control signal based on the system state or experimental requirements can be implemented in the following manner, including steps:
  • the determining of the control instruction based on the real-time speed and the positioning information of the preset position point may be implemented in the following manner, including the steps:
  • the integrated control method for a rail vehicle crash test may further include:
  • the emergency stop signal is not received within a preset time period, and the rail vehicle to be tested is controlled to perform a decoupling action.
  • the decoupling state is sent to the control room subsystem of the centralized control center.
  • FIG. 15 the software operation flow chart of the integrated control system is shown in FIG. 15 .
  • the working principle of the integrated control method please refer to the above-mentioned system embodiments, which will not be repeated here.
  • the embodiments of the present invention provide an integrated control system and a control method for a rail vehicle crash test.
  • the integrated control system includes an industrial control subsystem, a video surveillance and wireless network integration subsystem, a database subsystem, and a ground speed measurement and positioning subsystem. and the centralized control center control room subsystem, wherein the industrial control subsystem sends the system state of the subsystem to the centralized control center control room subsystem, and performs corresponding operations based on the control signals sent by the centralized control center control room subsystem.
  • the video surveillance and wireless network integration subsystem obtains the shooting video of the crash test of the rail vehicle to be tested, and creates a network for transmitting data, and transmits the shooting video to the central control center control room subsystem and database subsystem through the network.
  • the database subsystem stores the captured video.
  • the ground speed measurement and positioning subsystem obtains the real-time speed of the rail vehicle to be tested passing through the preset position point during the collision test, and sends the real-time speed and the positioning information of the preset position point to the control room subsystem of the centralized control center, and receives the control room of the centralized control center Control commands sent by the subsystem.
  • the control room subsystem of the centralized control center displays the shooting video, obtains the system status of the subsystem, sends control signals to the industrial control subsystem based on the system status of the subsystem or experimental requirements, and sends control commands based on the real-time speed and the positioning information of the preset position point. . It can be seen that the integrated control system for the rail vehicle collision test provided by the embodiment of the present invention can realize the signal interaction between the various subsystems, and improve the system coordination performance of the rail vehicle collision test platform.
  • a device in a typical configuration, includes one or more processors (CPUs), memory, and a bus. Devices may also include input/output interfaces, network interfaces, and the like.
  • Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read only memory (ROM) or flash memory (flash RAM), the memory including at least one memory chip.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Memory is an example of a computer-readable medium.
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
  • the embodiments of the present application may be provided as a method, a system or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种轨道车辆碰撞测试的集成控制***以及控制方法,该集成控制***包括工控子***、视频监控与无线网络集成子***、数据库子***、地面测速定位子***以及集控中心控制室子***,其中,集控中心控制室子***,获取子***的***状态,基于子***的***状态或实验需求发送控制信号至工控子***,基于实时速度以及预设位置点的定位信息发送控制指令,并显示拍摄视频。可见,该轨道车辆碰撞测试的集成控制***能够实现各子***之间的信号交互,提高轨道车辆碰撞测试平台的***协调性能。

