WO2021258761A1 - 混合组网下的迁移方法、存储介质和电子设备 - Google Patents

混合组网下的迁移方法、存储介质和电子设备 Download PDF

Info

Publication number
WO2021258761A1
WO2021258761A1 PCT/CN2021/077908 CN2021077908W WO2021258761A1 WO 2021258761 A1 WO2021258761 A1 WO 2021258761A1 CN 2021077908 W CN2021077908 W CN 2021077908W WO 2021258761 A1 WO2021258761 A1 WO 2021258761A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
nsa
side base
neighboring cell
mixed
Prior art date
Application number
PCT/CN2021/077908
Other languages
English (en)
French (fr)
Inventor
黎慰
何金招
胡敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21828460.2A priority Critical patent/EP4171120A4/en
Publication of WO2021258761A1 publication Critical patent/WO2021258761A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present invention relates to the field of mobile communication, in particular to a migration method, storage medium and electronic equipment from NSA to SA under a hybrid network of NSA and SA.
  • 5G has gradually entered the commercial stage. Based on the consideration of construction cost, the 5G network will continue to evolve based on the existing network architecture, for example, by synergistically merging cellular networks with different coverage areas to increase network capacity and access transmission rate, thereby improving network coverage quality or increasing system throughput.
  • the terminal is dual-connected to the LTE (Long Time Evaluation) cell at the same time.
  • LTE Long Time Evaluation
  • NR New Radio, New Radio Access Network
  • the terminal cannot attach to the NR neighboring cell with better signal quality by changing the secondary cell.
  • the terminal that supports NSA access does not meet the handover conditions, the terminal that supports NSA access cannot migrate to the NR neighboring cell; on the other hand, because the terminal that supports NSA access is subject to co-channel interference from the NR neighboring cell Therefore, the terminal that supports NSA access cannot enjoy the 5G high-speed service experience, which affects the user experience.
  • the embodiment of the present invention provides a migration method in hybrid networking, which is applied to the NR-side base station in the non-independent networking NSA, including the following steps: according to the configuration of co-frequency interference measurement parameters, download to the mixed-mode terminal Transmit co-channel interference measurement; determine whether the corresponding NR neighbor cell supports NSA access based on the NR neighbor cell measurement information reported by the mixed-mode terminal; and send the NR neighbor cell to the LTE side base station in the NSA whether the NR neighbor cell Support the judgment result of NSA access.
  • the embodiment of the present invention provides a migration method in hybrid networking, which is applied to the LTE-side base station in the non-independent networking NSA, and includes the following steps: receiving the support from the NR-side base station in the NSA The list of NR neighboring cells accessed by the NSA; detecting the signal status of each NR neighboring cell in the NR neighboring cell list and comparing it with the handover condition; and after the handover condition is met, triggering the mixed-mode terminal to disconnect the current connection to migrate to The corresponding NR neighborhood.
  • the embodiment of the present invention provides a migration method in a hybrid networking, which is applied to a hybrid terminal dual-connected to a non-independent networking NSA, including the following steps: connecting to the NR-side base station in the NSA , To receive the co-channel interference measurement issued by the NR-side base station; search for the NR neighboring cell at the current location, and report the measurement information of the NR neighboring cell that meets the threshold condition to the NR-side base station; and in response to the The handover instruction sent by the LTE-side base station in the NSA migrates to the corresponding NR neighboring cell.
  • an embodiment of the present invention provides an electronic device, including: a memory, configured to store a program; a processor, configured to execute the program stored in the memory, and when the processor executes the program stored in the memory , The processor is used to execute the migration method in the hybrid networking as described above.
  • an embodiment of the present invention provides a storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the above-mentioned migration method in a hybrid networking.
  • Figure 1 is a schematic diagram of the connection architecture in a hybrid networking scenario
  • FIG. 2 is a flowchart of a migration method for an NR-side base station applied to a non-independent networking NSA according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of migration of an NR side base station applied to a non-independent networking NSA according to an embodiment of the present invention
  • FIG. 4 is another schematic diagram of migration of an NR side base station applied to a non-independent networking NSA according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the NR side base station storing the connection state of the NR neighboring cell in an embodiment of the present invention
  • FIG. 6 is a flow chart of a migration method for an LTE-side base station applied to a non-independent networking NSA according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of migration of an LTE-side base station applied to a non-independent networking NSA according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of the LTE-side base station storing the connection state of the NR neighboring cell in an embodiment of the present invention
  • FIG. 9 is a flowchart of a method for migrating a mixed-mode terminal applied to a non-independent networking NSA according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station provided by an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a mobile mixed-mode terminal according to an embodiment of the present invention.
  • multiple means two or more, greater than, less than, exceeding, etc. are understood to not include the number, and above, below, and within are understood to include the number. If there are descriptions of "first”, “second”, etc., only for the purpose of distinguishing technical features, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features or implicitly indicating the indicated The precedence of technical characteristics.
  • the 5G network architecture in order to save initial costs and reuse existing equipment as much as possible, operators generally adopt a hybrid network of NSA and SA to lay the 5G network.
  • the original 4G base station eNB (Evolved Node B) in the 4G network or the modified enhanced 4G base station and mobile phone or tablet computer and other mixed-mode terminals that support NSA/SA access connect.
  • part of the data in the user plane that poses a bottleneck to the 4G base station is migrated to the 5G base station (gNB).
  • gNB 5G base station
  • the mixed-mode terminal needs to connect to a 5G base station supporting NSA to send and receive this part of the data, while the control plane data and the remaining user plane data continue to be sent and received through the 4G base station.
  • This thus forms a mixed networking cell (NSA cell) for 4G base stations (or enhanced 4G base stations) and 5G base stations supporting NSA.
  • SA cells independent networking cells
  • the current plan is that the LTE-side base station and the NR-side base station under the option3x architecture have the same coverage.
  • the LTE-side base station eNB and the NR-side base station gNB form an NSA network.
  • the NR-side base station gNB has established a neighboring cell relationship with the LTE-side base station eNB within its coverage area. In this way, cell 1 has NSA networking capabilities.
  • a cell 2 that does not support NSA networking is adjacent to the cell 1 composed of the LTE-side base station eNB and the NR-side base station gNB. This cell 2 supports NS networking but not NSA networking.
  • the mixed-mode terminal measures the signal strength of cell 1 of the NSA network and cell 2 of the SA network, and selects a cell with stronger signal strength for access. In this way, the following situations may occur. Due to the strong signal strength of cell 1 of the SA networking, the mobile terminal will access cell 2 of the SA networking (ie anchor cell), but not cell 1 of the NSA networking; However, because the mixed-mode terminal migrates from cell 1 of the NSA network to the anchor cell of the SA network, it needs to start the different system handover process and consume the corresponding signaling overhead, reducing the NSA network’s cell 1 and other NSA-supporting mobile The user experience of the terminal.
