WO2021246215A1 - リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池 - Google Patents

リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池 Download PDF

Info

Publication number
WO2021246215A1
WO2021246215A1 PCT/JP2021/019534 JP2021019534W WO2021246215A1 WO 2021246215 A1 WO2021246215 A1 WO 2021246215A1 JP 2021019534 W JP2021019534 W JP 2021019534W WO 2021246215 A1 WO2021246215 A1 WO 2021246215A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
lithium
positive electrode
active material
lithium secondary
Prior art date
Application number
PCT/JP2021/019534
Other languages
English (en)
French (fr)
Inventor
政博 菊池
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Publication of WO2021246215A1 publication Critical patent/WO2021246215A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery and a lithium secondary battery using the positive electrode active material.
  • lithium-ion secondary batteries have been put into practical use as a power source for small electronic devices such as laptop computers, mobile phones, and video cameras.
  • this lithium-ion secondary battery since it was reported by Mizushima et al. In 1980 that lithium cobalt oxide is useful as a positive electrode active material for lithium-ion secondary batteries, research and development on lithium-based composite oxides has been active. Many proposals have been made so far.
  • the lithium secondary battery using lithium cobalt oxide has a problem of deterioration of cycle characteristics due to elution of cobalt atoms and the like.
  • Patent Document 1 proposes a lithium secondary battery using a lithium cobalt-based composite oxide having a lithium cobalt oxide content of 20% or more on the particle surface of lithium cobalt oxide as a positive electrode active material.
  • Patent Document 2 describes a positive electrode active material for a lithium secondary battery made of a lithium transition metal composite oxide containing 0.20 to 2.00% by weight of a Ti atom, wherein the Ti atom is a lithium transition metal. It has been proposed to use a lithium cobalt-based composite oxide that exists in the depth direction from the particle surface of the composite oxide and has the maximum concentration gradient on the particle surface as the positive electrode active material. Further, Patent Document 3 and Patent Document 4 below propose that a lithium cobalt-based composite oxide containing an Sr atom and a Ti atom is used as a positive electrode active material.
  • an object of the present invention is that when used as a positive electrode active material for a lithium secondary battery, the positive electrode for a lithium secondary battery has a high energy density retention rate with little cycle deterioration even after repeated charging and discharging under a high voltage. It is an object of the present invention to provide a lithium secondary battery which is an active material and has a high energy density maintenance rate with little deterioration of the cycle even after repeated charging and discharging under a high voltage.
  • the present invention uses Mg-containing lithium-cobalt-based composite oxide particles as lithium-cobalt-based composite oxide particles, and attaches a Ti-containing compound to the surface of the particles.
  • a lithium secondary battery that uses a positive electrode active material containing cobalt oxide (Co 3 O 4 ) inside or on the surface of Mg-containing lithium cobalt-based composite oxide particles as the positive electrode active material is charged and discharged under high voltage.
  • the lithium secondary battery has a high energy density maintenance rate with little deterioration of the cycle even if the above steps are repeated, and have completed the present invention.
  • the present invention (1) is composed of Mg-containing lithium cobalt-based composite oxide particles having a Ti-containing compound attached to at least a part of the particle surface, and the Mg-containing lithium cobalt-based composite oxide is cobalt oxide. It provides a positive electrode active material for a lithium secondary battery, which is characterized by containing (Co 3 O 4).
  • the content of cobalt oxide (Co 3 O 4 ) in the Mg-containing lithium cobalt-based composite oxide containing the cobalt oxide (Co 3 O 4 ) is CuK ⁇ ray as a radiation source.
  • the intensity of the diffraction peak near 2 ⁇ 37.4 ° due to LiCoO 2 (B).
  • the present invention (3) is, Mg content of Mg-containing lithium-cobalt composite oxide containing the cobalt oxide (Co 3 O 4) is, in terms of atom, cobalt oxide (Co 3 O 4)
  • the present invention (4) provides the positive electrode active material for a lithium secondary battery according to any one of (1) to (3), wherein the Ti-containing compound is an oxide containing titanium. be.
  • the amount of the Ti-containing compound adhered is as Ti with respect to Co in the Mg-containing lithium cobalt-based composite oxide containing cobalt oxide (Co 3 O 4) in terms of atoms. It provides a positive electrode active material for a lithium secondary battery according to any one of (1) to (4), which is characterized by having a content of 0.01 to 5.00 mol%.
  • the Mg lithium cobalt-based composite oxide particles contain one or more M elements (M is Al, Ti, Zr, Cu) in addition to Li, Co, Mg and O. , Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Ni or Mn).
  • M is Al, Ti, Zr, Cu
  • the present invention (7), and Mg-containing lithium-cobalt composite oxide particles containing cobalt oxide (Co 3 O 4), a Ti-containing compound, by mixing treated with dry and cobalt oxide (Co 3 It shall be obtained by obtaining a mixed product of Mg-containing lithium cobalt-based composite oxide particles containing O 4 ) and a Ti-containing compound, and then heat-treating the mixed product at 400 to 1000 ° C.
  • the present invention provides a positive electrode active material for a lithium secondary battery according to any one of (1) to (6).
  • the present invention (8), and Mg-containing lithium-cobalt composite oxide particles containing cobalt oxide (Co 3 O 4), a Ti-containing compound, by mixing treated with dry and cobalt oxide (Co 3 A mixed treatment of Mg-containing lithium cobalt-based composite oxide particles containing O 4 ) and a Ti-containing compound is obtained, and then the mixed treatment is heat-treated at 400 to 1000 ° C. for a lithium secondary battery.
  • the present invention provides a method for producing a positive electrode active material for a lithium secondary battery, which comprises obtaining a positive electrode active material.
  • the present invention (9) provides a lithium secondary battery characterized by using the positive electrode active material for a lithium secondary battery according to any one of (1) to (7).
  • the positive electrode active material for a lithium secondary battery when used as a positive electrode active material for a lithium secondary battery, has a high energy density retention rate with little cycle deterioration even after repeated charging and discharging under high voltage. , And it is possible to provide a lithium secondary battery having a high energy density maintenance rate with little deterioration of the cycle even if charging and discharging are repeated under a high voltage.
  • FIG. 1 The charge / discharge characteristic figure of the lithium secondary battery using the positive electrode active material sample obtained in Example 1.
  • FIG. The charge / discharge characteristic figure of the lithium secondary battery using the positive electrode active material sample obtained in Example 2.
  • FIG. The charge / discharge characteristic figure of the lithium secondary battery using the positive electrode active material sample obtained in the comparative example 1.
  • FIG. The charge / discharge characteristic figure of the lithium secondary battery using the positive electrode active material sample obtained in the comparative example 2.
  • FIG. The charge / discharge characteristic figure of the lithium secondary battery using the positive electrode active material sample obtained in the comparative example 3.
  • FIG. The charge / discharge characteristic figure of the lithium secondary battery using the positive electrode active material sample obtained in the comparative example 4.
  • FIG. The charge / discharge characteristic figure of the lithium secondary battery using the positive electrode active material sample obtained in the comparative example 5.
  • FIG. 1 The charge / discharge characteristic figure of the lithium secondary battery using the positive electrode active material sample obtained in Example 2.
  • FIG. The charge / discharge characteristic figure of the lithium secondary battery using the positive electrode active material sample
  • the positive electrode active material for a lithium secondary battery of the present invention is composed of Mg-containing lithium cobalt-based composite oxide particles having a Ti-containing compound attached to at least a part of the particle surface, and the Mg-containing lithium cobalt-based composite oxide.
  • a positive electrode active material for a lithium secondary battery which is characterized by containing cobalt oxide (Co 3 O 4).
  • a Ti-containing compound is attached to the particle surface of a Mg-containing lithium cobalt-based composite oxide containing cobalt oxide (Co 3 O 4).
  • the positive electrode active material for a lithium secondary battery of the present invention is a "Mg-containing lithium cobalt-based composite oxide containing cobalt oxide (Co 3 O 4)" to which a Ti-containing compound is attached.
  • the Mg-containing lithium cobalt-based composite oxide containing cobalt oxide (Co 3 O 4 ) is also referred to as Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles.
  • Mg is present inside the particles of the lithium cobalt-based composite oxide particles, and the Ti-containing compound is adhered to the particle surface of the lithium cobalt-based composite oxide particles.
  • Cobalt oxide (Co 3 O 4 ) is present inside the particles of the lithium-cobalt-based composite oxide particles and / or on the surface of the particles of the lithium-cobalt-based composite oxide particles.
  • the positive electrode active material for the lithium secondary battery of the present invention adheres to the lithium cobalt-based composite oxide particles containing Mg inside and at least a part of the particle surface of the lithium cobalt-based composite oxide particles. It is an aggregate of lithium cobalt oxide composite oxide particles composed of the above Ti-containing compound and having cobalt oxide (Co 3 O 4) present inside and / or on the particle surface of the lithium cobalt oxide composite oxide particles. be.
  • the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles according to the positive electrode active material for a lithium secondary battery of the present invention contain Mg inside the particles of the lithium cobalt-based composite oxide particles. That is, in the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles according to the positive electrode active material for the lithium secondary battery of the present invention, Mg is contained inside the particles of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles.
  • the Mg is present in the particle inside the Co 3 O 4 and Mg-containing lithium-cobalt composite oxide particles, using a CuK ⁇ ray as a radiation source, Co 3 O 4 and Mg-containing lithium-cobalt
  • a CuK ⁇ ray as a radiation source
  • Co 3 O 4 and Mg-containing lithium-cobalt This means that when the composite oxide particles are subjected to X-ray diffraction analysis, the diffraction peak due to MgO is substantially not detected.
  • the fact that the diffraction peak caused by MgO is not substantially detected means that the peak intensity of the diffraction peak caused by MgO is less than the lower limit of detection of the analyzer.
  • the lithium cobalt-based composite oxide when Mg is present on the particle surface, the Mg element existing on the particle surface is present on the particle surface in the state of MgO, so Mg is present on the particle surface.
  • the lithium-cobalt-based composite oxide is subjected to X-ray diffraction analysis, a peak due to MgO is observed.
  • the positive electrode active material for a lithium secondary battery of the present invention contains cobalt oxide (Co 3 O 4 ) inside and / or on the surface of the particles of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles.
  • Co 3 O 4 and inside the particles Mg-containing lithium-cobalt composite oxide particles and contains cobalt oxide (Co 3 O 4), Co 3 O 4 and Mg-containing lithium-cobalt composite oxide particles It means that Co that exists in the state of Co 3 O 4 is contained in the particles of Co.
  • the particle surface of the Co 3 O 4 and Mg-containing lithium-cobalt composite oxide particles, and containing cobalt oxide (Co 3 O 4), the particles of Co 3 O 4 and Mg-containing lithium-cobalt composite oxide particles It means that it contains Co that adheres to the surface and exists in the state of Co 3 O 4. That is, in the positive electrode active material for the lithium secondary battery of the present invention, cobalt oxide (Co 3 O 4 ) is present inside the particles of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles and / or Co. 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles are present in the positive electrode active material for a lithium secondary battery in a state of being attached to the particle surface.
  • the fact that the Mg-containing lithium cobalt-based composite oxide particles contain cobalt oxide means that the Mg-containing lithium cobalt-based composite oxide is analyzed by X-ray diffraction using CuK ⁇ rays as the radiation source. When this is done, it is confirmed by detecting the diffraction peak caused by Co 3 O 4.
  • a diffraction peak due to Co 3 O 4 is detected refers to the peak intensity of the diffraction peaks due to Co 3 O 4 is greater than or equal to the detection limit of the analyzer.
  • Co 3 peak intensity of the diffraction peaks due to O 4 is more than the detection limit of the analyzer A, cobalt oxide (Co 3 O 4) Mg-containing lithium-cobalt composite oxide containing the present invention
  • Co 3 with respect to the intensity (B) of the diffraction peak near 2 ⁇ 37.4 ° (37.4 ⁇ 0.2 °) caused by LiCoO 2.
  • Ti-containing compound is attached to a part of the particle surface of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles, or the entire particle surface is covered. Therefore, Ti-containing compounds are attached.
  • Ti-containing compound attached to a part of the particle surface means that the particle surface has a portion where the surface of the object to be coated is exposed in addition to the Ti-containing compound.
  • the cathode active material for a lithium secondary battery of the present invention using CuK ⁇ -ray as a radiation source, Co 3 O 4 and Mg-containing lithium-cobalt composite oxide, i.e., a positive electrode active material for a lithium secondary battery of the present invention
  • the content of cobalt oxide (Co 3 O 4 ) in the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles uses CuK ⁇ ray as the radiation source.
  • the content of the ratio (A) ((A / B) ⁇ 100) is preferably greater than 0.60% and 5.00% or less, and particularly preferably 0.80 to 2.50%.
  • the intensity ratio of the diffraction peak is a value obtained by the height ratio of the diffraction peak.
  • the atomic equivalent molar ratio (Li / Co) of Li to Co is preferably 0. It is 90 to 1.20, particularly preferably 0.95 to 1.15.
  • the molar ratio (Li / Co) of Li to Co in the lithium cobalt-based composite oxide is in the above range, the energy density of the positive electrode active material for a lithium secondary battery becomes high.
  • the atomic equivalent mol% of Mg with respect to Co ((Mg / Co) ⁇ 100) is. It is preferably 0.01 to 5.00 mol%, and particularly preferably 0.05 to 2.00 mol%.
