WO2022000193A1 - 扫描装置 - Google Patents

扫描装置 Download PDF

Info

Publication number
WO2022000193A1
WO2022000193A1 PCT/CN2020/098943 CN2020098943W WO2022000193A1 WO 2022000193 A1 WO2022000193 A1 WO 2022000193A1 CN 2020098943 W CN2020098943 W CN 2020098943W WO 2022000193 A1 WO2022000193 A1 WO 2022000193A1
Authority
WO
WIPO (PCT)
Prior art keywords
slider
sliding track
crank
scanning device
scanning
Prior art date
Application number
PCT/CN2020/098943
Other languages
English (en)
French (fr)
Inventor
刘成波
刘良检
潘殷豪
陈宁波
张迎
高蓉康
任亚光
陈涛
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2020/098943 priority Critical patent/WO2022000193A1/zh
Publication of WO2022000193A1 publication Critical patent/WO2022000193A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material

Definitions

  • the present application belongs to the technical field of scanning imaging, and particularly relates to a scanning device.
  • Scanning imaging technology is used in all walks of life, such as in clinical medicine or basic medicine, which can realize cross-scale scanning imaging from organelles, cells, tissues to organs.
  • the current mechanical scanning mostly uses a screw motor translation stage to drive the imaging probe to translate and scan.
  • the screw motor needs to be turned during the scanning process, the screw has poor return travel, resulting in too slow scanning speed, poor imaging efficiency, and no real-time imaging.
  • the present application mainly provides a scanning device to solve the technical problem that the scanning speed is too slow in the prior art.
  • a technical solution adopted in the present application is to provide a scanning device, the scanning device comprising:
  • crank-slider mechanism the crank-slider mechanism includes a crank, a connecting rod and a slider, one end of the crank is fixedly connected to the output shaft of the rotating electrical machine, and the other end is rotatably connected to one end of the connecting rod, and the connecting rod is rotatably connected to one end of the connecting rod.
  • the other end of the rod is rotatably connected to the slider; the slider is provided with a scanning probe;
  • the rotating motor is fixed on the testing table
  • the testing table includes a first sliding track
  • the sliding block is arranged on the first sliding track, and is pushed and pulled by the connecting rod so as to be on the first sliding track.
  • the sliding track moves linearly back and forth between the first position and the second position.
  • a line connecting one end of the crank to the rotating electrical machine and one end of the connecting rod connecting to the slider is the same as the extending direction of the track of the first sliding track, and the first sliding track extends in the same direction.
  • the track of a sliding track is a linear track.
  • a line connecting an end of the crank connecting to the rotating electrical machine and an end of the connecting rod connecting to the slider intersects with a track extending direction of the first sliding track.
  • the difference between the lengths of the connecting rod and the crank is greater than the offset distance between the end of the crank connecting the rotating electrical machine and the centerline of the sliding track of the slider.
  • a sensor is provided on the slider, a trigger is provided on the detection table corresponding to a first position or a second position of the first sliding track, and the slider moves to the first position. In a position or a second position, the sensor generates a trigger signal under the action of the trigger.
  • the senor and the scanning probe are respectively disposed at two opposite ends of the sliding block, so as to be located on both sides of the first sliding track, respectively, the sensor and the trigger on the same side of the first sliding track.
  • the senor is a photogate
  • the trigger is a light-shielding strip
  • the first position is closer to the rotating electrical machine than the second position, and the trigger is set corresponding to the second position.
  • the scanning device further includes:
  • the scanning device further includes a coupling assembly
  • the coupling assembly includes a base and a coupling disposed in the base, and the rotating motor is mounted on the base, The crank is connected to the output shaft of the rotating electrical machine through a coupling.
  • the application provides a scanning device, one end of the crank is fixedly connected to the output shaft of the rotating motor, the other end is rotatably connected to one end of the connecting rod, the other end of the connecting rod is rotatably connected to the slider, and the slider is provided with a scanning probe,
  • the crank-slider mechanism converts the rotary motion of the rotary motor into the linear motion of the scanning probe, and the scanning probe on the slider moves back and forth between the first position and the second position of the first sliding track by pushing and pulling the connecting rod, which improves the scanning device.
  • the block mechanism is used as a transmission part for the rotary motion of the rotary motor, which improves the scanning speed of the scanning device and reduces the manufacturing cost of the product.
  • FIG. 1 is a schematic structural diagram of an embodiment of a scanning device of the present application.
  • Fig. 2 is the top-view structure schematic diagram of the scanning device shown in Fig. 1;
  • FIG. 3 is a simple structural schematic diagram of the centering type crank-slider mechanism in the scanning device of the present application
  • Fig. 4 is the structural schematic diagram of the centering type crank-slider mechanism in the scanning device shown in Fig. 3;
  • Fig. 5 is the simple structure schematic diagram of the offset type crank-slider mechanism in the scanning device of the present application
  • FIG. 6 is a schematic structural diagram of another embodiment of the scanning device of the present application.
  • FIG. 7 is a simple schematic diagram of an embodiment of the motion trajectory of the scanning probe in the scanning device of the present application.
  • FIG. 8 is a simple schematic diagram of another embodiment of the motion trajectory of the scanning probe in the scanning device of the present application.
  • FIG. 1 is a schematic structural diagram of an embodiment of a scanning device of the present application
  • FIG. 2 is a top-view structural schematic diagram of the scanning device shown in FIG. 1
  • the scanning device 10 of the present application is suitable for fast-axis scanning of photoacoustic microscope imaging or photoacoustic computed tomography
  • the fast axis is a motion axis used to drive the scanning device 10 to perform B-scan (B-SCAN) to obtain imaging information of the sample to be scanned.
  • B-SCAN B-scan
  • the scanning device 10 of this embodiment includes a rotary motor 100 , a crank-slider mechanism 200 and a detection stage 300 .
  • the crank-slider mechanism 200 includes a crank 21, a connecting rod 22 and a slider 23.
  • One end of the crank 21 is fixedly connected to the output shaft (not shown in the figure) of the rotating electrical machine 100, and the other end is rotatably connected to one end of the connecting rod 22, while the other end is rotatably connected to one end of the connecting rod 22.
  • the other end of the connecting rod 22 rotates to connect the slider 23, that is, the rotation of the rotary motor 100 drives the crank 21 fixedly connected to it to rotate, and the rotation of the crank 21 drives the connecting rod 22 that is rotatably connected to it to move, and the connecting rod 22 can push the slider 23 to move.
