WO2022000305A1 - 一种有机硅纳米前驱体介质传输抑制剂、其制备方法及应用 - Google Patents

一种有机硅纳米前驱体介质传输抑制剂、其制备方法及应用 Download PDF

Info

Publication number
WO2022000305A1
WO2022000305A1 PCT/CN2020/099414 CN2020099414W WO2022000305A1 WO 2022000305 A1 WO2022000305 A1 WO 2022000305A1 CN 2020099414 W CN2020099414 W CN 2020099414W WO 2022000305 A1 WO2022000305 A1 WO 2022000305A1
Authority
WO
WIPO (PCT)
Prior art keywords
derivatives
organosilicon
medium transport
transport inhibitor
precursor medium
Prior art date
Application number
PCT/CN2020/099414
Other languages
English (en)
French (fr)
Inventor
刘加平
蔡景顺
穆松
刘建忠
周霄骋
马麒
吴鹏程
洪锦祥
Original Assignee
江苏苏博特新材料股份有限公司
博特新材料泰州有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏苏博特新材料股份有限公司, 博特新材料泰州有限公司 filed Critical 江苏苏博特新材料股份有限公司
Priority to EP20943647.6A priority Critical patent/EP4174043A4/en
Priority to JP2022581579A priority patent/JP2023531562A/ja
Publication of WO2022000305A1 publication Critical patent/WO2022000305A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/40Compounds containing silicon, titanium or zirconium or other organo-metallic compounds; Organo-clays; Organo-inorganic complexes
    • C04B24/42Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/61Corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/65Water proofers or repellants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the application relates to a functional material, which is particularly suitable for inhibiting the transmission of corrosive medium in concrete, and belongs to the field of building materials.
  • the key to improving the durability of concrete is to reduce the transmission of corrosive media in concrete.
  • Conventional technical means include reducing the water-binder ratio and using mineral admixtures; reducing the water-binder ratio and water consumption will greatly affect the ease of fresh concrete.
  • mineral admixtures such as fly ash, mineral powder and silica fume may cause low early strength of concrete, aggravate carbonation depth and increase the risk of shrinkage cracking; the above conventional technical means are mainly by reducing the number of pores, optimizing the Pore structure in a way that reduces the path through which aggressive ions can transmit.
  • Existing studies have shown that the most serious areas of reinforced concrete corrosion are the alternating dry and wet areas and the spray splash area. The main reason is that there is a capillary water absorption phenomenon similar to the "wick effect" in the above areas. . Therefore, reducing the capillary water absorption becomes the key to inhibiting the medium transmission in the most severely corroded parts.
  • the technical means to reduce capillary water absorption are divided into external protective coating or internal mixing of anti-medium transport inhibitory materials.
  • Known surface protective coating technologies include organosilane permeable protective coatings, film-forming protective coatings (EP-B0538555, EP-B0340816).
  • the silicone emulsion can be painted on the surface of the concrete to form a hydrophobic layer on the surface of the concrete to prevent the transmission of corrosive media into the concrete, but the uniformity of the surface coating and the deterioration of performance after long-term use will reduce the resistance to media transmission.
  • hydrophobic materials into concrete can play a role in inhibiting the transmission of erosive media, and has gradually attracted the research and attention of scholars and engineers in recent years.
  • the existing hydrophobic materials themselves have a significant negative impact on the strength development of concrete.
  • stearic acid emulsion generally reduces the strength of concrete by 15-30% (Construction and building materials 227 (2019) 11678), giving engineering structure The protection of mechanical properties lays hidden dangers.
