WO2021241145A1 - Polyester resin composition, molded resin object obtained therefrom, and production method therefor - Google Patents

Polyester resin composition, molded resin object obtained therefrom, and production method therefor Download PDF

Info

Publication number
WO2021241145A1
WO2021241145A1 PCT/JP2021/017294 JP2021017294W WO2021241145A1 WO 2021241145 A1 WO2021241145 A1 WO 2021241145A1 JP 2021017294 W JP2021017294 W JP 2021017294W WO 2021241145 A1 WO2021241145 A1 WO 2021241145A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
resin composition
acid unit
mass
mol
Prior art date
Application number
PCT/JP2021/017294
Other languages
French (fr)
Japanese (ja)
Inventor
雅幸 小納
重夫 巽
Original Assignee
東英通商株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東英通商株式会社 filed Critical 東英通商株式会社
Priority to JP2022527622A priority Critical patent/JPWO2021241145A1/ja
Publication of WO2021241145A1 publication Critical patent/WO2021241145A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a polyester resin composition, a resin molded product using the polyester resin composition, and a method for producing the same.
  • bento and side dish containers sold at convenience stores are made by heating a thermoplastic resin sheet such as polyethylene terephthalate (PET) or polypropylene (PP) into the shape of a tray or cup using a vacuum forming machine, for example. Is manufactured.
  • a thermoplastic resin sheet such as polyethylene terephthalate (PET) or polypropylene (PP) into the shape of a tray or cup using a vacuum forming machine, for example. Is manufactured.
  • PET Since PET is used in an amorphous state in the manufacture of the container, it is also called A-PET (amorphous PET). Since A-PET is hardly crystallized, heat resistance can only be obtained up to a temperature at which the amorphous portion exhibits a glass transition. Since the glass transition temperature of A-PET is as low as about 70 ° C., it is generally inferior in heat resistance, and the practical range of use is significantly limited at present, for example, in the field of heat-resistant containers used in microwave ovens. ..
  • C-PET crystallized PET
  • C-PET crystallized PET
  • Patent Documents 3 to 5 propose a method of controlling the size of spherulites to improve the crystallinity and achieve both transparency by adding a nucleating agent to PET.
  • the crystallization rate may become too fast due to the effect of the crystal nucleating agent, the molding processing conditions may be significantly narrowed, and the productivity may be poor.
  • Patent Document 6 discloses a sheet in which a polyester sheet is heat-stretched in the vertical direction and the horizontal direction to promote the orientation and crystallization of molecular chains and to achieve both transparency and heat resistance.
  • a polyester sheet is heat-stretched in the vertical direction and the horizontal direction to promote the orientation and crystallization of molecular chains and to achieve both transparency and heat resistance.
  • the conventional crystallized sheet can improve the heat resistance, it cannot be thermoformed unless it is heated above the melting point, and the crystallinity is eventually lowered, so that the heat resistance should be satisfied with the molded product. Was not able to be granted.
  • Patent Document 7 includes a layer made of polyethylene terephthalate (thermoplastic resin A) and a layer made of polybutylene terephthalate (thermoplastic resin B), and the average layer thickness is 12 nm or less and the total number of layers is 12 nm or less.
  • a laminated biaxially oriented polyester film having 1001 or more is disclosed. This film has rigidity and dimensional stability and can be formed by various methods such as vacuum forming, vacuum forming, plug-assisted vacuum forming, press forming, in-mold forming, etc. It is hard to say that it is suitable for heat molding to obtain a three-dimensional shape.
  • An object of the present invention is to solve the above-mentioned problems, and an object thereof is to obtain a thermoformed product having excellent moldability, heat resistance and transparency without the load of additional equipment or the like.
  • a polyester resin composition, a resin molded product using the same, and a method for producing the same are provided.
  • the present invention is a polyester resin composition containing polyesters (A) and polyesters (B) that are different from each other, wherein the polyester (A) contains ethylene glycol units and terephthalic acid units.
  • the polyester (B) contains the ethylene glycol unit, the isophthalic acid unit, and the terephthalic acid unit.
  • the mass ratio ((A) / (B)) of the polyester (A) to the polyester (B) is 90/10 to 40/60, and the isophthalic acid unit (IP) in the polyester (B).
  • the glass transition temperature of the entire composition rises by 3 ° C. or more.
  • the polyester resin composition of the present invention further contains a plasticizer (C), wherein the plasticizer (C) is an acetylated monoglyceride, a propylene glycol fatty acid ester, a fatty acid triglyceride, 190-210 ° C. At least one compound selected from the group consisting of a copolymerized polyester having a melting point and a sorbitan fatty acid ester.
  • the polyester resin composition of the present invention further comprises a nucleating agent (D), wherein the nucleating agent (D) is magnesium stearate, calcium sulfate, barium sulfate, magnesium oxide, talc, and polypropylene. It is at least one compound selected from the group consisting of.
  • the polyester resin composition of the present invention has a haze value of 8% or less when processed into a molded product having a thickness of 0.3 mm according to JIS K7136.
  • the present invention is also a resin molded body molded using the above polyester resin composition.
  • the present invention is also a method for producing the polyester resin composition.
  • the polyester (A) is a mixture of the polyester (A) containing an ethylene glycol unit and a terephthalic acid unit, and the polyester (B) containing the ethylene glycol unit, an isophthalic acid unit and the terephthalic acid unit.
  • the temperature below the glass transition temperature of the resin mixture in the step (S3) of cooling the molten resin mixture is 15 ° C to 60 ° C.
  • the temperature exceeding the glass transition temperature of the resin mixture in the step (S4) of heating the cooled resin mixture is 80 ° C to 90 ° C.
  • the polyester resin composition of the present invention can be softened and molded in an appropriate temperature range while maintaining high crystallinity, that is, heat resistance while maintaining transparency.
  • the equipment used in the conventional resin molding field can be used as it is without requiring special equipment in the present invention for manufacturing such a molded product.
  • polyester resin composition contains different polyesters, namely polyester (A) and polyester (B).
  • the polyester (A) is a polyester containing a terephthalic acid unit (TP) and an ethylene glycol unit (EG).
  • the polyester (A) is a dicarboxylic acid unit (DC A ) other than the terephthalic acid unit (TP) and / or a dihydroxy other than the ethylene glycol unit as long as it does not interfere with the crystallinity of the entire obtained polyester resin composition. It may contain a compound unit (DH A).
  • dicarboxylic acid examples include aromatic dicarboxylic acids such as orthophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, and diphenoxyetanedicarboxylic acid; adipic acid, sebacic acid, and azeline.
  • aromatic dicarboxylic acids such as orthophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, and diphenoxyetanedicarboxylic acid
  • adipic acid sebacic acid, and azeline.
  • aliphatic dicarboxylic acids such as acids and decandicarboxylic acids
  • alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, cyclopropanedicarboxylic acid and hexahydroterephthalic acid; and combinations thereof.
  • dihydroxy compound that can constitute another dihydroxy compound unit examples include aliphatic glycols such as trimethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, and dodecamethylene glycol; cyclohexanedimethanol.
  • Alicyclic glycols such as; bisphenols; aromatic diols such as hydroquinone, 2,2-bis (4- ⁇ -hydroxyethoxyphenyl) propane; and combinations thereof;
  • the total amount of other dicarboxylic acid units (DC A ) and other dihydroxy compound units (DH A ) in the polyester (A) is preferably 1 mol% or less, more preferably 0.5 mol% or less. More preferably, it is 0.1 mol% or less.
  • the polyester (A) is most preferably composed of a terephthalic acid unit (TP) and an ethylene glycol unit (EG) because the crystallinity of the obtained polyester resin composition can be most enhanced.
  • the polyester (A) may contain a structural unit derived from a monofunctional compound such as benzoylbenzoic acid, diphenylsulfone monocarboxylic acid, stearic acid, and methoxypolyethylene glycol.
  • the content of the monofunctional compound in the polyethylene terephthalate resin (A) is not necessarily limited, but is preferably 1 mol% or less, more preferably 0.5 mol% or less, still more preferably 0.1 mol% or less. Is.
  • the polyester (B) is a polyester containing a terephthalic acid unit (TP), an isophthalic acid unit (IP), and an ethylene glycol unit (EG).
  • the polyester (B) is a dicarboxylic acid unit (DC B ) and / or ethylene other than the terephthalic acid unit (TP) and the isophthalic acid unit (IP) as long as it does not interfere with the crystallinity of the entire obtained polyester resin composition. It may contain a dihydroxy compound unit (DH B) other than the glycol unit.
  • dicarboxylic acid examples include aromatic dicarboxylic acids such as orthophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, and diphenoxyetanedicarboxylic acid; adipic acid, sebacic acid, and azeline.
  • aromatic dicarboxylic acids such as orthophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, and diphenoxyetanedicarboxylic acid
  • adipic acid sebacic acid, and azeline.
  • aliphatic dicarboxylic acids such as acids and decandicarboxylic acids
  • alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, cyclopropanedicarboxylic acid and hexahydroterephthalic acid; and combinations thereof.
  • dihydroxy compound that can constitute another dihydroxy compound (DH B ) examples include aliphatic glycols such as trimethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, and dodecamethylene glycol; cyclohexanedimethanol.
  • Alicyclic glycols such as; bisphenols; aromatic diols such as hydroquinone, 2,2-bis (4- ⁇ -hydroxyethoxyphenyl) propane; and combinations thereof;
  • the total amount of other dicarboxylic acid units (DC B ) and other dihydroxy compound units (DH B ) in the polyester (B) is preferably 1 mol% or less, more preferably 0.5 mol% or less. More preferably, it is 0.1 mol% or less.
  • the polyester (B) is most preferably composed of a terephthalic acid unit (TP), an isophthalic acid unit (IP), and an ethylene glycol unit (EG) because the crystallinity of the obtained polyester resin composition can be easily controlled. ..
  • the polyester (B) may contain a structural unit derived from a monofunctional compound such as benzoylbenzoic acid, diphenylsulfone monocarboxylic acid, stearic acid, and methoxypolyethylene glycol.
  • the content of the monofunctional compound in the polyethylene terephthalate resin (A) is not necessarily limited, but is preferably 1 mol% or less, more preferably 0.5 mol% or less, still more preferably 0.1 mol% or less. Is.
  • the molar ratio ((IP) / (TP)) of the isophthalic acid unit (IP) and the terephthalic acid unit (TP) in the polyester (B) is 1/99 to 5/95, preferably 1 /. It is 99 to 3.5 / 96.5, more preferably 1.5 / 98.5 to 3/97.
  • the molar ratio ((IP) / (TP)) is less than 1/99 (that is, the amount (number of moles) of isophthalic acid unit (IP) is smaller than that of 1/90 and the amount of terephthalic acid unit (TP) is (When the amount (number of moles) is large), the obtained resin composition may have high crystallinity as a whole and may easily become cloudy.
  • the molar ratio ((IP) / (TP)) of the polyester (B) may have a distribution among the molecules constituting the polyester (B). In that case, the molar ratio ((IP) / (TP)) of the polyester (B) is preferably within the above range as an average value.
  • the polyester (A) and the polyester (B) have a mass ratio ((A) / (B)) of the polyester (A) to the polyester (B) of 90/10 to 40/60. It is contained in a proportion of preferably 88/12 to 50/50, preferably 85/15 to 60/40, more preferably 85/15 to 70/30, and further preferably 80/20 to 70/30. .. It is obtained when the mass ratio ((A) / (B)) is less than 90/10 (that is, when the content of polyester (A) is higher and the content of polyester (B) is lower than 90/10). In the resin composition, when the polyester (A) is crystallized, the entire resin composition tends to become cloudy due to the influence thereof.
  • the mass ratio ((A) / (B)) is less than 40/60 (that is, the content of the polyester (A) is smaller than the mass ratio of 40/60 ((A) / (B)) and the polyester (that is, When the content of B) is large), in the obtained resin composition, the crystallinity of the entire resin composition is lowered due to the decrease in the content of the polyester (A), and sufficient heat resistance cannot be exhibited.
  • Polyester is generally a crystalline polymer, and a crystalline portion and an amorphous portion are mixed, and the crystallinity, which is the ratio of the crystallized portion, varies depending on conditions such as temperature history.
  • Polyester (A) having an ethylene glycol unit and a terephthalic acid unit as its main constituent units has high crystallinity (that is, a relatively high crystallization rate) and easily has a high crystallinity.
  • terephthalic acid is a dicarboxylic acid in which two carxyl groups are present at the para position in the benzene ring, and the polyester tends to be linear, easy to pack, and easy to take a crystal structure.
  • the crystallinity is high, the crystals are easy to grow, the thickness of the crystals is increased, and the crystals become larger spherulites, which have the property of easily becoming cloudy as a resin composition.
  • polyester (B) whose main constituent units are ethylene glycol unit, isophthalic acid unit, and terephthalic acid unit has two calcyl groups in isophthalic acid at the meso position, so that terephthal exists at the para position.
  • the crystallinity is lower than that of the polyester (A) of the acid. Its crystallinity varies depending on the abundance ratio of isophthalic acid. The larger the number of isophthalic acid units, the lower the crystallinity. For example, if the proportion of the dicarboxylic acid exceeds 20 mol%, it may be difficult to crystallize.
  • the crystallinity of the obtained polyester resin composition can be controlled by mixing the polyester (A) and the polyester (B). That is, for example, polyester (A) alone has high crystallinity and may grow to large spherulites and become cloudy.
  • polyester (B) by mixing the polyester (B) having a structure relatively similar to that of the polyester (A), the polyester (A) and the polyester (B) are highly compatible with each other, and the polyester (A) can be used.
  • the molecules constituting the polyester (B) can be arranged around the constituent molecules.
  • the polyester (B) which is relatively inferior in crystallinity, suppresses the crystal growth of the polyester (A), and the polyester (B) also grows moderately. You can control the size.
  • the crystal diameter contained therein can be set to 300 nm or less for the above reason. Therefore, the crystal diameter is controlled to be smaller than the wavelength of visible light (for example, 360 nm to 700 nm), and as a result, a transparent resin composition can be obtained while crystallizing.
  • the polyester resin composition of the present invention by coexisting the polyester (A) and the polyester (B), it is possible to arrange the crystallization state in the composition with a stepwise change such as a gradation. Is. As a result, the difference in refractive index in the composition can be made stepwise. That is, by containing the isophthalic acid unit (IP), the polyester (B) has a lower crystallinity than the polyester (A) and a higher crystallinity than the amorphous portion.
  • IP isophthalic acid unit
  • the refractive index is also between the polyester (A) and the amorphous portion. Therefore, the difference in the refractive index between the constituents of the polyester resin composition becomes small, which makes it possible to suppress the opacity of the resin composition. Further, the molar ratio ((IP) / (TP)) of the phthalic acid units (that is, the isophthalic acid unit (IP) and the terephthalic acid unit (TP)) in the polyester (B) contained in the polyester resin composition is distributed. By having The difference in refractive acid between the components becomes smaller, which can further suppress the opacity of the polyester resin composition.
  • the crystallinity of the entire resin composition can be controlled by mixing the polyester (A) with the polyester (B) having different crystallinity.
  • the polyester (B) may be two or more polyesters having different crystallinities ((B1), (B2)). , (B3) ...) may be contained in the resin composition in a combined form.
  • the polyester (B) is composed of a combination of the polyesters (B1), (B2) and (B3) (the crystallinity of each of the polyesters (B1), (B2) and (B3) is (B1), If the order of (B2) and (B3) is lower (assuming (B1)> (B2)> (B3)), the content of polyester (B1), (B2) and (B3) in the polyester (B). May be substantially identical, may decrease in the order of (B1), (B2) and (B3), or increase in the order of (B1), (B2) and (B3). It may be a thing.
  • the polyester (B) is composed of a combination of a plurality of types of polyesters as described above, various crystallizations are carried out in the polyester resin composition together with the polyester (A).
  • the transparency of the resulting resin composition can be enhanced by coexisting polyester having a degree.
  • the crystal diameter can be reduced by arranging the polyester (B) around the polyester (A) as described above, but by reducing the crystal diameter by the same crystallization, the crystal diameter can be reduced.
  • the number of amorphous parts to be arranged is relatively large. In the amorphous part arranged around the crystal, the molecule becomes more difficult to move than in the completely amorphous state. Therefore, in the present invention, it has been found that the glass transition temperature, which is an amorphous thermal characteristic, also shifts to the high temperature side.
  • the glass transition temperature of the entire composition is preferably 3 ° C. or higher, more preferably 5 ° C. or higher, still more preferably 5 ° C. or higher when the crystallinity is changed from 0% to 20%.
  • the increase in the glass transition temperature means that the softening due to the rubber state of the amorphous portion is superior to the holding power of the crystalline portion, and the temperature of thermal deformation becomes higher, whereby the heat resistance of the resin composition becomes higher. It will rise further.
  • the polyester (A) and the polyester (B) can be produced according to a known polycondensation method such as that used in the production of a conventional polyethylene terephthalate resin.
  • the dicarboxylic acid may be supplied to the reaction system as a dicarboxylic acid, or may be supplied as a diol ester of the dicarboxylic acid.
  • ethylene glycol as a dihydroxy compound may be supplied as ethylene glycol, or may be supplied to the reaction system in the form of a dihydroxy ester of a dicarboxylic acid.
  • a known cocondensation catalyst used for the production of polyethylene terephthalate resin can be used as the catalyst used for the production of polyester.
  • these catalysts include metals such as antimony, germanium, titanium, and metal compounds thereof.
  • the metal compound include oxides, hydroxides, halides, inorganic acid salts, organic acid salts, complex salts, double salts, alcoholates, phenolates and the like.
  • the cocondensation catalyst may be used alone or in combination of two or more.
  • the cocondensation catalyst may be supplied to the reaction system from the initial stage of the esterification reaction or transesterification reaction, or may be supplied to the reaction system before shifting to the polycondensation reaction stage.
  • polyester (A) and polyester (B) In the production of polyester (A) and polyester (B), a catalyst for transesterification reaction, a diethylene glycol production inhibitor, a heat stabilizer, and a photostabilizer used in the production of polyethylene terephthalate resin during the above cocondensation.
  • Various additives such as agents, lubricants, pigments and dyes may be added.
  • Examples of the catalyst for the transesterification reaction include metal compounds such as calcium, magnesium, lithium, zinc, cobalt and manganese. Examples of the form of these metal compounds include oxides, hydroxides, halides, inorganic acid salts, organic acid salts and the like. Examples of the diethylene glycol production inhibitor include amines such as triethylamine and trin-butylamine. Examples include quaternary ammonium compounds such as tetraethylammonium hydrooxide and tetrabutylammonium hydrooxide. Examples of the heat stabilizer include phosphoric acid, phosphorous acid, hypophosphorous acid, and phosphoric acid compounds such as esters thereof. Examples of the light stabilizer include those known in the art. Examples of the lubricant include those known in the art. Examples of the pigment include those known in the art. Examples of the dye include those known in the art.
  • Both the polyester (A) and the polyester (B) can be produced by further increasing the molecular weight of the copolymerized polyester obtained by the above-mentioned polycondensation method through the solid-phase polycondensation method.
  • a solid-phase polycondensation method for example, the copolymerized polyester obtained by the melt polycondensation method is atomized, and the copolymerized polyester is granulated and granulated at a temperature below the melting point, preferably at a temperature of 180 ° C. to 240 ° C., for example, under vacuum.
  • a method of holding under an inert gas stream may be mentioned.
  • the polyester resin composition of the present invention may also contain a plasticizer.
  • plasticizers include acetylated monoglycerides, propylene glycol fatty acid esters, fatty acid triglycerides, copolymerized polyesters having a melting point of 190-210 ° C., and sorbitan fatty acid esters, and combinations thereof.
  • the plasticizer has high safety, and when mixed with the polyester resin composition, it can enhance the molecular mobility particularly at a low temperature and promote supercooling, that is, crystallization in a solid phase state. Therefore, it is possible to crystallize at a lower temperature, and it is possible to construct a finer crystal system for the obtained resin composition.
  • polyester resin composition of the present invention have particularly excellent compatibility with the polyester resin composition of the present invention, and even if the degree of crystallinity of the polyester composition changes and the abundance ratio of the amorphous part / crystal part changes when the polyester composition is cooled and heated from the molten state. It is used as a more suitable plasticizer because it does not become opaque or seep out.
  • plasticizers have good compatibility with each other, and can be added not only alone to the polyester composition but also in a mixture of two or more kinds.
  • the content of the thermoplastic agent is based on 100 parts by mass of the total mass of the polyester (A) and the polyester (B) from the viewpoint of improving the heat resistance, transparency, and moldability of the molded product obtained from the polyester resin composition. It is preferably 1 part by mass to 5 parts by mass, and more preferably 2 parts by mass to 4 parts by mass. If the content of the plasticizer is less than 1 part by mass, the effect of containing the plasticizer in the obtained polyester resin composition may be hardly obtained. When the content of the plasticizer exceeds 5 parts by mass, the effect of the plasticizer does not change any more in the obtained polyester resin composition, but rather the transparency of the resin composition may be lowered.
  • the polyester resin composition of the present invention may also contain a crystal nucleating agent.
  • the crystal nucleating agent preferably contains at least one compound selected from the group consisting of magnesium stearate, calcium sulfate, barium sulfate, magnesium oxide, talc, and polypropylene.
  • crystal nucleating agents not only become nuclei, but also act as lubricants by suppressing the entanglement of molecular chains, thereby improving the motility of the molecular chains and enabling crystallization at lower temperatures.
  • the target crystal thickness is small, which also helps to form a more transparent composition.
  • the content of the crystal nucleating agent is preferably 0. With respect to 100 parts by mass of the total mass of the polyester (A) and the polyester (B) from the viewpoint of improving the transparency of the molded product obtained from the polyester resin composition. It is 1 part by mass to 1.0 part by mass, more preferably 0.1 part by mass to 0.4 part by mass. If the content of the crystal nucleating agent is less than 0.1 parts by mass, the effect of containing the crystal nucleating agent may be hardly obtained in the obtained polyester resin composition. When the content of the crystal nucleating agent exceeds 1.0 part by mass, the effect of the crystal nucleating agent does not change any more in the obtained polyester resin composition, but rather the transparency of the resin composition may be lowered.
  • crystal nucleating agents may be contained in place of the crystal nucleating agent or in addition to the crystal nucleating agent.
  • examples of other crystal nucleating agents include inorganic crystal nucleating agents, organic crystal nucleating agents, and combinations thereof.
  • the inorganic crystal nucleating agent examples include metal salts such as natural or synthetic silicate compounds, titanium oxide, barium sulfate, tricalcium phosphate, calcium carbonate, and sodium phosphate, kaolinite, halloysite, talc, smectite, vermiculite, and mica. , Silica, potassium carbonate, magsium carbonate, magnesium oxide, calcium sulfate and the like.
  • the organic crystal nucleating agent include carboxylic acid amide, phenylphosphonic acid metal salt, calcium benzoate, calcium benzoate, magnesium stearate, zinc salicylate and the like.
  • carboxylic acid amides include ethylene bis fatty acid amides (eg, ethylene bisstearate amides and ethylene bisoleic acid amides), alkylene bis fatty acid amides (eg, propylene bis fatty acid amides and butylene bis fatty acid amides), and alkylene bishydroxy.
  • fatty acid amides for example, alkylene bishydroxystearic acid amides having an alkylene group having 1 to 6 carbon atoms, preferably ethylene bis 12-hydroxystearic acid amides).
  • the content of the other crystal nucleating agent is preferably based on 100 parts by mass of the total mass of the polyester (A) and the polyester (B) from the viewpoint of improving the transparency of the molded product obtained from the polyester resin composition. It is 0.1 part by mass to 1.0 part by mass, more preferably 0.1 part by mass to 0.5 part by mass. If the content of the other crystal nucleating agent is less than 0.1 parts by mass, the effect of containing the other crystal nucleating agent in the obtained polyester resin composition may be hardly obtained. When the content of the other crystal nucleating agent exceeds 1.0 part by mass, the effect of the other crystal nucleating agent does not change any more in the obtained polyester resin composition, but rather the transparency of the resin composition is lowered. There is a risk.
  • the polyester resin composition of the present invention may also contain a hydrolysis inhibitor.
  • the hydrolysis inhibitor include carbodiimide compounds such as polycarbodiimide compounds and monocarbodiimide compounds.
  • the polycarbodiimide compound is preferable from the viewpoint of improving the durability and impact resistance of the obtained polyester resin composition, and the monocarbodiimide compound is preferable from the viewpoint of not reducing the strength and moldability (fluidity) of the polyester resin composition. Further, from the viewpoint of further improving the strength, impact resistance, and moldability of the molded product obtained from the polyester resin composition, it is preferable to use monocarbodiimide and polycarbodiimide in combination.
  • polycarbodiimide compound examples include poly (4,4'-diphenylmethanecarbodiimide), poly (4,4'-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, and poly (1,). 3,5-Triisopropylbenzene and 1,3-diisopropylbenzene) polycarbodiimide and the like can be mentioned.
  • monocarbodiimide compound examples include N, N'-di-2,6-diisopropylphenylcarbodiimide and the like.
  • poly (4,4'-dicyclohexylmethanecarbodiimide) is commercially available from Nisshinbo Chemical Co., Ltd., for example, under the trade name of Carbodilite LA-1.
  • Poly (1,3,5-triisopropylbenzene) polycarbodiimide and poly (1,3,5-triisopropylbenzene and 1,3-diisopropylbenzene) polycarbodiimide are, for example, under the trade names of Stavaxol P and Stavaxol P-100. Each is commercially available from Rhein Chemie.
  • N, N'-di-2,6-diisopropylphenylcarbodiimide is commercially available from Rhein Chemie, for example, under the trade name of Stavaxol I.
  • the content of the hydrolysis inhibitor is based on 100 parts by mass of the total mass of the polyester (A) and the polyester (B) from the viewpoint of improving the transparency and moldability of the molded product obtained from the polyester resin composition. It is preferably 0.05 parts by mass to 3 parts by mass, and more preferably 0.10 parts by mass to 2 parts by mass. If the content of the hydrolysis inhibitor is less than 0.05 parts by mass, the effect of inhibiting hydrolysis may be reduced in the obtained polyester resin composition. When the content of the hydrolysis inhibitor exceeds 3 parts by mass, the hydrolysis resistance of the obtained polyester resin composition does not change any more, but rather the moldability of the resin composition is lowered. There is a risk.
  • the polyester resin composition of the present invention may contain other additives generally used for resin molding.
  • other additives include fillers (eg inorganic and organic fillers), flame retardants, antioxidants, lubricants such as hydrocarbon waxes or anionic surfactants, UV absorbers, antistatic agents.
  • fillers eg inorganic and organic fillers
  • antioxidants e.g., boron oxide, boron oxide, calcium carbonate, calcium carbonate, calcium carbonate, calcium carbonate, calcium carbonate, calcium carbonate, calcium carbonate, calcium carbonate, calcium carbonate, boronitride, boronitride, boronitride, boronitride, boronitride, boronitride, boronitride, boronitride, boronitride, boronitride, boronitride, boronitride, magnesium nitride, magnesium nitride, magnesium sulfate, magnesium stearate, magnesium
  • polyester resin composition of the present invention may contain other resins as long as the effects of the present invention are not impaired.
  • other resins include, but are not limited to, polyamide (PA), polyphenylene sulfide (PPS), liquid crystal polymers (LCP), polytetrafluoroethylene (PTFE), fluororesins, aramid resins, polyetheretherketone.
  • PEEK polyetherketone
  • PEK polyetherimide
  • PEI thermoplastic polyimide
  • PAI polyamideimide
  • PEKK polyetherketoneketone
  • PPE polyethersulfone
  • PSU polyallylate
  • PC polycarbonate
  • POM polyoxymethylene
  • PP polypropylene
  • PE polyethylene
  • TPX polymethylpentene
  • PS polystyrene
  • AS styrene copolymer
  • ABS acrylonitrile-butadiene-styrene copolymer
  • thermoplastic resins can be blended in a molten state by melt-kneading, but the thermoplastic resin may be made into fibrous or particulate forms and dispersed in the polyester resin composition of the present invention.
  • thermosetting resins such as unsaturated polyester resin, urethane resin, urea resin, melanin resin, phenol resin and epoxy resin can be mentioned.
  • an appropriate amount can be selected by those skilled in the art as long as the effects of the present invention are not impaired.
  • the polyester resin composition of the present invention has a haze value of preferably 8% or less, more preferably 5% or less, still more preferably 3% or less when processed into a molded product having a thickness of 0.3 mm according to JIS K7136. ..
  • haze value is 5% or less, sufficient transparency equivalent to that of A-PET resin or stretched polystyrene (OPS), which is generally said to be transparent, can be realized.
  • the polyester resin composition of the present invention is produced, for example, as follows.
  • a resin mixture is produced by mixing polyester (A) and polyester (B) (step (S1)).
  • polyester (A) and polyester (B) For the mixing of polyester (A) and polyester (B), known public methods and kneading techniques can be applied. For example, powdery or pelletized polyester (A) and polyester (B) are fed to a twin-screw extrusion kneader, heated and sheared, and melt-extruded and kneaded to obtain a pellet-shaped resin mixture. ..
  • the heating temperature in the twin-screw extrusion kneader is preferably 240 to 300 ° C., although it depends on the number of rotations of the screw. If the heating temperature is less than 240 ° C., these may be insufficiently mixed.
  • the heating temperature exceeds 300 ° C.
  • thermal decomposition of the polyester (A) and the polyester (B) may occur.
  • the rotation speed of the screw in the twin-screw extrusion kneader is preferably 100 to 500 rpm. If the rotation speed of the screw is less than 100 pm, these may be insufficiently mixed. When the rotation speed of the screw exceeds 500 rpm, thermal decomposition of the polyester (A) and the polyester (B) may occur.
  • the polyester (A) and the polyester (B) are mixed by using a method such as a batch type kneader, a kneader luder, or a kneader for batch kneading and then pelletizing with an extruder instead of the twin-screw extruder. You may. Further, the polyester (A) and the polyester (B) may be mixed together with a blender or the like, and then extruded and pelletized while being heated and melted by a twin-screw extruder.
  • the twin-screw extrusion kneader has the polyester (A) and the polyester (B) at the same time as the plasticizer (C).
  • the lubricant (D) may be fed, or may be supplied using a side feed or a liquid injection pump as needed.
  • the polyester resin composition of the present invention mixes the thermoplastic agent (C) and the lubricant (D), in addition to directly mixing the thermoplastic agent (C) and the lubricant (D), the polyester resin (B) and the lubricant (C) are mixed in the polyester.
  • the mixture can be prepared by dry blending with polyester (A) or polyester (B), or by diluting by heat extrusion kneading or the like.
  • the plasticizer (B) and the lubricant (C) may be added and mixed separately, or they may be added and mixed at the same time.
  • the mixing ratio is the plasticizer (C) and / or the lubricant (D).
  • the mass ratio of the polyester (A) or the polyester (B) is preferably 1/4 to 1/20, more preferably 1/5 to 1/20, and even more preferably 1/10 to 1/20.
  • this resin mixture is then melted by heating (step (S2)).
  • This step is performed by heating the resin mixture obtained above to a temperature equal to or higher than the melting point of the resin mixture.
  • the resin mixture is supplied to an extruder whose cylinder temperature is set to, for example, 10 ° C. to 50 ° C. higher than the melting point of the resin mixture, and a screw is used. It can be extruded by rotation.
  • the extruder used for extrusion is not particularly limited, and examples thereof include a single-screw screw and a twin-screw screw type in the same direction or in different directions.
  • the shape and dimensions of the screw can be appropriately selected by those skilled in the art.
  • the rotation speed and the discharge amount of the extruder to be used can be appropriately adjusted by those skilled in the art according to the capacity of the extruder and the like.
  • the extrusion temperature is preferably 240 ° C. to 300 ° C., more preferably 260 to 290 ° C. If the extrusion temperature is less than 240 ° C., the resin mixture may not melt sufficiently. Further, when the extrusion temperature exceeds 300 ° C., for example, the polyester (A) and the polyester (B) contained in the resin mixture are thermally decomposed to generate low molecular weight oligomers, and the obtained resin composition is not desired. May contain impurities.
  • the residence time in the extruder is preferably 2 minutes to 20 minutes, more preferably 5 minutes to 15 minutes. If the residence time is less than 2 minutes, the polyester resin mixed portion is insufficiently melted, which may affect the appearance of the molded product in a subsequent step. Further, if the melt residence time exceeds 20 minutes, thermal deterioration and side reactions of the polyester resin mixture may occur, and the appearance and physical properties on the molding date may deteriorate.
  • heating and melting is not limited to the above-mentioned extruders, but also in the cylinders of molding machines such as compression molding machines and truss fur molding, and batch-type constant temperature baths and heating furnaces that can control the temperature. May be.
  • the resin mixture melted above is then cooled to a temperature lower than the glass transition temperature of the resin mixture (step (S3)).
  • the molten resin mixture is discharged from a die located at the tip of the cylinder of the extruder and is preferably cooled to a temperature below the glass transition temperature by contacting with a temperature controlled gas, liquid or solid cooling medium. be able to.
  • the resin mixture is formed into various shapes such as a cylinder, a cylinder, and a sheet.
  • a cylinder a cylinder
  • a sheet a film or sheet-shaped molded product
  • cooling roll preferably three or more rolls are used.
  • the diameter of such a roll depends on the size of the T-die, but is preferably 300 mm to 1200 mm.
  • the cooling sheet may be surface-treated to the extent that the object of the present invention is not impaired. Further, the cooling sheet may be multi-layered by means known to those skilled in the art, if necessary.
  • sheet used in the present specification refers to a flat plate having a thickness of 0.1 mm or more
  • film refers to a flat plate having a thickness of less than 0.1 mm.
  • Such a sheet or film-shaped primary processed product can be produced by extrusion molding or press molding of the polyester resin composition.
  • the temperature below the glass transition temperature that can be adopted during this cooling is preferably 15 ° C to 60 ° C, more preferably 20 ° C to 60 ° C, and even more preferably 30 ° C to 55 ° C.
  • this temperature is lower than 15 ° C., when the cooling medium is a solid, dew condensation is likely to occur under a predetermined humidity, and water droplets may easily contaminate the resin composition. Further, in the case of sheet forming with a cooling roll, it may be too rapid to form into a uniform thickness, and / or the sheet may have an appearance defect such as streaks. If this temperature exceeds 60 ° C., the resin composition may not be sufficiently solidified and / or large crystals may be formed and become cloudy, depending on the cooling capacity of the medium.
  • the resin mixture cooled above is then heated to a temperature higher than the glass transition temperature of the resin mixture (step (S4)).
  • the glass transition temperature that can be adopted during this heating is preferably 80 ° C. to 90 ° C., more preferably 80 ° C. to 87 ° C., and even more preferably 80 ° C. to 85 ° C.
  • this temperature is lower than 80 ° C., the amorphous molecules contained in the resin mixture cannot have sufficient kinetic energy, the crystallization rate is lowered, and it becomes difficult to obtain the desired crystallinity. Sometimes. If this temperature exceeds 90 ° C., large uncontrollable crystals may grow in the resin composition and become cloudy.
  • Such heating is preferably performed up to a temperature higher than the glass transition temperature by contacting with a temperature-controlled gas, liquid, or solid medium.
  • a temperature-controlled gas, liquid, or solid medium For example, when a constant temperature bath controlled at 80 ° C. is used, it is preferably carried out over 5 minutes to 24 hours.
  • the cooled resin composition changes into a solid-phase crystallized resin composition by crystal growth of amorphous molecules in a solid state.
  • the steps (S1) to (S4) can be continuously performed in this order.
  • powdered or pelletized polyester (A) and polyester (B) are fed to a twin-screw extrusion kneader, heated and sheared, and melt-extruded and kneaded to obtain a pellet-shaped resin mixture in a molten state. It can be discharged from the die, cooled by the cooling roll arranged subsequently to the die, and then heated by the heating roll arranged subsequently.
  • polyester resin composition of the present invention can be obtained.
  • polyester resin composition of the present invention can be molded into a desired resin molded product by means well known to those skilled in the art.
  • Examples of such resin molded bodies include beverages (eg, mineral water, soft drinks, coffee beverages, dairy beverages, wine, sake), liquid seasonings (eg, sauces, soba, mirin, salad oil, olive oil, etc.). Sesame oil, sake), fruits (eg citrus fruits such as strawberries, cherries, oranges, kiwif tools, cut fruits), delicatessen (eg fried foods, sashimi, grilled fish, salads), noodles (eg udon, buckwheat, ramen, Examples include containers, trays, plates, lids, bottles, tubes, and pouches for accommodating foods and drinks such as (soba noodles).
  • beverages eg, mineral water, soft drinks, coffee beverages, dairy beverages, wine, sake
  • liquid seasonings eg, sauces, soba, mirin, salad oil, olive oil, etc.
  • Sesame oil, sake fruits
  • fruits eg citrus fruits such as strawberries, cherries, oranges, kiwif tools, cut fruits
  • delicatessen eg
  • the resin molded product of the present invention is excellent in both transparency and heat resistance.
  • the producer and the consumer can easily visually confirm the color and the amount of the contents of the product containing the above-mentioned foods and drinks.
  • the freshness of the contained food and drink can be easily visually confirmed, and the freshness of the product can be enhanced to appeal to consumers.
  • test methods adopted in each example and comparative example were as follows.
  • H 0.3 (%) H ⁇ 0.3 / d (Here, H 0.3 is a haze value (%) when converted to a thickness of 0.3 mm, H is a haze measured value (%) of the sheet (sample) used for the measurement, and d is.
  • the haze value converted from the formula defined by the thickness (mm) of the sheet (sample) of the portion where the haze value was measured was calculated.
  • Example 1 Preparation of sheet-shaped polyester resin composition
  • terephthalic acid unit 100 mol%; equivalent to polyester (A)
  • Acid unit 98.2 mol%; equivalent to polyester (B)
  • 10 parts by mass, magnesium stearate (0.4 parts by mass of crystal nucleating agent (D)) is fed to a twin-screw extruder and kneader, and the cylinder temperature is 240 ° C.
  • pellets were kneaded at 280 ° C. to obtain pellets of a polyester resin mixture. Then, the pellets were fed to an extruder set at a cylinder temperature of 280 ° C. to be melted and softened, and then discharged from a T-die to 45. The sheet was cooled by a roll set to ° C. to obtain a sheet having a thickness of 0.3 mm.
  • this sheet was treated in a constant temperature bath at 85 ° C. for one day and night to crystallize the polyester component in the polyester resin composition constituting the sheet. In this way, a sheet-shaped polyester resin composition (ES1) was produced.
  • This composition (ES1) showed a good appearance with no leaching of the surface observed. Further, the relative crystallinity of this composition (ES1) was measured by a differential scanning calorimetry device (DSC). The obtained relative crystallinity was 28%. The haze value was 5%.
  • this composition (ES1) was immersed in a constant temperature oil bath, and changes due to temperature were observed. No deformation was observed even when heated to 100 ° C., and it was confirmed that the product had excellent heat resistance.
  • composition (ES1) is left in a constant temperature bath at 85 ° C. to crystallize the polyester component in the composition (ES1), and the glass transition in a state where the relative crystallization degree by DSC is 20%.
  • the temperature was read from the DSC chart, it was 73 ° C., which was higher than the glass transition temperature before leaving the constant temperature bath. The results are shown in Table 1.
  • Example 2 Preparation of sheet-shaped polyester resin composition
  • Examples except that 30 parts by mass of acid unit 98.2 mol%; equivalent to polyester (B) and 0.4 parts by mass of magnesium stearate (crystal nucleating agent (D)) were fed to a twin-screw extruder and kneader.
  • a sheet having a thickness of 0.3 mm was obtained in the same manner as in 1.
  • the polyester resin composition (ES2) in the form of a sheet was prepared by crystallizing the polyester component in the composition in the same manner as in Example 1. Then, for this composition (ES2), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES2) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that it had excellent heat resistance.
  • Example 3 Preparation of sheet-shaped polyester resin composition
  • Examples except that 40 parts by mass of acid unit 98.2 mol%; equivalent to polyester (B) and 0.4 parts by mass of magnesium stearate (crystal nucleating agent (D)) were fed to a twin-screw extruder and kneader.
  • a sheet having a thickness of 0.3 mm was obtained in the same manner as in 1.
  • the polyester resin composition (ES3) in the form of a sheet was prepared by crystallizing the polyester component in the composition in the same manner as in Example 1. Then, for this composition (ES3), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES3) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that it had excellent heat resistance.
  • Example 4 Preparation of sheet-shaped polyester resin composition
  • Examples except that 30 parts by mass of acid unit 97.4 mol%; equivalent to polyester (B) and 0.4 parts by mass of magnesium stearate (crystal nucleating agent (D)) were fed to a twin-screw extruder and kneader.
  • a sheet having a thickness of 0.3 mm was obtained in the same manner as in 1.
  • the polyester resin composition (ES4) in the form of a sheet was prepared by crystallizing the polyester component in the composition in the same manner as in Example 1. Then, for this composition (ES4), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES4) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that it had excellent heat resistance.
  • Example 5 Preparation of sheet-shaped polyester resin composition
  • a reactor equipped with a stirring blade, a nitrogen inlet, and a decompression port were provided with 95 mol (18.45 kg) of dimethyl terephthalate, 5 mol (0.97 kg) of dimethyl isophthalate, 200 mol (12.41 kg) of ethylene glycol, and
  • As a catalyst 10 g each of zinc acetate and germanium dioxide were charged.
  • a transesterification reaction was carried out by heating to 180 ° C. under a nitrogen stream, and methanol was distilled off.
  • the polyester resin composition (ES5) in the form of a sheet was prepared by crystallizing the polyester component in the composition in the same manner as in Example 1. Then, for this composition (ES5), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES5) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that it had excellent heat resistance.
  • Example 6 Preparation of sheet-shaped polyester resin composition
  • Terephthalic acid unit 98.2 mol%; equivalent to polyester (B)
  • the polyester resin composition (ES6) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES6), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES6) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that it had excellent heat resistance.
  • Example 7 Preparation of sheet-shaped polyester resin composition
  • a sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that the sheet was fed to a twin-screw extruder and kneader.
  • the polyester resin composition (ES7) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES7), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES7) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that the composition had excellent heat resistance.
  • Example 8 Preparation of sheet-shaped polyester resin composition
  • Acid unit 98.2 mol%; equivalent to polyester (B)) 30 parts by mass, copolymerized polyester (plastic agent (C)) (manufactured by DIC Co., Ltd., polysizer A55, melting point 210 °) 3 parts by mass, talc (crystal)
  • a sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that 0.4 parts by mass of the nucleating agent (D) was fed to the twin-screw extruder and kneader.
  • the polyester resin composition (ES8) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES8), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES8) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that the composition had excellent heat resistance.
  • Example 9 Preparation of sheet-shaped polyester resin composition
  • Acid unit 98.2 mol%; equivalent to polyester (B))
  • copolymerized polyester (plasticizer (C)) manufactured by DIC Co., Ltd., Polysizer A55, melting point 210 °) 3 parts by mass, barium sulfate
  • a sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that 0.4 parts by mass of the crystal nucleating agent (D) was fed to the twin-screw extruder and kneader.
  • the sheet-like polyester resin composition (ES9) was produced by crystallizing the polyester component in the polyester resin composition constituting the sheet in the same manner as in Example 1. Then, for this composition (ES9), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES9) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that the composition had excellent heat resistance.
  • Example 10 Preparation of sheet-shaped polyester resin composition
  • Terephthalic acid unit 98.2 mol%; equivalent to polyester (B)
  • 20 parts by mass of polyester (B), 3 parts by mass of fatty acid triglyceride (plastic agent (C)) manufactured by RIKEN Vitamin Co., Ltd.), 0.4 parts by mass of magnesium oxide (crystal nucle
  • the polyester resin composition (ES10) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES10), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES10) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that the composition had excellent heat resistance.
  • Example 11 Production of resin composition and production of sheet
  • polyester resin composition (ES11) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES11), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES11) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • Example 12 Production of resin composition and production of sheet
  • polyester resin composition (ES12) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES12), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES12) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • Example 13 Production of resin composition and production of sheet
  • the polyester resin composition (ES13) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES13), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES13) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • Example 14 Production of resin composition and production of sheet
  • polyester resin composition (ES14) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES14), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES14) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • Example 15 Production of resin composition and preparation of sheet
  • polyester resin composition (ES15) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES15), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES15) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • Example 16 Production of resin composition and production of sheet
  • this sheet was left in a constant temperature bath at 81 ° C. for one day and night to crystallize the polyester component in the polyester resin composition, thereby producing a sheet-shaped polyester resin composition (ES16). Then, for this composition (ES16), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES16) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • this composition (ES16) was left in a constant temperature bath at 81 ° C. to crystallize the polyester component, and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart. However, it was 73 ° C., which was higher than the glass transition temperature before leaving the constant temperature bath. The results are shown in Table 1.
  • Example 17 Production of resin composition and production of sheet
  • this sheet was left in a constant temperature bath at 81 ° C. for one day and night to crystallize the polyester component in the polyester resin composition, thereby producing a sheet-shaped polyester resin composition (ES17). Then, for this composition (ES17), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES17) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • this composition (ES17) was left in a constant temperature bath at 81 ° C. to crystallize the polyester component, and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart. However, it was 74 ° C., which was higher than the glass transition temperature before leaving the constant temperature bath. The results are shown in Table 1.
  • Example 18 Production of resin composition and production of sheet
  • this sheet was left in a constant temperature bath at 81 ° C. for one day and night to crystallize the polyester component in the polyester resin composition, thereby producing a sheet-shaped polyester resin composition (ES18). Then, for this composition (ES18), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES18) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • this composition (ES18) was left in a constant temperature bath at 81 ° C. to crystallize the polyester component, and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart. However, it was 74 ° C., which was higher than the glass transition temperature before leaving the constant temperature bath. The results are shown in Table 1.
  • Example 19 Production of resin composition and production of sheet
  • this sheet was used to crystallize the polyester component in the polyester resin composition in the same manner as in Example 1 to prepare a sheet-shaped polyester resin composition (ES19). Then, for this composition (ES19), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES19) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • polyester resin composition (CS1) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, the relative crystallinity of this composition (CS1) was measured in the same manner as in Example 1. However, this sheet-shaped polyester resin composition became cloudy and had no permeability. No deformation was observed even when this composition (CS1) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • the glass transition temperature in a state where the polyester component in the polyester resin composition is crystallized in the same manner as in Example 1 with this composition (CS1) and the relative crystallization degree by DSC is 20% is shown in the DSC chart. As a result of reading from, it did not change from the glass transition temperature before leaving the constant temperature bath. The results are shown in Table 1.
  • polyester resin composition (CS2) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, the relative crystallinity of this composition (CS2) was measured in the same manner as in Example 1. However, this sheet-shaped polyester resin composition became cloudy and had no permeability. No deformation was observed even when this composition (CS2) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • polyester resin composition (CS3) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, the relative crystallinity of this composition (CS3) was measured in the same manner as in Example 1. However, this sheet-shaped polyester resin composition became cloudy and had no permeability. No deformation was observed even when this composition (CS3) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
  • the polyester resin compositions (ES1) to (ES19) obtained in Examples 1 to 19 have both excellent heat resistance and a low haze value (that is, transparency). I understand that.
  • the sheet-shaped polyester resin compositions obtained in Comparative Examples 1 to 3 were all cloudy.
  • Example 20 Preparation of container
  • a container width 150 mm, depth 100 mm, depth 40 mm, volume about 600 ml
  • the conditions for vacuum pressure air molding are that the crystallized polyester resin composition is heated to 245 ° C. to soften it, and then molded with a mold left at room temperature to form a container-shaped polyester resin. I got a body.
  • This polyester resin molded product showed good appearance and good moldability without leaching of the surface, had high transparency, and had a haze value of 4%.
  • the crystallinity measured by DSC was 27.4%.
  • Example 21 Preparation of container
  • a container width 150 mm, depth 100 mm, depth 40 mm, volume about 600 ml
  • the polyester resin composition is heated to 230 ° C. to soften it, and then molded with a mold heated to 60 ° C. to obtain a container-shaped polyester resin molded body. rice field.
  • This polyester resin molded product showed good appearance and good moldability without surface leaching, was extremely transparent, and had a haze value of 4.5%.
  • the crystallinity measured by DSC in the same manner as in Example 20 was 30.2%. When water was put into this container-shaped polylactic acid resin molded product and heated in a microwave oven set at 1500 W for 2 minutes, neither shape change nor deformation of the container due to heating was observed.
  • the present invention is used in various applications where heat resistance is desired, for example, as a constituent material of a food container that can be heated in a microwave oven. This is useful in the field of resin molding, the field of food, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A polyester resin composition of the present invention comprises polyester (A) and polyester (B), which are different from each other. The polyester (A) comprises an ethylene glycol unit and a terephthalic acid unit, the polyester (B) comprises an ethylene glycol unit, an isophthalic acid unit, and a terephthalic acid unit, the mass ratio of the polyester (A) to the polyester (B), (A)/(B), is from 90/10 to 40/60, and the polyester (B) has a molar ratio of the isophthalic acid unit (IP) to the terephthalic acid unit (TP), (IP)/(TP), of 1/99 to 5/95.

