WO2021253519A1 - 镜头模组 - Google Patents

镜头模组 Download PDF

Info

Publication number
WO2021253519A1
WO2021253519A1 PCT/CN2020/100355 CN2020100355W WO2021253519A1 WO 2021253519 A1 WO2021253519 A1 WO 2021253519A1 CN 2020100355 W CN2020100355 W CN 2020100355W WO 2021253519 A1 WO2021253519 A1 WO 2021253519A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
lens
ball
lens module
magnet
Prior art date
Application number
PCT/CN2020/100355
Other languages
English (en)
French (fr)
Inventor
李林珍
卢继亮
李刚
张晋
曹广凯
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2021253519A1 publication Critical patent/WO2021253519A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing

Definitions

  • the present invention relates to the technical field of optical imaging, in particular to a lens module.
  • optical lenses have been widely used in various electronic products.
  • light enters directly from the object side, passes through the lens assembly in a straight line along the optical axis to the image side, and images the object through the lens assembly.
  • the lens assembly generally has an autofocusing function (autofocusing) and an optical image stabilization function (OIS: optical image stabilization).
  • the lens module in the related art includes a housing, a lens housed in the housing, a lens holder for fixing the lens, a first base and a second base disposed opposite to the lens holder, and a driving lens holder relative to the second base.
  • the focus driving part that is relatively displaced in the direction of the optical axis of the lens and the anti-shake driving part that drives the lens holder relative to the second base in a direction perpendicular to the optical axis of the lens, wherein between the lens holder and the first base And balls are arranged between the first base and the second base.
  • the object of the present invention is to provide a lens module that can ensure that the center of gravity movement area is within the triangle formed by the connection of three balls.
  • the present invention provides a lens module including a housing, a lens housed in the housing, a lens holder for fixing the lens, a first base, and a first base fixed relative to the housing.
  • Two bases, a focus driving part and an anti-shake driving part, the lens holder, the first base and the second base are arranged in sequence along a first direction, and the lens holder and the first base
  • Three first balls are provided in between, and three second balls are provided between the first base and the second base; wherein, one of the first balls and the second balls can be along the The direction of the optical axis of the lens rolls, and the other can roll in a second direction.
  • the first direction, the second direction, and the optical axis direction are perpendicular to each other, and the centers of the three first balls are equal to each other.
  • the connecting lines form a non-isosceles triangle and/or the connecting lines of the centers of the three second balls form a non-isosceles triangle.
  • two of the first rolling balls are arranged at intervals along the optical axis direction and located on one side of the lens along the second direction, and the other first rolling ball is located on the lens along the second direction.
  • the separately arranged first ball and the separately arranged second ball are located on the same side of the lens along the second direction.
  • the side of the lens holder facing the first base is provided with three first guide grooves
  • the side of the first base facing the lens holder is provided with three first guide grooves.
  • the second guide grooves are arranged in one-to-one correspondence
  • the first ball is arranged between the first guide groove and the second guide groove
  • the first base is provided on a side facing the second base
  • the side of the second base facing the first base is provided with three fourth guide grooves arranged one-to-one corresponding to the third guide grooves
  • the third guide grooves and The second ball is arranged between the fourth guide grooves.
  • the cross section of one of the first guide grooves or one of the second guide grooves perpendicular to the rolling direction of the first ball has a rectangular profile, and the remaining first guide grooves and the second guide grooves
  • the profile of the cross section of the groove perpendicular to the rolling direction of the first ball is trapezoidal or triangular; one of the third guide grooves or one of the fourth guide grooves is perpendicular to the cross section of the second ball rolling direction.
  • the contour is rectangular, and the contours of the cross section of the remaining third guide groove and the fourth guide groove perpendicular to the rolling direction of the second ball are trapezoidal or triangular.
  • the lens module further includes a plurality of recovery mechanisms, and the recovery mechanism includes a first recovery magnet and a second recovery magnet that are opposite to each other and arranged at intervals along the first direction.
  • the magnet is fixed on the side of the lens holder facing the first base, and the second return magnet is fixed on the side of the second base facing the first base.
  • a first accommodating groove for accommodating the first return magnet is formed on the side of the lens holder facing the first base, and the second base is formed on the side facing the first base There is a second accommodating groove for accommodating the second return magnet.
  • the housing includes a frame portion, a bottom plate provided at one end of the frame portion, and a cover plate provided at the other end of the frame portion.
  • the second base is connected to the bottom plate and the frame.
  • the body is fixed, wherein a side of the second base away from the first base is recessed and formed with a plurality of recesses, and the recesses are located on the edge of the second base and are connected to the frame body. Enclosed to form a glue container.
  • the edge of the second base extends to form a plurality of positioning blocks arranged at intervals, and the frame body portion is provided with positioning grooves for accommodating the positioning blocks.
  • the lens module of the present invention forms a non-isosceles triangle by connecting the spheres of the three first balls and/or connecting the spheres of the three second balls.
  • a non-isosceles triangle can ensure that the center of gravity movement area is within the triangle formed by the connection of the three balls.
  • FIG. 1 is an exploded view of a preferred embodiment of the lens module of the present invention.
  • FIG. 2 is a schematic structural diagram of the lens module shown in FIG. 1 from another angle.
  • FIG. 3 is a schematic diagram of the structure of the lens holder in the lens module shown in FIG. 1.
  • FIG. 4 is a schematic diagram of the structure of the second base in the lens module shown in FIG. 1.
  • FIG. 5 is a distribution diagram of the first rolling balls in the lens module shown in FIG. 2.
  • FIG. 6 is a distribution diagram of second balls in the lens module shown in FIG. 2.
  • FIG. 7 is a distribution diagram of the lens holder, the first base, and the first ball in the lens module shown in FIG. 2.
  • FIG. 8 is a distribution diagram of the first base, the second base, and the second ball in the lens module shown in FIG. 1.