  • CN1106363C mentions adding a hydrolyzable aqueous emulsion containing an organosilicon compound to fresh concrete before curing made of water, inorganic components and optional organic components for the preparation of homogeneous waterproof concrete, certain To a certain extent, it can inhibit the transmission of corrosive media. However, when the concrete is completely saturated with water, such materials have little effect on the diffusion of aggressive media, and sometimes increase the diffusion of aggressive ions in the concrete under saturated state, thus failing to achieve the effect of inhibiting media transmission.
  • CN1233774C, CN102424542A etc. have reported a kind of nano silicon water repellent, its composition is: sodium methyl silicate or sodium methyl silicon alkoxide or high boiling sodium silicon alkoxide, nano-scale silicon dioxide, silicon acrylic emulsion or styrene acrylic emulsion or Pure acrylic emulsion, monoethanolamine or diethanolamine or triethanolamine, deionized water.
  • waterproof materials such as sodium methylsilicate will seriously affect the setting time of concrete, resulting in a very limited amount of actual application, and it is difficult to achieve high-efficiency hydrophobicity in a saturated state.
  • nanomaterials to concrete can also reduce the medium diffusion in the concrete in saturated state to a certain extent, but the nanomaterials themselves have poor stability and are difficult to be effectively and uniformly dispersed in concrete, resulting in their practical application effect. Not ideal.
  • the present application overcomes the deficiencies of the prior art, provides a nano-precursor material, and improves the anti-ion corrosion effect of concrete.
  • the nano-precursor material generates nanoparticles in situ during the cement hydration process.
  • the nanoparticles not only have a hydrophobic function, but also can effectively fill the pores of the concrete, thereby effectively solving the problem that the hydrophobic material cannot reduce the diffusion of aggressive media in a saturated state. the problem.
  • organosilicon nano-precursor medium transport inhibitor composed of organosilicon and its derivatives, catalyst, dispersant, stabilizer, surfactant and water, and its weight ratio is as follows:
  • the organosilicon and its derivatives are straight-chain or branched-chain polymers with 1 to 1000 silicon atoms, the molecular weight of which is 100 to 100,000, and are selected from silicates, alkyl silicates, and alkyl siloxanes. , alkenyl siloxanes, functional heteroatom-containing alkyl siloxanes or polysiloxanes.
  • the catalyst is any one of phenol and its derivatives, benzoquinone and its derivatives, organic guanidine and its derivatives, and small molecular alcohol amines with a molecular weight of 50-1000.
  • the dispersant is a polymer dispersant formed by any one or two of acrylic acid and its derivatives, maleic acid and its derivatives, and fumaric acid and its derivatives.
  • the stabilizer is polysaccharide, chitosan, cellulose ether, polyamide, polypyrrolidone.
  • surfactants for emulsification and micro-emulsification to enhance the heterogeneous dispersion of silicones and their derivatives.
  • the surfactants are cationic, anionic and nonionic surfactants with an HLB value of 5-14, specifically Span, Tween, isomeric alcohol ethers, alkyl carboxylates, alkyl sulfonates, alkyl sulfonates Quaternary ammonium salts, etc.
  • the preferred surfactants are one or a mixture of Span, alkyl carboxylates, and alkyl quaternary ammonium salts.
  • the organosilicon and its derivatives are ⁇ -aminopropylsiloxane, silane oligomer, and allyltriethoxysilane.
  • the catalyst is guanidine phosphate and p-benzoquinone.
  • the molecular weight of the dispersant is 1000-40000.
  • silicone Due to its own performance characteristics, silicone has low interfacial tension, which can effectively inhibit the infiltration of water and aggressive media, thereby producing hydrophobic and anti-media transmission effects.
  • organosilicon functional groups and inorganic materials, especially concrete materials have similar chemical compositions, and can form strong chemical bonds at the interface of inorganic cement-based materials, thereby forming an organic/inorganic hybrid system and improving the physical and chemical properties of the surface of inorganic materials.