Description

ポリエステル樹脂組成物、それを用いた樹脂成形体、およびその製造方法A polyester resin composition, a resin molded product using the polyester resin composition, and a method for producing the same.
 本発明は、ポリエステル樹脂組成物、それを用いた樹脂成形体、およびその製造方法に関する。 The present invention relates to a polyester resin composition, a resin molded product using the polyester resin composition, and a method for producing the same.
 従来、コンビニエンスストアなどで販売されている弁当や惣菜の容器は、ポリエチレンテレフタレート(PET)やポリプロピレン(PP)のような熱可塑性樹脂シートを例えば真空成形機を用いてトレイやカップの形状に加熱成形して製造されている。 Conventionally, bento and side dish containers sold at convenience stores are made by heating a thermoplastic resin sheet such as polyethylene terephthalate (PET) or polypropylene (PP) into the shape of a tray or cup using a vacuum forming machine, for example. Is manufactured.
 当該容器の製造において、PETは非晶状態で使用されるため、A-PET(アモルファスPET)とも呼ばれている。A-PETはほぼ結晶化していないために、耐熱性は非晶部分がガラス転移を示す温度までしかない得られない。A-PETでは、ガラス転移温度が70℃程度と低いため、一般には耐熱性に劣り、現状、例えば電子レンジで使用するような耐熱容器の分野では実用上の使用範囲は大幅に限定されている。 Since PET is used in an amorphous state in the manufacture of the container, it is also called A-PET (amorphous PET). Since A-PET is hardly crystallized, heat resistance can only be obtained up to a temperature at which the amorphous portion exhibits a glass transition. Since the glass transition temperature of A-PET is as low as about 70 ° C., it is generally inferior in heat resistance, and the practical range of use is significantly limited at present, for example, in the field of heat-resistant containers used in microwave ovens. ..
 これに対し、PETを結晶化させたものはC-PET(結晶化PET)と呼ばれる。C-PETは、一般にPETを加熱成形する際の結晶化を通じて製造可能であり、これにより結晶化前のものと比較して耐熱性を向上させることができる。このような観点から、成形性の向上を含めた様々な検討が進められてきた(例えば特許文献1および2参照)。 On the other hand, a crystallized PET is called C-PET (crystallized PET). C-PET can generally be produced through crystallization during heat molding of PET, whereby heat resistance can be improved as compared with that before crystallization. From this point of view, various studies including improvement of formability have been advanced (see, for example, Patent Documents 1 and 2).
 ここで、上記PETを加熱成形する場合、金型を例えば150℃~170℃まで加熱することによりPETの結晶化が促される。そのため、金型をこうした高温に加熱することができかつその後は冷却することのできる設備が必要である。また、たとえこうした設備を導入したとしても、上記PETの加熱成形はシートの状態で行われるので、PETシートと金型との接触が固体同士の接触となり、加熱ムラが発生し易なってシートの結晶化状態にバラツキを生じ、結果として耐熱性も安定しないという問題点が指摘されている。 Here, when the PET is heat-molded, crystallization of the PET is promoted by heating the mold to, for example, 150 ° C to 170 ° C. Therefore, there is a need for equipment that can heat the mold to such a high temperature and then cool it. Further, even if such equipment is introduced, since the heat molding of the PET is performed in the state of the sheet, the contact between the PET sheet and the mold becomes the contact between the solids, and the heating unevenness is likely to occur in the sheet. It has been pointed out that the crystallization state varies, and as a result, the heat resistance is not stable.
 さらに、このようなPETの加熱成形を行うと、生成かつ成長した球晶によって成形品の透明性が損なわれることが指摘されている。このことから、当該容器には内容物の視認性を高める程の透明性を確保することも所望されている。 Furthermore, it has been pointed out that when such PET heat molding is performed, the transparency of the molded product is impaired by the formed and grown spherulites. For this reason, it is also desired to ensure that the container is transparent enough to enhance the visibility of the contents.
 このため、従来より、耐熱性付与と透明性維持とを両立する容器に関する要望が多く、今までに様々な検討がなされている。 For this reason, there have been many requests for containers that achieve both heat resistance and transparency maintenance, and various studies have been conducted so far.
 例えば特許文献3~5では、PETに造核剤を添加することにより、球晶の大きさを制御して結晶化度を向上させかつ透明性を両立させる方法が提案されている。しかし、当該方法では結晶核剤の効果で結晶化速度が早くなりすぎて、成形加工条件が著しく狭くなり、生産性が不良となることがある。 For example, Patent Documents 3 to 5 propose a method of controlling the size of spherulites to improve the crystallinity and achieve both transparency by adding a nucleating agent to PET. However, in this method, the crystallization rate may become too fast due to the effect of the crystal nucleating agent, the molding processing conditions may be significantly narrowed, and the productivity may be poor.
 また特許文献6にはポリエステルシートを縦方向、横方向へ加熱延伸処理することで分子鎖の配向結晶化を促進させ、透明性と耐熱性とを両立するシートが開示されている。しかし、このようなシートでは、延伸により生じた残留ひずみによって、加熱成形加工時に熱収縮が発生し、成形性が著しく悪化することが懸念されている。また従来の結晶化したシートは、耐熱性を高めることができる半面、融点以上に加熱しなければ熱成形することができず、結局結晶化度が低下して、成形品に満足すべき耐熱性を付与することができないものであった。 Further, Patent Document 6 discloses a sheet in which a polyester sheet is heat-stretched in the vertical direction and the horizontal direction to promote the orientation and crystallization of molecular chains and to achieve both transparency and heat resistance. However, in such a sheet, there is a concern that the residual strain generated by stretching causes heat shrinkage during the heat molding process, and the moldability is significantly deteriorated. Further, while the conventional crystallized sheet can improve the heat resistance, it cannot be thermoformed unless it is heated above the melting point, and the crystallinity is eventually lowered, so that the heat resistance should be satisfied with the molded product. Was not able to be granted.
 さらに特許文献7には、ポリエチレンテレフタレート(熱可塑性樹脂A)からなる層と、ポリブチレンテレフタレート(熱可塑性樹脂B)とを用いてなる層とからなり、平均層厚みが12nm以下で総積層数が1001以上である積層2軸配向ポリエステルフィルムが開示されている。このフィルムは剛性および寸法安定性を有し、真空成形、真空圧空成形、プラグアシスト真空圧空成形、プレス形成、インモールド成形など種々の方法で成形可能であるが、トレイやカップのような所定の立体的形状を得るための加熱成型には適しているとは言い難い。 Further, Patent Document 7 includes a layer made of polyethylene terephthalate (thermoplastic resin A) and a layer made of polybutylene terephthalate (thermoplastic resin B), and the average layer thickness is 12 nm or less and the total number of layers is 12 nm or less. A laminated biaxially oriented polyester film having 1001 or more is disclosed. This film has rigidity and dimensional stability and can be formed by various methods such as vacuum forming, vacuum forming, plug-assisted vacuum forming, press forming, in-mold forming, etc. It is hard to say that it is suitable for heat molding to obtain a three-dimensional shape.
特開2005-194331号公報Japanese Unexamined Patent Publication No. 2005-194331 特許第4614044号公報Japanese Patent No. 4614044 特公昭48-4097号公報Special Publication No. 48-4097 特開昭54-158452号公報Japanese Unexamined Patent Publication No. 54-158452 特開2012-41516号公報Japanese Unexamined Patent Publication No. 2012-41516 特開2012-245700号公報Japanese Unexamined Patent Publication No. 2012-245700 特許第5105459号公報Japanese Patent No. 5105459
 本発明は、上記問題の解決を課題とするものであり、その目的とするところは、設備などの増設の負荷が無く、成形性、耐熱性かつ透明性に優れる熱成形品を得ることができる、ポリエステル樹脂組成物、それを用いた樹脂成形体、およびその製造方法を提供することにある。 An object of the present invention is to solve the above-mentioned problems, and an object thereof is to obtain a thermoformed product having excellent moldability, heat resistance and transparency without the load of additional equipment or the like. , A polyester resin composition, a resin molded product using the same, and a method for producing the same.
 本発明は、互いに異なるポリエステル(A)およびポリエステル(B)を含有する、ポリエステル樹脂組成物であって
 該ポリエステル(A)が、エチレングリコール単位とテレフタル酸単位とを含み、
 該ポリエステル(B)が、該エチレングリコール単位とイソフタル酸単位と該テレフタル酸単位とを含み、
 該ポリエステル(A)と該ポリエステル(B)との質量比((A)/(B))が、90/10から40/60であり、そして
 該ポリエステル(B)における該イソフタル酸単位(IP)と該テレフタル酸単位(TP)のモル比((IP)/(TP))が、1/99から5/95である、ポリエステル樹脂組成物である。
The present invention is a polyester resin composition containing polyesters (A) and polyesters (B) that are different from each other, wherein the polyester (A) contains ethylene glycol units and terephthalic acid units.
The polyester (B) contains the ethylene glycol unit, the isophthalic acid unit, and the terephthalic acid unit.
The mass ratio ((A) / (B)) of the polyester (A) to the polyester (B) is 90/10 to 40/60, and the isophthalic acid unit (IP) in the polyester (B). A polyester resin composition having a terephthalic acid unit (TP) molar ratio ((IP) / (TP)) of 1/99 to 5/95.
 1つの実施形態では、上記組成物全体の結晶化度を0%から20%まで変化させた際に該組成物全体のガラス転移温度は3℃以上上昇する。 In one embodiment, when the crystallinity of the entire composition is changed from 0% to 20%, the glass transition temperature of the entire composition rises by 3 ° C. or more.
 1つの実施形態では、本発明のポリエステル樹脂組成物は、さらに可塑剤(C)を含有し、該可塑剤(C)は、アセチル化モノグリセリド、プロピレングリコール脂肪酸エステル、脂肪酸トリグリセリド、190~210℃の融点を有する共重合ポリエステル、およびソルビタン脂肪酸エステルからなる群から選択される少なくとも1種の化合物である。 In one embodiment, the polyester resin composition of the present invention further contains a plasticizer (C), wherein the plasticizer (C) is an acetylated monoglyceride, a propylene glycol fatty acid ester, a fatty acid triglyceride, 190-210 ° C. At least one compound selected from the group consisting of a copolymerized polyester having a melting point and a sorbitan fatty acid ester.
 1つの実施形態では、本発明のポリエステル樹脂組成物は、さらに核剤(D)を含有し、該核剤(D)は、ステアリン酸マグネシウム、硫酸カルシウム、硫酸バリウム、酸化マグネシウム、タルク、およびポリプロピレンからなる群から選択される少なくとも1種の化合物である。 In one embodiment, the polyester resin composition of the present invention further comprises a nucleating agent (D), wherein the nucleating agent (D) is magnesium stearate, calcium sulfate, barium sulfate, magnesium oxide, talc, and polypropylene. It is at least one compound selected from the group consisting of.
 1つの実施形態では、本発明のポリエステル樹脂組成物は、JIS K7136に準拠した厚み0.3mmの成形体に加工した際のヘイズ値が8%以下である。 In one embodiment, the polyester resin composition of the present invention has a haze value of 8% or less when processed into a molded product having a thickness of 0.3 mm according to JIS K7136.
 本発明はまた、上記ポリエステル樹脂組成物を用いて成形された、樹脂成形体である。 The present invention is also a resin molded body molded using the above polyester resin composition.
 本発明はまた、上記ポリエステル樹脂組成物の製造方法であって、
 (S1)該ポリエステル(A)が、エチレングリコール単位とテレフタル酸単位とを含む、ポリエステル(A)、および該エチレングリコール単位とイソフタル酸単位と該テレフタル酸単位とを含む、ポリエステル(B)を混合して樹脂混合物を得る工程;
 (S2)該樹脂混合物を加熱して溶融する工程;
 (S3)該溶融した樹脂混合物を、該樹脂混合物のガラス転移温度を下回る温度まで冷却する工程;
 (S4)該冷却された樹脂混合物を、該樹脂混合物のガラス転移温度を上回る温度まで加熱する工程;
 を包含し、
 該ポリエステル(A)と該ポリエステル(B)との質量比((A)/(B))が、90/10から40/60であり、そして
 該ポリエステル(B)における該イソフタル酸単位(IP)と該テレフタル酸単位(TP)のモル比((IP)/(TP))が、1/99から5/95である、方法である。
The present invention is also a method for producing the polyester resin composition.
(S1) The polyester (A) is a mixture of the polyester (A) containing an ethylene glycol unit and a terephthalic acid unit, and the polyester (B) containing the ethylene glycol unit, an isophthalic acid unit and the terephthalic acid unit. To obtain a resin mixture;
(S2) A step of heating and melting the resin mixture;
(S3) A step of cooling the molten resin mixture to a temperature lower than the glass transition temperature of the resin mixture;
(S4) A step of heating the cooled resin mixture to a temperature higher than the glass transition temperature of the resin mixture;
Including,
The mass ratio ((A) / (B)) of the polyester (A) to the polyester (B) is 90/10 to 40/60, and the isophthalic acid unit (IP) in the polyester (B). And the method in which the molar ratio ((IP) / (TP)) of the terephthalic acid unit (TP) is 1/99 to 5/95.
 1つの実施形態では、上記溶融した樹脂混合物を冷却する工程(S3)における、該樹脂混合物のガラス転移温度を下回る温度は15℃から60℃である。 In one embodiment, the temperature below the glass transition temperature of the resin mixture in the step (S3) of cooling the molten resin mixture is 15 ° C to 60 ° C.
 1つの実施形態では、上記冷却した樹脂混合物を加熱する工程(S4)における、該樹脂混合物のガラス転移温度を上回る温度は80℃から90℃である。 In one embodiment, the temperature exceeding the glass transition temperature of the resin mixture in the step (S4) of heating the cooled resin mixture is 80 ° C to 90 ° C.
 本発明によれば、成形性、耐熱性および透明性に優れる成形体を提供することができる。すなわち、本発明のポリエステル樹脂組成物は、透明性を保ちながら高い結晶化度、すなわち耐熱性を維持しつつ、適切な温度域で軟化して成形加工することができる。本発明において、こうした成形体の製造には、本発明では特別な設備を必要とすることなく、従来の樹脂成形分野において使用される設備をそのまま利用することができる。 According to the present invention, it is possible to provide a molded product having excellent moldability, heat resistance and transparency. That is, the polyester resin composition of the present invention can be softened and molded in an appropriate temperature range while maintaining high crystallinity, that is, heat resistance while maintaining transparency. In the present invention, the equipment used in the conventional resin molding field can be used as it is without requiring special equipment in the present invention for manufacturing such a molded product.
 以下、本発明について詳述する。 Hereinafter, the present invention will be described in detail.
(ポリエステル樹脂組成物)
 本発明のポリエステル樹脂組成物は、互いに異なるポリエステル、すなわちポリエステル(A)およびポリエステル(B)を含有する。
(Polyester resin composition)
The polyester resin composition of the present invention contains different polyesters, namely polyester (A) and polyester (B).
(ポリエステル(A))
 ポリエステル(A)は、テレフタル酸単位(TP)とエチレングリコール単位(EG)とを含むポリエステルである。ポリエステル(A)は、得られるポリエステル樹脂組成物全体の結晶性を妨げない範囲において、テレフタル酸単位(TP)以外の他のジカルボン酸単位(DC)および/またはエチレングリコール単位以外の他のジヒドロキシ化合物単位(DH)を含んでいてもよい。
(Polyester (A))
The polyester (A) is a polyester containing a terephthalic acid unit (TP) and an ethylene glycol unit (EG). The polyester (A) is a dicarboxylic acid unit (DC A ) other than the terephthalic acid unit (TP) and / or a dihydroxy other than the ethylene glycol unit as long as it does not interfere with the crystallinity of the entire obtained polyester resin composition. It may contain a compound unit (DH A).
 他のジカルボン酸単位(DC)を構成し得るジカルボン酸としては、例えば、オルトフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸等の芳香族ジカルボン酸;アジピン酸、セバシン酸、アゼライン酸、デカンジカルボン酸等の脂肪族ジカルボン酸;シクロヘキサンジカルボン酸、シクロプロパンジカルボン酸、ヘキサヒドロテレフタル酸等の脂環族ジカルボン酸;ならびにそれらの組み合わせ;が挙げられる。 Examples of the dicarboxylic acid that may constitute another dicarboxylic acid unit (DC A ) include aromatic dicarboxylic acids such as orthophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, and diphenoxyetanedicarboxylic acid; adipic acid, sebacic acid, and azeline. Examples thereof include aliphatic dicarboxylic acids such as acids and decandicarboxylic acids; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, cyclopropanedicarboxylic acid and hexahydroterephthalic acid; and combinations thereof.
 他のジヒドロキシ化合物単位(DH)を構成し得るジヒドロキシ化合物としては、例えばトリメチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサメチレングリコール、ドデカメチレングリコール等の脂肪族グリコール;シクロヘキサンジメタノール等の脂環族グリコール;ビスフェノール類;ハイドロキノン、2,2-ビス(4-β-ヒドロキシエトキシフェニル)プロパン等の芳香族ジオール類;ならびにそれらの組み合わせ;が挙げられる。 Examples of the dihydroxy compound that can constitute another dihydroxy compound unit (DH A ) include aliphatic glycols such as trimethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, and dodecamethylene glycol; cyclohexanedimethanol. Alicyclic glycols such as; bisphenols; aromatic diols such as hydroquinone, 2,2-bis (4-β-hydroxyethoxyphenyl) propane; and combinations thereof;
 ポリエステル(A)における他のジカルボン酸単位(DC)および他のジヒドロキシ化合物単位(DH)の合計量は、好ましくは1モル%以下であり、より好ましくは0.5モル%以下であり、さらに好ましくは0.1モル%以下である。得られるポリエステル樹脂組成物の結晶性を最も高められるという理由から、ポリエステル(A)は、テレフタル酸単位(TP)とエチレングリコール単位(EG)とからなることが最も好ましい。 The total amount of other dicarboxylic acid units (DC A ) and other dihydroxy compound units (DH A ) in the polyester (A) is preferably 1 mol% or less, more preferably 0.5 mol% or less. More preferably, it is 0.1 mol% or less. The polyester (A) is most preferably composed of a terephthalic acid unit (TP) and an ethylene glycol unit (EG) because the crystallinity of the obtained polyester resin composition can be most enhanced.
 さらに、ポリエステル(A)は、ベンゾイル安息香酸、ジフェニルスルホンモノカルボン酸、ステアリン酸、メトキシポリエチレングリコールなどの単官能化合物から導かれる構成単位を含有していてもよい。ポリエチレンテレフタレート樹脂(A)における単官能化合物の含有量は、必ずしも限定されないが、好ましくは1モル%以下であり、より好ましくは0.5モル%以下であり、さらに好ましくは0.1モル%以下である。 Further, the polyester (A) may contain a structural unit derived from a monofunctional compound such as benzoylbenzoic acid, diphenylsulfone monocarboxylic acid, stearic acid, and methoxypolyethylene glycol. The content of the monofunctional compound in the polyethylene terephthalate resin (A) is not necessarily limited, but is preferably 1 mol% or less, more preferably 0.5 mol% or less, still more preferably 0.1 mol% or less. Is.
(ポリエステル(B))
 ポリエステル(B)は、テレフタル酸単位(TP)とイソフタル酸単位(IP)とエチレングリコール単位(EG)とを含むポリエステルである。ポリエステル(B)は、得られるポリエステル樹脂組成物全体の結晶性を妨げない範囲において、テレフタル酸単位(TP)およびイソフタル酸単位(IP)以外の他のジカルボン酸単位(DC)および/またはエチレングリコール単位以外の他のジヒドロキシ化合物単位(DH)を含んでいてもよい。
(Polyester (B))
The polyester (B) is a polyester containing a terephthalic acid unit (TP), an isophthalic acid unit (IP), and an ethylene glycol unit (EG). The polyester (B) is a dicarboxylic acid unit (DC B ) and / or ethylene other than the terephthalic acid unit (TP) and the isophthalic acid unit (IP) as long as it does not interfere with the crystallinity of the entire obtained polyester resin composition. It may contain a dihydroxy compound unit (DH B) other than the glycol unit.
 他のジカルボン酸単位(DC)を構成し得るジカルボン酸としては、例えば、オルトフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸等の芳香族ジカルボン酸;アジピン酸、セバシン酸、アゼライン酸、デカンジカルボン酸等の脂肪族ジカルボン酸;シクロヘキサンジカルボン酸、シクロプロパンジカルボン酸、ヘキサヒドロテレフタル酸等の脂環族ジカルボン酸;ならびにそれらの組み合わせ;が挙げられる。 Examples of the dicarboxylic acid that may constitute another dicarboxylic acid unit (DC B ) include aromatic dicarboxylic acids such as orthophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, and diphenoxyetanedicarboxylic acid; adipic acid, sebacic acid, and azeline. Examples thereof include aliphatic dicarboxylic acids such as acids and decandicarboxylic acids; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, cyclopropanedicarboxylic acid and hexahydroterephthalic acid; and combinations thereof.
 他のジヒドロキシ化合物(DH)を構成し得るジヒドロキシ化合物としては、例えば、トリメチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサメチレングリコール、ドデカメチレングリコール等の脂肪族グリコール;シクロヘキサンジメタノール等の脂環族グリコール;ビスフェノール類;ハイドロキノン、2,2-ビス(4-β-ヒドロキシエトキシフェニル)プロパン等の芳香族ジオール類;ならびにそれらの組み合わせ;が挙げられる。 Examples of the dihydroxy compound that can constitute another dihydroxy compound (DH B ) include aliphatic glycols such as trimethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, and dodecamethylene glycol; cyclohexanedimethanol. Alicyclic glycols such as; bisphenols; aromatic diols such as hydroquinone, 2,2-bis (4-β-hydroxyethoxyphenyl) propane; and combinations thereof;
 ポリエステル(B)における他のジカルボン酸単位(DC)および他のジヒドロキシ化合物単位(DH)の合計量は、好ましくは1モル%以下であり、より好ましくは0.5モル%以下であり、さらに好ましくは0.1モル%以下である。得られるポリエステル樹脂組成物の結晶性を制御し易いという理由から、ポリエステル(B)は、テレフタル酸単位(TP)とイソフタル酸単位(IP)とエチレングリコール単位(EG)とからなることが最も好ましい。 The total amount of other dicarboxylic acid units (DC B ) and other dihydroxy compound units (DH B ) in the polyester (B) is preferably 1 mol% or less, more preferably 0.5 mol% or less. More preferably, it is 0.1 mol% or less. The polyester (B) is most preferably composed of a terephthalic acid unit (TP), an isophthalic acid unit (IP), and an ethylene glycol unit (EG) because the crystallinity of the obtained polyester resin composition can be easily controlled. ..
 さらに、ポリエステル(B)は、ベンゾイル安息香酸、ジフェニルスルホンモノカルボン酸、ステアリン酸、メトキシポリエチレングリコールなどの単官能化合物から導かれる構成単位を含有していてもよい。ポリエチレンテレフタレート樹脂(A)における単官能化合物の含有量は、必ずしも限定されないが、好ましくは1モル%以下であり、より好ましくは0.5モル%以下であり、さらに好ましくは0.1モル%以下である。 Further, the polyester (B) may contain a structural unit derived from a monofunctional compound such as benzoylbenzoic acid, diphenylsulfone monocarboxylic acid, stearic acid, and methoxypolyethylene glycol. The content of the monofunctional compound in the polyethylene terephthalate resin (A) is not necessarily limited, but is preferably 1 mol% or less, more preferably 0.5 mol% or less, still more preferably 0.1 mol% or less. Is.
 本発明において、ポリエステル(B)におけるイソフタル酸単位(IP)とテレフタル酸単位(TP)のモル比((IP)/(TP))は、1/99~5/95であり、好ましくは1/99~3.5/96.5であり、より好ましくは1.5/98.5~3/97である。モル比((IP)/(TP))が1/99を下回ると(すなわち、1/90と比較してイソフタル酸単位(IP)の量(モル数)が小さくかつテレフタル酸単位(TP)の量(モル数)が大きい場合)、得られる樹脂組成物は全体として結晶性が高くなり白濁し易くなることがある。モル比((IP)/(TP))が5/95を下回ると(すなわち、5/95と比較してイソフタル酸単位(IP)の量(モル数)が大きくかつテレフタル酸単位(TP)の量(モル数)が小さい場合)、得られる樹脂組成物は全体として結晶性が低すぎてポリエステル(A)が非結晶部分と混在している状態と変わりなく、白濁し易くなることがある。 In the present invention, the molar ratio ((IP) / (TP)) of the isophthalic acid unit (IP) and the terephthalic acid unit (TP) in the polyester (B) is 1/99 to 5/95, preferably 1 /. It is 99 to 3.5 / 96.5, more preferably 1.5 / 98.5 to 3/97. When the molar ratio ((IP) / (TP)) is less than 1/99 (that is, the amount (number of moles) of isophthalic acid unit (IP) is smaller than that of 1/90 and the amount of terephthalic acid unit (TP) is (When the amount (number of moles) is large), the obtained resin composition may have high crystallinity as a whole and may easily become cloudy. When the molar ratio ((IP) / (TP)) is less than 5/95 (that is, the amount (number of moles) of isophthalic acid unit (IP) is larger than that of 5/95 and the amount of terephthalic acid unit (TP) is large. (When the amount (number of moles) is small), the resulting resin composition is too low in crystallinity as a whole, and may be liable to become cloudy as in the state where the polyester (A) is mixed with the non-crystalline portion.
 ここで、本発明において、ポリエステル(B)のモル比((IP)/(TP))は、ポリエステル(B)を構成する分子間で分布を有するものであってもよい。その場合、ポリエステル(B)のモル比((IP)/(TP))は、平均値として上記範囲内にあることが好ましい。 Here, in the present invention, the molar ratio ((IP) / (TP)) of the polyester (B) may have a distribution among the molecules constituting the polyester (B). In that case, the molar ratio ((IP) / (TP)) of the polyester (B) is preferably within the above range as an average value.
 本発明のポリエステル樹脂組成物において、ポリエステル(A)およびポリエステル(B)は、ポリエステル(A)とポリエステル(B)との質量比((A)/(B))が90/10~40/60、好ましくは88/12~50/50、好ましくは85/15~60/40、より好ましくは85/15~70/30、さらに好ましくは80/20~70/30となる割合で含有されている。質量比((A)/(B))が90/10を下回ると(すなわち、90/10よりもポリエステル(A)の含有量が大きくかつポリエステル(B)の含有量が小さい場合)、得られる樹脂組成物では、ポリエステル(A)が結晶化するとその影響によって樹脂組成物全体が白濁し易くなる。質量比((A)/(B))が40/60を下回ると(すなわち、40/60の質量比((A)/(B))よりもポリエステル(A)の含有量が小さくかつポリエステル(B)の含有量が大きい場合)、得られる樹脂組成物では、ポリエステル(A)の含有量の低下によって樹脂組成物全体の結晶性が低下して十分な耐熱性を発現することができない。 In the polyester resin composition of the present invention, the polyester (A) and the polyester (B) have a mass ratio ((A) / (B)) of the polyester (A) to the polyester (B) of 90/10 to 40/60. It is contained in a proportion of preferably 88/12 to 50/50, preferably 85/15 to 60/40, more preferably 85/15 to 70/30, and further preferably 80/20 to 70/30. .. It is obtained when the mass ratio ((A) / (B)) is less than 90/10 (that is, when the content of polyester (A) is higher and the content of polyester (B) is lower than 90/10). In the resin composition, when the polyester (A) is crystallized, the entire resin composition tends to become cloudy due to the influence thereof. When the mass ratio ((A) / (B)) is less than 40/60 (that is, the content of the polyester (A) is smaller than the mass ratio of 40/60 ((A) / (B)) and the polyester (that is, When the content of B) is large), in the obtained resin composition, the crystallinity of the entire resin composition is lowered due to the decrease in the content of the polyester (A), and sufficient heat resistance cannot be exhibited.
 ポリエステルは一般に結晶性の高分子であり、結晶部分と非晶部分とが混在し、その結晶化部分の割合である結晶化度は、温度履歴などの条件によって変動する。 Polyester is generally a crystalline polymer, and a crystalline portion and an amorphous portion are mixed, and the crystallinity, which is the ratio of the crystallized portion, varies depending on conditions such as temperature history.
 エチレングリコール単位とテレフタル酸単位とを主構成単位とするポリエステル(A)は、結晶性が高く(すなわち、比較的結晶化速度が大きく)、また結晶化度も大きくなリ易い。これはテレフタル酸が、ベンゼン環において2つのカルキシル基がパラ位に存在するジカルボン酸であり、ポリエステルが直鎖状になり易く、パッキングし易く結晶構造を取りやすいためである。しかし、結晶性が高いがために結晶が成長し易く、結晶の厚みも増し、より大きな球晶となって、樹脂組成物としては白濁し易いという性質を有する。 Polyester (A) having an ethylene glycol unit and a terephthalic acid unit as its main constituent units has high crystallinity (that is, a relatively high crystallization rate) and easily has a high crystallinity. This is because terephthalic acid is a dicarboxylic acid in which two carxyl groups are present at the para position in the benzene ring, and the polyester tends to be linear, easy to pack, and easy to take a crystal structure. However, since the crystallinity is high, the crystals are easy to grow, the thickness of the crystals is increased, and the crystals become larger spherulites, which have the property of easily becoming cloudy as a resin composition.