Description

一种轨道车辆碰撞测试的集成控制***以及控制方法
本申请要求于2020年6月29日提交中国专利局、申请号为202010606791.8、发明名称为“一种轨道车辆碰撞测试的集成控制***以及控制方法”的国内申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及车辆性能测试技术领域,具体涉及一种轨道车辆碰撞测试的集成控制***以及控制方法。
背景技术
轨道车辆一旦发生碰撞事故,会危及乘客的人身安全,因此,为了减轻列车碰撞事故造成的损失,通常需要对轨道车辆进行实车撞击试验来测试轨道车辆的各部位的耐撞性,以便对轨道车辆进行改进,降低轨道车辆碰撞事故的损失。
发明人发现,目前的轨道车辆碰撞测试平台包含智能驱动子***、灯光控制子***、高速摄像子***、动态测力子***、车载测试子***、碰撞台车子***等多个独立的子控制***,每个子控制***进行独立控制,多个子控制***之间没有信号和数据的交互,其***协调性能较差。
因此,如何一种轨道车辆碰撞测试的集成控制***以及控制方法,能够实现各子***之间的信号交互,提高轨道车辆碰撞测试平台的***协调性能,是本领域技术人员亟待解决的一大技术难题。
发明内容
有鉴于此,本发明实施例提供了一种轨道车辆碰撞测试的集成控制***以及控制方法,能够实现各子***之间的信号交互,提高轨道车辆碰撞测试平台的***协调性能。
为实现上述目的,本发明实施例提供如下技术方案:
一种轨道车辆碰撞测试的集成控制***,包括:
工控子***,所述工控子***包括碰撞台车子***、高速摄像子***、灯光控制子***、动态测力子***、车载测试子***、智能驱动子***以 及同步触发子***中的一个或多个子***,用于发送所述子***的***状态至所述集控中心控制室子***,并基于所述集控中心控制室子***发送的控制信号执行相应操作,所述控制信号包括同步信号、触发信号以及紧急停止信号;
视频监控与无线网络集成子***,用于获取对待测试轨道车辆进行碰撞试验的拍摄视频,并创建传送数据的网络,通过所述网络将所述拍摄视频传送至所述集控中心控制室子***以及所述数据库子***;
数据库子***,用于存储所述拍摄视频;
地面测速定位子***,用于获取所述待测试轨道车辆进行碰撞实验时经过预设位置点的实时速度,并发送所述实时速度以及预设位置点的定位信息至所述集控中心控制室子***,接收所述集控中心控制室子***发送的控制指令;
集控中心控制室子***,用于显示所述拍摄视频,并获取所述子***的***状态,基于所述子***的***状态或实验需求发送控制信号至所述工控子***,基于所述实时速度以及预设位置点的定位信息发送所述控制指令。
可选的,所述集控中心控制室子***获取所述子***的***状态,基于所述子***的***状态或实验需求发送控制信号至所述工控子***,具体包括:
判断所述***状态是否包含***故障状态,如果是,发送紧急停止信号至所述工控子***。
可选的,所述集控中心控制室子***基于所述实时速度以及预设位置点的定位信息发送所述控制指令,具体包括:
判断所述实时速度与预设速度的差值的绝对值是否大于第一预设差值,如果是,发送调速控制指令至所述工控子***,如果否,发送紧急停止指令至所述工控子***。
可选的,当所述待测试轨道车辆进行碰撞实验时,在预设时间周期内未收到所述紧急停止信号,所述碰撞台车子***控制所述待测试轨道车辆 执行脱钩动作。
可选的,所述碰撞台车子***发送脱钩状态至所述集控中心控制室子***。
一种轨道车辆碰撞测试的集成控制方法,应用于任意一项上述的轨道车辆碰撞测试的集成控制***,所述集成控制方法包括:
获取各子***的***状态,基于所述***状态或实验需求确定出控制信号;
获取对待测试轨道车辆进行碰撞试验的拍摄视频,并创建传送数据的网络,通过所述网络传输所述拍摄视频;
获取所述待测试轨道车辆进行碰撞实验时经过预设位置点的实时速度以及所述预设位置点的定位信息;
基于所述实时速度以及预设位置点的定位信息确定控制指令;
基于所述控制信号以及所述控制指令执行相应操作,所述控制信号包括同步信号、触发信号以及紧急停止信号。
可选的,所述获取各子***的***状态,基于所述***状态或实验需求确定出控制信号,包括:
判断所述***状态是否包含***故障状态,如果是,发送紧急停止信号至所述工控子***。
可选的,所述基于所述实时速度以及预设位置点的定位信息确定控制指令,包括:
判断所述实时速度与预设速度的差值的绝对值是否大于第一预设差值,如果是,发送调速控制指令至所述工控子***,如果否,发送紧急停止指令至所述工控子***。