  • the catalyst acts under the stimulation of the strong alkaline environment of concrete, triggers the action of organosilicon and its derivatives and the hydrated silicate generated by cement hydration, etc., and generates organic/inorganic impurities in situ in the concrete pores.
  • Chemical nanomaterials, the nanomaterials are composed of oxygen, silicon, carbon and other elements.
  • the outstanding feature of the present application is that the pH value of the prepared nano-precursor medium transport inhibitor product system is near neutral, and the catalyst does not initiate the reaction of organosilicon and its derivatives in the near neutral product system, When mixed into concrete, the reaction is initiated by the strong alkalinity generated by the hydration of the cement in the concrete environment, generating hydrophobic nanoparticles in situ.
  • the application introduces a dispersing component, on the one hand, the nano-precursor can be uniformly dispersed in the concrete; on the other hand, the dispersing component can promote the nano-particles generated by the reaction between the organosilicon nano-precursor and the cement hydration product during the hydration process more evenly dispersed.
  • the biggest feature of this application is that the performance of concrete is not improved by simple silicone, but by combining with different catalysts, dispersants, stabilizers and surfactants, the silicone and its derivatives can be uniformly distributed in the concrete.
  • the cement hydration progresses inside the concrete, it participates in the hydration reaction to generate hydrophobic nanoparticles in situ, and at the same time realizes the improvement of the compaction performance of the concrete.
  • the nano-precursor of the present application also includes a stabilizer component.
  • a stabilizer component On the one hand, it is to improve the stability of the organosilicon and its derivatives in an aqueous solution system, and on the other hand, to improve the nanoparticles after the interaction between the organosilicon and its derivatives and the hydration product. stability.
  • the preparation method of the described organosilicon nano-precursor medium transport inhibitor add organosilicon and its derivatives and dispersant into the reaction kettle, heat up to 10-200°C; if there is a surfactant, add the surfactant, stir 1-24h; add catalyst, stabilizer and water, continue stirring for 1-24h.
  • the present application organosilicon precursors dielectric nano inhibitor application methods by mixing cement-based material is added during the addition of cement-based materials in the relative dosage amounts cementitious material 3-50L / m 3, to be cement-based
  • the material hardens to form a dense dielectric transfer resistant material.
  • the content of the application is analyzed by examples.
  • Six example samples were prepared, and the better DOW SHP 60 on the market was selected at the same time, and a comparative study was carried out through concrete performance and anti-media transmission performance tests.
  • Table 1 shows the proportions of the prepared samples. Through the combination of different compositions and proportions, nano-precursors with stable performance are prepared, which are then mixed into concrete. The concrete proportions are shown in Table 2.
  • organosilicon nano-precursor medium transport inhibitor has little effect on the working performance and mechanical properties of concrete, and can effectively reduce the water absorption of concrete.
  • the hydrophobicity is stronger. Even in a saturated state, it can significantly reduce the chloride ion diffusion coefficient and enhance the concrete resistance to ion erosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Sealing Material Composition (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种有机硅纳米前驱体介质传输抑制剂及其制备方法和应用。该有机硅纳米前驱体介质传输抑制剂,由有机硅及其衍生物、催化剂,分散剂、稳定剂、表面活性剂以及水组成。该有机硅纳米前驱体介质传输抑制剂在水化过程中原位生成纳米颗粒,该纳米颗粒不仅具有疏水功能,同时能够填充混凝土的孔隙,解决了疏水材料在饱水状态下不能减少侵蚀性介质扩散的难题,通过纳米颗粒的原位生成,能够解决外加纳米材料存在的分散不均、稳定性差等问题。

