WO2021241248A1 - Radiation-imaging system and control method thereof, and program - Google Patents

Radiation-imaging system and control method thereof, and program Download PDF

Info

Publication number
WO2021241248A1
WO2021241248A1 PCT/JP2021/018205 JP2021018205W WO2021241248A1 WO 2021241248 A1 WO2021241248 A1 WO 2021241248A1 JP 2021018205 W JP2021018205 W JP 2021018205W WO 2021241248 A1 WO2021241248 A1 WO 2021241248A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
electric signal
subject
photographing means
body movement
Prior art date
Application number
PCT/JP2021/018205
Other languages
French (fr)
Japanese (ja)
Inventor
啓吾 横山
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2021241248A1 publication Critical patent/WO2021241248A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/08Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams

Definitions

  • the present invention relates to a radiographic imaging system that performs imaging using radiation, a control method thereof, and a program for causing a computer to execute the control method.
  • a radiography apparatus applicable to a radiography system that performs radiography using radiation
  • a pixel array in which pixels including a switch element such as a TFT (thin film) and a conversion element such as a photoelectric conversion element are arranged in a two-dimensional manner is used.
  • a radiological imaging device equipped with this device has been put into practical use.
  • This radiography apparatus can be used, for example, for medical imaging diagnosis and non-destructive inspection.
  • the radiation transmitted through the subject and incident is converted into an electric charge as an electric signal by a conversion element and accumulated for each arranged pixel.
  • the subject moves during irradiation with radiation, the subject will be blurred in the radiation image obtained by radiography.
  • the image quality of the radiation image is due to the movement of the subject during radiation irradiation. In some cases, the resolution of the image deteriorates and re-shooting is required.
  • Patent Document 1 proposes a radiographic imaging system that prohibits radiation exposure when the body movement of a subject is detected in order to prevent erroneous imaging.
  • Patent Document 1 does not assume anything from the viewpoint of taking appropriate radiography of a subject with body movement (from the viewpoint of acquiring an appropriate radiological image). For this reason, the technique described in Patent Document 1 has a problem that in radiography of a subject that is easily moved, such as a pediatric patient, it is possible to prevent the failure of radiography, but it is not possible to perform an operation related to radiography at an appropriate timing. was there.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a mechanism capable of performing an operation related to radiography at an appropriate timing even in radiography of a subject that is easily moved.
  • the radiation photographing system of the present invention is provided separately from the first photographing means including the pixel array in which the pixels for converting the radiation transmitted through the subject into an electric signal are arranged in a two-dimensional manner and the first photographing means.
  • the second photographing means for capturing a plurality of images related to the movement of the subject before the radiation imaging by the first photographing means, and the plurality of images obtained by the second photographing means are subjected to arithmetic processing. Then, based on the calculation means for calculating the information related to the body movement amount of the subject, the information related to the radiation exposure start instruction, and the information related to the body movement amount calculated by the calculation means, the first item is described. 1.
  • the photographing means has a control means for converting the radiation into the electric signal and controlling the state so that the electric signal can be stored.
  • the present invention also includes the above-mentioned control method of the radiography system and a program for causing a computer to execute the control method.
  • the operation related to radiography can be performed at an appropriate timing.
  • FIG. 1 It is a figure which shows an example of the schematic structure of the radiography system which concerns on 1st Embodiment of this invention. It is a figure which shows an example of the schematic structure of the radiological imaging section shown in FIG. 1. It is a flowchart which shows 1st example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. It is a flowchart which shows the 2nd example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. It is a figure for quantifying the body movement amount of the subject performed in the process of step S122 of FIGS. 3A and 3B.
  • Timing chart which shows 1st example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. It is a timing chart which shows the 2nd example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. It is a timing chart which shows the 3rd example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. It is a timing chart which shows the 4th example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention.
  • FIG. 1 is a diagram showing an example of the schematic configuration of the radiographic imaging system 10 according to the first embodiment of the present invention.
  • the radiography imaging system 10 includes a radiography imaging unit (radiation imaging device) 100, a control unit 200, a radiation generator 300, a camera 400, and a control PC 500.
  • the radiation photographing unit 100 is a first photographing means including a pixel array 110 in which pixels 111 for converting the radiation 311 transmitted through the subject H into an electric signal are arranged two-dimensionally.
  • the radiological imaging unit 100 includes a pixel array 110, a drive circuit 120, and a read circuit 130.
  • the drive circuit 120 is a circuit that drives the pixel array 110 based on the control of the control unit 200.
  • the read circuit 130 is a circuit that reads out the electric signals stored in the respective pixels 111 of the pixel array 110 based on the control of the control unit 200 and outputs them as radiographic image data to the control unit 200. Further, power is supplied to each component of the radiation photographing unit 100 from a power supply circuit (not shown).
  • the control unit 200 controls each component of the radiography system 10 to comprehensively control the operation of the radiography system 10, and also performs various processes.
  • the radiography imaging unit 100 is connected to the control unit 200, and controls the transition of the radiography imaging unit 100 to the imaging preparation.
  • the control unit 200 transmits an exposure permission signal to the tube unit 310 via the console unit 320 of the radiation generator 300, and then the tube unit 200. Radiation 311 is exposed from 310.
  • the control unit 200 does not expose the radiation 311 without transmitting the exposure permission signal.
  • control unit 200 has a radiation photographing unit 100 based on the information related to the radiation exposure start instruction of the radiation 311 and the information related to the body movement amount of the subject H described later, which is transmitted from the image calculation unit 420 of the camera 400. Performs a process of determining the transition to the operation related to radiography.
  • the radiation generator 300 is a device that generates radiation 311 toward the subject H. Specifically, as shown in FIG. 1, the radiation generator 300 includes a tube unit 310, a console unit 320, and an exposure switch 330.
  • the tube unit 310 is arranged at a position where the radiation 311 can be irradiated to the subject H and the radiation photographing unit 100, and in the present embodiment, the region where the radiation 311 is irradiated is the photographing unit 410 of the camera 400. It is almost the same as the shooting area in. Further, the tube unit 310 is connected to the console unit 320 and exposes the radiation 311 based on the information input to the console unit 320. Further, a collimator capable of changing the irradiation area of the radiation 311 is attached to the tube unit 310, and the irradiation area of the radiation 311 can be appropriately changed by input information to the console unit 320 or manually. ..
  • the console unit 320 receives information related to the irradiation conditions of the radiation 311 and information related to the irradiation start instruction of the radiation 311.
  • the photographer inputs information related to the irradiation conditions (for example, the tube voltage and tube current of the tube section 310, the irradiation time of the radiation 311 and the size of the irradiation field, etc.) to the console unit 320 to emit radiation.
  • the irradiation conditions of 311 are determined.
  • the console unit 320 may determine the irradiation conditions of the radiation 311 by selecting a recipe in which each irradiation condition is registered in advance.
  • the exposure switch 330 is a switch operated when the photographer gives an instruction to start exposure to radiation 311.
  • the exposure switch 330 is a two-stage switch. Specifically, when the first-stage switch of the exposure switch 330 is pressed, the tube in the tube portion 310 rotates to be in a state where radiation 311 can be irradiated. Further, when the second stage switch of the exposure switch 330 is pressed, radiation 311 is emitted from the tube portion 310 depending on the situation.
  • the operation timing of the radiation photographing unit 100 and the timing of irradiating the radiation 311 from the tube unit 310 are synchronized, and when the photographer presses the second stage switch of the exposure switch 330, the console A signal related to the pressing of the switch in the second stage (information related to the radiation start instruction of the radiation 311) is sent to the control unit 200 via the unit 320.
  • the camera 400 includes a shooting unit 410 and an image calculation unit 420.
  • the photographing unit 410 is arranged at a position where the subject H and the radiation photographing unit 100 can be photographed.
  • the imaging unit 410 is provided separately from the radiation imaging unit 100 (first imaging means), and captures a plurality of images related to the movement of the subject H at least before the radiation imaging by the radiation imaging unit 100. Then, the photographing unit 410 transmits the image data of the plurality of images obtained by the photographing to the image calculation unit 420.
  • the light receiving unit of the photographing unit 410 has a plurality of pixels capable of converting light into electric charges, which are electric signals, arranged in a two-dimensional manner, and the number of arranged pixels is the radiation.
  • the number is sufficient for a plurality of pixels 111 in the pixel array 110 of the photographing unit 100.
  • the number of arranged pixels in the pixel array 110 of the radiation photographing unit 100 is 2500 pixels ⁇ 2500 pixels
  • the number of arranged pixels in the photographing unit 410 of the camera 400 is 500 pixels ⁇ 500 pixels or more, preferably 2500 pixels ⁇ 2500 pixels. It is desirable that the above is the case.
  • the photographing unit 410 may have sensitivity to visible light or may have sensitivity to an infrared region.
  • the image calculation unit 420 calculates information related to the amount of body movement of the subject H by performing calculation processing on a plurality of image data obtained by the photographing unit 410 by a predetermined algorithm.
  • the image calculation process by the image calculation unit 420 is executed on hardware such as FPGA (Field-Programmable Gate Array) for speeding up.
  • the calculation result of the information related to the body movement amount of the subject H by the image calculation unit 420 is transmitted to the control unit 200.
  • the control PC 500 includes a control PC main body 510 and a display 520.
  • the control PC main body 510 uses the control unit 200 to input information to the console unit 320 of the radiation generator 300, information related to the preparation status of the console unit 320 of the radiation generator 300, and an image calculation unit 420 of the camera 400. Information on the calculation result of the above and the shooting information of the shooting unit 410 of the camera 400 are displayed on the display 520 as needed.
  • the control PC main body 510 displays information on the subject H and other information necessary for photographing and diagnosis on the display 520.
  • the imaging unit 410 and the image calculation unit 420 of the camera 400 may have the same skeleton as long as the radiological imaging system 10 as a whole satisfies the functions in the present description, and may have the same physical form. Part or all of it may be in the form of a program without having.
  • some functions of the control unit 200 may be mounted in a separate housing outside the radiography unit 100.
  • FIG. 2 is a diagram showing an example of a schematic configuration of the radiological imaging unit 100 shown in FIG.
  • the same components as those shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the radiological imaging unit 100 includes a pixel array 110, a drive circuit 120, and a read circuit 130.
  • the pixel array 110 includes a plurality of pixels 111 arranged in a two-dimensional shape (specifically, a matrix shape).
  • the pixel 111 outputs an electric signal corresponding to the incident radiation 311.
  • One pixel 111 is obtained by a conversion element 1111 for converting the incident radiation 311 into an electric charge, and a conversion element 1111. It includes a switch element 1112 that outputs an electric charge (electrical signal) to the signal line 103.
  • the conversion element 1111 may be configured to include, for example, a scintillator that converts radiation 311 into light and a photoelectric conversion element that converts the light into electric charges, but is limited thereto in the present embodiment. is not it.
  • the conversion element 1111 may be a direct type conversion element that directly converts the radiation 311 into an electric charge which is an electric signal.
  • the switch element 1112 may include, for example, a thin film transistor (TFT) of amorphous silicon or polycrystalline silicon, but it is preferable to use a TFT of polycrystalline silicon.
  • TFT thin film transistor
  • silicon is used as the semiconductor material of the switch element 1112, but the present embodiment is not limited to this, and other semiconductor materials such as silicon germanium may be used.
  • the first main electrode of the switch element 1112 is electrically connected to the first electrode of the conversion element 1111
  • the bias wire 101 is electrically connected to the second electrode of the conversion element 1111.
  • the bias line 101 is commonly connected to the second electrode of the plurality of conversion elements 1111 arranged along the row.
  • the bias lines 101 arranged in each column are commonly connected to the bias lines 101 arranged along the rows. At this time, the bias line 101 receives a bias voltage from a power supply circuit (not shown).
  • the signal line 103 is electrically connected to the second main electrode of the switch element 1112.
  • the signal line 103 is commonly connected to the second main electrode of the switch element 1112 of the pixel 111 arranged along the row.
  • the signal line 103 is arranged for each row of pixels 111.
  • Each signal line 103 is electrically connected to the read circuit 130.
  • the drive line 102 is electrically connected to the control electrode of the switch element 1112.
  • the drive line 102 is commonly connected to the control electrodes of the switch elements 1112 of the plurality of pixels 111 arranged along the line, and the gate control voltages Vg1 to Vgn are applied from the drive circuit 120.
  • the read circuit 130 includes an operational amplifier 131, a sample hold circuit 132, a multiplexer 133, and an AD converter 134. Inside the read circuit 130, the signal line 103 is connected to the inverting input terminal of each operational amplifier 131. Further, the inverting input terminal of the operational amplifier 131 is connected to the output terminal via the feedback capacitance, and the non-inverting input terminal of the operational amplifier 131 is connected to an arbitrary fixed potential. The operational amplifier 131 functions as a charge-voltage conversion circuit. Further, an AD converter 134 is connected to the subsequent stage of the operational amplifier 131 via a sample hold circuit 132 and a multiplexer 133. As a result, the read circuit 130 is a digital conversion circuit that converts the electric signal (charge) output to the signal line 103 into a digital signal. In the present embodiment, the read circuit 130 may integrate all the circuits or may disperse and arrange each circuit individually.
  • FIG. 3A is a flowchart showing a first example of a processing procedure in the control method of the radiography imaging system 10 according to the first embodiment of the present invention.
  • step S111 the photographer inputs to the console unit 320 of the radiation generator 300 information related to irradiation conditions such as the irradiation time of the radiation 311 and the tube current and tube voltage of the tube unit 310.
  • the photographer may input the set value to the console unit 320, or may select a recipe in which each irradiation condition is determined in advance.
  • the system may be a system in which the photographer inputs information related to the irradiation condition to the control PC main body 510 and transmits the information related to the irradiation condition to the console unit 320 via the control unit 200.
  • step S112 when the photographer inputs information related to the imaging preparation to the console unit 320 of the radiation generator 300, the radiation imaging unit 100 transitions to the imaging preparation state. Specifically, when the photographer inputs information related to shooting preparation to the control PC main body 510, the information is transmitted to the console unit 320 via the control unit 200, and the radiography photographing unit 100 prepares for shooting. Transition to the state.
  • the photographer inputs information related to shooting preparation to the console unit 320, for example, when the photographer presses the first-stage switch of the exposure switch 330.
  • the exposure switch 330 is of a two-stage type, and for example, the tube unit 310 starts warm-up operation when the first-stage switch is pressed.
  • control unit 200 turns on the power to the radiation photographing unit 100, and the bias voltage is applied to the conversion element 1111 of each pixel 111 to the pixel array 110 via the bias line 101. Then, when a bias voltage is applied to the conversion element 1111 of each pixel 111, the conversion element 1111 is in a state where the radiation 311 can be converted into an electric charge which is an electric signal. However, in the state where the bias voltage is applied, a certain amount of electric charge (dark current) is generated from the conversion element 1111 regardless of the incident of the radiation 311.
  • step S131 the control unit 200 controls the drive circuit 120 of the radiography photographing unit 100, and sequentially applies the gate control voltages Vg1 to Vgn in which the switch element 1112 connected to the drive line 102 is in a conductive state.
  • the dark current accumulated in the conversion element 1111 is periodically removed (in step S131 of FIG. 3A, this state is referred to as a “blank reading state”).
  • step S121 the photographing unit 410 of the camera 400 continuously starts photographing the area including the subject H and the radiation photographing unit 100, which are the irradiation areas of the radiation generator 300.
  • the optical zoom of the photographing unit 410 of the camera 400 is preset so that the radiation photographing unit 100 is just included in the photographing area of the photographing unit 410 of the camera 400. Therefore, in the present embodiment, it is possible to grasp the resentment represented by one of the photographing pixels in the photographing unit 410 of the camera 400 from the approximate dimensions of the radiation photographing unit 100.
  • the external dimensions of the radiographic imaging unit 100 are 400 mm ⁇ 400 mm and the number of pixels of the imaging unit 410 of the camera 400 is 4000 pixels ⁇ 2000 pixels
  • the external dimensions of the radiographic imaging unit 100 are the imaging unit 410 of the camera 400.
  • one pixel of the photographing unit 410 corresponds to an area of approximately 0.1 mm ⁇ 0.2 mm on the surface of the radiation photographing unit 100.
  • the zoom of the imaging unit 410 of the camera 400 is preferably determined in advance when the position of the radiation imaging unit 100 is fixed in advance, but the radiography unit 100 may be in the form of a portable cassette or the like. If it is supposed to be carried, it is desirable to adjust the optical zoom in the absence of the subject H.
  • the subject H is interested while looking at the image taken by the photographing unit 410 while the subject H is moved to the position where the radiation photographing unit 100 performs radiation photographing.
  • the optical zoom may be adjusted so that the area fits within the shooting area.
  • step S122 the image calculation unit 420 of the camera 400 calculates and processes a plurality of images continuously obtained by the photographing unit 410 of the camera 400 to calculate information related to the body movement amount of the subject H.
  • the body movement amount of the subject H is quantified at any time, and the quantified value of the body movement amount of the subject H is obtained as the information related to the body movement amount of the subject H.
  • the method of quantifying the body movement amount of the subject H will be described in detail in the column of " ⁇ d> Method of quantifying the body movement amount of the subject" below.
  • step S113 when the photographer presses the second-stage switch of the exposure switch 330, a signal (exposure start of radiation 311) relating to the pressing of the second-stage switch is sent to the control unit 200 via the console unit 320. Information related to the instruction) will be sent.
  • step S123 in the image calculation unit 420 of the camera 400, the information related to the body movement amount of the subject H calculated in step S122 is within a predetermined condition (specifically, it falls below a predetermined threshold value in a certain period of time).
  • T Judge whether or not.
  • the process returns to step S121, and the processes after step S121 are performed again.
  • step S123 when the information related to the body movement amount of the subject H calculated in step S122 is within the predetermined condition (specifically, it falls below the predetermined threshold value in a certain period) (S123). / YES), the process proceeds to step S132.
  • the control unit 200 inputs the information related to the radiation exposure start instruction in step S113, and the information related to the body movement amount of the subject H falls below a predetermined threshold value in a certain period by step S123. Therefore (S123 / YES), the radiation photographing unit 100 converts the radiation 311 into an electric signal related to the radiographic image and controls the state so that the electric signal can be stored (accumulated state).
  • the control method of the radiography unit 100 by the control unit 200 will be described in detail in the column of " ⁇ e> Explanation of timing chart in the control method of the radiography system" below.
  • step S133 the control unit 200 permits the exposure of the radiation 311 to the console unit 320 of the radiation generator 300. Send a radiation permission signal.
  • step S114 the console unit 320 of the radiation generator 300 receives information related to the radiation 311 exposure start instruction based on the pressing of the second stage switch of the radiation switch 330 in step S113, and the control in step S133. Control is performed to irradiate the radiation 311 from the tube portion 310 of the radiation generator 300 at the timing when both the exposure permission signal from the unit 200 and the radiation permission signal are input.
  • step S134 the control unit 200 controls the radiation photographing unit 100, converts the radiation 311 irradiated during the accumulated state into an electric charge, which is an electric signal. This is acquired as a radiographic image.
  • step S134 the flowchart shown in FIG. 3A ends.
  • FIG. 3B is a flowchart showing a second example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention.
  • the same processing steps as those shown in FIG. 3A are assigned the same step numbers, and detailed description thereof will be omitted.
  • step S132 the control unit 200 shifts the radiography unit 100 to a storage state capable of radiography, but shifts to the storage state.