  • the movement of users will result in more frequent handovers of mixed-mode terminals (for example, handovers between different 5G base stations in NSA cells, and base station handovers between NSA cells and SA cells).
  • handovers between different 5G base stations in NSA cells for example, handovers between different 5G base stations in NSA cells, and base station handovers between NSA cells and SA cells.
  • user mobility management becomes more complicated than before.
  • the LTE/NR side cooperates to complete the SA and NSA hybrid networking scenarios, while ensuring the peak traffic of the end user, and achieving the smallest signaling overhead.
  • This embodiment provides a migration method in hybrid networking, which is applied to the NR-side base station in the non-independent networking NSA. As shown in FIG. 2, the method includes:
  • Step 101 Send co-channel interference measurement to the mixed-mode terminal
  • cell 1 supports NSA attributes
  • cell 2 supports SA attributes
  • cell 1 there is an LTE side base station eNB and an NR side base station gNB.
  • gNB There is also an NR-side base station gNB in cell 2.
  • the NR side base station of the cell that is, the gNB base station in Figure 3, which is a 5G base station supporting NSA
  • the mixed-mode terminal issues co-channel interference measurement.
  • the LTE-side base station in the NSA cell does not repeatedly issue co-channel interference measurements to the mixed-mode terminal.
  • the mixed-mode terminal can search for the NR neighboring cell with the same frequency near its location, and report the measurement information of the NR neighboring cell back to the NR side base station. Among them, the mixed-mode terminal supports NSA/SA access. At this time, since it is avoided that the base station on the LTE side directly sends the measurement of the different system to the mixed-mode terminal, the peak traffic of the mixed-mode terminal itself can be maintained during the entire handover process.
  • Step 102 Based on the NR neighbor cell measurement information reported by the mixed-mode terminal, determine whether the corresponding NR neighbor cell supports NSA access;
  • Step 103 Send a determination result of whether the NR neighboring cell supports NSA access to the LTE-side base station in the NSA.
  • the NR-side base station can independently configure co-channel interference measurement related parameters. After receiving the NR neighboring cell measurement information reported by the mixed-mode terminal, the NR side base station can determine whether it supports the NSA access attribute based on the NR neighboring cell measurement information.
  • the NR side base station is connected to the background, configures the NR neighboring cell relationship according to the NR neighboring cell measurement information reported by the mixed-mode terminal, and identifies whether the NR neighboring cell supports NSA attributes.
  • the mixed-mode terminal cannot pass the SnChange process (NSA change Secondary cell) to the NR cell.
  • the NR-side base station in cell 1 may notify the NR neighboring cell that does not support NSA access to the LTE-side base station in the same cell (for example, the base station eNB shown in FIG. 4).
  • the mixed-mode terminal can attach to the NR cell by triggering the SnChange procedure.
  • the triggering SnChange process belongs to the standard process stipulated in the agreement. Specifically, the NR-side base station will notify the LTE-side base station in the NSA cell through the SgNBChangeRequired source of the NR neighbor cell that supports dual connectivity obtained through measurement, thereby triggering the LTE-side base station to perform a leg switch operation (replace the attached NR auxiliary). Cell), that is, the SnChange process.
  • the NR-side base station in cell 1 can send the determination result (for example, an NR neighboring cell that does not support NSA access) to the LTE-side base station in cell 1 through the newly added X2 signaling SN Status Transfer message.
  • the NR-side base station in cell 1 may also send the determination result to the LTE-side base station in cell 1 by multiplexing the secondary node handover request message.
  • the LTE site eNB1 initiates the SN broken leg and different system handover procedures.
  • a mixed-mode terminal wants to migrate to a cell that supports NSA, it can be attached by changing the NSA secondary cell. It can be seen that the above process reuses part of the NSA secondary cell change process, thereby reducing the signaling overhead compared to the original different system handover process.
  • This embodiment provides a migration method in hybrid networking, which is applied to the NR-side base station in the non-independent networking NSA. As shown in FIG. 2, the method includes:
  • Step 101 Send co-channel interference measurement to the mixed-mode terminal
  • cell 1 is an LTE cell.
  • Cell 2 supports NSA attributes.
  • Cell 3 only supports SA attributes (that is, it does not support NSA access, so it cannot be handed over through the SnChange process, but co-frequency interference can also occur in the same coverage part of its neighboring cells on the same frequency).
  • SA attributes that is, it does not support NSA access, so it cannot be handed over through the SnChange process, but co-frequency interference can also occur in the same coverage part of its neighboring cells on the same frequency.
  • cell 3 there is an NR side base station gNB.
  • the NR-side base station (that is, the gNB base station in Figure 4, which is a 5G base station that supports NSA) can be configured to mix with each other according to the configuration of the co-frequency interference measurement parameters.
  • Modular terminal sends co-channel interference measurement.
  • the LTE-side base station does not repeatedly issue co-channel interference measurements to the mixed-mode terminal.
  • the mixed-mode terminal can search for the NR neighboring cell with the same frequency near its location, and report the measurement information of the NR neighboring cell back to the NR side base station. Among them, the mixed-mode terminal supports NSA/SA access. At this time, since it is avoided that the base station on the LTE side directly sends the measurement of the different system to the mixed-mode terminal, the peak traffic of the mixed-mode terminal itself can be maintained during the entire handover process.
  • Step 102 Based on the NR neighbor cell measurement information reported by the mixed-mode terminal, determine whether the corresponding NR neighbor cell supports NSA access;
  • Step 103 Send a determination result of whether the NR neighboring cell supports NSA access to the LTE-side base station in the NSA.
  • the NR-side base station can independently configure co-channel interference measurement related parameters. After receiving the NR neighboring cell measurement information reported by the mixed-mode terminal, the NR side base station can determine whether it supports the NSA access attribute based on the NR neighboring cell measurement information.
  • the NR side base station is connected to the background, configures the NR neighboring cell relationship according to the NR neighboring cell measurement information reported by the mixed-mode terminal, and identifies whether the NR neighboring cell supports NSA attributes.
  • the mixed-mode terminal when the NR neighboring cell is judged to not support NSA access (for example, cell 1), the mixed-mode terminal cannot attach to the NR cell through the SnChange process (NSA changes the secondary cell) .
  • the NR-side base station in cell 1 may notify the NR neighboring cell that does not support NSA access to the LTE-side base station in the same cell (for example, the base station eNB shown in FIG. 4).
  • the mixed-mode terminal can attach to the NR cell by triggering the SnChange procedure.
  • the triggering SnChange process belongs to the standard process stipulated in the agreement. Specifically, the NR-side base station will notify the LTE-side base station in the NSA cell through the SgNBChangeRequired source of the NR neighbor cell that supports dual connectivity obtained through measurement, thereby triggering the LTE-side base station to perform a leg switch operation (replace the attached NR auxiliary). Cell), that is, the SnChange process.
  • the NR-side base station in cell 3 can send the determination result (for example, an NR neighboring cell that does not support NSA access) to the LTE-side base station in cell 1 through a newly added X2 signaling SN Status Transfer message.
  • the NR side base station in cell 3 may also send the determination result to the LTE side base station in cell 1 by multiplexing the secondary node handover request message.
  • the LTE site eNB1 initiates the SN broken leg and different system handover procedures.