  • the inspection table 300 includes a first sliding track 31 , and the first sliding track 31 includes a first position 311 and a second position 312 .
  • the slider 23 is arranged on the first sliding track 31 , so that the slider 23 moves linearly back and forth on the first sliding track 31 under the push of the connecting rod 22 .
  • the sliding block 23 may be slidably connected to the first sliding track 31 in a nested manner.
  • the slider 23 is provided with a scanning probe 32 .
  • the rotary motor 100 is used to drive the slider 23 to move through the crank-slider mechanism 200, thereby driving the scanning probe 32 to move.
  • the scanning probe 32 can scan back and forth once, and the rotary motor 100 can realize Fast rotation, followed by scanning probe 32, also enables fast scanning.
  • the first sliding track 31 is also generally referred to as a fast axis.
  • the slider 23 drives the scanning probe 32 to move in a straight line, so the focus of the laser irradiated by the scanning probe 32 does not change during optical scanning, that is, the spot size does not change, and the problem of defocusing will not occur.
  • the rotating electrical machine 100 is fixed on the detection table 300 .
  • the rotating electrical machine 100 is fixed on the testing table 300 through the coupling assembly 400 .
  • the coupling assembly 400 includes a base 41 and a coupling 42 arranged in the base 41 .
  • the rotating electric machine 100 is installed on the base 41 , and the crank 21 It is connected to the output shaft of the rotating electrical machine 100 through the coupling assembly 400 .
  • crank-slider mechanism 200 is used to convert the rotary motion of the rotary motor 100 into the linear motion of the scanning probe 32, which improves the scanning speed compared with the screw motor displacement stage used for traditional machine scanning, and can Real-time imaging.
  • FIG. 3 is a simple structural schematic diagram of the centering type crank-slider mechanism in the scanning device of the present application
  • FIG. 4 is the centering center of the scanning device shown in FIG. 3.
  • Figure 5 is a schematic structural diagram of the offset-type crank-slider mechanism in the scanning device of the present application.
  • the connecting line between the end of the crank 21 connected to the rotating electrical machine 100 and the end of the connecting rod 22 connected to the slider 23 is the same as the track extending direction of the first sliding track 31 .
  • the track of the first sliding track is a linear track.
  • the offset-type crank-slider mechanism can be driven by the rotating electric machine 100 to perform full-circle motion or non-circle motion, and has a rapid return characteristic.
  • the line connecting the end of the crank 21 connected to the rotating electrical machine 100 and the end of the connecting rod 22 connected to the slider 23 intersects the track extending direction of the first sliding track 31 .
  • the difference between the lengths of the connecting rod 22 and the crank 21 is set to be greater than the length of the crank 21 connecting the rotating electric machine 100 .
  • the offset distance e between one end and the centerline of the sliding track of the slider 23 is set to be greater than the length of the crank 21 connecting the rotating electric machine 100 .
  • crank-slider mechanism 200 In practical applications, those skilled in the art can select the type of the crank-slider mechanism 200 according to the actual situation, and the detailed technical solutions of this part will not be expanded in detail here.
  • the crank 21 drives the connecting rod 22 to move under the action of the rotating motor 100 , so that the slider 23 rotatably connected to the connecting rod 22 moves back and forth between the first position 311 and the second position 312 of the first sliding track 31 , the rotational motion of the rotating motor 100 is converted into the linear motion of the scanning probe 32, the scanning speed is improved, and real-time imaging is realized. Since the rotating motion of the rotating motor 100 is not commutated, the poor accuracy of the scanning probe 32 due to poor return scanning is avoided.
  • crank-slider mechanism 200 is used as a transmission for the rotational motion of the rotary motor 100 to improve the scanning speed, range and image quality of the scanning device 10 .
  • the scanning probe 32 is suspended in the air, that is, there is no inspection table 300 under the scanning probe 32.
  • the scanning probe 32 can be installed in the The side surface of the slider 23, specifically, the bottom surface of the slider 23 is connected to the first sliding track 31, and the scanning probe 32 is arranged on the side surface connected to the bottom surface of the slider 23 to facilitate scanning the sample to be scanned.
  • the scanning probe 32 can be retractably arranged on the slider 23 to realize the adjustment of the scanning probe 32 .
  • the scanning device 10 When the slider 23 scans back and forth between the first position 311 and the second position 312 of the first sliding track 31, if the scanning device 10 cannot know the start and end of the scan in time, it may cause repeated scanning or affect the quality of the scanned image. .
  • a sensor 33 and a trigger 34 are further introduced, the sensor 33 is arranged on the slider 23, and the trigger 34 is arranged on the detection table 300 at the first position 311 corresponding to the first sliding track 31.
  • the trigger 34 is provided on the detection table 300 corresponding to the second position 312 of the first sliding track 31 .
  • the detection table 300 corresponds to the first position 311 and the second position 312 of the first sliding track 31 on the detection table 300 .
  • Triggers 34 are provided everywhere. The cooperation of the sensor 33 and the trigger 34 is used to generate a trigger signal.
  • the sensor 33 and the trigger 34 are equivalent to reference points, and the start or end of a scan of the scanning probe 32 can be known in time to facilitate subsequent image reconstruction and stitching processing.
  • the sensor 33 when the slider 23 moves back and forth between the first position 311 and the second position 312 of the first sliding track 31, the sensor 33 generates a trigger signal under the action of the trigger 34, and the sensor 33 should be arranged on the side of the slider 23. Specifically, it can be arranged on the side surface parallel to the moving direction of the slider 23 .
  • the sensor 33 and the scanning probe 32 are respectively disposed at two opposite ends of the slider 23 so as to be located on both sides of the first sliding track 31 respectively, that is, the sensor 33 and the scanning probe 32 are respectively Located on both sides parallel to the moving direction of the slider 23, the slider 23 drives the sensor 33 and the scanning probe 32 on the track of the first sliding track 31 when the slider 23 moves back and forth at the first position 311 and the second position 312 of the first sliding track 31. Movement back and forth in the extension direction.
  • the sensor 33 passes the trigger 34, the sensor 33 starts to work, generates an electrical signal, and sends it to the program to indicate the start or end of the scan.
  • the sensor 33 passes the trigger 34 again as the start of the next scan , the scanning probe 32 moves back the same stroke as the last time, and the scanning mode is one back and forth.