  • the image calculation unit 420 of the camera 400 has information related to the body movement amount of the subject H within a predetermined condition (specifically,). , It is judged whether or not it has fallen below a predetermined threshold in a certain period of time.
  • step S121 when the information relating to the body movement amount of the subject H is not within the predetermined condition (specifically, it does not fall below the predetermined threshold value in a certain period) (S124 / NO), step S121.
  • the process returns to, and the processes after step S121 are performed again.
  • the control unit 200 controls to stop the transition based on, for example, information related to the body movement amount of the subject H.
  • the control unit 200 may return the radiography photographing unit 100 to the blank reading state of step S131 again. Further, in this case, the exposure permission signal is not transmitted to the console unit 320 in step S133.
  • step S133 when the information related to the body movement amount of the subject H is within the predetermined condition (specifically, it falls below the predetermined threshold value in a certain period) (S124 / YES), step S133. Proceed to.
  • the control unit 200 continuously advances the transition and the transition is performed. After the transition is completed, the process proceeds to step S133. Then, when the process proceeds to step S133, the control unit 200 transmits an exposure permission signal to the console unit 320. After that, the same processing step as in FIG. 3A is performed, and the flowchart shown in FIG. 3B ends.
  • ⁇ D> Method for Quantifying the Body Movement of the Subject a method for quantifying the body movement of the subject H performed in the process of step S122 in FIGS. 3A and 3B will be described.
  • the image calculation unit 420 of the camera 400 outputs the plurality of images. It is used to quantify the amount of body movement of the subject H.
  • FIG. 4 is a diagram for explaining a method of quantifying the amount of body movement of the subject H performed in the process of step S122 of FIGS. 3A and 3B.
  • FIG. 4 shows an example in which four images of frames 1 to 4 taken sequentially are applied as an example of a plurality of continuously shot images.
  • the image calculation unit 420 of the camera 400 takes frames 1 to 4, which are a plurality of images continuously taken from the photographing unit 410 of the camera 400. Convert to grayscale sequentially. At this time, it is desirable that the frame rate of the photographing unit 410 of the camera 400 is as high as possible, and if deterioration in image quality due to insufficient exposure is not a problem, the frame rate is taken as fast as possible. Further, it is desirable that the photographing unit 410 of the camera 400 for photographing is attached in the vicinity of the tube unit 310 of the radiation generator 300.
  • the frames 1 to 4 converted to the gray scale are exemplified by the frames 1 (411) to the frame 4 (414) which are the gray scale images shown in the group (a) of FIG.
  • the image calculation unit 420 of the camera 400 uses a Laplacian filter with respect to the frames 1 (411) to 4 (414), which are grayscale images shown in the group (a) of FIG. 4, and the edge of the subject H. Perform detection.
  • the frames 1 to 4 processed for edge detection are exemplified by the frame 1 (421) to the frame 4 (424) which are the edge detection images shown in the group (b) of FIG.
  • the edge detection is performed by subtracting the output of vertically, horizontally, and diagonally adjacent pixels (8 pixels in total).
  • the image calculation unit 420 of the camera 400 performs an calculation process one frame before the frame 1 (421) to the frame 4 (424), which are the edge detection images shown in the group (b) of FIG. Subtract the image and take the absolute value.
  • the body movement detection images 431 to 433 shown in the group (c) of FIG. 4 can be obtained.
  • the body motion detection image 431 is an image obtained as a result of subtracting the frame 1 (421) from the frame 2 (422).
  • the body motion detection image 432 is an image obtained as a result of subtracting the frame 2 (422) from the frame 3 (423), and the body motion detection image 433 is a frame 3 (423) from the frame 4 (424).
  • the body movement detection image 431 As shown in the body movement detection image 431, it can be seen that the body movement of the subject H was performed between the shooting of the frame 2 (422) and the frame 1 (421). Further, as shown in the body motion detection image 432 and the body motion detection image 433, between the shooting of the frame 3 (423) and the frame 2 (422), and between the shooting of the frame 4 (424) and the frame 3 (423). Then, it can be seen that the body movement of the subject H is gradually suppressed. Therefore, in the latter body motion detection images 432 and 433, the output is lower than that of the body motion detection image 431.
  • the image calculation unit 420 of the camera 400 calculates the average output in the predetermined area 4321 for the body motion detection image shown in the group (c) of FIG.
  • the predetermined area 4321 may be designated via the control PC 500 before shooting, may be determined at the time when the shooting unit 410 of the camera 400 is installed, or the shot image of the subject H may be used.
  • the control PC 500 may be automatically determined.
  • the calculated average output of the predetermined area 4321 is affected by the brightness of the room in which the image was taken, the exposure time of the image pickup unit 410 of the camera 400, the gain setting, and the like.
  • the average output obtained from the motion detection image is standardized by the output of the original captured image.
  • the image calculation unit 420 of the camera 400 quantifies the amount of body movement of the subject H for each shooting frame. It is desirable that the image calculation process by the image calculation unit 420 be performed at a speed equal to or higher than the shooting speed of the shooting unit 410, and in order to achieve this, the calculation process may be performed in hardware such as FPGA. desirable.
  • the method for quantifying the body movement amount of the subject H described here is an example until it gets tired, and within the scope of the present invention, a method for quantifying the body movement amount of the subject H based on a plurality of images from the photographing unit 410. If so, it is applicable.
  • the image calculation unit 420 of the camera 400 may perform a filter processing on the calculated image and a correction process using other information in the middle of the calculation process.
  • the body movement shown in the group (c) of FIG. 4 from the grayscale image shown in the group (a) of FIG. 4 without creating the edge detection image in the middle shown in the group (b) of FIG. The detection image may be created directly.
  • FIG. 5A is a timing chart showing a first example of a processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention.
  • the timing chart of FIG. 5A corresponds to the flowchart of FIG. 3A.
  • the period T1 indicates a period in which the radiological imaging unit 100 is in a blank reading state as shown in FIG. 3A.
  • the gate control voltages Vg1 to Vgn shown in FIG. 2 are periodically HI (voltage at which the switch element 1112 is turned on). ) Is applied, and the switch element 1112 is scanned.
  • the image calculation unit 420 of the camera 400 continuously quantifies the body movement amount of the subject H, and in FIG. 5A, this value is shown as a “quantification value of the body movement amount”.
  • the second-stage switch of the exposure switch 330 is pressed, and the quantified value of the body movement amount is below the predetermined threshold value th determined in advance in S for a certain period of time. .. Specifically, in FIG. 5A, the photographer has already pressed the second-stage switch of the exposure switch 330, and thereafter, the quantified value of the body movement amount falls below the predetermined threshold value th in S for a certain period of time. There is. Therefore, the control unit 200 does not newly apply HI to the gate control voltages Vg1 to Vgn during the period T2 after the time point (p_a).
  • the predetermined threshold value th can be changed at any time.
  • the predetermined threshold value th may be a predetermined value, a value determined according to the shooting technique or the age of the subject H, and the predetermined threshold value th may be set according to the irradiation time of shooting. It may be a determined value, or it may be a value determined immediately before the imaging by displaying the quantified value of the body movement amount on the control PC 500 in real time and observing this value.
  • the fixed period S is 100 ms, and is determined based on 10 ms, which is the irradiation time of the radiation 311 set by the console unit 320 of the radiation generator 300.
  • 10 ms which is the irradiation time of the radiation 311 set by the console unit 320 of the radiation generator 300.
  • the fixed period S is 200 ms. That is, in this example, the fixed period S is set to be 10 times longer than the set irradiation time of the radiation 311.
  • the radiological imaging unit 100 transitions from the “blank reading state” to the “accumulation state”.
  • the period T2 indicates the period after the time point (p_a), after the scanning of the gate control voltages Vg1 to Vgn is completely stopped. That is, the control unit 200 controls to stop reading the electric signal stored in the pixel array 110 when the radiography unit 100 controls to transition to the storage state shown in the period T2. Further, during this period T2, the control unit 200 transmits an exposure permission signal to the console unit 320 of the radiation generator 300. After that, the radiation 311 is irradiated from the tube portion 310 of the radiation generator 300. The irradiated radiation 311 passes through the subject H and is incident on the radiation photographing unit 100.
  • the radiation 311 incident on the radiation photographing unit 100 is converted into an electric charge which is an electric signal by the conversion element 1111 of the radiation photographing unit 100, and is accumulated in the pixel 111.
  • This period T2 is set to be at least longer than the irradiation time of the radiation 311. In this example, a fixed time of 100 ms is provided with respect to the irradiation time of the radiation 311 of 10 ms. After the end of the period T2, the transition to the period T3 occurs.
  • the scanning is restarted from the point where the scanning of the gate control voltages Vg1 to Vgn (application of HI) is completed at the end of the period T1.
  • the electric charge which is an electric signal stored in the pixel 111
  • the radiation photographing unit 100 generates a radiation image which is a photographed image based on these digital signals.
  • the radiation switch 330 of the radiation generator 300 may or may not be pressed.
  • the period T3 ends when the scanning (application of HI) of the gate control voltage Vg1 to Vgn has been completed.
  • the period T4 is a corrected image acquisition period for correcting the radiographic image which is the captured image obtained in the period T3.
  • the scanning of the gate control voltage Vg1 to Vgn is stopped for the same period as the period T2, and then the gate control voltage Vg1 to Vgn is scanned again in the same manner as the period T3 to irradiate the radiation 311.
  • FIG. 5B will be described.
  • FIG. 5B is a timing chart showing a second example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention.
  • the same item names as the items shown in the timing chart of FIG. 5A are given the same item names, and detailed description thereof will be omitted.
  • FIG. 5B after the quantified value of the body movement amount falls below the predetermined threshold value th in S for a certain period of time, the second stage switch of the exposure switch 330 is pressed by the shadow person. Then, in FIG. 5B, at the time point (p_b), the quantified value of the body movement amount is below the predetermined threshold value th for a certain period S, and the second stage switch of the exposure switch 330 is pressed. Is. Further, also in FIG. 5B, similarly to the timing chart of FIG. 5A, the control unit 200 does not newly apply HI to the gate control voltages Vg1 to Vgn during the period T2 after the time point (p_b).
  • the radiological imaging unit 100 can be transitioned to a storage state in which the radiation photographing unit 100 can be photographed at the timing when the body movement of the subject H is settled, while avoiding the imaging when the body movement of the subject H is stopped. It is possible to suppress deterioration of the image quality of the radiographic image which is a captured image.
  • FIGS. 5C and 5D will be described.
  • FIG. 5C is a timing chart showing a third example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention.
  • FIG. 5D is a timing chart showing a fourth example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention.
  • the same item names as the items shown in the timing chart of FIG. 5A are given the same item names, and detailed description thereof will be omitted.
  • control unit 200 controls the conditions necessary for imaging in the radiography unit 100 as a part of transitioning the radiography unit 100 to the accumulated state based on the quantified value of the body movement amount. ..
  • control unit 200 controls the electric power in the read circuit 130 required for shooting to obtain an image output based on the quantified value of the body movement amount, and it is determined that the body movement of the subject H has subsided. Power is applied to the read circuit 130.
  • the HI in the power of the read circuit represents a state in which the power capable of converting the electric signal input via the signal line 103 into a digital signal is applied in the read circuit 130, and the LO Indicates a standby state in which power consumption is suppressed.
  • the quantified value of the body movement amount is below the predetermined threshold value th, so that the power of the read circuit 130 is in the HI state.
  • the transition of the radiography unit 100 to the blank reading state is also controlled based on the quantified value of the body movement amount.
  • the control unit 200 reads blank from the state where the radiography unit 100 is not operating. It is transitioning to the state. After that, as in the timing chart of FIG.
  • the control unit 200 stops the blank reading state of the radiography photographing unit 100 and shifts to the accumulation state.
  • the radiation photographing unit 100 can suppress power consumption before photographing by not performing unnecessary power input or operation. That is, even in the case of shooting the subject H whose body movement does not stop for a long period of time, it is possible to shoot without worrying about power consumption. This is particularly effective when the power of the radiography photographing unit 100 is supplied from the battery.
  • FIGS. 5E and 5F will be described.
  • FIG. 5E is a timing chart showing a fifth example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention.
  • FIG. 5F is a timing chart showing a sixth example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention.
  • the same item names as the items shown in the timing charts of FIGS. 5A to 5D are given the same item names, and detailed description thereof will be omitted.
  • the radiation imaging unit 100 accumulates after the second-stage switch of the exposure switch 330 is pressed and the quantified value of the body movement amount falls below the predetermined threshold value th in S for a certain period of time.
  • the process up to the transition to the state is different from that in FIGS. 5A to 5D.
  • the second stage switch of the exposure switch 330 is pressed, and the quantified value of the body movement amount is below the predetermined threshold value th in a certain period S. ..
  • the gate control voltages Vg1 to Vgn are once scanned up to Vgn, and then the radiography unit 100 is transitioned to the accumulated state. That is, when the control unit 200 controls the radiography photographing unit 100 so as to transition to the storage state, the pixel array 110 reads out the electric signal stored in at least a part of the pixels 111 of the pixel array 110, and then reads the electric signal. Control is performed to stop reading of the electric signal stored in the. Further, the control unit 200 is simultaneously controlling the power of the read circuit 130 to be HI at the time point (p_e).
  • the control unit 200 transmits the exposure permission signal to the console unit 320 of the radiation generator 300, as in FIG. 5A.
  • 10 ms to 100 ms are assumed as the time from the time point (p_e) until the radiological imaging unit 100 transitions to the accumulation state and becomes capable of radiographic imaging, and is read during this period.
  • the power supplied to the circuit 130 is stable.
  • the operation after the radiological imaging unit 100 transitions to the accumulation state is the same as that in FIG. 5A.
  • the timing chart of FIG. 5F is an example of the operation shown in FIG. 5E and corresponds to the processing of the flowchart of FIG. 3B.
  • the control unit 200 stops the transition to the accumulation state of the radiography imaging unit 100. Take control.
  • the second stage switch of the exposure switch 330 is temporarily pressed, and the quantified value of the body movement amount is a predetermined threshold value in S for a certain period.
  • the subject H has moved again while the radiography unit 100 is transitioning to the accumulation state, so that the transition to the storage state of the radiography unit 100 is stopped and the blank reading state is maintained. ..
  • the power consumption before shooting can be suppressed by not performing unnecessary power input or operation at the stage when the shooting is not ready.
  • the control unit 200 has information (S113) related to an exposure start instruction of the radiation 311 and information related to the body movement amount calculated by the image calculation unit 420. Based on (S122), the radiation photographing unit 100 converts the radiation 311 into an electric signal and controls the transition to a state in which the electric signal can be stored (accumulation state).
  • the operation related to the radiography can be performed at an appropriate timing (the timing when the body movement of the subject H is settled).
  • the schematic configuration of the radiography system according to the second embodiment is the same as the schematic configuration of the radiography system 10 according to the first embodiment shown in FIG. Further, the schematic configuration of the radiological imaging unit 100 according to the second embodiment is the same as the schematic configuration of the radiological imaging unit 100 according to the first embodiment shown in FIG.
  • FIG. 6 is a flowchart showing an example of a processing procedure in the control method of the radiography system 10 according to the second embodiment of the present invention.
  • the same processing steps as those shown in FIG. 3A are assigned the same step numbers, and detailed description thereof will be omitted.
  • step S125 is added. Specifically, in FIG. 6, when it is determined in step S123 that the information related to the body movement amount of the subject H is within the predetermined condition (S123 / YES), in the subsequent step S125, the image calculation unit 420 is the console unit 320. Sends an exposure permission signal to.
  • step S114 the console unit 320 is provided with information related to the radiation start instruction of the radiation 311 based on the photographer pressing the second stage switch of the radiation switch 330, and from the control unit 200.
  • the input of the radiation permission signal from the image calculation unit 420 is aligned in addition to the input of the radiation permission signal, the radiation 311 is radiated from the tube portion 310 of the radiation generator 300.
  • FIG. 7 is a timing chart showing an example of a processing procedure in the control method of the radiography system 10 according to the second embodiment of the present invention.
  • the same item names as the items shown in the timing charts of FIGS. 5A to 5F are given the same item names, and detailed description thereof will be omitted.
  • the second-stage switch of the exposure switch 330 is pressed, and the quantified value of the body movement amount is below the predetermined threshold value th in S for a certain period of time.
  • the image calculation unit 420 transmits an exposure permission signal to the console unit 320. After that, when the radiography unit 100 shown in the period T2 transitions to the accumulation state, the control unit 200 transmits an exposure permission signal to the console unit 320.
  • the radiography is performed at an appropriate timing (the timing when the body movement of the subject H is settled). Such an operation can be performed.
  • the third embodiment is a form showing an application example of the radiography system.
  • FIG. 8 is a diagram showing an example of a schematic configuration of a radiography system according to a third embodiment of the present invention. Specifically, FIG. 8 is an example in which the radiographic imaging system 10 according to the first and second embodiments described above is applied to an X-ray imaging system. In FIG. 8, the same components as those shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the X-ray tube 6050 in FIG. 8 has a configuration corresponding to, for example, the radiation generator 300 in FIG.
  • the image processor 6070 of FIG. 8 has a configuration corresponding to, for example, the control unit 200 of FIG. 1 and the control PC main body 510.
  • the display 6080 in FIG. 8 has a configuration corresponding to, for example, the display 520 in FIG.
  • the chest 6061 of the patient 6060 in FIG. 8 has a configuration corresponding to, for example, the subject H in FIG. In the example shown in FIG. 8, the configuration corresponding to the camera 400 in FIG. 1 is not shown.
  • the X-ray 6051 generated by the X-ray tube 6050 which is a radiation generator, passes through the chest 6061 of the patient 6060, which is the subject, and is incident on the radiography unit 100 including the pixel array. do.
  • the X-ray 6051 incident on the radiography unit 100 contains information on the inside of the body of the patient 6060.
  • the radiation photographing unit 100 acquires an electric signal related to the radiation image corresponding to the X-rays 6051 incident on the pixel array.
  • the electrical signal related to the radiographic image is image-processed by the image processor 6070, which is a signal processing means, and can be displayed and observed as a radiographic image on the display 6080, which is a display means of the control room.
  • the electric signal related to the radiographic image processed by the image processor 6070 can be transferred to a remote place by a transmission processing means 6090 such as a telephone line.
  • a transmission processing means 6090 such as a telephone line.
  • it can be displayed on a display 6081, which is a display means installed in a doctor's room or the like in another place, or stored in a recording means such as an optical disk, and a doctor at a remote place can diagnose the patient 6060.
  • the film processor 6100 which is a recording means, can record on the film 6110, which is a recording medium.
  • the present invention supplies a program that realizes one or more functions of the above-described embodiment to a system or device via a network or storage medium, and one or more processors in the computer of the system or device reads and executes the program. It can also be realized by the processing to be performed. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC
  • This program and a computer-readable storage medium that stores the program are included in the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention is provided with: a radiation-imaging part 100 that includes a pixel array 110 in which pixels 111 which convert radiation 311 transmitting through an object H into an electrical signal are two-dimensionally arranged; an imaging part 410 that is provided separately from the radiation-imaging part 100, and that captures a plurality of images regarding the motion of the object H at least before radiation imaging is performed by the radiation-imaging part 100; an image calculation unit 420 that performs a calculation process on the plurality of images obtained by the imaging part 410 to calculate information regarding the quantity of the physical motion of the object H; and a control unit 200 that performs control such that the radiation-imaging part 100 transitions to the state (accumulation state) in which the radiation-imaging part 100 is allowed to convert the radiation 311 into an electrical signal and accumulate the electrical signal, on the basis of information regarding an instruction to start exposure with the radiation 311 and information regarding the quantity of the physical motion calculated by the image calculation unit 420.