  • FIG. 9 is a perspective view of the lens module shown in FIG. 1 after being assembled.
  • Fig. 10 is a cross-sectional view of the lens module shown in Fig. 9 along the A-A direction.
  • Fig. 11 is a cross-sectional view of the lens module shown in Fig. 9 along the direction B-B.
  • Fig. 12 is a cross-sectional view of the lens module shown in Fig. 9 along the direction C-C.
  • the lens module includes a housing 1 and a lens housed in the housing 1, a lens holder 3 for fixing the lens 2, a first base 4, and a first base 4 relative to the housing
  • the second base 5, the focus driving part 6 and the anti-shake driving part 7 fixed to the body 1, the lens holder 3, the first base 4 and the second base 5 are arranged in sequence along the first direction Z
  • the focus drive member 6 is used to drive the lens holder 3 to move along the optical axis direction X of the lens 2
  • the anti-shake drive member 7 is used to drive the lens holder 3 to move in the second direction Y.
  • the first direction Z, the optical axis direction X, and the second direction Y are perpendicular to each other.
  • the movement in the optical axis direction X includes a forward movement and a reverse movement
  • the movement in the second direction Y also includes a forward movement and a reverse movement
  • the lens holder 3, the first base 4, and the second base 5 are in sliding contact with each other, so that the friction between the two in contact with each other is small, so that the lens holder 3 It can be effectively moved under the driving of the focus driving part 6 and the anti-shake driving part 7, that is, the purpose of auto-focusing of the lens 2 and compensation of the shake of the lens are realized.
  • three first balls a are provided between the lens holder 3 and the first base 4, and the first base 4 and the second base 5 are provided with three second balls b, wherein one of the first balls a and the second balls b can roll along the optical axis direction X, and the other It can roll in the second direction Y, and the line connecting the centers of the three first balls a forms a non-isosceles triangle and/or the line connecting the centers of the three second balls b forms one Non-isosceles triangle.
  • the first ball a can roll in the second direction Y, and the second ball b can roll in the optical axis direction X.
  • two of the first rolling balls a are spaced apart along the optical axis direction X and located on one side of the lens 2 in the second direction Y, and the other first rolling ball a is located on the other side of the lens 2 along the second direction Y; the two second balls b are arranged at intervals along the optical axis direction X and are located on one side of the lens 2 along the second direction Y On the other side, the other second ball b is located on the other side of the lens 2 along the second direction Y.
  • the line connecting the centers of the three first balls a forms a non-isosceles triangle
  • the line connecting the centers of the three second balls b forms a non-isosceles triangle.
  • the separately arranged first ball a and the separately arranged second ball b are located on the same side of the lens 2 along the second direction Y. In this way, bending and deformation of the first base 4 can be avoided. It can be understood that, in other embodiments, the separately provided first ball a and the separately provided second ball b may also be located on different sides of the lens 2 along the second direction Y. When the separately arranged first ball a and the separately arranged second ball b are located on different sides of the lens 2 along the second direction Y, since the first base 4 is moving along the first Either side of the two directions Y is subjected to different forces at three points of application, so that the first base 4 is deformed.
  • the side of the lens holder 3 facing the first base 4 is provided with three first guide grooves 3a, and the side of the first base 4 facing the lens holder 3 is provided with three first guide grooves 3a.
  • the side of the base 4 facing the second base 5 is provided with three third guide grooves 4b, and the side of the second base 5 facing the first base 4 is provided with three third guide grooves 4b.
  • the grooves 4b are provided with the fourth guide grooves 5a corresponding to each other one by one, and a second ball b is provided between the third guide groove 4b and the fourth guide groove 5a.
  • the extending direction of the first guide groove 3a and the second guide groove 4a is the rolling direction of the first ball a, so as to guide the first ball a to roll along its rolling direction;
  • the third guide The extending direction of the groove 4b and the fourth guide groove 5a is the rolling direction of the second ball b to guide the second ball b to roll along the rolling direction.
  • the first guide groove 3a and the second guide groove 4a extend along the second direction Y, so that the first ball a is in the first guide groove 3a and the second guide groove 3a.
  • the second guide groove 4a rolls along the second direction Y under the guidance of the second guide groove 4a;
  • the third guide groove 4b and the fourth guide groove 5a extend along the optical axis direction X, so that the second ball b moves in the direction of the optical axis.
  • the third guide groove 4b and the fourth guide groove 5a roll along the optical axis direction X under the guidance of the third guide groove 5a.
  • the contours of the cross section of the first guide groove 3a, the second guide groove 4a, the third guide groove 4b, and the fourth guide groove 5a perpendicular to the respective extending directions may be rectangular, trapezoidal or triangular.
  • one of the first guide grooves 3a or one of the second guide grooves 4a has a rectangular cross-sectional profile perpendicular to its extending direction, and the remaining first guide grooves 3a and
  • the profile of the cross section of the second guide groove 4a perpendicular to its extending direction is trapezoidal or triangular;
  • one of the third guide grooves 4b or one of the fourth guide grooves 5a has a cross section perpendicular to its extending direction.
  • the contour is rectangular, and the contours of the cross section of the remaining third guide groove 4b and the fourth guide groove 5a perpendicular to the extending direction thereof are trapezoidal or triangular. Setting the guide groove into this structure can reduce the machining accuracy of the parts.
  • the housing 1 has a wall surface 1A opposite to the lens holder 3 and spaced apart from the lens holder 3 along the first direction Z, and a circuit board 8 is fixed on the wall surface 1A.
  • the housing 1 includes a frame portion 11, a bottom plate 13 provided at one end of the frame portion 11, and a bottom plate 13 provided at the other end of the frame portion 11.
  • Cover 15, the wall surface 1A is located on the cover 15, and the second base 5 is fixed to the bottom plate 13 and the frame portion 11.
  • the side of the second base 5 facing away from the first base 4 is recessed to form a plurality of recessed portions 5A, and the recessed portions 5A are located on the edge of the second base 5 and are connected to the frame body.
  • the part 11 is enclosed to form a glue containing groove A.
  • the second base 5 is recessed to form a recessed portion 5A that surrounds the frame portion 11 to form a glue container A, so that glue can be applied between the frame portion 11 and the second base 5 fixed.