Description

一种有机硅纳米前驱体介质传输抑制剂、其制备方法及应用
本申请要求于2020年6月29日提交中国专利局,发明名称为“一种有机硅纳米前驱体介质传输抑制剂、其制备方法及应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种功能性材料,特别适用于抑制混凝土中腐蚀性介质传输,属于建筑材料领域。
技术背景
钢筋混凝土腐蚀破坏现象越来越多,严重时会造成重大安全事故。世界各国工程和技术人员一直都关心钢筋混凝土耐腐蚀性能的提升,特别是随着经济社会的快速发展,工程应用领域的不断拓宽,面临恶劣腐蚀环境越来越普遍,实用长效性的耐腐蚀附加措施是减少腐蚀破坏和延迟结构服役寿命的有效手段。
混凝土耐久性提升的关键是降低腐蚀性介质在混凝土中的传输,常规技术手段包括降低水胶比和使用矿物掺合料;降低水胶比、减少用水量将很大程度影响新拌混凝土和易性;粉煤灰、矿粉和硅灰等矿物掺合料的使用则可能造成混凝土早期强度偏低、加剧碳化深度和增大收缩开裂的风险;上述常规技术手段主要是通过减少孔隙数量、优化孔隙结构的方式,减少侵蚀性离子可传输的路径。现有研究表明钢筋混凝土腐蚀最为严重区域为干湿交替和浪花飞溅区,究其原因主要是上述区域存在类似于“灯芯效应”的毛细吸水现象,毛细吸水会带动侵蚀性离子快速传输与富集。因此,降低毛细吸水成为抑制腐蚀最严重部位介质传输的关键。
通常降低毛细吸水的技术手段分为外涂防护涂层或内掺抗介质传输抑制材料。已知表面防护涂层技术包括有机硅烷渗透型防护涂层、成膜型防护涂层(EP-B0538555,EP-B0340816)。其中有机硅乳液可在混凝土表面涂刷,在混凝土表面形成疏水层,阻止腐蚀性介质向混凝土内传输,但表面涂刷的均匀性以长期使用后性能的劣化均会降低抗介质传输性能。
而其他外涂防腐材料,包括丙烯酸酯、环氧树脂等,虽能够完全隔离腐蚀介质,但该类防腐涂料与混凝土存在最大的问题是粘结力差、易老化、不透气等问题,导致外防护材料在实际应用混凝土表面出现耐久性能不足,失效后很难从构筑物表面清除。
混凝土中内掺疏水性材料可以起到抑制侵蚀性介质传输的作用,近年来逐渐受到学者和工程技术人员的研究和关注。但现有的内掺疏水性材料自身对混凝土的强度发展有较为显著的负面影响,如硬脂酸乳液一般降低混凝土强度15-30%(Construction and building materials 227(2019)11678),给工程结构力学性能的保障埋下隐患。
尽管CN1106363C提到将一种含有机硅化合物的可水解的水乳液加入到由水、无机组分和选择性的有机组分制成的固化前的新鲜混凝土中,用于制备均匀防水混凝土,一定程度上能够抑制腐蚀性介质的传输。然而在混凝土完全饱水状态下,该类材料对侵蚀性介质的扩散几乎没有改善效果,有时会增加饱水状态下混凝土中侵蚀性离子的扩散,从而达不到抑制介质传输的效果。
CN1233774C、CN102424542A等报道了一种纳米硅防水剂,其组成成分为:甲基硅酸钠或甲基硅醇钠或高沸硅醇钠、纳米级二氧化硅、硅丙乳液或苯丙乳液或纯丙乳液、一乙醇胺或二乙醇胺或三乙醇胺、去离子水。但甲基硅酸钠等防水材料会严重影响混凝土凝结时间,导致应用中实际用量非常有限,同时在饱水状态下难以达到高效疏水的效果。此外,在混凝土中加入纳米材料也能够一定程度上减少饱水状态下混凝土中的介质扩散,但纳米材料自身的稳定性差以及在混凝土中拌合难以有效且均匀的分散,导致其实际应用效果仍旧不够理想。
申请内容
本申请克服现有技术的不足,提供一种纳米前驱体材料,改善混凝土抗离子侵蚀的作用。所述纳米前驱体材料在水泥水化过程中原位生成纳米颗粒,该纳米颗粒不仅具有疏水功能,同时能够有效填充混凝土的孔隙,从而有效解决了疏水材料在饱水状态下不能减少侵蚀性介质扩散的难题。
此外,通过纳米颗粒在混凝土孔隙中的原位生成,能够有效解决外加纳米材料存在的分散不均、稳定性差等问题。
本申请所述的有机硅纳米前驱体介质传输抑制剂,由有机硅及其衍生物、催化剂,分散剂、稳定剂、表面活性剂以及水组成,其重量份数比如下:
有机硅及其衍生物:2-70份
催化剂:0.01-10份
分散剂:0.01-10份
稳定剂:0.01-5份
水:30-95份
所述有机硅及其衍生物是硅原子数为1~1000的直链或支链结构的聚合物,其分子量100~100000,选自硅酸酯、烷基硅酸酯、烷基硅氧烷、烯基硅氧烷、含功能性杂原子的烷基硅氧烷或聚硅氧烷。