Description

放射線撮影システム及びその制御方法、並びに、プログラムRadiation imaging system, its control method, and program
 本発明は、放射線を用いた撮影を行う放射線撮影システム及びその制御方法、並びに、当該制御方法をコンピュータに実行させるためのプログラムに関するものである。 The present invention relates to a radiographic imaging system that performs imaging using radiation, a control method thereof, and a program for causing a computer to execute the control method.
 放射線を用いた撮影を行う放射線撮影システムに適用可能な放射線撮影装置として、TFT(薄膜トランジスタ)等のスイッチ素子と光電変換素子等の変換素子とを含む画素が2次元状に配置された画素アレイを備えた放射線撮影装置が実用化されている。この放射線撮影装置は、例えば、医療画像診断や非破壊検査に用いることができる。 As a radiography apparatus applicable to a radiography system that performs radiography using radiation, a pixel array in which pixels including a switch element such as a TFT (thin film) and a conversion element such as a photoelectric conversion element are arranged in a two-dimensional manner is used. A radiological imaging device equipped with this device has been put into practical use. This radiography apparatus can be used, for example, for medical imaging diagnosis and non-destructive inspection.
 このような放射線撮影装置においては、被写体を透過して入射した放射線を変換素子によって電気信号である電荷に変換し、配置された画素ごとに蓄積する。ここで、放射線の照射中に被写体が動いた場合、放射線撮影によって得られる放射線画像において被写体がブレてしまう。このため、小児の撮影や動物の撮影等の、放射線の照射時間に対して短い周期で不規則に動く可能性がある被写体を撮影する場合、放射線の照射中における被写体の動きによって放射線画像の画質の解像度が悪化し、再撮影が必要となる場合も発生する。 In such a radiography apparatus, the radiation transmitted through the subject and incident is converted into an electric charge as an electric signal by a conversion element and accumulated for each arranged pixel. Here, if the subject moves during irradiation with radiation, the subject will be blurred in the radiation image obtained by radiography. For this reason, when shooting a subject that may move irregularly in a short cycle with respect to the radiation irradiation time, such as when shooting a child or an animal, the image quality of the radiation image is due to the movement of the subject during radiation irradiation. In some cases, the resolution of the image deteriorates and re-shooting is required.
 この対策として、例えば、静止が困難な小児患者を被写体とする放射線撮影では、固定具を用いた患児の固定や介助者による患児の固定の方法が考えられるが、この方法では、患児の負担や介助者への被ばくが問題となるため、現実的ではない。 As a countermeasure, for example, in radiography of a pediatric patient who has difficulty in resting, a method of fixing the child using a fixture or a method of fixing the child by a caregiver can be considered. It is not realistic because exposure to caregivers is a problem.
 また、特許文献1では、誤撮影を防止するために、被写体の体動を検知した場合に放射線の曝射を禁止するようにした放射線撮影システムが提案されている。 Further, Patent Document 1 proposes a radiographic imaging system that prohibits radiation exposure when the body movement of a subject is detected in order to prevent erroneous imaging.
特開2009-28367号公報Japanese Unexamined Patent Publication No. 2009-28367
 しかしながら、特許文献1では、体動がある被写体の適切な放射線撮影を行うという観点(適切な放射線画像を取得するという観点)については、何ら想定されていない。このため、特許文献1に記載の技術では、小児患者のような体動しやすい被写体の放射線撮影において、放射線撮影の失敗を防げる一方で、適切なタイミングで放射線撮影に係る動作を行えないという問題があった。 However, Patent Document 1 does not assume anything from the viewpoint of taking appropriate radiography of a subject with body movement (from the viewpoint of acquiring an appropriate radiological image). For this reason, the technique described in Patent Document 1 has a problem that in radiography of a subject that is easily moved, such as a pediatric patient, it is possible to prevent the failure of radiography, but it is not possible to perform an operation related to radiography at an appropriate timing. was there.
 本発明は、このような問題点に鑑みてなされたものであり、体動しやすい被写体の放射線撮影においても、適切なタイミングで放射線撮影に係る動作を行える仕組みを提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a mechanism capable of performing an operation related to radiography at an appropriate timing even in radiography of a subject that is easily moved.
 本発明の放射線撮影システムは、被写体を透過した放射線を電気信号に変換する画素が2次元状に配置された画素アレイを含む第1の撮影手段と、前記第1の撮影手段とは別に設けられ、少なくとも前記第1の撮影手段による放射線撮影の前に前記被写体の動きに係る複数の画像を撮影する第2の撮影手段と、前記第2の撮影手段によって得られた前記複数の画像を演算処理して、前記被写体の体動量に係る情報を算出する演算手段と、前記放射線の曝射開始指示に係る情報と、前記演算手段によって算出された前記体動量に係る情報とに基づいて、前記第1の撮影手段が前記放射線を前記電気信号に変換して前記電気信号を蓄積可能な状態に遷移するように制御する制御手段と、を有する。また、本発明は、上述した放射線撮影システムの制御方法、及び、当該制御方法をコンピュータに実行させるためのプログラムを含む。 The radiation photographing system of the present invention is provided separately from the first photographing means including the pixel array in which the pixels for converting the radiation transmitted through the subject into an electric signal are arranged in a two-dimensional manner and the first photographing means. At least, the second photographing means for capturing a plurality of images related to the movement of the subject before the radiation imaging by the first photographing means, and the plurality of images obtained by the second photographing means are subjected to arithmetic processing. Then, based on the calculation means for calculating the information related to the body movement amount of the subject, the information related to the radiation exposure start instruction, and the information related to the body movement amount calculated by the calculation means, the first item is described. 1. The photographing means has a control means for converting the radiation into the electric signal and controlling the state so that the electric signal can be stored. The present invention also includes the above-mentioned control method of the radiography system and a program for causing a computer to execute the control method.
 本発明によれば、体動しやすい被写体の放射線撮影においても、適切なタイミングで放射線撮影に係る動作を行うことができる。 According to the present invention, even in radiography of a subject that is easily moved, the operation related to radiography can be performed at an appropriate timing.
本発明の第1の実施形態に係る放射線撮影システムの概略構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the radiography system which concerns on 1st Embodiment of this invention. 図1に示す放射線撮影部の概略構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the radiological imaging section shown in FIG. 1. 本発明の第1の実施形態に係る放射線撮影システムの制御方法における処理手順の第1例を示すフローチャートである。It is a flowchart which shows 1st example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線撮影システムの制御方法における処理手順の第2例を示すフローチャートである。It is a flowchart which shows the 2nd example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. 図3A及び図3BのステップS122の処理において行われる被写体の体動量の定量化方法を説明するための図である。It is a figure for quantifying the body movement amount of the subject performed in the process of step S122 of FIGS. 3A and 3B. 本発明の第1の実施形態に係る放射線撮影システムの制御方法における処理手順の第1例を示すタイミングチャートである。It is a timing chart which shows 1st example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線撮影システムの制御方法における処理手順の第2例を示すタイミングチャートである。It is a timing chart which shows the 2nd example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線撮影システムの制御方法における処理手順の第3例を示すタイミングチャートである。It is a timing chart which shows the 3rd example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線撮影システムの制御方法における処理手順の第4例を示すタイミングチャートである。It is a timing chart which shows the 4th example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線撮影システムの制御方法における処理手順の第5例を示すタイミングチャートである。It is a timing chart which shows the 5th example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線撮影システムの制御方法における処理手順の第6例を示すタイミングチャートである。It is a timing chart which shows the sixth example of the processing procedure in the control method of the radiography system which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る放射線撮影システムの制御方法における処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure in the control method of the radiography system which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る放射線撮影システムの制御方法における処理手順の一例を示すタイミングチャートである。It is a timing chart which shows an example of the processing procedure in the control method of the radiography system which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係る放射線撮影システムの概略構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the radiography system which concerns on 3rd Embodiment of this invention.
 以下に、図面を参照しながら、本発明を実施するための形態(実施形態)について説明する。 Hereinafter, embodiments (embodiments) for carrying out the present invention will be described with reference to the drawings.
 (第1の実施形態)
 まず、本発明の第1の実施形態について説明する。
(First Embodiment)
First, the first embodiment of the present invention will be described.
 <a>放射線撮影システムの概略構成の説明
 図1は、本発明の第1の実施形態に係る放射線撮影システム10の概略構成の一例を示す図である。放射線撮影システム10は、図1に示すように、放射線撮影部(放射線撮影装置)100、制御ユニット200、放射線発生装置300、カメラ400、及び、制御用PC500を有して構成されている。
<A> Explanation of the schematic configuration of the radiographic imaging system FIG. 1 is a diagram showing an example of the schematic configuration of the radiographic imaging system 10 according to the first embodiment of the present invention. As shown in FIG. 1, the radiography imaging system 10 includes a radiography imaging unit (radiation imaging device) 100, a control unit 200, a radiation generator 300, a camera 400, and a control PC 500.
 放射線撮影部100は、被写体Hを透過した放射線311を電気信号に変換する画素111が2次元状に配置された画素アレイ110を含む第1の撮影手段である。具体的に、放射線撮影部100は、図1に示すように、画素アレイ110、駆動回路120、及び、読出回路130を含み構成されている。駆動回路120は、制御ユニット200の制御に基づいて、画素アレイ110の駆動を行う回路である。読出回路130は、制御ユニット200の制御に基づいて、画素アレイ110のそれぞれの画素111に蓄積された電気信号を読み出して、これらを放射線画像データとして制御ユニット200に出力する回路である。また、放射線撮影部100の各構成部には、それぞれ、不図示の電源回路から電力が供給される。 The radiation photographing unit 100 is a first photographing means including a pixel array 110 in which pixels 111 for converting the radiation 311 transmitted through the subject H into an electric signal are arranged two-dimensionally. Specifically, as shown in FIG. 1, the radiological imaging unit 100 includes a pixel array 110, a drive circuit 120, and a read circuit 130. The drive circuit 120 is a circuit that drives the pixel array 110 based on the control of the control unit 200. The read circuit 130 is a circuit that reads out the electric signals stored in the respective pixels 111 of the pixel array 110 based on the control of the control unit 200 and outputs them as radiographic image data to the control unit 200. Further, power is supplied to each component of the radiation photographing unit 100 from a power supply circuit (not shown).
 制御ユニット200は、放射線撮影システム10の各構成部を制御して放射線撮影システム10における動作を統括的に制御するとともに、各種の処理を行う。具体的に、例えば、制御ユニット200には、放射線撮影部100が接続されており、放射線撮影部100の撮影準備への遷移を制御する。例えば、制御ユニット200は、放射線撮影部100の撮影準備が完了している場合、放射線発生装置300のコンソール部320を介して管球部310に曝射許可信号を送信し、その後、管球部310から放射線311が曝射される。一方、制御ユニット200は、放射線撮影部100が撮影準備段階である場合、曝射許可信号の送信を行わずに放射線311の曝射を行わない。また、制御ユニット200は、放射線311の曝射開始指示に係る情報と、カメラ400の画像演算ユニット420から送信される、後述する被写体Hの体動量に係る情報とに基づいて、放射線撮影部100による放射線撮影に係る動作への遷移について判定する処理を行う。 The control unit 200 controls each component of the radiography system 10 to comprehensively control the operation of the radiography system 10, and also performs various processes. Specifically, for example, the radiography imaging unit 100 is connected to the control unit 200, and controls the transition of the radiography imaging unit 100 to the imaging preparation. For example, when the radiography unit 100 is ready for imaging, the control unit 200 transmits an exposure permission signal to the tube unit 310 via the console unit 320 of the radiation generator 300, and then the tube unit 200. Radiation 311 is exposed from 310. On the other hand, when the radiation imaging unit 100 is in the imaging preparation stage, the control unit 200 does not expose the radiation 311 without transmitting the exposure permission signal. Further, the control unit 200 has a radiation photographing unit 100 based on the information related to the radiation exposure start instruction of the radiation 311 and the information related to the body movement amount of the subject H described later, which is transmitted from the image calculation unit 420 of the camera 400. Performs a process of determining the transition to the operation related to radiography.
 放射線発生装置300は、被写体Hに向けて放射線311を発生させる装置である。具体的に、放射線発生装置300は、図1に示すように、管球部310、コンソール部320、及び、曝射スイッチ330を有して構成されている。 The radiation generator 300 is a device that generates radiation 311 toward the subject H. Specifically, as shown in FIG. 1, the radiation generator 300 includes a tube unit 310, a console unit 320, and an exposure switch 330.
 管球部310は、被写体H及び放射線撮影部100に対して放射線311を照射可能な位置に配置されており、本実施形態においては、放射線311が照射される領域は、カメラ400の撮影部410における撮影領域と概ね同じである。また、管球部310は、コンソール部320に接続されており、コンソール部320に入力された情報に基づき放射線311を曝射する。また、管球部310には、放射線311の照射領域を変更可能なコリメータが取り付けられており、コンソール部320への入力情報或いは手動により、放射線311の照射領域を適宜変更することが可能である。 The tube unit 310 is arranged at a position where the radiation 311 can be irradiated to the subject H and the radiation photographing unit 100, and in the present embodiment, the region where the radiation 311 is irradiated is the photographing unit 410 of the camera 400. It is almost the same as the shooting area in. Further, the tube unit 310 is connected to the console unit 320 and exposes the radiation 311 based on the information input to the console unit 320. Further, a collimator capable of changing the irradiation area of the radiation 311 is attached to the tube unit 310, and the irradiation area of the radiation 311 can be appropriately changed by input information to the console unit 320 or manually. ..
 コンソール部320は、放射線311の照射条件に係る情報や放射線311の曝射開始指示に係る情報を受け付ける。撮影者は、コンソール部320に対して照射条件(例えば、管球部310の管電圧及び管電流や、放射線311の照射時間及び照射野のサイズ等)に係る情報の入力を行うことで、放射線311の照射条件を決定する。或いは、コンソール部320は、予め各照射条件が登録されたレシピを選択することで、放射線311の照射条件を決定してもよい。 The console unit 320 receives information related to the irradiation conditions of the radiation 311 and information related to the irradiation start instruction of the radiation 311. The photographer inputs information related to the irradiation conditions (for example, the tube voltage and tube current of the tube section 310, the irradiation time of the radiation 311 and the size of the irradiation field, etc.) to the console unit 320 to emit radiation. The irradiation conditions of 311 are determined. Alternatively, the console unit 320 may determine the irradiation conditions of the radiation 311 by selecting a recipe in which each irradiation condition is registered in advance.
 曝射スイッチ330は、撮影者が放射線311の曝射開始指示を行う際に操作するスイッチである。撮影者が管球部310から放射線311を曝射しようとする場合には、コンソール部320に接続された曝射スイッチ330を押す。この際、曝射スイッチ330は、2段階のスイッチになっている。具体的に、曝射スイッチ330の1段目のスイッチが押されると、管球部310における管球が回転して放射線311を照射可能な状態となる。また、曝射スイッチ330の2段目のスイッチが押されると、状況に応じて管球部310から放射線311が照射される。本実施形態においては、放射線撮影部100の動作タイミングと管球部310から放射線311を照射するタイミングについて同期をとっており、撮影者が曝射スイッチ330の2段目のスイッチを押すと、コンソール部320を介して制御ユニット200に2段目のスイッチの押下に係る信号(放射線311の曝射開始指示に係る情報)が送られる。 The exposure switch 330 is a switch operated when the photographer gives an instruction to start exposure to radiation 311. When the photographer intends to expose the radiation 311 from the tube unit 310, he presses the exposure switch 330 connected to the console unit 320. At this time, the exposure switch 330 is a two-stage switch. Specifically, when the first-stage switch of the exposure switch 330 is pressed, the tube in the tube portion 310 rotates to be in a state where radiation 311 can be irradiated. Further, when the second stage switch of the exposure switch 330 is pressed, radiation 311 is emitted from the tube portion 310 depending on the situation. In the present embodiment, the operation timing of the radiation photographing unit 100 and the timing of irradiating the radiation 311 from the tube unit 310 are synchronized, and when the photographer presses the second stage switch of the exposure switch 330, the console A signal related to the pressing of the switch in the second stage (information related to the radiation start instruction of the radiation 311) is sent to the control unit 200 via the unit 320.
 カメラ400は、図1に示すように、撮影部410、及び、画像演算ユニット420を有して構成されている。 As shown in FIG. 1, the camera 400 includes a shooting unit 410 and an image calculation unit 420.
 撮影部410は、被写体H及び放射線撮影部100を撮影することが可能な位置に配置置されている。この撮影部410は、放射線撮影部100(第1の撮影手段)とは別に設けられ、少なくとも放射線撮影部100による放射線撮影の前に被写体Hの動きに係る複数の画像を撮影する。そして、撮影部410は、撮影により得られた複数の画像の画像データを画像演算ユニット420に送信する。また、本実施形態においては、撮影部410の受光部は、光を電気信号である電荷に変換することが可能な画素が2次元状に複数配置されたものであり、配置画素数は、放射線撮影部100の画素アレイ110における複数の画素111に対して十分な数であることが望ましい。例えば、放射線撮影部100の画素アレイ110における配置画素数が2500画素×2500画素であれば、カメラ400の撮影部410における配置画素数は、500画素×500画素以上、望ましくは2500画素×2500画素以上であることが望ましい。また、撮影部410は、可視光に感度を持っていてもよいし、赤外線領域に感度を持っていてもよい。 The photographing unit 410 is arranged at a position where the subject H and the radiation photographing unit 100 can be photographed. The imaging unit 410 is provided separately from the radiation imaging unit 100 (first imaging means), and captures a plurality of images related to the movement of the subject H at least before the radiation imaging by the radiation imaging unit 100. Then, the photographing unit 410 transmits the image data of the plurality of images obtained by the photographing to the image calculation unit 420. Further, in the present embodiment, the light receiving unit of the photographing unit 410 has a plurality of pixels capable of converting light into electric charges, which are electric signals, arranged in a two-dimensional manner, and the number of arranged pixels is the radiation. It is desirable that the number is sufficient for a plurality of pixels 111 in the pixel array 110 of the photographing unit 100. For example, if the number of arranged pixels in the pixel array 110 of the radiation photographing unit 100 is 2500 pixels × 2500 pixels, the number of arranged pixels in the photographing unit 410 of the camera 400 is 500 pixels × 500 pixels or more, preferably 2500 pixels × 2500 pixels. It is desirable that the above is the case. Further, the photographing unit 410 may have sensitivity to visible light or may have sensitivity to an infrared region.
 画像演算ユニット420は、撮影部410によって得られた複数の画像データを所定のアルゴリズムで演算処理して、被写体Hの体動量に係る情報を算出する。ここで、画像演算ユニット420による画像の演算処理は、例えば高速化のためにFPGA(Field-Programmable Gate Array)等のハードウェア上で実行されることが望ましい。この画像演算ユニット420による被写体Hの体動量に係る情報の算出結果は、制御ユニット200に送信される。 The image calculation unit 420 calculates information related to the amount of body movement of the subject H by performing calculation processing on a plurality of image data obtained by the photographing unit 410 by a predetermined algorithm. Here, it is desirable that the image calculation process by the image calculation unit 420 is executed on hardware such as FPGA (Field-Programmable Gate Array) for speeding up. The calculation result of the information related to the body movement amount of the subject H by the image calculation unit 420 is transmitted to the control unit 200.
 制御用PC500は、図1に示すように、制御用PC本体510、及び、ディスプレイ520を有して構成されている。制御用PC本体510は、制御ユニット200を介して、放射線発生装置300のコンソール部320への入力情報や、放射線発生装置300のコンソール部320の準備状況に係る情報、カメラ400の画像演算ユニット420の演算結果の情報、カメラ400の撮影部410の撮影情報を、ディスプレイ520に必要に応じて表示する。加えて、制御用PC本体510は、被写体Hの情報、撮影及び診断に必要なその他の情報を、ディスプレイ520に表示する。 As shown in FIG. 1, the control PC 500 includes a control PC main body 510 and a display 520. The control PC main body 510 uses the control unit 200 to input information to the console unit 320 of the radiation generator 300, information related to the preparation status of the console unit 320 of the radiation generator 300, and an image calculation unit 420 of the camera 400. Information on the calculation result of the above and the shooting information of the shooting unit 410 of the camera 400 are displayed on the display 520 as needed. In addition, the control PC main body 510 displays information on the subject H and other information necessary for photographing and diagnosis on the display 520.
 なお、図1に示す例では、カメラ400の撮影部410及び画像演算ユニット420、放射線発生装置300の管球部310、コンソール部320及び曝射スイッチ330、制御ユニット200、並びに、放射線撮影部100は、本実施形態の説明として異なる名称で区別いるが、放射線撮影システム10の全体として本説明における機能を満たしていれば、同一の躯体を有していてもよいし、また、物理的な形態を持たずに一部もしくは全部がプログラムの形態であってもよい。例えば、制御ユニット200の一部機能が、放射線撮影部100の外部の別筐体に実装されていてもよい。 In the example shown in FIG. 1, the imaging unit 410 and the image calculation unit 420 of the camera 400, the tube unit 310 of the radiation generator 300, the console unit 320 and the exposure switch 330, the control unit 200, and the radiation imaging unit 100. Although they are distinguished by different names as the description of the present embodiment, they may have the same skeleton as long as the radiological imaging system 10 as a whole satisfies the functions in the present description, and may have the same physical form. Part or all of it may be in the form of a program without having. For example, some functions of the control unit 200 may be mounted in a separate housing outside the radiography unit 100.
 <b>放射線撮影部の概略構成の説明
 次に、放射線撮影部100の概略構成について説明する。
<B> Explanation of the schematic configuration of the radiological imaging unit Next, the schematic configuration of the radiological imaging unit 100 will be described.
 図2は、図1に示す放射線撮影部100の概略構成の一例を示す図である。この図2において、図1に示す構成と同様の構成については同じ符号を付しており、その詳細な説明は省略する。 FIG. 2 is a diagram showing an example of a schematic configuration of the radiological imaging unit 100 shown in FIG. In FIG. 2, the same components as those shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
 本実施形態においては、放射線撮影部100は、図2に示すように、画素アレイ110、駆動回路120、及び、読出回路130を有して構成されている。 In the present embodiment, as shown in FIG. 2, the radiological imaging unit 100 includes a pixel array 110, a drive circuit 120, and a read circuit 130.