  • the edge of the second base 5 extends to form a plurality of positioning blocks 5B arranged at intervals, and the frame body portion 11 is provided with positioning grooves 11A for receiving the positioning blocks 5B.
  • the second base 5 and the The frame body 11 is assembled.
  • the focus driving member 6 includes a focus magnet 61 and a focus coil 63 that interacts with the focus magnet 61 to drive the lens holder 3 to move along the optical axis direction X, and the focus coil 63 is fixed to the
  • the circuit board 8 is electrically connected to the circuit board 8, and the focusing magnet 61 is fixed on the side of the lens holder 3 facing the wall 1A.
  • the Lorentz force generated by the cooperation of the focusing coil 63 and the focusing magnet 61 after being powered on drives the lens holder 3 to move along the optical axis direction X of the lens 2.
  • the optical axis direction X of the lens 2 is measured by a first displacement sensor 10, and the first displacement sensor 10 is fixed on the circuit board 8.
  • the thickness direction of the winding of the focus coil 63 is parallel to the first direction Z. This is beneficial to increase the BL value between the focus coil 63 and the focus magnet 61.
  • the focusing magnet 61 is a quadrupole magnet.
  • the anti-shake driving member 7 includes an anti-shake magnet 71 and an anti-shake coil 73 that interacts with the anti-shake magnet 71 to drive the lens holder 3 to move in the second direction Y.
  • the anti-shake coil 73 73 is fixed to the circuit board 8 and electrically connected to the circuit board 8, and the anti-shake magnet 71 is fixed to the side of the lens holder 3 facing the wall 1A.
  • the lens 20 may move slightly in the second direction Y in a shooting situation with jitter.
  • the Lorentz force generated by the anti-shake coil 73 and the anti-shake magnet 71 after being energized drives the lens 2 to move in the opposite direction to compensate for the amount of shaking, so as to obtain a high-definition image.
  • the jitter of the lens 20 is measured by a second displacement sensor 20, and the second displacement sensor 20 is fixed on the circuit board 8.
  • the thickness direction of the anti-vibration coil 73 is parallel to the first direction Z. This is beneficial to increase the BL value between the anti-shake coil 73 and the anti-shake magnet 71.
  • the anti-vibration magnet 71 includes a first anti-vibration magnet 711 and a second anti-vibration magnet 713 that are sequentially arranged along the second direction Y, and the first anti-vibration magnet 711 and The second anti-vibration magnet 713 is magnetized along the first direction Z with opposite polarities.
  • the anti-shake magnet 71 further includes a third anti-shake magnet 715 sandwiched between the first anti-shake magnet 711 and the second anti-shake magnet 713, and the third anti-shake magnet 715 The anti-vibration magnet 715 is magnetized along the second direction Y.
  • the setting of the third anti-shake magnet 715 can increase the BL value of the anti-shake magnet 71.
  • the thickness of the focus coil 63 is greater than the thickness of the anti-shake coil 73.
  • two opposite sides of the lens 2 along the second direction Y are provided with two focusing magnets 61 arranged at intervals along the optical axis direction X, and two focusing magnets 61 and two focusing magnets 61 arranged at intervals along the optical axis direction X.
  • One of the anti-shake magnets 71 in between can not only increase the driving force of the focus driving part 6 and the anti-shake driving part 7 to the lens holder 3, so as to realize the quick response of autofocus and compensation of the shake of the lens, but also The forces on opposite sides of the lens 2 along the second direction Y can be balanced.
  • the first displacement sensor 10 is surrounded by one focus coil 63, and the inner diameter of the focus coil 63 surrounding the first displacement sensor 10 is larger than that of the other three.
  • the second displacement sensor 20 is surrounded by an anti-shake coil 73.
  • the lens holder 3 is provided with a partition 31 separating the focusing magnet 61 and the anti-shake magnet 71.
  • a partition 31 separating the focusing magnet 61 and the anti-shake magnet 71.
  • the partition plate 31 has a magnetic conduction function, so as not only to avoid the mutual influence of the magnetic field between the focusing magnet 61 and the anti-shake magnet 71, but also to help improve the focus of the focusing magnet 61 and the anti-shake magnet.
  • the BL value of the anti-shake magnet 71 is described.
  • the lens module further includes a plurality of recovery mechanisms 9, and the recovery mechanism 9 includes a first recovery magnet 91 and a second recovery magnet 93 that are opposite to each other and arranged at intervals along the first direction Z.
  • a return magnet 91 is fixed to the side of the lens holder 3 facing the first base 4, and the second return magnet 93 is fixed to the second base 5 to the first base 4 On the side.
  • the interaction force between the first return magnet 91 and the second return magnet 93 serves as The restoring force of the lens holder 3 and the interaction force between the first restoring magnet 91 and the second restoring magnet 93 can also make the lens holder 3 and the first base 4 is pressed on the second base 5.
  • the side of the lens holder 3 facing the first base 4 is formed with a first receiving groove 3A for accommodating the first return magnet 91, and the second base 5 faces the A second accommodating groove 50 for accommodating the second return magnet 93 is formed on one side of the first base 4.
  • the restoration mechanism 9 is provided with four, and the projection of the restoration mechanism 9 in the first direction Z partially overlaps the focusing magnet 61, and the focusing driving member 6 further includes a clamp A magnetic conductive sheet 65 arranged between the focusing magnet 61 and the lens holder 3. Adding a magnetic conductive sheet 65 under the focusing magnet 61 can reduce the influence of the focusing magnet 61 on the first return magnet 91 and the second return magnet 93, especially on the first return magnet 91 Influence.
  • the first accommodating groove 3A to accommodate the first return magnet 91 and the second accommodating groove 50 to accommodate the second return magnet 93, it is beneficial to increase the size of the first return magnet 91 and the second return magnet 93.
  • the volume of the second returning magnet 93 increases the BL value of the first returning magnet 91 and the second returning magnet 93.
  • the distance between two adjacent restoring mechanisms 9 in the optical axis direction X is equal to the distance between two adjacent restoring mechanisms 9 in the second direction Y. In this way, the return stiffness of the lens holder 3 in the optical axis direction X and the second direction Y can be almost the same.
  • the lens module of the present invention forms a non-isosceles triangle and/or the connection of the centers of the three second balls b by connecting the centers of the three first balls a.
  • the lines form a non-isosceles triangle, so as to ensure that the center of gravity movement area is within the triangle formed by the connection of the three balls.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

