WO2021241033A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2021241033A1
WO2021241033A1 PCT/JP2021/015064 JP2021015064W WO2021241033A1 WO 2021241033 A1 WO2021241033 A1 WO 2021241033A1 JP 2021015064 W JP2021015064 W JP 2021015064W WO 2021241033 A1 WO2021241033 A1 WO 2021241033A1
Authority
WO
WIPO (PCT)
Prior art keywords
video data
recording
work machine
actuator
satisfied
Prior art date
Application number
PCT/JP2021/015064
Other languages
English (en)
French (fr)
Inventor
尚 多胡
武則 廣木
大樹 町田
直樹 萩原
大輝 相澤
浩平 橋本
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN202180020667.6A priority Critical patent/CN115298394A/zh
Priority to EP21814363.4A priority patent/EP4101996A4/en
Priority to JP2022527560A priority patent/JP7332805B2/ja
Priority to US17/910,873 priority patent/US12060697B2/en
Priority to KR1020227031544A priority patent/KR20220140610A/ko
Publication of WO2021241033A1 publication Critical patent/WO2021241033A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/188Capturing isolated or intermittent images triggered by the occurrence of a predetermined event, e.g. an object reaching a predetermined position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Definitions

  • the present invention relates to a work machine.
  • a car equipped with a drive recorder device that records an image of the surroundings of the own vehicle taken by a camera for the purpose of investigating the cause when the car comes into contact with an object is known.
  • the amount of video data becomes large and it takes time and effort to extract the video data of the necessary scene.
  • the video data of a necessary scene may be deleted by overwriting. Therefore, it is desirable to start recording video when necessary.
  • Patent Document 1 describes an impact detecting means for detecting an impact on the own vehicle and a storage information for storing and holding the stored information stored in the storage means when the impact detecting means detects an impact of a predetermined value or more.
  • a drive recorder device comprising a storage means is disclosed.
  • the present invention aims to improve the recording accuracy of necessary scenes.
  • the work machine includes a machine body, an actuator attached to the machine body, an operation device used to operate the actuator, an operation detection device for detecting the operation of the operation device, and the machine body.
  • a photographing device that photographs the surroundings, a video data recording device that records video data including images captured by the photographing device, a control device that controls the video data recording device, and an object around the machine are detected. It is equipped with an object detection device. Based on the detection result of the object detection device and the detection result of the operation detection device, the control device indicates that an object exists around the aircraft and that the operation device is operated. It is determined whether or not the recording holding condition including the presence of the object is satisfied, and when the recording holding condition is satisfied, the video data recording device is made to record and hold the video data.
  • the figure which shows the structure of the management system of a hydraulic excavator Schematic diagram of the inside of the driver's cab when viewed from the rear side of the driver's seat to the front.
  • the figure which shows the main composition of a hydraulic excavator. It is a plan view of a hydraulic excavator, and shows the imaging range of a plurality of imaging devices.
  • the work machine and its management system according to the embodiment of the present invention will be described with reference to the drawings.
  • the work machine is a machine used for various works such as civil engineering work, construction work, and demolition work.
  • the work machine is a crawler type hydraulic excavator 1
  • a crawler type hydraulic excavator 1 will be described.
  • FIG. 1 is a diagram showing the configuration of the management system 5 of the hydraulic excavator 1.
  • the management system 5 includes a hydraulic excavator 1 that performs work at a work site, and a management server 53 installed in a management center 52.
  • the management center 52 owns, for example, facilities such as the head office, branch offices, and factories of the manufacturer (manufacturer) of the hydraulic excavator, a rental company of the hydraulic excavator 1, a data center that specializes in operating the server, and the hydraulic excavator 1. It will be installed in the owner's facility.
  • the management server 53 is an external device that remotely manages (grasps, monitors) the state of the hydraulic excavator 1.
  • the management system 5 can perform bidirectional communication between the hydraulic excavator 1 that performs work at the work site and the management server 53 installed at a location away from the work site via the communication line 50 of the wide area network. It is configured as follows. That is, the hydraulic excavator 1 and the management server 53 can transmit and receive information (data) via the communication line 50.
  • the communication line 50 is a mobile phone communication network (mobile communication network) developed by a mobile phone operator or the like, the Internet, or the like.
  • mobile phone communication network mobile communication network
  • the wireless base station 51 receives predetermined information from the hydraulic excavator 1
  • the wireless base station 51 receives predetermined information.
  • the received information is transmitted to the management server 53 via the Internet.
  • the management server 53 receives vehicle body information such as operation information, warning information, and recording information received from the hydraulic excavator 1 and stores them in a storage device 54 such as a hard disk drive.
  • the management server 53 causes a display device 55 such as a liquid crystal display device to display the information stored in the storage device 54.
  • the administrator can grasp the state of the hydraulic excavator 1 by operating the management server 53 and displaying the information of the predetermined hydraulic excavator 1 on the display device 55.
  • the management server 53 stores the video data transmitted from the hydraulic excavator 1 in the storage device 54, and based on the stored video data, the video around the hydraulic excavator 1 is displayed on the display screen of the display device 55 (FIG. 7).
  • the composite image 199) shown is displayed.
  • the hydraulic excavator 1 includes a machine body (body) 4 and a work device 10 attached to the machine body 4.
  • the machine body 4 includes a traveling body 2 and a turning body 3 provided so as to be able to turn on the traveling body 2, and a working device 10 is attached to the front portion of the turning body 3.
  • the traveling body 2 includes a left-side traveling hydraulic motor 2al for driving the left-side crawler and a right-side traveling hydraulic motor 2ar (see FIG. 3) for driving the right-side crawler.
  • the traveling body 2 travels by driving a pair of left and right crawlers by traveling hydraulic motors 2al and 2ar.
  • the swivel body 3 swivels by driving the swivel hydraulic motor 3a.
  • the swivel body 3 is provided on the swivel frame 8, the cab 7 provided on the front left side of the swivel frame 8, the counterweight 9 provided on the rear side of the swivel frame 8, and the rear side of the cab 7 on the swivel frame 8. It has an engine chamber 6 and the like.
  • the engine chamber 6 houses a prime mover, an engine 21, and a hydraulic device such as a hydraulic pump driven by the engine 21.
  • a working device 10 is rotatably connected to the center of the front portion of the swivel frame 8.
  • the engine 21 is a power source for the hydraulic excavator 1, and is composed of, for example, an internal combustion engine such as a diesel engine.
  • the work device 10 is an articulated work device having a plurality of front members rotatably connected and a plurality of hydraulic cylinders (actuators) for driving the front members.
  • the boom 11, the arm 12, and the bucket 13 as the three front members are connected in series.
  • the boom 11 is rotatably connected by a boom pin 11b at its base end at the front of the swivel frame 8.
  • the base end of the arm 12 is rotatably connected to the tip of the boom 11 by an arm pin 12b.
  • the bucket 13 is rotatably connected by a bucket pin 13b at the tip of the arm 12.
  • the boom 11 is driven by a hydraulic cylinder (hereinafter, also referred to as a boom cylinder 11a) and rotates with respect to the swivel frame 8.
  • the arm 12 is driven by a hydraulic cylinder (hereinafter, also referred to as an arm cylinder 12a) and rotates with respect to the boom 11.
  • the bucket 13 is driven by a hydraulic cylinder (hereinafter, also referred to as a bucket cylinder 13a) and rotates with respect to the arm 12.
  • One end side of the boom cylinder 11a is connected to the boom 11 and the other end side is connected to the swivel frame 8.
  • One end of the arm cylinder 12a is connected to the arm 12 and the other end of the arm cylinder 12a is connected to the boom 11.
  • One end of the bucket cylinder 13a is connected to the bucket 13 via a link member, and the other end of the bucket cylinder 13a is connected to the arm 12.
  • a control device 100 that controls each part of the hydraulic excavator 1
  • a video data recording device 130 that records images taken by a plurality of photographing devices 30 (see FIG. 3) together with vehicle body information, and a hydraulic excavator.
  • a battery 28 as a power supply device for supplying power to the equipment mounted on the first unit is provided.
  • FIG. 2 is a schematic view of the inside of the driver's cab 7 when viewed from the rear side of the driver's seat 75 toward the front.
  • the operation levers (B1 to B4) for operating each part of the hydraulic excavator 1, and a predetermined display image are displayed on the display screen 191a.
  • a display device 190 and a display device 190 for displaying the image are provided.
  • the display device 190 is attached to the pillar 74 on the right side when viewed from the driver's seat 75 side.
  • the display device 190 is, for example, a touch panel monitor that functions as both an input unit and a display unit.
  • an image such as a predetermined icon or message and an image around the machine 4 are used.
  • the composite image 199 (see FIG. 7) in which the above is combined is displayed on the display screen 191a.
  • a right operation lever B1 for operating the bucket 13 and the boom 11 is provided, and on the left side of the driver's seat 75, for operating the swivel body 3 and the arm 12.
  • the left operating lever B2 is provided.
  • a pair of left and right traveling levers are provided on the front side of the driver's seat 75.
  • the left traveling lever B4 is an operating lever for operating the left crawler
  • the right traveling lever B3 is an operating lever for operating the right crawler.
  • a lock lever 79a is provided on the left side (door side) of the operation lever B2 on the left side.
  • the lock lever 79a is a member that can be selectively operated at a lock position (raised position) that permits entry and exit of the driver's cab 7 and a lock release position (lower position) that prohibits entry and exit of the driver's cab 7.
  • FIG. 3 is a diagram showing the main configuration of the hydraulic excavator 1, and shows the hydraulic system 80 and the ambient monitoring system 19 mounted on the hydraulic excavator 1.
  • the boom cylinder 11a, the arm cylinder 12a and the bucket cylinder 13a are collectively referred to as a hydraulic cylinder 10a
  • the left side traveling hydraulic motor 2al and the right side traveling hydraulic motor 2ar are collectively referred to as a traveling hydraulic motor 2a. ..
  • the hydraulic system 80 is provided with a plurality of hydraulic cylinders 10a (11a, 12a, 13a), but in FIG. 3, one hydraulic cylinder 10a is shown as a representative.
  • the hydraulic system 80 is provided with a pair of traveling hydraulic motors 2a, but in FIG. 3, one traveling hydraulic motor 2a is shown as a representative.
  • the hydraulic system 80 includes a main pump 25, which is a variable displacement hydraulic pump driven by the engine 21, a pilot pump 26, which is a fixed displacement hydraulic pump driven by the engine 21.
  • a plurality of hydraulic actuators (hydraulic cylinder 10a, swivel hydraulic motor 3a and traveling hydraulic motor 2a) driven by hydraulic oil (pressure oil) as the hydraulic fluid discharged from the main pump 25, and each hydraulic pressure from the main pump 25. It includes control valves 81, 82, and 83 that control the flow of hydraulic oil supplied to the actuator, respectively.
  • the hydraulic oil discharged from the pilot pump 26 is supplied to the operating devices (working operating device 71, turning operating device 72, and traveling operating device 73) used to operate the actuator.
  • the work operation device 71 is an actuator operation device that commands the operation of the hydraulic cylinder 10a of the work device 10, and is an operation lever (corresponding to the right operation lever B1 and the left operation lever B2 in FIG. 2) 71a that is tilted and operated by the operator. , A pair of hydraulic pilot type pressure reducing valves 71b.
  • the swivel operation device 72 is an actuator operation device that commands the operation of the swivel hydraulic motor 3a, and is a pair of an operation lever (corresponding to the left operation lever B2 in FIG.
  • the travel operation device 73 is an actuator operation device that commands the operation of the travel hydraulic motor 2a, and includes an operation lever (corresponding to the right travel lever B3 and the left travel lever B4 in FIG. It has a pair of pressure reducing valves 73b of a pilot system.
  • the pressure reducing valves 71b, 72b, 73b of the actuator operating devices 71, 72, 73 use the discharge pressure of the pilot pump 26 as the original pressure, and the pilot pressure (operating pressure) according to the operating amount and operating direction of the operating levers 71a, 72a, 73a. (Sometimes referred to as) occurs.
  • the pilot pressure generated in this way is guided to the pressure receiving chambers 81a, 81b, 82a, 82b, 83a, 83b of the control valves 81, 82, 83 corresponding to the hydraulic actuators (10a, 3a, 2a), and the control valves 81, It is used as a command (signal) to drive the 82 and 83 to operate the actuator.
  • the hydraulic oil discharged from the main pump 25 is supplied to the hydraulic actuators (hydraulic cylinder 10a, swivel hydraulic motor 3a, traveling hydraulic motor 2a) through the control valves 81, 82, 83, and the work device 10, swivel body 3 and Each of the traveling bodies 2 is driven.
  • the hydraulic actuators hydraulic cylinder 10a, swivel hydraulic motor 3a, traveling hydraulic motor 2a
  • the hydraulic excavator 1 includes a plurality of actuator operation detection devices 70, which are operation detection devices that detect the operations of the plurality of actuator operation devices 71, 72, 73.
  • the plurality of actuator operation detection devices 70 include work operation sensors 76a and 76b, turning operation sensors 77a and 77b, and traveling operation sensors 78a and 78b.
  • the actuator operation detection devices 76a, 76b, 77a, 77b, 78a, 78b are the pressure receiving chambers 81a, 81b, 82a, 82b, 83a of the actuator operation devices 71, 72, 73 and the control valves 81, 82, 83.
  • the actuator operation detection devices 76a, 76b, 77a, 77b, 78a, 78b detect the operation pressure (operation amount) generated by the operation of the operation levers 71a, 72a, 73a by the operator. That is, the work operation sensors 76a and 76b detect the operation for operating the work device 10 (hydraulic cylinder 10a), and the swivel operation sensors 77a and 77b detect the operation for operating (turning) the swivel body 3. Then, the traveling operation sensors 78a and 78b detect an operation for operating (traveling) the traveling body 2.
  • the actuator operation detection devices 76a, 76b, 77a, 77b, 78a, 78b are connected to the vehicle body controller 110 of the control device 100, and output information regarding the detected operation amount to the vehicle body controller 110.
  • the shut-off valve 89 is provided in the pilot line connecting the pilot pump 26 and the pressure reducing valves 71b, 72b, 73b of the actuator operating devices 71, 72, 73, and the pilot pressure is applied from the pilot pump 26 to the pressure reducing valves 71b, 72b, 73b.
  • This is an electromagnetic switching valve that is switched between a communication position that allows the pilot pressure to be supplied and a shutoff position that prohibits the supply of pilot pressure from the pilot pump 26 to the pressure reducing valves 71b, 72b, 73b.
  • the shut-off valve 89 is operated by the lock lever device 79.
  • the lock lever device 79 is an operating device used to operate the actuator, and allows entry and exit of the driver's cab 7 and makes it impossible for the actuator operating devices 71, 72, 73 to operate the actuators (10a, 3a, 2a). Lock position (raise position) and unlock position (lower position) that prohibits entry and exit of the driver's cab 7 and enables operation of the actuators (10a, 3a, 2a) by the actuator operating devices 71, 72, 73.
  • a lock lever 79a that is selectively operated, a shut-off relay 79c for supplying or shutting off power from the battery 28, and a lock lever that is an operation detection device that detects the operation of the lock lever 79a of the lock lever device 79. It has an operation detection device 79b.