 画素アレイ110は、2次元状(具体的には、行列状)に配置された複数の画素111を含み構成されている。画素111は、入射した放射線311に応じた電気信号を出力するものであり、1つの画素111は、入射した放射線311を電気信号である電荷に変換する変換素子1111と、変換素子1111で得られた電荷(電気信号)を信号線103に出力するスイッチ素子1112を含み構成されている。 The pixel array 110 includes a plurality of pixels 111 arranged in a two-dimensional shape (specifically, a matrix shape). The pixel 111 outputs an electric signal corresponding to the incident radiation 311. One pixel 111 is obtained by a conversion element 1111 for converting the incident radiation 311 into an electric charge, and a conversion element 1111. It includes a switch element 1112 that outputs an electric charge (electrical signal) to the signal line 103.
 変換素子1111は、例えば、放射線311を光に変換するシンチレータと、その光を電気信号である電荷に変換する光電変換素子とを含み構成されうるが、本実施形態においてはこれに限定されるものではない。例えば、変換素子1111は、放射線311を電気信号である電荷に直接変換する直接型の変換素子であってもよい。また、スイッチ素子1112は、例えば、非晶質シリコン又は多結晶シリコンの薄膜トランジスタ(TFT)を含み構成されうるが、多結晶シリコンのTFTを用いることが好ましい。ここでは、スイッチ素子1112の半導体材料としてシリコンを用いたが、本実施形態においてはこれに限定されるものではなく、例えばシリコンゲルマニウム等の他の半導体材料を用いてもよい。 The conversion element 1111 may be configured to include, for example, a scintillator that converts radiation 311 into light and a photoelectric conversion element that converts the light into electric charges, but is limited thereto in the present embodiment. is not it. For example, the conversion element 1111 may be a direct type conversion element that directly converts the radiation 311 into an electric charge which is an electric signal. Further, the switch element 1112 may include, for example, a thin film transistor (TFT) of amorphous silicon or polycrystalline silicon, but it is preferable to use a TFT of polycrystalline silicon. Here, silicon is used as the semiconductor material of the switch element 1112, but the present embodiment is not limited to this, and other semiconductor materials such as silicon germanium may be used.
 具体的に、変換素子1111の第1電極には、スイッチ素子1112の第1主電極が電気的に接続され、また、変換素子1111の第2電極には、バイアス線101が電気的に接続される。バイアス線101は、列に沿って配列された複数の変換素子1111の第2電極に共通に接続される。各列に配置されたバイアス線101は、行に沿って配置されたバイアス線101に共通に接続される。この際、バイアス線101は、不図示の電源回路よりバイアス電圧の供給を受ける。 Specifically, the first main electrode of the switch element 1112 is electrically connected to the first electrode of the conversion element 1111, and the bias wire 101 is electrically connected to the second electrode of the conversion element 1111. NS. The bias line 101 is commonly connected to the second electrode of the plurality of conversion elements 1111 arranged along the row. The bias lines 101 arranged in each column are commonly connected to the bias lines 101 arranged along the rows. At this time, the bias line 101 receives a bias voltage from a power supply circuit (not shown).
 スイッチ素子1112の第2主電極には、信号線103が電気的に接続される。信号線103は、列に沿って配置された画素111のスイッチ素子1112の第2主電極が共通に接続される。信号線103は、画素111の列毎に配置される。各信号線103は、読出回路130に電気的に接続される。また、スイッチ素子1112の制御電極には、駆動線102が電気的に接続される。駆動線102は、行に沿って配置された複数の画素111のスイッチ素子1112の制御電極に共通に接続され、駆動回路120よりゲート制御電圧Vg1~Vgnが印加される。 The signal line 103 is electrically connected to the second main electrode of the switch element 1112. The signal line 103 is commonly connected to the second main electrode of the switch element 1112 of the pixel 111 arranged along the row. The signal line 103 is arranged for each row of pixels 111. Each signal line 103 is electrically connected to the read circuit 130. Further, the drive line 102 is electrically connected to the control electrode of the switch element 1112. The drive line 102 is commonly connected to the control electrodes of the switch elements 1112 of the plurality of pixels 111 arranged along the line, and the gate control voltages Vg1 to Vgn are applied from the drive circuit 120.
 読出回路130は、オペアンプ131、サンプルホールド回路132、マルチプレクサ133、及び、ADコンバータ134を有して構成されている。この読出回路130の内部では、信号線103が、それぞれのオペアンプ131の反転入力端子に接続される。また、オペアンプ131の反転入力端子は、帰還容量を介して出力端子に接続され、オペアンプ131の非反転入力端子は、任意の固定電位に接続されている。オペアンプ131は、電荷電圧変換回路として機能する。さらに、オペアンプ131の後段には、サンプルホールド回路132、マルチプレクサ133を介して、ADコンバータ134が接続されている。これにより、読出回路130は、信号線103に出力された電気信号(電荷)をデジタル信号に変換するデジタル変換回路となっている。本実施形態においては、読出回路130は、全ての回路を集積化してもよいし、各回路を個別に分散して配置してもよい。 The read circuit 130 includes an operational amplifier 131, a sample hold circuit 132, a multiplexer 133, and an AD converter 134. Inside the read circuit 130, the signal line 103 is connected to the inverting input terminal of each operational amplifier 131. Further, the inverting input terminal of the operational amplifier 131 is connected to the output terminal via the feedback capacitance, and the non-inverting input terminal of the operational amplifier 131 is connected to an arbitrary fixed potential. The operational amplifier 131 functions as a charge-voltage conversion circuit. Further, an AD converter 134 is connected to the subsequent stage of the operational amplifier 131 via a sample hold circuit 132 and a multiplexer 133. As a result, the read circuit 130 is a digital conversion circuit that converts the electric signal (charge) output to the signal line 103 into a digital signal. In the present embodiment, the read circuit 130 may integrate all the circuits or may disperse and arrange each circuit individually.
 <c>放射線撮影システムの制御方法におけるフローチャートの説明
 図3Aは、本発明の第1の実施形態に係る放射線撮影システム10の制御方法における処理手順の第1例を示すフローチャートである。
<C> Explanation of Flow Chart in Control Method of Radiation Imaging System FIG. 3A is a flowchart showing a first example of a processing procedure in the control method of the radiography imaging system 10 according to the first embodiment of the present invention.
 始めに、ステップS111において、撮影者は、放射線発生装置300のコンソール部320に対して、放射線311の照射時間や管球部310の管電流及び管電圧等の照射条件に係る情報を入力する。この際、撮影者は、設定値をコンソール部320に入力してもよいし、予め各照射条件を決めたレシピを選択してもよい。また、撮影者が制御用PC本体510に照射条件に係る情報を入力することで、制御ユニット200を介して、コンソール部320に当該照射条件に係る情報を送信するシステムとしてもよい。 First, in step S111, the photographer inputs to the console unit 320 of the radiation generator 300 information related to irradiation conditions such as the irradiation time of the radiation 311 and the tube current and tube voltage of the tube unit 310. At this time, the photographer may input the set value to the console unit 320, or may select a recipe in which each irradiation condition is determined in advance. Further, the system may be a system in which the photographer inputs information related to the irradiation condition to the control PC main body 510 and transmits the information related to the irradiation condition to the console unit 320 via the control unit 200.
 続いて、ステップS112において、撮影者によって放射線発生装置300のコンソール部320に対して撮影準備に係る情報が入力されると、放射線撮影部100は、撮影準備状態に遷移する。具体的には、撮影者が制御用PC本体510に撮影準備に係る情報を入力することで、制御ユニット200を介して、コンソール部320に当該情報が送信され、放射線撮影部100は、撮影準備状態に遷移する。撮影者によるコンソール部320に対する撮影準備に係る情報の入力は、例えば撮影者が曝射スイッチ330の1段目のスイッチを押すことで行われる。ここで、曝射スイッチ330は、2段階式になっており、例えば1段目のスイッチが押された段階で管球部310が暖気運転を開始する。 Subsequently, in step S112, when the photographer inputs information related to the imaging preparation to the console unit 320 of the radiation generator 300, the radiation imaging unit 100 transitions to the imaging preparation state. Specifically, when the photographer inputs information related to shooting preparation to the control PC main body 510, the information is transmitted to the console unit 320 via the control unit 200, and the radiography photographing unit 100 prepares for shooting. Transition to the state. The photographer inputs information related to shooting preparation to the console unit 320, for example, when the photographer presses the first-stage switch of the exposure switch 330. Here, the exposure switch 330 is of a two-stage type, and for example, the tube unit 310 starts warm-up operation when the first-stage switch is pressed.
 具体的に、制御ユニット200により、放射線撮影部100に電源が投入され、画素アレイ110には、バイアス線101を介して各画素111の変換素子1111にバイアス電圧が印加される。そして、各画素111の変換素子1111にバイアス電圧が印加されると、変換素子1111は、放射線311を電気信号である電荷に変換可能な状態となる。しかしながら、バイアス電圧を印加した状態においては、変換素子1111からは、放射線311の入射によらない電荷(ダーク電流)が一定量発生する。このため、ステップS131において、制御ユニット200は、放射線撮影部100の駆動回路120を制御し、駆動線102に接続されたスイッチ素子1112が導通状態となるゲート制御電圧Vg1~Vgnを順次印加し、変換素子1111内に蓄積されたダーク電流を定期的に取り除く(図3AのステップS131では、この状態を「空読み状態」と記載)。 Specifically, the control unit 200 turns on the power to the radiation photographing unit 100, and the bias voltage is applied to the conversion element 1111 of each pixel 111 to the pixel array 110 via the bias line 101. Then, when a bias voltage is applied to the conversion element 1111 of each pixel 111, the conversion element 1111 is in a state where the radiation 311 can be converted into an electric charge which is an electric signal. However, in the state where the bias voltage is applied, a certain amount of electric charge (dark current) is generated from the conversion element 1111 regardless of the incident of the radiation 311. Therefore, in step S131, the control unit 200 controls the drive circuit 120 of the radiography photographing unit 100, and sequentially applies the gate control voltages Vg1 to Vgn in which the switch element 1112 connected to the drive line 102 is in a conductive state. The dark current accumulated in the conversion element 1111 is periodically removed (in step S131 of FIG. 3A, this state is referred to as a “blank reading state”).
 また、ステップS121において、カメラ400の撮影部410は、放射線発生装置300の照射領域である被写体H及び放射線撮影部100を含む領域の撮影を連続的に開始する。本実施形態では、カメラ400の撮影部410の撮影領域に放射線撮影部100が丁度含まれるように、カメラ400の撮影部410の光学的なズームが予めセットされている。このため、本実施形態では、放射線撮影部100の概ねの寸法から、カメラ400の撮影部410における撮影画素の1画素が表す慨寸が把握できる。例えば、放射線撮影部100の外形寸法が400mm×400mm、カメラ400の撮影部410の画素数が4000画素×2000画素である場合であって、放射線撮影部100の外形にカメラ400の撮影部410のズームを合わせた場合、撮影部410の1画素は、放射線撮影部100の表面の概ね0.1mm×0.2mmの領域に対応する。また、カメラ400の撮影部410のズームは、放射線撮影部100の位置が予め固定されている場合、予め決められていることが望ましいが、放射線撮影部100がポータブルカセッテ等の形態であって可搬することを前提としている場合、被写体Hがいない状態で光学ズームを調整することが望ましい。カメラ400の撮影部410の光学ズームを設定とする別の手法として、放射線撮影部100で放射線撮影を行う位置に被写体Hを移動した状態で、撮影部410の撮影画像を見ながら被写体Hの関心領域が撮影領域内に収まるように光学ズームを調整してもよい。 Further, in step S121, the photographing unit 410 of the camera 400 continuously starts photographing the area including the subject H and the radiation photographing unit 100, which are the irradiation areas of the radiation generator 300. In the present embodiment, the optical zoom of the photographing unit 410 of the camera 400 is preset so that the radiation photographing unit 100 is just included in the photographing area of the photographing unit 410 of the camera 400. Therefore, in the present embodiment, it is possible to grasp the resentment represented by one of the photographing pixels in the photographing unit 410 of the camera 400 from the approximate dimensions of the radiation photographing unit 100. For example, when the external dimensions of the radiographic imaging unit 100 are 400 mm × 400 mm and the number of pixels of the imaging unit 410 of the camera 400 is 4000 pixels × 2000 pixels, the external dimensions of the radiographic imaging unit 100 are the imaging unit 410 of the camera 400. When the zoom is adjusted, one pixel of the photographing unit 410 corresponds to an area of approximately 0.1 mm × 0.2 mm on the surface of the radiation photographing unit 100. Further, the zoom of the imaging unit 410 of the camera 400 is preferably determined in advance when the position of the radiation imaging unit 100 is fixed in advance, but the radiography unit 100 may be in the form of a portable cassette or the like. If it is supposed to be carried, it is desirable to adjust the optical zoom in the absence of the subject H. As another method of setting the optical zoom of the photographing unit 410 of the camera 400, the subject H is interested while looking at the image taken by the photographing unit 410 while the subject H is moved to the position where the radiation photographing unit 100 performs radiation photographing. The optical zoom may be adjusted so that the area fits within the shooting area.
 続いて、ステップS122において、カメラ400の画像演算ユニット420は、カメラ400の撮影部410によって連続的に得られた複数の画像を演算処理して、被写体Hの体動量に係る情報を算出する。具体的に、本ステップでは、被写体Hの体動量が随時定量化され、被写体Hの体動量に係る情報として被写体Hの体動量の定量化値が得られる。この被写体Hの体動量の定量化方法については、下記「<d>被写体の体動量の定量化方法」の欄において詳細に説明する。 Subsequently, in step S122, the image calculation unit 420 of the camera 400 calculates and processes a plurality of images continuously obtained by the photographing unit 410 of the camera 400 to calculate information related to the body movement amount of the subject H. Specifically, in this step, the body movement amount of the subject H is quantified at any time, and the quantified value of the body movement amount of the subject H is obtained as the information related to the body movement amount of the subject H. The method of quantifying the body movement amount of the subject H will be described in detail in the column of "<d> Method of quantifying the body movement amount of the subject" below.
 その後、ステップS113において、撮影者が曝射スイッチ330の2段目のスイッチを押すと、コンソール部320を介して制御ユニット200に2段目のスイッチの押下に係る信号(放射線311の曝射開始指示に係る情報)が送られる。 After that, in step S113, when the photographer presses the second-stage switch of the exposure switch 330, a signal (exposure start of radiation 311) relating to the pressing of the second-stage switch is sent to the control unit 200 via the console unit 320. Information related to the instruction) will be sent.
 また、ステップS123において、カメラ400の画像演算ユニット420は、ステップS122で算出された被写体Hの体動量に係る情報が、所定条件内である(具体的には、一定期間において所定の閾値を下回った)か否かを判断する。この判断の結果、ステップS122で算出された被写体Hの体動量に係る情報が所定条件内でない(具体的には、一定期間において所定の閾値を下回っていない)場合には(S123/NO)、ステップS121に戻り、ステップS121以降の処理を再度行う。 Further, in step S123, in the image calculation unit 420 of the camera 400, the information related to the body movement amount of the subject H calculated in step S122 is within a predetermined condition (specifically, it falls below a predetermined threshold value in a certain period of time). T) Judge whether or not. As a result of this determination, when the information related to the body movement amount of the subject H calculated in step S122 is not within the predetermined condition (specifically, it does not fall below the predetermined threshold value in a certain period) (S123 / NO), The process returns to step S121, and the processes after step S121 are performed again.
 一方、ステップS123の判断の結果、ステップS122で算出された被写体Hの体動量に係る情報が所定条件内である(具体的には、一定期間において所定の閾値を下回った)場合には(S123/YES)、ステップS132に進む。 On the other hand, as a result of the determination in step S123, when the information related to the body movement amount of the subject H calculated in step S122 is within the predetermined condition (specifically, it falls below the predetermined threshold value in a certain period) (S123). / YES), the process proceeds to step S132.
 ステップS132に進むと、制御ユニット200は、ステップS113によって放射線311の曝射開始指示に係る情報が入力され、且つ、ステップS123によって被写体Hの体動量に係る情報が一定期間において所定の閾値を下回ったため(S123/YES)、放射線撮影部100が放射線311を放射線画像に係る電気信号に変換して当該電気信号を蓄積可能な状態(蓄積状態)に遷移するように制御する。この制御ユニット200による放射線撮影部100の制御方法については、下記「<e>放射線撮影システムの制御方法におけるタイミングチャートの説明」の欄において詳細に説明する。 When the process proceeds to step S132, the control unit 200 inputs the information related to the radiation exposure start instruction in step S113, and the information related to the body movement amount of the subject H falls below a predetermined threshold value in a certain period by step S123. Therefore (S123 / YES), the radiation photographing unit 100 converts the radiation 311 into an electric signal related to the radiographic image and controls the state so that the electric signal can be stored (accumulated state). The control method of the radiography unit 100 by the control unit 200 will be described in detail in the column of "<e> Explanation of timing chart in the control method of the radiography system" below.
 そして、放射線撮影部100の蓄積状態への遷移が完了したタイミングで、続いて、ステップS133において、制御ユニット200は、放射線発生装置300のコンソール部320に対して放射線311の曝射を許可する曝射許可信号を送信する。 Then, at the timing when the transition to the accumulation state of the radiation photographing unit 100 is completed, subsequently, in step S133, the control unit 200 permits the exposure of the radiation 311 to the console unit 320 of the radiation generator 300. Send a radiation permission signal.
 続いて、ステップS114において、放射線発生装置300のコンソール部320は、ステップS113による曝射スイッチ330の2段目のスイッチの押下に基づく放射線311の曝射開始指示に係る情報と、ステップS133による制御ユニット200からの曝射許可信号との双方が入力されたタイミングで、放射線発生装置300の管球部310から放射線311を照射する制御を行う。 Subsequently, in step S114, the console unit 320 of the radiation generator 300 receives information related to the radiation 311 exposure start instruction based on the pressing of the second stage switch of the radiation switch 330 in step S113, and the control in step S133. Control is performed to irradiate the radiation 311 from the tube portion 310 of the radiation generator 300 at the timing when both the exposure permission signal from the unit 200 and the radiation permission signal are input.
 また、放射線311の照射が終了した後、続いて、ステップS134において、制御ユニット200は、放射線撮影部100を制御し、蓄積状態中に照射された放射線311を電気信号である電荷に変換し、これを放射線画像として取得する。 Further, after the irradiation of the radiation 311 is completed, subsequently, in step S134, the control unit 200 controls the radiation photographing unit 100, converts the radiation 311 irradiated during the accumulated state into an electric charge, which is an electric signal. This is acquired as a radiographic image.
 そして、ステップS134の処理が終了すると、図3Aに示すフローチャートが終了する。 Then, when the process of step S134 is completed, the flowchart shown in FIG. 3A ends.
 図3Bは、本発明の第1の実施形態に係る放射線撮影システム10の制御方法における処理手順の第2例を示すフローチャートである。この図3Bにおいて、図3Aに示す処理ステップと同様の処理ステップについては同じステップ番号を付しており、その詳細な説明は省略する。 FIG. 3B is a flowchart showing a second example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention. In FIG. 3B, the same processing steps as those shown in FIG. 3A are assigned the same step numbers, and detailed description thereof will be omitted.
 図3Bのフローチャートの処理では、図3Aのフローチャートの処理との違いとして、ステップS123の判断の結果、ステップS122で算出された被写体Hの体動量に係る情報が所定条件内である(具体的には、一定期間において所定の閾値を下回った)場合に(S123/YES)、ステップS132において、制御ユニット200は、放射線撮影部100を放射線撮影が可能な蓄積状態に遷移させるが、蓄積状態への遷移が完了した段階或いは蓄積状態に遷移する途中の段階で、再度、ステップS124において、カメラ400の画像演算ユニット420は、被写体Hの体動量に係る情報が所定条件内である(具体的には、一定期間において所定の閾値を下回った)か否かを判断する。 In the processing of the flowchart of FIG. 3B, the difference from the processing of the flowchart of FIG. 3A is that the information related to the body movement amount of the subject H calculated in step S122 as a result of the determination in step S123 is within the predetermined condition (specifically). (S123 / YES), in step S132, the control unit 200 shifts the radiography unit 100 to a storage state capable of radiography, but shifts to the storage state. At the stage where the transition is completed or the stage during the transition to the accumulation state, again in step S124, the image calculation unit 420 of the camera 400 has information related to the body movement amount of the subject H within a predetermined condition (specifically,). , It is judged whether or not it has fallen below a predetermined threshold in a certain period of time.
 そして、ステップS124の判断の結果、被写体Hの体動量に係る情報が所定条件内でない(具体的には、一定期間において所定の閾値を下回っていない)場合には(S124/NO)、ステップS121に戻り、ステップS121以降の処理を再度行う。この際、放射線撮影部100が蓄積状態に遷移する途中の段階である場合には、制御ユニット200は、例えば被写体Hの体動量に係る情報に基づき当該遷移を中止する制御を行う。なお、この際、制御ユニット200は、放射線撮影部100を再度、ステップS131の空読み状態に戻してもよい。また、この場合、ステップS133によるコンソール部320に対する曝射許可信号の送信は、行われない。 Then, as a result of the determination in step S124, when the information relating to the body movement amount of the subject H is not within the predetermined condition (specifically, it does not fall below the predetermined threshold value in a certain period) (S124 / NO), step S121. The process returns to, and the processes after step S121 are performed again. At this time, if the radiography unit 100 is in the middle of transitioning to the accumulated state, the control unit 200 controls to stop the transition based on, for example, information related to the body movement amount of the subject H. At this time, the control unit 200 may return the radiography photographing unit 100 to the blank reading state of step S131 again. Further, in this case, the exposure permission signal is not transmitted to the console unit 320 in step S133.
 一方、ステップS124の判断の結果、被写体Hの体動量に係る情報が所定条件内である(具体的には、一定期間において所定の閾値を下回った)場合には(S124/YES)、ステップS133に進む。なお、ステップS133に進む際に、ステップS124の処理が、放射線撮影部100が蓄積状態に遷移する途中の段階で行われた場合には、制御ユニット200は、当該遷移を継続して進め、当該遷移が完了した後に、ステップS133に移行することになる。そして、ステップS133に進むと、制御ユニット200は、コンソール部320に対して曝射許可信号の送信を行う。その後は、図3Aと同様の処理ステップが行われ、図3Bに示すフローチャートが終了する。 On the other hand, as a result of the determination in step S124, when the information related to the body movement amount of the subject H is within the predetermined condition (specifically, it falls below the predetermined threshold value in a certain period) (S124 / YES), step S133. Proceed to. When the process of step S124 is performed in the middle of the transition to the accumulation state when proceeding to step S133, the control unit 200 continuously advances the transition and the transition is performed. After the transition is completed, the process proceeds to step S133. Then, when the process proceeds to step S133, the control unit 200 transmits an exposure permission signal to the console unit 320. After that, the same processing step as in FIG. 3A is performed, and the flowchart shown in FIG. 3B ends.