一种镜头模组,其包括壳体(1)、镜头(2)、对焦驱动件(6)、防抖驱动件(7)以及沿第一方向(Z)依次设置的镜头支架(3)、第一基座(4)及第二基座(5),镜头支架(3)和第一基座(4)之间设有三个第一滚珠(a),第一基座(4)和第二基座(5)之间设有三个第二滚珠(b),第一滚珠(a)和第二滚珠(b)中的其中一方可沿光轴方向(X)滚动,另一方可沿第二方向滚动,第一方向(Z)、第二方向(Y)及光轴方向(X)两两垂直,且三个第一滚珠(a)的球心的连线构成一个非等腰三角形和/或三个第二滚珠(b)的球心的连线构成一个非等腰三角形。镜头模组可以保证重心运动区域在三个滚珠的连线所围成的三角形内。

Description

镜头模组 技术领域
本发明涉及光学成像技术领域,尤其涉及一种镜头模组。
背景技术
近年来,随着光学成像技术的发展及具有成像功能的电子产品的兴起,光学镜头被广泛地应用在各种电子产品中。一般光线都是直接从物侧射入,沿着光轴直线通过镜头组件到达像侧,通过镜头组件来对物体进行成像。该镜头组件一般具有自动对焦功能(autofocusing)和光学防抖功能(OIS:optical image stabilization)。
相关技术中的镜头模组包括壳体、收容于壳体内的镜头、固定镜头的镜头支架、与镜头支架相对设置的第一基座和第二基座、驱动镜头支架相对于第二基座沿镜头的光轴方向发生相对位移的对焦驱动件及驱动镜头支架相对于第二基座沿垂直于镜头的光轴方向发生相对位移的防抖驱动件,其中,镜头支架与第一基座之间以及第一基座与第二基座之间均设有滚珠然而,此种镜头模组由于滚珠的分布设计不合理,易导致镜头支架沿镜头的光轴方向或/和沿垂直于镜头的光轴方向发生相对位移时出现重心不稳的问题。
因此,实有必要提供一种新的镜头模组解决上述技术问题。
技术问题
本发明的目的在于提供一种镜头模组,该镜头模组可以保证重心运动区域在三个滚珠的连线所围成的三角形内。
技术解决方案
为了达到上述目的,本发明提供了一种镜头模组,包括壳体以及收容于所述壳体内的镜头、固定所述镜头的镜头支架、第一基座、相对于所述壳体固定的第二基座、对焦驱动件及防抖驱动件,所述镜头支架、所述第一基座及所述第二基座沿第一方向依次设置,所述镜头支架和所述第一基座之间设有三个第一滚珠,所述第一基座和所述第二基座之间设有三个第二滚珠;其中,所述第一滚珠和所述第二滚珠中的其中一方可沿所述镜头的光轴方向滚动,另一方可沿第二方向滚动,所述第一方向、所述第二方向及所述光轴方向两两垂直,且三个所述第一滚珠的球心的连线构成一个非等腰三角形和/或三个所述第二滚珠的球心的连线构成一个非等腰三角形。
优选地,两个所述第一滚珠沿所述光轴方向间隔设置并位于所述镜头沿所述第二方向的一侧,另一个所述第一滚珠位于所述镜头沿所述第二方向的另一侧;两个所述第二滚珠沿所述光轴方向间隔设置并位于所述镜头沿所述第二方向的一侧,另一个所述第二滚珠位于所述镜头沿所述第二方向的另一侧。
优选地,单独设置的所述第一滚珠和单独设置的所述第二滚珠位于所述镜头沿所述第二方向的同一侧。
优选地,所述镜头支架朝向所述第一基座的一侧设有三个第一导向槽,所述第一基座的朝向所述镜头支架的一侧设有三个与所述第一导向槽一一对应设置的第二导向槽,所述第一导向槽与所述第二导向槽之间设有所述第一滚珠,所述第一基座朝向所述第二基座的一侧设有三个第三导向槽,所述第二基座朝向所述第一基座的一侧设有三个与所述第三导向槽一一对应设置的第四导向槽,所述第三导向槽与所述第四导向槽之间设有所述第二滚珠。
优选地,其中一个所述第一导向槽或其中一个所述第二导向槽垂直于所述第一滚珠滚动方向的横截面的轮廓为矩形,其余所述第一导向槽和所述第二导向槽垂直于所述第一滚珠滚动方向的横截面的轮廓为梯形或者三角形;其中一个所述第三导向槽或其中一个所述第四导向槽垂直于所述第二滚珠滚动方向的横截面的轮廓为矩形,其余所述第三导向槽和所述第四导向槽垂直于所述第二滚珠滚动方向的横截面的轮廓为梯形或者三角形。
优选地,所述镜头模组还包括多个回复机构,所述回复机构包括异极相对且沿所述第一方向间隔设置的第一回复磁钢和第二回复磁钢,所述第一回复磁钢固定于所述镜头支架朝向所述第一基座的一侧,所述第二回复磁钢固定于所述第二基座朝向所述第一基座的一侧。
优选地,所述镜头支架朝向所述第一基座的一侧形成有***述第一回复磁钢的第一收容槽,所述第二基座朝向所述第一基座的一侧形成有***述第二回复磁钢的第二收容槽。
优选地,所述壳体包括框体部、设置于所述框体部一端的底板以及设置于所述框体部另一端的盖板,所述第二基座与所述底板和所述框体部固定,其中,所述第二基座背离所述第一基座的一侧凹陷形成有多个凹陷部,所述凹陷部位于所述第二基座的边缘并与所述框体部围合形成容胶槽。
优选地,所述第二基座的边缘延伸形成多个间隔设置的定位块,所述框体部开设有***述定位块的定位槽。
有益效果
与相关技术相比,本发明的镜头模组通过将三个所述第一滚珠的球心的连线构成一个非等腰三角形和/或三个所述第二滚珠的球心的连线构成一个非等腰三角形,从而可以保证重心运动区域在三个滚珠的连线所围成的三角形内。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中。
图1为本发明的镜头模组一较佳实施例的分解图。
图2为图1所示镜头模组另一角度的结构示意图。
图3为图1所示镜头模组中镜头支架的结构示意图。
图4为图1所示镜头模组中第二基座的结构示意图。
图5为图2所示镜头模组中第一滚珠的分布图。
图6为图2所示镜头模组中第二滚珠的分布图。
图7为图2所示镜头模组中镜头支架、第一基座及第一滚珠的分布图。