所述的催化剂为苯酚及其衍生物、苯醌及其衍生物、有机胍及其衍生物、分子量为50~1000的小分子醇胺中任意一种。
所述的分散剂为丙烯酸及其衍生物、马来酸及其衍生物、反丁烯二酸及其衍生物中任意一种或两种形成的聚合物分散剂。
所述的稳定剂为多聚糖、壳聚糖、纤维素醚、聚酰胺、聚吡咯烷酮。
对于某些有机硅及其衍生物由于其自身在水中溶解性差,需要添加表面活性剂进行乳化及微乳化等操作,增强有机硅及其衍生物的多相分散性。所述的表面活性剂为HLB值5-14的阳离子、阴离子及非离子表面活性剂,具体为司盘、吐温、异构醇醚、烷基羧酸盐、烷基磺酸盐、烷基季铵盐等,优选的表面活性剂为司盘、烷基羧酸盐、烷基季铵盐中的一种或两种混合。
作为优选,所述有机硅及其衍生物为γ-氨丙基硅氧烷、硅烷低聚物、烯丙基三乙氧基硅烷。
作为优选,所述催化剂为磷酸胍、对苯醌。
作为优选,所述的分散剂的分子量为1000-40000。
有机硅由于其自身性能的特点具有低的界面张力,能够有效抑制水分及侵蚀性介质的浸润,从而产生疏水及抗介质传输的效果。同时有机硅功能团与无机材料,特别是混凝土材料具有相似的化学组成,能够在无机水泥基材料界面形成牢固的化学键,从而形成有机/无机杂化体系,改善无机材料表面物理及化学性能。
所述的催化剂在混凝土的强碱性环境下的刺激下产生作用,引发有机硅及其衍生物与水泥水化生成的水化硅酸盐等作用,在混凝土孔隙内原位生成有机/无机杂化纳米材料,所述的纳米材料由氧、硅、碳等元素组成。
本申请的突出特点在于,所制备的纳米前驱体介质传输抑制剂产品体系的pH值为近中性,所述的催化剂在近中性的产品体系中不引发有机硅及其衍生物的反应,混合到混凝土中时,因混凝土环境中水泥水化产生的的强碱性才引发反应,原位生成疏水纳米颗粒。
本申请引入分散组分,一方面使纳米前驱体能够均匀的分散在混凝土内部;另一方面,分散组分可以在水化过程中促进有机硅纳米前驱体与水泥水化产物反应生成的纳米颗粒更加均匀分散。
本申请最大的特点在于并非只是通过较为简单的有机硅改善混凝土的性能,而是通过与不同催化剂、分散剂、稳定剂以及表面活性剂等组合,能够使有机硅及其衍生物均匀分布在混凝土内部,同时在混凝土内部随着水泥水化的进行,参与水化反应,原位生成疏水性纳米颗粒,同时实现混凝土密实性能的提升。
同时本申请的纳米前驱体还包括稳定剂组分,一方面是改善有机硅及其衍生物在水溶液体系中的稳定性,另一方面改有机硅及其衍生物与水化产物作用后纳米颗粒的稳定性。
所述的有机硅纳米前驱体介质传输抑制剂的制备方法:将有机硅及其衍生物和分散剂加入反应釜中,升温至10-200℃;如有表面活性剂,加入表面活性剂,搅拌1-24h;加入催化剂、稳定剂和水,继续搅拌1-24h。
本申请所述有机硅纳米前驱体介质传输抑制剂的应用方法,通过水泥基材料拌合过程中加入,加入水泥基材料中掺量相对胶凝材料用量为3-50L/m 3,待水泥基材料硬化后形成致密的抗介质传输材料。
具体实施方式
为了更好的说明本申请的有益效果,对申请内容进行实施例分析。制备了六个实施例样,同时选择市面上较好的DOW SHP 60,通过混凝土性能及抗介质传输性能试验进行对比研究。
具体实施例S1-S6的配比参见表1待续和续表1
表1待续样品配比
Figure PCTCN2020099414-appb-000001
Figure PCTCN2020099414-appb-000002
续表1样品配比
Figure PCTCN2020099414-appb-000003
表1为所制备样品的配比,通过不同组成及比例的组合,制得性能稳定的纳米前驱体,再掺入混凝土中,混凝土配合比见表2。
表2混凝土配合比kg/m3
Figure PCTCN2020099414-appb-000004
对比研究了不同样品对混凝土工作性、力学性能、疏水以及抗氯离子扩散等性能的影响,其中吸水率参照BS1882进行检测,氯离子扩散系数参照GB50082《普通混凝土中长期耐久性能测试方法》中电迁移氯离子扩散系数RCM法进行,试验结果如表3。
表3不同样品对混凝土性能影响
Figure PCTCN2020099414-appb-000005
试验结果显示,添加有机硅纳米前驱体介质传输抑制剂后混凝土的工作性能及力学性能影响较小,同时能够有效降低混凝土的吸水率,与同类型有机硅防水剂相比,疏水性能更强,即使在饱水状态下也能非常显著的降低氯离子扩散系数,增强混凝土抗离子的侵蚀。