  • the atomic equivalent mol% ((Mg / Co) ⁇ 100) of Mg with respect to Co in the positive electrode active material for a lithium secondary battery is in the above range, the cycle characteristics of the positive electrode active material for a lithium secondary battery are enhanced. ..
  • the atomic equivalent mol% of Ti with respect to Co ((Ti / Co) ⁇ 100) is It is preferably 0.01 to 5.00 mol%, and particularly preferably 0.10 to 2.00 mol%.
  • the battery characteristics such as high charge / discharge capacity, cycle characteristics, and safety are obtained. Can be compatible.
  • the Ti-containing compound adhering to the particle surface of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles is, for example, a Ti oxide, a Ti and Li composite oxide, or a Ti and M element composite. Examples thereof include oxides, composite oxides of Ti, M element and Li, composite oxides of Ti and Mg, and the like.
  • the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles contain one or more of the following M elements, if necessary, for the purpose of improving performance or physical properties. can do.
  • the M elements contained in the Mg-containing lithium cobalt-based composite oxide as required are Al, Ti, Zr, Cu, Fe, Sr, Ca, V, Mo, Bi, Nb, Si, Zn, Ga, Ge, Sn, Ba, W, Na, K, Ni or Mn.
  • the atomic equivalent mol% of M element with respect to Co in Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide ((M). / Co) ⁇ 100) is preferably 0.01 to 5.00 mol%, particularly preferably 0.05 to 2.00 mol%.
  • the atomic equivalent mol% of M element with respect to Co in Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles (When (M / Co) ⁇ 100) is in the above range, the battery characteristics can be improved without impairing the charge / discharge capacity.
  • the number of moles of the atomically converted M element which is the basis for calculating the above mol%, is each M. Refers to the total number of moles of elements.
  • M element is also present on the surface of the Co 3 O 4 and Mg-containing lithium-cobalt may be present in the interior of the composite oxide particles, Co 3 O 4 and Mg-containing lithium-cobalt composite oxide particles It may be present both inside and on the surface of the Co 3 O 4 and Mg-containing lithium-cobalt-based composite oxide particles.
  • the M element When the M element is present on the particle surface of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles, the M element is present in the form of an oxide, a composite oxide, a sulfate, a phosphate, or the like. May be good.
  • the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles are granules of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide.
  • the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles are lithium cobalt-based composite oxides before the Ti-containing compound is attached to the particle surface.
  • the Co 3 O 4 and Mg-containing lithium-cobalt-based composite oxide particles are, for example, a raw material mixing step of preparing a raw material mixture containing a lithium compound, a cobalt compound, and a magnesium compound, and then firing the obtained raw material mixture. It is manufactured by performing a firing step.
  • the lithium compound involved in the raw material mixing step is not particularly limited as long as it is a lithium compound usually used as a raw material for producing a lithium cobalt-based composite oxide, and lithium oxides, hydroxides, carbonates, nitrates, etc. Examples thereof include sulfates and organic acid salts.
  • the cobalt compound involved in the raw material mixing step is not particularly limited as long as it is a cobalt compound usually used as a raw material for producing a lithium cobalt-based composite oxide, and is not particularly limited. Examples thereof include carbonates, nitrates, sulfates and organic acid salts.
  • the magnesium compound involved in the raw material mixing step is not particularly limited as long as the Mg atom can be present inside the particles of the Mg-containing lithium cobalt-based composite oxide, and magnesium oxides, hydroxides, and the like are not particularly limited. Examples thereof include carbonates and organic acid salts.
  • the mixing ratio of the lithium compound and the cobalt compound is such that the ratio of the number of moles of Li to the number of moles of Co (Li / Co molar ratio) is preferably 0.900 to 1.000 in terms of atoms.
  • the mixing ratio is preferably 0.950 to 1.000, and particularly preferably 0.960 to 0.999.
  • the Mg-containing lithium cobalt-based composite oxide particles (Co 3 O 4 and ) containing cobalt oxide (Co 3 O 4) inside and / or on the particle surface are contained.
  • Mg-containing lithium-cobalt-based composite oxide particles) can be obtained.
  • the mixing ratio of the magnesium compound and the cobalt compound is, in terms of atoms, mol% of Mg in terms of atoms ((Mg / Co) ⁇ 100), preferably 0.01 to 5.00 mol%. Particularly preferably, the mixing ratio is 0.05 to 2.00 mol%.
  • the mixing ratio of the magnesium compound and the cobalt compound is in the above range, the cycle characteristics of the positive electrode active material for the lithium secondary battery are improved.
  • a compound containing M element can be mixed with the raw material mixture.
  • Examples of the compound containing the M element include oxides, hydroxides, carbonates, nitrates, sulfates, fluorides and organic acid salts containing the M element.
  • a compound containing two or more kinds of M elements may be used as the compound containing the M element.
  • the raw material lithium compound, cobalt compound, magnesium compound and compound containing M element are not limited in production history, but are impurities as much as possible in order to produce high-purity lithium cobalt-based composite oxide particles. It is preferable that the content is low.
  • the raw material mixing step as a method of mixing the lithium compound, the cobalt compound, the magnesium compound, and the compound containing the M element used as necessary, for example, a ribbon mixer, a henschel mixer, a super mixer, and now.
  • a mixing method using a tar mixer or the like can be mentioned.
  • a household mixer is sufficient as a mixing method.
  • the firing step is a step of obtaining a lithium cobalt-based composite oxide by firing the raw material mixture obtained by performing the raw material mixing step.
  • the firing temperature when the raw material mixture is fired and the raw materials are reacted is 800 to 1150 ° C., preferably 900 to 1100 ° C., particularly preferably higher than 1000 ° C. and 1100 ° C. or lower.
  • the firing temperature is within the above range, it is possible to reduce the production of superheated decomposition products of Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles, and cobalt oxide (Co 3 O 4 ) can be used as described above. It can be contained in a range that remains.
  • the firing time in the firing step is 1 to 30 hours, preferably 5 to 20 hours.
  • the firing atmosphere in the firing step is an oxidizing atmosphere of air, oxygen gas, or the like.
  • the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles thus obtained may be subjected to a plurality of firing steps, if necessary.
  • the average particle size of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles before the Ti-containing compound is attached is a particle size (D50) with a volume integration of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
  • the thickness is 0.5 to 30.0 ⁇ m, preferably 3.0 to 25.0 ⁇ m, and particularly preferably 7.0 to 25.0 ⁇ m.
  • the BET specific surface area of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles before the Ti-containing compound is attached is preferably 0.05 to 1.0 m 2 / g, particularly preferably 0.15. It is ⁇ 0.60 m 2 / g.
  • the average particle diameter or BET specific surface area of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles before the Ti-containing compound is attached is within the above range, it is easy to prepare and coat the positive electrode mixture. Further, an electrode having a high filling property can be obtained.
  • a Ti-containing compound is attached to at least a part of the particle surface of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles.
  • the Ti-containing compound may be attached to a part of the surface of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles, or Co 3 O 4 and may be attached over the entire surface of the Mg-containing lithium-cobalt composite oxide particles.
  • the cycle deterioration is caused by the Ti-containing compound adhering to at least a part of the surface of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles. Less, higher energy retention rate.
  • Examples of the Ti-containing compound according to the positive electrode active material for a lithium secondary battery of the present invention include oxides containing titanium.
  • the Ti-containing compound has high stability even when the oxide containing titanium is in a charged state, and can contribute to the improvement of battery characteristics.
  • the amount of the Ti-containing compound attached is 0.01 as Ti with respect to Co in Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide in terms of atoms. It is preferably ⁇ 5.00 mol%, preferably 0.10 to 2.00 mol%.
  • the amount of the Ti-containing compound adhered is within the above range, it is possible to achieve both high charge / discharge capacity and battery characteristics such as cycle characteristics, load characteristics, and safety.
  • the average particle size of the positive electrode active material for a lithium secondary battery of the present invention is a particle size (D50) with a volume integration of 50% in the particle size distribution obtained by the laser diffraction / scattering method, and is preferably 0.5 to 30.0 ⁇ m. It is 3.0 to 25.0 ⁇ m, particularly preferably 7.0 to 25.0 ⁇ m.
  • the BET specific surface area of the positive electrode active material for a lithium secondary battery of the present invention is preferably 0.05 to 1.0 m 2 / g, and particularly preferably 0.15 to 0.6 m 2 / g.
  • the average particle size or the BET specific surface area of the positive electrode active material for a lithium secondary battery of the present invention is within the above range, the preparation and coatability of the positive electrode mixture can be facilitated, and an electrode having high filling property can be obtained. Be done.
  • the positive electrode active material for a lithium secondary battery according to the present invention may be produced by any production method, but is produced by the following method for producing a positive electrode active material for a lithium secondary battery according to the present invention. It is preferable from the viewpoint of making a lithium secondary battery having a high energy density maintenance rate with little deterioration of the cycle even if the battery is repeatedly charged and discharged under a high voltage.
  • a Mg-containing lithium cobalt-based composite oxide particle containing cobalt oxide (Co 3 O 4 ) and a Ti-containing compound are mixed and treated in a dry manner.
  • a mixed treatment product of the Mg-containing lithium cobalt-based composite oxide particles containing cobalt oxide (Co 3 O 4 ) and the Ti-containing compound is obtained, and then the mixed treatment product is heat-treated at 400 to 1000 ° C.
  • the Mg-containing lithium cobalt-based composite oxide particles containing cobalt oxide (Co 3 O 4 ) according to the method for producing a positive electrode active material for a lithium secondary battery according to the present invention are for the above-mentioned lithium secondary battery according to the present invention. This is the same as the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles related to the positive electrode active material.
  • Examples of the Ti-containing compound according to the method for producing a positive electrode active material for a lithium secondary battery according to the present invention include an oxide containing titanium.
  • Examples of the oxide containing titanium include an oxide of Ti.
  • the average particle size of the Ti-containing compound is the average particle size determined by the laser diffraction / scattering method, and is 30.0 ⁇ m or less, preferably 0.01 to 10.0 ⁇ m, which is efficient for the surface of the lithium cobalt-based composite oxide. It is preferable from the viewpoint that the Ti-containing compound can be attached.
  • the Ti-containing compound may be an agglomerate in which primary particles are aggregated to form secondary particles.
  • Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles and a Ti-containing compound are mixed and treated in a dry manner, so that agglomerated inorganic Ti is contained.
  • the compound can be crushed to the primary particles during mixing, and the Ti-containing compound can be attached to the particle surface of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide.
  • the primary particle size of the Ti-containing compound is the average particle size of the primary particles obtained from the scanning electron micrograph, and is 2.0 ⁇ m or less, preferably 0.01 to 0.5 ⁇ m. This is preferable from the viewpoint that the Ti-containing compound can be efficiently adhered to the surface of the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide.
  • the mixing amount of the Ti-containing compound with the Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide is, in terms of atoms, Co 3 O 4 and Mg-containing lithium.
  • the high charge / discharge capacity and cycle should be such that the mixing amount of Ti in the cobalt-based composite oxide is 0.01 to 5.00 mol%, preferably 0.10 to 2.00 mol%. It is preferable from the viewpoint of achieving both battery performance such as characteristics, load characteristics, and safety.
  • Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles and a Ti-containing compound are mixed and treated in a dry manner to obtain Co 3 O 4 and Co 3 O 4 and A mixed product of Mg-containing lithium cobalt-based composite oxide particles and a Ti-containing compound can be obtained.
  • Examples of the device used in the mixing process include devices such as a high speed mixer, a super mixer, a turbosphere mixer, a Henschel mixer, a Nauter mixer and a ribbon blender, and a V-type mixer. It should be noted that these mixing operations are not limited to the exemplified mechanical means. At the laboratory level, home mixers and laboratory mills are sufficient.
  • the fine particles of the Ti-containing compound produced by being pulverized into fine particles during dry mixing are Co 3 O 4 and Mg-containing lithium-cobalt is obtained by adhering to the surface of the composite oxide particles.
  • a mixed treatment of Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles and a Ti-containing compound is then mixed at 400 to 1000 ° C., preferably 600 to 600.
  • the heat treatment is carried out at 1000 ° C., particularly preferably 750 to 950 ° C.
  • the Ti-containing compound can be firmly adhered to the surface of the Co 3 O 4 of the surface-treated particles and the Mg-containing lithium cobalt-based composite oxide particles.
  • the heat treatment time is not critical, and if it is usually 1 hour or more, preferably 2 to 10 hours, the lithium secondary has satisfactory performance.
  • a positive electrode active material for a battery can be obtained.
  • the atmosphere of the heat treatment is preferably an oxidizing atmosphere such as air and oxygen gas.
  • the lithium secondary battery of the present invention uses the positive electrode active material for a lithium secondary battery of the present invention as the positive electrode active material.
  • the lithium secondary battery of the present invention comprises a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt.