可选的,还包括:
当所述待测试轨道车辆进行碰撞实验时,在预设时间周期内未收到所述紧急停止信号,控制所述待测试轨道车辆执行脱钩动作。
可选的,还包括:
发送脱钩状态至所述集控中心控制室子***。
基于上述技术方案,本发明实施例提供了一种轨道车辆碰撞测试的集成控制***以及控制方法,该集成控制***包括工控子***、视频监控与无线网络集成子***、数据库子***、地面测速定位子***以及集控中心控制室子***,其中,工控子***发送子***的***状态至集控中心控制室子***,并基于集控中心控制室子***发送的控制信号执行相应操作。视频监控与无线网络集成子***获取对待测试轨道车辆进行碰撞试验的拍摄视频,并创建传送数据的网络,通过网络将拍摄视频传送至集控中心控制室子***以及数据库子***。数据库子***存储拍摄视频。地面测速定位子***获取待测试轨道车辆进行碰撞实验时经过预设位置点的实时速度,并发送实时速度以及预设位置点的定位信息至集控中心控制室子***,接收集控中心控制室子***发送的控制指令。集控中心控制室子***显示拍摄视频,并获取子***的***状态,基于子***的***状态或实验需求发送控制信号至工控子***,基于实时速度以及预设位置点的定位信息发送控制指令。可见,本发明实施例提供的轨道车辆碰撞测试的集成控制***能够实现各子***之间的信号交互,提高轨道车辆碰撞测试平台的***协调性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种轨道车辆碰撞测试的集成控制***的网络拓扑结构示意图;
图2为本发明实施例提供的一种工控子***的结构示意图;
图3为本发明实施例提供的一种视频监控与无线网络集成子***与其他***接口示意图;
图4为本发明实施例提供的一种视频监控与无线网络集成子***的架构示意图;
图5为本发明实施例提供的一种视频监控与无线网络集成子***中网络架构图;
图6为本发明实施例提供的一种地面测速定位子***的结构示意图;
图7为本发明实施例提供的一种集控中心控制室子***的结构示意图;
图8为本发明实施例提供的轨道车辆碰撞测试的集成控制***中各子***的通信状态界面示意图;
图9为本发明实施例提供的一种轨道车辆碰撞测试的集成控制***的试验流程示意图;
图10为本发明实施例提供的一种试验参数配置组件模块工作流程图;
图11为本发明实施例提供的一种试验过程数据参数组件模块工作流程图;
图12为本发明实施例提供的一种试验结论数据参数组件模块工作流程图;
图13为本发明实施例提供的一种轨道车辆碰撞测试的集成控制方法的流程示意图;
图14为本发明实施例提供的一种集成控制***的软件分层结构示意图;
图15为本发明实施例提供的一种集成控制***的软件操作流程图。
具体实施方式
正如背景技术所述,发明人发现,目前的轨道车辆碰撞测试平台中,每个子控制***进行独立控制,多个子控制***之间没有信号和数据的交互,其***协调性能较差。基于此,本发明实施例提供了一种轨道车辆碰撞测试的集成控制***以及控制方法,能够实现各子***之间的信号交互,提高轨道车辆碰撞测试平台的***协调性能
具体的,为了提供一种轨道车辆碰撞测试的集成控制***,本方案需要至少解决如下问题:
1)在控制室和碰撞试验现场提供有线网络,在碰撞现场和轨道沿线覆盖WLAN,为各子***到控制室的数据传输提供支撑。
2)通过硬连线或网络等方式实时检测各个子***的状态。
3)根据控制逻辑通过硬连线或网络等方式给各个子***下达控制指令(触发或紧急制动)。
4)在碰撞现场轨道上为各个子***提供触发带装置。
5)搭建地面定位及测速***,实现车辆定位及速度监测。
6)搭建视频监控***,实现试验现场的视频监控、切屏、回放功能,包括无人机航拍。
7)完成控制台位的设计开发,控制室台位为集成控制***和高速摄像***、灯光控制***、车载测试***、动态测力***共5个子***提供计算机主机安装台位,并为各***提供显示器。
8)完成控制室大屏的设计开发,大屏能够显示集成控制***程序界面、输入现场视频监控信号和各个子***计算机的视频信号,可按需混合显示或切换到某一个子***单独显示。
9)碰撞速度的精确控制,误差控制在±0.5Km/h。
具体的,请参阅图1,图1为本发明实施例提供的一种轨道车辆碰撞测试的集成控制***的网络拓扑结构示意图,该轨道车辆碰撞测试的集成控制***,包括:工控子***、视频监控与无线网络集成子***、数据库子***、地面测速定位子***以及集控中心控制室子***。