图8为图1所示镜头模组中第一基座、第二基座及第二滚珠的分布图。
图9为图1所示镜头模组组装后的立体图。
图10为图9所示镜头模组沿A-A方向的剖视图。
图11为图9所示镜头模组沿B-B方向的剖视图。
图12为图9所示镜头模组沿C-C方向的剖视图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请结合参阅图1至图11,镜头模组包括壳体1以及收容于所述壳体1内的镜头2、固定所述镜头2的镜头支架3、第一基座4、相对于所述壳体1固定的第二基座5、对焦驱动件6及防抖驱动件7,所述镜头支架3、所述第一基座4及所述第二基座5沿第一方向Z依次设置,所述对焦驱动件6用于驱动所述镜头支架3沿所述镜头2的光轴方向X运动,所述防抖驱动件7用于驱动所述镜头支架3沿第二方向Y运动,所述第一方向Z、所述光轴方向X及所述第二方向Y两两垂直。
需要说明的是,所述光轴方向X的运动包括正向运动和反向运动,所述第二方向Y的运动也包括正向运动和反向运动。
其中,所述镜头支架3、所述第一基座4及所述第二基座5之间通过滑动接触,使得相互接触的两者之间的摩擦力较小,以使得所述镜头支架3在所述对焦驱动件6和所述防抖驱动件7驱动下能够有效移动,即实现所述镜头2的自动对焦及补偿镜头的抖动的目的。
如图1、图2、图5、图6、图7及图8所示,所述镜头支架3和所述第一基座4之间设有三个第一滚珠a,所述第一基座4和所述第二基座5之间设有三个第二滚珠b,其中,所述第一滚珠a和所述第二滚珠b中的其中一方可沿所述光轴方向X滚动,另一方可沿所述第二方向Y滚动,且三个所述第一滚珠a的球心的连线构成一个非等腰三角形和/或三个所述第二滚珠b的球心的连线构成一个非等腰三角形。
在如图5和图6所示实施方式中,所述第一滚珠a可沿所述第二方向Y滚动,所述第二滚珠b可沿所述光轴方向X滚动。
如图5和图6所示,两个所述第一滚珠a沿所述光轴方向X间隔设置并位于所述镜头2沿所述第二方向Y的一侧,另一个所述第一滚珠a位于所述镜头2沿所述第二方向Y的另一侧;两个所述第二滚珠b沿所述光轴方向X间隔设置并位于所述镜头2沿所述第二方向Y的一侧,另一个所述第二滚珠b位于所述镜头2沿所述第二方向Y的另一侧。这样使得三个所述第一滚珠a的球心的连线构成一个非等腰三角形,以及三个所述第二滚珠b的球心的连线构成一个非等腰三角形。
在本实施方式中,单独设置的所述第一滚珠a和单独设置的所述第二滚珠b位于所述镜头2沿所述第二方向Y的同一侧。这样可以避免所述第一基座4弯曲变形。可以理解的是,在其他实施方式中,单独设置的所述第一滚珠a和单独设置的所述第二滚珠b也可以位于所述镜头2沿所述第二方向Y的不同侧。当单独设置的所述第一滚珠a和单独设置的所述第二滚珠b位于所述镜头2沿所述第二方向Y的不同侧时,由于所述第一基座4在沿所述第二方向Y的任意一侧均受到三个作用点不同的作用力,从而使得所述第一基座4以变形。
在本实施方式中,所述镜头支架3朝向所述第一基座4的一侧设有三个第一导向槽3a,所述第一基座4的朝向所述镜头支架3的一侧设有三个与所述第一导向槽3a一一对应设置的第二导向槽4a,所述第一导向槽3a与所述第二导向槽4a之间设有所述第一滚珠a;所述第一基座4朝向所述第二基座5的一侧设有三个第三导向槽4b,所述第二基座5朝向所述第一基座4的一侧设有三个与所述第三导向槽4b一一对应设置的第四导向槽5a,所述第三导向槽4b与所述第四导向槽5a之间设有第二滚珠b。
其中,所述第一导向槽3a和所述第二导向槽4a的延伸方向为所述第一滚珠a的滚动方向,以引导所述第一滚珠a沿其滚动方向滚动;所述第三导向槽4b和所述第四导向槽5a的延伸方向为所述第二滚珠b的滚动方向,以引导所述第二滚珠b沿其滚动方向滚动。
在本实施方式中,所述第一导向槽3a和所述第二导向槽4a沿所述第二方向Y延伸,以使得所述第一滚珠a在所述第一导向槽3a和所述第二导向槽4a的引导下沿所述第二方向Y滚动;所述第三导向槽4b和所述第四导向槽5a沿所述光轴方向X延伸,以使得所述第二滚珠b在所述第三导向槽4b和所述第四导向槽5a的引导下沿所述光轴方向X滚动。
所述第一导向槽3a、所述第二导向槽4a、所述第三导向槽4b及所述第四导向槽5a垂直于各自延伸方向的横截面的轮廓可以为矩形、梯形或者三角形等。在本实施方式中,优选地,其中一个所述第一导向槽3a或其中一个所述第二导向槽4a垂直于其延伸方向的横截面的轮廓为矩形,其余所述第一导向槽3a和所述第二导向槽4a垂直于其延伸方向的横截面的轮廓为梯形或者三角形;其中一个所述第三导向槽4b或其中一个所述第四导向槽5a垂直于其延伸方向的横截面的轮廓为矩形,其余所述第三导向槽4b和所述第四导向槽5a垂直于其延伸方向的横截面的轮廓为梯形或者三角形。将导向槽设置成这种结构可以降低零件加工精度。
所述壳体1具有与所述镜头支架3相对且沿所述第一方向Z与所述镜头支架3间隔设置的壁面1A,所述壁面1A上固设有电路板8。
如图1、图2、图10及图11所示,所述壳体1包括框体部11、设置于所述框体部11一端的底板13以及设置于所述框体部11另一端的盖板15,所述壁面1A位于所述盖板15上,所述第二基座5与所述底板13和所述框体部11固定。
其中,所述第二基座5背离所述第一基座4的一侧凹陷形成有多个凹陷部5A,所述凹陷部5A位于所述第二基座5的边缘并与所述框体部11围合形成容胶槽A。通过在所述第二基座5凹陷形成与所述框体部11围合形成容胶槽A的凹陷部5A,可使得所述框体部11与所述第二基座5之间打胶固定。
所述第二基座5的边缘延伸形成多个间隔设置的定位块5B,所述框体部11开设有***述定位块5B的定位槽11A。通过在所述第二基座5的边缘延伸形成定位块5B并在所述框体部11上开设有***述定位块5B的定位槽11A,可以便于所述第二基座5和所述框体部11装配。