  • the shutoff relay 79c When the lock lever 79a is operated to the unlocked position, the shutoff relay 79c is turned on, that is, the shutoff relay 79c is closed, and power is supplied from the battery 28 to the shutoff valve 89.
  • the solenoid When power is supplied to the shut-off valve 89, the solenoid is excited to switch the shut-off valve 89 to the communication position. Therefore, in the state where the lock lever 79a is in the unlocked position, the command pilot pressure corresponding to the operation amount of the operation levers 71a, 72a, 73a is generated by the pressure reducing valves 71b, 72b, 73b, and the operation lever 71a, operated.
  • the hydraulic actuators (10a, 3a, 2a) corresponding to 72a and 73a operate.
  • the shut-off relay 79c When the lock lever 79a is operated to the locked position, the shut-off relay 79c is turned off, that is, the shut-off relay 79c is opened, and the power supply from the battery 28 to the shut-off valve 89 is cut off.
  • the solenoid When the power supply to the shutoff valve 89 is cut off, the solenoid is degaussed and the shutoff valve 89 is switched to the shutoff position.
  • the pilot main pressure to the pressure reducing valves 71b, 72b, 73b is cut off, and the operation by the operating levers 71a, 72a, 73a is invalidated.
  • the lock lever operation detection device 79b detects the operation position of the lock lever 79a and outputs a signal indicating the detection result to the vehicle body controller 110 of the control device 100.
  • the peripheral monitoring system 19 is a system for monitoring the surroundings of the machine body 4, and is a display device for displaying a plurality of shooting devices 30 for shooting the surroundings of the machine body 4 and an image shot by the shooting device 30 on the display screen 191a.
  • Detects 190 a video data recording device 130 that records video data including video shot by the shooting device 30, a control device 100 that controls the display device 190 and the video data recording device 130, and an object around the machine body 4.
  • the display device 190 also functions as a notification device that displays information on the display screen 191a when an object exists around the hydraulic excavator 1 and notifies the operator of the hydraulic excavator 1 that the object has been detected.
  • the communication device 160 is a wireless communication device capable of wireless communication with a wireless base station 51 connected to a communication line 50 which is a wide area network, and is a communication including a communication antenna having a band such as 2.1 GHz band as a sensitive band. Has an interface. The communication device 160 exchanges information with the management server 53 and the like via the radio base station 51 and the communication line 50.
  • the control device 100 displays information (data) regarding the operating state of the vehicle body controller 110 that collectively controls each part of the hydraulic excavator 1, information (data) regarding the operating state of the hydraulic excavator 1, and an image captured by the photographing device 30 on the display screen 191a of the display device 190. It has a monitor controller 120 to be displayed on the screen.
  • the vehicle body controller 110 controls the valves, pumps, etc. of the hydraulic system 80 based on the posture information, operation information, load information on the actuator, and the like of the hydraulic excavator 1.
  • the monitor controller 120 generates a composite video 199 by synthesizing the video shot by the plurality of shooting devices 30 and the image generated based on the detection result of the object detection device 90, and the generated composite video 199. Is displayed on the display screen 191a of the display device 190 (see FIG. 7).
  • the monitor controller 120 transmits the generated composite video 199 data (hereinafter, also referred to as composite video data) to the video data recording device 130.
  • the video data recording device 130 includes a recording controller 140, a continuous recording unit 151 which is a recording device, and an event recording unit 152 which is a recording device.
  • the constant recording unit 151 is a volatile memory or a non-volatile memory
  • the event recording unit 152 is a non-volatile memory provided separately from the constant recording unit 151.
  • the recording controller 140 constantly records the synthetic video data generated by the monitor controller 120 in the continuous recording unit 151. When the recording controller 140 receives the recording trigger signal from the vehicle body controller 110, the recording controller 140 keeps recording the composite video data recorded in the constant recording unit 151.
  • the vehicle body controller 110 Whether or not the vehicle body controller 110 satisfies the record holding condition based on the detection result of the object detection device 90 and the detection result of the operation detection device (lock lever operation detection device 79b and actuator operation detection device 70). Is determined. When the recording holding condition is satisfied, the vehicle body controller 110 transmits a recording trigger signal to the video data recording device 130, and causes the video data recording device 130 to record and hold the synthesized video data.
  • the recording controller 140 transmits the recorded and held synthetic video data to the management server 53 (see FIG. 1) by wireless communication using the communication device 160.
  • the management server 53 stores the received composite video data in the storage device 54 (see FIG. 1).
  • the vehicle body controller 110, the monitor controller 120, and the recording controller 140 include a CPU (Central Processing Unit) 111, 121, 141 as an operating circuit, a ROM (Read Only Memory) 112, 122, 142 as a storage device, and a RAM as a storage device. (RandomAccessMemory) 113,123,143, input / output interface (I / O interface), and other peripheral circuits.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM random AccessMemory
  • Each of the controllers 110, 120, and 140 may be configured by one microcomputer or may be configured by a plurality of microcomputers.
  • each controller 110 is non-volatile memories such as EEPROM, and stores programs capable of executing various operations. That is, the ROMs 112, 122, and 142 of the controllers 110, 120, and 140 are storage media that can read the program that realizes the functions of the present embodiment.
  • the RAMs 113, 123, and 143 are volatile memories, and are work memories that directly input and output data to and from the CPUs 111, 121, and 141.
  • the RAMs 113, 123, and 143 temporarily store necessary data while the CPUs 111, 121, and 141 perform arithmetic execution on the program.
  • each controller 110, 120, 140 may further include a storage device such as a flash memory and a hard disk drive.
  • the CPUs 111, 121, 141 are processing devices that expand the control programs stored in the ROMs 112, 122, 142 into the RAMs 113, 123, 143 and execute calculations, and are input / output interfaces and ROMs 112, 122, 142, according to the control programs. Predetermined arithmetic processing is performed on the signals taken from the RAMs 113, 123, and 143. Signals from various devices are input to the input / output interface.
  • the input / output interface converts the input signal so that it can be calculated by the CPUs 111, 121, and 141.
  • the input / output interface generates an output signal according to the calculation result of the CPUs 111, 121, and 141, and outputs the signal to various devices.
  • the controllers 110, 120, 140 are connected to each other via an in-vehicle network 22 called CAN (Controller Area Network). Therefore, the controllers 110, 120, and 140 can exchange information with each other.
  • CAN Controller Area Network
  • FIG. 4 is a schematic plan view of the hydraulic excavator 1, and shows the shooting range of a plurality of shooting devices 30.
  • the plurality of photographing devices 30 are attached to the swivel body 3.
  • the plurality of photographing devices 30 include a left camera 31 that photographs the left direction of the swivel body 3, a right camera 32 that captures the right direction of the swivel body 3, and a front camera 33 that captures the front direction of the swivel body 3.
  • Each photographing device 30 (31, 32, 33, 34) is a wide-angle video camera provided with an image pickup element such as a CCD or CMOS having excellent durability and weather resistance and a wide-angle lens.
  • the left camera 31 is a photographing device that continuously photographs the area on the left side of the swivel body 3 in a direction that looks down at an angle of view of about 180 ° to the left and right.
  • the right camera 32 is a photographing device that continuously photographs the area on the right side of the swivel body 3 in a direction that looks down at an angle of view of about 180 ° to the left and right.
  • the front camera 33 is a photographing device that continuously photographs a region in front of the swivel body 3 in a direction that looks down at an angle of view of about 180 ° to the left and right.
  • the rear camera 34 is a photographing device that continuously photographs a region behind the swivel body 3 in a direction that looks down at an angle of view of about 180 ° to the left and right.
  • the front camera 33 is attached below the boom 11 of the working device 10 at a position that does not interfere with the working device 10.
  • each rectangular area (A1, A2, A3, A4) around the hydraulic excavator 1 shows an area that can be photographed by each camera 31, 32, 33, 34, and each photographing area A1, A2, A3. , A4 are to be photographed overlapping with the adjacent areas at both ends in the longitudinal direction.
  • the photographing areas A1, A2, A3, and A4 are set to include the attention zone S2 described later.
  • the plurality of object detection devices 90 are attached to the swivel body 3.
  • the plurality of object detection devices 90 include a left object detection device 91 that detects an object existing in the left direction of the swivel body 3, a right object detection device 92 that detects an object existing in the right direction of the swivel body 3, and a swivel body.
  • the left object detection device 91 is attached near the left camera 31 and monitors the area on the left side of the swivel body 3.
  • the monitoring area of the left object detection device 91 is substantially the same as the shooting area A1 of the left camera 31.
  • the right object detection device 92 is mounted near the right camera 32 and monitors the area on the right side of the swivel body 3.
  • the monitoring area of the right object detection device 92 is substantially the same as the shooting area A2 of the right camera 32.
  • the front object detection device 93 is mounted near the front camera 33 and monitors the area on the front side of the swivel body 3.
  • the monitoring area of the front object detection device 93 is substantially the same as the shooting area A3 of the front camera 33.
  • the rear object detection device 94 is mounted near the rear camera 34 and monitors the area behind the swivel body 3.
  • Each of the object detection devices 90 has a plurality of infrared sensors arranged in a matrix in the vertical and horizontal directions.
  • the infrared sensor is a ToF (Time of Flight) type sensor that measures the distance from the time difference from infrared irradiation to reflection to the object and outputs the distance measurement result to the vehicle body controller 110. Further, the infrared sensor outputs a signal indicating the reflection intensity of infrared rays reflected from the object to the vehicle body controller 110.
  • ToF Time of Flight
  • FIG. 5 is a functional block diagram showing the main functions of the surrounding monitoring system 19. Although a plurality of the object detection device 90, the actuator operation detection device 70, and the photographing device 30 are provided, only one is described as a representative. As shown in FIG. 5, the vehicle body controller 110 functions as a warning zone setting unit 114, an object identification unit 115, and a condition determination unit 116 by executing a program stored in the ROM 112.
  • the object identification unit 115 determines whether or not an object exists around the hydraulic excavator 1 based on the detection information from the plurality of object detection devices 90. When it is determined that an object exists around the hydraulic excavator 1, the object identification unit 115 uses the detection result of the object detection device 90 and the object detection device 90 of the excavator reference coordinate system stored in the ROM 112. The position of the object in the excavator reference coordinate system is specified based on the information such as the position coordinates and the mounting angle of the object detection device 90.
  • the object identification unit 115 determines whether or not the object detected by the object detection device 90 is a person based on the detection result of the object detection device 90. When the reflection intensity of infrared rays reflected from an object is within a predetermined range, the object identification unit 115 determines that the object is a person, and when the reflection intensity of infrared rays reflected from the object is out of the predetermined range, the object. Is not a person.
  • the predetermined range is set in advance based on, for example, the reflection intensity when infrared rays are reflected by the reflective vest worn by the worker, the reflection intensity when infrared rays are reflected by the human skin, and the like.
  • a predetermined range of the reflection intensity for determining a person is stored in the ROM 112.
  • the condition determination unit 116 determines that the object detected by the object detection device 90 is based on the position of the excavator-referenced object specified by the object identification unit 115 and the information of the warning zone S1 set by the warning zone setting unit 114. , Determines whether or not it exists in the warning zone S1. Further, the condition determination unit 116 is detected by the object detection device 90 based on the position of the excavator-referenced object specified by the object identification unit 115 and the information of the attention zone S2 stored in the attention zone storage unit 117. It is determined whether or not the object exists in the attention zone S2.
  • the condition determination unit 116 determines whether or not the actuator has been operated by the actuator operation devices 71, 72, 73 based on the detection result of the actuator operation detection device 70.
  • the condition determination unit 116 determines that the actuator operation devices 71, 72, 73 are being operated, and determines that the actuator pressure P is being operated. If is less than the threshold P0, it is determined that the actuator operating devices 71, 72, 73 are not operated.
  • the threshold value P0 is a threshold value for determining whether or not the actuator operating devices 71, 72, 73 are being operated, and is stored in advance in the ROM 112 of the vehicle body controller 110.
  • the maximum value is Pmax.
  • the threshold value P0 is a value larger than the minimum value Pmin and smaller than the maximum value Pmax (Pmin ⁇ P0 ⁇ Pmax).
  • the condition determination unit 116 determines whether the lock lever device 79 is operated to the unlock position or the lock position based on the detection result of the lock lever operation detection device 79b.
  • the condition determination unit 116 determines whether or not a predetermined memory retention condition is satisfied.
  • the condition determination unit 116 transmits the recording trigger signal to the video data recording device 130 when the first to third storage retention conditions are satisfied.
  • the first storage retention condition is satisfied when all of the following conditions 1 to 4 are satisfied, and is not satisfied when any one of the conditions 1 to 4 is not satisfied.
  • Condition 1 The lock lever 79a of the lock lever device 79 is operated to the unlocked position.
  • Condition 2 There is an object around the aircraft 4.
  • Condition 3 The object is a person
  • Condition 4 The object is preset in the surrounding area in the vicinity of the machine body 4, that is, the area within the turning range of the machine body 4 and the area close to the machine body 4 including the turning locus of the boom 11, the arm 12, and the bucket 13. Being in the warning zone (first range) S1
  • the second memory retention condition is satisfied when all of condition 1, condition 2, condition 4 and the following condition 5 are satisfied, and any one of condition 1, condition 2, condition 4 and condition 5 is satisfied. If not, it does not hold.
  • Condition 5 The actuator is operated by at least one of the actuator operating devices 71, 72, 73.
  • the third memory retention condition is satisfied when all of conditions 1 to 3, condition 5 and the following condition 6 are satisfied, and any one of conditions 1 to 3, condition 5 and condition 6 is satisfied. If not, it does not hold.
  • Condition 6 The object does not exist in the warning zone S1 but exists in the caution zone (second range) S2 preset to include the warning zone S1.
  • FIG. 6 is a view of the hydraulic excavator 1 from above, and shows the warning zone S1 and the caution zone S2 of the hydraulic excavator 1.
  • the caution zone S2 is a circular range of the maximum turning radius Rx of the hydraulic excavator 1.
  • the maximum turning radius Rx corresponds to the length from the turning center axis O of the turning body 3 to the tip of the bucket 13 when the working device 10 is extended most forward (in the direction orthogonal to the turning center axis).
  • the maximum turning radius Rx corresponds to the maximum length from the turning center axis O to the position where the working device 10 reaches in the direction orthogonal to the turning center axis O.
  • the caution zone S2 is set as the circular range of the maximum turning radius Rx, but the circular range of the radius obtained by adding the permissible value (margin) to the maximum turning radius Rx may be set as the caution zone S2. good.
  • the attention zone S2 is predetermined based on the dimensions of each part of the hydraulic excavator 1 and is stored in the caution zone storage unit 117 of the ROM 112.
  • the warning zone S1 is a range set to be included in the caution zone S2.
  • the warning zone S1 is preset in the surrounding area in the vicinity of the machine body 4, that is, the area within the turning range of the machine body 4 and the area close to the machine body 4 including the turning locus of the boom 11, the arm 12, and the bucket 13. .
  • the warning zone S1 is set to prevent the hydraulic excavator 1 from coming into contact with an object existing within the range when the turning operation of the turning body 3 and the running operation of the traveling body 2 are performed.
  • the warning zone setting unit 114 sets the warning zone S1 based on the posture information of the hydraulic excavator 1 detected by the posture detection device 60.