 ここで説明した図3Bのフローチャートを用いた処理では、制御ユニット200において、放射線撮影部100が蓄積状態に遷移するように制御する過程が複数あり(S123/YES,S124/YES)、複数の過程に対応する、画像演算ユニット420によって算出された複数の体動量に係る情報に基づいて、当該遷移を順次進めるようにしている。 In the process using the flowchart of FIG. 3B described here, there are a plurality of processes (S123 / YES, S124 / YES) in which the radiography photographing unit 100 is controlled to transition to the accumulation state in the control unit 200, and a plurality of processes. Based on the information related to the plurality of body movement amounts calculated by the image calculation unit 420 corresponding to the above, the transition is sequentially advanced.
 <d>被写体の体動量の定量化方法
 次に、図3A及び図3BのステップS122の処理において行われる被写体Hの体動量の定量化方法について説明する。上述したように、ステップS122の処理では、ステップS121においてカメラ400の撮影部410から連続的に撮影された複数の画像が出力されると、カメラ400の画像演算ユニット420は、この複数の画像を用いて被写体Hの体動量を定量化する。
<D> Method for Quantifying the Body Movement of the Subject Next, a method for quantifying the body movement of the subject H performed in the process of step S122 in FIGS. 3A and 3B will be described. As described above, in the process of step S122, when a plurality of images continuously captured by the photographing unit 410 of the camera 400 are output in step S121, the image calculation unit 420 of the camera 400 outputs the plurality of images. It is used to quantify the amount of body movement of the subject H.
 図4は、図3A及び図3BのステップS122の処理において行われる被写体Hの体動量の定量化方法を説明するための図である。この図4では、連続的に撮影された複数の画像の一例として、順次撮影されたフレーム1~4の4枚の画像を適用した例を示している。 FIG. 4 is a diagram for explaining a method of quantifying the amount of body movement of the subject H performed in the process of step S122 of FIGS. 3A and 3B. FIG. 4 shows an example in which four images of frames 1 to 4 taken sequentially are applied as an example of a plurality of continuously shot images.
 図3A及び図3BのステップS122の処理が開始されると、まず、カメラ400の画像演算ユニット420は、カメラ400の撮影部410から連続的に撮影された複数の画像であるフレーム1~4を順次グレースケールに変換する。この際、カメラ400の撮影部410のフレームレートは、早い方が望ましく、露光量不足による画質の低下が問題にならなければ、なるべく早いフレームレートで撮影する。また、撮影を行うカメラ400の撮影部410は、放射線発生装置300の管球部310の近傍に取り付けられていることが望ましい。ここで、グレースケールに変換されたフレーム1~4は、図4の(a)群に示すグレースケール画像であるフレーム1(411)~フレーム4(414)で例示される。 When the process of step S122 of FIGS. 3A and 3B is started, first, the image calculation unit 420 of the camera 400 takes frames 1 to 4, which are a plurality of images continuously taken from the photographing unit 410 of the camera 400. Convert to grayscale sequentially. At this time, it is desirable that the frame rate of the photographing unit 410 of the camera 400 is as high as possible, and if deterioration in image quality due to insufficient exposure is not a problem, the frame rate is taken as fast as possible. Further, it is desirable that the photographing unit 410 of the camera 400 for photographing is attached in the vicinity of the tube unit 310 of the radiation generator 300. Here, the frames 1 to 4 converted to the gray scale are exemplified by the frames 1 (411) to the frame 4 (414) which are the gray scale images shown in the group (a) of FIG.
 続いて、カメラ400の画像演算ユニット420は、図4の(a)群に示すグレースケール画像であるフレーム1(411)~フレーム4(414)に対して、ラプラシアンフィルターを用いて被写体Hのエッジ検出を行う。ここで、エッジ検出の処理がされたフレーム1~4は、図4の(b)群に示すエッジ検出画像であるフレーム1(421)~フレーム4(424)で例示される。具体的には、例えば、ある画素の出力を8倍する代わりに、縦、横、斜めに隣接する画素(合計8画素)の出力を減算することで、エッジ検出を行う。 Subsequently, the image calculation unit 420 of the camera 400 uses a Laplacian filter with respect to the frames 1 (411) to 4 (414), which are grayscale images shown in the group (a) of FIG. 4, and the edge of the subject H. Perform detection. Here, the frames 1 to 4 processed for edge detection are exemplified by the frame 1 (421) to the frame 4 (424) which are the edge detection images shown in the group (b) of FIG. Specifically, for example, instead of multiplying the output of a certain pixel by 8, the edge detection is performed by subtracting the output of vertically, horizontally, and diagonally adjacent pixels (8 pixels in total).
 続いて、カメラ400の画像演算ユニット420は、図4の(b)群に示すエッジ検出画像であるフレーム1(421)~フレーム4(424)に対して、1フレーム前に演算処理したエッジ検出画像を減算し、さらに絶対値をとる。これにより、図4の(c)群に示す体動検出画像431~433が得られる。具体的には、体動検出画像431は、フレーム2(422)からフレーム1(421)を減算した結果得られた画像である。また、体動検出画像432は、フレーム3(423)からフレーム2(422)を減算した結果得られた画像であり、体動検出画像433は、フレーム4(424)からフレーム3(423)を減算した結果得られた画像である。ここでの説明では、エッジ検出画像から1フレーム前に演算処理したエッジ検出画像を減算して体動検出画像を取得する例を説明したが、別の例では、エッジの移動量を求めて各画素での移動量を体動検出画像として取得するようにしてもよい。 Subsequently, the image calculation unit 420 of the camera 400 performs an calculation process one frame before the frame 1 (421) to the frame 4 (424), which are the edge detection images shown in the group (b) of FIG. Subtract the image and take the absolute value. As a result, the body movement detection images 431 to 433 shown in the group (c) of FIG. 4 can be obtained. Specifically, the body motion detection image 431 is an image obtained as a result of subtracting the frame 1 (421) from the frame 2 (422). Further, the body motion detection image 432 is an image obtained as a result of subtracting the frame 2 (422) from the frame 3 (423), and the body motion detection image 433 is a frame 3 (423) from the frame 4 (424). It is an image obtained as a result of subtraction. In the explanation here, an example of acquiring a body motion detection image by subtracting the edge detection image calculated one frame before from the edge detection image has been described, but in another example, the amount of movement of the edge is obtained and each is obtained. The amount of movement in the pixels may be acquired as a body movement detection image.
 図4に示す例では、体動検出画像431に示されているように、フレーム2(422)とフレーム1(421)の撮影間に被写体Hの体動があったことが分かる。また、体動検出画像432及び体動検出画像433に示されているように、フレーム3(423)とフレーム2(422)の撮影間、フレーム4(424)とフレーム3(423)の撮影間では、徐々に被写体Hの体動が抑えられていることが分かる。このため、後者の体動検出画像432及び433において、体動検出画像431よりも出力が低くなっている。 In the example shown in FIG. 4, as shown in the body movement detection image 431, it can be seen that the body movement of the subject H was performed between the shooting of the frame 2 (422) and the frame 1 (421). Further, as shown in the body motion detection image 432 and the body motion detection image 433, between the shooting of the frame 3 (423) and the frame 2 (422), and between the shooting of the frame 4 (424) and the frame 3 (423). Then, it can be seen that the body movement of the subject H is gradually suppressed. Therefore, in the latter body motion detection images 432 and 433, the output is lower than that of the body motion detection image 431.
 続いて、カメラ400の画像演算ユニット420は、図4の(c)群に示す体動検出画像について、所定領域4321における平均出力を演算する。ここで、所定領域4321は、関心領域と略同じ領域であることが望ましい。この所定領域4321は、撮影前に制御用PC500を介して指定してもよいし、カメラ400の撮影部410を設置した時点で決めておいてもよいし、或いは、被写体Hの撮影画像を用いて制御用PC500が自動で決定してもよい。そして、演算された所定領域4321の平均出力は、撮影を行った部屋の明るさやカメラ400の撮影部410の露出時間、ゲイン設定等の影響を受けるため、図4の(c)群に示す体動検出画像から求められる平均出力は、元となる撮影画像の出力で規格化する。 Subsequently, the image calculation unit 420 of the camera 400 calculates the average output in the predetermined area 4321 for the body motion detection image shown in the group (c) of FIG. Here, it is desirable that the predetermined region 4321 is substantially the same region as the region of interest. The predetermined area 4321 may be designated via the control PC 500 before shooting, may be determined at the time when the shooting unit 410 of the camera 400 is installed, or the shot image of the subject H may be used. The control PC 500 may be automatically determined. The calculated average output of the predetermined area 4321 is affected by the brightness of the room in which the image was taken, the exposure time of the image pickup unit 410 of the camera 400, the gain setting, and the like. The average output obtained from the motion detection image is standardized by the output of the original captured image.
 以上の手順によって、カメラ400の画像演算ユニット420は、撮影フレームごとに、被写体Hの体動量を定量化する。画像演算ユニット420による画像の演算処理は、撮影部410の撮影スピードに対して同等以上で行うことが望ましく、これを達成するためにFPGA等のハードウェア内で当該演算処理が実施されることが望ましい。 By the above procedure, the image calculation unit 420 of the camera 400 quantifies the amount of body movement of the subject H for each shooting frame. It is desirable that the image calculation process by the image calculation unit 420 be performed at a speed equal to or higher than the shooting speed of the shooting unit 410, and in order to achieve this, the calculation process may be performed in hardware such as FPGA. desirable.
 なお、ここで説明した被写体Hの体動量の定量化方法は、飽くまで一例であり、本発明の範囲においては、撮影部410からの複数の画像に基づき、被写体Hの体動量を定量化する方法であれば適用可能である。例えば、カメラ400の画像演算ユニット420は、上記説明に加えて、演算画像へのフィルター処理や他の情報を用いた補正処理を演算処理の途中で行ってもよい。また別の例では、図4の(b)群に示す途中のエッジ検出画像を作成せずに、図4の(a)群に示すグレースケール画像から図4の(c)群に示す体動検出画像を直接作成してもよい。 The method for quantifying the body movement amount of the subject H described here is an example until it gets tired, and within the scope of the present invention, a method for quantifying the body movement amount of the subject H based on a plurality of images from the photographing unit 410. If so, it is applicable. For example, in addition to the above description, the image calculation unit 420 of the camera 400 may perform a filter processing on the calculated image and a correction process using other information in the middle of the calculation process. In another example, the body movement shown in the group (c) of FIG. 4 from the grayscale image shown in the group (a) of FIG. 4 without creating the edge detection image in the middle shown in the group (b) of FIG. The detection image may be created directly.
 <e>放射線撮影システムの制御方法におけるタイミングチャートの説明
 第1の実施形態に係る放射線撮影システム10の制御方法における動作タイミングについて、図5A~図5Fのタイミングチャートを用いて説明する。この際、必要に応じて図1~図3Bを参照しながら、図5A~図5Fのタイミングチャートの説明を行う。なお、図5A~図5Fに示す期間T1~T3は、図3A及び図3Bに示す期間T1~T3に対応している。
<E> Explanation of Timing Chart in Control Method of Radiation Imaging System The operation timing in the control method of the radiography imaging system 10 according to the first embodiment will be described with reference to the timing charts of FIGS. 5A to 5F. At this time, the timing charts of FIGS. 5A to 5F will be described with reference to FIGS. 1 to 3B as necessary. The periods T1 to T3 shown in FIGS. 5A to 5F correspond to the periods T1 to T3 shown in FIGS. 3A and 3B.
 まず、図5Aの説明を行う。 First, the explanation of FIG. 5A will be given.
 図5Aは、本発明の第1の実施形態に係る放射線撮影システム10の制御方法における処理手順の第1例を示すタイミングチャートである。この図5Aのタイミングチャートは、図3Aのフローチャートに対応している。 FIG. 5A is a timing chart showing a first example of a processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention. The timing chart of FIG. 5A corresponds to the flowchart of FIG. 3A.
 図5Aにおいて、期間T1は、図3Aに示すように放射線撮影部100が空読み状態である期間を示している。この期間T1において、図2に示す変換素子1111で発生するダーク電流を定期的に除去するために、図2に示すゲート制御電圧Vg1~Vgnに定期的にHI(スイッチ素子1112がONとなる電圧)が印加され、スイッチ素子1112が走査される。この間、カメラ400の画像演算ユニット420は、連続的に被写体Hの体動量を定量化し、図5Aでは、この値を「体動量の定量化値」として示している。 In FIG. 5A, the period T1 indicates a period in which the radiological imaging unit 100 is in a blank reading state as shown in FIG. 3A. During this period T1, in order to periodically remove the dark current generated by the conversion element 1111 shown in FIG. 2, the gate control voltages Vg1 to Vgn shown in FIG. 2 are periodically HI (voltage at which the switch element 1112 is turned on). ) Is applied, and the switch element 1112 is scanned. During this period, the image calculation unit 420 of the camera 400 continuously quantifies the body movement amount of the subject H, and in FIG. 5A, this value is shown as a “quantification value of the body movement amount”.
 図5Aの(p_a)の時点では、曝射スイッチ330の2段目のスイッチが押されており、且つ、体動量の定量化値が一定期間Sにおいて予め決定した所定の閾値thを下回っている。具体的に、図5Aでは、撮影者により、曝射スイッチ330の2段目のスイッチが既に押されており、その後に、体動量の定量化値が一定期間Sにおいて所定の閾値thを下回っている。このため、制御ユニット200は、(p_a)の時点以降の期間T2において、ゲート制御電圧Vg1~Vgnに新たにHIの印加を行わない。 At the time point (p_a) in FIG. 5A, the second-stage switch of the exposure switch 330 is pressed, and the quantified value of the body movement amount is below the predetermined threshold value th determined in advance in S for a certain period of time. .. Specifically, in FIG. 5A, the photographer has already pressed the second-stage switch of the exposure switch 330, and thereafter, the quantified value of the body movement amount falls below the predetermined threshold value th in S for a certain period of time. There is. Therefore, the control unit 200 does not newly apply HI to the gate control voltages Vg1 to Vgn during the period T2 after the time point (p_a).
 なお、本実施形態においては、所定の閾値thは、随時変更可能である。この際、所定の閾値thは、予め定められた値でもよいし、撮影手技や被写体Hの年齢に応じて決められた値でもよい、また、所定の閾値thは、撮影の照射時間に応じて決められた値でもよいし、制御用PC500に体動量の定量化値をリアルタイムに表示し、撮影者がこの値を見ながら撮影直前に決定した値でもよい。 In the present embodiment, the predetermined threshold value th can be changed at any time. At this time, the predetermined threshold value th may be a predetermined value, a value determined according to the shooting technique or the age of the subject H, and the predetermined threshold value th may be set according to the irradiation time of shooting. It may be a determined value, or it may be a value determined immediately before the imaging by displaying the quantified value of the body movement amount on the control PC 500 in real time and observing this value.
 また、本例では、一定期間Sは、100msであり、放射線発生装置300のコンソール部320で設定された放射線311の照射時間である10msに基づき決定されている。例えば、放射線311の照射時間が20msと設定されている場合、一定期間Sは、200msとなる。即ち、本例では、一定期間Sは、設定された放射線311の照射時間に対して10倍の時間が設定される。このように、予定される放射線311の照射時間に対して、一定期間Sを十分長く設定することにより、被写体Hの体動が十分長い期間抑えられていて、放射線311の照射中においても引き続き被写体Hの体動が起こらないことが想定される時だけ、放射線撮影部100が「空読み状態」から「蓄積状態」に遷移する。 Further, in this example, the fixed period S is 100 ms, and is determined based on 10 ms, which is the irradiation time of the radiation 311 set by the console unit 320 of the radiation generator 300. For example, when the irradiation time of the radiation 311 is set to 20 ms, the fixed period S is 200 ms. That is, in this example, the fixed period S is set to be 10 times longer than the set irradiation time of the radiation 311. In this way, by setting S sufficiently long for a certain period with respect to the scheduled irradiation time of the radiation 311, the body movement of the subject H is suppressed for a sufficiently long period, and the subject continues to be irradiated even during the irradiation of the radiation 311. Only when it is assumed that the body movement of H does not occur, the radiological imaging unit 100 transitions from the “blank reading state” to the “accumulation state”.
 図5Aにおいて、期間T2は、(p_a)の時点の後に、ゲート制御電圧Vg1~Vgnの走査が完全に停止した後の期間を示している。即ち、制御ユニット200は、放射線撮影部100が期間T2に示す蓄積状態に遷移するように制御するのに際して、画素アレイ110に蓄積されている電気信号の読み出しを停止する制御を行っている。また、この期間T2において、制御ユニット200は、放射線発生装置300のコンソール部320に対して曝射許可信号を送信している。その後、放射線発生装置300の管球部310から放射線311が照射されている。照射された放射線311は、被写体Hを透過して放射線撮影部100に入射する。放射線撮影部100に入射した放射線311は、放射線撮影部100の変換素子1111により電気信号である電荷に変換され、画素111内に蓄積される。この期間T2は、少なくとも放射線311の照射時間よりも長く設定されており、本例においては、放射線311の照射時間である10msに対し、100msの固定時間が設けられている。期間T2の終了後、期間T3に遷移する。 In FIG. 5A, the period T2 indicates the period after the time point (p_a), after the scanning of the gate control voltages Vg1 to Vgn is completely stopped. That is, the control unit 200 controls to stop reading the electric signal stored in the pixel array 110 when the radiography unit 100 controls to transition to the storage state shown in the period T2. Further, during this period T2, the control unit 200 transmits an exposure permission signal to the console unit 320 of the radiation generator 300. After that, the radiation 311 is irradiated from the tube portion 310 of the radiation generator 300. The irradiated radiation 311 passes through the subject H and is incident on the radiation photographing unit 100. The radiation 311 incident on the radiation photographing unit 100 is converted into an electric charge which is an electric signal by the conversion element 1111 of the radiation photographing unit 100, and is accumulated in the pixel 111. This period T2 is set to be at least longer than the irradiation time of the radiation 311. In this example, a fixed time of 100 ms is provided with respect to the irradiation time of the radiation 311 of 10 ms. After the end of the period T2, the transition to the period T3 occurs.
 図5Aにおいて、期間T3では、期間T1の最後において、ゲート制御電圧Vg1~Vgnの走査(HIの印加)が終了した地点から走査を再開している。この走査において、画素111の中に蓄積された電気信号である電荷が信号線103を介して読出回路130に読み出され、読出回路130において、デジタル信号に変換される。放射線撮影部100は、これらデジタル信号に基づいて撮影画像である放射線画像を生成する。期間T3では、放射線311の照射が終了しているため、被写体Hの体動量を定量化する必要はない。また、放射線発生装置300の曝射スイッチ330は、押されていてもよいし、また、押されていなくてもよい。期間T3は、ゲート制御電圧Vg1~Vgnの走査(HIの印加)が一巡した段階で終了する。 In FIG. 5A, in the period T3, the scanning is restarted from the point where the scanning of the gate control voltages Vg1 to Vgn (application of HI) is completed at the end of the period T1. In this scan, the electric charge, which is an electric signal stored in the pixel 111, is read out to the read circuit 130 via the signal line 103, and is converted into a digital signal in the read circuit 130. The radiation photographing unit 100 generates a radiation image which is a photographed image based on these digital signals. In the period T3, since the irradiation of the radiation 311 is completed, it is not necessary to quantify the body movement amount of the subject H. Further, the radiation switch 330 of the radiation generator 300 may or may not be pressed. The period T3 ends when the scanning (application of HI) of the gate control voltage Vg1 to Vgn has been completed.
 図5Aにおいて、期間T4は、期間T3において得られた撮影画像である放射線画像を補正するための補正画像取得期間である。期間T3が終了した後、期間T2と同じ期間だけゲート制御電圧Vg1~Vgnの走査を停止した後に、再度、期間T3と同様にゲート制御電圧Vg1~Vgnの走査を行うことで、放射線311の照射情報を含まないダーク画像を取得する。期間T3において取得された撮影画像である放射線画像から、この期間T4において取得されたダーク画像を減算することで、撮影画像に含まれる放射線311の照射によらない不要な情報を除去することができる。 In FIG. 5A, the period T4 is a corrected image acquisition period for correcting the radiographic image which is the captured image obtained in the period T3. After the period T3 ends, the scanning of the gate control voltage Vg1 to Vgn is stopped for the same period as the period T2, and then the gate control voltage Vg1 to Vgn is scanned again in the same manner as the period T3 to irradiate the radiation 311. Get a dark image that does not contain information. By subtracting the dark image acquired in this period T4 from the radiation image which is the captured image acquired in the period T3, it is possible to remove unnecessary information not due to the irradiation of the radiation 311 included in the captured image. ..
 次に、図5Bの説明を行う。 Next, FIG. 5B will be described.
 図5Bは、本発明の第1の実施形態に係る放射線撮影システム10の制御方法における処理手順の第2例を示すタイミングチャートである。この図5Bのタイミングチャートにおいて、図5Aのタイミングチャートに示す項目と同様の項目については同じ項目名を付しており、その詳細な説明は省略する。 FIG. 5B is a timing chart showing a second example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention. In the timing chart of FIG. 5B, the same item names as the items shown in the timing chart of FIG. 5A are given the same item names, and detailed description thereof will be omitted.
 図5Bでは、体動量の定量化値が一定期間Sにおいて所定の閾値thを下回って後に、影者により曝射スイッチ330の2段目のスイッチが押されている。そして、図5Bでは、(p_b)の時点において、体動量の定量化値が一定期間Sにおいて所定の閾値thを下回っており、且つ、曝射スイッチ330の2段目のスイッチが押された状態である。そして、図5Bにおいても、図5Aのタイミングチャートと同様に、制御ユニット200は、(p_b)の時点以降の期間T2において、ゲート制御電圧Vg1~Vgnに新たにHIの印加を行わない。 In FIG. 5B, after the quantified value of the body movement amount falls below the predetermined threshold value th in S for a certain period of time, the second stage switch of the exposure switch 330 is pressed by the shadow person. Then, in FIG. 5B, at the time point (p_b), the quantified value of the body movement amount is below the predetermined threshold value th for a certain period S, and the second stage switch of the exposure switch 330 is pressed. Is. Further, also in FIG. 5B, similarly to the timing chart of FIG. 5A, the control unit 200 does not newly apply HI to the gate control voltages Vg1 to Vgn during the period T2 after the time point (p_b).
 上述した図5A或いは図5Bのタイミングチャートに基づく撮影動作では、放射線311の照射時間に対して、短い周期で不規則に動く可能性がある被写体Hの撮影においても、被写体Hの体動の状況を定量化して監視することで、被写体Hの体動時の撮影を回避しつつ、被写体Hの体動が収まったタイミングで放射線撮影部100を撮影可能な蓄積状態に遷移させることができるため、撮影画像である放射線画像の画質の悪化を抑えることができる。また、放射線撮影部100及び制御ユニット200に加えて、カメラ400の撮影部410及び画像演算ユニット420を用いることで、従来肉眼では判断が難しかった数100msオーダーの短い被写体Hの静止期間を狙った放射線画像の撮影が可能となる。 In the imaging operation based on the timing chart of FIG. 5A or FIG. 5B described above, the state of body movement of the subject H even in the imaging of the subject H which may move irregularly in a short cycle with respect to the irradiation time of the radiation 311. By quantifying and monitoring, the radiological imaging unit 100 can be transitioned to a storage state in which the radiation photographing unit 100 can be photographed at the timing when the body movement of the subject H is settled, while avoiding the imaging when the body movement of the subject H is stopped. It is possible to suppress deterioration of the image quality of the radiographic image which is a captured image. Further, by using the photographing unit 410 and the image calculation unit 420 of the camera 400 in addition to the radiation photographing unit 100 and the control unit 200, a short still period of several hundred ms order, which was difficult to judge with the naked eye in the past, was aimed at. It is possible to take a radiographic image.
 次に、図5C及び図5Dの説明を行う。 Next, FIGS. 5C and 5D will be described.