  • the data collected by the two motion scans of the scanning probe 32 are all valid data, and the reciprocating motion is carried out with other slow axes, that is, Stitched images can be reconstructed.
  • the sensor 33 can be arranged on the side of the slider 23 in a telescopic manner, so as to adjust the position of the sensor 33, so that the sensor 33 can be driven by the slider 23.
  • a trigger signal is generated by being triggered.
  • the trigger 34 can be fixedly arranged on the side of the detection table 300 , or can be arranged on the side of the detection table 300 close to the slider 23 , so that the sensor 33 can pass the trigger 34 under the driving of the slider 23 .
  • the specific setting position of the trigger 34 is not limited.
  • the senor 33 may be a photogate
  • the trigger 34 may be a light-shielding bar.
  • the slider 23 drives the sensor 33 and the scanning probe 32 to move from the first position 311 of the first sliding track 31 to the second position 312, that is, when the scanning probe 32 performs B scanning on the fast axis, at this time
  • the sensor 33 just passes the trigger 34 and triggers to generate a trigger signal, indicating the end of one scan. If the sensor 33 passes the trigger 34 again and generates a trigger signal, it means that the next scan starts.
  • FIG. 6 is a schematic structural diagram of another embodiment of the scanning device of the present application.
  • the scanning device 10 further includes a support table 500 , that is, a linear module.
  • the support table 500 is arranged to make the scanning probe 32 scan in a direction perpendicular to the track extending direction of the first sliding track 31 .
  • the setting expands the dimensionality of the motion of the scanning probe 32 to assist the fast axis to complete a comprehensive scan.
  • the support table 500 is provided with a second sliding track 51, and the track extending direction of the second sliding track 51 is perpendicular to the track extending direction of the first sliding track 31, which expands the movement range of the scanning probe 32, so that the scanning probe 32 is relatively Scanning over a large area increases the scanning speed.
  • the detection table 300 is arranged on the second sliding track 51.
  • the slider 31 located on the detection table 300 can drive the scanning probe 32 to scan and image on the plane where the first sliding track 31 and the second sliding track 51 are located.
  • the second sliding track is also called the slow axis.
  • the setting manner of the detection table 300 and the second sliding track 51 may be a sliding setting, which is not limited in this embodiment.
  • the scanning dimension of the scanning probe 32 is expanded, and the scanning range of the scanning probe 32 is expanded, so that the scanning probe 32 has various scanning trajectories.
  • the following takes the scanning probe 32 scanning in the horizontal direction (x, y axis) as an example.
  • FIG. 7 and FIG. 8 A simple schematic diagram of another embodiment of the motion trajectory of the scanning probe in the scanning device of the present application.
  • the detection table 300 moves on the second sliding track 51 by a preset distance, and the scanning probe 32 After scanning from the second position 312 of the first sliding track 31 to the first position 311 driven by the slider 23, the detection table 300 steps on the second sliding track 51 by a preset distance, and repeats the above process to obtain to the motion trajectory of the scanning probe 32 shown in FIG. 7 .
  • the preset distance can be set according to the actual situation.
  • the x-axis is the direction in which the slider 23 moves from the first position 311 of the first sliding track 31 to the second position 312 , that is, the fast axis direction
  • the y-axis is the sliding direction of the detection stage 300 on the second sliding track 51 , That is, the direction of the slow axis, and the specific directions of the x and y axes can be referred to as shown in FIG. 6 .
  • the scanning probe 32 moves in the x-axis direction to scan for valid data, and cooperates with the y-axis (slow axis) to perform reciprocating motion, which is beneficial for subsequent reconstruction and imaging of each B-SCAN scan.
  • the detection table 300 slides on the second sliding track 51 along with the sliding movement, so that The scanning probe 32 scans in the x, y axes simultaneously.
  • the scanning probe 32 is driven by the crank-slider mechanism 200 to perform B-scanning on the fast axis, while the slow-axis auxiliary scanning probe 32 performs scanning motion on the fast axis, and the motion of the scanning probe 32 shown in FIG. 8 is obtained. trajectory.
  • the crank-slider mechanism 200 in this embodiment may be an eccentric type crank-slider mechanism or a concentric type crank-slider mechanism. If it is an eccentric type crank-slider mechanism, there will be a rapid return characteristic, so that the scanning probe 32 is in the When the sliding track moves back and forth, useful data cannot be collected, resulting in incapability of real-time imaging. Therefore, in this embodiment, the center-type crank-slider mechanism is preferred.
  • the scanning device includes: a rotating motor; a crank-slider mechanism, the crank-slider mechanism includes a crank, a connecting rod and a slider, one end of the crank is fixedly connected to the output shaft of the rotating motor, and the other end is rotatably connected to the connecting rod.
  • One end, the other end of the connecting rod is rotatably connected to the sliding block;
  • the sliding block is provided with a scanning probe;
  • the testing table the rotating motor is fixed on the testing table, the testing table includes a first sliding track, and the sliding block is arranged on the first sliding track, which is formed by The link pushes and pulls to move back and forth between the first position and the second position of the first sliding track.
  • the rotary motion of the rotating motor is converted into the linear motion of the scanning probe through the crank-slider mechanism, so that the scanning probe on the slider moves back and forth between the first position and the second position of the first sliding track under the push and pull of the connecting rod,
  • the scanning speed of the scanning device is improved, and real-time imaging is realized.
  • the rotary motor of the present application has no commutation in the process of rotating motion, which avoids the problem of poor accuracy caused by poor return scanning of the scanning probe, and improves the quality of the image;
  • the transmission part improves the scanning speed, range and image quality of the scanning device, reduces the manufacturing cost of the product, and has a good market promotion prospect;
  • the scanning probe is driven by the crank-slider mechanism to perform B-scanning on the fast axis, and the scanning probe does not need to swing, which avoids the problem that the spot size of the scanning probe changes or even defocuses during the scanning process; the scanning probe is on the fast axis to scan the sample.
  • the slow axis assists the fast axis movement, which expands the scanning dimension of the scanning probe, so as to facilitate the re-splicing of scanned images.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种扫描装置(10),扫描装置(10)包括:旋转电机(100);曲柄滑块机构(200),曲柄滑块机构(200)包括曲柄(21)、连杆(22)和滑块(23),曲柄(21)的一端固定连接旋转电机(100)的输出轴,另一端转动连接于连杆(22)的一端,连杆(22)的另一端转动连接于滑块(23);滑块(23)上设置有扫描探头(32);检测台(300),旋转电机(100)固定于检测台(300),检测台(300)包括第一滑动轨道(31),滑块(23)设置于第一滑动轨道(31)上,由连杆(22)推拉以在第一滑动轨道(31)的第一位置(311)和第二位置(312)之间来回运动。该扫描装置(10)通过曲柄滑块机构(200)将旋转电机(100)的旋转运动变为扫描探头(32)的直线运动,使得扫描探头(32)在第一滑动轨道(31)上来回运动,提高了扫描速度。