  • the positive electrode according to the lithium secondary battery of the present invention is formed, for example, by applying and drying a positive electrode mixture on a positive electrode current collector.
  • the positive electrode mixture comprises a positive electrode active material, a conductive agent, a binder, a filler added as necessary, and the like.
  • the positive electrode active material for the lithium secondary battery of the present invention is uniformly coated on the positive electrode. Therefore, the lithium secondary battery of the present invention has high battery performance, and in particular, even if charging / discharging is repeated under a high voltage (charging / discharging), the capacity is less deteriorated and the energy density maintenance rate is high.
  • the content of the positive electrode active material contained in the positive electrode mixture according to the lithium secondary battery of the present invention is preferably 70 to 100% by mass, preferably 90 to 98% by mass.
  • the positive electrode current collector according to the lithium secondary battery of the present invention is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the configured battery, but is not particularly limited, and is, for example, stainless steel, nickel, aluminum, or titanium. , Calcined carbon, aluminum, stainless steel surface treated with carbon, nickel, titanium, silver and the like. The surface of these materials may be oxidized and used, or the surface of the current collector may be made uneven by surface treatment. Examples of the form of the current collector include foil, film, sheet, net, punched body, lath body, porous body, foam body, fiber group, non-woven fabric molded body and the like.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the conductive agent according to the lithium secondary battery of the present invention is not particularly limited as long as it is an electronic conductive material that does not cause a chemical change in the configured battery.
  • graphite such as natural graphite and artificial graphite, carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and conductive fibers such as carbon fiber and metal fiber.
  • metal powders such as carbon fluoride, aluminum and nickel powder, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive materials such as polyphenylene derivatives.
  • graphite include scaly graphite, scaly graphite, earthy graphite and the like. These can be used alone or in combination of two or more.
  • the blending ratio of the conductive agent is 1 to 50% by mass, preferably 2 to 30% by mass in the positive electrode mixture.
  • binder according to the lithium secondary battery of the present invention examples include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene and polypropylene.
  • Ethylene-propylene-dienter polymer EPDM
  • sulfonated EPDM styrene butadiene rubber
  • fluororubber tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-per Fluoroalkyl vinyl ether copolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinylidene fluoride-penta Fluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-
  • the blending ratio of the binder is 1 to 50% by mass, preferably 5 to 15% by mass in the positive electrode mixture.
  • the filler according to the lithium secondary battery of the present invention suppresses the volume expansion of the positive electrode in the positive electrode mixture, and is added as necessary.
  • any fibrous material that does not cause a chemical change in the constructed battery can be used, and for example, olefin polymers such as polypropylene and polyethylene, and fibers such as glass and carbon are used.
  • the amount of the filler added is not particularly limited, but is preferably 0 to 30% by mass in the positive electrode mixture.
  • the negative electrode according to the lithium secondary battery of the present invention is formed by applying and drying a negative electrode material on a negative electrode current collector.
  • the negative electrode current collector according to the lithium secondary battery of the present invention is not particularly limited as long as it is an electronic conductor that does not cause a chemical change in the configured battery, but is not particularly limited, and is, for example, stainless steel, nickel, copper, or titanium. , Aluminum, calcined carbon, copper or stainless steel surface-treated with carbon, nickel, titanium, silver, aluminum-cadmium alloy and the like. Further, the surface of these materials may be oxidized and used, or the surface of the current collector may be made uneven by surface treatment.
  • Examples of the form of the current collector include foil, film, sheet, net, punched body, lath body, porous body, foam body, fiber group, non-woven fabric molded body and the like.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the negative electrode material according to the lithium secondary battery of the present invention is not particularly limited, but for example, a carbonaceous material, a metal composite oxide, a lithium metal, a lithium alloy, a silicon alloy, a tin alloy, and metal oxidation.
  • a carbonaceous material examples include materials, conductive polymers, chalcogen compounds, Li—Co—Ni-based materials, Li 4 Ti 5 O 12 , lithium niobate, silicon oxide (SiOx: 0.5 ⁇ x ⁇ 1.6) and the like.
  • the carbonaceous material include graphitized carbon materials and graphite-based carbon materials.
  • M 1 represents one or more elements selected from Mn, Fe, Pb and Ge.
  • M 2 represents one or more elements selected from Al, B, P, Si, Group 1, Group 2, Group 3 and halogen elements of the Periodic Table, and 0 ⁇ p ⁇ 1, 1 ⁇ q ⁇ 3. ,. showing a 1 ⁇ r ⁇ 8), Li t Fe 2 O 3 (0 ⁇ t ⁇ 1), Li t WO 2 (0 ⁇ t ⁇ 1) compound of the like.
  • Examples of the metal oxide include GeO, GeO 2 , SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , and Bi 2 O 3. , Bi 2 O 4 , Bi 2 O 5, and the like.
  • Examples of the conductive polymer include polyacetylene and poly-p-phenylene.
  • an insulating thin film having a large ion transmittance and a predetermined mechanical strength is used.
  • Sheets and non-woven fabrics made of olefin polymers such as polypropylene, glass fibers, polyethylene, etc. are used because of their organic solvent resistance and hydrophobicity.
  • the pore diameter of the separator may be in a range generally useful for batteries, and is, for example, 0.01 to 10 ⁇ m.
  • the thickness of the separator may be in the range for a general battery, and is, for example, 5 to 300 ⁇ m.
  • the solid electrolyte such as a polymer is used as the electrolyte described later, the solid electrolyte may also serve as a separator.
  • the non-aqueous electrolyte containing a lithium salt according to the lithium secondary battery of the present invention comprises a non-aqueous electrolyte and a lithium salt.
  • a non-aqueous electrolyte solution As the non-aqueous electrolyte according to the lithium secondary battery of the present invention, a non-aqueous electrolyte solution, an organic solid electrolyte, and an inorganic solid electrolyte are used.
  • the non-aqueous electrolyte solution include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran and 2-methyl.
  • Tetrahydrofuran dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxymethane, dioxorane derivative, sulfolane, methylsulfolane, 3-methyl Of aprotic organic solvents such as -2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, 1,3-propanesarton, methyl propionate, ethyl propionate, etc. Examples thereof include a solvent obtained by mixing one kind or two or more kinds.
  • Examples of the organic solid electrolyte according to the lithium secondary battery of the present invention include a polyethylene derivative, a polyethylene oxide derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, a phosphoric acid ester polymer, polyphosphazene, polyaziridine, and polyethylene.
  • Examples thereof include a polymer containing an ionic dissociation group such as sulfide, polyvinyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene, and a mixture of a polymer containing an ionic dissociation group and the above-mentioned non-aqueous electrolytic solution.
  • Li nitrides, halides, oxidates, sulfides and the like can be used, for example, Li 3 N, Li I, Li 5 NI 2 , Li.
  • Li 3 PO 4-u N 2u / 3 u is 0 ⁇ u ⁇ 4
  • Li 4 SiO 4-u N 2u / 3 u is Nitrogen such as 0 ⁇ u ⁇ 4)
  • Li 4 GeO 4-u N 2u / 3 u is 0 ⁇ u ⁇ 4)
  • Li 3 BO 3-u N 2u / 3 u is 0 ⁇ u ⁇ 3), etc.
  • the containing compound can be contained in the inorganic solid electrolyte.
  • By adding the oxygen-containing compound or the nitrogen-containing compound it is possible to widen the gaps of the formed amorphous skeleton, reduce the hindrance of the movement of lithium ions, and further improve the ionic conductivity.
  • lithium salt according to the lithium secondary battery of the present invention those that are soluble in the above non-aqueous electrolyte are used, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower fatty group
  • examples thereof include a salt obtained by mixing one or more of lithium carboxylate, lithium tetraphenylborate, imides and the like.
  • the following compounds can be added to the non-aqueous electrolyte for the purpose of improving discharge, charging characteristics, and flame retardancy.
  • pyridine triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glime, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinoneimine dye, N-substituted oxazolidinone and N, N-substituted imidazolidine, ethylene glycol dialkyl ether.
  • Ammonium salt polyethylene glucol, pyrrole, 2-methoxyethanol, aluminum trichloride, monomer of conductive polymer electrode active material, triethylenephosphonamide, trialkylphosphine, morpholine, aryl compound with carbonyl group, hexamethylphos
  • Examples include holictriamide and 4-alkylmorpholine, dicyclic tertiary amines, oils, phosphonium salts and tertiary sulfonium salts, phosphazene, carbonates and the like.
  • a halogen-containing solvent such as carbon tetrachloride and ethylene trifluoride can be contained in the electrolytic solution.
  • carbon dioxide gas can be contained in the electrolytic solution in order to have suitability for high temperature storage.
  • the lithium secondary battery of the present invention is a lithium secondary battery in which cycle deterioration is small even when charging and discharging are repeated under high voltage and the energy density maintenance rate is high, and the shape of the battery is a button, a seat, a cylinder, and a corner. , Coin type, etc. may be any shape.
  • the use of the lithium secondary battery of the present invention is not particularly limited, but for example, a laptop computer, a laptop computer, a pocket word processor, a mobile phone, a cordless handset, a portable CD player, a radio, an LCD TV, a backup power supply, an electric shaver, and the like.
  • Examples include electronic devices such as memory cards and video movies, and consumer electronic devices such as automobiles, electric vehicles, drones, game devices, and electric tools.
  • Lithium carbonate (average particle size 5.7 ⁇ m), tricobalt tetraoxide (average particle size 2.5 ⁇ m) and magnesium oxide (average particle size 3.6 ⁇ m) are weighed, mixed well with an experimental mill, and Li / Co.
  • the resulting raw material mixture was then calcined in an alumina pot at 1070 ° C. for 5 hours in the air.
  • the fired product was pulverized and classified to obtain Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles shown in Table 1.
  • the Mg content was 1.00 mol% with respect to Co in Co 3 O 4 and the Mg-containing lithium cobalt-based composite oxide.
  • the intensity of the diffraction peak was obtained as a ratio of the heights of the diffraction peaks. Further, the diffraction peak caused by MgO was less than the lower limit of detection, and was not substantially detected.
  • ⁇ LCO sample 2 Lithium carbonate (average particle size 5.7 ⁇ m) and tricobalt tetraoxide (average particle size 2.5 ⁇ m) were weighed and mixed sufficiently with an experimental mixer to prepare a raw material mixture having a Li / Co molar ratio of 0.997. Got The resulting raw material mixture was then calcined in an alumina pot at 1070 ° C. for 5 hours in the air. After completion of firing, the fired product was pulverized and classified to obtain Co 3 O 4 and Mg-containing lithium cobalt-based composite oxide particles shown in Table 1.
  • the intensity of the diffraction peak was obtained as a ratio of the heights of the diffraction peaks.
  • the Mg content was 1.00 mol% with respect to Co in Co 3 O 4 and the Mg-containing lithium cobalt-based composite oxide.
  • Example 1 30 g of LCO sample 1 was collected, 0.245 g of titanium oxide (TiO 2 ) was added thereto, and the mixture was sufficiently mixed with an experimental mill, and the obtained mixed product was baked at 800 ° C. for 5 hours. , Heat treatment was carried out to obtain a positive electrode active material sample in which 1.00 mol% of titanium oxide was attached to Co in the LCO sample in terms of Ti atoms. Further, the obtained positive electrode active material sample was mapped with Ti atoms on the particle surface by SEM-EDX analysis, and it was confirmed that Ti was present on a part of the particle surface of the LCO sample 1. As titanium oxide, an aggregate composed of secondary particles in which primary particles were aggregated was used.
  • the average particle size determined by the laser diffraction / scattering method was 0.4 ⁇ m, and the average particle size of the primary particles determined by the SEM photograph was 0.05 ⁇ m.
  • the average particle size of the primary particles was determined by arbitrarily extracting 100 particles from a scanning electron microscope.
  • Example 2 30 g of LCO sample 1 was collected, 0.061 g of titanium oxide (TiO 2 ) was added thereto, and the mixture was sufficiently mixed with an experimental mill, and the obtained mixed product was baked at 800 ° C. for 5 hours. , Heat treatment was carried out to obtain a positive electrode active material sample in which 0.25 mol% of titanium oxide was attached to Co in the LCO sample in terms of Ti atoms. Further, the obtained positive electrode active material sample was mapped with Ti atoms on the particle surface by SEM-EDX analysis, and it was confirmed that Ti was present on a part of the particle surface of the LCO sample 1.
  • TiO 2 titanium oxide
  • a coin-type lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution.
  • the negative electrode using metallic lithium foil, the electrolytic solution 1 of ethylene carbonate and methylethyl carbonate were used: a solution obtained by dissolving LiPF 6 1 mol per kneading liquid 1 liter.
  • the performance of the obtained lithium secondary battery was evaluated. The results are shown in Table 4.
  • Initial capacity (per active material weight), initial charge / discharge efficiency The charge and discharge capacity of the first cycle in the cycle characteristic evaluation are the initial charge capacity and the initial discharge capacity, and the efficiency calculated by the following formula is the initial charge / discharge capacity. It was made efficient.
  • Initial charge / discharge efficiency (%) (charge capacity in the first cycle / discharge capacity in the first cycle) ⁇ 100
  • Capacity retention rate (discharge capacity in the 20th cycle / discharge capacity in the 1st cycle) x 100
  • Energy density maintenance rate was calculated by the following formula from the Wh capacity (per active material weight) at the time of each discharge in the first cycle and the 20th cycle in the cycle characteristic evaluation.
  • Energy density maintenance rate (%) (Discharge Wh capacity in the 20th cycle / Discharge Wh capacity in the 1st cycle) ⁇ 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