 図5Cは、本発明の第1の実施形態に係る放射線撮影システム10の制御方法における処理手順の第3例を示すタイミングチャートである。また、図5Dは、本発明の第1の実施形態に係る放射線撮影システム10の制御方法における処理手順の第4例を示すタイミングチャートである。この図5C及び図5Dのタイミングチャートにおいて、図5Aのタイミングチャートに示す項目と同様の項目については同じ項目名を付しており、その詳細な説明は省略する。 FIG. 5C is a timing chart showing a third example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention. Further, FIG. 5D is a timing chart showing a fourth example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention. In the timing charts of FIGS. 5C and 5D, the same item names as the items shown in the timing chart of FIG. 5A are given the same item names, and detailed description thereof will be omitted.
 図5C及び図5Dのタイミングチャートでは、制御ユニット200が体動量の定量化値に基づき放射線撮影部100を蓄積状態に遷移させる一環として、放射線撮影部100における撮影に必要な条件を制御している。 In the timing charts of FIGS. 5C and 5D, the control unit 200 controls the conditions necessary for imaging in the radiography unit 100 as a part of transitioning the radiography unit 100 to the accumulated state based on the quantified value of the body movement amount. ..
 図5Cでは、制御ユニット200は、画像出力を得るための撮影に必要な読出回路130における電力を体動量の定量化値に基づき制御しており、被写体Hの体動が収まったと判断された場合に読出回路130に電力を投入する。 In FIG. 5C, the control unit 200 controls the electric power in the read circuit 130 required for shooting to obtain an image output based on the quantified value of the body movement amount, and it is determined that the body movement of the subject H has subsided. Power is applied to the read circuit 130.
 図5Cにおいて、読出回路の電力におけるHIは、読出回路130において、信号線103を介して入力された電気信号をデジタル信号に変換可能な電力が投入されている状態を表しており、また、LOは、消費電力を抑えた待機状態であることを表している。図5Cにおいて、(p_c1),(p_c3),(p_c5)の時点では、体動量の定量化値が所定の閾値thを下回ったため、読出回路130の電力をHI状態にしている。一方、図5Cにおいて、(p_c2),(p_c4)の時点では、体動量の定量化値が所定の閾値thを上回ったため、再び被写体Hの体動が確認されたと判断し、読出回路130への電力供給をLOとしている。また、図5Cにおいて、(p_c6)の時点は、図5Aの(p_a)の時点と同様に、曝射スイッチ330の2段目のスイッチが押されており、且つ、体動量の定量化値が一定期間Sにおいて所定の閾値thを下回っている。このため、制御ユニット200は、(p_c6)の時点以降の期間T2においては、図5Aと同様に、放射線撮影部100の空読み状態を停止して蓄積状態に遷移させている。 In FIG. 5C, the HI in the power of the read circuit represents a state in which the power capable of converting the electric signal input via the signal line 103 into a digital signal is applied in the read circuit 130, and the LO Indicates a standby state in which power consumption is suppressed. In FIG. 5C, at the time points (p_c1), (p_c3), and (p_c5), the quantified value of the body movement amount is below the predetermined threshold value th, so that the power of the read circuit 130 is in the HI state. On the other hand, in FIG. 5C, at the time points (p_c2) and (p_c4), since the quantified value of the body movement amount exceeded the predetermined threshold value th, it was determined that the body movement of the subject H was confirmed again, and the reading circuit 130 was sent. The power supply is LO. Further, in FIG. 5C, at the time point (p_c6), the second stage switch of the exposure switch 330 is pressed and the quantified value of the body movement amount is set as in the time point (p_a) of FIG. 5A. It is below the predetermined threshold value th in S for a certain period of time. Therefore, in the period T2 after the time point (p_c6), the control unit 200 stops the blank reading state of the radiography photographing unit 100 and shifts to the accumulated state, as in FIG. 5A.
 また、図5Dでは、図5Cにおける読出回路130の電力制御に加えて、体動量の定量化値に基づき、放射線撮影部100の空読み状態への遷移も制御している。図5Dに示す(p_d1)の時点以前では、比較的大きな被写体Hの体動が観測されており、撮影が可能となるまでにしばらく時間がかかる状態である。そして、図5Dに示す(p_d1)の時点において、体動量の定量化値が、所定の第2閾値th2を下回るため、制御ユニット200は、放射線撮影部100を動作していない状態から、空読み状態に遷移させている。以降、図5Cのタイミングチャートと同様に、(p_d3)の時点において、曝射スイッチ330の2段目のスイッチが押されており、且つ、体動量の定量化値が一定期間Sにおいて所定の閾値thを下回っているため、制御ユニット200は、放射線撮影部100の空読み状態を停止して蓄積状態に遷移させている。 Further, in FIG. 5D, in addition to the power control of the read circuit 130 in FIG. 5C, the transition of the radiography unit 100 to the blank reading state is also controlled based on the quantified value of the body movement amount. Before the time point (p_d1) shown in FIG. 5D, a relatively large body movement of the subject H is observed, and it takes a while before the image can be taken. Then, at the time point (p_d1) shown in FIG. 5D, since the quantified value of the body movement amount is lower than the predetermined second threshold value th2, the control unit 200 reads blank from the state where the radiography unit 100 is not operating. It is transitioning to the state. After that, as in the timing chart of FIG. 5C, at the time of (p_d3), the second stage switch of the exposure switch 330 is pressed, and the quantified value of the body movement amount is a predetermined threshold value in S for a certain period. Since it is below th, the control unit 200 stops the blank reading state of the radiography photographing unit 100 and shifts to the accumulation state.
 この図5C及び図5Dのいずれにおいても、放射線撮影部100は、被写体Hに体動がある場合、不要な電力投入や動作を行わないことで、撮影前の消費電力を抑えることができる。即ち、長期間に亘って体動が収まらない被写体Hの撮影においても、消費電力を気にすることなく撮影することができる。これは、放射線撮影部100の電力をバッテリーから賄う場合に特に有効である。 In both FIGS. 5C and 5D, when the subject H has a body movement, the radiation photographing unit 100 can suppress power consumption before photographing by not performing unnecessary power input or operation. That is, even in the case of shooting the subject H whose body movement does not stop for a long period of time, it is possible to shoot without worrying about power consumption. This is particularly effective when the power of the radiography photographing unit 100 is supplied from the battery.
 次に、図5E及び図5Fの説明を行う。 Next, FIGS. 5E and 5F will be described.
 図5Eは、本発明の第1の実施形態に係る放射線撮影システム10の制御方法における処理手順の第5例を示すタイミングチャートである。また、図5Fは、本発明の第1の実施形態に係る放射線撮影システム10の制御方法における処理手順の第6例を示すタイミングチャートである。この図5E及び図5Fのタイミングチャートにおいて、図5A~図5Dのタイミングチャートに示す項目と同様の項目については同じ項目名を付しており、その詳細な説明は省略する。 FIG. 5E is a timing chart showing a fifth example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention. Further, FIG. 5F is a timing chart showing a sixth example of the processing procedure in the control method of the radiography system 10 according to the first embodiment of the present invention. In the timing charts of FIGS. 5E and 5F, the same item names as the items shown in the timing charts of FIGS. 5A to 5D are given the same item names, and detailed description thereof will be omitted.
 図5E及び図5Fのタイミングチャートでは、曝射スイッチ330の2段目のスイッチが押され、体動量の定量化値が一定期間Sにおいて所定の閾値thを下回った後に、放射線撮影部100が蓄積状態に遷移するまでの処理が、図5A~図5Dとは異なる。 In the timing charts of FIGS. 5E and 5F, the radiation imaging unit 100 accumulates after the second-stage switch of the exposure switch 330 is pressed and the quantified value of the body movement amount falls below the predetermined threshold value th in S for a certain period of time. The process up to the transition to the state is different from that in FIGS. 5A to 5D.
 具体的には、図5Eの(p_e)の時点において、曝射スイッチ330の2段目のスイッチが押され、且つ、体動量の定量化値が一定期間Sにおいて所定の閾値thを下回っている。この場合、図5Eのタイミングチャートでは、図5Eの(p_e)の時点以降において、ゲート制御電圧Vg1~Vgnの走査を一度Vgnまで行ってから、放射線撮影部100を蓄積状態に遷移させている。即ち、制御ユニット200は、放射線撮影部100を蓄積状態に遷移するように制御するのに際して、画素アレイ110の少なくとも一部の画素111に蓄積された電気信号の読み出しを行った後に、画素アレイ110に蓄積されている電気信号の読み出しを停止する制御を行うようにしている。さらに、制御ユニット200は、(p_e)の時点において、同時に読出回路130の電力をHIとする制御を行っている。 Specifically, at the time point (p_e) in FIG. 5E, the second stage switch of the exposure switch 330 is pressed, and the quantified value of the body movement amount is below the predetermined threshold value th in a certain period S. .. In this case, in the timing chart of FIG. 5E, after the time point (p_e) in FIG. 5E, the gate control voltages Vg1 to Vgn are once scanned up to Vgn, and then the radiography unit 100 is transitioned to the accumulated state. That is, when the control unit 200 controls the radiography photographing unit 100 so as to transition to the storage state, the pixel array 110 reads out the electric signal stored in at least a part of the pixels 111 of the pixel array 110, and then reads the electric signal. Control is performed to stop reading of the electric signal stored in the. Further, the control unit 200 is simultaneously controlling the power of the read circuit 130 to be HI at the time point (p_e).
 そして、図5Eのタイミングチャートでは、期間T2の蓄積状態に遷移すると、図5Aと同様に、制御ユニット200は、曝射許可信号を放射線発生装置300のコンソール部320に送信する。この図5Eのタイミングチャートの例では、(p_e)の時点から、放射線撮影部100が蓄積状態に遷移して放射線撮影可能になるまでの時間として、10ms~100msを想定しており、この間に読出回路130に供給される電力が安定する。この図5Eにおいて、放射線撮影部100が蓄積状態に遷移した以降の動作(期間T2以降の動作)は、図5Aと同じである。 Then, in the timing chart of FIG. 5E, when the state transitions to the accumulation state of the period T2, the control unit 200 transmits the exposure permission signal to the console unit 320 of the radiation generator 300, as in FIG. 5A. In the example of the timing chart of FIG. 5E, 10 ms to 100 ms are assumed as the time from the time point (p_e) until the radiological imaging unit 100 transitions to the accumulation state and becomes capable of radiographic imaging, and is read during this period. The power supplied to the circuit 130 is stable. In FIG. 5E, the operation after the radiological imaging unit 100 transitions to the accumulation state (operation after the period T2) is the same as that in FIG. 5A.
 また、図5Fのタイミングチャートは、図5Eが示す一例の一動作であって図3Bのフローチャートの処理に対応している。この図5Fのタイミングチャートでは、放射線撮影部100が蓄積状態に遷移する途中において、被写体Hの体動がある場合には、制御ユニット200は、放射線撮影部100の蓄積状態への遷移を中止する制御を行う。図5Fの(p_f2)及び(p_f4)の時点では、一時的に、曝射スイッチ330の2段目のスイッチが押されており、且つ、体動量の定量化値が一定期間Sにおいて所定の閾値thを下回っているが、放射線撮影部100が蓄積状態に遷移する途中において、被写体Hが再度体動したため、放射線撮影部100の蓄積状態への遷移を中止して空読み状態を維持している。 Further, the timing chart of FIG. 5F is an example of the operation shown in FIG. 5E and corresponds to the processing of the flowchart of FIG. 3B. In the timing chart of FIG. 5F, if there is a body movement of the subject H while the radiological imaging unit 100 is transitioning to the accumulation state, the control unit 200 stops the transition to the accumulation state of the radiography imaging unit 100. Take control. At the time points (p_f2) and (p_f4) in FIG. 5F, the second stage switch of the exposure switch 330 is temporarily pressed, and the quantified value of the body movement amount is a predetermined threshold value in S for a certain period. Although it is below th, the subject H has moved again while the radiography unit 100 is transitioning to the accumulation state, so that the transition to the storage state of the radiography unit 100 is stopped and the blank reading state is maintained. ..
 図5E及び図5Fのタイミングチャートでは、撮影の準備ができていない段階で、不要な電力投入や動作を行わないことで撮影前の消費電力を抑えることができる。 In the timing charts of FIGS. 5E and 5F, the power consumption before shooting can be suppressed by not performing unnecessary power input or operation at the stage when the shooting is not ready.
 以上説明した第1の実施形態に係る放射線撮影システム10では、制御ユニット200は、放射線311の曝射開始指示に係る情報(S113)と、画像演算ユニット420によって算出された前記体動量に係る情報(S122)とに基づいて、放射線撮影部100が放射線311を電気信号に変換して当該電気信号を蓄積可能な状態(蓄積状態)に遷移するように制御している。 In the radiography system 10 according to the first embodiment described above, the control unit 200 has information (S113) related to an exposure start instruction of the radiation 311 and information related to the body movement amount calculated by the image calculation unit 420. Based on (S122), the radiation photographing unit 100 converts the radiation 311 into an electric signal and controls the transition to a state in which the electric signal can be stored (accumulation state).
 かかる構成によれば、体動しやすい被写体Hの放射線撮影においても、適切なタイミング(被写体Hの体動が収まったタイミング)で、放射線撮影に係る動作を行うことができる。 According to such a configuration, even in the radiography of the subject H, which is easy to move, the operation related to the radiography can be performed at an appropriate timing (the timing when the body movement of the subject H is settled).
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。なお、以下に記載する第2の実施形態の説明では、上述した第1の実施形態と共通する事項については説明を省略し、上述した第1の実施形態と異なる事項について説明を行う。
(Second embodiment)
Next, a second embodiment of the present invention will be described. In the description of the second embodiment described below, the matters common to the above-mentioned first embodiment will be omitted, and the matters different from the above-mentioned first embodiment will be described.
 第2の実施形態に係る放射線撮影システムの概略構成は、図1に示す第1の実施形態に係る放射線撮影システム10の概略構成と同様である。また、第2の実施形態に係る放射線撮影部100の概略構成は、図2に示す第1の実施形態に係る放射線撮影部100の概略構成と同様である。 The schematic configuration of the radiography system according to the second embodiment is the same as the schematic configuration of the radiography system 10 according to the first embodiment shown in FIG. Further, the schematic configuration of the radiological imaging unit 100 according to the second embodiment is the same as the schematic configuration of the radiological imaging unit 100 according to the first embodiment shown in FIG.
 図6は、本発明の第2の実施形態に係る放射線撮影システム10の制御方法における処理手順の一例を示すフローチャートである。この図6において、図3Aに示す処理ステップと同様の処理ステップについては同じステップ番号を付しており、その詳細な説明は省略する。 FIG. 6 is a flowchart showing an example of a processing procedure in the control method of the radiography system 10 according to the second embodiment of the present invention. In FIG. 6, the same processing steps as those shown in FIG. 3A are assigned the same step numbers, and detailed description thereof will be omitted.
 この図6に示すフローチャートの処理において、図3Aに示すフローチャートの処理と異なる点は、ステップS125が追加されている点である。具体的に、図6では、ステップS123において被写体Hの体動量に係る情報が所定条件内であると判断された場合に(S123/YES)、続くステップS125において、画像演算ユニット420がコンソール部320に対して曝射許可信号を送信する。 In the processing of the flowchart shown in FIG. 6, the difference from the processing of the flowchart shown in FIG. 3A is that step S125 is added. Specifically, in FIG. 6, when it is determined in step S123 that the information related to the body movement amount of the subject H is within the predetermined condition (S123 / YES), in the subsequent step S125, the image calculation unit 420 is the console unit 320. Sends an exposure permission signal to.
 そして、本実施形態では、ステップS114において、コンソール部320は、撮影者による曝射スイッチ330の2段目のスイッチの押下に基づく放射線311の曝射開始指示に係る情報、及び、制御ユニット200からの曝射許可信号の入力に加えて、画像演算ユニット420からの曝射許可信号の入力が揃った場合に、放射線発生装置300の管球部310から放射線311を照射する制御を行う。 Then, in the present embodiment, in step S114, the console unit 320 is provided with information related to the radiation start instruction of the radiation 311 based on the photographer pressing the second stage switch of the radiation switch 330, and from the control unit 200. When the input of the radiation permission signal from the image calculation unit 420 is aligned in addition to the input of the radiation permission signal, the radiation 311 is radiated from the tube portion 310 of the radiation generator 300.
 図7は、本発明の第2の実施形態に係る放射線撮影システム10の制御方法における処理手順の一例を示すタイミングチャートである。この図7のタイミングチャートにおいて、図5A~図5Fのタイミングチャートに示す項目と同様の項目については同じ項目名を付しており、その詳細な説明は省略する。 FIG. 7 is a timing chart showing an example of a processing procedure in the control method of the radiography system 10 according to the second embodiment of the present invention. In the timing chart of FIG. 7, the same item names as the items shown in the timing charts of FIGS. 5A to 5F are given the same item names, and detailed description thereof will be omitted.
 図7に示す(p)の時点では、曝射スイッチ330の2段目のスイッチが押されており、且つ、体動量の定量化値が一定期間Sにおいて所定の閾値thを下回っているため、画像演算ユニット420は、コンソール部320に対して曝射許可信号を送信している。その後、期間T2に示す放射線撮影部100が蓄積状態に遷移すると、制御ユニット200は、コンソール部320に対して曝射許可信号を送信している。 At the time point (p) shown in FIG. 7, the second-stage switch of the exposure switch 330 is pressed, and the quantified value of the body movement amount is below the predetermined threshold value th in S for a certain period of time. The image calculation unit 420 transmits an exposure permission signal to the console unit 320. After that, when the radiography unit 100 shown in the period T2 transitions to the accumulation state, the control unit 200 transmits an exposure permission signal to the console unit 320.
 第2の実施形態においても、上述した第1の実施形態と同様に、体動しやすい被写体Hの放射線撮影においても、適切なタイミング(被写体Hの体動が収まったタイミング)で、放射線撮影に係る動作を行うことができる。 In the second embodiment as well as in the first embodiment described above, in the radiography of the subject H which is easy to move, the radiography is performed at an appropriate timing (the timing when the body movement of the subject H is settled). Such an operation can be performed.
 (第3の実施形態)
 次に、本発明の第3の実施形態について説明する。なお、以下に記載する第3の実施形態の説明では、上述した第1及び第2の実施形態と共通する事項については説明を省略し、上述した第1及び第2の実施形態と異なる事項について説明を行う。
(Third embodiment)
Next, a third embodiment of the present invention will be described. In the description of the third embodiment described below, the description of the matters common to the above-mentioned first and second embodiments is omitted, and the matters different from the above-mentioned first and second embodiments are described. Give an explanation.
 第3の実施形態は、放射線撮影システムの応用例を示す形態である。 The third embodiment is a form showing an application example of the radiography system.
 図8は、本発明の第3の実施形態に係る放射線撮影システムの概略構成の一例を示す図である。具体的に、図8は、上述した第1及び第2の実施形態に係る放射線撮影システム10を、X線撮影システムに適用した例である。この図8において、図1に示す構成と同様の構成については同じ符号を付しており、その詳細な説明は省略する。 FIG. 8 is a diagram showing an example of a schematic configuration of a radiography system according to a third embodiment of the present invention. Specifically, FIG. 8 is an example in which the radiographic imaging system 10 according to the first and second embodiments described above is applied to an X-ray imaging system. In FIG. 8, the same components as those shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
 具体的に、図8のX線チューブ6050は、例えば図1の放射線発生装置300に対応する構成である。また、図8のイメージプロセッサ6070は、例えば図1の制御ユニット200及び制御用PC本体510に対応する構成である。また、図8のディスプレイ6080は、例えば図1のディスプレイ520に対応する構成である。また、図8の患者6060の胸部6061は、例えば図1の被写体Hに対応する構成である。なお、図8に示す例では、図1のカメラ400に相当する構成は不図示としている。 Specifically, the X-ray tube 6050 in FIG. 8 has a configuration corresponding to, for example, the radiation generator 300 in FIG. Further, the image processor 6070 of FIG. 8 has a configuration corresponding to, for example, the control unit 200 of FIG. 1 and the control PC main body 510. Further, the display 6080 in FIG. 8 has a configuration corresponding to, for example, the display 520 in FIG. Further, the chest 6061 of the patient 6060 in FIG. 8 has a configuration corresponding to, for example, the subject H in FIG. In the example shown in FIG. 8, the configuration corresponding to the camera 400 in FIG. 1 is not shown.
 図8に示すように、放射線発生装置であるX線チューブ6050で発生したX線6051は、被写体である患者6060の胸部6061を透過し、画素アレイを含み構成されている放射線撮影部100に入射する。この放射線撮影部100に入射したX線6051には、患者6060の体内部の情報が含まれている。そして、放射線撮影部100では、画素アレイにおいて入射したX線6051に対応して放射線画像に係る電気信号を取得する。放射線画像に係る電気信号は、信号処理手段であるイメージプロセッサ6070によって画像処理され、コントロールルームの表示手段であるディスプレイ6080に放射線画像として表示されて観察することができる。 As shown in FIG. 8, the X-ray 6051 generated by the X-ray tube 6050, which is a radiation generator, passes through the chest 6061 of the patient 6060, which is the subject, and is incident on the radiography unit 100 including the pixel array. do. The X-ray 6051 incident on the radiography unit 100 contains information on the inside of the body of the patient 6060. Then, the radiation photographing unit 100 acquires an electric signal related to the radiation image corresponding to the X-rays 6051 incident on the pixel array. The electrical signal related to the radiographic image is image-processed by the image processor 6070, which is a signal processing means, and can be displayed and observed as a radiographic image on the display 6080, which is a display means of the control room.
 また、イメージプロセッサ6070で処理された放射線画像に係る電気信号は、電話回線等の伝送処理手段6090によって遠隔地に転送することができる。これにより、別の場所にあるドクタールーム等に設置された表示手段であるディスプレイ6081に表示もしくは光ディスク等の記録手段に保存でき、遠隔地の医師が患者6060を診断することも可能である。また、記録手段であるフィルムプロセッサ6100によって記録媒体となるフィルム6110に記録することもできる。 Further, the electric signal related to the radiographic image processed by the image processor 6070 can be transferred to a remote place by a transmission processing means 6090 such as a telephone line. As a result, it can be displayed on a display 6081, which is a display means installed in a doctor's room or the like in another place, or stored in a recording means such as an optical disk, and a doctor at a remote place can diagnose the patient 6060. Further, the film processor 6100, which is a recording means, can record on the film 6110, which is a recording medium.
 (その他の実施形態)
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
(Other embodiments)
The present invention supplies a program that realizes one or more functions of the above-described embodiment to a system or device via a network or storage medium, and one or more processors in the computer of the system or device reads and executes the program. It can also be realized by the processing to be performed. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
 このプログラム及び当該プログラムを記憶したコンピュータ読み取り可能な記憶媒体は、本発明に含まれる。 This program and a computer-readable storage medium that stores the program are included in the present invention.
 なお、上述した本発明の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。即ち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。 It should be noted that the above-described embodiments of the present invention are merely examples of embodiment of the present invention, and the technical scope of the present invention should not be construed in a limited manner by these. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or its main features.
 本願は、2020年5月28日提出の日本国特許出願特願2020-093302を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2020-093302 submitted on May 28, 2020, and all the contents thereof are incorporated herein by reference.