  • a mixed-mode terminal wants to migrate to a cell that supports NSA, it can be attached by changing the NSA secondary cell. It can be seen that the above process reuses part of the NSA secondary cell change process, thereby reducing the signaling overhead compared to the original different system handover process.
  • This embodiment provides a migration method in hybrid networking, which is applied to an LTE-side base station in a non-independent networking NSA. As shown in FIG. 6, the method includes:
  • Step 201 Receive a list of NR neighbor cells that support NSA access sent by the NR side base station in the NSA;
  • the LTE side base station ie the base station eNB in the figure, which is a 4G base station or an enhanced 4G base station
  • receives the NR side base station That is, the above-mentioned message sent by the base station gNB in the figure, which is a 5G base station, triggers the handover decision of the mixed-mode terminal from the NSA to the SA NR neighboring cell.
  • the mixed-mode terminal can search for the NR neighboring cell with the same frequency near its location, and report the measurement information of the NR neighboring cell back to the NR side base station.
  • the NR side base station forms a list of NR neighbor cells supporting NSA access based on the measurement information of the NR neighbor cell. At this time, since the LTE-side base station does not directly issue measurements of different systems to the mixed-mode terminal, the peak traffic of the mixed-mode terminal itself can always be maintained during the entire handover process.
  • Step 202 Detect the signal status of each NR neighboring cell in the NR neighboring cell list, and compare it with handover conditions;
  • the LTE-side base station can detect the signal quality, availability status, load status, neighbor relationship and other conditions of each NR neighbor cell in the NR neighbor cell list.
  • the signal condition may use signal strength RSRP (Reference Signal Receiving Power), reference signal receiving quality (RSRQ), signal to interference plus noise ratio (Signal to Interference plus Noise Ratio). ) Or a combination of the above-mentioned multiple signal condition parameters.
  • Step 203 After the handover condition is met, trigger the mixed-mode terminal to disconnect the current connection to migrate to the corresponding NR neighboring cell.
  • the mixed-mode terminal supports NSA/SA access.
  • the LTE-side base station judges that the handover conditions are satisfied based on the signal quality, availability status, load status, and neighbor relationship of the NR neighboring cell, but the NR cell does not support NSA access
  • the LTE The side base station starts to trigger the mixed-mode terminal to disconnect the dual connection, and initiates the SN broken leg and different system handover procedures (that is, handover from the base station eNB in the current cell to the base station gNB in another cell), thereby completing the mixed-mode terminal from Migration from cell 1 supporting NSA to cell 2 supporting SA.
  • the LTE-side base station may Trigger the mixed-mode terminal to attach to an NR cell with better signal quality through an NSA secondary cell change method.
  • the LTE-side base station can be connected to the background, configure the NR neighboring cell relationship according to the NR neighboring cell list that supports NSA access sent by the NR-side base station in the NSA, and identify this Whether the NR neighboring cell supports NSA attributes.
  • the mixed-mode terminal cannot pass the SnChange process (NSA change Secondary cell) to the NR cell.
  • the NR-side base station in cell 1 may notify the NR neighboring cell that does not support NSA access to the LTE-side base station in the same cell (for example, the base station eNB shown in FIG. 7).
  • the mixed-mode terminal can attach to the NR cell by triggering the SnChange process.
  • the triggering SnChange process belongs to the standard process stipulated in the agreement. Specifically, the LTE-side base station receives the notification from the NR-side base station in the NSA cell through measurement that indicates the NR neighbor cell supporting dual connectivity through the SgNBChangeRequired source. The LTE-side base station thus triggers a leg-swap operation (replacement of the attached NR secondary cell), that is, the SnChange procedure.
  • the LTE-side base station in cell 1 can obtain the determination result from the NR-side base station of the cell through the newly added X2 signaling SN Status Transfer message (for example, an NR neighboring cell that does not support NSA access).
  • the LTE-side base station in cell 1 may also obtain the determination result from the NR-side base station in cell 1 by multiplexing the secondary node handover request message.
  • the above process reuses part of the NSA secondary cell change process, thereby reducing signaling overhead compared to the original different system handover process.
  • This embodiment provides a migration method in a hybrid networking, which is applied to a hybrid terminal in a non-independent networking NSA.
  • the mixed-mode terminal supports NSA/SA access.
  • the method includes:
  • Step 301 Connect to the NR-side base station in the NSA to receive the co-channel interference measurement issued by the NR-side base station;
  • the mixed-mode terminal can receive the NR side base station of the cell (ie, the gNB base station in FIG. 4) after implementing dual connectivity in the NSA cell. 5G base station) co-channel interference measurement sent to it.
  • the NR side base station can independently configure co-channel interference measurement related parameters.
  • the mixed-mode terminal can search for the NR neighboring cell with the same frequency near its location, and report the measurement information of the NR neighboring cell back to the NR side base station.
  • the NR side base station can determine whether it supports the NSA access attribute based on the NR neighboring cell measurement information. In this process, since it is avoided that the base station on the LTE side directly sends the measurement of the different system to the mixed-mode terminal, the peak traffic of the mixed-mode terminal itself can be maintained during the entire handover process.
  • Step 302 Search for the NR neighboring cell at the current location, and report the measurement information of the NR neighboring cell that meets the threshold condition to the NR side base station;
  • the threshold condition may be the signal quality, available state, load state, neighbor relationship, etc. of the NR neighboring cell.
  • the threshold condition for determining whether to report the measurement information may be sent to the mixed-mode terminal after the configuration is completed on the base station side, so that the mixed-mode terminal can autonomously determine whether to report the measurement information according to the threshold condition.
  • the mixed-mode terminal measures adjacent cell signals, if the signal quality meets the threshold condition, the measurement information will be reported to the NR side base station.
  • the NR-side base station After receiving the measurement information reported by the mixed-mode terminal, the NR-side base station makes a judgment based on the measurement information.
  • the measurement information may include the signal quality of the neighboring cell measured by the terminal, and may also include the available status and neighbor relationship of the neighboring cell configured on the base station side, and the load status of the neighboring cell obtained and detected by the base station itself. .
  • Step 303 In response to the handover instruction sent by the LTE-side base station in the NSA, migrate to the corresponding NR neighboring cell.
  • the LTE side base station ie the base station eNB in the figure, which is a 4G base station or an enhanced 4G base station
  • receives the NR side base station That is, the above-mentioned message sent by the base station gNB in the figure, which is a 5G base station, triggers the handover decision of the mixed-mode terminal from the NSA to the SA NR neighboring cell.
  • the mixed-mode terminal can search for the NR neighboring cell with the same frequency near its location, and report the measurement information of the NR neighboring cell back to the NR side base station.
  • the NR side base station forms a list of NR neighbor cells supporting NSA access based on the measurement information of the NR neighbor cell. At this time, since the LTE-side base station does not directly issue measurements of different systems to the mixed-mode terminal, the peak traffic of the mixed-mode terminal itself can always be maintained during the entire handover process.
  • the NR side base station is connected to the background, configures the NR neighboring cell relationship according to the NR neighboring cell measurement information reported by the mixed-mode terminal, and identifies whether the NR neighboring cell supports NSA attributes.