Claims (9)

  1. 一种有机硅纳米前驱体介质传输抑制剂,其特征在于,由有机硅及其衍生物、催化剂,分散剂、稳定剂、表面活性剂以及水组成,其重量份数比如下:
    有机硅及其衍生物:2-70份,
    催化剂:0.01-10份,
    分散剂:0.01-10份,
    稳定剂:0.01-5份,
    水:30-95份;
    所述有机硅及其衍生物是硅原子数为1~1000的直链或支链结构的聚合物,其分子量100~100000,选自硅酸酯、烷基硅酸酯、烷基硅氧烷、烯基硅氧烷、含功能性杂原子的烷基硅氧烷或聚硅氧烷;
    所述催化剂在中性环境中不引发反应,待所述有机硅纳米前驱体介质传输抑制剂拌和入混凝土中时引发反应,所述催化剂为苯酚及其衍生物、苯醌及其衍生物、有机胍及其衍生物、分子量为50~1000的小分子醇胺中任意一种;
    所述的分散剂为丙烯酸及其衍生物、马来酸及其衍生物、反丁烯二酸及其衍生物中任意一种或两种形成的聚合物分散剂;
    所述的稳定剂为多聚糖、壳聚糖、纤维素醚、聚酰胺、聚吡咯烷酮。
  2. 根据权利要求1所述的有机硅纳米前驱体介质传输抑制剂,其特征在于,所述的有机硅纳米前驱体介质传输抑制剂还加入了表面活性剂;所述的表面活性剂为HLB值5-14的阳离子、阴离子及非离子表面活性剂,选自司盘、吐温、异构醇醚、烷基羧酸盐、烷基磺酸盐、烷基季铵盐中的任意几种的任意比例的组合。
  3. 根据权利要求2所述的有机硅纳米前驱体介质传输抑制剂,其特征在于,所述表面活性剂为司盘、烷基羧酸盐、烷基季铵盐中的一种或两种混合。
  4. 根据权利要求1所述的有机硅纳米前驱体介质传输抑制剂,其特征在于,所述有机硅及其衍生物为γ-氨丙基硅氧烷、硅烷低聚物、烯丙基三乙氧基硅烷。
  5. 根据权利要求1所述的有机硅纳米前驱体介质传输抑制剂,其特征在于,所述催化剂为磷酸胍、对苯醌。
  6. 根据权利要求1所述的有机硅纳米前驱体介质传输抑制剂,其特征在于,所述的分散剂的分子量为1000-40000。
  7. 权利要求1-6中的任一项所述的有机硅纳米前驱体介质传输抑制剂的制备方法,其特征在于,包括如下步骤:
    将有机硅及其衍生物和分散剂加入反应釜中,升温至10-200℃;如有表面活性剂,加入表面活性剂,搅拌1-24h;加入催化剂、稳定剂和水,继续搅拌1-24h,即得所述有机硅纳米前驱体介质传输抑制剂。
  8. 权利要求1-6中的任一项所述的有机硅纳米前驱体介质传输抑制剂的应用,其特征在于,作为混凝土防护材料使用。
  9. 根据权利要求8所述的应用,其特征在于,所述有机硅纳米前驱体介质传输抑制剂通过水泥基材料拌合过程中加入,加入水泥基材料中掺量相对胶凝材料用量为3-50L/m 3,待水泥基材料硬化后形成致密的抗介质传输材料。
PCT/CN2020/099414 2020-06-29 2020-06-30 一种有机硅纳米前驱体介质传输抑制剂、其制备方法及应用 WO2022000305A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20943647.6A EP4174043A4 (en) 2020-06-29 2020-06-30 ORGANIC SILICON NANOPRECURSOR MEDIUM TRANSMISSION INHIBITOR, ITS PREPARATION METHOD AND USE
JP2022581579A JP2023531562A (ja) 2020-06-29 2020-06-30 有機ケイ素ナノ前駆体媒体伝送抑制剤、その製造方法及び応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010609890 2020-06-29
CN202010609890.1 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022000305A1 true WO2022000305A1 (zh) 2022-01-06