  • the attitude detection device 60 includes a boom angle sensor 61 that detects the angle (boom angle) of the boom 11 with respect to the swivel body 3, an arm angle sensor 62 that detects the angle (arm angle) of the arm 12 with respect to the boom 11, and a bucket 13 with respect to the arm 12. Includes a bucket angle sensor 63 that detects the angle (bucket angle) of the vehicle, and a swivel angle sensor 64 that detects the angle (swivel angle) of the swivel body 3 with respect to the traveling body 2.
  • the boom angle sensor 61, the arm angle sensor 62, the bucket angle sensor 63, and the turning angle sensor 64 are, for example, potentiometers that output a signal (voltage) according to the acquired angle.
  • the ROM 112 stores the left set angle ⁇ L, the right set angle ⁇ R, and the dimensional data of each part of the working device 10.
  • the left set angle ⁇ L is set when the left turning direction is a negative direction and the right turning direction is a positive direction, with the x-axis extending in the front-rear direction of the traveling body 2 as a reference (0 degree).
  • -90 degrees the right setting angle ⁇ R is set to +90 degrees.
  • the warning zone setting unit 114 contains attitude information (boom angle, arm angle and bucket angle) detected by the attitude detection device 60, and dimensional data of each part of the work device 10 (length from boom pin 11b to arm pin 12b, arm pin 12b). Based on the length from the bucket pin 13b to the bucket pin 13b, the length from the bucket pin 13b to the bucket tip), a predetermined length is allowed to be the length from the turning center axis O to the tip of the bucket 13 (margin). The length added as is calculated as the working radius Rw.
  • the warning zone setting unit 114 has a fan-shaped (semicircular) region S11 in front of the swivel body 3 defined by the left set angle ⁇ L, the right set angle ⁇ R, and the working radius Rw, and the swivel body 3 (swivel) from the swivel center axis O.
  • a region obtained by combining a circular region (that is, the turning range of the aircraft 4) S12 having a radius Rs as the distance to the outermost peripheral portion of the rear portion of the body 3) and a region combined with the warning zone S1 are set.
  • the monitor controller 120 functions as a bird's-eye view image generation unit 124 and a composite image generation unit 125 by executing a program stored in the ROM 122.
  • the bird's-eye view image generation unit 124 acquires images taken by the left camera 31, the right camera 32, the front camera 33, and the rear camera 34, and generates a bird's-eye view image based on the acquired images.
  • the bird's-eye view image generation unit 124 corrects the lens distortion on the acquired image, and further performs the viewpoint conversion process to the upper viewpoint image.
  • the bird's-eye view image generation unit 124 synthesizes the image after the viewpoint conversion process and the illustration image (or the photographed image) of the hydraulic excavator 1 seen from above to generate the bird's-eye view image 194a as shown in FIG. 7.
  • An illustration image (or a photographed image) of the hydraulic excavator 1 seen from above is stored in ROM 122 in advance.
  • FIG. 7 is a diagram showing an example of a composite image 199 displayed on the display screen 191a of the display device 190.
  • the composite image generation unit 125 has a rectangular frame image 195b that surrounds the objects 195a, 196a, 197a specified by the object identification unit 115 in the bird's-eye view image 194a generated by the bird's-eye view image generation unit 124.
  • 196b and 197b are combined, and the combined bird's-eye view image 194a is displayed in the camera image area 194.
  • the composite image generation unit 125 is different from the frame image 197b surrounding the object determined to be a human by the object identification unit 115 and the frame images 195b and 196b surrounding the object determined to be non-human by the object identification unit 115. Display in color. For example, the frame image 197b is red, and the frame images 195b and 196b are yellow.
  • an icon area 192 for displaying a predetermined icon and a message area 193 for displaying a predetermined message are formed above the illustration of the camera image area 194 for displaying the bird's-eye view image 194a.
  • the composite image generation unit 125 determines that the vehicle body controller 110 satisfies the recording holding condition and the predetermined conditions (conditions 4 and 6) constituting the recording holding condition, the recording holding condition is satisfied in the message area 193. Notify the operator of what has been done, and display a warning message image to call attention.
  • the warning message image is, for example, a message image for notifying that a person (or an object other than a person) exists in the warning zone S1, or the like, which is a message image preset for each satisfied condition.
  • These message images are stored in the ROM 122, selected according to the satisfied conditions, and displayed in the message area 193. Further, the composite video generation unit 125 displays the icon image corresponding to the satisfied condition in the icon area 192.
  • the synthetic image generation unit 125 indicates that the operation is restricted.
  • a warning message image for notifying the operator may be displayed in the message area 193.
  • the composite video generation unit 125 may display an icon image for notifying the operator that the operation is restricted in the icon area 192.
  • the composite video generation unit 125 causes the message area 193 to display a warning message image for notifying the operator that the abnormality in the surrounding monitoring system 19 has been detected. You may do it. Further, the composite video generation unit 125 may display an icon image for notifying the operator that an abnormality in the surrounding monitoring system 19 has been detected in the icon area 192.
  • the monitor controller 120 controls the display device 190 to synthesize the image captured by the photographing device 30 and the image (frame, message, icon image) generated according to the object detection information.
  • the composite image 199 is displayed on the display screen 191a of the display device 190.
  • the recording controller 140 functions as the recording control unit 144 by executing the program stored in the ROM 144.
  • the recording control unit 144 acquires the composite video data generated by the composite video generation unit 125, and continuously records the acquired composite video data as overwriteable data in the constant recording unit 151.
  • the recording control unit 144 sequentially deletes the old composite video data recorded in the constant recording unit 151 and executes an overwrite process of rewriting the old composite video data with new synthetic video data.
  • the recording control unit 144 determines that an event has occurred, and records and holds the composite video data generated by the composite video generation unit 125. Specifically, the recording control unit 144 stores the synthetic video data for a predetermined period including the time T0 at which the recording trigger signal is received in the event recording unit 152 as event video data.
  • FIG. 8 is a time chart for explaining the contents of the recording control process by the recording control unit 144.
  • the synthetic video data is recorded in the constant recording unit 151 with the passage of time t.
  • FIG. 8B for example, when a recording trigger signal is received at time T0, a composite image of a period from a time before time T0 (T0-Ta) to a time after T0 (T0 + Ta).
  • the data is stored in the event recording unit 152 as event video data.
  • Ta is, for example, about 5 minutes.
  • the time (2 ⁇ Ta) of the composite video data saved as the event video data can be arbitrarily set. Further, the storage time of the event video data before the time T0 when the recording trigger signal is received may be different from the storage time of the event video data after the time T0 when the recording trigger signal is received.
  • the processing of the flowchart shown in FIG. 9 is started, for example, by turning on (that is, keying on) the ignition switch, and after the initial setting is performed, the processing of steps S110 to S165 is repeatedly executed.
  • step S110 the vehicle body controller 110 executes the information acquisition process and proceeds to step S115.
  • the vehicle body controller 110 has a detection result by the lock lever operation detection device 79b (information on the operation position of the lock lever 79a) and a detection result by the object detection device 90 (existing around the machine body 4).
  • Object information the detection result by the actuator operation detection device 70 (actuator operation information), and the detection result by the attitude detection device 60 (attitude information of the work device 10) are acquired.
  • step S115 the vehicle body controller 110 calculates the working radius Rw based on the detection result of the posture detecting device 60 acquired in step S110. Further, the vehicle body controller 110 sets the warning zone S1 based on the working radius Rw, the left set angle ⁇ L, and the right set angle ⁇ R, and proceeds to step S120.
  • step S120 the vehicle body controller 110 determines whether or not the lock lever 79a is operated to the unlocked position based on the detection result of the lock lever operation detection device 79b acquired in step S110. In step S120, if it is determined that the lock lever 79a is operated to the unlocked position, the process proceeds to step S125, and if it is determined that the lock lever 79a is operated to the locked position, the process returns to step S110.
  • step S125 the vehicle body controller 110 determines whether or not an object exists around the body 4 based on the detection result of the object detection device 90 acquired in step S110. In step S125, if it is determined that an object exists around the machine body 4, the process proceeds to step S130, and if it is determined that no object exists around the machine body 4, the process returns to step S110.
  • step S130 the vehicle body controller 110 calculates the position of the excavator reference of the detected object based on the detection result of the object detection device 90 acquired in step S110, and proceeds to step S135.
  • step S135 the vehicle body controller 110 determines whether or not the detected object is a person based on the detection result of the object detection device 90 acquired in step S110. In step S135, if it is determined that the detected object is a human, the process proceeds to step S137, and if it is determined that the detected object is not a human, the process proceeds to step S145.
  • step S137 the vehicle body controller 110 determines whether or not the detected person exists in the attention zone S2 based on the calculation result in step S130. In step S137, if it is determined that the detected person exists in the attention zone S2, the process proceeds to step S140, and if it is determined that the detected person does not exist in the attention zone S2, the process proceeds to step S110. return.
  • step S140 the vehicle body controller 110 determines whether or not the detected person exists in the warning zone S1 based on the calculation result in step S130. In step S140, if it is determined that the detected person exists in the warning zone S1, the process proceeds to step S160, and if it is determined that the detected person does not exist in the warning zone S1, the process proceeds to step S150. move on.
  • step S145 the vehicle body controller 110 determines whether or not the detected object exists in the warning zone S1 based on the calculation result in step S130. In step S145, if it is determined that the detected object exists in the warning zone S1, the process proceeds to step S150, and if it is determined that the detected object does not exist in the warning zone S1, the process proceeds to step S110. return.
  • step S150 the vehicle body controller 110 determines whether or not the actuator operation is being performed based on the detection result of the actuator operation detection device 70 acquired in step S110. In step S150, if it is determined that the actuator operation is being performed, the process proceeds to step S160, and if it is determined that the actuator operation is not being performed, the process returns to step S110.
  • step S160 the vehicle body controller 110 transmits the recording trigger signal to the video data recording device 130, assuming that the recording holding condition is satisfied, and proceeds to step S165.
  • step S165 the vehicle body controller 110 executes a standby process of waiting until a predetermined time Ta elapses, and ends the process shown in the flowchart of FIG.
  • the vehicle body controller 110 performs an excavator reference position calculation process (S130) and a person determination for each detected object.
  • the process (S135), the existence determination process in the caution zone S2 (S137), and the existence determination process in the warning zone S1 (S140, S145) are performed to determine whether or not the storage retention condition is satisfied for each object. ..
  • the vehicle body controller 110 transmits a recording trigger signal if at least one of the storage retention conditions is satisfied as a result of determining whether or not the storage retention condition is satisfied for each object (S160).
  • the contents of the recording control process executed by the recording controller 140 will be described with reference to FIG. 10A.
  • the processing of the flowchart shown in FIG. 10A is started, for example, by turning on (that is, keying on) the ignition switch.
  • step S210 the recording controller 140 executes the initialization process and proceeds to step S215.
  • step S215 the recording controller 140 executes a recording preparation process.
  • the recording controller 140 starts constant recording of the synthetic video data generated by the monitor controller 120 to the continuous recording unit 151.
  • the recording controller 140 proceeds to step S220 assuming that the recording preparation process is completed.
  • step S220 the recording controller 140 starts accepting the recording trigger signal from the vehicle body controller 110, and proceeds to step S230.
  • step S230 the recording controller 140 determines whether or not the recording trigger signal from the vehicle body controller 110 has been received. The recording controller 140 repeatedly executes this determination process until it is determined that the recording trigger signal has been received from the vehicle body controller 110, and proceeds to step S240 when it is determined that the recording trigger signal from the vehicle body controller 110 has been received.
  • step S240 the recording controller 140 stores the composite video data of a predetermined period [time (T0-Ta) to time (T0 + Ta)] including the time T0 at which the recording trigger signal is received in the event recording unit 152 as event video data. , Return to step S230.
  • FIG. 10B With reference to FIG. 10B, the contents of the process when the recording control by the recording controller 140 is terminated will be described.
  • the processing of the flowchart shown in FIG. 10B is started by executing the recording trigger reception start processing (step S220 of FIG. 10A).
  • step S250 the recording controller 140 determines whether or not the ignition switch has been turned off (that is, keyed off). The recording controller 140 repeatedly executes this determination process until it is determined that the ignition switch is turned off, and when it is determined that the ignition switch is turned off, the process proceeds to step S255.
  • step S255 the recording controller 140 determines whether or not the event recording process (step S240) is being performed. In step S255, if it is determined that the event recording process is being performed, the process proceeds to step S260, and if it is determined that the event recording process is not being performed, the process proceeds to step S265. In step S260, the recording controller 140 executes a standby process of waiting until the predetermined time Ta elapses, and proceeds to step S265. In step S265, the recording controller 140 executes a predetermined end process, turns off the power, and ends the process shown in the flowchart of FIG. 10B.
  • a recording trigger signal is transmitted from the control device 100 to the video data recording device 130 (S160 in FIG. 9), and the video data recording device 130 records and holds the synthesized video data (Y ⁇ S240 in S230 in FIG. 10A). ).
  • a recording trigger signal is transmitted from the control device 100 to the video data recording device 130 (S160 in FIG. 9), and the video data recording device 130 records and holds the synthesized video data (Y ⁇ S240 in S230 in FIG. 10A). ). That is, in the present embodiment, the composite video data can be recorded and held when the hydraulic excavator 1 may come into contact with the work vehicle by operating the actuator of the operator.
  • the hydraulic excavator (working machine) 1 includes a machine body 4, an actuator (hydraulic cylinder 10a, a traveling hydraulic motor 2a, a traveling hydraulic motor 3a) attached to the machine body 4, and an actuator (hydraulic cylinder 10a, traveling hydraulic pressure).
  • An operating device (lock lever device 79 and actuator operating device 71, 72, 73) used to operate the motor 2a, turning hydraulic motor 3a), and an operating device (lock lever device 79 and actuator operating device 71, 72, Operation detection device (lock lever operation detection device 79b and actuator operation detection device 70) that detects the operation of 73), a photographing device 30 that photographs the surroundings of the machine body 4, and video data including images captured by the photographing device 30.
  • a video data recording device 130 for recording
  • a control device 100 for controlling the video data recording device 130
  • an object detection device 90 for detecting an object around the machine body 4.
  • the control device 100 an object exists around the machine body 4 based on the detection result of the object detection device 90 and the detection result of the operation detection device (lock lever operation detection device 79b and actuator operation detection device 70). It is determined whether or not the recording retention condition including the fact that the operation device is operated and the operation device is operated is satisfied, and when the recording retention condition is satisfied, the video data recording device 130 records and retains the video data. To do.
  • the object and the hydraulic excavator 1 come into close contact with each other, such as the operation of the hydraulic excavator 1 being performed when the object is present around the hydraulic excavator 1. It is possible to record and retain video data only in the scene. That is, according to the present embodiment, it is possible to improve the recording accuracy of the required scene.
  • the hydraulic excavator 1 includes a communication device 160 that transmits recorded and held video data to a management server (external device) 53 by wireless communication.
  • a management server external device
  • the recording holding condition is satisfied, the recording holding of the video data is performed, so that the amount of the video data transmitted to the management server 53 can be suppressed to a small size. That is, according to the present embodiment, it is possible to keep the amount of communication when uploading the video data to the management server 53 low.
  • the hydraulic excavator 1 includes a display device 190 provided in the driver's cab 7.
  • the control device 100 generates a composite video 199 by synthesizing the video shot by the shooting device 30 and the image (frame image, message image, icon image) generated based on the detection result of the object detection device 90. Then, the generated composite image 199 is displayed on the display screen 191a of the display device 190.