其中,如图2所示,所述工控子***包括碰撞台车子***、高速摄像子***、灯光控制子***、动态测力子***、车载测试子***、智能驱动子***以及同步触发子***中的一个或多个子***,用于发送所述子***的***状态至所述集控中心控制室子***,并基于所述集控中心控制室子***发送的控制信号执行相应操作,所述控制信号包括同步信号、触发信号以及紧急停止信号。
如图3、图4以及图5所示,其中图3为视频监控与无线网络集成子***与其他***接口示意图,图4为视频监控与无线网络集成子***的架构示意图,图5为视频监控与无线网络集成子***中网络架构图。该视频监控与无 线网络集成子***用于获取对待测试轨道车辆进行碰撞试验的拍摄视频,并创建传送数据的网络,通过所述网络将所述拍摄视频传送至所述集控中心控制室子***以及所述数据库子***。
数据库子***用于存储所述拍摄视频。
如图6所示,地面测速定位子***用于获取所述待测试轨道车辆进行碰撞实验时经过预设位置点的实时速度,并发送所述实时速度以及预设位置点的定位信息至所述集控中心控制室子***,接收所述集控中心控制室子***发送的控制指令。
如图7所示,集控中心控制室子***用于显示所述拍摄视频,并获取所述子***的***状态,基于所述子***的***状态或实验需求发送控制信号至所述工控子***,基于所述实时速度以及预设位置点的定位信息发送所述控制指令。
在本实施例中,轨道车辆碰撞测试的集成控制***不直接控制各子***的设备,而是起协调作用,在试验条件就绪时向子***发送触发信号,各个子***向集成控制***发送各***状态,集成控制***检测到有子***状态不正常,则会向所有子***发送紧急取消试验的命令。在台车不具备制动的情况下,脱钩后的碰撞无法避免,因此集中控制***主要能做的工作在脱钩前。
示意性的,如图8所示,图8为本发明实施例提供的轨道车辆碰撞测试的集成控制***中各子***的通信状态界面示意图,该集成控制***的试验流程如图9所示,如下:
1)试验开始,各***上电;
2)控制室大屏实时显示整个试验过程中碰撞现场的视频监控和各子***的状态;
3)通过已得到的模型计算或摸底试验情况给出重要的试验参数,如脱钩点和脱钩速度,试验参数在大屏上显示。具体的,如图10所示,图10为试验参数配置组件模块工作流程图。
4)根据脱钩点位置摆放智能驱动***地面信标、各位置地面测速和定 位***;
5)等待各子***就绪;
6)检测所有子***状态正常后,启动驱动车运行(***状态循环检测,驱动车与台车脱钩之前,若有子***状态不正常,可按下控制室操作台上的紧急停止按钮,驱动车紧急制动,停止试验;台车预留制动,驱动车与台车脱钩之后,若有子***状态不正常,可按下控制室操作台上的紧急停止按钮,台车紧急制动,停止试验)。具体的,如图11所示,图11为试验过程数据参数组件模块工作流程图。
7)驱动车运行至匀速段时,检测驱动车速度与设定值误差是否满足要求,误差在范围内时在大屏显示高/低速报警,提示智能驱动***进行调速,若误差过大,驱动车紧急制动,停止试验;
8)待驱动车到达脱钩点时,驱动车控制***只要未收到集中控制***发送的紧急停止命令,就控制驱动车脱钩。
9)脱钩后,脱钩状态会送给集成控制***,检测脱钩状态是否正常,如未正常脱钩,驱动车紧急制动,停止试验;
10)正常脱钩后,驱动车进行常用制动;
11)如驱动车常用制动失效,驱动车没有减速,集成控制***向智能驱动***下达紧急制动指令,中止试验;
12)台车惰性运行至灯光Boost触发信号位置时,集成控制***向灯光***发送Boost触发信号;
13)台车惰性运行至灯光Boost触发带位置时,由触发带向灯光***发送Boost触发信号;
14)台车惰性运行至其它***触发信号位置时,集成控制***向其它***发送触发信号;
15)台车惰性运行至其它***触发带位置时,由触发带向各***发送触发信号;
16)碰撞发生;
17)各***将触发信号后一定时长的数据传至中控室。具体的,如图 12所示,图12为试验结论数据参数组件模块工作流程图。
18)试验结束。
可见,本发明通过设计和开发包括工控子***、视频监控与无线网络集成子***、数据库子***、地面测速定位子***以及集控中心控制室子***,为各子***状态监测显示、控制指令下达提供统一平台,为各子***到控制室的数据传输提供支撑,在控制室即可实现对碰撞试验全过程的视频监测、数据显示、状态控制,极大地提高了碰撞测试的可控性、安全性、稳定性,为轨道车辆碰撞测试平台具备轨道车辆碰撞测试研究、碰撞性能评估和碰撞事故还原为一体的评估能力提供有力保障。