 一方で、エチレングリコール単位と、イソフタル酸単位と、テレフタル酸単位とを主構成単位とするポリエステル(B)は、イソフタル酸における2つのカルキシル基がメソ位に存在するため、パラ位に存在するテレフタル酸のポリエステル(A)よりも結晶性は低下する。その結晶性は、イソフタル酸の存在比率によって変動する。イソフタル酸単位が多いほど、結晶性が低下し、例えば、ジカルボン酸に占める割合が20モル%を超えると結晶化することが困難となる場合がある。 On the other hand, polyester (B) whose main constituent units are ethylene glycol unit, isophthalic acid unit, and terephthalic acid unit has two calcyl groups in isophthalic acid at the meso position, so that terephthal exists at the para position. The crystallinity is lower than that of the polyester (A) of the acid. Its crystallinity varies depending on the abundance ratio of isophthalic acid. The larger the number of isophthalic acid units, the lower the crystallinity. For example, if the proportion of the dicarboxylic acid exceeds 20 mol%, it may be difficult to crystallize.
 本発明では、このポリエステル(A)とポリエステル(B)とを混在させることにより、得られるポリエステル樹脂組成物としての結晶性を制御することができる。すなわち、例えばポリエステル(A)のみでは、結晶性が高く、大きな球晶まで成長して白濁する可能性がある。ここで、ポリエステル(A)と比較的類似の構造を有するポリエステル(B)を混在させることにより、ポリエステル(A)とポリエステル(B)とは、互いの相容性が高く、ポリエステル(A)を構成する分子の周囲にポリエステル(B)を構成する分子を配置することができる。その結果、相対的に結晶性の劣るポリエステル(B)がポリエステル(A)の結晶成長を抑制するとともに、ポリエステル(B)も適度に結晶成長することによって、得られるポリエステル樹脂組成物全体にわたって結晶の大きさを制御できる。これにより樹脂組成物全体の白濁化を抑制することができる。本発明のポリエステル樹脂組成物では、上記理由から、これに含まれる結晶径を300nm以下にすることができる。このため、当該結晶径は可視光の波長(例えば360nm~700nm)よりも小さく制御されており、結果として結晶化させながら、透明な樹脂組成物とすることもできる。 In the present invention, the crystallinity of the obtained polyester resin composition can be controlled by mixing the polyester (A) and the polyester (B). That is, for example, polyester (A) alone has high crystallinity and may grow to large spherulites and become cloudy. Here, by mixing the polyester (B) having a structure relatively similar to that of the polyester (A), the polyester (A) and the polyester (B) are highly compatible with each other, and the polyester (A) can be used. The molecules constituting the polyester (B) can be arranged around the constituent molecules. As a result, the polyester (B), which is relatively inferior in crystallinity, suppresses the crystal growth of the polyester (A), and the polyester (B) also grows moderately. You can control the size. This makes it possible to suppress white turbidity of the entire resin composition. In the polyester resin composition of the present invention, the crystal diameter contained therein can be set to 300 nm or less for the above reason. Therefore, the crystal diameter is controlled to be smaller than the wavelength of visible light (for example, 360 nm to 700 nm), and as a result, a transparent resin composition can be obtained while crystallizing.
 また、一般的に、樹脂を構成する結晶部分と非晶部分とはそれらの屈折率が異なるために、結晶化が進むと、当該結晶部分と非晶部分とが混在して全体として不透明になるが、本発明のポリエステル樹脂組成物では、上記ポリエステル(A)およびポリエステル(B)を共存させることによって、当該組成物中で結晶化の状態をグラデーションのような段階的変化をもって配置することが可能である。その結果、当該組成物中の屈折率の差を段階的にすることができる。すなわち、ポリエステル(B)は、イソフタル酸単位(IP)を含有することによって、ポリエステル(A)よりも結晶化度が低く、非晶部分よりは結晶化度は高いものとなる。したがって、屈折率も、ポリエステル(A)と非晶部分との間となる。そのため、ポリエステル樹脂組成物の各構成成分の間での屈折率の差が小さくなり、これにより樹脂組成物の不透明化を抑制することが可能である。さらに、ポリエステル樹脂組成物に含まれるポリステル(B)内のフタル酸類単位(すなわち、イソフタル酸単位(IP)とテレフタル酸単位(TP)と)のモル比((IP)/(TP))が分布を有することにより、ポリエステル(A)と非晶部分との間に相当する結晶化度(例えば中間的な結晶化度)、すなわちこれらの間に属する屈折率を複数設けることができ、全体として構成成分間での屈折率の差はより小さくなり、これによりポリエステル樹脂組成物の不透明化をより抑制することもできる。 Further, in general, since the crystalline portion and the amorphous portion constituting the resin have different refractive coefficients, as the crystallization progresses, the crystalline portion and the amorphous portion are mixed and become opaque as a whole. However, in the polyester resin composition of the present invention, by coexisting the polyester (A) and the polyester (B), it is possible to arrange the crystallization state in the composition with a stepwise change such as a gradation. Is. As a result, the difference in refractive index in the composition can be made stepwise. That is, by containing the isophthalic acid unit (IP), the polyester (B) has a lower crystallinity than the polyester (A) and a higher crystallinity than the amorphous portion. Therefore, the refractive index is also between the polyester (A) and the amorphous portion. Therefore, the difference in the refractive index between the constituents of the polyester resin composition becomes small, which makes it possible to suppress the opacity of the resin composition. Further, the molar ratio ((IP) / (TP)) of the phthalic acid units (that is, the isophthalic acid unit (IP) and the terephthalic acid unit (TP)) in the polyester (B) contained in the polyester resin composition is distributed. By having The difference in refractive acid between the components becomes smaller, which can further suppress the opacity of the polyester resin composition.
 従来は、単一のポリエステル中におけるテレフタル酸とイソフタル酸の割合を変えることによってのみ、結晶性の抑制などが行われていた。これに対して、本発明では、ポリエステル(A)に対して、結晶性の異なるポリエステル(B)を混合することで、樹脂組成物全体の結晶性を制御することができる。 Conventionally, crystallinity was suppressed only by changing the ratio of terephthalic acid and isophthalic acid in a single polyester. On the other hand, in the present invention, the crystallinity of the entire resin composition can be controlled by mixing the polyester (A) with the polyester (B) having different crystallinity.
 本発明では、樹脂組成物全体における結晶性の状態の上記グラデーションの効果を上げるためには、ポリエステル(B)は、結晶性が互いに異なる2種またはそれ以上のポリエステル((B1)、(B2)、(B3)・・・)を組み合わせた形態で樹脂組成物中に含有されていてもよい。 In the present invention, in order to enhance the effect of the above-mentioned gradation of the crystalline state in the entire resin composition, the polyester (B) may be two or more polyesters having different crystallinities ((B1), (B2)). , (B3) ...) may be contained in the resin composition in a combined form.
 ここで、ポリエステル(B)が、ポリエステル(B1)、(B2)および(B3)の組み合わせによって構成される(ポリエステル(B1)、(B2)および(B3)の各結晶化度が(B1)、(B2)および(B3)の順序で低い((B1)>(B2)>(B3))と仮定する)場合、ポリエステル(B)におけるポリエステル(B1)、(B2)および(B3)の含有量は、略同一であってもよく、(B1)、(B2)および(B3)の順序で低下するものであってもよく、あるいは(B1)、(B2)および(B3)の順序で増加するものであってもよい。 Here, the polyester (B) is composed of a combination of the polyesters (B1), (B2) and (B3) (the crystallinity of each of the polyesters (B1), (B2) and (B3) is (B1), If the order of (B2) and (B3) is lower (assuming (B1)> (B2)> (B3)), the content of polyester (B1), (B2) and (B3) in the polyester (B). May be substantially identical, may decrease in the order of (B1), (B2) and (B3), or increase in the order of (B1), (B2) and (B3). It may be a thing.
 本発明においては、上記ポリエステル(B)が上記のように複数種のポリエステルの組み合わせから構成されていることにより、上記ポリエステル(A)と一緒になって、ポリエステル樹脂組成物内に様々な結晶化度を有するポリエステルを共存させ、結果として得られる樹脂組成物の透明性を高めることができる。 In the present invention, since the polyester (B) is composed of a combination of a plurality of types of polyesters as described above, various crystallizations are carried out in the polyester resin composition together with the polyester (A). The transparency of the resulting resin composition can be enhanced by coexisting polyester having a degree.
 本発明では、上述のようにポリエステル(A)の周囲にポリエステル(B)を配置することで結晶径も小さくすることができるが、同じ結晶化で結晶径を小さくすることで、結晶の周囲に配置する非晶部分が比較的多くなる。結晶の周囲に配置する非晶部分は、完全非晶状態の時よりも分子は動きにくくなる。したがって、本発明では、非晶の熱特性であるガラス転移温度も高温側にシフトすることを見出した。 In the present invention, the crystal diameter can be reduced by arranging the polyester (B) around the polyester (A) as described above, but by reducing the crystal diameter by the same crystallization, the crystal diameter can be reduced. The number of amorphous parts to be arranged is relatively large. In the amorphous part arranged around the crystal, the molecule becomes more difficult to move than in the completely amorphous state. Therefore, in the present invention, it has been found that the glass transition temperature, which is an amorphous thermal characteristic, also shifts to the high temperature side.
 この効果は、樹脂組成物を溶融冷却後に結晶化度0%の状態から結晶化する時に、顕著に確認することができる。例えば、本発明のポリエステル樹脂組成物は、結晶化度を0%から20%まで変化させた際に組成物全体のガラス転移温度が好ましくは3℃以上、より好ましくは5℃以上、さらに好ましくは8℃以上12℃以下、上昇する。ガラス転移温度が上昇することはすなわち、非晶部分のゴム状態化による軟化が、結晶部分の保持力より勝り、熱変形する温度が高くなることであり、これにより、樹脂組成物の耐熱性はさらに上昇する。 This effect can be remarkably confirmed when the resin composition is crystallized from a state with a crystallinity of 0% after melting and cooling. For example, in the polyester resin composition of the present invention, the glass transition temperature of the entire composition is preferably 3 ° C. or higher, more preferably 5 ° C. or higher, still more preferably 5 ° C. or higher when the crystallinity is changed from 0% to 20%. The temperature rises from 8 ° C to 12 ° C or less. The increase in the glass transition temperature means that the softening due to the rubber state of the amorphous portion is superior to the holding power of the crystalline portion, and the temperature of thermal deformation becomes higher, whereby the heat resistance of the resin composition becomes higher. It will rise further.
 ポリエステル(A)およびポリエステル(B)は、従来のポリエチレンテレフタレート樹脂の製造に採用されるような公知の重縮合方法に準じて製造することができる。ポリエステルの製造に際して、ジカルボン酸は、ジカルボン酸として反応系に供給してもよく、あるいはジカルボン酸のジオールエステルとして供給してもよい。一方、ジヒドロキシ化合物としてのエチレングリコールは、エチレングリコールとして供給してもよく、あるいはジカルボン酸のジヒドロキシエステルの形態で反応系に供給してもよい。 The polyester (A) and the polyester (B) can be produced according to a known polycondensation method such as that used in the production of a conventional polyethylene terephthalate resin. In the production of polyester, the dicarboxylic acid may be supplied to the reaction system as a dicarboxylic acid, or may be supplied as a diol ester of the dicarboxylic acid. On the other hand, ethylene glycol as a dihydroxy compound may be supplied as ethylene glycol, or may be supplied to the reaction system in the form of a dihydroxy ester of a dicarboxylic acid.
 ポリエステルの製造のために採用される触媒には、ポリエチレンテレフタレート樹脂の製造に使用されている公知の共縮合用触媒が用いられ得る。これらの触媒の例としては、アンチモン、ゲルマニウム、チタンなどの金属、およびその金属化合物が挙げられる。金属化合物としては、例えば酸化物、水酸化物、ハロゲン化物、無機酸塩、有機酸塩、錯塩、複塩、アルコラート、フェノラートなどが挙げられる。 As the catalyst used for the production of polyester, a known cocondensation catalyst used for the production of polyethylene terephthalate resin can be used. Examples of these catalysts include metals such as antimony, germanium, titanium, and metal compounds thereof. Examples of the metal compound include oxides, hydroxides, halides, inorganic acid salts, organic acid salts, complex salts, double salts, alcoholates, phenolates and the like.
 ポリエステル(A)およびポリエステル(B)のそれぞれの製造において、共縮合用触媒は、単独で、または複数を組み合わせて用いてもよい。共縮合用触媒は、エステル化反応、またはエステル交換反応の初期の段階から反応系に供給してもよく、あるいは重縮合反応段階に移行する前に反応系に供給してもよい。 In the production of the polyester (A) and the polyester (B), the cocondensation catalyst may be used alone or in combination of two or more. The cocondensation catalyst may be supplied to the reaction system from the initial stage of the esterification reaction or transesterification reaction, or may be supplied to the reaction system before shifting to the polycondensation reaction stage.
 ポリエステル(A)およびポリエステル(B)のそれぞれの製造において、上記の共縮合の際にポリエチレンテレフタレート樹脂の製造時に使用されるエステル交換反応用の触媒、ジエチレングリコールの生成抑制剤、熱安定剤、光安定剤、滑剤、顔料、染料などの各種添加剤が添加されてもよい。 In the production of polyester (A) and polyester (B), a catalyst for transesterification reaction, a diethylene glycol production inhibitor, a heat stabilizer, and a photostabilizer used in the production of polyethylene terephthalate resin during the above cocondensation. Various additives such as agents, lubricants, pigments and dyes may be added.
 エステル交換反応用の触媒としては、例えばカルシウム、マグネシウム、リチウム、亜鉛、コバルト、マンガンなどの金属化合物が挙げられる。これらの金属化合物の形態としては、例えば、酸化物、水酸化物、ハロゲン化物、無機酸塩、有機酸塩などが挙げられるジエチレングリコールの生成抑制剤としては、例えばトリエチルアミン、トリn-ブチルアミン等のアミン類、テトラエチルアンモニウムヒドロオキシド、テトラブチルアンモニウムヒドロオキシド等の第四級アンモニウム化合物などが挙げられる。熱安定剤としては、例えばリン酸、亜リン酸、次亜リン酸、またはこれらのエステル等のリン酸化合物などが挙げられる。光安定剤としては、例えば当該分野において公知のものが挙げられる。滑剤としては、例えば当該分野において公知のものが挙げられる。顔料としては、例えば当該分野において公知のものが挙げられる。染料としては、例えば当該分野において公知のものが挙げられる。 Examples of the catalyst for the transesterification reaction include metal compounds such as calcium, magnesium, lithium, zinc, cobalt and manganese. Examples of the form of these metal compounds include oxides, hydroxides, halides, inorganic acid salts, organic acid salts and the like. Examples of the diethylene glycol production inhibitor include amines such as triethylamine and trin-butylamine. Examples include quaternary ammonium compounds such as tetraethylammonium hydrooxide and tetrabutylammonium hydrooxide. Examples of the heat stabilizer include phosphoric acid, phosphorous acid, hypophosphorous acid, and phosphoric acid compounds such as esters thereof. Examples of the light stabilizer include those known in the art. Examples of the lubricant include those known in the art. Examples of the pigment include those known in the art. Examples of the dye include those known in the art.
 ポリエステル(A)およびポリエステル(B)はいずれも、上記重縮合法によって得られる共重合ポリエステルを、さらに固相重縮合法を通じて分子量を増大させることによっても製造することができる。このような固相重縮合法としては、例えば溶融重縮合法で得られた共重合ポリエステルを細粒化し、それを融点以下の温度、好ましくは180℃~240℃の温度下で、例えば真空下または不活性ガス気流下にて保持する方法が挙げられる。 Both the polyester (A) and the polyester (B) can be produced by further increasing the molecular weight of the copolymerized polyester obtained by the above-mentioned polycondensation method through the solid-phase polycondensation method. As such a solid-phase polycondensation method, for example, the copolymerized polyester obtained by the melt polycondensation method is atomized, and the copolymerized polyester is granulated and granulated at a temperature below the melting point, preferably at a temperature of 180 ° C. to 240 ° C., for example, under vacuum. Alternatively, a method of holding under an inert gas stream may be mentioned.
(可塑剤)
 本発明のポリエステル樹脂組成物はまた、可塑剤を含有していてもよい。可塑剤の例としては、アセチル化モノグリセリド、プロピレングリコール脂肪酸エステル、脂肪酸トリグリセリド、190~210℃の融点を有する共重合ポリエステル、およびソルビタン脂肪酸エステル、ならびにそれらの組み合わせが挙げられる。当該可塑剤は、安全性が高く、ポリエステル樹脂組成物と混合することにより特に低温での分子運動性を高め、過冷却すなわち固相状態の結晶化を促進することができる。そのため、より低温での結晶化が可能となり、得られる樹脂組成物についてより微細な結晶系を構築することが可能である。
(Plasticizer)
The polyester resin composition of the present invention may also contain a plasticizer. Examples of plasticizers include acetylated monoglycerides, propylene glycol fatty acid esters, fatty acid triglycerides, copolymerized polyesters having a melting point of 190-210 ° C., and sorbitan fatty acid esters, and combinations thereof. The plasticizer has high safety, and when mixed with the polyester resin composition, it can enhance the molecular mobility particularly at a low temperature and promote supercooling, that is, crystallization in a solid phase state. Therefore, it is possible to crystallize at a lower temperature, and it is possible to construct a finer crystal system for the obtained resin composition.
 これらは、本発明のポリエステル樹脂組成物との相溶性が特に優れ、溶融状態から冷却、加熱され、ポリエステル組成物の結晶化度が変わり、非晶部/結晶部の存在比率が変わったとしても不透明化したり、浸出したりすることないため、より好適な可塑剤として使用される。 These have particularly excellent compatibility with the polyester resin composition of the present invention, and even if the degree of crystallinity of the polyester composition changes and the abundance ratio of the amorphous part / crystal part changes when the polyester composition is cooled and heated from the molten state. It is used as a more suitable plasticizer because it does not become opaque or seep out.
 また、これら可塑剤は、お互いの相溶性も良く、ポリエステル組成物に対して単体で加えられるだけでなく、2種類以上の混合で加えることができる。 Further, these plasticizers have good compatibility with each other, and can be added not only alone to the polyester composition but also in a mixture of two or more kinds.
 可塑剤の含有量は、ポリエステル樹脂組成物から得られる成形体の耐熱性、透明性、および成形性を向上させる観点から、上記ポリエステル(A)およびポリエステル(B)の合計質量100質量部に対して、好ましくは1質量部~5質量部、より好ましくは2質量部~4質量部である。可塑剤の含有量が1質量部を下回ると、得られるポリエステル樹脂組成物において可塑剤を含有させた効果がほとんど得られないおそれがある。可塑剤の含有量が5質量部を上回ると、得られるポリエステル樹脂組成物において可塑剤による効果がそれ以上変動せず、むしろ樹脂組成物の透明性を低下させるおそれがある。 The content of the thermoplastic agent is based on 100 parts by mass of the total mass of the polyester (A) and the polyester (B) from the viewpoint of improving the heat resistance, transparency, and moldability of the molded product obtained from the polyester resin composition. It is preferably 1 part by mass to 5 parts by mass, and more preferably 2 parts by mass to 4 parts by mass. If the content of the plasticizer is less than 1 part by mass, the effect of containing the plasticizer in the obtained polyester resin composition may be hardly obtained. When the content of the plasticizer exceeds 5 parts by mass, the effect of the plasticizer does not change any more in the obtained polyester resin composition, but rather the transparency of the resin composition may be lowered.
(結晶核剤)
 本発明のポリエステル樹脂組成物はまた、結晶核剤を含有していてもよい。結晶核剤としては、ステアリン酸マグネシウム、硫酸カルシウム、硫酸バリウム、酸化マグネシウム、タルク、およびポリプロピレンからなる群から選択される少なくとも1種の化合物である
を好適に含有する。
(Crystal nucleating agent)
The polyester resin composition of the present invention may also contain a crystal nucleating agent. The crystal nucleating agent preferably contains at least one compound selected from the group consisting of magnesium stearate, calcium sulfate, barium sulfate, magnesium oxide, talc, and polypropylene.
 これらの結晶核剤は、核となるばかりか、滑剤としても分子鎖のからまり抑制などにより、分子鎖の運動性を向上させ、より低温での結晶化が可能となることで、本発明の狙いである結晶の厚みが小さく、より透明な組成物の形成の一助にもなる。 These crystal nucleating agents not only become nuclei, but also act as lubricants by suppressing the entanglement of molecular chains, thereby improving the motility of the molecular chains and enabling crystallization at lower temperatures. The target crystal thickness is small, which also helps to form a more transparent composition.
 結晶核剤の含有量は、ポリエステル樹脂組成物から得られる成形体の透明性を向上させる観点から、上記ポリエステル(A)およびポリエステル(B)の合計質量100質量部に対して、好ましくは0.1質量部~1.0質量部、より好ましくは0.1質量部~0.4質量部である。結晶核剤の含有量が0.1質量部を下回ると、得られるポリエステル樹脂組成物において結晶核剤を含有させた効果がほとんど得られないおそれがある。結晶核剤の含有量が1.0質量部を上回ると、得られるポリエステル樹脂組成物において結晶核剤による効果がそれ以上変動せず、むしろ樹脂組成物の透明性を低下させるおそれがある。 The content of the crystal nucleating agent is preferably 0. With respect to 100 parts by mass of the total mass of the polyester (A) and the polyester (B) from the viewpoint of improving the transparency of the molded product obtained from the polyester resin composition. It is 1 part by mass to 1.0 part by mass, more preferably 0.1 part by mass to 0.4 part by mass. If the content of the crystal nucleating agent is less than 0.1 parts by mass, the effect of containing the crystal nucleating agent may be hardly obtained in the obtained polyester resin composition. When the content of the crystal nucleating agent exceeds 1.0 part by mass, the effect of the crystal nucleating agent does not change any more in the obtained polyester resin composition, but rather the transparency of the resin composition may be lowered.
 なお、本発明では、上記結晶核剤に代えてまたは上記結晶核剤以外に、その他の結晶核剤を含んでいてもよい。その他の結晶核剤としては、例えば無機系結晶核剤、および有機系結晶核剤、ならびにそれらの組み合わせが挙げられる。 In the present invention, other crystal nucleating agents may be contained in place of the crystal nucleating agent or in addition to the crystal nucleating agent. Examples of other crystal nucleating agents include inorganic crystal nucleating agents, organic crystal nucleating agents, and combinations thereof.
 無機系結晶核剤としては、例えば天然または合成珪酸塩化合物、酸化チタン、硫酸バリウム、リン酸三カルシウム、炭酸カルシウム、リン酸ソーダなどの金属塩やカオリナイト、ハロイサイト、タルク、スメクタイト、バーミキュライト、マイカ、シリカ、炭酸カリシウム、炭酸マグシウム、酸化マグネシウム、硫酸カルシウムなどが挙げられる。有機系結晶核剤としては、例えばカルボン酸アミド、フェニルホスホン酸金属塩、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、サリチル酸亜鉛などが挙げられる。得られるポリエステル樹脂組成物の透明性を向上させる観点から、結晶核剤としてカルボン酸アミドを含有させることが好ましい。このようなカルボン酸アミドとしては、エチレンビス脂肪酸アミド(例えば、エチレンビスステアリン酸アミドおよびエチレンビスオレイン酸アミド)、アルキレンビス脂肪酸アミド(例えば、プロピレンビス脂肪酸アミドおよびブチレンビス脂肪酸アミド)、ならびにアルキレンビスヒドロキシ脂肪酸アミド(例えば、炭素数1~6のアルキレン基を有するアルキレンビスヒドロキシステアリン酸アミド、好ましくはエチレンビス12-ヒドロキシステアリン酸アミド)が挙げられる。 Examples of the inorganic crystal nucleating agent include metal salts such as natural or synthetic silicate compounds, titanium oxide, barium sulfate, tricalcium phosphate, calcium carbonate, and sodium phosphate, kaolinite, halloysite, talc, smectite, vermiculite, and mica. , Silica, potassium carbonate, magsium carbonate, magnesium oxide, calcium sulfate and the like. Examples of the organic crystal nucleating agent include carboxylic acid amide, phenylphosphonic acid metal salt, calcium benzoate, calcium benzoate, magnesium stearate, zinc salicylate and the like. From the viewpoint of improving the transparency of the obtained polyester resin composition, it is preferable to contain a carboxylic acid amide as a crystal nucleating agent. Such carboxylic acid amides include ethylene bis fatty acid amides (eg, ethylene bisstearate amides and ethylene bisoleic acid amides), alkylene bis fatty acid amides (eg, propylene bis fatty acid amides and butylene bis fatty acid amides), and alkylene bishydroxy. Examples thereof include fatty acid amides (for example, alkylene bishydroxystearic acid amides having an alkylene group having 1 to 6 carbon atoms, preferably ethylene bis 12-hydroxystearic acid amides).
 その他の結晶核剤の含有量は、ポリエステル樹脂組成物から得られる成形体の透明性を向上させる観点から、上記ポリエステル(A)およびポリエステル(B)の合計質量100質量部に対して、好ましくは0.1質量部~1.0質量部、より好ましくは0.1質量部~0.5質量部である。その他の結晶核剤の含有量が0.1質量部を下回ると、得られるポリエステル樹脂組成物において当該その他の結晶核剤を含有させた効果がほとんど得られないおそれがある。その他の結晶核剤の含有量が1.0質量部を上回ると、得られるポリエステル樹脂組成物において当該その他の結晶核剤による効果がそれ以上変動せず、むしろ樹脂組成物の透明性を低下させるおそれがある。 The content of the other crystal nucleating agent is preferably based on 100 parts by mass of the total mass of the polyester (A) and the polyester (B) from the viewpoint of improving the transparency of the molded product obtained from the polyester resin composition. It is 0.1 part by mass to 1.0 part by mass, more preferably 0.1 part by mass to 0.5 part by mass. If the content of the other crystal nucleating agent is less than 0.1 parts by mass, the effect of containing the other crystal nucleating agent in the obtained polyester resin composition may be hardly obtained. When the content of the other crystal nucleating agent exceeds 1.0 part by mass, the effect of the other crystal nucleating agent does not change any more in the obtained polyester resin composition, but rather the transparency of the resin composition is lowered. There is a risk.
(加水分解抑制剤)
 本発明のポリエステル樹脂組成物はまた、加水分解抑制剤を含有していてもよい。加水分解抑制剤としては、例えば、ポリカルボジイミド化合物、モノカルボジイミド化合物などのカルボジイミド化合物が挙げられる。得られるポリエステル樹脂組成物の耐久性、耐衝撃性を向上させる観点から、ポリカルボジイミド化合物が好ましく、ポリエステル樹脂組成物の強度および成形性(流動性)を低下させない観点から、モノカルボジイミド化合物が好ましい。また、ポリエステル樹脂組成物から得られる成形体の強度、耐衝撃性、および成形性をより向上させる観点から、モノカルボジイミドとポリカルボジイミドとを併用することが好ましい。
(Hydrolysis inhibitor)
The polyester resin composition of the present invention may also contain a hydrolysis inhibitor. Examples of the hydrolysis inhibitor include carbodiimide compounds such as polycarbodiimide compounds and monocarbodiimide compounds. The polycarbodiimide compound is preferable from the viewpoint of improving the durability and impact resistance of the obtained polyester resin composition, and the monocarbodiimide compound is preferable from the viewpoint of not reducing the strength and moldability (fluidity) of the polyester resin composition. Further, from the viewpoint of further improving the strength, impact resistance, and moldability of the molded product obtained from the polyester resin composition, it is preferable to use monocarbodiimide and polycarbodiimide in combination.
 ポリカルボジイミド化合物としては、例えば、ポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5-トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5-トリイソプロピルベンゼンおよび1,3-ジイソプロピルベンゼン)ポリカルボジイミドなどが挙げられる。モノカルボジイミド化合物としては、例えばN,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミドなどが挙げられる。上記加水分解抑制剤のうち、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)は、例えばカルボジライトLA-1の商品名で日清紡ケミカル株式会社より市販されている。ポリ(1,3,5-トリイソプロピルベンゼン)ポリカルボジイミドならびにポリ(1,3,5-トリイソプロピルベンゼンおよび1,3-ジイソプロピルベンゼン)ポリカルボジイミドは、例えばスタバクゾールPおよびスタバクゾールP-100の商品名でそれぞれRhein Chemie社より市販されている。N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミドは、例えばスタバクゾールIの商品名でRhein Chemie社より市販されている。 Examples of the polycarbodiimide compound include poly (4,4'-diphenylmethanecarbodiimide), poly (4,4'-dicyclohexylmethanecarbodiimide), poly (1,3,5-triisopropylbenzene) polycarbodiimide, and poly (1,). 3,5-Triisopropylbenzene and 1,3-diisopropylbenzene) polycarbodiimide and the like can be mentioned. Examples of the monocarbodiimide compound include N, N'-di-2,6-diisopropylphenylcarbodiimide and the like. Among the above hydrolysis inhibitors, poly (4,4'-dicyclohexylmethanecarbodiimide) is commercially available from Nisshinbo Chemical Co., Ltd., for example, under the trade name of Carbodilite LA-1. Poly (1,3,5-triisopropylbenzene) polycarbodiimide and poly (1,3,5-triisopropylbenzene and 1,3-diisopropylbenzene) polycarbodiimide are, for example, under the trade names of Stavaxol P and Stavaxol P-100. Each is commercially available from Rhein Chemie. N, N'-di-2,6-diisopropylphenylcarbodiimide is commercially available from Rhein Chemie, for example, under the trade name of Stavaxol I.