リチウム二次電池の正極活物質として用いたときに、高電圧下で充放電を繰り返してもサイクルの劣化が少なく、エネルギー密度維持率が高いリチウム二次電池用正極活物質、及び高電圧下で充放電を繰り返してもサイクルの劣化が少なく、エネルギー密度維持率が高いリチウム二次電池を提供すること。 粒子表面の少なくとも一部に、Ti含有化合物が付着しているMg含有リチウムコバルト系複合酸化物粒子からなり、該Mg含有リチウムコバルト系複合酸化物は、酸化コバルト(Co)を含有することを特徴とするリチウム二次電池用正極活物質。

Description

リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
 本発明は、リチウム二次電池用正極活物質及び該正極活物質を用いたリチウム二次電池に関するものである。
 近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告がなされて以来、リチウム系複合酸化物に関する研究開発が活発に進められており、これまで多くの提案がなされている。
  しかしながら、コバルト酸リチウムを用いたリチウム二次電池にはコバルト原子の溶出等によるサイクル特性の劣化と言う問題がある。
 下記特許文献1には、コバルト酸リチウムの粒子表面におけるチタンの存在割合が20%以上であるリチウムコバルト系複合酸化物を正極活物質とするリチウム二次電池が提案されている。また、下記特許文献2には、Ti原子を0.20~2.00重量%含有するリチウム遷移金属複合酸化物からなるリチウム二次電池用正極活物質であって、前記Ti原子はリチウム遷移金属複合酸化物の粒子表面から深さ方向に存在し、且つ粒子表面で最大となる濃度勾配を有するリチウムコバルト系複合酸化物を正極活物質とすることが提案されている。また、下記特許文献3及び下記特許文献4には、Sr原子とTi原子を含有するリチウムコバルト系複合酸化物を正極活物質とすることが提案されている。
特開2005-123111号公報 国際公開WO2011/043296号パンフレット 特開2013-182758号公報 特開2013-182757号公報
 近年、リチウムイオン電池のさらなるエネルギー密度向上が求められている。その手段の一つとして、電池の充電終止電圧を上げるなどの高電圧化が挙げられる。しかしながら、これらの従来技術の方法であっても、高電圧下で充放電圧を繰り返すとサイクル特性が劣化するという問題がある。
 従って、本発明の目的は、リチウム二次電池の正極活物質として用いたときに、高電圧下で充放電を繰り返してもサイクルの劣化が少なく、エネルギー密度維持率が高いリチウム二次電池用正極活物質、及び高電圧下で充放電を繰り返してもサイクルの劣化が少なく、エネルギー密度維持率が高いリチウム二次電池を提供することを目的とする。
 本発明は、上記実情に鑑み鋭意研究を重ねた結果、リチウムコバルト系複合酸化物粒子として、Mg含有リチウムコバルト系複合酸化物粒子を用い、該粒子の表面に、Ti含有化合物を付着させ、且つ、Mg含有リチウムコバルト系複合酸化物粒子の内部又は粒子表面に酸化コバルト(Co)を含有させた正極活物質を、正極活物質として用いるリチウム二次電池は、高電圧下で充放電を繰り返してもサイクルの劣化が少なく、エネルギー密度維持率が高いリチウム二次電池になることを見出し、本発明を完成するに到った。
 すなわち、本発明(1)は、粒子表面の少なくとも一部に、Ti含有化合物が付着しているMg含有リチウムコバルト系複合酸化物粒子からなり、該Mg含有リチウムコバルト系複合酸化物は、酸化コバルト(Co)を含有することを特徴とするリチウム二次電池用正極活物質を提供するものである。
 また、本発明(2)は、前記酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物中の酸化コバルト(Co)の含有量が、線源としてCuKα線を用いて、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物をX線回折分析したときに、LiCoOに起因する2θ=37.4°付近の回折ピークの強度(B)に対するCoに起因する2θ=36.8°付近の回折ピークの強度(A)の比((A/B)×100)が、0.6より大きく5.0%以下であることを特徴とする(1)のリチウム二次電池用正極活物質を提供するものである。
 また、本発明(3)は、前記酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物中のMg含有量が、原子換算で、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物中のCoに対して、Mgとして0.01~5.00モル%であることを特徴とする(1)又は(2)のリチウム二次電池用正極活物質を提供するものである。
 また、本発明(4)は、前記Ti含有化合物が、チタンを含む酸化物であることを特徴とする(1)~(3)いずれかのリチウム二次電池用正極活物質を提供するものである。
 また、本発明(5)は、前記Ti含有化合物の付着量が、原子換算で、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物中のCoに対して、Tiとして0.01~5.00モル%であることを特徴とする(1)~(4)いずれかのリチウム二次電池用正極活物質を提供するものである。
 また、本発明(6)は、前記Mgリチウムコバルト系複合酸化物粒子が、Li、Co、Mg及びO以外に、1種又は2種以上のM元素(Mは、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Ni又はMnである。)を含有することを特徴とする(1)~(5)いずれかのリチウム二次電池用正極活物質を提供するものである。
 また、本発明(7)は、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物粒子と、Ti含有化合物と、を乾式で混合処理することにより、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物粒子及びTi含有化合物の混合処理物を得、次いで、該混合処理物を、400~1000℃で加熱処理することにより得られるものであることを特徴とする(1)~(6)いずれかのリチウム二次電池用正極活物質を提供するものである。
 また、本発明(8)は、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物粒子と、Ti含有化合物と、を乾式で混合処理することにより、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物粒子及びTi含有化合物の混合処理物を得、次いで、該混合処理物を、400~1000℃で加熱処理することにより、リチウム二次電池用正極活物質を得ることを特徴とするリチウム二次電池用正極活物質の製造方法を提供するものである。
 また、本発明(9)は、(1)~(7)いずれかのリチウム二次電池用正極活物質を用いたことを特徴とするリチウム二次電池を提供するものである。
 本発明によれば、リチウム二次電池の正極活物質として用いたときに、高電圧下で充放電を繰り返してもサイクルの劣化が少なく、エネルギー密度維持率が高いリチウム二次電池用正極活物質、及び高電圧下で充放電を繰り返してもサイクルの劣化が少なく、エネルギー密度維持率が高いリチウム二次電池を提供することができる。
実施例1で得られた正極活物質試料を用いたリチウム二次電池の充放電特性図。 実施例2で得られた正極活物質試料を用いたリチウム二次電池の充放電特性図。 比較例1で得られた正極活物質試料を用いたリチウム二次電池の充放電特性図。 比較例2で得られた正極活物質試料を用いたリチウム二次電池の充放電特性図。 比較例3で得られた正極活物質試料を用いたリチウム二次電池の充放電特性図。 比較例4で得られた正極活物質試料を用いたリチウム二次電池の充放電特性図。 比較例5で得られた正極活物質試料を用いたリチウム二次電池の充放電特性図。
 本発明のリチウム二次電池用正極活物質は、粒子表面の少なくとも一部に、Ti含有化合物が付着しているMg含有リチウムコバルト系複合酸化物粒子からなり、該Mg含有リチウムコバルト系複合酸化物は、酸化コバルト(Co)を含有することを特徴とするリチウム二次電池用正極活物質である。
 本発明のリチウム二次電池用正極活物質では、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物の粒子表面に、Ti含有化合物が付着している。本発明のリチウム二次電池用正極活物質は、Ti含有化合物が付着している「酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物」である。以下、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物を、Co及びMg含有リチウムコバルト系複合酸化物粒子とも記載する。
 つまり、本発明のリチウム二次電池用正極活物質は、リチウムコバルト系複合酸化物粒子の粒子内部にMgを存在させ、リチウムコバルト系複合酸化物粒子の粒子表面にTi含有化合物を付着させ、且つ、リチウムコバルト系複合酸化物粒子の粒子内部及び/又はリチウムコバルト系複合酸化物粒子の粒子表面に酸化コバルト(Co)を存在させたものである。
 言い換えると、本発明のリチウム二次電池用正極活物質は、内部にMgを含有するリチウムコバルト系複合酸化物粒子と、該リチウムコバルト系複合酸化物粒子の粒子表面の少なくとも一部に付着しているTi含有化合物と、からなり、該リチウムコバルト系複合酸化物粒子の粒子内部及び/又は粒子表面に酸化コバルト(Co)が存在しているリチウムコバルト系複合酸化物粒子の集合物である。
 本発明のリチウム二次電池用正極活物質に係るCo及びMg含有リチウムコバルト系複合酸化物粒子は、リチウムコバルト系複合酸化物粒子の粒子内部にMgを含有している。つまり、本発明のリチウム二次電池用正極活物質に係るCo及びMg含有リチウムコバルト系複合酸化物粒子では、Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子内部にMgが存在している。本発明において、Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子内部にMgが存在しているとは、線源としてCuKα線を用いて、Co及びMg含有リチウムコバルト系複合酸化物粒子をX線回折分析したときに、MgOに起因する回折ピークが実質的に検出されないことを意味する。MgOに起因する回折ピークが実質的に検出されないとは、MgOに起因する回折ピークのピーク強度が、分析装置の検出下限値未満であることを指す。
 なお、リチウムコバルト系複合酸化物では、粒子表面にMgが存在する場合、粒子表面に存在しているMg元素は、MgOの状態で粒子表面に存在するので、粒子表面にMgが存在しているリチウムコバルト系複合酸化物をX線回折分析すると、MgOに起因するピークが観察される。
 本発明のリチウム二次電池用正極活物質では、Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子内部及び/又は粒子表面に、酸化コバルト(Co)を含有する。本発明において、Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子内部に、酸化コバルト(Co)を含有するとは、Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子内部に、Coの状態で存在しているCoを含有することを意味する。また、Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子表面に、酸化コバルト(Co)を含有するとは、Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子表面に付着して、Coの状態で存在しているCoを含有することを意味する。つまり、本発明のリチウム二次電池用正極活物質では、酸化コバルト(Co)は、Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子内部に存在する状態及び/又はCo及びMg含有リチウムコバルト系複合酸化物粒子の粒子表面に付着した状態で、リチウム二次電池用正極活物質に存在している。
 本発明において、Mg含有リチウムコバルト系複合酸化物粒子が酸化コバルト(Co)を含有することは、線源としてCuKα線を用いて、Mg含有リチウムコバルト系複合酸化物をX線回折分析したときに、Coに起因する回折ピークが検出されることにより確認される。Coに起因する回折ピークが検出されるとは、Coに起因する回折ピークのピーク強度が、分析装置の検出下限値以上であることを指す。