Claims (14)

  1.  被写体を透過した放射線を電気信号に変換する画素が2次元状に配置された画素アレイを含む第1の撮影手段と、
     前記第1の撮影手段とは別に設けられ、少なくとも前記第1の撮影手段による放射線撮影の前に前記被写体の動きに係る複数の画像を撮影する第2の撮影手段と、
     前記第2の撮影手段によって得られた前記複数の画像を演算処理して、前記被写体の体動量に係る情報を算出する演算手段と、
     前記放射線の曝射開始指示に係る情報と、前記演算手段によって算出された前記体動量に係る情報とに基づいて、前記第1の撮影手段が前記放射線を前記電気信号に変換して前記電気信号を蓄積可能な状態に遷移するように制御する制御手段と、
     を有することを特徴とする放射線撮影システム。
    A first photographing means including a pixel array in which pixels for converting radiation transmitted through a subject into an electric signal are arranged two-dimensionally, and
    A second photographing means, which is provided separately from the first photographing means and captures a plurality of images related to the movement of the subject at least before the radiation photographing by the first photographing means.
    An arithmetic means for calculating information related to the amount of body movement of the subject by arithmetically processing the plurality of images obtained by the second photographing means.
    Based on the information related to the radiation exposure start instruction and the information related to the body movement amount calculated by the calculation means, the first photographing means converts the radiation into the electric signal and the electric signal. A control means that controls the transition to an accumulable state,
    A radiography system characterized by having.
  2.  前記制御手段は、前記放射線の曝射開始指示に係る情報が入力され、且つ、前記演算手段によって算出された前記体動量に係る情報が所定の閾値を下回った場合に、前記第1の撮影手段が前記電気信号を蓄積可能な状態に遷移するように制御することを特徴とする請求項1に記載の放射線撮影システム。 The control means is the first photographing means when the information related to the radiation exposure start instruction is input and the information related to the body movement amount calculated by the calculation means falls below a predetermined threshold value. The radiological imaging system according to claim 1, wherein the radiological signal is controlled so as to transition to a state in which the electric signal can be accumulated.
  3.  前記制御手段は、前記放射線の曝射開始指示に係る情報が入力され、且つ、前記演算手段によって算出された前記体動量に係る情報が一定期間において所定の閾値を下回った場合に、前記第1の撮影手段が前記電気信号を蓄積可能な状態に遷移するように制御することを特徴とする請求項1に記載の放射線撮影システム。 The control means is the first when the information related to the radiation exposure start instruction is input and the information related to the body movement amount calculated by the calculation means falls below a predetermined threshold value in a certain period. The radiological imaging system according to claim 1, wherein the imaging means is controlled so as to transition to a state in which the electric signal can be accumulated.
  4.  前記一定期間は、前記放射線の照射時間に基づき決定されることを特徴とする請求項3に記載の放射線撮影システム。 The radiography system according to claim 3, wherein the fixed period is determined based on the irradiation time of the radiation.
  5.  前記所定の閾値は、変更可能であることを特徴とする請求項2乃至4のいずれか1項に記載の放射線撮影システム。 The radiography system according to any one of claims 2 to 4, wherein the predetermined threshold value can be changed.
  6.  前記制御手段は、前記第1の撮影手段が前記電気信号を蓄積可能な状態に遷移するように制御するのに際して、前記画素アレイに蓄積されている前記電気信号の読み出しを停止する制御を行うことを特徴とする請求項1乃至5のいずれか1項に記載の放射線撮影システム。 The control means controls to stop reading the electric signal stored in the pixel array when the first photographing means controls to transition to a state in which the electric signal can be stored. The radiography system according to any one of claims 1 to 5, wherein the radiography system is characterized.
  7.  前記制御手段は、前記第1の撮影手段が前記電気信号を蓄積可能な状態に遷移するように制御するのに際して、前記画素アレイの少なくとも一部の前記画素に蓄積された前記電気信号の読み出しを行った後に、前記画素アレイに蓄積されている前記電気信号の読み出しを停止する制御を行うことを特徴とする請求項1乃至5のいずれか1項に記載の放射線撮影システム。 The control means reads out the electric signal stored in at least a part of the pixels of the pixel array when the first photographing means controls the transition to a state in which the electric signal can be stored. The radiography system according to any one of claims 1 to 5, wherein the control is performed to stop reading the electric signal stored in the pixel array after the operation.
  8.  前記制御手段は、前記第1の撮影手段が前記電気信号を蓄積可能な状態に遷移するように制御するのに際して、前記第1の撮影手段に画像出力を得るために必要な電力を供給する制御を行うことを特徴とする請求項1乃至7のいずれか1項に記載の放射線撮影システム。 The control means controls to supply electric power necessary for obtaining an image output to the first photographing means when controlling the first photographing means to transition to a state in which the electric signal can be accumulated. The radiography system according to any one of claims 1 to 7, wherein the radiography system is characterized in that.
  9.  前記制御手段または前記演算手段は、前記第1の撮影手段が前記電気信号を蓄積可能な状態に遷移する際に、前記放射線の曝射を許可する曝射許可信号を前記放射線を発生させる放射線発生装置に対して送信することを特徴とする請求項1乃至8のいずれか1項に記載の放射線撮影システム。 When the control means or the calculation means transitions to a state in which the first photographing means can store the electric signal, the radiation generation that causes the radiation to generate an exposure permission signal that permits the exposure of the radiation. The radiography system according to any one of claims 1 to 8, wherein the radiological imaging system is transmitted to an apparatus.
  10.  前記制御手段は、前記第1の撮影手段が前記電気信号を蓄積可能な状態に遷移する途中において、前記演算手段によって算出された前記体動量に係る情報に基づき前記遷移を中止する制御を行うことを特徴とする請求項1乃至9のいずれか1項に記載の放射線撮影システム。 The control means controls to stop the transition based on the information related to the body movement amount calculated by the calculation means while the first photographing means transitions to a state in which the electric signal can be accumulated. The radiography system according to any one of claims 1 to 9, wherein the radiography system is characterized.
  11.  前記制御手段は、前記第1の撮影手段が前記電気信号を蓄積可能な状態に遷移するように制御する過程が複数あり、複数の前記過程に対応する、前記演算手段によって算出された複数の前記体動量に係る情報に基づいて、前記遷移を順次進めることを特徴とする請求項1乃至10のいずれか1項に記載の放射線撮影システム。 The control means has a plurality of processes for controlling the first photographing means so as to transition to a state in which the electric signal can be accumulated, and the plurality of the control means calculated by the calculation means corresponding to the plurality of the processes. The radiography system according to any one of claims 1 to 10, wherein the transition is sequentially advanced based on the information relating to the amount of body movement.
  12.  前記演算手段は、前記複数の画像に対して前記被写体におけるエッジを検出する処理を行って、前記被写体の体動量に係る情報を算出することを特徴とする請求項1乃至11のいずれか1項に記載の放射線撮影システム。 One of claims 1 to 11, wherein the calculation means performs a process of detecting an edge in the subject on the plurality of images to calculate information relating to the amount of body movement of the subject. The radiography system described in.
  13.  被写体を透過した放射線を電気信号に変換する画素が2次元状に配置された画素アレイを含む第1の撮影手段と、前記第1の撮影手段とは別に設けられ、少なくとも前記第1の撮影手段による放射線撮影の前に前記被写体の動きに係る複数の画像を撮影する第2の撮影手段と、を備える放射線撮影システムの制御方法であって、
     前記第2の撮影手段によって得られた前記複数の画像を演算処理して、前記被写体の体動量に係る情報を算出する演算ステップと、
     前記放射線の曝射開始指示に係る情報と、前記演算ステップによって算出された前記体動量に係る情報とに基づいて、前記第1の撮影手段が前記放射線を前記電気信号に変換して前記電気信号を蓄積可能な状態に遷移するように制御する制御ステップと、
     を有することを特徴とする放射線撮影システムの制御方法。
    A first photographing means including a pixel array in which pixels for converting radiation transmitted through a subject into an electric signal are arranged two-dimensionally, and the first photographing means are provided separately from the first photographing means, and at least the first photographing means. It is a control method of a radiographic imaging system including a second imaging means for capturing a plurality of images related to the movement of the subject before radiological imaging by
    A calculation step of calculating the information related to the body movement amount of the subject by performing calculation processing on the plurality of images obtained by the second photographing means, and
    Based on the information related to the radiation exposure start instruction and the information related to the body movement amount calculated by the calculation step, the first photographing means converts the radiation into the electric signal and the electric signal. A control step that controls the transition to an accumulable state,
    A method of controlling a radiography system, characterized in that it has.
  14.  被写体を透過した放射線を電気信号に変換する画素が2次元状に配置された画素アレイを含む第1の撮影手段と、前記第1の撮影手段とは別に設けられ、少なくとも前記第1の撮影手段による放射線撮影の前に前記被写体の動きに係る複数の画像を撮影する第2の撮影手段と、を備える放射線撮影システムの制御方法をコンピュータに実行させるためのプログラムであって、
     前記第2の撮影手段によって得られた前記複数の画像を演算処理して、前記被写体の体動量に係る情報を算出する演算ステップと、
     前記放射線の曝射開始指示に係る情報と、前記演算ステップによって算出された前記体動量に係る情報とに基づいて、前記第1の撮影手段が前記放射線を前記電気信号に変換して前記電気信号を蓄積可能な状態に遷移するように制御する制御ステップと、
     をコンピュータに実行させるためのプログラム。
    A first photographing means including a pixel array in which pixels for converting radiation transmitted through a subject into an electric signal are arranged two-dimensionally, and the first photographing means are provided separately from the first photographing means, and at least the first photographing means. A program for causing a computer to execute a control method of a radiography imaging system including a second imaging means for capturing a plurality of images related to the movement of the subject before radiography.
    A calculation step of calculating the information related to the body movement amount of the subject by performing calculation processing on the plurality of images obtained by the second photographing means, and
    Based on the information related to the radiation exposure start instruction and the information related to the body movement amount calculated by the calculation step, the first photographing means converts the radiation into the electric signal and the electric signal. A control step that controls the transition to an accumulable state,
    A program that lets your computer run.
PCT/JP2021/018205 2020-05-28 2021-05-13 Radiation-imaging system and control method thereof, and program WO2021241248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-093302 2020-05-28
JP2020093302A JP2021186199A (en) 2020-05-28 2020-05-28 Radiographic system and control method thereof, and program