  • the video data recorded and held by the video data recording device 130 is the data of the composite video 199 displayed by the display device 190.
  • the monitor image from the operator's point of view is recorded when the recording retention condition is satisfied, it is possible to accurately look back on the situation when the recording retention condition is satisfied.
  • the lock lever device 79 is operated to the unlocked position, an object exists around the machine body 4, the object is a person, and the object is a warning zone (first range). ) If it exists in S1, it is assumed that the first recording retention condition is satisfied, and the video data recording device 130 is made to record and hold the video data. According to this configuration, it is possible to record and hold video data of a scene where there is a possibility of contact between a person such as a worker and the hydraulic excavator 1.
  • the lock lever device 79 is operated to the unlocked position, an object exists around the machine body 4, and the object exists in the warning zone (first range) S1.
  • the operation by at least one of the actuator operating devices 71, 72, and 73 it is assumed that the second recording holding condition is satisfied, and the video data recording device 130 is made to record and hold the video data. According to this configuration, it is possible to record and hold video data of a scene where an object such as a work vehicle may come into contact with the hydraulic excavator 1.
  • the lock lever device 79 is operated to the unlocked position, an object exists around the machine body 4, the object is a person, and the actuator operating devices 71, 72, 73.
  • the third record holding condition is set.
  • the video data recording device 130 is made to record and hold the video data. According to this configuration, it is possible to record and hold video data of a scene where a person such as a worker and the hydraulic excavator 1 may approach each other.
  • the video data recording device 130 assumes that the recording holding condition is satisfied when the lock lever device 79 is operated to the unlocked position and an object exists around the machine body 4.
  • the record may be retained. That is, steps S115, S130, S135, S137, S140, S145, and S150 shown in the flowchart of FIG. 9 may be omitted.
  • the actuator can be operated by the actuator operating devices 71, 72, 73. According to this configuration, it is possible to record and hold video data of a scene where an object and the hydraulic excavator 1 are close to each other and may come into contact with each other.
  • the control device 100 records video data assuming that the lock lever device 79 is operated to the unlocked position, an object exists around the machine body 4, and the recording holding condition is satisfied when the object is a person.
  • the device 130 may be allowed to record and hold the video data. That is, steps S115, S130, S137, S140, S145, and S150 shown in the flowchart of FIG. 9 may be omitted.
  • the actuator can be operated by at least one of the actuator operating devices 71, 72, 73. According to this configuration, it is possible to record and hold video data of a scene where a person and the hydraulic excavator 1 are close to each other and may come into contact with each other.
  • ⁇ Modification 3> When the control device 100 is operated by at least one of the actuator operating devices 71, 72, 73 and an object exists around the machine body 4, it is assumed that the recording holding condition is satisfied, and the video data is recorded.
  • the device 130 may be used to record and hold the video data. That is, steps S115, S130 to S145 shown in the flowchart of FIG. 9 may be omitted, and the process of step S150 may be executed instead of the process of step S120. According to this configuration, it is possible to record and hold video data of a scene where an object and the hydraulic excavator 1 are close to each other and may come into contact with each other.
  • the lock lever device 79 is operated to the unlocked position, an object exists around the machine body 4, and the rotation speed (engine rotation speed) of the engine 21 fluctuates.
  • the video data recording device 130 may be allowed to record and retain the video data.
  • the control device 100 determines whether or not the engine rotation speed has fluctuated based on the signal from the engine rotation speed sensor that detects the engine rotation speed.
  • the left set angle ⁇ L defining the caution zone S2 is 90 degrees in the left turning direction with respect to the x-axis
  • the right setting angle ⁇ R defining the caution zone S2 is the right turning direction with respect to the x-axis.
  • the left set angle ⁇ L and the right set angle ⁇ R can be set to arbitrary values. Further, the left set angle ⁇ L and the right set angle ⁇ R may be arbitrarily set by the operator of the hydraulic excavator 1 performing a predetermined operation on the display device (touch panel monitor) 190.
  • the fan-shaped (semicircular) region S11 defined by the left set angle ⁇ L, the right set angle ⁇ R, and the working radius Rw, and the radius Rs centered on the turning center axis O.
  • the circular region S12 and the region in which the regions are combined is set as the warning zone (first range) S1
  • the present invention is not limited thereto.
  • a polygonal warning zone (first range) S1 having the touch-operated position as an apex is set. May be good.
  • ⁇ Modification 7> In the above embodiment, an example of recording and holding synthetic video data and transmitting it to the management server 53 has been described, but the present invention is not limited thereto.
  • the data of the video imaged by the photographing apparatus 30 may be recorded and held as it is and transmitted to the management server 53.
  • ⁇ Modification 8> In the above embodiment, an example in which the monitor controller 120 generates a bird's-eye view image 194a based on images taken by a plurality of photographing devices 30 has been described, but the present invention is not limited thereto.
  • the monitor controller 120 may display the images captured by the plurality of photographing devices 30 on the display screen 191a of the display device 190 as individual images.
  • the actuator operation detection device 70 may be a potentiometer or the like that detects the operation angle (operation amount) of the operation levers 71a, 72a, 73a.
  • the control device 100 is operated by the actuator operating devices 71, 72, 73. If the absolute value
  • the operating angle when the operating levers 71a, 72a, and 73a are in the neutral position is 0 (zero) degrees, and the threshold value ⁇ 0 is set to a value larger than 0 (zero).
  • the vehicle body controller 110 determines whether or not the object is a person based on the information of the reflection intensity transmitted from the object detection device 90 , but the determination method is not limited to this.
  • the object detection device 90 may determine whether or not the object is a person based on the information of the reflection intensity, and output the determination result to the vehicle body controller 110.
  • the vehicle body controller 110 determines whether or not the object is a person based on the determination result (for example, the determination flag signal) transmitted from the object detection device 90.
  • the object detection device 90 may be a stereo camera.
  • the stereo camera functions as the object detection device 90 and the photographing device 30.
  • the control device 100 extracts a pattern of the shape of an object taken by a stereo camera, and if the extracted pattern matches a preset pattern of a person, the control device 100 determines that the object is a person and does not match. In some cases, it is determined that the person is not a person. Further, a three-dimensional LiDAR may be adopted as the object detection device 90.
  • the recording holding process is terminated when a predetermined time Ta elapses from the time T0 when the recording trigger signal is received has been described, but the present invention is not limited thereto.
  • the recording holding process may be terminated when the recording holding condition is no longer satisfied, such as when the lock lever 79a is operated to the locked position or the object is not detected by the object detection device 90.