Description

扫描装置 【技术领域】
本申请属于扫描成像技术领域,特别涉及一种扫描装置。
【背景技术】
扫描成像技术应用于各行各业,例如在临床医学或基础医学中,可实现从细胞器、细胞、组织到器官的跨尺度扫描成像。而当前机械扫描多采用丝杆电机平移台,驱动成像探头平移扫描,但由于丝杆电机在扫描过程中需转向,丝杆存在回程差,导致扫描速度过慢,成像效率差,无法实时成像。
【发明内容】
本申请主要提供一种扫描装置,以解决现有技术中扫描速度过慢的技术问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种扫描装置,所述扫描装置包括:
旋转电机;
曲柄滑块机构,所述曲柄滑块机构包括曲柄、连杆和滑块,所述曲柄的一端固定连接所述旋转电机的输出轴,另一端转动连接于所述连杆的一端,所述连杆的另一端转动连接于所述滑块;所述滑块上设置有扫描探头;
检测台,所述旋转电机固定于所述检测台,所述检测台包括第一滑动轨道,所述滑块设置于所述第一滑动轨道上,由所述连杆推拉以在所述第一滑动轨道的第一位置和第二位置之间来回直线运动。
根据本申请提供的一实施方式,所述曲柄连接所述旋转电机的一端与所述连杆连接所述滑块的一端的连线与所述第一滑动轨道的轨道延伸方向相同,所述第一滑动轨道的轨道为直线轨道。
根据本申请提供的一实施方式,所述曲柄连接所述旋转电机的一端与所述连杆连接所述滑块的一端的连线与所述第一滑动轨道的轨道延伸方向相交。
根据本申请提供的一实施方式,所述连杆与所述曲柄的长度之差大于所述曲柄连接所述旋转电机的一端与所述滑块的滑动轨道中心线的偏距。
根据本申请提供的一实施方式,所述滑块上设置有传感器,所述检测台上对应所述第一滑动轨道的第一位置或第二位置设置有触发器,所述滑块运动到第一位置或第二位置时所述传感器在所述触发器的作用下产生触发信号。
根据本申请提供的一实施方式,所述传感器和所述扫描探头分别设置于所述滑块的两相对端,以分别位于所述第一滑动轨道的两侧,所述传感器和所述触发器位于所述第一滑动轨道的同侧。
根据本申请提供的一实施方式,所述传感器为光电门,所述触发器为遮光条。
根据本申请提供的一实施方式,所述第一位置相较于所述第二位置更靠近所述旋转电机,所述触发器对应所述第二位置设置。
根据本申请提供的一实施方式,所述扫描装置还包括:
支撑台,所述支撑台上设置有第二滑动轨道,所述检测台设置于所述第二滑动轨道,所述第二滑动轨道的轨道延伸方向与所述第一滑动轨道的轨道延伸方向垂直。
根据本申请提供的一实施方式,所述扫描装置还包括联轴器组件,所述联轴器组件包括底座和设置于所述底座内的联轴器,所述旋转电机安装于所述底座,所述曲柄通过联轴器连接于所述旋转电机的输出轴。
本申请提供了一种扫描装置,将曲柄一端固定连接旋转电机的输出轴,另一端转动连接于连杆一端,连杆的另一端转动连接于滑块,且滑块上设置有扫描探头,通过曲柄滑块机构将旋转电机的旋转运动转化为扫描探头的直线运动,滑块上的扫描探头在连杆推拉下于第一滑动轨道的第一位置和第二位置间来回运动,提高了扫描装置的扫描速度,实现了实时成像,且旋转电机旋转运动过程无换向,避免了扫描探头回程差导致成像图像精度差的问题,利于后续扫描图像的重建拼接,提高了图像的质量;将曲柄滑块机构作为旋转电机旋转运动的传动件,提高了扫描装置的扫描速度,降低了产品的制造成本。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图,其中:
图1是本申请扫描装置一实施例的结构示意图;
图2是图1所示扫描装置的俯视结构示意图;
图3是本申请扫描装置中对心型曲柄滑块机构的简易结构示意图;
图4是图3所示扫描装置中对心型曲柄滑块机构的结构示意图;
图5是本申请扫描装置中偏置型曲柄滑块机构的简易结构示意图;
图6是本申请扫描装置另一实施例的结构示意图;
图7是本申请扫描装置中扫描探头运动轨迹一实施例的简易示意图;
图8是本申请扫描装置中扫描探头运动轨迹另一实施例的简易示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
请参阅图1和图2,图1是本申请扫描装置一实施例的结构示意图,图2是图1所示扫描装置的俯视结构示意图。本申请的扫描装置10适用于光声显微镜成像或光声计算层析成像的快轴扫描,快轴是用于带动扫描装置10进行B扫描(B-SCAN)获取待扫描样品成像信息的运动轴。
本实施例的扫描装置10包括旋转电机100、曲柄滑块机构200和检测台300。
其中,曲柄滑块机构200包括曲柄21、连杆22和滑块23,曲柄21的一端固定连接旋转电机100的输出轴(图中未示),另一端转动连接于连杆22的一端,而连杆22的另一端转动连接滑块23,即旋转电机100旋转转动带动与其固定连接的曲柄21转动,曲柄21转动带动与其转动连接的连杆22移动,连杆22即可推动滑块23移动。
检测台300包括第一滑动轨道31,第一滑动轨道31包括第一位置311和第二位置312,为了方便滑块23在检测台300上来回直线运动,滑块23设置于第一滑动轨道31上,使得滑块23在连杆22的推动下于第一滑动轨道31上来回直线运动。具体的,滑块23可采用嵌套的方式与第一滑动轨道31滑动连接。