所述对焦驱动件6包括对焦磁钢61及与所述对焦磁钢61相互作用以驱动所述镜头支架3沿所述光轴方向X运动的对焦线圈63,所述对焦线圈63固定于所述电路板8并与所述电路板8电连接,所述对焦磁钢61固定于所述镜头支架3朝向所述壁面1A的一侧。具体应用中,通电后的所述对焦线圈63与所述对焦磁钢61配合产生的洛伦兹力驱动所述镜头支架3沿所述镜头2的所述光轴方向X运动。其中,所述镜头2的所述光轴方向X的通过第一位移传感器10测量,所述第一位移传感器10固设于所述电路板8上。
在本实施方式中,所述对焦线圈63绕线的厚度方向与所述第一方向Z平行。这样有利于提高所述对焦线圈63和所述对焦磁钢61之间的BL值。
在本实施方式中,所述对焦磁钢61为四极磁钢。
所述防抖驱动件7包括防抖磁钢71及与所述防抖磁钢71相互作用以驱动所述镜头支架3沿所述第二方向Y运动的防抖线圈73,所述防抖线圈73固定于所述电路板8并与所述电路板8电连接,所述防抖磁钢71固定于所述镜头支架3朝向所述壁面1A的一侧。具体应用中,在发生抖动的拍摄情况下,所述镜头20可能在所述第二方向Y上发生微小移动。此时,通电后的所述防抖线圈73与所述防抖磁钢71配合产生的洛伦兹力驱动所述镜头2朝相反的方向运动以补偿抖动量,从而获得高清图像。其中,所述镜头20的抖动通过第二位移传感器20测量,所述第二位移传感器20固设于所述电路板8上。
在本实施方式中,所述防抖线圈73绕线的厚度方向与所述第一方向Z平行。这样有利于提高所述防抖线圈73和所述防抖磁钢71之间的BL值。
在本实施方式中,所述防抖磁钢71包括沿所述第二方向Y依次设置的第一防抖磁钢711和第二防抖磁钢713,所述第一防抖磁钢711和所述第二防抖磁钢713沿所述第一方向Z充磁且极性相反。进一步优选地,所述防抖磁钢71还包括夹设于所述第一防抖磁钢711和所述第二防抖磁钢713之间的第三防抖磁钢715,所述第三防抖磁钢715沿所述第二方向Y充磁。所述第三防抖磁钢715的设置可以增加所述防抖磁钢71的BL值。
在本实施方式中,在所述第一方向Z上,所述对焦线圈63的厚度大于所述防抖线圈73的厚度。通过调整所述对焦线圈63的厚度可以增加所述镜头支架3沿所述光轴方向X运动的驱动力。
在本实施方式中,所述镜头2的沿所述第二方向Y的相对两侧均设有沿所述光轴方向X间隔设置的两个所述对焦磁钢61及位于两个所述对焦磁钢61之间的一个所述防抖磁钢71。通过在所述镜头2的沿所述第二方向Y的相对两侧均设有沿所述光轴方向X间隔设置的两个所述对焦磁钢61及位于两个所述对焦磁钢61之间的一个所述防抖磁钢71,不仅能增大对焦驱动件6和防抖驱动件7对所述镜头支架3的驱动力,从而可以实现自动对焦及补偿镜头的抖动的快速响应,而且可以使所述镜头2的沿所述第二方向Y的相对两侧的受力均衡。
如图10、图11及图12所示,所述第一位移传感器10位于被一个所述对焦线圈63环绕,且环绕所述第一位移传感器10的所述对焦线圈63的内径大于其他三个所述对焦线圈63的内径,所述第二位移传感器20被一个所述防抖线圈73环绕。
所述镜头支架3上设有将所述对焦磁钢61和所述防抖磁钢71隔离的隔板31。通过设置所述隔板31,可以避免所述对焦磁钢61和所述防抖磁钢71之间发生相对移动。优选地,所述隔板31具有导磁作用,从而不仅可以避免所述对焦磁钢61和所述防抖磁钢71之间磁场的相互影响,而且有利于提高所述对焦磁钢61和所述防抖磁钢71的BL值。
所述镜头模组还包括多个回复机构9,所述回复机构9包括异极相对且沿所述第一方向Z间隔设置的第一回复磁钢91和第二回复磁钢93,所述第一回复磁钢91固定于所述镜头支架3朝向所述第一基座4的一侧,所述第二回复磁钢93固定于所述第二基座朝5向所述第一基座4的一侧。所述镜头支架3在所述光轴方向X或/和所述第二方向Y发生位移时,所述第一回复磁钢91和所述第二回复磁钢93之间的相互作用力作为使得所述镜头支架3复位的回复力,同时所述第一回复磁钢91和所述第二回复磁钢93之间的相互作用力,还可以使得所述镜头支架3和所述第一基座4压紧在所述第二基座5上。
在本实施方式中,所述镜头支架3朝向所述第一基座4的一侧形成有***述第一回复磁钢91的第一收容槽3A,所述第二基座5朝向所述第一基座4的一侧形成有***述第二回复磁钢93的第二收容槽50。
在本实施方式中,所述回复机构9设有四个,且所述回复机构9沿所述第一方向Z的投影与所述对焦磁钢61部分重叠,所述对焦驱动件6还包括夹设于所述对焦磁钢61与所述镜头支架3之间的导磁片65。对焦磁钢61下方增加导磁片65,可以降低对焦磁钢61对所述第一回复磁钢91和所述第二回复磁钢93的影响,尤其是对所述第一回复磁钢91的影响。通过设置所述第一收容槽3A***述第一回复磁钢91以及所述第二收容槽50***述第二回复磁钢93,有利于增大所述第一回复磁钢91和所述第二回复磁钢93的体积,从而增大所述第一回复磁钢91和所述第二回复磁钢93的BL值。
进一步优选地,沿所述光轴方向X上相邻两所述回复机构9之间的间距等于沿所述第二方向Y上相邻两所述回复机构9之间的间距。这样可以使得所述镜头支架3在所述光轴方向X和所述第二方向Y上回复刚度几乎一致。
与相关技术相比,本发明的镜头模组通过将三个所述第一滚珠a的球心的连线构成一个非等腰三角形和/或三个所述第二滚珠b的球心的连线构成一个非等腰三角形,从而可以保证重心运动区域在三个滚珠的连线所围成的三角形内。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (9)