  • 1 hydraulic excavator (working machine), 2a ... traveling hydraulic motor (actuator), 3a ... turning hydraulic motor (actuator), 4 ... machine, 7 ... cab, 10 ... working device, 10a ... hydraulic cylinder (actuator) , 19 ... Surrounding monitoring system, 30 ... Imaging device, 31, 32, 33, 34 ... Camera (imaging device), 53 ... Management server (external device), 60 ... Attitude detection device, 70 ... Actuator operation detection device, 71 ... Work operation device (actuator operation device), 72 ... swivel operation device (actuator operation device), 73 ... travel operation device (actuator operation device), 76a, 76b ... work operation sensor (actuator operation detection device), 77a, 77b ...
  • swivel Operation sensor (actuator operation detection device), 78a, 78b ... Travel operation sensor (actuator operation detection device), 79 ... Lock lever device, 79b ... Lock lever operation detection device, 80 ... Hydraulic system, 90 ... Object detection device, 100 ... Control device, 110 ... Body controller, 120 ... Monitor controller, 130 ... Video data recording device, 140 ... Recording controller, 160 ... Communication device, 190 ... Display device, 191a ... Display screen, 192 ... Icon area, 193 ... Message area, 194 ... camera image area, 194a ... bird's-eye view image, 195a ... object, 195b ... frame image, 196a ... object, 196b ... frame image, 197a ... object, 197b ... frame image, 199 ... composite image, S1 ... warning zone (first) Range), S2 ... Caution zone (second range)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

作業機械は、機体と、機体に取り付けられるアクチュエータと、アクチュエータを動作させるために用いられる操作装置と、操作装置の操作を検出する操作検出装置と、機体の周囲を撮影する撮影装置と、撮影装置で撮影された映像を含む映像データを記録する映像データ記録装置と、映像データ記録装置を制御する制御装置と、機体の周囲の物体を検出する物体検出装置と、を備える。制御装置は、物体検出装置での検出結果、及び、操作検出装置での検出結果に基づいて、機体の周囲に物体が存在していること、及び、操作装置が操作されていることを含む記録保持条件が成立しているか否かを判定し、記録保持条件が成立した場合に、映像データ記録装置によって映像データの記録保持を行わせる。

Description

作業機械
 本発明は、作業機械に関する。
 自動車が物体に接触したときの原因を調査することを目的として、カメラで撮影された自車両の周囲の映像を録画するドライブレコーダ装置を備えた自動車が知られている。自動車の動作中、全ての時間において録画を行う場合、映像データの量が大きくなり必要な場面の映像データの抽出に手間がかかってしまう。映像データの量を抑えるために、古いデータを順次削除し、新しいデータに書き換える上書き処理を行う場合、必要な場面の映像データが上書きにより削除されてしまう場合がある。したがって、必要な場面で映像の録画を開始することが望ましい。
 特許文献1には、自車両への衝撃を検知する衝撃検知手段と、衝撃検知手段が予め決められた値以上の衝撃を検知したとき、記憶手段に記憶された記憶情報を記憶保持する記憶情報保存手段と、を備えたドライブレコーダ装置が開示されている。
特開2004-224105号公報
 建設作業現場などで稼働する油圧ショベル等の作業機械においても、自作業機械の周囲の映像データを記録保持することが要望されている。しかしながら、作業機械は、作業中、衝撃が頻繁に発生する。このため、作業機械において、衝撃の検知により映像データの記録保持を行う構成とすると、頻繁に映像データの記録保持が行われてしまい、必要な場面を記録保持する精度、すなわち録画精度が低くなってしまうという問題点がある。
 本発明は、必要な場面の録画精度を向上させることを目的とする。
 本発明の一態様による作業機械は、機体と、前記機体に取り付けられるアクチュエータと、前記アクチュエータを動作させるために用いられる操作装置と、前記操作装置の操作を検出する操作検出装置と、前記機体の周囲を撮影する撮影装置と、前記撮影装置で撮影された映像を含む映像データを記録する映像データ記録装置と、前記映像データ記録装置を制御する制御装置と、前記機体の周囲の物体を検出する物体検出装置と、を備える。前記制御装置は、前記物体検出装置での検出結果、及び、前記操作検出装置での検出結果に基づいて、前記機体の周囲に物体が存在していること、及び、前記操作装置が操作されていることを含む記録保持条件が成立しているか否かを判定し、前記記録保持条件が成立した場合に、前記映像データ記録装置によって前記映像データの記録保持を行わせる。
 本発明によれば、必要な場面の録画精度を向上させることができる。
油圧ショベルの管理システムの構成を示す図。 運転室の内部を運転席の後側から前方に向かって見たときの概略図。 油圧ショベルの主な構成を示す図。 油圧ショベルの平面模式図であり、複数の撮影装置の撮影範囲を示す。 周囲監視システムの主な機能について示す機能ブロック図。 油圧ショベルを上方から見た図であり、油圧ショベルの警告ゾーンS1及び注意ゾーンS2について示す。 表示装置の表示画面に表示される合成映像の一例について示す図。 記録制御部による記録制御処理の内容を説明するためのタイムチャート。 車体コントローラにより実行される記録保持条件の成立判定処理について示すフローチャート。 録画コントローラにより実行される記録制御処理について示すフローチャート。 録画コントローラにより実行される記録制御を終了する際の処理について示すフローチャート。
 図面を参照して、本発明の実施形態に係る作業機械及びその管理システムについて説明する。作業機械は、土木作業、建設作業、解体作業等の各種作業に用いられる機械である。本実施形態では、作業機械が、クローラ式の油圧ショベル1である例について説明する。
 図1は、油圧ショベル1の管理システム5の構成を示す図である。図1に示すように、管理システム5は、作業現場で作業を行う油圧ショベル1と、管理センタ52に設置される管理サーバ53と、を有する。管理センタ52は、例えば、油圧ショベル1の製造業者(メーカー)の本社、支社、工場等の施設、油圧ショベル1のレンタル会社、サーバの運営を専門的に行うデータセンタ、油圧ショベル1を所有するオーナーの施設等に設置される。管理サーバ53は、油圧ショベル1の状態を遠隔で管理(把握、監視)する外部装置である。
 管理システム5は、作業現場で作業を行う油圧ショベル1と、作業現場から離れた場所に設置される管理サーバ53との間で広域ネットワークの通信回線50を介して双方向通信を行うことができるように構成されている。すなわち、油圧ショベル1と管理サーバ53とは、通信回線50を介して情報(データ)の送信、受信を行うことができる。通信回線50は、携帯電話事業者等が展開する携帯電話通信網(移動通信網)、インターネット等である。例えば、図示するように、油圧ショベル1と無線基地局51とが携帯電話通信網(移動通信網)で接続されている場合、無線基地局51は、油圧ショベル1から所定の情報を受信すると、受信した情報をインターネットを介して管理サーバ53に送信する。
 管理サーバ53は、油圧ショベル1から受信した稼働情報、警告情報、及び、録画情報等の車体情報を受信し、ハードディスクドライブ等の記憶装置54に記憶する。管理サーバ53は、記憶装置54に記憶された情報を液晶ディスプレイ装置等の表示装置55に表示させる。管理者は、管理サーバ53を操作し、所定の油圧ショベル1の情報を表示装置55に表示させることで、油圧ショベル1の状態を把握することができる。例えば、管理サーバ53は、油圧ショベル1から送信された映像データを記憶装置54に記憶し、記憶した映像データに基づいて、表示装置55の表示画面に油圧ショベル1の周囲の映像(図7に示す合成映像199)を表示させる。
 油圧ショベル1は、機体(車体)4と、機体4に取り付けられる作業装置10と、を備える。機体4は、走行体2と、走行体2上に旋回可能に設けられた旋回体3と、を備え、旋回体3の前部に作業装置10が取り付けられている。走行体2は、左側のクローラを駆動させる左側走行用油圧モータ2al及び右側のクローラを駆動させる右側走行用油圧モータ2ar(図3参照)と、を備える。走行体2は、左右一対のクローラを走行用油圧モータ2al,2arによって駆動することにより走行する。旋回体3は、旋回用油圧モータ3aを駆動することにより旋回する。
 旋回体3は、旋回フレーム8と、旋回フレーム8の前部左側に設けられる運転室7と、旋回フレーム8の後部に設けられるカウンタウエイト9と、旋回フレーム8における運転室7の後側に設けられるエンジン室6と、を有する。エンジン室6には、原動機であるエンジン21、エンジン21により駆動される油圧ポンプ等の油圧機器と、が収容されている。旋回フレーム8の前部中央には作業装置10が回動可能に連結されている。エンジン21は、油圧ショベル1の動力源であり、例えば、ディーゼルエンジン等の内燃機関により構成される。
 作業装置10は、回動可能に連結される複数のフロント部材及びフロント部材を駆動する複数の油圧シリンダ(アクチュエータ)を有する多関節型の作業装置である。本実施形態では、3つのフロント部材としてのブーム11、アーム12及びバケット13が、直列的に連結される。ブーム11は、その基端部が旋回フレーム8の前部においてブームピン11bによって回動可能に連結される。アーム12は、その基端部がブーム11の先端部においてアームピン12bによって回動可能に連結される。バケット13は、アーム12の先端部においてバケットピン13bによって回動可能に連結される。
 ブーム11は、油圧シリンダ(以下、ブームシリンダ11aとも記す)によって駆動され、旋回フレーム8に対して回動する。アーム12は、油圧シリンダ(以下、アームシリンダ12aとも記す)によって駆動され、ブーム11に対して回動する。バケット13は、油圧シリンダ(以下、バケットシリンダ13aとも記す)によって駆動され、アーム12に対して回動する。ブームシリンダ11aは、その一端側がブーム11に接続され他端側が旋回フレーム8に接続されている。アームシリンダ12aは、その一端側がアーム12に接続され他端側がブーム11に接続されている。バケットシリンダ13aは、その一端側がリンク部材を介してバケット13に接続され他端側がアーム12に接続されている。作業装置10の各油圧シリンダが駆動されることにより、地山の掘削、整地等の作業が行われる。
 運転室7内には、油圧ショベル1の各部を制御する制御装置100と、複数の撮影装置30(図3参照)で撮影された映像を車体情報とともに記録する映像データ記録装置130と、油圧ショベル1に搭載される機器に電力を供給する電源装置としてのバッテリ28と、が設けられる。
 図2は、運転室7の内部を運転席75の後側から前方に向かって見たときの概略図である。図2に示すように、運転室7内には、オペレータが着座する運転席75と、油圧ショベル1の各部を操作するための操作レバー(B1~B4)と、所定の表示画像を表示画面191aに表示させる表示装置190と、が設けられている。表示装置190は、運転席75側からみて右側のピラー74に取り付けられている。表示装置190は、例えば、入力部兼表示部として機能するタッチパネルモニタであり、モニタコントローラ120(図3参照)からの制御信号に基づき、所定のアイコン、メッセージ等の画像と機体4の周囲の映像とが合成された合成映像199(図7参照)を表示画面191aに表示させる。
 運転席75の右側には、バケット13の操作及びブーム11の操作を行うための右操作レバーB1が設けられ、運転席75の左側には、旋回体3の操作及びアーム12の操作を行うための左操作レバーB2が設けられている。運転席75の前側には左右一対の走行レバー(左走行レバーB4及び右走行レバーB3)が設けられている。左走行レバーB4は左側のクローラの操作を行うための操作レバーであり、右走行レバーB3は右側のクローラの操作を行うための操作レバーである。
 左側の操作レバーB2の左側(ドア側)には、ロックレバー79aが設けられている。ロックレバー79aは、運転室7の出入りを許可するロック位置(上げ位置)と、運転室7の出入りを禁止するロック解除位置(下げ位置)とに選択的に操作が可能な部材である。
 図3は、油圧ショベル1の主な構成を示す図であり、油圧ショベル1に搭載される油圧システム80及び周囲監視システム19について示す。なお、以下では、ブームシリンダ11a、アームシリンダ12a及びバケットシリンダ13aを総称して油圧シリンダ10aと記し、左側走行用油圧モータ2al及び右側走行用油圧モータ2arを総称して走行用油圧モータ2aと記す。油圧システム80には、複数の油圧シリンダ10a(11a,12a,13a)が設けられているが、図3では、一つの油圧シリンダ10aを代表して図示している。同様に、油圧システム80には、一対の走行用油圧モータ2aが設けられているが、図3では、一つの走行用油圧モータ2aを代表して図示している。
 図3に示すように、油圧システム80は、エンジン21により駆動される可変容量型の油圧ポンプであるメインポンプ25と、エンジン21により駆動される固定容量型の油圧ポンプであるパイロットポンプ26と、メインポンプ25から吐出される作動流体としての作動油(圧油)によって駆動される複数の油圧アクチュエータ(油圧シリンダ10a、旋回用油圧モータ3a及び走行用油圧モータ2a)と、メインポンプ25から各油圧アクチュエータに供給される作動油の流れをそれぞれ制御するコントロールバルブ81,82,83と、を備える。
 パイロットポンプ26から吐出された作動油は、アクチュエータを動作させるために用いられる操作装置(作業操作装置71、旋回操作装置72及び走行操作装置73)に供給される。作業操作装置71は、作業装置10の油圧シリンダ10aの動作を指令するアクチュエータ操作装置であり、オペレータによって傾動操作される操作レバー(図2の右操作レバーB1及び左操作レバーB2に相当)71aと、油圧パイロット方式の一対の減圧弁71bと、を有する。旋回操作装置72は、旋回用油圧モータ3aの動作を指令するアクチュエータ操作装置であり、オペレータによって傾動操作される操作レバー(図2の左操作レバーB2に相当)72aと、油圧パイロット方式の一対の減圧弁72bと、を有する。走行操作装置73は、走行用油圧モータ2aの動作を指令するアクチュエータ操作装置であり、オペレータによって傾動操作される操作レバー(図2の右走行レバーB3及び左走行レバーB4に相当)73aと、油圧パイロット方式の一対の減圧弁73bと、を有する。
 アクチュエータ操作装置71,72,73の減圧弁71b,72b,73bは、パイロットポンプ26の吐出圧を元圧として、操作レバー71a,72a,73aの操作量と操作方向に応じたパイロット圧(操作圧と称することもある)を発生する。このように発生したパイロット圧は、油圧アクチュエータ(10a,3a,2a)に対応するコントロールバルブ81,82,83の受圧室81a,81b,82a,82b,83a,83bに導かれ、コントロールバルブ81,82,83を駆動してアクチュエータを動作させる指令(信号)として利用される。
 メインポンプ25から吐出された作動油は、コントロールバルブ81,82,83を通じて油圧アクチュエータ(油圧シリンダ10a、旋回用油圧モータ3a,走行用油圧モータ2a)に供給され、作業装置10、旋回体3及び走行体2のそれぞれが駆動される。
 油圧ショベル1は、複数のアクチュエータ操作装置71,72,73の操作を検出する操作検出装置である複数のアクチュエータ操作検出装置70を備えている。複数のアクチュエータ操作検出装置70には、作業操作センサ76a,76b、旋回操作センサ77a,77b及び走行操作センサ78a,78bがある。本実施形態では、アクチュエータ操作検出装置76a,76b,77a,77b,78a,78bは、アクチュエータ操作装置71,72,73とコントロールバルブ81,82,83の受圧室81a,81b,82a,82b,83a,83bとを接続するパイロットラインに設けられる圧力センサである。アクチュエータ操作検出装置76a,76b,77a,77b,78a,78bは、オペレータによる操作レバー71a,72a,73aの操作によって生じる操作圧(操作量)を検出する。つまり、作業操作センサ76a,76bは、作業装置10(油圧シリンダ10a)を動作させるための操作を検出し、旋回操作センサ77a,77bは、旋回体3を動作(旋回)させるための操作を検出し、走行操作センサ78a,78bは、走行体2を動作(走行)させるための操作を検出する。アクチュエータ操作検出装置76a,76b,77a,77b,78a,78bは、制御装置100の車体コントローラ110に接続されており、検出した操作量に関する情報を車体コントローラ110に出力する。
 シャットオフ弁89は、パイロットポンプ26とアクチュエータ操作装置71,72,73の減圧弁71b,72b,73bとを接続するパイロットラインに設けられ、パイロットポンプ26から減圧弁71b,72b,73bへパイロット圧が供給されることを許容する連通位置と、パイロットポンプ26から減圧弁71b,72b,73bへパイロット圧が供給されることを禁止する遮断位置と、の間で切り換えられる電磁切換弁である。シャットオフ弁89は、ロックレバー装置79によって操作される。
 ロックレバー装置79は、アクチュエータを動作させるために用いられる操作装置であって、運転室7の出入りを許可するとともにアクチュエータ操作装置71,72,73によるアクチュエータ(10a,3a,2a)の動作を不能とするロック位置(上げ位置)と、運転室7の出入りを禁止するとともにアクチュエータ操作装置71,72,73によるアクチュエータ(10a,3a,2a)の動作を可能とするロック解除位置(下げ位置)とに選択的に操作されるロックレバー79aと、バッテリ28からの電力を供給または遮断するためのシャットオフリレー79cと、ロックレバー装置79のロックレバー79aの操作を検出する操作検出装置であるロックレバー操作検出装置79bと、を有する。