 本発明において、Coに起因する回折ピークのピーク強度が、分析装置の検出下限値以上とは、本発明の酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物を線源としてCuKα線を用いてX線回折分析したときに、LiCoOに起因する2θ=37.4°付近(37.4±0.2°)の回折ピークの強度(B)に対するCoに起因する2θ=36.8°付近(36.8±0.2°)の回折ピークの強度(A)の比((A/B)×100)が、好ましくは0.60%より大きいことを示す。
 本発明のリチウム二次電池用正極活物質では、Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子表面の一部分にTi含有化合物が付着しているか、あるいは、粒子表面の全部を覆って、Ti含有化合物が付着している。なお、粒子表面の一部分にTi含有化合物が付着しているとは、粒子表面に、Ti含有化合物以外に被覆対象物の表面が露出する部分を有する状態をいう。
 本発明のリチウム二次電池用正極活物質では、線源としてCuKα線を用いて、Co及びMg含有リチウムコバルト系複合酸化物、すなわち、本発明のリチウム二次電池用正極活物質をX線回折分析したときに、Coに起因する2θ=36.8°付近に、検出下限値以上の強度の回折ピークが観察される。そして、本発明のリチウム二次電池用正極活物質では、Co及びMg含有リチウムコバルト系複合酸化物粒子中の酸化コバルト(Co)の含有量は、線源としてCuKα線を用いて、Co及びMg含有リチウムコバルト系複合酸化物粒子、すなわち、本発明のリチウム二次電池用正極活物質をX線回折分析したときに、LiCoOに起因する2θ=37.4°付近(37.4±0.2°)の回折ピークの強度(B)に対するCoに起因する2θ=36.8°付近(36.8±0.2°)の回折ピークの強度(A)の比((A/B)×100)が、好ましくは0.60%より大きく5.00%以下、特に好ましくは0.80~2.50%となる含有量であることが、高電圧下で充放電を繰り返してもサイクルの劣化が少なく、エネルギー維持率が高くなる効果が高くなる点で好ましい。なお、本発明において、回折ピークの強度比は、回折ピークの高さ比で求められる値である。
 本発明のリチウム二次電池用正極活物質中(すなわち、本発明のリチウム二次電池用正極活物質全体中)、Coに対するLiの原子換算のモル比(Li/Co)は、好ましくは0.90~1.20、特に好ましくは0.95~1.15である。リチウムコバルト系複合酸化物中のCoに対するLiの原子換算のモル比(Li/Co)が上記範囲にあることにより、リチウム二次電池用正極活物質のエネルギー密度が高くなる。
 本発明のリチウム二次電池用正極活物質中(すなわち、本発明のリチウム二次電池用正極活物質全体中)、Coに対するMgの原子換算のモル%((Mg/Co)×100)は、好ましくは0.01~5.00モル%、特に好ましくは0.05~2.00モル%である。リチウム二次電池用正極活物質中のCoに対するMgの原子換算のモル%((Mg/Co)×100)が上記範囲にあることにより、リチウム二次電池用正極活物質のサイクル特性が高くなる。
 本発明のリチウム二次電池用正極活物質中(すなわち、本発明のリチウム二次電池用正極活物質全体中)、Coに対するTiの原子換算のモル%((Ti/Co)×100)は、好ましくは0.01~5.00モル%、特に好ましくは0.10~2.00モル%である。リチウム二次電池用正極活物質中のCoに対するTiの原子換算のモル%((Ti/Co)×100)が上記範囲にあることにより、高い充放電容量とサイクル特性、安全性等の電池特性を両立させることができる。
 Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子表面に付着しているTi含有化合物は、例えば、Tiの酸化物、TiとLiとの複合酸化物、TiとM元素との複合酸化物、Ti、M元素及びLiの複合酸化物、TiとMgとの複合酸化物等が挙げられる。
 Co及びMg含有リチウムコバルト系複合酸化物粒子は、性能又は物性を向上させることを目的として、必要に応じて、以下に示すM元素のうちのいずれか1種又は2種以上を含有することができる。Mg含有リチウムコバルト系複合酸化物が、必要に応じて含有するM元素は、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Ni又はMnである。
 Co及びMg含有リチウムコバルト系複合酸化物粒子がM元素を含有する場合、Co及びMg含有リチウムコバルト系複合酸化物中、Coに対するM元素の原子換算のモル%((M/Co)×100)は、好ましくは0.01~5.00モル%、特に好ましくは0.05~2.00モル%である。Co及びMg含有リチウムコバルト系複合酸化物粒子がM元素を含有する場合において、Co及びMg含有リチウムコバルト系複合酸化物粒子中のCoに対するM元素の原子換算のモル%((M/Co)×100)が上記範囲にあることにより、充放電容量を損なうことなく電池特性を向上させることができる。なお、Co及びMg含有リチウムコバルト系複合酸化物粒子が2種以上のM元素を含有する場合は、上記モル%の算出の基礎となる原子換算のM元素のモル数は、各M元素のモル数の合計を指す。
 M元素は、Co及びMg含有リチウムコバルト系複合酸化物粒子の内部に存在していてもよく、Co及びMg含有リチウムコバルト系複合酸化物粒子の表面に存在していてもよく、Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子内部及び粒子表面の両方に存在していてもよい。
 Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子表面にM元素が存在する場合、M元素は、酸化物、複合酸化物、硫酸塩、リン酸塩等の形態として存在していてもよい。
 そして、Co及びMg含有リチウムコバルト系複合酸化物粒子は、上記Co及びMg含有リチウムコバルト系複合酸化物の粒状物である。
 Co及びMg含有リチウムコバルト系複合酸化物粒子は、Ti含有化合物を粒子表面に付着させる前のリチウムコバルト系複合酸化物である。
 Co及びMg含有リチウムコバルト系複合酸化物粒子は、例えば、リチウム化合物と、コバルト化合物と、マグネシウム化合物と、を含有する原料混合物を調製する原料混合工程、次いで、得られる原料混合物を焼成する焼成工程を行うことにより製造される。
 原料混合工程に係るリチウム化合物は、通常、リチウムコバルト系複合酸化物の製造用の原料として用いられるリチウム化合物であれば、特に制限されず、リチウムの酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩及び有機酸塩等が挙げられる。
 原料混合工程に係るコバルト化合物は、通常、リチウムコバルト系複合酸化物の製造用の原料として用いられるコバルト化合物であれば、特に制限されず、コバルトの酸化物、オキシ水酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩及び有機酸塩等が挙げられる。
 原料混合工程に係るマグネシウム化合物は、通常、Mg原子をMg含有リチウムコバルト系複合酸化物の粒子内部に存在させることができるものであれば、特に制限されず、マグネシウムの酸化物、水酸化物、炭酸塩、及び有機酸塩等が挙げられる。
 原料混合工程において、リチウム化合物とコバルト化合物の混合割合は、原子換算で、Coのモル数に対するLiのモル数の比(Li/Coモル比)が、好ましくは0.900~1.000、より好ましくは0.950~1.000、特に好ましくは0.960~0.999となる混合割合である。リチウム化合物とコバルト化合物の混合割合が上記範囲にあることにより、酸化コバルト(Co)を粒子内部及び/又は粒子表面に含有するMg含有リチウムコバルト系複合酸化物粒子(Co及びMg含有リチウムコバルト系複合酸化物粒子)が得られる。
 原料混合工程において、マグネシウム化合物とコバルト化合物の混合割合は、原子換算で、Coに対するMgの原子換算のモル%((Mg/Co)×100)が、好ましくは0.01~5.00モル%、特に好ましくは0.05~2.00モル%となる混合割合である。マグネシウム化合物とコバルト化合物の混合割合が上記範囲にあることにより、リチウム二次電池用正極活物質のサイクル特性が高くなる。
 原料混合工程において、原料混合物に、M元素を含有する化合物を混合させることができる。
 M元素を含有する化合物としては、M元素を含有する酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、フッ化物及び有機酸塩等が挙げられる。M元素を含有する化合物として、M元素を2種以上含有する化合物を用いてもよい。
 なお、原料のリチウム化合物、コバルト化合物、マグネシウム化合物及びM元素を含有する化合物は、製造履歴は問われないが、高純度のリチウムコバルト系複合酸化物粒子を製造するために、可及的に不純物含有量が少ないものであることが好ましい。
 原料混合工程において、リチウム化合物と、コバルト化合物と、マグネシウム化合物と、必要に応じて用いられるM元素を含有する化合物と、を混合する方法としては、例えば、リボンミキサー、ヘンシェルミキサー、スーパーミキサー、ナウターミキサー等を用いる混合方法が挙げられる。なお、実験室レベルでは混合方法としては、家庭用ミキサーで十分である。
 焼成工程は、原料混合工程を行い得られる原料混合物を、焼成することにより、リチウムコバルト系複合酸化物を得る工程である。
  焼成工程において、原料混合物を焼成して、原料を反応させる際の焼成温度は、800~1150℃、好ましくは900~1100℃、特に好ましくは1000℃より高く1100℃以下である。焼成温度が上記範囲にあることにより、Co及びMg含有リチウムコバルト系複合酸化物粒子の過熱分解生成物の生成を少なくすることができ、また、酸化コバルト(Co)を上記範囲で残存させて含有させることができる。
 焼成工程における焼成時間は、1~30時間、好ましくは5~20時間である。また、焼成工程における焼成雰囲気は、空気、酸素ガス等の酸化雰囲気である。
  このようにして得られるCo及びMg含有リチウムコバルト系複合酸化物粒子を、必要に応じて複数回の焼成工程に付してもよい。
 Ti含有化合物が付着される前のCo及びMg含有リチウムコバルト系複合酸化物粒子の平均粒子径は、レーザ回折・散乱法により求められる粒度分布における体積積算50%の粒子径(D50)で、0.5~30.0μm、好ましくは3.0~25.0μm、特に好ましくは7.0~25.0μmである。また、Ti含有化合物が付着される前のCo及びMg含有リチウムコバルト系複合酸化物粒子のBET比表面積は、好ましくは0.05~1.0m/g、特に好ましくは0.15~0.60m/gである。Ti含有化合物が付着される前のCo及びMg含有リチウムコバルト系複合酸化物粒子の平均粒子径又はBET比表面積が上記範囲にあることにより、正極合剤の調製や塗工性が容易になり、さらには充填性の高い電極が得られる。
 本発明のリチウム二次電池用正極活物質では、Co及びMg含有リチウムコバルト系複合酸化物粒子の粒子表面の少なくとも一部に、Ti含有化合物が付着している。
 本発明のリチウム二次電池用正極活物質において、Ti含有化合物は、Co及びMg含有リチウムコバルト系複合酸化物粒子の表面の一部に付着していてもよいし、あるいは、Co及びMg含有リチウムコバルト系複合酸化物粒子の表面の全部を覆って付着していてもよい。本発明のリチウム二次電池用正極活物質において、Co及びMg含有リチウムコバルト系複合酸化物粒子の表面の少なくとも一部に、Ti含有化合物が付着していることにより、サイクルの劣化が少なく、エネルギー維持率が高くなる。
 本発明のリチウム二次電池用正極活物質に係るTi含有化合物としては、チタンを含む酸化物等が挙げられる。
 本発明のリチウム二次電池用正極活物質において、Ti含有化合物は、チタンを含む酸化物が充電状態においても安定性が高く、電池特性向上に寄与できる。
 本発明のリチウム二次電池用正極活物質において、Ti含有化合物の付着量は、原子換算で、Co及びMg含有リチウムコバルト系複合酸化物中のCoに対して、Tiとして0.01~5.00モル%、好ましくは0.10~2.00モル%であることが好ましい。Ti含有化合物の付着量が上記範囲にあることにより、高い充放電容量とサイクル特性、負荷特性、安全性等の電池特性を両立させることができる。
 本発明のリチウム二次電池用正極活物質の平均粒子径は、レーザ回折・散乱法により求められる粒度分布における体積積算50%の粒子径(D50)で、0.5~30.0μm、好ましくは3.0~25.0μm、特に好ましくは7.0~25.0μmである。また、本発明のリチウム二次電池用正極活物質のBET比表面積は、好ましくは0.05~1.0m/g、特に好ましくは0.15~0.6m/gである。本発明のリチウム二次電池用正極活物質の平均粒子径又はBET比表面積が上記範囲にあることにより、正極合剤の調製や塗工性が容易になり、さらには充填性の高い電極が得られる。