在上述实施例的基础上,本发明实施例还进一步提供了一种集控中心控制室子***获取所述子***的***状态,基于所述子***的***状态或实验需求发送控制信号至所述工控子***的具体实现方式,包括步骤:
判断所述***状态是否包含***故障状态,如果是,发送紧急停止信号至所述工控子***。
除此,本发明实施例还进一步提供了一种集控中心控制室子***基于所述实时速度以及预设位置点的定位信息发送所述控制指令的具体实现方式,包括步骤:
判断所述实时速度与预设速度的差值的绝对值是否大于第一预设差值,如果是,发送调速控制指令至所述工控子***,如果否,发送紧急停止指令至所述工控子***。
值得一提的是,在本发明实施例中,当所述待测试轨道车辆进行碰撞实验时,在预设时间周期内未收到所述紧急停止信号,所述碰撞台车子***控制所述待测试轨道车辆执行脱钩动作。之后,所述碰撞台车子***发送脱钩状态至所述集控中心控制室子***。
在上述实施例的基础上,如图13所示,本实施例还提供了一种轨道车辆碰撞测试的集成控制方法,应用于任意一项上述的轨道车辆碰撞测试的 集成控制***,其集成控制***的软件分层结构示意图如图14所示,该集成控制方法包括:
S131、获取各子***的***状态,基于所述***状态或实验需求确定出控制信号;
S132、获取对待测试轨道车辆进行碰撞试验的拍摄视频,并创建传送数据的网络,通过所述网络传输所述拍摄视频;
S133、获取所述待测试轨道车辆进行碰撞实验时经过预设位置点的实时速度以及所述预设位置点的定位信息;
S134、基于所述实时速度以及预设位置点的定位信息确定控制指令;
S135、基于所述控制信号以及所述控制指令执行相应操作,所述控制信号包括同步信号、触发信号以及紧急停止信号。
其中,所述获取各子***的***状态,基于所述***状态或实验需求确定出控制信号可以通过如下方式实现,包括步骤:
判断所述***状态是否包含***故障状态,如果是,发送紧急停止信号至所述工控子***。
其中,所述基于所述实时速度以及预设位置点的定位信息确定控制指令可以通过如下方式实现,包括步骤:
判断所述实时速度与预设速度的差值的绝对值是否大于第一预设差值,如果是,发送调速控制指令至所述工控子***,如果否,发送紧急停止指令至所述工控子***。
除此,本发明实施例提供的轨道车辆碰撞测试的集成控制方法,还可以包括:
当所述待测试轨道车辆进行碰撞实验时,在预设时间周期内未收到所述紧急停止信号,控制所述待测试轨道车辆执行脱钩动作。
之后,发送脱钩状态至所述集控中心控制室子***。
示意性的,该集成控制***的软件操作流程图如图15所示,该集成控制方法的工作原理请参见上述***实施例,在此不重复叙述。
综上,本发明实施例提供了一种轨道车辆碰撞测试的集成控制***以及控制方法,该集成控制***包括工控子***、视频监控与无线网络集成子***、数据库子***、地面测速定位子***以及集控中心控制室子***,其中,工控子***发送子***的***状态至集控中心控制室子***,并基于集控中心控制室子***发送的控制信号执行相应操作。视频监控与无线网络集成子***获取对待测试轨道车辆进行碰撞试验的拍摄视频,并创建传送数据的网络,通过网络将拍摄视频传送至集控中心控制室子***以及数据库子***。数据库子***存储拍摄视频。地面测速定位子***获取待测试轨道车辆进行碰撞实验时经过预设位置点的实时速度,并发送实时速度以及预设位置点的定位信息至集控中心控制室子***,接收集控中心控制室子***发送的控制指令。集控中心控制室子***显示拍摄视频,并获取子***的***状态,基于子***的***状态或实验需求发送控制信号至工控子***,基于实时速度以及预设位置点的定位信息发送控制指令。可见,本发明实施例提供的轨道车辆碰撞测试的集成控制***能够实现各子***之间的信号交互,提高轨道车辆碰撞测试平台的***协调性能。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在一个典型的配置中,设备包括一个或多个处理器(CPU)、存储器和总线。设备还可以包括输入/输出接口、网络接口等。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、***或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种轨道车辆碰撞测试的集成控制***,其特征在于,包括:
    工控子***,所述工控子***包括碰撞台车子***、高速摄像子***、灯光控制子***、动态测力子***、车载测试子***、智能驱动子***以及同步触发子***中的一个或多个子***,用于发送所述子***的***状态至所述集控中心控制室子***,并基于所述集控中心控制室子***发送的控制信号执行相应操作,所述控制信号包括同步信号、触发信号以及紧急停止信号;
    视频监控与无线网络集成子***,用于获取对待测试轨道车辆进行碰撞试验的拍摄视频,并创建传送数据的网络,通过所述网络将所述拍摄视频传送至所述集控中心控制室子***以及所述数据库子***;
    数据库子***,用于存储所述拍摄视频;
    地面测速定位子***,用于获取所述待测试轨道车辆进行碰撞实验时经过预设位置点的实时速度,并发送所述实时速度以及预设位置点的定位信息至所述集控中心控制室子***,接收所述集控中心控制室子***发送的控制指令;
    集控中心控制室子***,用于显示所述拍摄视频,并获取所述子***的***状态,基于所述子***的***状态或实验需求发送控制信号至所述工控子***,基于所述实时速度以及预设位置点的定位信息发送所述控制指令。
  2. 根据权利要求1所述的轨道车辆碰撞测试的集成控制***,其特征在于,所述集控中心控制室子***获取所述子***的***状态,基于所述子***的***状态或实验需求发送控制信号至所述工控子***,具体包括:
    判断所述***状态是否包含***故障状态,如果是,发送紧急停止信号至所述工控子***。
  3. 根据权利要求1所述的轨道车辆碰撞测试的集成控制***,其特征在于,所述集控中心控制室子***基于所述实时速度以及预设位置点的定位信息发送所述控制指令,具体包括:
    判断所述实时速度与预设速度的差值的绝对值是否大于第一预设差值,如果是,发送调速控制指令至所述工控子***,如果否,发送紧急停止指令至所述工控子***。
  4. 根据权利要求1所述的轨道车辆碰撞测试的集成控制***,其特征在于,
    当所述待测试轨道车辆进行碰撞实验时,在预设时间周期内未收到所述紧急停止信号,所述碰撞台车子***控制所述待测试轨道车辆执行脱钩动作。
  5. 根据权利要求4所述的轨道车辆碰撞测试的集成控制***,其特征在于,
    所述碰撞台车子***发送脱钩状态至所述集控中心控制室子***。
  6. 一种轨道车辆碰撞测试的集成控制方法,其特征在于,应用于如权利要求1-5中任意一项所述的轨道车辆碰撞测试的集成控制***,所述集成控制方法包括:
    获取各子***的***状态,基于所述***状态或实验需求确定出控制信号;
    获取对待测试轨道车辆进行碰撞试验的拍摄视频,并创建传送数据的网络,通过所述网络传输所述拍摄视频;
    获取所述待测试轨道车辆进行碰撞实验时经过预设位置点的实时速度以及所述预设位置点的定位信息;
    基于所述实时速度以及预设位置点的定位信息确定控制指令;
    基于所述控制信号以及所述控制指令执行相应操作,所述控制信号包括同步信号、触发信号以及紧急停止信号。
  7. 根据权利要求6所述的轨道车辆碰撞测试的集成控制方法,其特征在于,所述获取各子***的***状态,基于所述***状态或实验需求确定出控制信号,包括:
    判断所述***状态是否包含***故障状态,如果是,发送紧急停止信号至所述工控子***。
  8. 根据权利要求6所述的轨道车辆碰撞测试的集成控制方法,其特征在于,所述基于所述实时速度以及预设位置点的定位信息确定控制指令,包括:
    判断所述实时速度与预设速度的差值的绝对值是否大于第一预设差值,如果是,发送调速控制指令至所述工控子***,如果否,发送紧急停止指令至所述工控子***。
  9. 根据权利要求6所述的轨道车辆碰撞测试的集成控制方法,其特征在于,还包括:
    当所述待测试轨道车辆进行碰撞实验时,在预设时间周期内未收到所述紧急停止信号,控制所述待测试轨道车辆执行脱钩动作。
  10. 根据权利要求9所述的轨道车辆碰撞测试的集成控制方法,其特征在于,还包括:
    发送脱钩状态至所述集控中心控制室子***。
PCT/CN2020/106062 2020-06-29 2020-07-31 一种轨道车辆碰撞测试的集成控制***以及控制方法 WO2022000679A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20934895.2A EP3961328A4 (en) 2020-06-29 2020-07-31 INTEGRATED CONTROL SYSTEM AND METHOD FOR RAILWAY VEHICLE COLLISION TEST