  • the LTE-side base station can also be connected to the background, configure the NR neighboring cell relationship according to the NR neighboring cell list that supports NSA access sent by the NR-side base station in the NSA, and identify Whether the NR neighboring cell supports NSA attributes.
  • the LTE-side base station judges that the handover condition is satisfied based on the signal quality, availability status, load status, and neighbor relationship of the NR neighboring cell, but does not support NSA access, the LTE-side base station starts to trigger
  • the mixed-mode terminal disconnects the dual connection, and initiates the SN broken leg and different system handover procedures (that is, handover from the base station eNB in the current cell to the base station gNB in another cell), thereby completing the mixed-mode terminal from supporting NSA
  • the LTE-side base station determines that the handover conditions are satisfied based on the signal quality, availability status, load status, and neighbor relationship of the NR neighboring cell, and supports NSA access
  • the LTE-side base station triggers the mixed-mode terminal to pass the NSA
  • the way the secondary cell is changed is attached to a cell with a better signal quality than the current cell. It can be seen that the above process reuses part of the NSA secondary cell change process, thereby reducing the signaling overhead compared to the original different system handover process.
  • the mixed-mode terminal cannot change the secondary cell's status through NSA Way to attach to the NR cell.
  • the NR-side base station in cell 1 may notify the LTE-side base station (for example, the base station eNB shown in FIG. 7) of the NR neighboring cell that does not support NSA access.
  • the LTE-side base station in cell 1 can obtain the determination result from the NR-side base station of the cell through the newly added X2 signaling SN Status Transfer message (for example, an NR neighboring cell that does not support NSA access).
  • the LTE-side base station in cell 1 may also obtain the determination result from the NR-side base station in cell 1 by multiplexing the secondary node handover request message.
  • Fig. 10 shows a base station 10 provided by an embodiment of the present invention.
  • the base station 10 includes a memory 12, a processor 11, and a computer program stored on the memory 12 and running on the processor 11.
  • the computer program is used to execute the migration method under the hybrid networking from step 101 to step 103 of the above method when running.
  • the base station 10 is an LTE-side base station
  • the computer program is used to execute the migration method under the hybrid networking from step 201 to step 203 of the above method when running.
  • the processor 11 and the memory 12 may be connected by a bus or in other ways.
  • the memory 12 can be used to store non-transitory software programs and non-transitory computer-executable programs, such as the cell handover method described in the embodiment of the present invention.
  • the processor 11 executes the non-transitory software program and instructions stored in the memory 12 to realize the migration under the hybrid network from step 101 to step 103 of the method shown in FIG. 2 method.
  • the processor 11 runs the non-transitory software programs and instructions stored in the memory 12 to implement the hybrid networking of steps 101 to 103 of the method shown in FIG. 2 above. Migration method.
  • the processor 11 runs the non-transitory software programs and instructions stored in the memory 12 to implement the hybrid networking of steps 21 to 23 of the method shown in FIG. 6 above. Migration method.
  • the memory 12 may also store the attributes of whether each NR neighboring cell supports NSA.
  • the memory 12 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store and execute the aforementioned cell handover method.
  • the memory 102 may include a high-speed random access memory 12, and may also include a non-transitory memory 12, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 12 may optionally include a memory 12 remotely provided with respect to the processor 11, and these remote memories 12 may be connected to the base station 10 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to implement the migration method under the hybrid networking described above are stored in the memory 12.
  • the base station 10 is an NR-side base station
  • the non-transitory software program and instructions are executed by one or more processors 11 to perform the migration method under the hybrid networking from step 101 to step 103 of the above method.
  • the base station 10 is an LTE-side base station
  • the non-transitory software program and instructions are executed by one or more processors 11 in the migration method under the hybrid networking from step 201 to step 203 of the above method.
  • FIG. 11 shows a mobile terminal 20 provided by an embodiment of the present invention.
  • the mobile terminal 20 includes a memory 22, a processor 21, and a computer program that is stored on the memory 22 and can run on the processor 21.
  • the computer program is used to execute the migration under the hybrid network from step 301 to step 303 of the above method when the computer program is running. method.
  • the processor 21 and the memory 22 may be connected by a bus or in other ways.
  • the embodiment of the present invention also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the above-mentioned migration method in a hybrid networking.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors.
  • the computer-executable instructions are executed by a processor 11 in the base station 10, which can cause the one or more processors 11 to execute the mixture of steps 101 to 103 of the above method.
  • Migration switching method under networking or, when the base station 10 is an LTE-side base station, the computer-executable instructions are executed by a processor 11 in the base station 10, so that the one or more processors 11 can execute the hybrid of steps 201 to 203 of the above method.
  • Migration switching method under networking when the base station 10 is an NR-side base station, the computer-executable instructions are executed by a processor 11 in the base station 10, which can cause the one or more processors 11 to execute the mixture of steps 101 to 103 of the above method.
  • Migration switching method under networking or, when the base station 10 is an LTE-side base station, the computer-executable instructions are executed by a processor 11 in the base station 10, so that
  • the computer-executable instructions are executed by a processor 21 of the above-mentioned mobile terminal 20, which may cause the above-mentioned one or more processors 201 to execute the above-mentioned method step 301 to step 303 of the migration method in the hybrid networking.
  • the solution of the embodiment of the present invention solves the problem that the terminal connected to the NSA cannot enjoy the 5G high-speed service experience due to the co-frequency interference of the NR neighboring cell.
  • the method of the present invention on the one hand, can reduce the signaling overhead compared with the original different system handover procedure, and on the other hand, it avoids the LTE side base station from directly issuing the different system measurement task to the terminal, so that it can always be in the whole handover process. Maintain peak flow.
  • a mixed-mode terminal may refer to a terminal device that accesses a mobile network, such as a handheld device with wireless communication function, including a mobile phone, tablet, notebook circuit, etc. that insert a SIM card or use e-sim technology.
  • a mobile network such as a handheld device with wireless communication function, including a mobile phone, tablet, notebook circuit, etc. that insert a SIM card or use e-sim technology.
  • a base station is an interface device for mobile terminals to implement calls and access the Internet. It can include, but is not limited to, macro base stations, micro base stations, and indoor distributed base stations.
  • computer storage medium includes volatile and non-volatile data implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other storage technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually include computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种混合组网下的迁移方法,应用于非独立组网NSA中的NR侧基站,包括:根据同频干扰测量参数的配置,向混模终端下发同频干扰测量(S101);基于所述混模终端上报的NR邻区测量信息,以判定相应的NR邻区是否支持NSA接入(S102);以及向所述NSA中的LTE侧基站发送所述NR邻区是否支持NSA接入的判定结果(S103)。一种混合组网下的迁移方法,应用于非独立组网NSA中的LTE侧基站,包括:接收由所述NSA中的NR侧基站发送的、支持NSA接入的NR邻区列表(201);检测所述NR邻区列表中各NR邻区的信号状况,并与切换条件比较(202);以及在满足切换条件后,触发混模终端断开当前的连接以迁移到相应的NR邻区(203)。