滑块23上设置有扫描探头32。本实施例中,使用旋转电机100,通过曲柄滑块机构200来带动滑块23运动,从而带动扫描探头32运动,旋转电机100旋转一圈,扫描探头32可来回扫描一次,旋转电机100可实现快速旋转,继而扫描探头32也可以实现快速的扫描。在实际应用中,一般也将第一滑动轨道31称作快轴。
并且,滑块23带动扫描探头32做直线运动,因此其在进行光扫描时,扫描探头32照射出的激光的焦点不变,即光斑大小不变,不会出现离焦的问题。
本实施例将旋转电机100固定于检测台300上。具体地,旋转电机100通过联轴器组件400固定于检测台300上,联轴器组件400包括底座41和设置于底座41内的联轴器42,旋转电机100安装于底座41上,曲柄21通过联轴器组件400连接于旋转电机100的输出轴。
本实施例的技术方案,采用曲柄滑块机构200将旋转电机100的旋转运动转化为扫描探头32的直线运动,相比于传统的机器扫描所用的丝杆电机位移台,提高了扫描速度,可实现实时成像。
对于曲柄滑块机构200的具体类型,可参阅图3-图5,图3是本申请扫描装置中对心型曲柄滑块机构的简易结构示意图,图4是图3所示扫描装置中对心型曲柄滑块机构的结构示意图,图5是本申请扫描装置中偏置型曲柄滑块机构的简易结构示意图。
图3和图4对心型曲柄滑块机构中,曲柄21连接旋转电机100的一端与连杆22连接滑块23一端的连线与第一滑动轨道31的轨道延伸方向相同。其中, 第一滑动轨道的轨道为直线轨道。
对于图5所示的偏置型曲柄滑块机构,偏置型曲柄滑块机构可在旋转电机100的带动下进行整周运动或非整周运动,且具有急回特性。偏置型曲柄滑块机构中,曲柄21连接旋转电机100的一端与连杆22连接滑块23的一端的连线与第一滑动轨道31的轨道延伸方向相交。
在具体实施例中,为了保障偏置型曲柄滑块机构能够在旋转电机100转动带动下进行整周运动,本实施例设置连杆22与曲柄21的长度之差大于曲柄21连接旋转电机100的一端与滑块23的滑动轨道中心线的偏距e。
在实际应用中,本领域的技术人员可以根据实际情况选择曲柄滑块机构200的类型,关于这部分的详细技术方案,此处不再详细拓展。
本实施例中,曲柄21在旋转电机100的作用下带动连杆22运动,使得与连杆22转动连接的滑块23在第一滑动轨道31的第一位置311和第二位置312间来回运动,将旋转电机100的旋转运动转化为扫描探头32的直线运动,提高了扫描速度,实现了实时成像,由于旋转电机100旋转运动过程无换向,避免了扫描探头32回程扫描差导致精度差的问题,利于后续扫描图像的重建拼接,提高了图像的质量;将曲柄滑块机构200作为旋转电机100旋转运动的传动件,提高了扫描装置10的扫描速度、范围及图像的质量。
对于扫描探头32在滑块23上的设置方式及位置,扫描探头32悬空设置,即扫描探头32下方无检测台300,同时考虑到滑块23的结构及滑动设置方式,扫描探头32可设置于滑块23侧面,具体为滑块23底面连接于第一滑动轨道31,扫描探头32设置于连接滑块23底面的侧面,便于对待扫描样品进行扫描。
为了方便调节扫描探头32的扫描位置,可将扫描探头32可伸缩的设置于滑块23上,以实现扫描探头32的调节。
滑块23在第一滑动轨道31的第一位置311和第二位置312间来回扫描运动时,扫描装置10若不能及时获知扫描的起始和终止,可能导致扫描重复或影响扫描后的图像质量。
因此,在本实施例中进一步引入传感器33和触发器34,传感器33设置于滑块23上,检测台300上对应第一滑动轨道31的第一位置311设置有触发器34,在另一实施例中,检测台300上对应第一滑动轨道31的第二位置312设置有触发器34,在其他实施例中,检测台300上对应第一滑动轨道31的第一位置 311和第二位置312处均设置有触发器34。传感器33和触发器34的配合设置用于产生触发信号,传感器33和触发器34相当于参考点,以及时获知扫描探头32一次扫描的起始或终止,便于后续图像的重建拼接处理。
具体的,滑块23在第一滑动轨道31的第一位置311和第二位置312来回运动时,传感器33在触发器34的作用下产生触发信号,传感器33应设置于滑块23的侧面,具体可设置于与滑块23移动方向平行的侧面上。
为了利于传感器33和扫描探头32实现各自的功能,传感器33和扫描探头32分别设置于滑块23的两相对端,以分别位于第一滑动轨道31的两侧,即传感器33和扫描探头32分别位于与滑块23移动方向平行的两侧面上,滑块23在第一滑动轨道31的第一位置311和第二位置312来回运动时带动传感器33和扫描探头32在第一滑动轨道31的轨道延伸方向上来回运动。当传感器33通过触发器34时,传感器33开始工作,产生电信号,并发送给程序表明扫描起始或结束,若为扫描结束,则传感器33再次通过触发器34时可作为下次扫描的开始,扫描探头32往回运动与上次相同的行程,此时扫描方式为一来一回,扫描探头32的两次运动扫描采集的数据均为有效数据,并配合其他慢轴进行往复运动,即可重建拼接图像。
对于传感器33和触发器34的设置,在具体实施例中,传感器33可通过伸缩的方式设置于滑块23的侧面上,便于调节传感器33的位置,使得传感器33在滑块23的带动下能通过触发器34,以触动产生触发信号。