Publications (1)

Publication Number Publication Date
WO2021241248A1 true WO2021241248A1 (en) 2021-12-02

Family

ID=78744025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018205 WO2021241248A1 (en) 2020-05-28 2021-05-13 Radiation-imaging system and control method thereof, and program

Country Status (2)

Country Link
JP (1) JP2021186199A (en)
WO (1) WO2021241248A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028367A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Radiation image photographing system
JP2010264250A (en) * 2010-06-09 2010-11-25 Canon Inc X-ray radiographing apparatus
US20140378816A1 (en) * 2013-06-21 2014-12-25 Samsung Electronics Co., Ltd. Information providing method and medical diagnosis apparatus for providing information
JP2015057246A (en) * 2014-12-25 2015-03-26 キヤノン株式会社 Radiation imaging apparatus, radiation imaging method, record medium, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009028367A (en) * 2007-07-27 2009-02-12 Fujifilm Corp Radiation image photographing system
JP2010264250A (en) * 2010-06-09 2010-11-25 Canon Inc X-ray radiographing apparatus
US20140378816A1 (en) * 2013-06-21 2014-12-25 Samsung Electronics Co., Ltd. Information providing method and medical diagnosis apparatus for providing information
JP2015057246A (en) * 2014-12-25 2015-03-26 キヤノン株式会社 Radiation imaging apparatus, radiation imaging method, record medium, and program

Also Published As

Publication number Publication date
JP2021186199A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
JP6990986B2 (en) Radiation imaging device, radiation imaging system, control method and program of radiation imaging device
JP5105940B2 (en) Imaging apparatus, imaging system, control method thereof, and program
JP5405093B2 (en) Image processing apparatus and image processing method
US9615811B2 (en) Radiation imaging apparatus and method for controlling the same
JP6929104B2 (en) Radiation imaging device, radiation imaging system, control method and program of radiation imaging device
US20060008049A1 (en) X-ray-tomographic imaging apparatus, X-ray-tomographic imaging method, and program
JP6609119B2 (en) Radiographic apparatus, radiographic method, radiographic system, and program
JP4258832B2 (en) X-ray diagnostic imaging equipment
JPH11311673A (en) Radiation image-pickup device
JP2009195612A (en) Radiographic imaging apparatus
JP5013718B2 (en) Radiation image acquisition apparatus and method
JP2011143138A (en) Radiographic method and x-ray equipment
WO2021241248A1 (en) Radiation-imaging system and control method thereof, and program
JP5179946B2 (en) Radiation image processing method and apparatus
JP5152979B2 (en) Radiation image processing method and apparatus
JP2007054484A (en) Radiography device
JP2019115557A (en) Radiography apparatus and radiography system
JP6041856B2 (en) Radiation imaging system, control method, recording medium, and program
JP7487159B2 (en) Medical image processing device, medical image processing method and program
JP2019136388A (en) Radiation imaging apparatus, driving method thereof, and program
JP2005117590A (en) Radioactive ray image photographing system and radioactive ray image sensing processor
JP2012120200A (en) Photographic device, image processing device, photographic system, radiographic device, and image processing method
WO2015087610A1 (en) Radiation imaging device, and radiation imaging system
JP2011167423A (en) Radiographic apparatus, method, and program
JP2003014848A (en) Radiation imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814368

Country of ref document: EP

Kind code of ref document: A1