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010606791.8 2020-06-29
CN202010606791.8A CN111736557A (zh) 2020-06-29 2020-06-29 一种轨道车辆碰撞测试的集成控制***以及控制方法

Publications (1)

Publication Number Publication Date
WO2022000679A1 true WO2022000679A1 (zh) 2022-01-06

Family

ID=72652228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106062 WO2022000679A1 (zh) 2020-06-29 2020-07-31 一种轨道车辆碰撞测试的集成控制***以及控制方法

Country Status (3)

Country Link
EP (1) EP3961328A4 (zh)
CN (1) CN111736557A (zh)
WO (1) WO2022000679A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114404244A (zh) * 2022-03-01 2022-04-29 浙江豪中豪健康产品有限公司 一种同一轨道上的双机芯按摩椅的防撞控制方式
CN115112396A (zh) * 2022-08-31 2022-09-27 中汽研汽车检验中心(天津)有限公司 汽车碰撞试验控制方法、***、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2454639A1 (en) * 2009-07-17 2012-05-23 Gridpoint, Inc. System and methods for smart charging techniques, values and guarantees
CN108877237A (zh) * 2018-07-27 2018-11-23 长安大学 基于监控视频图像的车辆行驶速度集成解算***及方法
CN110285987A (zh) * 2019-07-22 2019-09-27 株洲时代电子技术有限公司 一种轨道车辆线路碰撞试验方法
CN110308001A (zh) * 2019-07-22 2019-10-08 株洲时代电子技术有限公司 一种线路碰撞试验驱动车智能驱动方法
CN111240969A (zh) * 2020-01-06 2020-06-05 中车株洲电力机车有限公司 无人驾驶轨道车辆网络控制***的测试方法及测试***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430251B (zh) * 2008-12-25 2014-03-12 中南大学 车辆部件实物碰撞试验方法及试验装置
CN101430249A (zh) * 2008-12-25 2009-05-13 中南大学 车辆部件实物碰撞序列图像分析方法及其分析***
US20100268466A1 (en) * 2009-04-15 2010-10-21 Velayutham Kadal Amutham Anti-collision system for railways
CN106198066B (zh) * 2016-09-28 2019-02-26 中车株洲电力机车有限公司 一种轨道列车碰撞试验方法及***
CN106198067B (zh) * 2016-09-28 2019-01-22 中车株洲电力机车有限公司 一种轨道列车碰撞试验***
CN106774275B (zh) * 2017-01-16 2019-11-19 湖南中车时代通信信号有限公司 可视化列车运行监控装置的控制功能的测试***和方法
CN110758414B (zh) * 2019-11-11 2021-02-12 上海电气集团股份有限公司 一种轨道交通车辆控制***及控制方法
CN111189653B (zh) * 2020-01-10 2021-12-14 中南大学 一种用于轨道车辆碰撞试验的测速、定位及触发装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2454639A1 (en) * 2009-07-17 2012-05-23 Gridpoint, Inc. System and methods for smart charging techniques, values and guarantees
CN108877237A (zh) * 2018-07-27 2018-11-23 长安大学 基于监控视频图像的车辆行驶速度集成解算***及方法
CN110285987A (zh) * 2019-07-22 2019-09-27 株洲时代电子技术有限公司 一种轨道车辆线路碰撞试验方法
CN110308001A (zh) * 2019-07-22 2019-10-08 株洲时代电子技术有限公司 一种线路碰撞试验驱动车智能驱动方法
CN111240969A (zh) * 2020-01-06 2020-06-05 中车株洲电力机车有限公司 无人驾驶轨道车辆网络控制***的测试方法及测试***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3961328A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114404244A (zh) * 2022-03-01 2022-04-29 浙江豪中豪健康产品有限公司 一种同一轨道上的双机芯按摩椅的防撞控制方式
CN114404244B (zh) * 2022-03-01 2023-12-12 浙江豪中豪健康产品有限公司 一种同一轨道上的双机芯按摩椅的防撞控制方式
CN115112396A (zh) * 2022-08-31 2022-09-27 中汽研汽车检验中心(天津)有限公司 汽车碰撞试验控制方法、***、设备和存储介质
CN115112396B (zh) * 2022-08-31 2022-11-25 中汽研汽车检验中心(天津)有限公司 汽车碰撞试验控制方法、***、设备和存储介质