 本発明に係るリチウム二次電池用正極活物質は、如何なる製造方法で製造されたものであってもよいが、下記の本発明に係るリチウム二次電池用正極活物質の製造方法により、製造されたものが高電圧下で充放電を繰り返してもサイクルの劣化が少なく、エネルギー密度維持率が高いリチウム二次電池とする観点から好ましい。
 本発明に係るリチウム二次電池用正極活物質の製造方法は、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物粒子と、Ti含有化合物と、を乾式で混合処理することにより、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物粒子及びTi含有化合物の混合処理物を得、次いで、該混合処理物を、400~1000℃で加熱処理することにより、リチウム二次電池用正極活物質を得ることを特徴とするリチウム二次電池用正極活物質の製造方法である。
 本発明に係るリチウム二次電池用正極活物質の製造方法に係る酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物粒子は、上記の本発明に係るリチウム二次電池用正極活物質に係るCo及びMg含有リチウムコバルト系複合酸化物粒子と同様である。
 本発明に係るリチウム二次電池用正極活物質の製造方法に係るTi含有化合物としては、チタンを含む酸化物が挙げられる。チタンを含む酸化物としては、例えば、Tiの酸化物が挙げられる。
 Ti含有化合物の平均粒子径は、レーザ回折・散乱法により求められる平均粒子径で、30.0μm以下、好ましくは0.01~10.0μmであることがリチウムコバルト系複合酸化物表面に効率よくTi含有化合物を付着させることができる観点から好ましい。
 なお、Ti含有化合物は、一次粒子が集合し二次粒子を形成する凝集体であってもよい。本発明のリチウム二次用正極活物質の製造方法では、Co及びMg含有リチウムコバルト系複合酸化物粒子と、Ti含有化合物と、を乾式で混合処理するため、凝集状の無機Ti含有化合物は、混合中に一次粒子まで解砕されて、Co及びMg含有リチウムコバルト系複合酸化物の粒子表面にTi含有化合物を付着させることができる。
 凝集状のTi含有化合物を用いる場合は、Ti含有化合物の一次粒子径は、走査型電子顕微鏡写真から求められる一次粒子の平均粒子径で、2.0μm以下、好ましくは0.01~0.5μmとすることが、Co及びMg含有リチウムコバルト系複合酸化物表面に効率よくTi含有化合物を付着させることができる観点から好ましい。
 本発明のリチウム二次用正極活物質の製造方法において、Co及びMg含有リチウムコバルト系複合酸化物へのTi含有化合物の混合量は、原子換算で、Co及びMg含有リチウムコバルト系複合酸化物中のCoに対して、Tiとして0.01~5.00モル%、好ましくは0.10~2.00モル%となる混合量であることが、高い充放電容量とサイクル特性、負荷特性、安全性等の電池性能を両立させることができる観点から好ましい。
 本発明のリチウム二次用正極活物質の製造方法において、Co及びMg含有リチウムコバルト系複合酸化物粒子と、Ti含有化合物と、を乾式で混合処理することにより、Co及びMg含有リチウムコバルト系複合酸化物粒子及びTi含有化合物の混合処理物を得ることができる。
 混合処理で用いる装置としては、例えばハイスピードミキサー、スーパーミキサー、ターボスフェアミキサー、ヘンシェルミキサー、ナウターミキサー及びリボンブレンダー、V型混合機等の装置が挙げられる。なお、これら混合操作は、例示した機械的手段に限定されるものではない。また、実験室レベルでは、家庭用ミキサー、実験用ミルでも十分である。
 このようにして得られるCo及びMg含有リチウムコバルト系複合酸化物粒子及びTi含有化合物の混合処理物は、乾式混合の際に微粒に粉砕されて生じるTi含有化合物の微粒子が、Co及びMg含有リチウムコバルト系複合酸化物粒子の表面に付着したものである。
  本発明のリチウム二次用正極活物質の製造方法では、 次いで、Co及びMg含有リチウムコバルト系複合酸化物粒子及びTi含有化合物の混合処理物を、400~1000℃、好ましくは600~1000℃、特に好ましくは750~950℃で加熱処理する。この加熱処理を行うことにより、被表面処理粒子のCo及びMg含有リチウムコバルト系複合酸化物粒子の表面に、Ti含有化合物を強固に付着させることができる。
 本発明のリチウム二次用正極活物質の製造方法において、加熱処理の時間は、臨界的ではなく、通常は1時間以上、好ましくは2~10時間であれば、満足の行く性能のリチウム二次電池用正極活物質を得ることができる。加熱処理の雰囲気は、空気、酸素ガス等の酸化雰囲気であることが好ましい。
 本発明のリチウム二次電池は、正極活物質として、本発明のリチウム二次電池用正極活物質を用いるものである。本発明のリチウム二次電池は、正極、負極、セパレータ、及びリチウム塩を含有する非水電解質からなる。
  本発明のリチウム二次電池に係る正極は、例えば、正極集電体上に正極合剤を塗布乾燥等して形成されるものである。正極合剤は、正極活物質、導電剤、結着剤、及び必要により添加されるフィラー等からなる。本発明のリチウム二次電池は、正極に、本発明のリチウム二次電池用正極活物質が均一に塗布されている。このため本発明のリチウム二次電池は、電池性能が高く、特に高電圧下で充放電を繰り返しても(充放電)容量の劣化が少なく、エネルギー密度維持率が高い。
  本発明のリチウム二次電池に係る正極合剤に含有される正極活物質の含有量は、70~100質量%、好ましくは90~98質量%が望ましい。
  本発明のリチウム二次電池に係る正極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの等が挙げられる。これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1~500μmとすることが好ましい。
  本発明のリチウム二次電池に係る導電剤としては、構成された電池において化学変化を起こさない電子伝導材料であれば特に限定はない。例えば、天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維や金属繊維等の導電性繊維類、フッ化カーボン、アルミニウム、ニッケル粉等の金属粉末類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物、或いはポリフェニレン誘導体等の導電性材料が挙げられ、天然黒鉛としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等が挙げられる。これらは、1種又は2種以上組み合わせて用いることができる。導電剤の配合比率は、正極合剤中、1~50質量%、好ましくは2~30質量%である。
  本発明のリチウム二次電池に係る結着剤としては、例えば、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、テトラフロオロエチレン、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体、エチレン-アクリル酸共重合体またはその(Na+)イオン架橋体、エチレン-メタクリル酸共重合体またはその(Na+)イオン架橋体、エチレン-アクリル酸メチル共重合体またはその(Na+)イオン架橋体、エチレン-メタクリル酸メチル共重合体またはその(Na+)イオン架橋体、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマー等が挙げられ、これらは1種または2種以上組み合わせて用いることができる。なお、多糖類のようにリチウムと反応するような官能基を含む化合物を用いるときは、例えば、イソシアネート基のような化合物を添加してその官能基を失活させることが好ましい。結着剤の配合比率は、正極合剤中、1~50質量%、好ましくは5~15質量%である。
  本発明のリチウム二次電池に係るフィラーは、正極合剤において正極の体積膨張等を抑制するものであり、必要により添加される。フィラーとしては、構成された電池において化学変化を起こさない繊維状材料であれば何でも用いることができるが、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、ガラス、炭素等の繊維が用いられる。フィラーの添加量は特に限定されないが、正極合剤中、0~30質量%が好ましい。
  本発明のリチウム二次電池に係る負極は、負極集電体上に負極材料を塗布乾燥等して形成される。本発明のリチウム二次電池に係る負極集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば特に制限されるものでないが、例えば、ステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素、銅やステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの及びアルミニウム-カドミウム合金等が挙げられる。また、これらの材料の表面を酸化して用いてもよく、表面処理により集電体表面に凹凸を付けて用いてもよい。また、集電体の形態としては、例えば、フォイ
ル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発砲体、繊維群、不織布の成形体などが挙げられる。集電体の厚さは特に制限されないが、1~500μmとすることが好ましい。
  本発明のリチウム二次電池に係る負極材料としては、特に制限されるものではないが、例えば、炭素質材料、金属複合酸化物、リチウム金属、リチウム合金、ケイ素系合金、錫系合金、金属酸化物、導電性高分子、カルコゲン化合物、Li-Co-Ni系材料、LiTi12、ニオブ酸リチウム、酸化ケイ素(SiOx:0.5≦x≦1.6)等が挙げられる。炭素質材料としては、例えば、難黒鉛化炭素材料、黒鉛系炭素材料等が挙げられる。金属複合酸化物としては、例えば、Sn(M11-p(M2qr(式中、M1はMn、Fe、Pb及びGeから選ばれる1種以上の元素を示し、M2はAl、B、P、Si、周期律表第1族、第2族、第3族及びハロゲン元素から選ばれる1種以上の元素を示し、0<p≦1、1≦q≦3、1≦r≦8を示す。)、LiFe23(0≦t≦1)、LiWO2(0≦t≦1)等の化合物が挙げられる。金属酸化物としては、GeO、GeO2、SnO、SnO2、PbO、PbO2、Pb23、Pb34、Sb23、Sb24、Sb25、Bi23、Bi24、Bi25等が挙げられる。導電性高分子としては、ポリアセチレン、ポリ-p-フェニレン等が挙げられる。
  本発明のリチウム二次電池に係るセパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持った絶縁性の薄膜が用いられる。耐有機溶剤性と疎水性からポリプロピレンなどのオレフィン系ポリマーあるいはガラス繊維あるいはポリエチレンなどからつくられたシートや不織布が用いられる。セパレータの孔径としては、一般的に電池用として有用な範囲であればよく、例えば、0.01~10μmである。セパレータの厚みとしては、一般的な電池用の範囲であればよく、例えば5~300μmである。なお、後述する電解質としてポリマーなどの固体電解質が用いられる場合には、固体電解質がセパレー
タを兼ねるようなものであってもよい。
  本発明のリチウム二次電池に係るリチウム塩を含有する非水電解質は、非水電解質とリチウム塩とからなるものである。本発明のリチウム二次電池に係る非水電解質としては、非水電解液、有機固体電解質、無機固体電解質が用いられる。非水電解液としては、例えば、N-メチル-2-ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロキシフラン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3-ジオキソラン、ホルムアミド、ジメチルホルム
アミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3-プロパンサルトン、プロピオン酸メチル、プロピオン酸エチル等の非プロトン性有機溶媒の1種または2種以上を混合した溶媒が挙げられる。
  本発明のリチウム二次電池に係る有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキサイド誘導体又はこれを含むポリマー、ポリプロピレンオキサイド誘導体又はこれを含むポリマー、リン酸エステルポリマー、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等のイオン性解離基を含むポリマー、イオン性解離基を含むポリマーと上記非水電解液の混合物等が挙げられる。
  本発明のリチウム二次電池に係る無機固体電解質としては、Liの窒化物、ハロゲン化物、酸素酸塩、硫化物等を用いることができ、例えば、Li3N、LiI、Li5NI2、Li3N-LiI-LiOH、LiSiO4、LiSiO4-LiI-LiOH、Li2SiS3、Li4SiO4、Li4SiO4-LiI-LiOH、P25、Li2S又はLi2S-P25、Li2S-SiS2、Li2S-GeS2、Li2S-Ga23、Li2S-B23、Li2S-P25-X、Li2S-SiS2-X、Li2S-GeS2-X、Li2S-Ga23-X、Li2S-B23-X、(式中、XはLiI、B23、又はAl23から選ばれる少なくとも1種以上)等が挙げられる。