触发器34可固定设置于检测台300的侧面上,也可设置于检测台300靠近滑块23一面上,使得传感器33能够在滑块23的带动下通过触发器34即可,本实施例对触发器34的具体设置位置不作限定。
在具体实施例中,传感器33可以为光电门,触发器34可以为遮光条。光电门在滑块23的带动下通过遮光条时,光电门的光被遮光条遮挡的瞬间,触发光电门工作,产生电信号,并传送给程序,以及时获知一次扫描的起始或结束。
在实际应用中,当滑块23带动传感器33和扫描探头32从第一滑动轨道31的第一位置311运动到第二位置312时,即扫描探头32在快轴上进行B扫描时,此时传感器33刚好通过触发器34,触发产生触发信号,表明一次扫描结束,若传感器33再次通过触发器34并产生触发信号时,则表明下次扫描开始。
请参阅图6,图6是本申请扫描装置另一实施例的结构示意图。图6中,扫 描装置10还包括支撑台500,即直线模组,支撑台500的设置用于使扫描探头32在与第一滑动轨道31的轨道延伸方向的垂直方向上扫描,支撑台500的设置拓展了扫描探头32运动的维度,以辅助快轴完成全面的扫描。
具体地,支撑台500上设置有第二滑动轨道51,第二滑动轨道51的轨道延伸方向与第一滑动轨道31的轨道延伸方向垂直,扩大了扫描探头32运动范围,使得扫描探头32在较大范围上进行扫描,提高了扫描的速度。
相较于滑块23在第一滑动轨道31上的运动,滑块23在第二滑动轨道51上的运动可由另外的电机推动或手动推动,具体地,由于滑块23位于检测台300上,检测台300设置于第二滑动轨道51上,滑块23在旋转电机100的带动下在第一滑动轨道31上来回运动时,检测台300由电机或手动推动在第二滑动轨道31上运动,使得位于检测台300上的滑块31能够带动扫描探头32在第一滑动轨道31和第二滑动轨道51所在平面上扫描成像。在实际应用中,也将第二滑动轨道称为慢轴。
在具体实施例中,检测台300与第二滑动轨道51的设置方式可以为滑动设置,本实施例对其不作限定。
由于本实施例可通过慢轴辅助扫描探头32在快轴上进行扫描,拓展了扫描探头32的扫描维度,扩大了扫描探头32的扫描范围,使得扫描探头32存在多种扫描轨迹。下面以扫描探头32在水平方向(x,y轴)进行扫描为例,具体可参阅图7和图8,图7是本申请扫描装置中扫描探头运动轨迹一实施例的简易示意图,图8是本申请扫描装置中扫描探头运动轨迹另一实施例的简易示意图。
图7中,扫描探头32在滑块23的带动下从第一滑动轨道31的第一位置311扫描到第二位置312后,检测台300在第二滑动轨道51上移动预设距离,扫描探头32再在滑块23的带动下从第一滑动轨道31的第二位置312扫描到第一位置311后,检测台300在第二滑动轨道51上步进预设距离,重复上述过程,以获取到图7所示的扫描探头32运动轨迹。在具体实施例中,预设距离可根据实际情况进行设置。
其中,x轴为滑块23从第一滑动轨道31的第一位置311移动到第二位置312的方向,即快轴方向,y轴表示检测台300在第二滑动轨道51上的滑动方向,即慢轴方向,x,y轴的具体方向可参阅图6所示。
在实际应用中,扫描探头32在x轴方向运动扫描均为有效数据,并配合y 轴(慢轴)进行往复运动,利于后续对每条B-SCAN扫描重建成像。图8中,扫描探头32在曲柄滑块机构200的带动下从第一滑动轨道31的第一位置311扫描到第二位置312时,伴随检测台300在第二滑动轨道51上滑动运动,使得扫描探头32同时在x,y轴上进行扫描。也就是说,扫描探头32在曲柄滑块机构200的带动下于快轴进行B扫描,同时慢轴辅助扫描探头32于快轴上进行扫描运动,获取到图8所示的扫描探头32的运动轨迹。本实施例中的曲柄滑块机构200可以为偏心型曲柄滑块机构,也可以为对心型曲柄滑块机构,若为偏心型曲柄滑块机构,会存在急回特性,使得扫描探头32在滑动轨道上来回运动时无法采集到有用的数据,导致无法实时成像,因此,本实施例中优选为对心型曲柄滑块机构。
在本实施例中,扫描装置包括:旋转电机;曲柄滑块机构,曲柄滑块机构包括曲柄、连杆和滑块,曲柄的一端固定连接旋转电机的输出轴,另一端转动连接于连杆的一端,连杆的另一端转动连接于滑块;滑块上设置有扫描探头;检测台,旋转电机固定于检测台,检测台包括第一滑动轨道,滑块设置于第一滑动轨道上,由连杆推拉以在第一滑动轨道的第一位置和第二位置之间来回运动。本申请通过曲柄滑块机构将旋转电机的旋转运动转化为扫描探头的直线运动,使得滑块上的扫描探头在连杆推拉下于第一滑动轨道的第一位置和第二位置间来回运动,提高了扫描装置的扫描速度,实现了实时成像。相对于传统的丝杆电机,本申请的旋转电机旋转运动过程无换向,避免了扫描探头回程扫描差导致精度差的问题,提高了图像的质量;将曲柄滑块机构作为旋转电机旋转运动的传动件,提高了扫描装置的扫描速度、范围及图像质量,且降低了产品的制造成本,具有良好的市场推广前景;相对于传统的振镜扫描,本申请的扫描探头设置于滑块上,使得扫描探头在曲柄滑块机构的带动下于快轴进行B扫描,扫描探头不需摆动,避免了扫描探头在扫描过程中光斑大小变化甚至离焦的问题;扫描探头在快轴上对待扫描样品进行扫描时,慢轴辅助快轴运动,拓展了扫描探头的扫描维度,以便于扫描图像的重新拼接。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (9)