Also Published As

Publication number Publication date
EP3961328A1 (en) 2022-03-02
EP3961328A4 (en) 2022-08-24
CN111736557A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
CN111348016B (zh) 一种基于v2x的车队协同制动方法及***
US10921822B2 (en) Automated vehicle control system architecture
WO2022000679A1 (zh) 一种轨道车辆碰撞测试的集成控制***以及控制方法
US20210194968A1 (en) Vehicle control system
CN106737563B (zh) 一种轻型轨道机器人四驱运动控制***及其方法
US20210001851A1 (en) Method for vehicle following control based on real-time calculation of dynamic safe following distance
CN106740906A (zh) 矿井机车无人驾驶车载控制***及其控制方法
CN209683619U (zh) 自动驾驶车辆的控制***及自动驾驶车辆
CN112124364A (zh) 列车精确停车的控制方法、ato、vobc及列车
CN110481564A (zh) 自动驾驶的控制方法、***、设备和存储介质
CN112622985A (zh) 轨道车辆救援限速方法、***及occ
CN114120472A (zh) 一种自动驾驶车辆安全管理***
WO2023097838A1 (zh) 一种灵活编组的解编方法、设备和存储介质
US20220281498A1 (en) Railway vehicle and control method and system therefor, and train control and management system
CN114228789A (zh) 一种全自动列车双通道远程控制方法、装置、设备及介质
van Nunen et al. Towards a safety mechanism for platooning
WO2022105863A1 (zh) 控制车辆的方法、装置、存储介质及车辆
CN202863477U (zh) 基于应答器信息传输技术的轨道车运行控制***
CN114132342A (zh) 一种自动驾驶***的监控方法
CN112866908A (zh) 定位通信干扰节点
CN112158237A (zh) 集成tcms和ato功能的深度融合***和列车
KR102682972B1 (ko) 열차 제어 장치 및 방법
WO2023207701A1 (zh) 自动驾驶方法和***、控制器、电子设备和计算机存储介质
AU2020431937B2 (en) Travel pattern creation device and operation control method using same
KR102592458B1 (ko) 교통신호상태정보를 필요로 하는 장치 또는 자율주행 차량으로 전송되는 정보를 분석하고, 정확도를 향상하기 위한 소프트웨어를 탑재한 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020934895

Country of ref document: EP

Effective date: 20211119

NENP Non-entry into the national phase

Ref country code: DE