Family

ID=79274062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099414 WO2022000305A1 (zh) 2020-06-29 2020-06-30 一种有机硅纳米前驱体介质传输抑制剂、其制备方法及应用

Country Status (4)

Country Link
EP (1) EP4174043A4 (zh)
JP (1) JP2023531562A (zh)
CN (1) CN113929349B (zh)
WO (1) WO2022000305A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215778A (ja) * 1984-04-11 1985-10-29 Tomoji Tanaka 硅素鋼板や、コンクリ−ト鉄筋の防錆剤及び研磨材
EP0273867A2 (de) * 1987-01-02 1988-07-06 Richard Kaufmann & Co. Mittel zur Verbesserung der hydrophoben Eigenschaften von anorganischen Materialien
EP0340816B1 (en) 1988-05-02 1993-07-07 Pcr Group, Inc. Buffered silane emulsions for rendering porous substrates water repellent
EP0538555B1 (de) 1991-07-05 1995-09-06 Degussa Aktiengesellschaft Wässrige, Organosiliciumverbindungen enthaltende Emulsionen zum Imprägnieren von anorganischen Materialien, insbesondere von Baumaterialien
CA2300614A1 (en) * 1999-03-12 2000-09-12 Sto Ag Process for reducing and preventing corrosion and corrosion progress on reinforcing steels of reinforced concrete structures
CN1106363C (zh) 1997-10-30 2003-04-23 德古萨股份公司 整体防水混凝土的制备方法
CN1513936A (zh) * 2003-07-23 2004-07-21 王文立 纳米硅防水剂及生产方法
CN101358014A (zh) * 2007-04-20 2009-02-04 赢创德固赛有限责任公司 含有有机硅化合物的混合物及其应用
CN102105545A (zh) * 2008-07-28 2011-06-22 赢创德固赛有限责任公司 具有改进拒水性的以烷基烷氧基硅氧烷为基础的用于建筑物保护应用的组合物
CN102424542A (zh) 2010-07-26 2012-04-25 丝路C&T有限公司 由层状双氢氧化物/聚氨酯共聚物组成的抗氯化物侵入的纳米杂化混凝土化学外加剂
WO2015059238A1 (en) * 2013-10-24 2015-04-30 Mapei S.P.A. Corrosion inhibition of reinforcing steel embedded in a concrete structure by means of surface application or by addition of the corrosion-inhibiting composition to the fresh reinforced concrete
CN109504270A (zh) * 2018-12-10 2019-03-22 长沙小如信息科技有限公司 一种建筑用防水剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712658B (zh) * 2015-12-29 2018-01-02 江苏苏博特新材料股份有限公司 一种用于海洋环境下抑制侵蚀介质传输的混凝土外加剂
CN105601162B (zh) * 2015-12-29 2018-01-02 江苏苏博特新材料股份有限公司 混凝土侵蚀介质抑制材料的制备方法
CN108483980B (zh) * 2018-04-12 2021-01-26 清华大学 纳米碳材料-聚合物-硅酸盐复合微纳粒子成核剂的制备方法
CN109180048B (zh) * 2018-10-30 2021-12-17 江苏苏博特新材料股份有限公司 一种纳米前驱体介质传输抑制剂及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215778A (ja) * 1984-04-11 1985-10-29 Tomoji Tanaka 硅素鋼板や、コンクリ−ト鉄筋の防錆剤及び研磨材
EP0273867A2 (de) * 1987-01-02 1988-07-06 Richard Kaufmann & Co. Mittel zur Verbesserung der hydrophoben Eigenschaften von anorganischen Materialien
EP0340816B1 (en) 1988-05-02 1993-07-07 Pcr Group, Inc. Buffered silane emulsions for rendering porous substrates water repellent
EP0538555B1 (de) 1991-07-05 1995-09-06 Degussa Aktiengesellschaft Wässrige, Organosiliciumverbindungen enthaltende Emulsionen zum Imprägnieren von anorganischen Materialien, insbesondere von Baumaterialien
CN1106363C (zh) 1997-10-30 2003-04-23 德古萨股份公司 整体防水混凝土的制备方法
CA2300614A1 (en) * 1999-03-12 2000-09-12 Sto Ag Process for reducing and preventing corrosion and corrosion progress on reinforcing steels of reinforced concrete structures
CN1513936A (zh) * 2003-07-23 2004-07-21 王文立 纳米硅防水剂及生产方法
CN1233774C (zh) 2003-07-23 2005-12-28 王文立 纳米硅防水剂及生产方法
CN101358014A (zh) * 2007-04-20 2009-02-04 赢创德固赛有限责任公司 含有有机硅化合物的混合物及其应用
CN102105545A (zh) * 2008-07-28 2011-06-22 赢创德固赛有限责任公司 具有改进拒水性的以烷基烷氧基硅氧烷为基础的用于建筑物保护应用的组合物
CN102424542A (zh) 2010-07-26 2012-04-25 丝路C&T有限公司 由层状双氢氧化物/聚氨酯共聚物组成的抗氯化物侵入的纳米杂化混凝土化学外加剂
WO2015059238A1 (en) * 2013-10-24 2015-04-30 Mapei S.P.A. Corrosion inhibition of reinforcing steel embedded in a concrete structure by means of surface application or by addition of the corrosion-inhibiting composition to the fresh reinforced concrete
CN109504270A (zh) * 2018-12-10 2019-03-22 长沙小如信息科技有限公司 一种建筑用防水剂及其制备方法