  1. 一种镜头模组,包括壳体以及收容于所述壳体内的镜头、固定所述镜头的镜头支架、第一基座、相对于所述壳体固定的第二基座、对焦驱动件及防抖驱动件,所述镜头支架、所述第一基座及所述第二基座沿第一方向依次设置,其特征在于,
    所述镜头支架和所述第一基座之间设有三个第一滚珠,所述第一基座和所述第二基座之间设有三个第二滚珠;
    其中,所述第一滚珠和所述第二滚珠中的其中一方可沿所述镜头的光轴方向滚动,另一方可沿第二方向滚动,所述第一方向、所述第二方向及所述光轴方向两两垂直,且三个所述第一滚珠的球心的连线构成一个非等腰三角形和/或三个所述第二滚珠的球心的连线构成一个非等腰三角形。
  2. 根据权利要求1所述的镜头模组,其特征在于,两个所述第一滚珠沿所述光轴方向间隔设置并位于所述镜头沿所述第二方向的一侧,另一个所述第一滚珠位于所述镜头沿所述第二方向的另一侧;两个所述第二滚珠沿所述光轴方向间隔设置并位于所述镜头沿所述第二方向的一侧,另一个所述第二滚珠位于所述镜头沿所述第二方向的另一侧。
  3. 根据权利要求2所述的镜头模组,其特征在于,单独设置的所述第一滚珠和单独设置的所述第二滚珠位于所述镜头沿所述第二方向的同一侧。
  4. 根据权利要求2或3所述的镜头模组,其特征在于,所述镜头支架朝向所述第一基座的一侧设有三个第一导向槽,所述第一基座的朝向所述镜头支架的一侧设有三个与所述第一导向槽一一对应设置的第二导向槽,所述第一导向槽与所述第二导向槽之间设有所述第一滚珠,所述第一基座朝向所述第二基座的一侧设有三个第三导向槽,所述第二基座朝向所述第一基座的一侧设有三个与所述第三导向槽一一对应设置的第四导向槽,所述第三导向槽与所述第四导向槽之间设有所述第二滚珠。
  5. 根据权利要求4所述的镜头模组,其特征在于,其中一个所述第一导向槽或其中一个所述第二导向槽垂直于所述第一滚珠滚动方向的横截面的轮廓为矩形,其余所述第一导向槽和所述第二导向槽垂直于所述第一滚珠滚动方向的横截面的轮廓为梯形或者三角形;其中一个所述第三导向槽或其中一个所述第四导向槽垂直于所述第二滚珠滚动方向的横截面的轮廓为矩形,其余所述第三导向槽和所述第四导向槽垂直于所述第二滚珠滚动方向的横截面的轮廓为梯形或者三角形。
  6. 根据权利要求1所述的镜头模组,其特征在于,所述镜头模组还包括多个回复机构,所述回复机构包括异极相对且沿所述第一方向间隔设置的第一回复磁钢和第二回复磁钢,所述第一回复磁钢固定于所述镜头支架朝向所述第一基座的一侧,所述第二回复磁钢固定于所述第二基座朝向所述第一基座的一侧。
  7. 根据权利要求6所述的镜头模组,其特征在于,所述镜头支架朝向所述第一基座的一侧形成有***述第一回复磁钢的第一收容槽,所述第二基座朝向所述第一基座的一侧形成有***述第二回复磁钢的第二收容槽。
  8. 根据权利要求1所述的镜头模组,其特征在于,所述壳体包括框体部、设置于所述框体部一端的底板以及设置于所述框体部另一端的盖板,所述第二基座与所述底板和所述框体部固定,其中,所述第二基座背离所述第一基座的一侧凹陷形成有多个凹陷部,所述凹陷部位于所述第二基座的边缘并与所述框体部围合形成容胶槽。
  9. 根据权利要求1或8所述的镜头模组,其特征在于,所述第二基座的边缘延伸形成多个间隔设置的定位块,所述框体部开设有***述定位块的定位槽。
PCT/CN2020/100355 2020-06-15 2020-07-06 镜头模组 WO2021253519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021104577.4U CN212569247U (zh) 2020-06-15 2020-06-15 镜头模组
CN202021104577.4 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021253519A1 true WO2021253519A1 (zh) 2021-12-23