  1. 一种扫描装置,其特征在于,所述扫描装置包括:
    旋转电机;
    曲柄滑块机构,所述曲柄滑块机构包括曲柄、连杆和滑块,所述曲柄的一端固定连接所述旋转电机的输出轴,另一端转动连接于所述连杆的一端,所述连杆的另一端转动连接于所述滑块;所述滑块上设置有扫描探头;
    检测台,所述旋转电机固定于所述检测台,所述检测台包括第一滑动轨道,所述滑块设置于所述第一滑动轨道上,由所述连杆推拉以在所述第一滑动轨道的第一位置和第二位置之间来回直线运动。
  2. 根据权利要求1所述的扫描装置,其特征在于,所述曲柄连接所述旋转电机的一端与所述连杆连接所述滑块的一端的连线与所述第一滑动轨道的轨道延伸方向相同,所述第一滑动轨道的轨道为直线轨道。3、根据权利要求1所述的扫描装置,其特征在于,所述曲柄连接所述旋转电机的一端与所述连杆连接所述滑块的一端的连线与所述第一滑动轨道的轨道延伸方向相交。
  3. 根据权利要求3所述的扫描装置,其特征在于,所述连杆与所述曲柄的长度之差大于所述曲柄连接所述旋转电机的一端与所述滑块的滑动轨道中心线的偏距。
  4. 根据权利要求1所述的扫描装置,其特征在于,所述滑块上设置有传感器,所述检测台上对应所述第一滑动轨道的第一位置或第二位置设置有触发器,所述滑块运动到第一位置或第二位置时所述传感器在所述触发器的作用下产生触发信号。
  5. 根据权利要求5所述的扫描装置,其特征在于,所述传感器和所述扫描探头分别设置于所述滑块的两相对端,以分别位于所述第一滑动轨道的两侧,所述传感器和所述触发器位于所述第一滑动轨道的同侧。
  6. 根据权利要求6所述的扫描装置,其特征在于,所述传感器为光电门,所述触发器为遮光条。
  7. 根据权利要求5所述的扫描装置,其特征在于,所述第一位置相较于所述第二位置更靠近所述旋转电机,所述触发器对应所述第二位置设置。
  8. 根据权利要求1所述的扫描装置,其特征在于,所述扫描装置还包括:
    支撑台,所述支撑台上设置有第二滑动轨道,所述检测台设置于所述第二滑动轨道,所述第二滑动轨道的轨道延伸方向与所述第一滑动轨道的轨道延伸方向垂直。
  9. 根据权利要求1所述的扫描装置,其特征在于,所述扫描装置还包括联轴器组件,所述联轴器组件包括底座和设置于所述底座内的联轴器,所述旋转电机安装于所述底座,所述曲柄通过联轴器连接于所述旋转电机的输出轴。
PCT/CN2020/098943 2020-06-29 2020-06-29 扫描装置 WO2022000193A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098943 WO2022000193A1 (zh) 2020-06-29 2020-06-29 扫描装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098943 WO2022000193A1 (zh) 2020-06-29 2020-06-29 扫描装置