Description

混合组网下的迁移方法、存储介质和电子设备 技术领域
本发明涉及移动通信领域,特别是涉及在NSA和SA混合组网下从NSA到SA的迁移方法、存储介质和电子设备。
背景技术
随着移动通信技术的发展,5G已经逐步进入商用阶段。基于建设成本的考虑,5G网络将基于现有网络体系架构继续演进,例如通过协同融合不同覆盖范围的蜂窝网以提升网络容量、接入传输速率,从而改善网络覆盖质量或增加***的吞吐量。
然而,因为5G基站的小区半径相对于4G基站的小区半径缩减,所以用户的移动将导致更加频繁的小区切换。在这种情况下,由于用户的移动性管理变得比4G网络更加复杂,因此在某些场景下可能难以保证网络服务质量。例如,在NSA(Non-Standalone,非独立组网)和SA(Standalone,独立组网)混合组网的场景下,终端在接入LTE(Long Time Evaluation,长期演进)小区的同时,双连接到支持NSA的NR(New Radio,新无线接入网)小区。当终端移动到某一特定位置时,可能存在信号质量更好的并支持SA的NR邻区。此时,如果该支持SA的NR邻区不支持双连接,则终端无法通过变更辅小区的方式附着到该信号质量更好的NR邻区。一方面,由于支持NSA接入的终端未满足切换条件,因此该支持NSA接入的终端无法迁移至该NR邻区;另一方面,因为支持NSA接入的终端受到NR邻区的同频干扰,所以该支持NSA接入的终端无法享受5G高速业务体验,从而影响用户体验。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本发明实施例提供了一种混合组网下的迁移方法,应用于非独立组网NSA中的NR侧基站,包括以下步骤:根据同频干扰测量参数的配置,向混模终端下发同频干扰测量;基于所述混模终端上报的NR邻区测量信息,以判定相应的NR邻区是否支持NSA接入;以及向所述NSA中的LTE侧基站发送所述NR邻区是否支持NSA接入的判定结果。
相应地,本发明实施例提供了一种混合组网下的迁移方法,应用于非独立组网NSA中的LTE侧基站,包括以下步骤:接收由所述NSA中的NR侧基站发送的、支持NSA接入的NR邻区列表;检测所述NR邻区列表中各NR邻区的信号状况,并与切换条件比较;以及在满足切换条件后,触发混模终端断开当前的连接以迁移到相应的NR邻区。
另一方面,本发明实施例提供了一种混合组网下的迁移方法,应用于双连接到非独立组网NSA中的混模终端,包括以下步骤:连接到所述NSA中的NR侧基站,以接收所述NR侧基站下发的同频干扰测量;搜索当前位置的NR邻区,并将满足门限条件的NR邻区的测量信息上报给所述NR侧基站;以及响应于由所述NSA中的LTE侧基站发送的切换指令,迁移到对应的NR邻区。
另一方面,本发明实施例提供了一种电子设备,包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的程序,当所述处理器执行所述存储器存储的程序时,所述处理器用于执行如上所述的混合组网下的迁移方法。
再一方面,本发明实施例提供了一种存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述的混合组网下的迁移方法。
本发明的特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1是混合组网场景下的连接架构示意图;
图2是本发明实施例提供的应用于非独立组网NSA中的NR侧基站的迁移方法流程图;
图3是本发明实施例提供的应用于非独立组网NSA中的NR侧基站的迁移示意图;
图4是本发明实施例提供的应用于非独立组网NSA中的NR侧基站的另一迁移示意图;
图5是本发明实施例中NR侧基站存储NR邻区连接状态的示意图;
图6是本发明实施例提供的应用于非独立组网NSA中的LTE侧基站的迁移方法流程图;
图7是本发明实施例提供的应用于非独立组网NSA中的LTE侧基站的迁移示意图;
图8是本发明实施例中LTE侧基站存储NR邻区连接状态的示意图;
图9是本发明实施例提供的应用于非独立组网NSA中的混模终端的迁移方法流程图;
图10是本发明实施例提供的一种基站的结构示意图;
图11是本发明实施例提供的一种移动的混模终端的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
应了解,在本发明实施例的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
对于5G网络的架构,运营商为了节省初期成本和尽量复用已有的设备,一般采用NSA和SA混合组网的方式铺设5G网络。参照图1所示的网络架构图,一方面4G网络中原有的4G基站eNB(Evolved Node B)或经改造后的增强型4G基站与手机或平板电脑等支持NSA/SA接入的混模终端连接。另一方面,用户面中对4G基站造成瓶颈的部分数据迁移到5G基站(gNB)。混模终端需要与支持NSA的5G基站连接而收发这部分数据,而控制面数据和剩余的用户面数据继续通过4G基站收发。这从而形成4G基站(或增强型4G基站)和支持NSA的5G基站混合组网的小区(NSA小区)。同时,因为5G基站的小区半径相对于4G基站的小区半径缩减,所以需要铺设只支持SA的5G基站,并由这些新的5G基站单独形成独立组网的小区(SA小区)。
具体地,目前规划是option3x架构下的LTE侧基站与NR侧基站同覆盖。参照图1所示,LTE侧基站eNB与NR侧基站gNB构成NSA组网。NR侧基站gNB在其覆盖范围内与LTE侧基站eNB的覆盖范围内建立了邻区关系。这样小区1就具有NSA组网能力。另外有一不支持NSA组网的小区2与所述LTE侧基站eNB和所述NR侧基站gNB组成的小区1相邻。该小区2支持NS组网而不支持NSA组网。在现有技术中,该混模终端会测量NSA组网的小区1和SA组网的小区2的信号强度,并选择信号强度较强小区接入。这样可能会出现以下情况,由于SA组网的小区1的信号强度较强,移动终端会接入到SA组网的小区2(即锚点小区),而不接入NSA组网的小区1;但由于该混模终端从NSA组网的小区1迁移到该SA组网的锚点小区,需要启用异***切换流程而消耗相应的信令开销,降低NSA组网的小区1其他支持NSA的移动终端的用户体验。
因此,用户的移动将导致混模终端更加频繁的切换(例如NSA小区内不同5G基站间的切换,以及NSA小区和SA小区之间基站的切换)。在这种情况下,用户的移动性管理变得比之前更加复杂。在某些场景下,可能由于混模终端无法顺利切换到相应的基站收发数据,从而难以保证网络服务质量。
基于此,在本发明的各种实施例中,提供由LTE/NR侧共同配合完成在SA和NSA混合组网的场景下,在保证终端用户的峰值流量同时,以尽量小的信令开销实现混模终端从NSA双连接状态到SA的NR邻区的迁移。
实施例I
该实施例提供一种混合组网下的迁移方法,应用于非独立组网NSA中的NR侧基站,如图2所示,该方法包括:
步骤101:向混模终端下发同频干扰测量;
这里,参照图3所示的数据流向图。在该实施例中,小区1支持NSA属性,而小区2支持SA属性。小区1中有一个LTE侧基站eNB和一个NR侧基站gNB。小区2中也有一个NR侧基站gNB。混模终端在该NSA小区中实现双连接后,可以统一由该小区的NR侧基站(即图3中的gNB基站,该基站为支持NSA的5G基站)根据同频干扰测量参数的配置,向混模终端下发同频干扰测量。相应地,该NSA小区中的LTE侧基站不再重复向所述混模终端下发同频干扰测量。混模终端可以搜索其所在位置附近同频的NR邻区,并将该NR邻区的测量信息上报回NR侧基站。其中,混模终端是支持NSA/SA接入的。此时,由于避免了在LTE侧基站直接向混模终端下发异***测量,因此可以在整个切换过程中始终保持混模终端本身的峰值流量。
步骤102:基于所述混模终端上报的NR邻区测量信息,判定相应的NR邻区是否支持NSA接入;以及
步骤103:向所述NSA中的LTE侧基站发送所述NR邻区是否支持NSA接入的判定结果。
其中,在实际应用中,所述NR侧基站可以独立配置同频干扰测量相关参数。在收到混模终端上报的NR邻区测量信息后,所述NR侧基站连可以基于该NR邻区测量信息判断其是否支持NSA接入属性。
实际应用时,参照图5所示的示意图,NR侧基站与后台相连,根据混模终端上报的NR邻区测量信息配置NR邻区关系,并标识该NR邻区是否支持NSA属性。