 加水分解抑制剤の含有量は、ポリエステル樹脂組成物から得られる成形体の透明性および成形性を向上させる観点から、上記ポリエステル(A)およびポリエステル(B)の合計質量100質量部に対して、好ましくは0.05質量部~3質量部、より好ましくは0.10質量部~2質量部である。加水分解抑制剤の含有量が0.05質量部を下回ると、得られるポリエステル樹脂組成物において、加水分解を抑制する効果が小さくなるおそれがある。加水分解抑制剤の含有量が3質量部を上回ると、得られるポリエステル樹脂組成物において耐加水分解性がそれ以上変化せず、むしろ樹脂組成物の流動性が低下するなどの成形性を低下させるおそれがある。 The content of the hydrolysis inhibitor is based on 100 parts by mass of the total mass of the polyester (A) and the polyester (B) from the viewpoint of improving the transparency and moldability of the molded product obtained from the polyester resin composition. It is preferably 0.05 parts by mass to 3 parts by mass, and more preferably 0.10 parts by mass to 2 parts by mass. If the content of the hydrolysis inhibitor is less than 0.05 parts by mass, the effect of inhibiting hydrolysis may be reduced in the obtained polyester resin composition. When the content of the hydrolysis inhibitor exceeds 3 parts by mass, the hydrolysis resistance of the obtained polyester resin composition does not change any more, but rather the moldability of the resin composition is lowered. There is a risk.
(その他の添加剤)
 さらに、本発明のポリエステル樹脂組成物は樹脂成形一般に使用されるその他の添加剤を含有していてもよい。その他の添加剤の例としては、充填剤(例えば無機充填剤および有機充填剤)、難燃剤、酸化防止剤、炭化水素系ワックス類またはアニオン型界面活性剤などの滑剤、紫外線吸収剤、帯電防止剤、防曇剤、光安定剤、顔料、防カビ剤、抗菌剤、発泡剤、着色剤、消泡剤などが挙げられる。その他の添加剤の含有量は、本発明の効果を損なわない範囲において当業者によって適切な量が選択され得る。
(Other additives)
Further, the polyester resin composition of the present invention may contain other additives generally used for resin molding. Examples of other additives include fillers (eg inorganic and organic fillers), flame retardants, antioxidants, lubricants such as hydrocarbon waxes or anionic surfactants, UV absorbers, antistatic agents. Examples thereof include agents, antifogging agents, light stabilizers, pigments, antifungal agents, antibacterial agents, foaming agents, coloring agents, antifoaming agents and the like. As the content of other additives, an appropriate amount can be selected by those skilled in the art as long as the effects of the present invention are not impaired.
(その他の樹脂)
 さらに、本発明のポリエステル樹脂組成物は、本発明の効果を損なわない範囲において他の樹脂を含有していてもよい。その他の樹脂の例としては、必ずしも限定されないが、例えば、ポリアミド(PA)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリテトラフルオロエチレン(PTFE)、フッ素樹脂、アラミド樹脂、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン(PEK)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド、ポリアミドイミド(PAI)、ポリエーテルケトンケトン(PEKK)、ポリフェニレンエーテル(PPE)、ポリエーテルスルホン(PES)、ポリサルホン(PSU)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオキシメチレン(POM)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリメチルペンテン(TPX)、ポリスチレン(PS)、ポリメタクリル酸メチル、アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)が挙げられる。これら熱可塑性樹脂は、溶融混練により、溶融状態でブレンドすることも可能であるが、熱可塑性樹脂を繊維状、粒子状にし、本発明のポリエステル樹脂組成物に分散しても良い。また、不飽和ポリエステル樹脂、ウレタン樹脂、ユリア樹脂、メラニン樹脂、フェノール樹脂、エポキシ樹脂などの熱硬化性樹脂が挙げられる。その他の樹脂の含有量は、本発明の効果を損なわない範囲において当業者によって適切な量が選択され得る。
(Other resins)
Further, the polyester resin composition of the present invention may contain other resins as long as the effects of the present invention are not impaired. Examples of other resins include, but are not limited to, polyamide (PA), polyphenylene sulfide (PPS), liquid crystal polymers (LCP), polytetrafluoroethylene (PTFE), fluororesins, aramid resins, polyetheretherketone. (PEEK), polyetherketone (PEK), polyetherimide (PEI), thermoplastic polyimide, polyamideimide (PAI), polyetherketoneketone (PEKK), polyphenylene ether (PPE), polyethersulfone (PES), polysulfone (PSU), polyallylate (PAR), polycarbonate (PC), polyoxymethylene (POM), polypropylene (PP), polyethylene (PE), polymethylpentene (TPX), polystyrene (PS), polymethylmethacrylate, acrylonitrile Examples thereof include the styrene copolymer (AS) and the acrylonitrile-butadiene-styrene copolymer (ABS). These thermoplastic resins can be blended in a molten state by melt-kneading, but the thermoplastic resin may be made into fibrous or particulate forms and dispersed in the polyester resin composition of the present invention. Further, thermosetting resins such as unsaturated polyester resin, urethane resin, urea resin, melanin resin, phenol resin and epoxy resin can be mentioned. As the content of other resins, an appropriate amount can be selected by those skilled in the art as long as the effects of the present invention are not impaired.
(ヘイズ値)
 本発明のポリエステル樹脂組成物は、JIS K7136に準拠した厚み0.3mmの成形体に加工した際のヘイズ値が好ましくは8%以下、より好ましくは5%以下、さらに好ましくは3%以下である。ヘイズ値が5%以下であることにより、一般に透明と言われるA-PET樹脂や延伸ポリスチレン(OPS)と同等の十分な透明性を実現できる。
(Haze value)
The polyester resin composition of the present invention has a haze value of preferably 8% or less, more preferably 5% or less, still more preferably 3% or less when processed into a molded product having a thickness of 0.3 mm according to JIS K7136. .. When the haze value is 5% or less, sufficient transparency equivalent to that of A-PET resin or stretched polystyrene (OPS), which is generally said to be transparent, can be realized.
(ポリエステル樹脂組成物の製造方法)
 本発明のポリエステル樹脂組成物は、例えば以下のようにして製造される。
(Manufacturing method of polyester resin composition)
The polyester resin composition of the present invention is produced, for example, as follows.
 まず、ポリエステル(A)とポリエステル(B)とを混合して樹脂混合物が作製される(工程(S1))。 First, a resin mixture is produced by mixing polyester (A) and polyester (B) (step (S1)).
 ポリエステル(A)およびポリエステル(B)の混合は、公知公用の方法や混練技術を適用できる。例えば、2軸押出混練機に、パウダー状もしくはペレット状のポリエステル(A)とポリエステル(B)とがフィードされ、加熱かつ剪断を加え、溶融押出混練してペレット状の樹脂混合物を得ることができる。なお、2軸押出混練機における加熱温度は、スクリューの回転数にもよるが、240~300℃であることが好ましい。加熱温度が240℃未満であると、これらの混合が不十分となる場合がある。加熱温度が300℃を超えると、ポリエステル(A)およびポリエステル(B)の熱分解が起こる場合がある。また、2軸押出混練機におけるスクリューの回転数は、100~500rpmであることが好ましい。スクリューの回転数が100pm未満であると、これらの混合が不十分となる場合がある。スクリューの回転数が500rpmを超えると、ポリエステル(A)およびポリエステル(B)の熱分解が起こる場合がある。 For the mixing of polyester (A) and polyester (B), known public methods and kneading techniques can be applied. For example, powdery or pelletized polyester (A) and polyester (B) are fed to a twin-screw extrusion kneader, heated and sheared, and melt-extruded and kneaded to obtain a pellet-shaped resin mixture. .. The heating temperature in the twin-screw extrusion kneader is preferably 240 to 300 ° C., although it depends on the number of rotations of the screw. If the heating temperature is less than 240 ° C., these may be insufficiently mixed. If the heating temperature exceeds 300 ° C., thermal decomposition of the polyester (A) and the polyester (B) may occur. Further, the rotation speed of the screw in the twin-screw extrusion kneader is preferably 100 to 500 rpm. If the rotation speed of the screw is less than 100 pm, these may be insufficiently mixed. When the rotation speed of the screw exceeds 500 rpm, thermal decomposition of the polyester (A) and the polyester (B) may occur.
 ポリエステル(A)とポリエステル(B)との混合は、2軸押出混練機の代わりに、バッチ式のニーダーや、ニーダールーダー、ニーダーでバッチ混練後に押出し機でペレット化するなどの手法を用いて行ってもよい。また、ポリエステル(A)およびポリエステル(B)をブレンダーなどで一括混合した後、2軸押出機でこれらを加熱溶融しながら押出しペレット化してもよい。 The polyester (A) and the polyester (B) are mixed by using a method such as a batch type kneader, a kneader luder, or a kneader for batch kneading and then pelletizing with an extruder instead of the twin-screw extruder. You may. Further, the polyester (A) and the polyester (B) may be mixed together with a blender or the like, and then extruded and pelletized while being heated and melted by a twin-screw extruder.
 また、本発明のポリエステル樹脂組成物が可塑剤(C)および/または滑剤(D)を含有する場合、2軸押出混練機には、ポリエステル(A)とポリエステル(B)と同時に可塑剤(C)および滑剤(D)をフィードしてもよく、あるいは必要に応じてサイドフィードや液体注入ポンプを使用して供給してもよい。 Further, when the polyester resin composition of the present invention contains a plasticizer (C) and / or a lubricant (D), the twin-screw extrusion kneader has the polyester (A) and the polyester (B) at the same time as the plasticizer (C). ) And the lubricant (D) may be fed, or may be supplied using a side feed or a liquid injection pump as needed.
 なお、本発明のポリエステル樹脂組成物が可塑剤(C)および滑剤(D)を混合する場合には、規定の濃度で直接混合する以外にも、可塑剤(B)および滑剤(C)をポリエステル(A)またはポリエステル(B)に高濃度に混合した後に、ポリエステル(A)やポリエステル(B)にドライブレンドするか、または加熱押出混練等により希釈して混合物を作製することもできる。可塑剤(B)および滑剤(C)は、これらを別々に添加かつ混合してもよく、あるいはこれらを同時に添加かつ混合してもよい。 When the polyester resin composition of the present invention mixes the thermoplastic agent (C) and the lubricant (D), in addition to directly mixing the thermoplastic agent (C) and the lubricant (D), the polyester resin (B) and the lubricant (C) are mixed in the polyester. After mixing with (A) or polyester (B) at a high concentration, the mixture can be prepared by dry blending with polyester (A) or polyester (B), or by diluting by heat extrusion kneading or the like. The plasticizer (B) and the lubricant (C) may be added and mixed separately, or they may be added and mixed at the same time.
 なお、ポリエステル(A)またはポリエステル(B)への可塑剤(C)および/または滑剤(D)を予め高濃度で混合する場合の混合比率は、可塑剤(C)および/または滑剤(D)/ポリエステル(A)またはポリエステル(B)の質量比が好ましくは1/4~1/20、より好ましくは1/5~1/20、さらに好ましくは1/10~1/20である。 When the plasticizer (C) and / or the lubricant (D) is mixed with the polyester (A) or the polyester (B) at a high concentration in advance, the mixing ratio is the plasticizer (C) and / or the lubricant (D). / The mass ratio of the polyester (A) or the polyester (B) is preferably 1/4 to 1/20, more preferably 1/5 to 1/20, and even more preferably 1/10 to 1/20.
 本発明の製造方法では、次いで、この樹脂混合物が加熱により溶融される(工程(S2))。 In the production method of the present invention, this resin mixture is then melted by heating (step (S2)).
 この工程は、上記で得られた樹脂混合物を、当該樹脂混合物の融点以上に加熱することにより行われる。具体的には、例えば上記樹脂混合物を十分に乾燥させた後、シリンダー温度が当該樹脂混合物の融点よりも例えば10℃~50℃高い温度に設定された押出機に、樹脂混合物を供給してスクリュー回転により押し出して行うことができる。 This step is performed by heating the resin mixture obtained above to a temperature equal to or higher than the melting point of the resin mixture. Specifically, for example, after the resin mixture is sufficiently dried, the resin mixture is supplied to an extruder whose cylinder temperature is set to, for example, 10 ° C. to 50 ° C. higher than the melting point of the resin mixture, and a screw is used. It can be extruded by rotation.
 押出しの際に使用する押出機は、特に限定されないが、例えば単軸スクリュー、同方向または異方向の二軸スクリュー式のものが挙げられる。スクリューの形状や寸法等は当業者によって適宜選択され得る。また、使用する押出機の回転数および吐出量は、押出機の容量等に応じて当業者によって適宜調節され得る。 The extruder used for extrusion is not particularly limited, and examples thereof include a single-screw screw and a twin-screw screw type in the same direction or in different directions. The shape and dimensions of the screw can be appropriately selected by those skilled in the art. Further, the rotation speed and the discharge amount of the extruder to be used can be appropriately adjusted by those skilled in the art according to the capacity of the extruder and the like.
 押出温度は、好ましくは240℃~300℃、より好ましくは260~290℃である。押出温度が240℃未満であると、樹脂混合物が十分に溶融しないことがある。また、押出温度が300℃を超えると、例えば樹脂混合物中に含まれるポリエステル(A)やポリエステル(B)が熱分解し、オリゴマーの低分子物が発生して、得られる樹脂組成物が所望でない不純物を含有することがある。 The extrusion temperature is preferably 240 ° C. to 300 ° C., more preferably 260 to 290 ° C. If the extrusion temperature is less than 240 ° C., the resin mixture may not melt sufficiently. Further, when the extrusion temperature exceeds 300 ° C., for example, the polyester (A) and the polyester (B) contained in the resin mixture are thermally decomposed to generate low molecular weight oligomers, and the obtained resin composition is not desired. May contain impurities.
 押出機中での滞留時間は、好ましくは2分間~20分間、より好ましくは5分間~15分間である。滞留時間が2分間未満であると、ポリエステル樹脂混合部の溶融が不十分となり、後工程での成形品の外観不良などに影響を及ぼすことがある。また、溶融滞留時間が20分間を超えると、ポリエステル樹脂混合物熱劣化や副反応が起こり、成形日の外観、物性が低下することがある。 The residence time in the extruder is preferably 2 minutes to 20 minutes, more preferably 5 minutes to 15 minutes. If the residence time is less than 2 minutes, the polyester resin mixed portion is insufficiently melted, which may affect the appearance of the molded product in a subsequent step. Further, if the melt residence time exceeds 20 minutes, thermal deterioration and side reactions of the polyester resin mixture may occur, and the appearance and physical properties on the molding date may deteriorate.
 なお、加熱溶融するのは上述のような押出機に限らず、圧縮成形機やトラスファー成形のような成形機のシリンダー内や、温度制御のできるバッチ式の恒温槽や加熱炉の様なものであってもよい。 It should be noted that heating and melting is not limited to the above-mentioned extruders, but also in the cylinders of molding machines such as compression molding machines and truss fur molding, and batch-type constant temperature baths and heating furnaces that can control the temperature. May be.
 本発明の製造方法では、次いで、上記で溶融した樹脂混合物が、樹脂混合物のガラス転移温度を下回る温度まで冷却される(工程(S3))。 In the production method of the present invention, the resin mixture melted above is then cooled to a temperature lower than the glass transition temperature of the resin mixture (step (S3)).
 例えば、溶融した樹脂混合物は、押出機のシリンダーの先端に位置されたダイより吐出させ、好ましくは温調された気体、液体、固体の冷却媒体に接することでガラス転移温度を下回る温度まで冷却することができる。 For example, the molten resin mixture is discharged from a die located at the tip of the cylinder of the extruder and is preferably cooled to a temperature below the glass transition temperature by contacting with a temperature controlled gas, liquid or solid cooling medium. be able to.
 ダイの形状によって、樹脂混合物は、円柱状、円筒状、シート状など様々な形状に成形される。例えば、Tダイを用いて、樹脂溶融物を吐出し、樹脂混合物のガラス転移温度を下回る温度に設定された冷却ロールに接触させれば、フィルムまたはシート状の成形物を得ることができる。 Depending on the shape of the die, the resin mixture is formed into various shapes such as a cylinder, a cylinder, and a sheet. For example, if the resin melt is discharged using a T-die and brought into contact with a cooling roll set to a temperature lower than the glass transition temperature of the resin mixture, a film or sheet-shaped molded product can be obtained.
 この場合、冷却ロールは、好ましくは3本以上のロールが使用される。このようなロールの直径はTダイの大きさにも依るが、好ましくは300mm~1200mmである。 In this case, as the cooling roll, preferably three or more rolls are used. The diameter of such a roll depends on the size of the T-die, but is preferably 300 mm to 1200 mm.
 冷却シートは、本発明の目的を損なわない程度で、表面処理等を施してもよい。また、この冷却シートは必要に応じて当業者に公知の手段を用いて多層化されてもよい。 The cooling sheet may be surface-treated to the extent that the object of the present invention is not impaired. Further, the cooling sheet may be multi-layered by means known to those skilled in the art, if necessary.
 本明細書に用いる用語「シート」とは厚さが0.1mm以上の平板状のものを指していい、「フィルム」とは厚み0.1mm未満の平板状のものを指していう。このようなシートまたはフィルム状の一次加工品は、ポリエステル樹脂組成物を押出成形やプレス成形することによって作製することができる。 The term "sheet" used in the present specification refers to a flat plate having a thickness of 0.1 mm or more, and "film" refers to a flat plate having a thickness of less than 0.1 mm. Such a sheet or film-shaped primary processed product can be produced by extrusion molding or press molding of the polyester resin composition.
 この冷却の際に採用され得るガラス転移温度を下回る温度は、好ましくは15℃~60℃であり、より好ましくは20℃~60℃であり、さらに好ましくは30℃~55℃である。この温度が15℃を下回ると、冷却媒体が固体である場合、所定の湿度下では結露しやすく、水滴により樹脂組成物が汚染され易くなることがある。また、冷却ロールによるシート成形の場合、急冷過ぎて、均質な厚みに成形することが難しく、および/またはシートに筋などの外観不良を生じることがある。この温度が60℃を上回ると、媒体の冷却能力にも依るが、樹脂組成物が十分固化せず、および/または大きさ結晶が生成して白濁することがある。 The temperature below the glass transition temperature that can be adopted during this cooling is preferably 15 ° C to 60 ° C, more preferably 20 ° C to 60 ° C, and even more preferably 30 ° C to 55 ° C. When this temperature is lower than 15 ° C., when the cooling medium is a solid, dew condensation is likely to occur under a predetermined humidity, and water droplets may easily contaminate the resin composition. Further, in the case of sheet forming with a cooling roll, it may be too rapid to form into a uniform thickness, and / or the sheet may have an appearance defect such as streaks. If this temperature exceeds 60 ° C., the resin composition may not be sufficiently solidified and / or large crystals may be formed and become cloudy, depending on the cooling capacity of the medium.
 本発明の製造方法では、次いで、上記で冷却された樹脂混合物が、樹脂混合物のガラス転移温度を上回る温度まで加熱される(工程(S4))。 In the production method of the present invention, the resin mixture cooled above is then heated to a temperature higher than the glass transition temperature of the resin mixture (step (S4)).
 上記冷却された樹脂混合物を、そのガラス転移温度を上回る温まで加熱することにより固相結晶化が進み結晶化度を高めることができる。 By heating the cooled resin mixture to a temperature higher than the glass transition temperature, solid phase crystallization proceeds and the crystallinity can be increased.
 この加熱の際に採用され得るガラス転移温度は、好ましくは80℃~90℃であり、より好ましくは80℃~87℃であり、さらに好ましくは80℃~85℃である。この温度が80℃を下回ると、樹脂混合物に含まれる非晶状態の分子が十分な運動エネルギーを有することができず、結晶化速度が低下して、所望の結晶性を得ることが困難となることがある。この温度が90℃を上回ると、樹脂組成物中に制御できない大きな結晶が成長して、白濁することがある。 The glass transition temperature that can be adopted during this heating is preferably 80 ° C. to 90 ° C., more preferably 80 ° C. to 87 ° C., and even more preferably 80 ° C. to 85 ° C. When this temperature is lower than 80 ° C., the amorphous molecules contained in the resin mixture cannot have sufficient kinetic energy, the crystallization rate is lowered, and it becomes difficult to obtain the desired crystallinity. Sometimes. If this temperature exceeds 90 ° C., large uncontrollable crystals may grow in the resin composition and become cloudy.
 このような加熱は、好ましくは温調された気体、液体、固体の媒体に接することでガラス転移温度を上回る温度まで行われる。例えば80℃に制御された恒温槽を用いた場合、好ましくは5分間~24時間かけて行われる。 Such heating is preferably performed up to a temperature higher than the glass transition temperature by contacting with a temperature-controlled gas, liquid, or solid medium. For example, when a constant temperature bath controlled at 80 ° C. is used, it is preferably carried out over 5 minutes to 24 hours.
 上記加熱を通じて、上記冷却された樹脂組成物は、固体のまま非晶状態の分子が結晶成長し、固相結晶化した樹脂組成物に変化する。 Through the heating, the cooled resin composition changes into a solid-phase crystallized resin composition by crystal growth of amorphous molecules in a solid state.
 なお、溶融に2軸混練押出機を使用する場合は、工程(S1)~(S4)をこの順で一括して連続的に行うことができる。例えば、2軸押出混練機に、パウダー状もしくはペレット状のポリエステル(A)とポリエステル(B)をフィードし、加熱かつ剪断を加え、溶融押出混練してペレット状の樹脂混合物を得ながら、溶融状態でダイより吐出させ、ダイに引き続いて配置した冷却ロールで冷却した後、続いて配置された加熱ロールにて加熱することができる。 When a twin-screw kneading extruder is used for melting, the steps (S1) to (S4) can be continuously performed in this order. For example, powdered or pelletized polyester (A) and polyester (B) are fed to a twin-screw extrusion kneader, heated and sheared, and melt-extruded and kneaded to obtain a pellet-shaped resin mixture in a molten state. It can be discharged from the die, cooled by the cooling roll arranged subsequently to the die, and then heated by the heating roll arranged subsequently.
 このようにして、本発明のポリエステル樹脂組成物を得ることができる。 In this way, the polyester resin composition of the present invention can be obtained.
(樹脂成形体)
 本発明のポリエステル樹脂組成物は当業者に周知の手段を用いて、所望の樹脂成形体に成形することができる。
(Resin molded product)
The polyester resin composition of the present invention can be molded into a desired resin molded product by means well known to those skilled in the art.
 このような樹脂成形体の例としては、飲料(例えば、ミネラルウォーター、清涼飲料水、コーヒー飲料、乳飲料、ワイン、日本酒)、液体調味料(例えば、ソース、しょうゆ、みりん、サラダ油、オリーブオイル、ゴマ油、料理酒)、果実(例えば、イチゴ、サクランボ、オレンジなどの柑橘類、キウイフツール、カットフルーツ)、総菜類(例えば、揚げ物、刺身、焼き魚、サラダ)、麺類(例えば、うどん、そば、ラーメン、素麺)などの飲食品等を収容する容器、トレイ、皿、蓋、ボトル、チューブ、パウチが挙げられる。 Examples of such resin molded bodies include beverages (eg, mineral water, soft drinks, coffee beverages, dairy beverages, wine, sake), liquid seasonings (eg, sauces, soba, mirin, salad oil, olive oil, etc.). Sesame oil, sake), fruits (eg citrus fruits such as strawberries, cherries, oranges, kiwif tools, cut fruits), delicatessen (eg fried foods, sashimi, grilled fish, salads), noodles (eg udon, buckwheat, ramen, Examples include containers, trays, plates, lids, bottles, tubes, and pouches for accommodating foods and drinks such as (soba noodles).
 本発明の樹脂成形体は、透明性および耐熱性の両方が優れる。これにより、上記飲食品等を収容した製品は、生産者および消費者が内容物の色彩や収容量を容易に目視で確認することができる。また、収容された飲食品の鮮度を容易に目視で確認することもでき、製品の新鮮さについて消費者への訴求力を高めることもできる。さらに、飲食品の加熱のため、他の容器等に移すことなく、そのまま電子レンジ、湯煎等による加温を行うことも可能である。 The resin molded product of the present invention is excellent in both transparency and heat resistance. As a result, the producer and the consumer can easily visually confirm the color and the amount of the contents of the product containing the above-mentioned foods and drinks. In addition, the freshness of the contained food and drink can be easily visually confirmed, and the freshness of the product can be enhanced to appeal to consumers. Further, for heating food and drink, it is possible to heat the food and drink as it is by using a microwave oven, a water bath or the like without transferring it to another container or the like.
 以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described based on Examples, but the present invention is not limited to these Examples.
 各実施例および比較例において採用した試験方法は以下の通りであった。 The test methods adopted in each example and comparative example were as follows.
(結晶性の評価)
 得られたシートについて7.5mg精秤し、アルミパンに封入後、DSC装置(パーキンエルマー社製ダイアモンドDSC)を用い、1stRUNとして、昇温速度20℃/分で20℃から300℃まで昇温し、300℃で5分間保持した後、降温速度-20℃/分で300℃から20℃まで降温し、20℃で1分間保持した後、さらに2ndRUNとして、昇温速度20℃/分で20℃から300℃まで昇温した。1stRUNに観測されるポリ乳酸樹脂の冷結晶化エンタルピーの絶対値ΔHcc、2ndRUNに観測される結晶融解エンタルピーΔHmを求め、得られた値から、下記式により相対結晶化度(%)を求めた。
    相対結晶化度(%)={(ΔHm-ΔHcc)/ΔHm}×100
(Evaluation of crystallinity)
7.5 mg of the obtained sheet is precisely weighed, sealed in an aluminum pan, and then heated from 20 ° C. to 300 ° C. at a heating rate of 20 ° C./min as 1stRUN using a DSC device (Diamond DSC manufactured by PerkinElmer). Then, after holding at 300 ° C. for 5 minutes, the temperature was lowered from 300 ° C. to 20 ° C. at a temperature lowering rate of -20 ° C./min, and after holding at 20 ° C. for 1 minute, the temperature was further set to 2ndRUN and the temperature rising rate was 20 ° C./min. The temperature was raised from ° C to 300 ° C. The absolute value ΔHcc of the cold crystallization enthalpy of the polylactic acid resin observed in the 1st RUN was obtained, and the crystal melting enthalpy ΔHm observed in the 2nd RUN was obtained, and the relative crystallization degree (%) was obtained from the obtained values by the following formula.
Relative crystallinity (%) = {(ΔHm-ΔHcc) / ΔHm} × 100
(ヘイズ値の評価)
 得られたシートについて、厚みが0.3mmである場合のヘイズ値をJIS K7136に準拠する方法で測定した。なお、シートの厚みが0.3mmと異なる場合、
    H0.3(%)=H×0.3/d
(ここで、H0.3は、厚み0.3mmに換算した際のヘイズ値(%)であり、Hは、測定に使用したシート(サンプル)のヘイズ実測値(%)であり、dはヘイズ値を測定した部分のシート(サンプル)の厚み(mm)である)で定義される式から換算したヘイズ値を算出した。
(Evaluation of haze value)
For the obtained sheet, the haze value when the thickness was 0.3 mm was measured by a method according to JIS K7136. If the thickness of the sheet is different from 0.3 mm,
H 0.3 (%) = H × 0.3 / d
(Here, H 0.3 is a haze value (%) when converted to a thickness of 0.3 mm, H is a haze measured value (%) of the sheet (sample) used for the measurement, and d is. The haze value converted from the formula defined by the thickness (mm) of the sheet (sample) of the portion where the haze value was measured was calculated.
(実施例1:シート状のポリエステル樹脂組成物の作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)90質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)10質量部、ステアリン酸マグネシウム(結晶核剤(D)0.4質量部を2軸押出し混練機にフィードし、シリンダー温度240℃~280℃に制御して混練してポリエステル樹脂混合物なるペレットを得た。その後、このペレットをシリンダー温度280℃に設定した押出し機にフィードして溶融軟化させた後、T-ダイより吐出させ、45℃に設定されたロールにより冷却して、厚さ0.3mmのシートを得た。
(Example 1: Preparation of sheet-shaped polyester resin composition)
Polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 90 parts by mass, polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B)) 10 parts by mass, magnesium stearate (0.4 parts by mass of crystal nucleating agent (D)) is fed to a twin-screw extruder and kneader, and the cylinder temperature is 240 ° C. to The pellets were kneaded at 280 ° C. to obtain pellets of a polyester resin mixture. Then, the pellets were fed to an extruder set at a cylinder temperature of 280 ° C. to be melted and softened, and then discharged from a T-die to 45. The sheet was cooled by a roll set to ° C. to obtain a sheet having a thickness of 0.3 mm.
 さらに、このシートを85℃の恒温槽で1昼夜処理することにより、シートを構成するポリエステル樹脂組成物中のポリエステル成分を結晶化させた。このようにしてシート状のポリエステル樹脂組成物(ES1)を作製した。 Further, this sheet was treated in a constant temperature bath at 85 ° C. for one day and night to crystallize the polyester component in the polyester resin composition constituting the sheet. In this way, a sheet-shaped polyester resin composition (ES1) was produced.