 ロックレバー79aがロック解除位置に操作されると、シャットオフリレー79cがオンされ、すなわちシャットオフリレー79cが閉状態とされ、バッテリ28からシャットオフ弁89に電力が供給される。シャットオフ弁89に電力が供給されると、ソレノイドが励磁されてシャットオフ弁89が連通位置に切り換えられる。このため、ロックレバー79aがロック解除位置にある状態では、操作レバー71a,72a,73aの操作量に応じた指令パイロット圧が減圧弁71b,72b,73bによって生成され、操作された操作レバー71a,72a,73aに対応する油圧アクチュエータ(10a,3a,2a)が動作する。
 ロックレバー79aがロック位置に操作されると、シャットオフリレー79cがオフされ、すなわちシャットオフリレー79cが開状態とされ、バッテリ28からシャットオフ弁89への電力の供給が遮断される。シャットオフ弁89への電力の供給が遮断されると、ソレノイドが消磁されてシャットオフ弁89が遮断位置に切り換えられる。これにより、減圧弁71b,72b,73bへのパイロット元圧が遮断され、操作レバー71a,72a,73aによる操作が無効化される。
 ロックレバー操作検出装置79bは、ロックレバー79aの操作位置を検出し、その検出結果を表す信号を制御装置100の車体コントローラ110に出力する。
 周囲監視システム19は、機体4の周囲を監視するためのシステムであり、機体4の周囲を撮影する複数の撮影装置30と、撮影装置30で撮影された映像を表示画面191aに表示させる表示装置190と、撮影装置30で撮影された映像を含む映像データを記録する映像データ記録装置130と、表示装置190及び映像データ記録装置130を制御する制御装置100と、機体4の周囲の物体を検出する複数の物体検出装置90と、油圧ショベル1の外部に設置される外部装置である管理サーバ53と無線通信を行うための通信装置160と、を備える。
 表示装置190は、油圧ショベル1の周囲に物体が存在する場合に、その情報を表示画面191aに表示させて、物体が検出されたことを油圧ショベル1のオペレータに報知する報知装置としても機能する。通信装置160は、広域ネットワークである通信回線50に接続される無線基地局51と無線通信可能な無線通信装置であって、例えば2.1GHz帯等の帯域を感受帯域とする通信アンテナを含む通信インタフェースを有する。通信装置160は、無線基地局51及び通信回線50を介して、管理サーバ53等と情報の授受を行う。
 制御装置100は、油圧ショベル1の各部を統括的に制御する車体コントローラ110と、油圧ショベル1の稼働状態に関する情報(データ)、及び撮影装置30で撮影された映像を表示装置190の表示画面191aに表示させるモニタコントローラ120と、を有する。車体コントローラ110は、油圧ショベル1の姿勢情報、操作情報、アクチュエータに対する負荷情報等に基づいて、油圧システム80の弁、ポンプ等の制御を行う。モニタコントローラ120は、複数の撮影装置30により撮影された映像と、物体検出装置90での検出結果に基づいて生成される画像とを合成して合成映像199を生成し、生成された合成映像199を表示装置190の表示画面191aに表示させる(図7参照)。モニタコントローラ120は、生成した合成映像199のデータ(以下、合成映像データとも記す)を映像データ記録装置130に送信する。
 映像データ記録装置130は、録画コントローラ140と、記録装置である常時記録部151と、記録装置であるイベント記録部152と、を備える。例えば、常時記録部151は、揮発性メモリあるいは不揮発性メモリであり、イベント記録部152は常時記録部151とは別に設けられた不揮発性メモリである。録画コントローラ140は、常時記録部151にモニタコントローラ120で生成された合成映像データを常時記録する。録画コントローラ140は、車体コントローラ110からの録画トリガー信号を受信すると、常時記録部151に記録されている合成映像データの記録保持を行う。
 車体コントローラ110は、物体検出装置90での検出結果、及び操作検出装置(ロックレバー操作検出装置79b及びアクチュエータ操作検出装置70)での検出結果に基づいて、記録保持条件が成立しているか否かを判定する。車体コントローラ110は、記録保持条件が成立した場合に、録画トリガー信号を映像データ記録装置130に送信し、映像データ記録装置130によって合成映像データの記録保持を行わせる。
 録画コントローラ140は、記録保持された合成映像データを通信装置160を用いて無線通信により管理サーバ53(図1参照)に送信する。管理サーバ53は、受信した合成映像データを記憶装置54(図1参照)に記憶する。
 車体コントローラ110、モニタコントローラ120及び録画コントローラ140は、動作回路としてのCPU(Central Processing Unit)111,121,141、記憶装置としてのROM(Read Only Memory)112,122,142、記憶装置としてのRAM(Random Access Memory)113,123,143及び入出力インタフェース(I/Oインタフェース)、その他の周辺回路を備えたマイクロコンピュータで構成される。各コントローラ110,120,140は、それぞれ1つのマイクロコンピュータで構成してもよいし、複数のマイクロコンピュータで構成してもよい。
 各コントローラ110のROM112,122,142は、EEPROM等の不揮発性メモリであり、各種演算が実行可能なプログラムが格納されている。すなわち、各コントローラ110,120,140のROM112,122,142は、本実施形態の機能を実現するプログラムを読み取り可能な記憶媒体である。RAM113,123,143は揮発性メモリであり、CPU111,121,141との間で直接的にデータの入出力を行うワークメモリである。RAM113,123,143は、CPU111,121,141がプログラムを演算実行している間、必要なデータを一時的に記憶する。なお、各コントローラ110,120,140は、フラッシュメモリ、ハードディスクドライブ等の記憶装置をさらに備えていてもよい。
 CPU111,121,141は、ROM112,122,142に記憶された制御プログラムをRAM113,123,143に展開して演算実行する処理装置であって、制御プログラムに従って入出力インタフェース及びROM112,122,142,RAM113,123,143から取り入れた信号に対して所定の演算処理を行う。入出力インタフェースには、各種装置からの信号が入力される。入出力インタフェースは、入力された信号をCPU111,121,141で演算可能なように変換する。入出力インタフェースは、CPU111,121,141での演算結果に応じた出力用の信号を生成し、その信号を各種装置に出力する。
 各コントローラ110,120,140は、CAN(Controller Area Network)と呼ばれる車載ネットワーク22を介して、互いに接続される。したがって、各コントローラ110,120,140は、相互に情報の授受が可能である。
 図4は、油圧ショベル1の平面模式図であり、複数の撮影装置30の撮影範囲を示す。図4に示すように、複数の撮影装置30は、旋回体3に取り付けられる。複数の撮影装置30には、旋回体3の左方向を撮影する左カメラ31と、旋回体3の右方向を撮影する右カメラ32と、旋回体3の前方向を撮影する前カメラ33と、旋回体3の後方向を撮影する後カメラ34と、がある。各撮影装置30(31,32,33,34)は、例えば、耐久性、耐候性に優れたCCD、CMOSなどの撮像素子と広角レンズを備えた広角ビデオカメラである。
 左カメラ31は、旋回体3の左側の領域を左右約180°の画角で斜めに見下ろすような方向で連続的に撮影する撮影装置である。右カメラ32は、旋回体3の右側の領域を左右約180°の画角で斜めに見下ろすような方向で連続的に撮影する撮影装置である。前カメラ33は、旋回体3の前方の領域を左右約180°の画角で斜めに見下ろすような方向で連続的に撮影する撮影装置である。後カメラ34は、旋回体3の後方の領域を左右約180°の画角で斜めに見下ろすような方向で連続的に撮影する撮影装置である。なお、前カメラ33は、作業装置10のブーム11の下方において、作業装置10と干渉しない位置に取り付けられている。
 図中、油圧ショベル1の周囲の各矩形エリア(A1,A2,A3,A4)は、各カメラ31,32,33,34で撮影可能な領域を示しており、各撮影領域A1,A2,A3,A4は、それぞれその長手方向の両端部分で隣接するエリアと重複撮影されるようになっている。撮影領域A1,A2,A3,A4は、後述する注意ゾーンS2を包含するように設定される。
 複数の物体検出装置90は、旋回体3に取り付けられる。複数の物体検出装置90には、旋回体3の左方向に存在する物体を検出する左物体検出装置91と、旋回体3の右方向に存在する物体を検出する右物体検出装置92と、旋回体3の前方向に存在する物体を検出する前物体検出装置93と、旋回体3の後方向に存在する物体を検出する後物体検出装置94と、がある。
 左物体検出装置91は、左カメラ31の近くに取り付けられ、旋回体3の左側の領域を監視する。左物体検出装置91の監視領域は、左カメラ31の撮影領域A1と略同じである。右物体検出装置92は、右カメラ32の近くに取り付けられ、旋回体3の右側の領域を監視する。右物体検出装置92の監視領域は、右カメラ32の撮影領域A2と略同じである。前物体検出装置93は前カメラ33の近くに取り付けられ、旋回体3の前側の領域を監視する。前物体検出装置93の監視領域は、前カメラ33の撮影領域A3と略同じである。後物体検出装置94は後カメラ34の近くに取り付けられ、旋回体3の後側の領域を監視する。
 物体検出装置90は、それぞれ、上下左右方向にマトリクス状に配列された複数の赤外線センサを有している。赤外線センサは、赤外線の照射から反射までの時間差から物体までの距離を測定し、距離測定結果を車体コントローラ110に出力するToF(Time of Flight)型センサである。また、赤外線センサは、物体から反射した赤外線の反射強度を表す信号を車体コントローラ110に出力する。
 図5は、周囲監視システム19の主な機能について示す機能ブロック図である。なお、物体検出装置90、アクチュエータ操作検出装置70、撮影装置30は、それぞれ複数設けられるが、代表して一つのみ記載している。図5に示すように、車体コントローラ110は、ROM112に記憶されているプログラムを実行することにより、警告ゾーン設定部114、物体特定部115及び条件判定部116として機能する。
 物体特定部115は、複数の物体検出装置90からの検出情報に基づいて、油圧ショベル1の周囲に物体が存在しているか否かを判定する。油圧ショベル1の周囲に物体が存在していると判定されると、物体特定部115は、物体検出装置90での検出結果と、ROM112に記憶されているショベル基準座標系の物体検出装置90の位置座標及び物体検出装置90の取付角度等の情報に基づいて、ショベル基準座標系における物体の位置を特定する。
 さらに、物体特定部115は、物体検出装置90での検出結果に基づいて、物体検出装置90によって検出された物体が人であるか否かを判定する。物体特定部115は、物体から反射した赤外線の反射強度が所定範囲内にある場合、その物体は人であると判定し、物体から反射した赤外線の反射強度が所定範囲外にある場合、その物体は人でないと判定する。上記所定範囲は、例えば、作業員が着衣する反射ベストで赤外線が反射したときの反射強度、人肌で赤外線が反射したときの反射強度等に基づいて予め設定される。人判定用の反射強度の所定範囲は、ROM112に記憶されている。
 条件判定部116は、物体特定部115で特定されたショベル基準の物体の位置と、警告ゾーン設定部114で設定された警告ゾーンS1の情報に基づいて、物体検出装置90によって検出された物体が、警告ゾーンS1内に存在しているか否かを判定する。また、条件判定部116は、物体特定部115で特定されたショベル基準の物体の位置と、注意ゾーン記憶部117に記憶されている注意ゾーンS2の情報に基づいて、物体検出装置90によって検出された物体が、注意ゾーンS2内に存在しているか否かを判定する。
 条件判定部116は、アクチュエータ操作検出装置70での検出結果に基づいて、アクチュエータ操作装置71,72,73によるアクチュエータの操作が行われたか否かを判定する。条件判定部116は、アクチュエータ操作検出装置(圧力センサ)70で検出されたパイロット圧Pが閾値P0以上である場合、アクチュエータ操作装置71,72,73が操作されていると判定し、パイロット圧Pが閾値P0未満である場合、アクチュエータ操作装置71,72,73は操作されていないと判定する。なお、閾値P0は、アクチュエータ操作装置71,72,73が操作されているか否かを判定する閾値であり、予め車体コントローラ110のROM112に記憶されている。パイロット圧Pは、操作レバー71a,72a,73aが中立位置(操作角θ=0)を含む不感帯にあるときには最小値(タンク圧)Pminとなり、操作レバー71a,72a,73aが最大操作位置(操作角θ=θmax)に操作されているときには最大値Pmaxとなる。閾値P0は、最小値Pminよりも大きく最大値Pmaxよりも小さい値である(Pmin<P0<Pmax)。
 条件判定部116は、ロックレバー操作検出装置79bでの検出結果に基づいて、ロックレバー装置79がロック解除位置に操作されているか、あるいはロック位置に操作されているかを判定する。
 条件判定部116は、予め定められた記憶保持条件が成立しているか否かを判定する。条件判定部116は、第1~第3の記憶保持条件が成立した場合、録画トリガー信号を映像データ記録装置130へ送信する。
 第1の記憶保持条件は、以下の条件1~条件4の全てが満たされた場合に成立し、条件1~条件4のいずれか一つが満たされていない場合には成立しない。 
 条件1:ロックレバー装置79のロックレバー79aがロック解除位置に操作されていること 
 条件2:機体4の周囲に物体が存在していること 
 条件3:物体が人であること 
 条件4:物体が、機体4の近傍の周囲の領域、すなわち機体4の旋回範囲内の領域及びブーム11、アーム12、バケット13の旋回軌跡を含んだ機体4に寄った領域に予め設定される警告ゾーン(第1範囲)S1内に存在していること
 第2の記憶保持条件は、条件1、条件2、条件4及び以下の条件5の全てが満たされた場合に成立し、条件1、条件2、条件4及び条件5のいずれか一つが満たされていない場合には成立しない。 
 条件5:アクチュエータ操作装置71,72,73の少なくとも一つによる操作が行われていること
 第3の記憶保持条件は、条件1~条件3、条件5及び以下の条件6の全てが満たされた場合に成立し、条件1~条件3、条件5及び条件6のいずれか一つが満たされていない場合には成立しない。 
 条件6:物体が、警告ゾーンS1には存在せず、警告ゾーンS1を包含するように予め設定される注意ゾーン(第2範囲)S2内に存在していること
 図6は、油圧ショベル1を上方から見た図であり、油圧ショベル1の警告ゾーンS1及び注意ゾーンS2について示す。図6に示すように、注意ゾーンS2は、油圧ショベル1の最大旋回半径Rxの円形状の範囲である。最大旋回半径Rxは、作業装置10を前方(旋回中心軸に直交する方向)に向かって最も伸ばしたときの、旋回体3の旋回中心軸Oからバケット13の先端までの長さに相当する。換言すれば、最大旋回半径Rxは、旋回中心軸Oに直交する方向における、旋回中心軸Oから作業装置10が届く位置までの最大の長さに相当する。なお、本実施形態では、注意ゾーンS2を最大旋回半径Rxの円形状の範囲としたが、最大旋回半径Rxに許容値(裕度)を加算した半径の円形状の範囲を注意ゾーンS2としてもよい。注意ゾーンS2は、油圧ショベル1の各部の寸法に基づいて予め定められ、ROM112の注意ゾーン記憶部117に記憶されている。
 警告ゾーンS1は、注意ゾーンS2に包含されるように設定される範囲である。警告ゾーンS1は、機体4の近傍の周囲の領域、すなわち、機体4の旋回範囲内の領域及びブーム11、アーム12、バケット13の旋回軌跡を含んだ機体4に寄った領域に予め設定される。警告ゾーンS1は、旋回体3の旋回動作及び走行体2の走行動作が行われた際に、その範囲内に存在する物体と油圧ショベル1とが接触することを防止するために設定される。
 警告ゾーン設定部114は、姿勢検出装置60で検出される油圧ショベル1の姿勢情報に基づいて、警告ゾーンS1を設定する。姿勢検出装置60は、旋回体3に対するブーム11の角度(ブーム角)を検出するブーム角センサ61、ブーム11に対するアーム12の角度(アーム角)を検出するアーム角センサ62、アーム12に対するバケット13の角度(バケット角)を検出するバケット角センサ63、走行体2に対する旋回体3の角度(旋回角)を検出する旋回角センサ64を含む。ブーム角センサ61、アーム角センサ62、バケット角センサ63及び旋回角センサ64は、例えば、取得した角度に応じた信号(電圧)を出力するポテンショメータである。
 ROM112には、左設定角度θL、右設定角度θR及び作業装置10の各部の寸法データが記憶されている。本実施形態では、走行体2の前後方向に延在するx軸を基準(0度)として、左旋回方向を負の方向、右旋回方向を正の方向としたとき、左設定角度θLが-90度、右設定角度θRが+90度に設定されている。
 警告ゾーン設定部114は、姿勢検出装置60で検出された姿勢情報(ブーム角、アーム角及びバケット角)、及び作業装置10の各部の寸法データ(ブームピン11bからアームピン12bまでの長さ、アームピン12bからバケットピン13bまでの長さ、バケットピン13bからバケット先端までの長さ)に基づいて、旋回中心軸Oからバケット13の先端までの長さに、所定の長さを許容値(裕度)として加算した長さを作業半径Rwとして演算する。警告ゾーン設定部114は、左設定角度θL、右設定角度θR及び作業半径Rwで規定される旋回体3前方の扇状(半円状)の領域S11と、旋回中心軸Oから旋回体3(旋回体3の後部)の最外周部までの距離を半径Rsとする円形状の領域(すなわち機体4の旋回範囲)S12と、を合成した領域を、警告ゾーンS1として設定する。
 図5に示すように、モニタコントローラ120は、ROM122に記憶されているプログラムを実行することにより、俯瞰映像生成部124、合成映像生成部125として機能する。俯瞰映像生成部124は、左カメラ31、右カメラ32、前カメラ33及び後カメラ34で撮影された画像を取得し、取得した画像に基づいて、俯瞰映像を生成する。俯瞰映像生成部124は、取得した画像に対してレンズ歪み補正を行い、さらに上方視点画像への視点変換処理を行う。俯瞰映像生成部124は、視点変換処理を行った画像と、上方から見た油圧ショベル1のイラスト画像(または撮影画像)とを合成し、図7に示すような俯瞰映像194aを生成する。上方から見た油圧ショベル1のイラスト画像(または撮影画像)が予めROM122に記憶されている。
 図7は、表示装置190の表示画面191aに表示される合成映像199の一例について示す図である。図7に示すように、合成映像生成部125は、俯瞰映像生成部124で生成された俯瞰映像194aに物体特定部115で特定された物体195a,196a,197aを囲む矩形状の枠画像195b,196b,197bを合成し、合成した俯瞰映像194aをカメラ画像領域194に表示させる。合成映像生成部125は、物体特定部115において人であると判定された物体を囲む枠画像197bと、物体特定部115で人でないと判定された物体を囲む枠画像195b,196bと、を異なる色で表示させる。例えば、枠画像197bは赤色とし、枠画像195b,196bは黄色とする。