返回到图4所示的示意图,当NR邻区被判断为不支持NSA接入时(即小区2中的5G基站gNB只支持SA接入),所述混模终端无法通过SnChange流程(NSA变更辅小区)的方式附着到该NR小区。为此,小区1中的NR侧基站可以将不支持NSA接入的NR邻区通知到同一小区的LTE侧基站(例如,图4中所示的基站eNB)。相反,当NR邻区被判断为支持NSA接入时(即小区2中的5G基站gNB支持NSA接入),那么所述混模终端可以通过触发SnChange流程的方式而附着到该NR小区。其中,触发SnChange流程属于协议规定的标准流程。具体地,NR侧基站将通过测量得到的、支持双连接的NR邻区通过SgNBChangeRequired信源通知到该NSA小区中的LTE侧基站,从而触发该LTE侧基站执行换腿操作(更换附着的NR辅小区),即SnChange流程。
实际应用时,小区1中的NR侧基站可以通过新增X2信令SN Status Transfer消息将所述判定结果(例如,不支持NSA接入的NR邻区)发送到小区1中的LTE侧基站。可 替代地,小区1中的NR侧基站也可以通过复用辅节点切换请求消息将所述判定结果发送到小区1中的LTE侧基站。此时,当混模终端要迁移进入的小区不支持NSA的小区时,LTE站点eNB1发起SN断腿和异***切换流程。相反,当混模终端要迁入支持NSA的小区时,可以通过NSA辅小区变更的方式附着。由此可知,上述过程复用了部分NSA辅小区变更的流程,从而相对于原有的异***切换流程减少了信令开销。
实施例II
该实施例提供一种混合组网下的迁移方法,应用于非独立组网NSA中的NR侧基站,如图2所示,该方法包括:
步骤101:向混模终端下发同频干扰测量;
这里,参照图4所示的数据流向图。与实施例I的应用场景不同,在本实施例中,小区1为LTE小区。小区2支持NSA属性。小区3仅支持SA属性(即不支持NSA接入,从而无法通过SnChange流程进行切换,但是在与其同频的相邻小区有同覆盖的部分也可以产生同频干扰)。其中,小区1中有一个LTE侧基站eNB。小区3中有一个NR侧基站gNB。混模终端在支持NSA属性的小区中实现双连接后,可以统一由NR侧基站(即图4中的gNB基站,该基站为支持NSA的5G基站)根据同频干扰测量参数的配置,向混模终端下发同频干扰测量。相应地,LTE侧基站不再重复向所述混模终端下发同频干扰测量。混模终端可以搜索其所在位置附近同频的NR邻区,并将该NR邻区的测量信息上报回NR侧基站。其中,混模终端是支持NSA/SA接入的。此时,由于避免了在LTE侧基站直接向混模终端下发异***测量,因此可以在整个切换过程中始终保持混模终端本身的峰值流量。
步骤102:基于所述混模终端上报的NR邻区测量信息,判定相应的NR邻区是否支持NSA接入;以及
步骤103:向所述NSA中的LTE侧基站发送所述NR邻区是否支持NSA接入的判定结果。
其中,在实际应用中,所述NR侧基站可以独立配置同频干扰测量相关参数。在收到混模终端上报的NR邻区测量信息后,所述NR侧基站连可以基于该NR邻区测量信息判断其是否支持NSA接入属性。
实际应用时,参照图5所示的示意图,NR侧基站与后台相连,根据混模终端上报的NR邻区测量信息配置NR邻区关系,并标识该NR邻区是否支持NSA属性。
返回到图4所示的示意图,当NR邻区被判断为不支持NSA接入时(例如小区1),所述混模终端无法通过SnChange流程(NSA变更辅小区)的方式附着到该NR小区。为此,小区1中的NR侧基站可以将不支持NSA接入的NR邻区通知到同一小区的LTE侧基站(例如,图4中所示的基站eNB)。相反,当NR邻区被判断为支持NSA接入时(例如,判断得 出小区2支持NSA接入),那么所述混模终端可以通过触发SnChange流程的方式而附着到该NR小区。其中,触发SnChange流程属于协议规定的标准流程。具体地,NR侧基站将通过测量得到的、支持双连接的NR邻区通过SgNBChangeRequired信源通知到该NSA小区中的LTE侧基站,从而触发该LTE侧基站执行换腿操作(更换附着的NR辅小区),即SnChange流程。
实际应用时,小区3中的NR侧基站可以通过新增X2信令SN Status Transfer消息将所述判定结果(例如,不支持NSA接入的NR邻区)发送到小区1中的LTE侧基站。可替代地,小区3中的NR侧基站也可以通过复用辅节点切换请求消息将所述判定结果发送到小区1中的LTE侧基站。此时,当混模终端要迁移进入的小区不支持NSA的小区时,LTE站点eNB1发起SN断腿和异***切换流程。相反,当混模终端要迁入支持NSA的小区时,可以通过NSA辅小区变更的方式附着。由此可知,上述过程复用了部分NSA辅小区变更的流程,从而相对于原有的异***切换流程减少了信令开销。
实施例III
该实施例提供一种混合组网下的迁移方法,应用于非独立组网NSA中的LTE侧基站,如图6所示,该方法包括:
步骤201:接收由所述NSA中的NR侧基站发送的、支持NSA接入的NR邻区列表;
这里,参照图7所示的数据流向图,在支持NSA接入的小区1中,LTE侧基站(即图中的基站eNB,该基站为4G基站或增强型4G基站)收到NR侧基站(即图中的基站gNB,该基站为5G基站)发送过来的上述消息,从而触发了混模终端从NSA到SA NR邻区的切换判决。其中,该混模终端可以搜索其所在位置附近同频的NR邻区,并将该NR邻区的测量信息上报回NR侧基站。NR侧基站基于该NR邻区的测量信息形成支持NSA接入的NR邻区列表。此时,由于LTE侧基站不会直接向混模终端下发异***测量,因此可以在整个切换过程中始终保持混模终端本身的峰值流量。
步骤202:检测所述NR邻区列表中各NR邻区的信号状况,并与切换条件比较;
在实际应用中,LTE侧基站可以就所述NR邻区列表中各NR邻区,检测其信号质量、可用状态、负荷状态和相邻关系等条件。示例性地,所述信号状况可以采用信号强度RSRP(Reference Signal Receiving Power,参考信号接收功率)、参考信号接收质量RSRQ(Reference Signal Receiving Quality)、信号与干扰加噪声比(Signal to Interference plus Noise Ratio)的一种标识或综合上述多种信号状况参数表示。
步骤203:在满足切换条件后,触发混模终端断开当前的连接以迁移到相应的NR邻区。
其中,所述混模终端是支持NSA/SA接入的。在实际应用中,当LTE侧基站基于所述 NR邻区的信号质量、可用状态、负荷状态和相邻关系等条件判断满足切换条件,但是所述NR小区不支持NSA接入时,所述LTE侧基站开始触发所述混模终端断开双连接,并发起SN断腿和异***切换流程(即从当前小区中的基站eNB切换到另一个小区中的基站gNB),从而完成混模终端从支持NSA的小区1到支持SA的小区2的迁移。相反,当LTE侧基站基于所述NR邻区的信号质量、可用状态、负荷状态和相邻关系等条件判断满足切换条件,且所述NR小区不支持NSA接入时,所述LTE侧基站可以触发所述混模终端通过NSA辅小区变更的方式附着到信号质量更好的NR小区。
实际应用时,参照图8所示的示意图,LTE侧基站可以与后台相连,根据所述NSA中的NR侧基站发送的、支持NSA接入的NR邻区列表配置NR邻区关系,并标识该NR邻区是否支持NSA属性。
返回到图7所示的示意图,当NR邻区被判断为不支持NSA接入时(即小区2中的5G基站gNB只支持SA接入),所述混模终端无法通过SnChange流程(NSA变更辅小区)的方式附着到该NR小区。为此,小区1中的NR侧基站可以将不支持NSA接入的NR邻区通知到同一小区的LTE侧基站(例如,图7中所示的基站eNB)。相反,当NR邻区被判断为支持NSA接入时(即小区2中的5G基站gNB支持NSA接入),那么所述混模终端可以通过触发SnChange流程的方式而附着到该NR小区。其中,触发SnChange流程属于协议规定的标准流程。具体地,LTE侧基站通过SgNBChangeRequired信源,接收来自该NSA小区中的NR侧基站通过测量得到的、指示支持双连接的NR邻区的通知。该LTE侧基站从而触发换腿操作(更换附着的NR辅小区),即SnChange流程。
实际应用时,小区1中的LTE侧基站可以通过新增X2信令SN Status Transfer消息从小区的NR侧基站处获得所述判定结果(例如,不支持NSA接入的NR邻区)。可替代地,小区1中的LTE侧基站也可以通过复用辅节点切换请求消息从小区1中的NR侧基站处获得所述判定结果。此时,上述过程复用了部分NSA辅小区变更的流程,从而相对于原有的异***切换流程减少了信令开销。
实施例IV
该实施例提供一种混合组网下的迁移方法,应用于非独立组网NSA中的混模终端。其中,所述混模终端是支持NSA/SA接入的。如图9所示,该方法包括:
步骤301:连接到所述NSA中的NR侧基站,以接收所述NR侧基站下发的同频干扰测量;