 この組成物(ES1)は、表面の浸出などは観察されず、良好な外観を示していた。また、この組成物(ES1)について、示差走査熱量測定装置(DSC)による相対結晶化度を測定した。得られた相対結晶化度は28%であった。また、ヘイズ値は5%であった。 This composition (ES1) showed a good appearance with no leaching of the surface observed. Further, the relative crystallinity of this composition (ES1) was measured by a differential scanning calorimetry device (DSC). The obtained relative crystallinity was 28%. The haze value was 5%.
 次いでこの組成物(ES1)を恒温油浴に浸漬して、温度による変化を観測した。100℃に加熱しても変形など認められず、優れた耐熱性を有していることを確認した。 Next, this composition (ES1) was immersed in a constant temperature oil bath, and changes due to temperature were observed. No deformation was observed even when heated to 100 ° C., and it was confirmed that the product had excellent heat resistance.
 また、組成物(ES1)を85℃の恒温槽で放置して、当該組成物(ES1)中のポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い73℃であった。結果を表1に示す。 Further, the composition (ES1) is left in a constant temperature bath at 85 ° C. to crystallize the polyester component in the composition (ES1), and the glass transition in a state where the relative crystallization degree by DSC is 20%. When the temperature was read from the DSC chart, it was 73 ° C., which was higher than the glass transition temperature before leaving the constant temperature bath. The results are shown in Table 1.
(実施例2:シート状のポリエステル樹脂組成物の作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)70質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)30質量部、ステアリン酸マグネシウム(結晶核剤(D)0.4質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 2: Preparation of sheet-shaped polyester resin composition)
Polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 70 parts by mass, polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Examples except that 30 parts by mass of acid unit = 98.2 mol%; equivalent to polyester (B) and 0.4 parts by mass of magnesium stearate (crystal nucleating agent (D)) were fed to a twin-screw extruder and kneader. A sheet having a thickness of 0.3 mm was obtained in the same manner as in 1.
 さらに、このシートを実施例1と同様にして、その組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES2)を作製した。その後、この組成物(ES2)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES2)を恒温油浴への浸漬により100℃に加熱しても変形など認められず、優れた耐熱性を有していることを確認した。 Further, the polyester resin composition (ES2) in the form of a sheet was prepared by crystallizing the polyester component in the composition in the same manner as in Example 1. Then, for this composition (ES2), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES2) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that it had excellent heat resistance.
 また、この組成物(ES2)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い75℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES2) and the glass transition temperature in a state where the relative crystallinity by DSC was 20% was read from the DSC chart, the temperature was constant. It was 75 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例3:シート状のポリエステル樹脂組成物の作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)60質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)40質量部、ステアリン酸マグネシウム(結晶核剤(D)0.4質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 3: Preparation of sheet-shaped polyester resin composition)
Polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 60 parts by mass, polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Examples except that 40 parts by mass of acid unit = 98.2 mol%; equivalent to polyester (B) and 0.4 parts by mass of magnesium stearate (crystal nucleating agent (D)) were fed to a twin-screw extruder and kneader. A sheet having a thickness of 0.3 mm was obtained in the same manner as in 1.
 さらに、このシートを実施例1と同様にして、その組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES3)を作製した。その後、この組成物(ES3)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES3)を恒温油浴への浸漬により100℃に加熱しても変形など認められず、優れた耐熱性を有していることを確認した。 Further, the polyester resin composition (ES3) in the form of a sheet was prepared by crystallizing the polyester component in the composition in the same manner as in Example 1. Then, for this composition (ES3), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES3) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that it had excellent heat resistance.
 また、この組成物(ES3)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い77℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES3) and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart, it was found to be constant temperature. It was 77 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例4:シート状のポリエステル樹脂組成物の作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)70質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=2.6モル%、テレフタル酸単位=97.4モル%;ポリエステル(B)に相当)30質量部、ステアリン酸マグネシウム(結晶核剤(D)0.4質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 4: Preparation of sheet-shaped polyester resin composition)
Polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 70 parts by mass, polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., isophthalic acid unit = 2.6 mol%, terephthalic acid) Examples except that 30 parts by mass of acid unit = 97.4 mol%; equivalent to polyester (B) and 0.4 parts by mass of magnesium stearate (crystal nucleating agent (D)) were fed to a twin-screw extruder and kneader. A sheet having a thickness of 0.3 mm was obtained in the same manner as in 1.
 さらに、このシートを実施例1と同様にして、その組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES4)を作製した。その後、この組成物(ES4)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES4)を恒温油浴への浸漬により100℃に加熱しても変形など認められず、優れた耐熱性を有していることを確認した。 Further, the polyester resin composition (ES4) in the form of a sheet was prepared by crystallizing the polyester component in the composition in the same manner as in Example 1. Then, for this composition (ES4), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES4) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that it had excellent heat resistance.
 また、この組成物(ES4)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い75℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES4) and the glass transition temperature in a state where the relative crystallinity by DSC was 20% was read from the DSC chart, the temperature was constant. It was 75 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例5:シート状のポリエステル樹脂組成物の作製)
 撹拌翼、窒素導入口、および減圧口を備えた反応装置に、テレフタル酸ジメチル95モル(18.45kg)、イソフタル酸ジメチル5モル(0.97kg)、エチレングリコール200モル(12.41kg)、ならびに触媒として酢酸亜鉛および二酸化ゲルマニウムを各々10gずつ仕込んだ。窒素気流下で180℃に加熱してエステル交換反応を行い、メタノールを留去した。4時間後にほぼ理論量のメタノールが留去されるのでその後270℃にまで昇温し、徐々に減圧して、0.1Torr~0.3Torrで5時間重合し、ポリマーを得た。
(Example 5: Preparation of sheet-shaped polyester resin composition)
A reactor equipped with a stirring blade, a nitrogen inlet, and a decompression port were provided with 95 mol (18.45 kg) of dimethyl terephthalate, 5 mol (0.97 kg) of dimethyl isophthalate, 200 mol (12.41 kg) of ethylene glycol, and As a catalyst, 10 g each of zinc acetate and germanium dioxide were charged. A transesterification reaction was carried out by heating to 180 ° C. under a nitrogen stream, and methanol was distilled off. After 4 hours, substantially the theoretical amount of methanol was distilled off, and then the temperature was raised to 270 ° C., the pressure was gradually reduced, and polymerization was carried out at 0.1 Torr to 0.3 Torr for 5 hours to obtain a polymer.
 得られたポリマーをH-NMRにより分析した結果、ジカルボン酸残基の95.0モル%がテレフタル酸単位であり、5.0モル%がイソフタル酸単位であり、ジオール単位の100モル%がエチレングリコール単位であるポリエチレンテレフタレートであったことを確認した。 As a result of analyzing the obtained polymer by 1 H-NMR, 95.0 mol% of the dicarboxylic acid residue was a terephthalic acid unit, 5.0 mol% was an isophthalic acid unit, and 100 mol% of the diol unit was. It was confirmed that it was polyethylene terephthalate, which is an ethylene glycol unit.
 次いで、このポリエチレンテレフタレート(ポリエステル(B)に相当)30質量部、およびポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)70質量部、ステアリン酸マグネシウム(結晶核剤(D)0.4質量部を2軸押出し混練機に仕込んだこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。 Next, 30 parts by mass of this polyethylene terephthalate (corresponding to polyester (B)), 70 parts by mass of polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)), magnesium stearate. A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that 0.4 parts by mass of the crystal nucleating agent (D) was charged in a twin-screw extruder and a kneader.
 さらに、このシートを実施例1と同様にして、その組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES5)を作製した。その後、この組成物(ES5)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES5)を恒温油浴への浸漬により100℃に加熱しても変形など認められず、優れた耐熱性を有していることを確認した。 Further, the polyester resin composition (ES5) in the form of a sheet was prepared by crystallizing the polyester component in the composition in the same manner as in Example 1. Then, for this composition (ES5), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES5) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that it had excellent heat resistance.
 また、この組成物(ES5)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い75℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES5) and the glass transition temperature in a state where the relative crystallinity by DSC was 20% was read from the DSC chart, the temperature was constant. It was 75 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例6:シート状のポリエステル樹脂組成物の作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)70質量部、ポリエチレンテレフタレート(1)(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)15質量部、ポリエチレンテレフタレート(2)(遠東新世紀株式会社製、イソフタル酸単位=2.6モル%、テレフタル酸単位=97.4モル%;ポリエステル(B)に相当)15質量部、ステアリン酸マグネシウム(結晶核剤(D)0.4質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 6: Preparation of sheet-shaped polyester resin composition)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 70 parts by mass, polyethylene terephthalate (1) (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol) %, Terephthalic acid unit = 98.2 mol%; equivalent to polyester (B)) 15 parts by mass, polyethylene terephthalate (2) (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 2.6 mol%, terephthalic acid unit = Same as Example 1 except that 97.4 mol%; 15 parts by mass of polyester (B) and 0.4 parts by mass of magnesium stearate (crystal nucleating agent (D)) were fed to a twin-screw extruder and kneader. A sheet having a thickness of 0.3 mm was obtained.
 さらに、このシートを実施例1と同様にしてポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES6)を作製した。その後、この組成物(ES6)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES6)を恒温油浴への浸漬により100℃に加熱しても変形など認められず、優れた耐熱性を有していることを確認した。 Further, the polyester resin composition (ES6) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES6), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES6) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that it had excellent heat resistance.
 また、この組成物(ES6)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い75℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES6) and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart, it was found to be constant temperature. It was 75 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例7:シート状のポリエステル樹脂組成物の作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)70質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)30質量部、アセチル化ノモグリセリド(可塑剤(C))3質量部、ステアリン酸マグネシウム(結晶核剤(D)0.4質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 7: Preparation of sheet-shaped polyester resin composition)
Polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 70 parts by mass, polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B) 30 parts by mass, acetylated nomoglyceride (plastic agent (C)) 3 parts by mass, magnesium stearate (crystal nucleating agent (D) 0.4 parts by mass) A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that the sheet was fed to a twin-screw extruder and kneader.
 さらに、このシートを実施例1と同様にしてポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES7)を作製した。その後、この組成物(ES7)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES7)を恒温油浴への浸漬により100℃に加熱しても変形など認められず、優れた耐熱性を有していることを確認した。 Further, the polyester resin composition (ES7) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES7), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES7) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that the composition had excellent heat resistance.
 また、この組成物(ES7)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い75℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES7) and the glass transition temperature in a state where the relative crystallinity by DSC was 20% was read from the DSC chart, the temperature was constant. It was 75 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例8:シート状のポリエステル樹脂組成物の作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)70質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)30質量部、共重合ポリエステル(可塑剤(C))(DIC株式会社製、ポリサイザーA55、融点210°)3質量部、タルク(結晶核剤(D)0.4質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 8: Preparation of sheet-shaped polyester resin composition)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 70 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B)) 30 parts by mass, copolymerized polyester (plastic agent (C)) (manufactured by DIC Co., Ltd., polysizer A55, melting point 210 °) 3 parts by mass, talc (crystal) A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that 0.4 parts by mass of the nucleating agent (D) was fed to the twin-screw extruder and kneader.
 さらに、このシートを実施例1と同様にして、ポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES8)を作製した。その後、この組成物(ES8)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES8)を恒温油浴への浸漬により100℃に加熱しても変形など認められず、優れた耐熱性を有していることを確認した。 Further, the polyester resin composition (ES8) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES8), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES8) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that the composition had excellent heat resistance.
 また、この組成物(ES8)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い74℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES8) and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart, it was found to be constant temperature. It was 74 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例9:シート状のポリエステル樹脂組成物の作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)70質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)30質量部、共重合ポリエステル(可塑剤(C))(DIC株式会社製、ポリサイザーA55、融点210°)3質量部、硫酸バリウム(結晶核剤(D)0.4質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 9: Preparation of sheet-shaped polyester resin composition)
Polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 70 parts by mass, polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B)) 30 parts by mass, copolymerized polyester (plasticizer (C)) (manufactured by DIC Co., Ltd., Polysizer A55, melting point 210 °) 3 parts by mass, barium sulfate ( A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that 0.4 parts by mass of the crystal nucleating agent (D) was fed to the twin-screw extruder and kneader.
 さらに、このシートを実施例1と同様にして、シートを構成するポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES9)を作製した。その後、この組成物(ES9)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES9)を恒温油浴への浸漬により100℃に加熱しても変形など認められず、優れた耐熱性を有していることを確認した。 Further, the sheet-like polyester resin composition (ES9) was produced by crystallizing the polyester component in the polyester resin composition constituting the sheet in the same manner as in Example 1. Then, for this composition (ES9), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES9) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that the composition had excellent heat resistance.
 また、この組成物(ES9)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い73℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES9) and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart, it was found to be constant temperature. It was 73 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例10:シート状のポリエステル樹脂組成物の作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)70質量部、ポリエチレンテレフタレート(1)(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)10質量部、ポリエチレンテレフタレート(2)(遠東新世紀株式会社製、イソフタル酸単位=2.6モル%、テレフタル酸単位=97.4モル%;ポリエステル(B)に相当)20質量部、脂肪酸トリグリセリド(可塑剤(C))(理研ビタミン社製)3質量部、酸化マグネシウム(結晶核剤(D)0.4質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 10: Preparation of sheet-shaped polyester resin composition)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 70 parts by mass, polyethylene terephthalate (1) (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol) %, Terephthalic acid unit = 98.2 mol%; equivalent to polyester (B)) 10 parts by mass, polyethylene terephthalate (2) (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 2.6 mol%, terephthalic acid unit = 97.4 mol%; 20 parts by mass of polyester (B), 3 parts by mass of fatty acid triglyceride (plastic agent (C)) (manufactured by RIKEN Vitamin Co., Ltd.), 0.4 parts by mass of magnesium oxide (crystal nucleating agent (D)) Was fed to the twin-screw extruder and kneader, and a sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1.
 さらに、このシートを実施例1と同様にして、ポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES10)を作製した。その後、この組成物(ES10)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES10)を恒温油浴への浸漬により100℃に加熱しても変形など認められず、優れた耐熱性を有していることを確認した。 Further, the polyester resin composition (ES10) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES10), the relative crystallinity and the haze value were measured in the same manner as in Example 1. Even if this composition (ES10) was heated to 100 ° C. by immersing it in a constant temperature oil bath, no deformation was observed, and it was confirmed that the composition had excellent heat resistance.
 また、この組成物(ES10)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い74℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES10) and the glass transition temperature in a state where the relative crystallinity by DSC was 20% was read from the DSC chart, the temperature was constant. It was 74 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例11:樹脂組成物の製造およびシートの作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)50質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)30質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=2.6モル%、テレフタル酸単位=97.4モル%;ポリエステル(B)に相当)20質量部、共重合ポリエステル(可塑剤(C))(DIC株式会社製、ポリサイザーA55、融点210°)4質量部、タルク(結晶核剤(D)0.4質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 11: Production of resin composition and production of sheet)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 50 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B)) 30 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 2.6 mol%, terephthalic acid unit = 97.4 mol%; 20 parts by mass of polyester (B), 4 parts by mass of copolymerized polyester (plasticizer (C)) (polysizer A55 manufactured by DIC Co., Ltd., melting point 210 °), 0.4 mass of talc (crystal nucleating agent (D)) A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that the portion was fed to a twin-screw extruder and a kneader.
 さらに、このシートを実施例1と同様にして、ポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES11)を作製した。その後、この組成物(ES11)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES11)を、恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, the polyester resin composition (ES11) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES11), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES11) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(ES11)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い74℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES11) and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart, it was found to be constant temperature. It was 74 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例12:樹脂組成物の製造およびシートの作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)40質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)30質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=2.6モル%、テレフタル酸単位=97.4モル%;ポリエステル(B)に相当)30質量部、共重合ポリエステル(可塑剤(C))(DIC株式会社製、ポリサイザーA55、融点210°)4質量部、タルク(結晶核剤(D)0.3質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 12: Production of resin composition and production of sheet)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 40 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B)) 30 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 2.6 mol%, terephthalic acid unit = 97.4 mol%; 30 parts by mass of polyester (B), 4 parts by mass of copolymerized polyester (plasticizer (C)) (polysizer A55 manufactured by DIC Co., Ltd., melting point 210 °), talc (crystal nucleating agent (D) 0.3 mass) A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that the portion was fed to a twin-screw extruder and a kneader.
 さらに、このシートを実施例1と同様にして、ポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES12)を作製した。その後、この組成物(ES12)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES12)を、恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, the polyester resin composition (ES12) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES12), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES12) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(ES12)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い73℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES12) and the glass transition temperature in a state where the relative crystallinity by DSC was 20% was read from the DSC chart, the temperature was constant. It was 73 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例13:樹脂組成物の製造およびシートの作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)45質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)30質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=2.6モル%、テレフタル酸単位=97.4モル%;ポリエステル(B)に相当)25質量部、共重合ポリエステル(可塑剤(C))(DIC株式会社製、ポリサイザーA55、融点210°)4質量部、タルク(結晶核剤(D)0.3質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 13: Production of resin composition and production of sheet)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 45 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B)) 30 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 2.6 mol%, terephthalic acid unit = 97.4 mol%; 25 parts by mass of polyester (B), 4 parts by mass of copolymerized polyester (plasticizer (C)) (polysizer A55 manufactured by DIC Co., Ltd., melting point 210 °), talc (crystal nucleating agent (D) 0.3 mass) A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that the portion was fed to a twin-screw extruder and a kneader.
 さらに、このシートを実施例1と同様にして、ポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES13)を作製した。その後、この組成物(ES13)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES13)を、恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, the polyester resin composition (ES13) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES13), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES13) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(ES13)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い73℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES13) and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart, it was found to be constant temperature. It was 73 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例14:樹脂組成物の製造およびシートの作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)55質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)30質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=2.6モル%、テレフタル酸単位=97.4モル%;ポリエステル(B)に相当)15質量部、共重合ポリエステル(可塑剤(C))(DIC株式会社製、ポリサイザーA55、融点210°)4質量部、タルク(結晶核剤(D)0.5質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 14: Production of resin composition and production of sheet)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 55 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B)) 30 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 2.6 mol%, terephthalic acid unit = 97.4 mol%; 15 parts by mass of polyester (B), 4 parts by mass of copolymerized polyester (plasticizer (C)) (polysizer A55 manufactured by DIC Co., Ltd., melting point 210 °), 0.5 mass of talc (crystal nucleating agent (D)) A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that the portion was fed to a twin-screw extruder and a kneader.