Family

ID=74634867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100355 WO2021253519A1 (zh) 2020-06-15 2020-07-06 镜头模组

Country Status (2)

Country Link
CN (1) CN212569247U (zh)
WO (1) WO2021253519A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117741899A (zh) * 2024-02-19 2024-03-22 宁波舜宇光电信息有限公司 一种反射模块以及摄像模组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631042B2 (en) * 2000-04-06 2003-10-07 Canon Kabushiki Kaisha Lens barrel having image shake correcting function and optical device having same
CN103163708A (zh) * 2011-12-16 2013-06-19 佳能株式会社 图像稳定设备、光学设备以及摄像设备
CN104678528A (zh) * 2013-11-29 2015-06-03 奥林巴斯株式会社 透镜驱动设备
CN105700107A (zh) * 2014-12-16 2016-06-22 柯尼卡美能达株式会社 可变焦距透镜镜筒及摄像装置
CN110703538A (zh) * 2019-10-15 2020-01-17 瑞声通讯科技(常州)有限公司 镜头模组
CN110955094A (zh) * 2019-11-15 2020-04-03 嘉兴中润光学科技有限公司 一种防抖群组、防抖镜头和摄像装置
CN111175952A (zh) * 2019-12-31 2020-05-19 Oppo广东移动通信有限公司 变焦镜头、相机模组和电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631042B2 (en) * 2000-04-06 2003-10-07 Canon Kabushiki Kaisha Lens barrel having image shake correcting function and optical device having same
CN103163708A (zh) * 2011-12-16 2013-06-19 佳能株式会社 图像稳定设备、光学设备以及摄像设备
CN104678528A (zh) * 2013-11-29 2015-06-03 奥林巴斯株式会社 透镜驱动设备
CN105700107A (zh) * 2014-12-16 2016-06-22 柯尼卡美能达株式会社 可变焦距透镜镜筒及摄像装置
CN110703538A (zh) * 2019-10-15 2020-01-17 瑞声通讯科技(常州)有限公司 镜头模组
CN110955094A (zh) * 2019-11-15 2020-04-03 嘉兴中润光学科技有限公司 一种防抖群组、防抖镜头和摄像装置
CN111175952A (zh) * 2019-12-31 2020-05-19 Oppo广东移动通信有限公司 变焦镜头、相机模组和电子装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117741899A (zh) * 2024-02-19 2024-03-22 宁波舜宇光电信息有限公司 一种反射模块以及摄像模组
CN117741899B (zh) * 2024-02-19 2024-05-24 宁波舜宇光电信息有限公司 一种反射模块以及摄像模组

Also Published As

Publication number Publication date
CN212569247U (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2021253520A1 (zh) 镜头模组
KR102207902B1 (ko) 카메라 모듈
US8837929B2 (en) Imaging apparatus
KR101525816B1 (ko) 상흔들림 보정 장치
KR20160121298A (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈
KR20180116965A (ko) 카메라 모듈 엑추에이터
WO2021072821A1 (zh) 镜头模组
KR20160064941A (ko) 카메라 모듈
EP3726270B1 (en) Photosensitive element driving mechanism
JP2021103271A (ja) 手振れ補正機能付き撮像装置
WO2021072820A1 (zh) 一种镜头模组
US20240111125A1 (en) Optical element driving mechanism
JP7108589B2 (ja) レンズ駆動装置、カメラ装置及び電子機器
CN113132610A (zh) 光学防抖的摄像头模组和数码装置
US11860443B2 (en) Optical system
WO2021253519A1 (zh) 镜头模组
JP5208691B2 (ja) 像ぶれ補正装置
WO2020243867A1 (zh) 摄像模组和潜望式摄像头
US20210075941A1 (en) Lens Driving Device, Camera Device and Electronic Apparatus
JP2023536413A (ja) カメラアクチュエータおよびこれを含むカメラモジュール
JP2020177248A (ja) レンズ駆動装置、カメラ装置及び電子機器
KR102609144B1 (ko) 카메라 모듈
JP2020021096A (ja) レンズ駆動装置、レンズ駆動装置の製造方法、カメラ装置及び電子機器
KR102597171B1 (ko) 센서 시프트 모듈 및 이를 포함하는 카메라 모듈
JP5290708B2 (ja) 像ぶれ補正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941074

Country of ref document: EP

Kind code of ref document: A1