  更に、無機固体電解質が非晶質(ガラス)の場合は、リン酸リチウム(Li3PO4)、酸化リチウム(Li2O)、硫酸リチウム(Li2SO4)、酸化リン(P25)、硼酸リチウム(Li3BO3)等の酸素を含む化合物、Li3PO4-u2u/3(uは0<u<4)、Li4SiO4-u2u/3(uは0<u<4)、Li4GeO4-u2u/3(uは0<u<4)、Li3BO3-u2u/3(uは0<u<3)等の窒素を含む化合物を無機固体電解質に含有させることができる。この酸素を含む化合物又は窒素を含む化合物の添加により、形成される非晶質骨格の隙間を広げ、リチウムイオンが移動する妨げを軽減し、更にイオン伝導性を向上させることができる。
  本発明のリチウム二次電池に係るリチウム塩としては、上記非水電解質に溶解するものが用いられ、例えば、LiCl、LiBr、LiI、LiClO4、LiBF4、LiB10Cl10、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、LiAlCl4、CH3SO3Li、CF3SO3Li、(CF3SO22NLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム、イミド類等の1種または2種以上を混合した塩が挙げられる。
  また、非水電解質には、放電、充電特性、難燃性を改良する目的で、以下に示す化合物を添加することができる。例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n-グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N-置換オキサゾリジノンとN,N-置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ポリエチレングルコール、ピロール、2-メトキシエタノール、三塩化アルミニウム、導電性ポリマー電極活物質のモノマー、トリエチレンホスホンアミド、トリアルキルホスフィン、モ
ルフォリン、カルボニル基を持つアリール化合物、ヘキサメチルホスホリックトリアミドと4-アルキルモルフォリン、二環性の三級アミン、オイル、ホスホニウム塩及び三級スルホニウム塩、ホスファゼン、炭酸エステル等が挙げられる。また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化エチレンを電解液に含ませることができる。また、高温保存に適性を持たせるために電解液に炭酸ガスを含ませることができる。
  本発明のリチウム二次電池は、特に高電圧下で充放電を繰り返してもサイクルの劣化が少なく、エネルギー密度維持率が高いリチウム二次電池であり、電池の形状はボタン、シート、シリンダー、角、コイン型等いずれの形状であってもよい。
  本発明のリチウム二次電池の用途は、特に限定されないが、例えば、ノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス子機、ポータブルCDプレーヤー、ラジオ、液晶テレビ、バックアップ電源、電気シェーバー、メモリーカード、ビデオムービー等の電子機器、自動車、電動車両、ドローン、ゲーム機器、電動工具等の民生用電子機器が挙げられる。
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<リチウムコバルト系複合酸化物粒子(LCO)試料の調製>
<LCO試料1>
 炭酸リチウム(平均粒子径5.7μm)、四酸化三コバルト(平均粒子径2.5μm)及び酸化マグネシウム(平均粒子径3.6μm)を秤量し、実験用ミルで十分混合処理し、Li/Coのモル比が0.997、Coに対するMgのモル%が1.00モル%の原料混合物を得た。
 次いで、得られた原料混合物を、アルミナ製の鉢で1070℃で5時間大気中で焼成した。焼成終了後、該焼成品を粉砕、分級して、表1のCo及びMg含有リチウムコバルト系複合酸化物粒子を得た。
 なお、Mgの含有量は、Co及びMg含有リチウムコバルト系複合酸化物中のCoに対して、1.00mol%であった。
 得られたCo及びMg含有リチウムコバルト系複合酸化物を線源としてCuKα線を用いてX線回折分析した結果、LiCoOに起因する2θ=37.4°付近の回折ピークの強度(B)に対するCoに起因する2θ=36.8°付近の回折ピークの強度(A)の比((A/B)×100)は0.90%であった。なお、回折ピークの強度は回折ピークの高さの比として求めた。また、MgOに起因する回折ピークは、検出下限値未満であり、実質的に検出されなかった。
<LCO試料2>
 炭酸リチウム(平均粒子径5.7μm)及び四酸化三コバルト(平均粒子径2.5μm)とを秤量し、実験用ミキサーで十分混合処理し、Li/Coのモル比が0.997の原料混合物を得た。
 次いで、得られた原料混合物を、アルミナ製の鉢で1070℃で5時間大気中で焼成した。焼成終了後、該焼成品を粉砕、分級して、表1のCo及びMg含有リチウムコバルト系複合酸化物粒子を得た。
 得られたCo及びMg含有リチウムコバルト系複合酸化物を線源としてCuKα線を用いてX線回折分析した結果、LiCoOに起因する2θ=37.4°付近の回折ピークの強度(B)に対するCoに起因する2θ=36.8°付近の回折ピークの強度(A)の比((A/B)×100)は1.90%であった。なお、回折ピークの強度は回折ピークの高さの比として求めた。
<LCO試料3>
 炭酸リチウム(平均粒子径5.7μm)、四酸化三コバルト(平均粒子径2.5μm)及び酸化マグネシウム(平均粒子径3.6μm)を秤量し、家庭用ミキサーで十分混合処理し、Li/Coのモル比が1.02、Coに対するMgのモル%が0.01mol%の原料混合物を得た。
 次いで、得られた原料混合物を、アルミナ製の鉢で1070℃で5時間大気中で焼成した。焼成終了後、該焼成品を粉砕、分級して、表1のCo及びMg含有リチウムコバルト系複合酸化物粒子を得た。
 なお、Mgの含有量は、Co及びMg含有リチウムコバルト系複合酸化物中のCoに対して、1.00mol%であった。
 得られたCo及びMg含有リチウムコバルト系複合酸化物を線源としてCuKα線を用いてX線回折分析した結果、Coに起因する2θ=36.8°付近の回折ピークは、検出下限値未満であり、実質的に検出されなかった。また、MgOに起因する回折ピークは、検出下限値未満であり、実質的に検出されなかった。
・回折ピークの強度比((A/B)×100)の測定
 X線回折分析装置(リガク社製、SmartLab Studio II)を用いて、測定試料のX線回折分析を行い、解析ソフト(リガク基本データ処理ソフト)を用いて解析し、Coに起因する2θ=36.8°付近の回折ピークの強度(A)と、LiCoOに起因する2θ=37.4°付近の回折ピークの強度(B)を得た。次いで、得られた各回折ピークの強度から、LiCoOに起因する2θ=37.4°付近の回折ピークの強度(B)に対するCoに起因する2θ=36.8°付近の回折ピークの強度(A)の比((A/B)×100)を算出した。
 なお、X線回折装置での測定条件は、下記のとおりである。
  X線源:CuKα線
  管電圧:45kV
  電流:200mA
  スキャンスピード:1°/min
  ステップ:0.02°
  測定方法:連続測定
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 LCO試料1を30g採取し、そこに酸化チタン(TiO)0.245gを添加し、実験用ミルにて十分に混合処理し、更に得られた混合処理物を800℃で5時間焼成して、加熱処理を行い、LCO試料中のCoに対しTi原子換算で1.00mol%の酸化チタンが付着した正極活物質試料を得た。
 また、得られた正極活物質試料をSEM-EDX分析により、粒子表面のTi原子のマッピングを行い、LCO試料1の粒子表面の一部にTiが存在することが確認された。
 なお、酸化チタンは、一次粒子が集合した二次粒子からなる凝集体を用いた。レーザー回折・散乱法により求められる平均粒子径が0.4μmであり、SEM写真により求めた一次粒子の平均粒子径は0.05μmであった。なお、一次粒子の平均粒子径は、走査型電子顕微鏡から任意に粒子100個を抽出し求めた。
(実施例2)
 LCO試料1を30g採取し、そこに酸化チタン(TiO)0.061gを添加し、実験用ミルにて十分に混合処理し、更に得られた混合処理物を800℃で5時間焼成して、加熱処理を行い、LCO試料中のCoに対しTi原子換算で0.25mol%の酸化チタンが付着した正極活物質試料を得た。
 また、得られた正極活物質試料をSEM-EDX分析により、粒子表面のTi原子のマッピングを行い、LCO試料1の粒子表面の一部にTiが存在することが確認された。
(比較例1)
 LCO試料1を、そのまま800℃で5時間焼成して、加熱処理を行い、正極活物質試料を得た。
(比較例2)
 LCO試料2を、そのまま800℃で5時間焼成して、加熱処理を行い、正極活物質試料を得た。
(比較例3)
 LCO試料2を30g採取し、そこに酸化チタン(TiO)0.245gを添加し、実験用ミルにて十分に混合処理し、更に得られた混合処理物を800℃で5時間焼成して、加熱処理を行い、LCO試料中のCoに対しTi原子換算で1.00mol%の酸化チタンが付着した正極活物質試料を得た。
 また、得られた正極活物質試料をSEM-EDX分析により、粒子表面のTi原子のマッピングを行い、LCO試料2の粒子表面の一部にTiが存在することが確認された。
(比較例4)
 LCO試料3を、そのまま800℃で5時間焼成して、加熱処理を行い、正極活物質試料を得た。
(比較例5)
 LCO試料3を30g採取し、そこに酸化チタン(TiO)0.245gを添加し、実験用ミルにて十分に混合処理し、更に得られた混合処理物を800℃で5時間焼成して、加熱処理を行い、LCO試料中のCoに対しTi原子換算で1.00mol%の酸化チタンが付着した正極活物質試料を得た。
 また、得られた正極活物質試料をSEM-EDX分析により、粒子表面のTi原子のマッピングを行い、LCO試料3の粒子表面の一部にTiが存在することが確認された。
Figure JPOXMLDOC01-appb-T000002
 次いで、以下のようにして、電池性能試験を行った。
<リチウム二次電池の作製>
  実施例及び比較例で得られた正極活物質95質量%、黒鉛粉末2.5質量%、ポリフッ化ビニリデン2.5質量%を混合して正極剤とし、これをN-メチル-2-ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
  この正極板を用いて、セパレータ、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してコイン型リチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF1モルを溶解したものを使用した。
  次いで、得られたリチウム二次電池の性能評価を行った。その結果を、表4に示す。
<電池の性能評価>
  作製したコイン型リチウム二次電池を室温で下記試験条件で作動させ、下記の電池性能を評価した。
(1)4.6Vサイクル特性評価の試験条件
 実施例及び比較例で得られた正極活物質試料を用いたリチウム二次電池について、下記の試験を行った。
  先ず、0.5Cにて4.6Vまで2時間かけて充電を行い、更に4.6Vで3時間電圧を保持させる定電流・定電圧充電(CCCV充電)を行った。その後、0.2Cにて2.7Vまで定電流放電(CC放電)させる充放電を行い、これらの操作を1サイクルとして1サイクル毎に放電容量を測定した。このサイクルを20サイクル繰り返した。
 また、実施例及び比較例で得られた正極活物質試料を用いたリチウム二次電池の充放電特性図を図1~7にそれぞれ示す。
(2)初回容量(活物質重量当たり)、初回充放電効率
  サイクル特性評価における1サイクル目の充電及び放電容量を、初回充電容量及び初回放電容量とし、下記式により算出される効率を初回充放電効率とした。
   初回充放電効率(%)=(1サイクル目の充電容量/1サイクル目の放電容量)×
100
(3)容量維持率
  サイクル特性評価における1サイクル目と20サイクル目のそれぞれの放電容量(活物質重量当たり)から、下記式により容量維持率を算出した。
   容量維持率(%)=(20サイクル目の放電容量/1サイクル目の放電容量)×100
(4)エネルギー密度維持率
 サイクル特性評価における1サイクル目と20サイクル目のそれぞれの放電時のWh容量(活物質重量当たり)から、下記式によりエネルギー密度維持率を算出した。
   エネルギー密度維持率(%)=(20サイクル目の放電Wh容量/1サイクル目の放電Wh容量)×100
Figure JPOXMLDOC01-appb-T000003
 