Publications (1)

Publication Number Publication Date
WO2022000193A1 true WO2022000193A1 (zh) 2022-01-06

Family

ID=79315073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098943 WO2022000193A1 (zh) 2020-06-29 2020-06-29 扫描装置

Country Status (1)

Country Link
WO (1) WO2022000193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935554A (zh) * 2022-03-25 2022-08-23 华东师范大学 一种水果甜度的光谱扫描教具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262838B1 (en) * 1998-03-20 2001-07-17 Genetic Microsystems Inc Focusing in microscope systems
US20070103749A1 (en) * 2005-11-07 2007-05-10 Arie Shahar High-speed, high-resolution, wide-format cartesian scanning systems
CN201350073Y (zh) * 2009-02-06 2009-11-25 中国医学科学院生物医学工程研究所 高精度机械线性扫描超声探头
CN107271554A (zh) * 2017-07-28 2017-10-20 上海和伍精密仪器股份有限公司 一种无损检测用同步扫描装置、***和方法
CN207148048U (zh) * 2017-07-28 2018-03-27 上海和伍精密仪器股份有限公司 基于曲柄滑块机构实现快速同步扫描的装置
CN110108688A (zh) * 2019-05-14 2019-08-09 吉林亚泰中科医疗器械工程技术研究院股份有限公司 一种用于共聚焦显微镜三维成像的控制机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262838B1 (en) * 1998-03-20 2001-07-17 Genetic Microsystems Inc Focusing in microscope systems
US20070103749A1 (en) * 2005-11-07 2007-05-10 Arie Shahar High-speed, high-resolution, wide-format cartesian scanning systems
CN201350073Y (zh) * 2009-02-06 2009-11-25 中国医学科学院生物医学工程研究所 高精度机械线性扫描超声探头
CN107271554A (zh) * 2017-07-28 2017-10-20 上海和伍精密仪器股份有限公司 一种无损检测用同步扫描装置、***和方法
CN207148048U (zh) * 2017-07-28 2018-03-27 上海和伍精密仪器股份有限公司 基于曲柄滑块机构实现快速同步扫描的装置
CN110108688A (zh) * 2019-05-14 2019-08-09 吉林亚泰中科医疗器械工程技术研究院股份有限公司 一种用于共聚焦显微镜三维成像的控制机构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114935554A (zh) * 2022-03-25 2022-08-23 华东师范大学 一种水果甜度的光谱扫描教具

Similar Documents

Publication Publication Date Title
US8974392B2 (en) Ultrasonic probe
WO2022000193A1 (zh) 扫描装置
CN108593659A (zh) 激光焊缝表面质量全自动扫查检测装置及方法
JP7073532B2 (ja) 三次元再構成システムおよび三次元再構成方法
WO2019020121A1 (zh) 一种无损检测用同步扫描装置、***和方法
CN111584415A (zh) 一种用于晶圆键合的对准***
CN111948292A (zh) 扫描装置
WO2023024926A1 (zh) 一种旋翼尾流spiv测量同步移测机构和锁相测量方法
CN1793860A (zh) 激光共焦扫描结合图像拼接的生物芯片成像方法及其装置
CN103646231A (zh) 二维光机扫描器
CN204101484U (zh) 一种cl***的扫描装置
CN103727970A (zh) 同步转角仪
CN114526715A (zh) 一种基于三维激光扫描仪的老旧小区改造用扫描***
CN101825517B (zh) 一种激光器测试用双轴旋转扫描机构及激光器远场测试装置
JP5508214B2 (ja) 顕微鏡スライドの拡大イメージを作成するシステム及び方法
WO2024055528A1 (zh) 直接驱动式成像及治疗装置
CN104849499B (zh) 一种快速扫描原子力显微检测方法及***
CN112568870A (zh) 光声成像设备及驱动装置
CN115644821A (zh) 一种移动式扫描成像装置
CN213583692U (zh) 一种用于扫描电子显微镜中真空运动平台的双轴联动结构
CN111750802B (zh) 一种基于线结构光的工件表面微观形貌测量装置及方法
CN210472122U (zh) 一种旋转侧扫式oct眼球内窥镜结构
CN208962004U (zh) 一种驱动蓝光扫描仪移动的机器人
CN112530772A (zh) 一种用于扫描电子显微镜中真空运动平台的双轴联动结构
US11896431B2 (en) Linear scanning mechanical volume probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943683

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20943683

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/08/2023)