 表示装置190の表示画面191aには、俯瞰映像194aを表示させるカメラ画像領域194の図示上方に、所定のアイコンを表示させるアイコン領域192と、所定のメッセージを表示させるメッセージ領域193と、が形成される。
 合成映像生成部125は、車体コントローラ110で記録保持条件及び記録保持条件を構成する所定の条件(条件4、条件6)が成立したと判定されると、メッセージ領域193に、記録保持条件が成立したこと等をオペレータに通知し、注意喚起を促すための警告メッセージ画像を表示させる。警告メッセージ画像としては、例えば、人(あるいは人以外の物体)が警告ゾーンS1内に存在していることを知らせるメッセージ画像等、成立した条件ごとに予め設定されるメッセージ画像である。これらのメッセージ画像は、ROM122に記憶されており、成立した条件に応じて選択され、メッセージ領域193に表示される。また、合成映像生成部125は、成立した条件に応じたアイコン画像をアイコン領域192に表示させる。
 記録保持条件が成立すると、車体コントローラ110が、アクチュエータの速度を強制的に低下させるような動作制限制御を実行する構成とする場合には、合成映像生成部125は、動作が制限されている旨をオペレータに知らせるための警告メッセージ画像をメッセージ領域193に表示させるようにしてもよい。また、合成映像生成部125は、動作が制限されている旨をオペレータに知らせるためのアイコン画像をアイコン領域192に表示させてもよい。
 さらに、周囲監視システム19の異常が検知された場合に、合成映像生成部125は、周囲監視システム19の異常が検知されたことをオペレータに知らせるための警告メッセージ画像をメッセージ領域193に表示させるようにしてもよい。また、合成映像生成部125は、周囲監視システム19の異常が検知されたことをオペレータに知らせるためのアイコン画像をアイコン領域192に表示させてもよい。
 このように、モニタコントローラ120は、表示装置190を制御して、撮影装置30により撮影された映像と、物体検出情報に応じて生成される画像(枠、メッセージ、アイコンの画像)とを合成した合成映像199を表示装置190の表示画面191aに表示させる。
 図5に示すように、録画コントローラ140は、ROM144に記憶されているプログラムを実行することにより、記録制御部144として機能する。記録制御部144は、合成映像生成部125で生成される合成映像データを取得し、取得した合成映像データを上書き可能なデータとして常時記録部151に連続的に記録する。
 記録制御部144は、常時記録部151の記録容量が上限となった場合、常時記録部151に記録されている古い合成映像データを順次削除し、新しい合成映像データに書き換える上書き処理を実行する。記録制御部144は、録画トリガー信号を受信すると、イベントが発生したと判断し、合成映像生成部125で生成された合成映像データの記録保持を行う。具体的には、記録制御部144は、録画トリガー信号を受信した時刻T0を含む所定期間の合成映像データをイベント映像データとしてイベント記録部152に保存する。
 図8は、記録制御部144による記録制御処理の内容を説明するためのタイムチャートである。図8(a)に示すように、合成映像データは、常時記録部151に時間tの経過とともに記録される。図8(b)に示すように、例えば、時刻T0で録画トリガー信号を受信すると、時刻T0よりも前の時刻(T0-Ta)からT0よりも後の時刻(T0+Ta)までの期間の合成映像データがイベント映像データとして、イベント記録部152に保存される。Taは、例えば5分程度である。なお、イベント映像データとして保存される合成映像データの時間(2×Ta)は、任意に設定することができる。また、録画トリガー信号を受信した時刻T0よりも前のイベント映像データの保存時間と、録画トリガー信号を受信した時刻T0よりも後のイベント映像データの保存時間とは、異なるようにしてもよい。
 図9を参照して、車体コントローラ110により実行される記録保持条件の成立判定処理の内容について説明する。図9に示すフローチャートの処理は、例えば、イグニッションスイッチがオン(すなわちキーオン)されることにより開始され、初期設定が行われた後、ステップS110~S165までの処理が繰り返し実行される。
 図9に示すように、ステップS110において、車体コントローラ110は、情報取得処理を実行し、ステップS115へ進む。情報取得処理(S110)において、車体コントローラ110は、ロックレバー操作検出装置79bでの検出結果(ロックレバー79aの操作位置の情報)、物体検出装置90での検出結果(機体4の周囲に存在する物体の情報)、アクチュエータ操作検出装置70での検出結果(アクチュエータの操作情報)、及び、姿勢検出装置60での検出結果(作業装置10の姿勢情報)を取得する。
 ステップS115において、車体コントローラ110は、ステップS110で取得した姿勢検出装置60での検出結果に基づいて、作業半径Rwを演算する。さらに、車体コントローラ110は、作業半径Rw、左設定角度θL及び右設定角度θRに基づいて、警告ゾーンS1を設定し、ステップS120へ進む。
 ステップS120において、車体コントローラ110は、ステップS110で取得したロックレバー操作検出装置79bでの検出結果に基づいて、ロックレバー79aがロック解除位置に操作されているか否かを判定する。ステップS120において、ロックレバー79aがロック解除位置に操作されていると判定されるとステップS125へ進み、ロックレバー79aがロック位置に操作されていると判定されるとステップS110へ戻る。
 ステップS125において、車体コントローラ110は、ステップS110で取得した物体検出装置90での検出結果に基づいて、機体4の周囲に物体が存在しているか否かを判定する。ステップS125において、機体4の周囲に物体が存在していると判定されるとステップS130へ進み、機体4の周囲に物体が存在していないと判定されるとステップS110へ戻る。
 ステップS130において、車体コントローラ110は、ステップS110で取得した物体検出装置90での検出結果に基づいて、検出された物体のショベル基準の位置を演算して、ステップS135へ進む。
 ステップS135において、車体コントローラ110は、ステップS110で取得した物体検出装置90での検出結果に基づいて、検出された物体が人であるか否かを判定する。ステップS135において、検出された物体が人であると判定されるとステップS137へ進み、検出された物体が人でないと判定されるとステップS145へ進む。
 ステップS137において、車体コントローラ110は、ステップS130での演算結果に基づいて、検出された人が注意ゾーンS2内に存在しているか否かを判定する。ステップS137において、検出された人が注意ゾーンS2内に存在していると判定されるとステップS140へ進み、検出された人が注意ゾーンS2内に存在していないと判定されるとステップS110へ戻る。
 ステップS140において、車体コントローラ110は、ステップS130での演算結果に基づいて、検出された人が警告ゾーンS1内に存在しているか否かを判定する。ステップS140において、検出された人が警告ゾーンS1内に存在していると判定されるとステップS160へ進み、検出された人が警告ゾーンS1内に存在していないと判定されるとステップS150へ進む。
 ステップS145において、車体コントローラ110は、ステップS130での演算結果に基づいて、検出された物体が警告ゾーンS1内に存在しているか否かを判定する。ステップS145において、検出された物体が警告ゾーンS1内に存在していると判定されるとステップS150へ進み、検出された物体が警告ゾーンS1内に存在していないと判定されるとステップS110へ戻る。
 ステップS150において、車体コントローラ110は、ステップS110で取得したアクチュエータ操作検出装置70での検出結果に基づいて、アクチュエータ操作が行われているか否かを判定する。ステップS150において、アクチュエータ操作が行われていると判定されるとステップS160へ進み、アクチュエータ操作が行われていないと判定されるとステップS110へ戻る。
 ステップS160において、車体コントローラ110は、記録保持条件が成立したものとして、録画トリガー信号を映像データ記録装置130へ送信し、ステップS165へ進む。ステップS165において、車体コントローラ110は、所定時間Taが経過するまで待機する待機処理を実行し、図9のフローチャートに示す処理を終了する。
 なお、説明の便宜上、物体が一つである場合を想定して説明したが、実際には、車体コントローラ110は、検出される物体ごとに、ショベル基準の位置の演算処理(S130)、人判定処理(S135)、注意ゾーンS2内の存在判定処理(S137)、警告ゾーンS1内の存在判定処理(S140、S145)を行って、物体ごとに記憶保持条件が成立しているか否かを判定する。車体コントローラ110は、物体ごとに記憶保持条件の成立要否の判定を行った結果、一つでも記憶保持条件が成立した場合には、録画トリガー信号を送信する(S160)。
 図10Aを参照して、録画コントローラ140により実行される記録制御処理の内容について説明する。図10Aに示すフローチャートの処理は、例えば、イグニッションスイッチがオン(すなわちキーオン)されることにより開始される。
 図10Aに示すように、ステップS210において、録画コントローラ140は、初期化処理を実行し、ステップS215へ進む。ステップS215において、録画コントローラ140は、録画準備処理を実行する。録画準備処理において、録画コントローラ140は、常時記録部151に対して、モニタコントローラ120で生成された合成映像データの常時記録を開始する。録画コントローラ140は、常時記録部151への記録開始時刻から所定時間Taだけ経過すると、録画準備処理が完了したとしてステップS220へ進む。
 ステップS220において、録画コントローラ140は、車体コントローラ110からの録画トリガー信号の受付を開始し、ステップS230へ進む。ステップS230において、録画コントローラ140は、車体コントローラ110からの録画トリガー信号を受信したか否かを判定する。録画コントローラ140は、車体コントローラ110から録画トリガー信号を受信したと判定されるまでこの判定処理を繰り返し実行し、車体コントローラ110からの録画トリガー信号を受信したと判定されるとステップS240へ進む。
 ステップS240において、録画コントローラ140は、録画トリガー信号を受信した時刻T0を含む所定期間[時刻(T0-Ta)~時刻(T0+Ta)]の合成映像データをイベント映像データとしてイベント記録部152に保存し、ステップS230へ戻る。
 図10Bを参照して、録画コントローラ140による記録制御を終了する際の処理の内容について説明する。図10Bに示すフローチャートの処理は、録画トリガーの受付開始処理(図10AのステップS220)が実行されることにより開始される。
 図10Bに示すように、ステップS250において、録画コントローラ140は、イグニッションスイッチがオフ(すなわちキーオフ)されたか否かを判定する。録画コントローラ140は、イグニッションスイッチがオフされると判定されるまで、この判定処理を繰り返し実行し、イグニッションスイッチがオフされたと判定されるとステップS255へ進む。
 ステップS255において、録画コントローラ140は、イベント記録処理(ステップS240)が行われている最中であるか否かを判定する。ステップS255において、イベント記録処理が行われている最中であると判定されるとステップS260へ進み、イベント記録処理が行われている最中ではないと判定されるとステップS265へ進む。ステップS260において、録画コントローラ140は、所定時間Taが経過するまで待機する待機処理を実行し、ステップS265へ進む。ステップS265において、録画コントローラ140は、所定の終了処理を実行し、電源をオフにして図10Bのフローチャートに示す処理を終了する。
 本実施形態の主な動作について説明する。オペレータが運転室7に搭乗し、ロックレバー79aをロック解除位置に操作して、イグニッションスイッチをオンすることによりエンジン21が始動されると、映像データ記録装置130による常時記録が開始する(図10AのS215)。
 作業員が、注意ゾーンS2内であって警告ゾーンS1外の領域で作業を行っている場合、オペレータがアクチュエータ操作、すなわち走行操作、旋回操作及び作業操作のいずれか、あるいは複合操作を行うと、記録保持条件が成立する(図9のS120でY→S125でY→S130→S135でY→S137でY→S140でN→S150でY)。このため、制御装置100から映像データ記録装置130に録画トリガー信号が送信され(図9のS160)、映像データ記録装置130による合成映像データの記録保持が行われる(図10AのS230でY→S240)。つまり、本実施形態では、オペレータのアクチュエータ操作により、油圧ショベル1が作業員に接近する可能性がある場合に、合成映像データの記録保持を行うことができる。
 作業員が注意ゾーンS2から警告ゾーンS1内に侵入すると、オペレータがアクチュエータ操作を行っていない場合であっても、記録保持条件が成立する(図9のS120でY→S125でY→S130→S135でY→S137でY→S140でY)。このため、制御装置100から映像データ記録装置130に録画トリガー信号が送信され(図9のS160)、映像データ記録装置130による合成映像データの記録保持が行われる(図10AのS230でY→S240)。つまり、本実施形態では、作業員が油圧ショベル1の近傍に存在しており、オペレータのアクチュエータ操作により、油圧ショベル1が作業員に接触する可能性がある場合に、合成映像データの記録保持を行うことができる。
 ホイールローダ、ダンプトラック等の作業車両が警告ゾーンS1内に位置している場合、オペレータがアクチュエータ操作を行うと、記録保持条件が成立する(図9のS120でY→S125でY→S130→S135でN→S145でY→S150でY)。このため、制御装置100から映像データ記録装置130に録画トリガー信号が送信され(図9のS160)、映像データ記録装置130による合成映像データの記録保持が行われる(図10AのS230でY→S240)。つまり、本実施形態では、オペレータのアクチュエータ操作により、油圧ショベル1が作業車両に接触する可能性がある場合に、合成映像データの記録保持を行うことができる。
 上述した実施形態によれば、次の作用効果を奏する。
 (1)油圧ショベル(作業機械)1は、機体4と、機体4に取り付けられるアクチュエータ(油圧シリンダ10a、走行用油圧モータ2a、旋回用油圧モータ3a)と、アクチュエータ(油圧シリンダ10a、走行用油圧モータ2a、旋回用油圧モータ3a)を動作させるために用いられる操作装置(ロックレバー装置79及びアクチュエータ操作装置71,72,73)と、操作装置(ロックレバー装置79及びアクチュエータ操作装置71,72,73)の操作を検出する操作検出装置(ロックレバー操作検出装置79b及びアクチュエータ操作検出装置70)と、機体4の周囲を撮影する撮影装置30と、撮影装置30で撮影された映像を含む映像データを記録する映像データ記録装置130と、映像データ記録装置130を制御する制御装置100と、機体4の周囲の物体を検出する物体検出装置90と、を備える。制御装置100は、物体検出装置90での検出結果、及び、操作検出装置(ロックレバー操作検出装置79b及びアクチュエータ操作検出装置70)での検出結果に基づいて、機体4の周囲に物体が存在していること、及び、操作装置が操作されていることを含む記録保持条件が成立しているか否かを判定し、記録保持条件が成立した場合に、映像データ記録装置130によって映像データの記録保持を行わせる。
 従来、衝撃を検知した場合に映像データの記録保持を行う技術が知られているが、油圧ショベル1では、作業中、衝撃が頻繁に発生する。このため、油圧ショベル1において、衝撃の検知により映像データの記録保持を行う構成とすると、頻繁に映像データの記録保持が行われてしまい、必要な場面の映像データを記録保持する精度、すなわち録画精度が低くなってしまう。
 これに対して、本実施形態では、油圧ショベル1の周囲に物体が存在しているときに、油圧ショベル1の操作が行われるなど、物体と油圧ショベル1との接近、接触の可能性がある場面に限って、映像データの記録保持を行うことができる。つまり、本実施形態によれば、必要な場面の録画精度を向上させることができる。
 (2)ところで、油圧ショベル1の稼働中の全ての時間に亘って、映像データの記録保持を行う場合、記録装置の容量を圧迫し、必要な場面の映像データが上書きされてしまったり、必要な場面の映像データを抽出する作業に手間がかかってしまったりするおそれがある。これに対して、本実施形態では、記録保持条件が成立した場合に映像データの記録保持を行うため、映像データの量を小さく抑えることができる。したがって、記録装置(イベント記録部152)の容量が不足してしまうことを防止することができる。さらに、必要な映像データの抽出作業を容易に行うことができる。
 (3)油圧ショベル1は、記録保持された映像データを無線通信により管理サーバ(外部装置)53へ送信する通信装置160を備える。上述のとおり、本実施形態では、記録保持条件が成立した場合に、映像データの記録保持を行うため、管理サーバ53へ送信する映像データの量を小さく抑えることができる。つまり、本実施形態によれば、映像データを管理サーバ53へアップロードする際の通信量を低く抑えることができる。
 (4)油圧ショベル1は、運転室7内に設けられる表示装置190を備える。制御装置100は、撮影装置30により撮影された映像と、物体検出装置90での検出結果に基づいて生成される画像(枠画像、メッセージ画像、アイコン画像)とを合成して合成映像199を生成し、生成された合成映像199を表示装置190の表示画面191aに表示させる。映像データ記録装置130によって記録保持される映像データは、表示装置190で表示される合成映像199のデータである。このように、本実施形態では、記録保持条件が成立したときに、オペレータ目線のモニタ映像が録画されるため、記録保持条件が成立したときの状況を正確に振り返ることができる。
 (5)制御装置100は、ロックレバー装置79がロック解除位置に操作され、かつ、機体4の周囲に物体が存在し、かつ、物体が人であり、かつ、物体が警告ゾーン(第1範囲)S1内に存在している場合、第1の記録保持条件が成立したものとして、映像データ記録装置130によって映像データの記録保持を行わせる。この構成によれば、作業員等の人と油圧ショベル1との接触の可能性がある場面の映像データの記録保持を行うことができる。
 (6)制御装置100は、ロックレバー装置79がロック解除位置に操作され、かつ、機体4の周囲に物体が存在し、かつ、物体が警告ゾーン(第1範囲)S1内に存在し、かつ、アクチュエータ操作装置71,72,73の少なくとも一つによる操作が行われている場合、第2の記録保持条件が成立したものとして、映像データ記録装置130によって映像データの記録保持を行わせる。この構成によれば、作業車両等の物体と油圧ショベル1との接触の可能性がある場面の映像データの記録保持を行うことができる。