这里,参照图4所示的数据流向图,所述混模终端可以在该NSA小区中实现双连接后,接收该小区的NR侧基站(即图4中的gNB基站,该基站为支持NSA的5G基站)向其下发 的同频干扰测量。其中,所述NR侧基站可以独立配置同频干扰测量相关参数。此时,混模终端可以搜索其所在位置附近同频的NR邻区,并将该NR邻区的测量信息上报回NR侧基站。在收到混模终端上报的NR邻区测量信息后,所述NR侧基站连可以基于该NR邻区测量信息判断其是否支持NSA接入属性。在此过程中,由于避免了在LTE侧基站直接向混模终端下发异***测量,因此可以在整个切换过程中始终保持混模终端本身的峰值流量。
步骤302:搜索当前位置的NR邻区,并将满足门限条件的NR邻区的测量信息上报给所述NR侧基站;
其中,门限条件可以是所述NR邻区的信号质量、可用状态、负荷状态和相邻关系等。具体地,用于判断测量信息是否上报的门限条件可以在基站侧配置完毕后,一并下发给所述混模终端,使得所述混模终端能够根据该门限条件自主判定是否上报测量信息。在混模终端测量邻区信号时,若信号质量满足门限条件,则测量信息会向NR侧基站上报。NR侧基站收到混模终端上报的测量信息后,依据所述测量信息进行判断。所述测量信息可以包含终端测量到的邻区信号质量,也可以包含在基站侧配置的该邻区的可用状态、相邻关系等,以及基站自己获取和检测到的该邻区的负荷状态等。
步骤303:响应于由所述NSA中的LTE侧基站发送的切换指令,迁移到对应的NR邻区。
这里,参照图7所示的数据流向图,在支持NSA接入的小区1中,LTE侧基站(即图中的基站eNB,该基站为4G基站或增强型4G基站)收到NR侧基站(即图中的基站gNB,该基站为5G基站)发送过来的上述消息,从而触发了混模终端从NSA到SA NR邻区的切换判决。其中,该混模终端可以搜索其所在位置附近同频的NR邻区,并将该NR邻区的测量信息上报回NR侧基站。NR侧基站基于该NR邻区的测量信息形成支持NSA接入的NR邻区列表。此时,由于LTE侧基站不会直接向混模终端下发异***测量,因此可以在整个切换过程中始终保持混模终端本身的峰值流量。
实际应用时,参照图5所示的示意图,NR侧基站与后台相连,根据混模终端上报的NR邻区测量信息配置NR邻区关系,并标识该NR邻区是否支持NSA属性。可替代地,参照图8所示的示意图,LTE侧基站也可以与后台相连,根据所述NSA中的NR侧基站发送的、支持NSA接入的NR邻区列表配置NR邻区关系,并标识该NR邻区是否支持NSA属性。
在实际应用中,当LTE侧基站基于所述NR邻区的信号质量、可用状态、负荷状态和相邻关系等条件判断满足切换条件,但是不支持NSA接入时,所述LTE侧基站开始触发所述混模终端断开双连接,并发起SN断腿和异***切换流程(即从当前小区中的基站eNB切换到另一个小区另一个中的基站gNB),从而完成混模终端从支持NSA的小区到支持SA的小区的迁移。相反,当LTE侧基站基于所述NR邻区的信号质量、可用状态、负荷状态 和相邻关系等条件判断满足切换条件,并且支持NSA接入时,所述LTE侧基站触发混模终端通过NSA辅小区变更的方式附着到信号质量比当前小区更好的小区。由此可知,上述过程复用了部分NSA辅小区变更的流程,从而相对于原有的异***切换流程减少了信令开销。
返回到图7所示的示意图,当NR邻区被判断为不支持NSA接入时(即小区2中的5G基站gNB只支持SA接入),所述混模终端无法通过NSA变更辅小区的方式附着到该NR小区。为此,小区1中的NR侧基站可以将不支持NSA接入的NR邻区通知到LTE侧基站(例如,图7中所示的基站eNB)。
实际应用时,小区1中的LTE侧基站可以通过新增X2信令SN Status Transfer消息从小区的NR侧基站处获得所述判定结果(例如,不支持NSA接入的NR邻区)。可替代地,小区1中的LTE侧基站也可以通过复用辅节点切换请求消息从小区1中的NR侧基站处获得所述判定结果。
图10示出了本发明实施例提供的基站10。基站10包括:存储器12、处理器11及存储在存储器12上并可在处理器11上运行的计算机程序。当所述基站10是NR侧基站时,计算机程序运行时用于执行上述方法步骤101至步骤103的混合组网下的迁移方法。当所述基站10是LTE侧基站时,计算机程序运行时用于执行上述方法步骤201至步骤203的混合组网下的迁移方法。
处理器11和存储器12可以通过总线或者其他方式连接。
存储器12作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本发明实施例描述的小区切换方法。当所述基站10是NR侧基站时处理器11通过运行存储在存储器12中的非暂态软件程序以及指令,从而实现上述图2所示的方法步骤101至步骤103的混合组网下的迁移方法。当所述基站10是NR侧基站时,处理器11通过运行存储在存储器12中的非暂态软件程序以及指令,从而实现上述图2所示的方法步骤101至步骤103的混合组网下的迁移方法。当所述基站10是LTE侧基站时,处理器11通过运行存储在存储器12中的非暂态软件程序以及指令,从而实现上述图6所示的方法步骤21至步骤23的混合组网下的迁移方法。在实际应用中,所述存储器12也可以存储各NR邻区是否支持NSA的属性。
存储器12可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储执行上述的小区切换方法。此外,存储器102可以包括高速随机存取存储器12,还可以包括非暂态存储器12,例如至少一个磁盘存储器件、闪存器件或其他非暂态固态存储器件。在一些实施方式中,存储器12可选包括相对于处理器11远程设置的存储器12,这些远程存储器12可以通过网络连接至该 基站10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的混合组网下的迁移方法所需的非暂态软件程序以及指令存储在存储器12中。当所述基站10是NR侧基站时,所述非暂态软件程序以及指令被一个或者多个处理器11执行上述方法步骤101至步骤103的混合组网下的迁移方法。当所述基站10是LTE侧基站时,所述非暂态软件程序以及指令被一个或者多个处理器11执行上述方法步骤201至步骤203的混合组网下的迁移方法。
图11示出了本发明实施例提供的移动终端20。移动终端20包括:存储器22、处理器21及存储在存储器22上并可在处理器21上运行的计算机程序,计算机程序运行时用于执行上述方法步骤301至步骤303的混合组网下的迁移方法。
处理器21和存储器22可以通过总线或者其他方式连接。
本发明实施例还提供了计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述的混合组网下的迁移方法。
在本发明的实施例中,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行。例如,当所述基站10是NR侧基站时,该计算机可执行指令被上述基站10中的一个处理器11执行,可使得上述一个或多个处理器11执行上述方法步骤101至步骤103的混合组网下的迁移切换方法。或者,当所述基站10是LTE侧基站时,该计算机可执行指令被上述基站10中的一个处理器11执行,可使得上述一个或多个处理器11执行上述方法步骤201至步骤203的混合组网下的迁移切换方法。又或者,该计算机可执行指令被上述移动终端20的一个处理器21执行,可使得上述一个或多个处理器201执行上述方法步骤301至步骤303的混合组网下的迁移方法。
本发明实施例的方案解决了连接至NSA的终端由于NR邻区的同频干扰而无法享受5G高速业务体验问题。本发明的方法,一方面能够相对于原有的异***切换流程而减少了信令开销,另一方面避免了LTE侧基站直接向终端下发异***测量任务,从而可以在整个切换过程中始终保持峰值流量。
以上所描述的实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
在本文的实施例中,混模终端可以指接入移动网络的终端设备,例如具有无线通信功能的手持设备,包括手机、平板、笔记本电路等***sim卡或采用e-sim技术的终端,也包括计算设备、多媒体设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴 设备,5G网络中的终端等。基站是供移动终端实现通话和接入互联网的接口设备,可以包括但不限于宏基站、微基站、室内分布式基站等形式。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本文描述了本发明的实施例,包括发明人已知用于执行本发明的较佳实施例。在阅读了上述描述后,这些所述实施例的变化对本领域的技术人员将变得明显。发明人希望技术人员视情况采用此类变型,并且发明人意图以不同于如本文具体描述的方式来实践本发明的实施例。因此,经适用的法律许可,本发明的范围包括在此所附的权利要求书中叙述的主题的所有修改和等效物。此外,本发明的范围涵盖其所有可能变型中的上述元素的任意组合,除非本文另外指示或以其他方式明显地与上下文矛盾。