Claims (9)

  1.  粒子表面の少なくとも一部に、Ti含有化合物が付着しているMg含有リチウムコバルト系複合酸化物粒子からなり、該Mg含有リチウムコバルト系複合酸化物は、酸化コバルト(Co)を含有することを特徴とするリチウム二次電池用正極活物質。
  2.  前記酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物中の酸化コバルト(Co)の含有量が、線源としてCuKα線を用いて、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物をX線回折分析したときに、LiCoOに起因する2θ=37.4°付近の回折ピークの強度(B)に対するCoに起因する2θ=36.8°付近の回折ピークの強度(A)の比((A/B)×100)が、0.60%より大きく5.0%以下であることを特徴とする請求項1記載のリチウム二次電池用正極活物質。
  3.  前記酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物中のMg含有量が、原子換算で、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物中のCoに対して、Mgとして0.01~5.00モル%であることを特徴とする請求項1又は2記載のリチウム二次電池用正極活物質。
  4.  前記Ti含有化合物が、チタンを含む酸化物であることを特徴とする請求項1~3いずれか1項記載のリチウム二次電池用正極活物質。
  5.  前記Ti含有化合物の付着量が、原子換算で、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物中のCoに対して、Tiとして0.01~5.00モル%であることを特徴とする請求項1~4いずれか1項記載のリチウム二次電池用正極活物質。
  6.  前記Mgリチウムコバルト系複合酸化物粒子が、Li、Co、Mg及びO以外に、1種又は2種以上のM元素(Mは、Al、Ti、Zr、Cu、Fe、Sr、Ca、V、Mo、Bi、Nb、Si、Zn、Ga、Ge、Sn、Ba、W、Na、K、Ni又はMnである。)を含有することを特徴とする請求項1~5いずれか1項記載のリチウム二次電池用正極活物質。
  7.  酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物粒子と、Ti含有化合物と、を乾式で混合処理することにより、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物粒子及びTi含有化合物の混合処理物を得、次いで、該混合処理物を、400~1000℃で加熱処理することにより得られるものであることを特徴とする請求項1~6いずれか1項記載のリチウム二次電池用正極活物質。
  8.  酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物粒子と、Ti含有化合物と、を乾式で混合処理することにより、酸化コバルト(Co)を含有するMg含有リチウムコバルト系複合酸化物粒子及びTi含有化合物の混合処理物を得、次いで、該混合処理物を、400~1000℃で加熱処理することにより、リチウム二次電池用正極活物質を得ることを特徴とするリチウム二次電池用正極活物質の製造方法。
  9.  請求項1~7いずれか1項記載のリチウム二次電池用正極活物質を用いたことを特徴とするリチウム二次電池。
     
PCT/JP2021/019534 2020-06-02 2021-05-24 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池 WO2021246215A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020096311A JP7252174B2 (ja) 2020-06-02 2020-06-02 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2020-096311 2020-06-02

Publications (1)

Publication Number Publication Date
WO2021246215A1 true WO2021246215A1 (ja) 2021-12-09

Family

ID=78831048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019534 WO2021246215A1 (ja) 2020-06-02 2021-05-24 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池

Country Status (3)

Country Link
JP (1) JP7252174B2 (ja)
TW (1) TW202209733A (ja)
WO (1) WO2021246215A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120040247A1 (en) * 2010-07-16 2012-02-16 Colorado State University Research Foundation LAYERED COMPOSITE MATERIALS HAVING THE COMPOSITION: (1-x-y)LiNiO2(xLi2Mn03)(yLiCoO2), AND SURFACE COATINGS THEREFOR
JP2015201432A (ja) * 2014-03-31 2015-11-12 戸田工業株式会社 非水電解液二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解液二次電池
CN105449197A (zh) * 2015-12-28 2016-03-30 中信国安盟固利电源技术有限公司 一种锂离子电池正极材料及其制备方法
KR20170133949A (ko) * 2016-05-27 2017-12-06 코스모신소재 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2019076023A1 (zh) * 2017-10-20 2019-04-25 湖南杉杉能源科技股份有限公司 一种锂钴金属氧化物粉末及其制备方法及四氧化三钴含量的测定方法
US20200136172A1 (en) * 2017-07-13 2020-04-30 Samsung Sdi Co., Ltd. Lithium secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200605A (ja) 1998-10-30 2000-07-18 Sanyo Electric Co Ltd 非水電解質電池およびその製造方法
JP3806262B2 (ja) 1999-03-18 2006-08-09 セイミケミカル株式会社 リチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法
JP5034366B2 (ja) 2006-08-09 2012-09-26 ソニー株式会社 非水電解質二次電池用正極活物質およびその製造方法、ならびに非水電解質二次電池
JP2009266791A (ja) 2008-03-31 2009-11-12 Sanyo Electric Co Ltd 非水電解質二次電池
WO2014049964A1 (ja) 2012-09-25 2014-04-03 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池用正極活物質
CN106450270B (zh) 2015-08-13 2020-08-11 中国科学院物理研究所 锂离子二次电池的正极活性材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120040247A1 (en) * 2010-07-16 2012-02-16 Colorado State University Research Foundation LAYERED COMPOSITE MATERIALS HAVING THE COMPOSITION: (1-x-y)LiNiO2(xLi2Mn03)(yLiCoO2), AND SURFACE COATINGS THEREFOR
JP2015201432A (ja) * 2014-03-31 2015-11-12 戸田工業株式会社 非水電解液二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解液二次電池
CN105449197A (zh) * 2015-12-28 2016-03-30 中信国安盟固利电源技术有限公司 一种锂离子电池正极材料及其制备方法
KR20170133949A (ko) * 2016-05-27 2017-12-06 코스모신소재 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
US20200136172A1 (en) * 2017-07-13 2020-04-30 Samsung Sdi Co., Ltd. Lithium secondary battery
WO2019076023A1 (zh) * 2017-10-20 2019-04-25 湖南杉杉能源科技股份有限公司 一种锂钴金属氧化物粉末及其制备方法及四氧化三钴含量的测定方法

Also Published As

Publication number Publication date
JP7252174B2 (ja) 2023-04-04
JP2021190359A (ja) 2021-12-13
TW202209733A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
JP5584456B2 (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP5897356B2 (ja) リチウム二次電池用正極活物質の製造方法
KR101478861B1 (ko) 리튬 이차 전지용 정극 활성 물질, 그의 제조 방법 및 리튬 이차 전지
JP5749650B2 (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
US8003256B2 (en) Positive electrode active material having magnesium atoms and sulfate groups, method for manufacturing the same, and lithium secondary battery having the same
WO2011065391A1 (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
WO2011007751A1 (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP5732351B2 (ja) コバルト酸リチウムの製造方法
JP2012113823A (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP4963532B2 (ja) リチウム二次電池正極活物質及びリチウム二次電池
WO2011007750A1 (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP4995382B2 (ja) リチウムコバルト系複合酸化物、その製造方法、、リチウム二次電池正極活物質及びリチウム二次電池
JP5897357B2 (ja) リチウム二次電池正極活物質の製造方法、リチウム二次電池用正極活物質及びリチウム二次電池
JP7031046B2 (ja) リチウム二次電池用正極活物質及びリチウム二次電池
JP4754209B2 (ja) リチウムコバルト系複合酸化物粉末の製造方法
JP6935380B2 (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP6855427B2 (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
WO2021246215A1 (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP5508322B2 (ja) リチウムコバルト系複合酸化物粉末、リチウム二次電池正極活物質及びリチウム二次電池
WO2021049310A1 (ja) リチウム二次電池用正極活物質及びリチウム二次電池
WO2023210525A1 (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
KR100869436B1 (ko) 리튬 코발트계 복합 산화물, 그의 제조 방법, 리튬 이차전지 양극 활성 물질 및 리튬 이차 전지
JP2022075600A (ja) リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
KR20060102522A (ko) 망간산리튬, 그의 제조 방법, 리튬 이차 전지 정극 부활성물질, 리튬 이차 전지 정극 활성 물질 및 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21816803

Country of ref document: EP

Kind code of ref document: A1