 さらに、このシートを実施例1と同様にして、ポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES14)を作製した。その後、この組成物(ES14)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES14)を、恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, the polyester resin composition (ES14) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES14), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES14) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(ES14)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い74℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES14) and the glass transition temperature in a state where the relative crystallinity by DSC was 20% was read from the DSC chart, the temperature was constant. It was 74 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例15:樹脂組成物の製造およびシートの作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)40質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)30質量部、ポリエチレンテレフタレート(レクロン社製、イソフタル酸単位=2.0モル%、テレフタル酸単位=98.0モル%;ポリエステル(B)に相当)15質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=2.4モル%、テレフタル酸単位=97.6モル%;ポリエステル(B)に相当)15質量部、共重合ポリエステル(可塑剤(C))(DIC株式会社製、ポリサイザーA55、融点210℃)4質量部、タルク(結晶核剤(D)0.3質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 15: Production of resin composition and preparation of sheet)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 40 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B)) 30 parts by mass, polyethylene terephthalate (manufactured by Lecron, isophthalic acid unit = 2.0 mol%, terephthalic acid unit = 98.0 mol%; polyester (B) ), 15 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 2.4 mol%, terephthalic acid unit = 97.6 mol%; equivalent to polyester (B)) 15 parts by mass, both Except that 4 parts by mass of polymerized polyester (plastic agent (C)) (polysizer A55 manufactured by DIC Co., Ltd., melting point 210 ° C.) and 0.3 parts by mass of talc (crystal nucleating agent (D) 0.3 parts by mass were fed to a twin-screw extruder and kneader). Obtained a sheet having a thickness of 0.3 mm in the same manner as in Example 1.
 さらに、このシートを実施例1と同様にして、ポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES15)を作製した。その後、この組成物(ES15)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES15)を、恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, the polyester resin composition (ES15) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, for this composition (ES15), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES15) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(ES15)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い73℃であった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (ES15) and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart, it was found to be constant temperature. It was 73 ° C., which was higher than the glass transition temperature before leaving the tank. The results are shown in Table 1.
(実施例16:樹脂組成物の製造およびシートの作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)45質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)30質量部、ポリエチレンテレフタレート(レクロン社製、イソフタル酸単位=2.0モル%、テレフタル酸単位=98.0モル%;ポリエステル(B)に相当)10質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=2.4モル%、テレフタル酸単位=97.6モル%;ポリエステル(B)に相当)15質量部、共重合ポリエステル(可塑剤(C))(DIC株式会社製、ポリサイザーA55、融点210℃)4質量部、タルク(結晶核剤(D)0.3質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 16: Production of resin composition and production of sheet)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 45 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B)) 30 parts by mass, polyethylene terephthalate (manufactured by Lecron, isophthalic acid unit = 2.0 mol%, terephthalic acid unit = 98.0 mol%; polyester (B) ) Equivalent to 10 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 2.4 mol%, terephthalic acid unit = 97.6 mol%; equivalent to polyester (B)) 15 parts by mass, both Except that 4 parts by mass of polymerized polyester (plastic agent (C)) (polysizer A55 manufactured by DIC Co., Ltd., melting point 210 ° C.) and 0.3 parts by mass of talc (crystal nucleating agent (D) 0.3 parts by mass were fed to a twin-screw extruder and kneader). Obtained a sheet having a thickness of 0.3 mm in the same manner as in Example 1.
 さらに、このシートを、81℃の恒温槽で1昼夜放置してポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES16)を作製した。その後、この組成物(ES16)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES16)を、恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, this sheet was left in a constant temperature bath at 81 ° C. for one day and night to crystallize the polyester component in the polyester resin composition, thereby producing a sheet-shaped polyester resin composition (ES16). Then, for this composition (ES16), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES16) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(ES16)を、81℃の恒温槽で放置してポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い73℃であった。結果を表1に示す。 Further, this composition (ES16) was left in a constant temperature bath at 81 ° C. to crystallize the polyester component, and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart. However, it was 73 ° C., which was higher than the glass transition temperature before leaving the constant temperature bath. The results are shown in Table 1.
(実施例17:樹脂組成物の製造およびシートの作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)60質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)20質量部、ポリエチレンテレフタレート(レクロン社製、イソフタル酸単位=2.0モル%、テレフタル酸単位=98.0モル%;ポリエステル(B)に相当)10質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=2.4モル%、テレフタル酸単位=97.6モル%;ポリエステル(B)に相当)10質量部、共重合ポリエステル(可塑剤(C))(DIC株式会社製、ポリサイザーA55、融点210℃)4質量部、タルク(結晶核剤(D)0.3質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 17: Production of resin composition and production of sheet)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 60 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B)) 20 parts by mass, polyethylene terephthalate (manufactured by Lecron, isophthalic acid unit = 2.0 mol%, terephthalic acid unit = 98.0 mol%; polyester (B) ) Equivalent to 10 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 2.4 mol%, terephthalic acid unit = 97.6 mol%; equivalent to polyester (B)) 10 parts by mass, both Except that 4 parts by mass of polymerized polyester (plastic agent (C)) (polysizer A55 manufactured by DIC Co., Ltd., melting point 210 ° C.) and 0.3 parts by mass of talc (crystal nucleating agent (D) 0.3 parts by mass were fed to a twin-screw extruder and kneader). Obtained a sheet having a thickness of 0.3 mm in the same manner as in Example 1.
 さらに、このシートを、81℃の恒温槽で1昼夜放置してポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES17)を作製した。その後、この組成物(ES17)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES17)を、恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, this sheet was left in a constant temperature bath at 81 ° C. for one day and night to crystallize the polyester component in the polyester resin composition, thereby producing a sheet-shaped polyester resin composition (ES17). Then, for this composition (ES17), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES17) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(ES17)を、81℃の恒温槽で放置してポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い74℃であった。結果を表1に示す。 Further, this composition (ES17) was left in a constant temperature bath at 81 ° C. to crystallize the polyester component, and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart. However, it was 74 ° C., which was higher than the glass transition temperature before leaving the constant temperature bath. The results are shown in Table 1.
(実施例18:樹脂組成物の製造およびシートの作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)40質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)20質量部、ポリエチレンテレフタレート(レクロン社製、イソフタル酸単位=2.0モル%、テレフタル酸単位=98.0モル%;ポリエステル(B)に相当)20質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=2.4モル%、テレフタル酸単位=97.6モル%;ポリエステル(B)に相当)20質量部、共重合ポリエステル(可塑剤(C))(三菱ケミカル株式会社製、ニチゴーポリエスターSP-176、融点130℃)4質量部、タルク(結晶核剤(D)0.3質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 18: Production of resin composition and production of sheet)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 40 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalate) Acid unit = 98.2 mol%; equivalent to polyester (B)) 20 parts by mass, polyethylene terephthalate (manufactured by Lecron, isophthalic acid unit = 2.0 mol%, terephthalic acid unit = 98.0 mol%; polyester (B) ) Equivalent to 20 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 2.4 mol%, terephthalic acid unit = 97.6 mol%; equivalent to polyester (B)) 20 parts by mass, both Polyester polymer (plastic agent (C)) (manufactured by Mitsubishi Chemical Co., Ltd., Nichigo Polyester SP-176, melting point 130 ° C.) 4 parts by mass, talc (crystal nucleating agent (D) 0.3 parts by mass, twin-screw extrusion kneader A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that the sheet was fed to.
 さらに、このシートを、81℃の恒温槽で1昼夜放置してポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES18)を作製した。その後、この組成物(ES18)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES18)を、恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, this sheet was left in a constant temperature bath at 81 ° C. for one day and night to crystallize the polyester component in the polyester resin composition, thereby producing a sheet-shaped polyester resin composition (ES18). Then, for this composition (ES18), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES18) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(ES18)を、81℃の恒温槽で放置してポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い74℃であった。結果を表1に示す。 Further, this composition (ES18) was left in a constant temperature bath at 81 ° C. to crystallize the polyester component, and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart. However, it was 74 ° C., which was higher than the glass transition temperature before leaving the constant temperature bath. The results are shown in Table 1.
(実施例19:樹脂組成物の製造およびシートの作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)60質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)10質量部、ポリエチレンテレフタレート(レクロン社製、イソフタル酸単位=2.0モル%、テレフタル酸単位=98.0モル%;ポリエステル(B)に相当)20質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=2.4モル%、テレフタル酸単位=97.6モル%;ポリエステル(B)に相当)10質量部、共重合ポリエステル(可塑剤(C))(DIC株式会社製、ポリサイザーA55、融点210℃)4質量部、タルク(結晶核剤(D)0.3質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Example 19: Production of resin composition and production of sheet)
Polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 60 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Acid unit = 98.2 mol%; equivalent to polyester (B)) 10 parts by mass, polyethylene terephthalate (manufactured by Lecron, isophthalic acid unit = 2.0 mol%, terephthalic acid unit = 98.0 mol%; polyester (B) ) Equivalent to 20 parts by mass, polyethylene terephthalate (manufactured by Farto Shinseiki Co., Ltd., isophthalic acid unit = 2.4 mol%, terephthalic acid unit = 97.6 mol%; equivalent to polyester (B)) 10 parts by mass, both Except that 4 parts by mass of polymerized polyester (plastic agent (C)) (polysizer A55 manufactured by DIC Co., Ltd., melting point 210 ° C.) and 0.3 parts by mass of talc (crystal nucleating agent (D) 0.3 parts by mass were fed to a twin-screw extruder and kneader). Obtained a sheet having a thickness of 0.3 mm in the same manner as in Example 1.
 さらに、このシートを、実施例1と同様にしてポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(ES19)を作製した。その後、この組成物(ES19)について、実施例1と同様にして相対結晶化度およびヘイズ値を測定した。なお、この組成物(ES19)を、恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, this sheet was used to crystallize the polyester component in the polyester resin composition in the same manner as in Example 1 to prepare a sheet-shaped polyester resin composition (ES19). Then, for this composition (ES19), the relative crystallinity and the haze value were measured in the same manner as in Example 1. No deformation was observed even when this composition (ES19) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(ES19)を、実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度よりも高い75℃であった。結果を表1に示す。 Further, when the polyester component of this composition (ES19) was crystallized in the same manner as in Example 1, the glass transition temperature in a state where the relative crystallinity by DSC was 20% was read from the DSC chart. The temperature was 75 ° C., which was higher than the glass transition temperature before leaving the constant temperature bath. The results are shown in Table 1.
(比較例1:シート状のポリエステル樹脂組成物の作製)
 ポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)95質量部、ポリエチレンテレフタレート(遠東新世紀株式会社製、イソフタル酸単位=1.8モル%、テレフタル酸単位=98.2モル%;ポリエステル(B)に相当)5質量部、ステアリン酸マグネシウム(結晶核剤(D)0.4質量部を2軸押出し混練機にフィードしたこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。
(Comparative Example 1: Preparation of sheet-shaped polyester resin composition)
Polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)) 95 parts by mass, polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., isophthalic acid unit = 1.8 mol%, terephthalic acid) Examples except that 5 parts by mass of acid unit = 98.2 mol%; equivalent to polyester (B) and 0.4 parts by mass of magnesium stearate (crystal nucleating agent (D)) were fed to a twin-screw extruder and kneader. A sheet having a thickness of 0.3 mm was obtained in the same manner as in 1.
 さらに、このシートを実施例1と同様にしてポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(CS1)を作製した。その後、この組成物(CS1)について、実施例1と同様にして相対結晶化度を測定した。ただし、このシート状のポリエステル樹脂組成物は白濁して、透過性は全くなかった。なお、この組成物(CS1)を恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, the polyester resin composition (CS1) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, the relative crystallinity of this composition (CS1) was measured in the same manner as in Example 1. However, this sheet-shaped polyester resin composition became cloudy and had no permeability. No deformation was observed even when this composition (CS1) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(CS1)を実施例1と同様にしてポリエステル樹脂組成物中のポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度から変わりなかった。結果を表1に示す。 Further, the glass transition temperature in a state where the polyester component in the polyester resin composition is crystallized in the same manner as in Example 1 with this composition (CS1) and the relative crystallization degree by DSC is 20% is shown in the DSC chart. As a result of reading from, it did not change from the glass transition temperature before leaving the constant temperature bath. The results are shown in Table 1.
(比較例2:シート状のポリエステル樹脂組成物の作製)
 撹拌翼、窒素導入口、および減圧口を備えた反応装置に、テレフタル酸ジメチル99.5モル(19.32kg)、イソフタル酸ジメチル0.5モル(0.097kg)、エチレングリコール200モル(12.41kg)、ならびに触媒として酢酸亜鉛および二酸化ゲルマニウムを各々10gずつ仕込んだ。窒素気流下で180℃に加熱してエステル交換反応を行い、メタノールを留去した。4時間後にほぼ理論量のメタノールが留去されるのでその後270℃にまで昇温し、徐々に減圧して、0.1Torr~0.3Torrで5時間重合し、ポリマーを得た。
(Comparative Example 2: Preparation of sheet-shaped polyester resin composition)
In a reactor equipped with a stirring blade, a nitrogen inlet, and a decompression port, 99.5 mol (19.32 kg) of dimethyl terephthalate, 0.5 mol (0.097 kg) of dimethyl isophthalate, and 200 mol of ethylene glycol (12. 41 kg), and 10 g each of zinc acetate and germanium dioxide as catalysts were charged. A transesterification reaction was carried out by heating to 180 ° C. under a nitrogen stream, and methanol was distilled off. After 4 hours, substantially the theoretical amount of methanol was distilled off, and then the temperature was raised to 270 ° C., the pressure was gradually reduced, and polymerization was carried out at 0.1 Torr to 0.3 Torr for 5 hours to obtain a polymer.
 得られたポリマーをH-NMRにより分析した結果、ジカルボン酸残基の99.5モル%がテレフタル酸単位であり、0.5モル%がイソフタル酸単位であり、ジオール単位の100モル%がエチレングリコール単位であるポリエチレンテレフタレートであったことを確認した。 As a result of analyzing the obtained polymer by 1 H-NMR, 99.5 mol% of the dicarboxylic acid residue was a terephthalic acid unit, 0.5 mol% was an isophthalic acid unit, and 100 mol% of the diol unit was. It was confirmed that it was polyethylene terephthalate, which is an ethylene glycol unit.
 次いで、このポリエチレンテレフタレート20質量部、およびポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)80質量部、ステアリン酸マグネシウム(結晶核剤(D)0.4質量部を2軸押出し混練機に仕込んだこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。 Next, 20 parts by mass of this polyethylene terephthalate, 80 parts by mass of polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)), magnesium stearate (crystal nucleating agent (D) 0). A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that 4 parts by mass were charged into a twin-screw extruder and a kneader.
 さらに、このシートを実施例1と同様にしてポリエステル樹脂組成物中のポリエステル成分を結晶化させことにより、シート状のポリエステル樹脂組成物(CS2)を作製した。その後、この組成物(CS2)について、実施例1と同様にして相対結晶化度を測定した。ただし、このシート状のポリエステル樹脂組成物は白濁して、透過性は全くなかった。なお、この組成物(CS2)を恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, the polyester resin composition (CS2) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, the relative crystallinity of this composition (CS2) was measured in the same manner as in Example 1. However, this sheet-shaped polyester resin composition became cloudy and had no permeability. No deformation was observed even when this composition (CS2) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(CS2)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度から変わりなかった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (CS2) and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart, it was found to be constant temperature. It did not change from the glass transition temperature before leaving the tank. The results are shown in Table 1.
(比較例3:シート状のポリエステル樹脂組成物の作製)
 撹拌翼、窒素導入口、および減圧口を備えた反応装置に、テレフタル酸ジメチル94モル(18.25kg)、イソフタル酸ジメチル6モル(1.16kg)、エチレングリコール200モル(12.41kg)、ならびに触媒として酢酸亜鉛および二酸化ゲルマニウムを各々10gずつ仕込んだ。窒素気流下で180℃に加熱してエステル交換反応を行い、メタノールを留去した。4時間後にほぼ理論量のメタノールが留去されるのでその後270℃にまで昇温し、徐々に減圧して、0.1Torr~0.3Torrで5時間重合し、ポリマーを得た。
(Comparative Example 3: Preparation of sheet-shaped polyester resin composition)
A reactor equipped with a stirring blade, a nitrogen inlet, and a decompression port were provided with 94 mol (18.25 kg) of dimethyl terephthalate, 6 mol (1.16 kg) of dimethyl isophthalate, 200 mol (12.41 kg) of ethylene glycol, and As a catalyst, 10 g each of zinc acetate and germanium dioxide were charged. A transesterification reaction was carried out by heating to 180 ° C. under a nitrogen stream, and methanol was distilled off. After 4 hours, substantially the theoretical amount of methanol was distilled off, and then the temperature was raised to 270 ° C., the pressure was gradually reduced, and polymerization was carried out at 0.1 Torr to 0.3 Torr for 5 hours to obtain a polymer.
 得られたポリマーをH-NMRにより分析した結果、ジカルボン酸残基の94モル%がテレフタル酸単位であり、6.0モル%がイソフタル酸単位であり、ジオール単位の100モル%がエチレングリコール単位であるポリエチレンテレフタレートであったことを確認した。 As a result of analyzing the obtained polymer by 1 H-NMR, 94 mol% of the dicarboxylic acid residue was a terephthalic acid unit, 6.0 mol% was an isophthalic acid unit, and 100 mol% of the diol unit was ethylene glycol. It was confirmed that it was polyethylene terephthalate, which is the unit.
 次いで、このポリエチレンテレフタレート10質量部、およびポリエチレンテレフタレート(遠東新世紀株式会社製、テレフタル酸単位=100モル%;ポリエステル(A)に相当)90質量部、ステアリン酸マグネシウム(結晶核剤(D)0.4質量部を2軸押出し混練機に仕込んだこと以外は、実施例1と同様にして厚さ0.3mmのシートを得た。 Next, 10 parts by mass of this polyethylene terephthalate, 90 parts by mass of polyethylene terephthalate (manufactured by Far Eastern New Century Co., Ltd., terephthalic acid unit = 100 mol%; equivalent to polyester (A)), magnesium stearate (crystal nucleating agent (D) 0). A sheet having a thickness of 0.3 mm was obtained in the same manner as in Example 1 except that 4 parts by mass were charged into a twin-screw extruder and a kneader.
 さらに、このシートを実施例1と同様にしてポリエステル樹脂組成物中のポリエステル成分を結晶化させることにより、シート状のポリエステル樹脂組成物(CS3)を作製した。その後、この組成物(CS3)について、実施例1と同様にして相対結晶化度を測定した。ただし、このシート状のポリエステル樹脂組成物は白濁して、透過性は全くなかった。なお、この組成物(CS3)を恒温油浴への浸漬により100℃に加熱しても変形など認められなかった。 Further, the polyester resin composition (CS3) in the form of a sheet was prepared by crystallizing the polyester component in the polyester resin composition in the same manner as in Example 1. Then, the relative crystallinity of this composition (CS3) was measured in the same manner as in Example 1. However, this sheet-shaped polyester resin composition became cloudy and had no permeability. No deformation was observed even when this composition (CS3) was heated to 100 ° C. by immersing it in a constant temperature oil bath.
 また、この組成物(CS3)を実施例1と同様にしてポリエステル成分を結晶化させ、DSCによる相対結晶化度が20%になった状態でのガラス転移温度をDSCチャートから読み取ったところ、恒温槽を放置する前のガラス転移温度から変わりなかった。結果を表1に示す。 Further, when the polyester component was crystallized in the same manner as in Example 1 of this composition (CS3) and the glass transition temperature in a state where the relative crystallization degree by DSC was 20% was read from the DSC chart, it was found to be constant temperature. It did not change from the glass transition temperature before leaving the tank. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~19で得られたポリエステル樹脂組成物(ES1)~(ES19)は、優れた耐熱性と低いヘイズ値(すなわち、透明性)との両方を有していたことがわかる。これに対し、比較例1~3で得られたシート状のポリエステル樹脂組成物はいずれも白濁していた。 As shown in Table 1, the polyester resin compositions (ES1) to (ES19) obtained in Examples 1 to 19 have both excellent heat resistance and a low haze value (that is, transparency). I understand that. On the other hand, the sheet-shaped polyester resin compositions obtained in Comparative Examples 1 to 3 were all cloudy.
(実施例20:容器の作製)
 実施例2で得られた結晶化状態にしたシート状のポリエステル樹脂組成物を用いて、真空圧空成形により、容器(幅150mm、奥行き100mm、深さ40mm、容積約600ml)を作製した。なお、真空圧空成形条件は、結晶化したポリエステル樹脂組成物の温度が245℃になるように加熱して軟化させた後、室温で放置された金型で成型して、容器状のポリエステル樹脂成形体を得た。このポリエステル樹脂成形体は、表面の浸出などなく、良好な外観、良好な成形性を示しており、透明性は高く、ヘイズ値は4%であった。また、DSCにより測定された結晶化度は27.4%であった。この容器状のポリエステル樹脂成形体に水を入れ、1500W設定の電子レンジで2分間加熱したところ、加熱による容器の形状変化は観察されなかった。
(Example 20: Preparation of container)
Using the crystallized sheet-shaped polyester resin composition obtained in Example 2, a container (width 150 mm, depth 100 mm, depth 40 mm, volume about 600 ml) was prepared by vacuum compressed air molding. The conditions for vacuum pressure air molding are that the crystallized polyester resin composition is heated to 245 ° C. to soften it, and then molded with a mold left at room temperature to form a container-shaped polyester resin. I got a body. This polyester resin molded product showed good appearance and good moldability without leaching of the surface, had high transparency, and had a haze value of 4%. The crystallinity measured by DSC was 27.4%. When water was put into this container-shaped polyester resin molded body and heated in a microwave oven set at 1500 W for 2 minutes, no change in the shape of the container due to heating was observed.
(実施例21:容器の作製)
 実施例8で得られたシート状のポリエステル樹脂組成物を用いて、真空圧空成形により容器(幅150mm、奥行き100mm、深さ40mm、容積約600ml)を作製した。なお、真空圧空成形条件は、ポリエステル樹脂組成物の温度が230℃になるように加熱して軟化させた後、60℃に加熱した金型で成型して、容器状のポリエステル樹脂成形体を得た。このポリエステル樹脂成形体は、表面の浸出などなく、良好な外観、良好な成形性を示しており、非常に透明性は高く、ヘイズ値は4.5%であった。また、実施例20と同様にしてDSCにより測定された結晶化度は30.2%であった。この容器状のポリ乳酸樹脂成形品に水を入れ、1500W設定の電子レンジで2分間加熱したところ、加熱による容器の形状変化も変形もいずれも観察されなかった。
(Example 21: Preparation of container)
Using the sheet-shaped polyester resin composition obtained in Example 8, a container (width 150 mm, depth 100 mm, depth 40 mm, volume about 600 ml) was prepared by vacuum compressed air molding. As for the vacuum pressure air forming conditions, the polyester resin composition is heated to 230 ° C. to soften it, and then molded with a mold heated to 60 ° C. to obtain a container-shaped polyester resin molded body. rice field. This polyester resin molded product showed good appearance and good moldability without surface leaching, was extremely transparent, and had a haze value of 4.5%. The crystallinity measured by DSC in the same manner as in Example 20 was 30.2%. When water was put into this container-shaped polylactic acid resin molded product and heated in a microwave oven set at 1500 W for 2 minutes, neither shape change nor deformation of the container due to heating was observed.
 本発明は、耐熱性が所望される種々の用途、例えば、電子レンジでの加熱が可能な食品容器の構成材料として用いられる。これにより、樹脂成形分野、食品分野等において有用である。 The present invention is used in various applications where heat resistance is desired, for example, as a constituent material of a food container that can be heated in a microwave oven. This is useful in the field of resin molding, the field of food, and the like.