Claims (20)

  1. 一种混合组网下的迁移方法,应用于非独立组网NSA中的LTE侧基站,包括以下步骤:
    接收由所述NSA中的NR侧基站发送的、支持NSA接入的NR邻区列表;
    检测所述NR邻区列表中各NR邻区的信号状况,并与切换条件比较;以及
    在满足切换条件后,触发混模终端断开当前的连接以迁移到相应的NR邻区。
  2. 根据权利要求1所述的迁移方法,其中,所述LTE侧基站连接至后台以配置NR邻区关系,并标识各NR邻区是否支持NSA的属性。
  3. 根据权利要求1所述的迁移方法,其中,所述信号状况包括信号质量、可用状态、负荷状态和相邻关系中的至少一项。
  4. 根据权利要求1所述的迁移方法,其中,所述混模终端以双连接的方式连接到所述NSA。
  5. 根据权利要求1所述的迁移方法,其中,通过异***切换流程触发所述混模终端断开当前的连接以迁移到相应的NR邻区。
  6. 根据权利要求1-5中任一项所述的迁移方法,其中,通过新增X2信令接收所述NSA中的NR侧基站发送的所述判定结果。
  7. 根据权利要求1-5中任一项所述的迁移方法,其中,通过复用辅节点切换请求消息接收所述NSA中的NR侧基站发送的所述判定结果。
  8. 一种混合组网下的迁移方法,应用于非独立组网NSA中的NR侧基站,包括以下步骤:
    向混模终端下发同频干扰测量;
    基于所述混模终端上报的NR邻区测量信息,以判定相应的NR邻区是否支持NSA接入;以及
    向所述NSA中的LTE侧基站发送所述NR邻区是否支持NSA接入的判定结果,从而使得所述LTE侧基站基于所述判定结果触发所述混模终端迁移到相应的NR邻区。
  9. 根据权利要求8所述的迁移方法,其中,所述NR侧基站连接至后台以配置NR邻区关系,并标识各NR邻区是否支持NSA的属性。
  10. 根据权利要求8所述的迁移方法,其中,所述混模终端基于所述NR侧基站独立配置所述同频干扰测量参数执行同频干扰测量。
  11. 根据权利要求8所述的迁移方法,其中,所述混模终端以双连接的方式连接到所述NSA。
  12. 根据权利要求8-11中任一项所述的迁移方法,其中,通过新增X2信令将所述判定结果发送到所述NSA中的LTE侧基站。
  13. 根据权利要求8-11中任一项所述的迁移方法,其中,通过复用辅节点切换请求消息将所述判定结果发送到所述NSA中的LTE侧基站。
  14. 一种混合组网下的迁移方法,应用于双连接到非独立组网NSA中的混模终端,包括以下步骤:
    连接到所述NSA中的NR侧基站,以接收所述NR侧基站下发的同频干扰测量;
    搜索当前位置的NR邻区,并将满足门限条件的NR邻区的测量信息上报给所述NR侧基站;以及
    响应于由所述NSA中的LTE侧基站发送的切换指令,迁移到对应的NR邻区。
  15. 根据权利要求14所述的迁移方法,其中,所述同频干扰测量是基于所述NR侧基站独立配置同频干扰测量参数而确定。
  16. 根据权利要求14所述的迁移方法,其中,所述混模终端以双连接的方式连接到所述NSA。
  17. 根据权利要求14所述的迁移方法,其中,当搜索到信号质量优于当前所在NR小区的NR邻区时,比较所述NR邻区的信号质量与所述门限条件。
  18. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至17中任一项所述的迁移方法。
  19. 一种基站,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器通过所述计算机程序执行上述权利要求1至13中任一项中所述的迁移方法。
  20. 一种移动的混模终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器通过所述计算机程序执行上述权利要求14至17中任一项中所述的迁移方法。
PCT/CN2021/077908 2020-06-23 2021-02-25 混合组网下的迁移方法、存储介质和电子设备 WO2021258761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21828460.2A EP4171120A4 (en) 2020-06-23 2021-02-25 MIGRATION METHOD IN HYBRID NETWORKING MODE, STORAGE MEDIUM AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010581477.9A CN113840338A (zh) 2020-06-23 2020-06-23 混合组网下的迁移方法、存储介质和电子设备
CN202010581477.9 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021258761A1 true WO2021258761A1 (zh) 2021-12-30

Family

ID=78964013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077908 WO2021258761A1 (zh) 2020-06-23 2021-02-25 混合组网下的迁移方法、存储介质和电子设备

Country Status (3)

Country Link
EP (1) EP4171120A4 (zh)
CN (1) CN113840338A (zh)
WO (1) WO2021258761A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023173939A1 (zh) * 2022-03-16 2023-09-21 中兴通讯股份有限公司 基站的配置数据迁移方法、计算机设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696881A (zh) * 2017-03-16 2018-10-23 ***通信有限公司研究院 一种连接管理方法、第一网络设备、终端设备及***
WO2019072902A1 (en) * 2017-10-10 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) REPORT CONTAINING AN INDICATOR NSA / SA NR
CN110856226A (zh) * 2019-10-21 2020-02-28 ***通信集团江苏有限公司 网络接入方法、装置、设备及存储介质
CN111132210A (zh) * 2018-11-01 2020-05-08 华为技术有限公司 测量事件中的SpCell确定方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110679174B (zh) * 2017-06-27 2023-11-03 Lg电子株式会社 用于报告测量结果的方法和设备
US11399324B2 (en) * 2018-08-07 2022-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Enhancements to CGI reporting in multi-connectivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696881A (zh) * 2017-03-16 2018-10-23 ***通信有限公司研究院 一种连接管理方法、第一网络设备、终端设备及***
WO2019072902A1 (en) * 2017-10-10 2019-04-18 Telefonaktiebolaget Lm Ericsson (Publ) REPORT CONTAINING AN INDICATOR NSA / SA NR
CN111132210A (zh) * 2018-11-01 2020-05-08 华为技术有限公司 测量事件中的SpCell确定方法和装置
CN110856226A (zh) * 2019-10-21 2020-02-28 ***通信集团江苏有限公司 网络接入方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4171120A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023173939A1 (zh) * 2022-03-16 2023-09-21 中兴通讯股份有限公司 基站的配置数据迁移方法、计算机设备和存储介质

Also Published As

Publication number Publication date
EP4171120A4 (en) 2024-02-28
EP4171120A1 (en) 2023-04-26
CN113840338A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
US10959235B2 (en) Performance indicator for interworking radio access technologies
RU2668071C1 (ru) Способ и устройство оптимизации сигнализации
US8825040B2 (en) Selection of connection type in cellular system
US10440628B2 (en) D2D information processing method to influence communication service for UEs
US11457393B2 (en) Communication method and apparatus for realizing service continuity
US20180109985A1 (en) Information processing method, communication node and computer storage medium
WO2016180366A1 (zh) 信息处理方法及通信节点
US20130095839A1 (en) High speed handovers in a wireless network
WO2017114097A1 (zh) 一种无线接入点的配置方法及其***、基站、用户终端
SG185713A1 (en) Cell search and measurement in heterogeneous networks
KR20120000859A (ko) 무선 통신 시스템 및 그 시스템에서 핸드오버 수행 방법
JP6467543B2 (ja) 通信システム、ユーザ端末、プロセッサ及び通信制御方法
US20230156114A1 (en) Method for realizing stable display of 5g signal
US11895548B2 (en) Link management for a connected user equipment
WO2014094591A1 (zh) 小区休眠、休眠信息下发及处理方法和设备
WO2017206629A1 (zh) 一种网络接入方法及装置
WO2021258761A1 (zh) 混合组网下的迁移方法、存储介质和电子设备
JP5995758B2 (ja) 移動通信ネットワーク、無線基地局、制御局および負荷分散制御方法
US11019547B1 (en) Controlling handover parameters based on target base station characteristics
WO2016072465A1 (ja) 基地局及びプロセッサ
WO2016019999A1 (en) Effective use of radio resources
WO2023197220A1 (zh) 邻小区测量方法、装置、设备及存储介质
RU2722418C2 (ru) Способ и устройство оптимизации сигнализации
CN112771914B (zh) 无线电资源测量的执行方法、无线设备和网络节点
US10039034B1 (en) Controlling handover based on confidence in response to load-information request

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021828460

Country of ref document: EP

Effective date: 20230119