Also Published As

Publication number Publication date
CN113929349A (zh) 2022-01-14
EP4174043A1 (en) 2023-05-03
JP2023531562A (ja) 2023-07-24
EP4174043A4 (en) 2024-07-10
CN113929349B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
KR101577463B1 (ko) 유기규소 화합물을 함유하는 혼합물 및 그의 용도
EP1078897B1 (en) Early enhanced strength cement composition
CN114478064B (zh) 一种混凝土养护剂、养护涂层及其制备方法
CN109650761A (zh) 一种液体无碱速凝剂及其制备和应用
US9701590B2 (en) Water repellent for concrete
CN107352861B (zh) 一种海工混凝土防护用地聚合物涂层材料的使用方法
Song et al. Properties of water-repellent concrete mortar containing superhydrophobic oyster shell powder
CN112029411A (zh) 防火水性无机涂料及其制备方法和应用
CN105461349A (zh) 一种用于钢纤维混凝土表层的阻锈强化剂及其制备方法
CN115108754B (zh) 一种混凝土表面增强硬化剂及其制备方法
CN102557727B (zh) 建筑用水泥基渗透硬化材料及其制备方法
CN105733382A (zh) 一种蒸压加气混凝土板用微纳米钢筋防锈剂及其制备方法
CN108383448B (zh) 用于水利工程的混凝土防腐阻锈剂及其制备、使用方法
CN110183150A (zh) 一种硅铝质废弃物氯离子固化剂及其制备方法和应用
CN112551943A (zh) 一种有机硅缓释型粉末憎水剂及其制备方法
CN114634325B (zh) 一种海工混凝土用防腐抗裂减渗剂及其制备方法
Wu et al. Development of cementitious capillary crystalline waterproofing agents and durability study of concrete in the presence of chloride with sulfate in aqueous environment
CN114315296A (zh) 一种石膏基彩色饰面砂浆及制备方法
CN109665745A (zh) 一种多功能性聚羧酸减水剂及其制备方法
CN111170765B (zh) 一种多组份混凝土表面增强剂及其增强方法
WO2022000305A1 (zh) 一种有机硅纳米前驱体介质传输抑制剂、其制备方法及应用
CN112624662A (zh) 一种高分散有机-无机复合粉末憎水剂及其制备方法
CN115260384B (zh) 水泥基用含氟共聚物乳液、基于该乳液的超疏水混凝土及其制备方法
CN116081976A (zh) 一种高性能混凝土防腐增强剂、制备方法及应用
CN106007464B (zh) 混凝土侵蚀性介质传输抑制材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020943647

Country of ref document: EP

Effective date: 20230130