Claims (9)

  1.  互いに異なるポリエステル(A)およびポリエステル(B)を含有する、ポリエステル樹脂組成物であって
     該ポリエステル(A)が、エチレングリコール単位とテレフタル酸単位とを含み、
     該ポリエステル(B)が、該エチレングリコール単位とイソフタル酸単位と該テレフタル酸単位とを含み、
     該ポリエステル(A)と該ポリエステル(B)との質量比((A)/(B))が、90/10から40/60であり、そして
     該ポリエステル(B)における該イソフタル酸単位(IP)と該テレフタル酸単位(TP)のモル比((IP)/(TP))が、1/99から5/95である、ポリエステル樹脂組成物。
    A polyester resin composition comprising different polyesters (A) and (B), wherein the polyester (A) contains ethylene glycol units and terephthalic acid units.
    The polyester (B) contains the ethylene glycol unit, the isophthalic acid unit, and the terephthalic acid unit.
    The mass ratio ((A) / (B)) of the polyester (A) to the polyester (B) is 90/10 to 40/60, and the isophthalic acid unit (IP) in the polyester (B). And the polyester resin composition in which the molar ratio ((IP) / (TP)) of the terephthalic acid unit (TP) is 1/99 to 5/95.
  2.  前記組成物全体の結晶化度を0%から20%まで変化させた際に該組成物全体のガラス転移温度が3℃以上上昇する、請求項1に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 1, wherein the glass transition temperature of the entire composition rises by 3 ° C. or more when the crystallinity of the entire composition is changed from 0% to 20%.
  3.  さらに可塑剤(C)を含有し、該可塑剤(C)が、アセチル化モノグリセリド、プロピレングリコール脂肪酸エステル、脂肪酸トリグリセリド、190~210℃の融点を有する共重合ポリエステル、およびソルビタン脂肪酸エステルからなる群から選択される少なくとも1種の化合物である、請求項1または2に記載のポリエステル樹脂組成物。 Further containing a plasticizer (C), the plasticizer (C) comprises a group consisting of an acetylated monoglyceride, a propylene glycol fatty acid ester, a fatty acid triglyceride, a copolymerized polyester having a melting point of 190 to 210 ° C., and a sorbitan fatty acid ester. The polyester resin composition according to claim 1 or 2, which is at least one compound selected.
  4.  さらに核剤(D)を含有し、該核剤(D)が、ステアリン酸マグネシウム、硫酸カルシウム、硫酸バリウム、酸化マグネシウム、タルク、およびポリプロピレンからなる群から選択される少なくとも1種の化合物である、請求項1から3のいずれかに記載のポリエステル樹脂組成物。 Further containing a nucleating agent (D), the nucleating agent (D) is at least one compound selected from the group consisting of magnesium stearate, calcium sulfate, barium sulfate, magnesium oxide, talc, and polypropylene. The polyester resin composition according to any one of claims 1 to 3.
  5.  JIS K7136に準拠した厚み0.3mmの成形体に加工した際のヘイズ値が8%以下である、請求項1から4のいずれかに記載のポリエステル樹脂組成物。 The polyester resin composition according to any one of claims 1 to 4, wherein the haze value when processed into a molded product having a thickness of 0.3 mm according to JIS K7136 is 8% or less.
  6.  請求項1から5のいずれかに記載のポリエステル樹脂組成物を用いて成形された、樹脂成形体。 A resin molded product molded by using the polyester resin composition according to any one of claims 1 to 5.
  7.  請求項1から5のいずれかに記載のポリエステル樹脂組成物の製造方法であって、
     (S1)該ポリエステル(A)が、エチレングリコール単位とテレフタル酸単位とを含む、ポリエステル(A)、および該エチレングリコール単位とイソフタル酸単位と該テレフタル酸単位とを含む、ポリエステル(B)を混合して樹脂混合物を得る工程;
     (S2)該樹脂混合物を加熱して溶融する工程;
     (S3)該溶融した樹脂混合物を、該樹脂混合物のガラス転移温度を下回る温度まで冷却する工程;
     (S4)該冷却された樹脂混合物を、該樹脂混合物のガラス転移温度を上回る温度まで加熱する工程;
     を包含し、
     該ポリエステル(A)と該ポリエステル(B)との質量比((A)/(B))が、90/10から40/60であり、そして
     該ポリエステル(B)における該イソフタル酸単位(IP)と該テレフタル酸単位(TP)のモル比((IP)/(TP))が、1/99から5/95である、方法。
    The method for producing a polyester resin composition according to any one of claims 1 to 5.
    (S1) The polyester (A) is a mixture of the polyester (A) containing an ethylene glycol unit and a terephthalic acid unit, and the polyester (B) containing the ethylene glycol unit, an isophthalic acid unit and the terephthalic acid unit. To obtain a resin mixture;
    (S2) A step of heating and melting the resin mixture;
    (S3) A step of cooling the molten resin mixture to a temperature lower than the glass transition temperature of the resin mixture;
    (S4) A step of heating the cooled resin mixture to a temperature higher than the glass transition temperature of the resin mixture;
    Including,
    The mass ratio ((A) / (B)) of the polyester (A) to the polyester (B) is 90/10 to 40/60, and the isophthalic acid unit (IP) in the polyester (B). And the method in which the molar ratio ((IP) / (TP)) of the terephthalic acid unit (TP) is 1/99 to 5/95.
  8.  前記溶融した樹脂混合物を冷却する工程(S3)における、該樹脂混合物のガラス転移温度を下回る温度が15℃から60℃である、請求項7に記載の方法。 The method according to claim 7, wherein the temperature below the glass transition temperature of the resin mixture in the step (S3) of cooling the molten resin mixture is 15 ° C to 60 ° C.
  9.  前記冷却した樹脂混合物を加熱する工程(S4)における、該樹脂混合物のガラス転移温度を上回る温度が80℃から90℃である、請求項7または8に記載の方法。 The method according to claim 7 or 8, wherein in the step (S4) of heating the cooled resin mixture, the temperature exceeding the glass transition temperature of the resin mixture is 80 ° C to 90 ° C.
PCT/JP2021/017294 2020-05-29 2021-04-30 Polyester resin composition, molded resin object obtained therefrom, and production method therefor WO2021241145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022527622A JPWO2021241145A1 (en) 2020-05-29 2021-04-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020094896 2020-05-29
JP2020-094896 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021241145A1 true WO2021241145A1 (en) 2021-12-02

Family

ID=78744505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017294 WO2021241145A1 (en) 2020-05-29 2021-04-30 Polyester resin composition, molded resin object obtained therefrom, and production method therefor

Country Status (3)

Country Link
JP (1) JPWO2021241145A1 (en)
TW (1) TW202204471A (en)
WO (1) WO2021241145A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138737A (en) * 1991-11-22 1993-06-08 C I Kasei Co Ltd Polyester type shrunk film
JP2010221413A (en) * 2009-03-19 2010-10-07 Toyobo Co Ltd Film for coating drawing/pulling can
WO2014050844A1 (en) * 2012-09-27 2014-04-03 東洋紡株式会社 Polyester film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138737A (en) * 1991-11-22 1993-06-08 C I Kasei Co Ltd Polyester type shrunk film
JP2010221413A (en) * 2009-03-19 2010-10-07 Toyobo Co Ltd Film for coating drawing/pulling can
WO2014050844A1 (en) * 2012-09-27 2014-04-03 東洋紡株式会社 Polyester film

Also Published As

Publication number Publication date
TW202204471A (en) 2022-02-01
JPWO2021241145A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
US20190248954A1 (en) Polyesters and articles made therefrom
AU2021218226B2 (en) Light barrier compositions and articles comprising same
CA2624799A1 (en) A process for manufacturing co-polyester barrier resins without solid-state polymerization, co-polyester resins made by the process, and clear mono-layer containers made of the co-polyester resins
WO2009028817A1 (en) Polyester and polycarbonate blend
TWI444429B (en) Resin composition, and molding, sheet, sheet for card and card using the same
US20220403124A1 (en) Biaxially oriented polyester film and method for producing same
WO2021241145A1 (en) Polyester resin composition, molded resin object obtained therefrom, and production method therefor
JP3566250B2 (en) Copolyester with improved extrudability and color
WO2018124294A1 (en) Polyester, and production method therefor and molded article made therefrom
CN102625816B (en) Polyester sheet, polyester molded article, and polyester resin masterbatch
JP6712040B1 (en) Polyester resin composition
TWI620787B (en) Polyester resin composition
JP2021031671A (en) Polyester resin composition
JPH0940853A (en) Polyester resin composition
KR20130118348A (en) Block copolymers comprising poly(1,3-trimethylene terephthalate) and poly(1,3-trimethylene 2,6-naphthalate)
JP2010100756A (en) Polyester composition and bottle
JP5290702B2 (en) Polyester composition and bottle
JP5606803B2 (en) Method for producing solid phase polymerization pellets comprising polyester resin composition
JP2610672B2 (en) Polyester composition and film, preform and container comprising the same
JP2004099704A (en) Polyester resin composition
JP2010100776A (en) Polyester composition and bottle
JPH0959496A (en) Molding resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813844

Country of ref document: EP

Kind code of ref document: A1