 (7)制御装置100は、ロックレバー装置79がロック解除位置に操作され、かつ、機体4の周囲に物体が存在し、かつ、物体が人であり、かつ、アクチュエータ操作装置71,72,73の少なくとも一つによる操作が行われ、かつ、物体が警告ゾーン(第1範囲)S1内に存在せず注意ゾーン(第2範囲)S2内に存在している場合、第3の記録保持条件が成立したものとして、映像データ記録装置130によって映像データの記録保持を行わせる。この構成によれば、作業員等の人と油圧ショベル1との接近の可能性がある場面の映像データの記録保持を行うことができる。
 次のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせたりすることも可能である。
 <変形例1>
 制御装置100は、ロックレバー装置79がロック解除位置に操作され、かつ、機体4の周囲に物体が存在している場合に記録保持条件が成立したものとして、映像データ記録装置130によって映像データの記録保持を行わせるようにしてもよい。つまり、図9のフローチャートに示すステップS115,S130,S135,S137,S140,S145,S150を省略してもよい。ロックレバー装置79がロック解除位置に操作されている場合、アクチュエータ操作装置71,72,73によるアクチュエータの動作が可能とされている。この構成によれば、物体と油圧ショベル1との接近、接触の可能性がある場面の映像データの記録保持を行うことができる。
 <変形例2>
 制御装置100は、ロックレバー装置79がロック解除位置に操作され、かつ、機体4の周囲に物体が存在し、かつ、物体が人である場合に記録保持条件が成立したものとして、映像データ記録装置130によって映像データの記録保持を行わせるようにしてもよい。つまり、図9のフローチャートに示すステップS115,S130,S137,S140,S145,S150を省略してもよい。ロックレバー装置79がロック解除位置に操作されている場合、アクチュエータ操作装置71,72,73の少なくとも一つによるアクチュエータの動作が可能とされている。この構成によれば、人と油圧ショベル1との接近、接触の可能性がある場面の映像データの記録保持を行うことができる。
 <変形例3>
 制御装置100は、アクチュエータ操作装置71,72,73の少なくとも一つによる操作が行われ、かつ、機体4の周囲に物体が存在している場合、記録保持条件が成立したものとして、映像データ記録装置130によって映像データの記録保持を行わせるようにしてもよい。つまり、図9のフローチャートに示すステップS115,S130~S145を省略し、ステップS120の処理に代えて、ステップS150の処理を実行するようにしてもよい。この構成によれば、物体と油圧ショベル1との接近、接触の可能性がある場面の映像データの記録保持を行うことができる。
 <変形例4>
 制御装置100は、ロックレバー装置79がロック解除位置に操作されていること、機体4の周囲に物体が存在していること、及び、エンジン21の回転速度(エンジン回転数)が変動したこと、を含む、記録保持条件が成立した場合に、映像データ記録装置130によって映像データの記録保持を行わせるようにしてもよい。制御装置100は、エンジン回転数を検出するエンジン回転数センサからの信号に基づいて、エンジン回転数が変動したか否かを判定する。このような変形例によれば、オペレータによってアクチュエータ操作装置71,72,73が操作されて作業が開始された場合に、エンジン回転数が変動すると、映像データの記録保持が開始されるため、物体と油圧ショベル1との接近、接触の可能性がある場面の映像データの記録保持を行うことができる。
 <変形例5>
 上記実施形態では、注意ゾーンS2を規定する左設定角度θLがx軸を基準として左旋回方向に90度であり、注意ゾーンS2を規定する右設定角度θRがx軸を基準として右旋回方向に90度である例について説明したが、本発明はこれに限定されない。左設定角度θL及び右設定角度θRは任意の値に設定することができる。また、左設定角度θL及び右設定角度θRは、油圧ショベル1のオペレータが表示装置(タッチパネルモニタ)190に対して所定の操作を行うことによって任意に設定できるようにしてもよい。
 <変形例6>
 上記実施形態では、図6に示すように、左設定角度θL、右設定角度θR及び作業半径Rwで規定される扇状(半円形状)の領域S11と、旋回中心軸Oを中心とする半径Rsの円形状の領域S12と、を合成した領域が、警告ゾーン(第1範囲)S1として設定される例について説明したが、本発明はこれに限定されない。例えば、表示装置(タッチパネルモニタ)190の表示画面上の複数箇所がタッチ操作されることにより、タッチ操作された位置を頂点とする多角形状の警告ゾーン(第1範囲)S1を設定するようにしてもよい。
 <変形例7>
 上記実施形態では、合成映像データを記録保持し、管理サーバ53に送信する例について説明したが、本発明はこれに限定されない。撮影装置30で撮影された映像のデータをそのまま記録保持し、管理サーバ53に送信するようにしてもよい。
 <変形例8>
 上記実施形態では、モニタコントローラ120が、複数の撮影装置30で撮影された映像に基づいて俯瞰映像194aを生成する例について説明したが、本発明はこれに限定されない。モニタコントローラ120は、複数の撮影装置30で撮影された映像を、個別の映像として表示装置190の表示画面191aに表示させてもよい。
 <変形例9>
 上記実施形態では、車体コントローラ110とモニタコントローラ120とが個別に設けられている例について説明したが、本発明はこれに限定されない。車体コントローラ110とモニタコントローラ120の機能を一つのコントローラで実現するようにしてもよい。
 <変形例10>
 アクチュエータ操作検出装置70は、操作レバー71a,72a,73aの操作角(操作量)を検出するポテンショメータ等であってもよい。この場合、制御装置100は、操作レバー71a,72a,73aの操作角θの絶対値|θ|が予め定めた閾値θ0以上である場合、アクチュエータ操作装置71,72,73による操作が行われていると判定し、操作角θの絶対値|θ|が閾値θ0未満である場合、アクチュエータ操作装置71,72,73による操作は行われていないと判定する。なお、操作レバー71a,72a,73aが中立位置での操作角は0(ゼロ)度であり、閾値θ0には0(ゼロ)よりも大きい値が設定される。
 <変形例11>
 上記実施形態では、車体コントローラ110が、物体検出装置90から送信される反射強度の情報に基づいて物体が人であるか否かを判定する例について説明したが、判定方法はこれに限定されない。物体検出装置90が反射強度の情報に基づいて物体が人であるか否かを判定し、その判定結果を車体コントローラ110に出力してもよい。この場合、車体コントローラ110は、物体検出装置90から送信される判定結果(例えば、判定フラグ信号)に基づいて、物体が人であるか否かを判定する。
 <変形例12>
 上記実施形態では、物体検出装置90が、赤外線センサである例について説明したが、本発明はこれに限定されない。物体検出装置90は、ステレオカメラであってもよい。この場合、ステレオカメラが物体検出装置90兼撮影装置30として機能する。制御装置100は、例えば、ステレオカメラで撮影された物体の形状のパターンを抽出し、抽出したパターンが予め設定されている人のパターンと適合した場合にはその物体を人と判定し、適合しない場合には人でないと判定する。また、物体検出装置90として、3次元LiDARを採用してもよい。
 <変形例13>
 上記実施形態では、録画トリガー信号を受信した時刻T0から所定時間Ta経過すると、記録保持処理を終了する例について説明したが、本発明はこれに限定されない。例えば、ロックレバー79aがロック位置に操作されたり、物体検出装置90で物体が検出されなくなったりするなど、記録保持条件が成立しなくなった場合に、記録保持処理を終了するようにしてもよい。
 <変形例14>
 上記実施形態では、常時記録部151と、イベント記録部152とが別体の記録装置である例について説明したが、常時記録部151及びイベント記録部152は、一つの記録装置としてもよい。この場合、常時記録される合成映像データは上書き可能であり、イベント記録される合成映像データは上書き不能とする。
 <変形例15>
 上記実施形態では、アクチュエータ操作装置71,72,73が油圧パイロット式の操作装置である例について説明したが、電気式の操作装置に本発明を適用してもよい。また、アクチュエータは、油圧アクチュエータに限らず電動アクチュエータの場合にも本発明を適用することができる。
 <変形例16>
 上記実施形態では、作業機械がクローラ式の油圧ショベル1である場合を例に説明したが、本発明はこれに限定されない。ホイール式の油圧ショベル、ホイールローダ等の種々の作業機械に本発明を適用することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 1…油圧ショベル(作業機械)、2a…走行用油圧モータ(アクチュエータ)、3a…旋回用油圧モータ(アクチュエータ)、4…機体、7…運転室、10…作業装置、10a…油圧シリンダ(アクチュエータ)、19…周囲監視システム、30…撮影装置、31,32,33,34…カメラ(撮影装置)、53…管理サーバ(外部装置)、60…姿勢検出装置、70…アクチュエータ操作検出装置、71…作業操作装置(アクチュエータ操作装置)、72…旋回操作装置(アクチュエータ操作装置)、73…走行操作装置(アクチュエータ操作装置)、76a,76b…作業操作センサ(アクチュエータ操作検出装置)、77a,77b…旋回操作センサ(アクチュエータ操作検出装置)、78a,78b…走行操作センサ(アクチュエータ操作検出装置)、79…ロックレバー装置、79b…ロックレバー操作検出装置、80…油圧システム、90…物体検出装置、100…制御装置、110…車体コントローラ、120…モニタコントローラ、130…映像データ記録装置、140…録画コントローラ、160…通信装置、190…表示装置、191a…表示画面、192…アイコン領域、193…メッセージ領域、194…カメラ画像領域、194a…俯瞰映像、195a…物体、195b…枠画像、196a…物体、196b…枠画像、197a…物体、197b…枠画像、199…合成映像、S1…警告ゾーン(第1範囲)、S2…注意ゾーン(第2範囲)

Claims (9)

  1.  機体と、前記機体に取り付けられるアクチュエータと、前記アクチュエータを動作させるために用いられる操作装置と、前記操作装置の操作を検出する操作検出装置と、前記機体の周囲を撮影する撮影装置と、前記撮影装置で撮影された映像を含む映像データを記録する映像データ記録装置と、前記映像データ記録装置を制御する制御装置と、前記機体の周囲の物体を検出する物体検出装置と、を備える作業機械において、
     前記制御装置は、前記物体検出装置での検出結果、及び、前記操作検出装置での検出結果に基づいて、前記機体の周囲に物体が存在していること、及び、前記操作装置が操作されていることを含む記録保持条件が成立しているか否かを判定し、前記記録保持条件が成立した場合に、前記映像データ記録装置によって前記映像データの記録保持を行わせる、
     ことを特徴とする作業機械。
  2.  請求項1に記載の作業機械において、
     前記記録保持された前記映像データを無線通信により外部装置へ送信する通信装置をさらに備える、
     ことを特徴とする作業機械。
  3.  請求項1に記載の作業機械において、
     運転室内に設けられる表示装置を備え、
     前記制御装置は、前記撮影装置により撮影された映像と、前記物体検出装置での検出結果に基づいて生成される画像とを合成して合成映像を生成し、生成された前記合成映像を前記表示装置の表示画面に表示させ、
     前記映像データ記録装置によって記録保持される前記映像データは、前記合成映像のデータである、
     ことを特徴とする作業機械。
  4.  請求項1に記載の作業機械において、
     前記操作装置として、
     前記アクチュエータの動作を指令するアクチュエータ操作装置と、
     前記アクチュエータ操作装置による前記アクチュエータの動作を不能とするロック位置と前記アクチュエータ操作装置による前記アクチュエータの動作を可能とするロック解除位置とに選択的に操作されるロックレバー装置と、を有し、
     前記制御装置は、前記ロックレバー装置が前記ロック解除位置に操作されていること、及び、前記機体の周囲に物体が存在していること、を含む、前記記録保持条件が成立した場合に、前記映像データ記録装置によって前記映像データの記録保持を行わせる、
     ことを特徴とする作業機械。
  5.  請求項4に記載の作業機械において、
     前記制御装置は、
     前記物体検出装置によって検出された物体が人であるか否かを判定し、
     前記ロックレバー装置が前記ロック解除位置に操作されていること、前記機体の周囲に物体が存在していること、及び、前記物体が人であること、を含む、前記記録保持条件が成立した場合に、前記映像データ記録装置によって前記映像データの記録保持を行わせる、
     ことを特徴とする作業機械。
  6.  請求項4に記載の作業機械において、
     前記制御装置は、
     前記物体検出装置によって検出された物体が、前記機体の周囲であって前記機体寄りの領域に予め設定される第1範囲内に存在しているか否かを判定し、
     前記ロックレバー装置が前記ロック解除位置に操作されていること、前記機体の周囲に物体が存在していること、前記物体が人であること、及び、前記物体が前記第1範囲内に存在していること、を含む、前記記録保持条件が成立した場合に、前記映像データ記録装置によって前記映像データの記録保持を行わせる、
     ことを特徴とする作業機械。
  7.  請求項4に記載の作業機械において、
     前記制御装置は、
     前記物体検出装置によって検出された物体が人であるか否かを判定し、
     前記物体検出装置によって検出された物体が、前記機体の周囲であって前記機体寄りの領域に予め設定される第1範囲内に存在しているか、前記第1範囲を包含するように予め設定される第2範囲内に存在しているかを判定し、
     前記ロックレバー装置が前記ロック解除位置に操作されていること、前記機体の周囲に物体が存在していること、前記物体が人であること、及び、前記物体が前記第1範囲内に存在していること、を含む、第1の前記記録保持条件が成立した場合に、前記映像データ記録装置によって前記映像データの記録保持を行わせ、
     前記ロックレバー装置が前記ロック解除位置に操作されていること、前記機体の周囲に物体が存在していること、前記物体が前記第1範囲内に存在していること、及び、前記アクチュエータ操作装置による操作が行われていること、を含む、第2の前記記録保持条件が成立した場合に、前記映像データ記録装置によって前記映像データの記録保持を行わせ、
     前記ロックレバー装置が前記ロック解除位置に操作されていること、前記機体の周囲に物体が存在していること、前記物体が人であること、前記アクチュエータ操作装置による操作が行われていること、及び、前記物体が前記第1範囲内に存在せず前記第2範囲内に存在していること、を含む、第3の前記記録保持条件が成立した場合に、前記映像データ記録装置によって前記映像データの記録保持を行わせる、
     ことを特徴とする作業機械。
  8.  請求項1に記載の作業機械において、
     前記操作装置として、前記アクチュエータの動作を指令するアクチュエータ操作装置を有し、
     前記制御装置は、前記アクチュエータ操作装置による操作が行われていること、及び、前記機体の周囲に物体が存在していること、を含む、前記記録保持条件が成立した場合に、前記映像データ記録装置によって前記映像データの記録保持を行わせる、
     ことを特徴とする作業機械。
  9.  請求項1に記載の作業機械において、
     前記制御装置は、前記作業機械のエンジン回転数が変動したこと、を含む、前記記録保持条件が成立した場合に、前記映像データ記録装置によって前記映像データの記録保持を行わせる、
     ことを特徴とする作業機械。
PCT/JP2021/015064 2020-05-29 2021-04-09 作業機械 WO2021241033A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180020667.6A CN115298394A (zh) 2020-05-29 2021-04-09 作业机械
EP21814363.4A EP4101996A4 (en) 2020-05-29 2021-04-09 WORKING MACHINE
JP2022527560A JP7332805B2 (ja) 2020-05-29 2021-04-09 作業機械
US17/910,873 US12060697B2 (en) 2020-05-29 2021-04-09 Work machine for determining condition for recording and retaining video
KR1020227031544A KR20220140610A (ko) 2020-05-29 2021-04-09 작업 기계

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-094877 2020-05-29
JP2020094877 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021241033A1 true WO2021241033A1 (ja) 2021-12-02

Family

ID=78744345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015064 WO2021241033A1 (ja) 2020-05-29 2021-04-09 作業機械

Country Status (6)

Country Link
US (1) US12060697B2 (ja)
EP (1) EP4101996A4 (ja)
JP (1) JP7332805B2 (ja)
KR (1) KR20220140610A (ja)
CN (1) CN115298394A (ja)
WO (1) WO2021241033A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120598A1 (ja) * 2021-12-22 2023-06-29 住友建機株式会社 情報処理システム、プログラム、及び情報処理方法
WO2023190047A1 (ja) * 2022-03-28 2023-10-05 日立建機株式会社 映像記録装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116057239A (zh) * 2020-09-01 2023-05-02 日立建机株式会社 作业机械的控制***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224105A (ja) 2003-01-21 2004-08-12 Matsushita Electric Ind Co Ltd ドライブレコーダ装置
JP2007085091A (ja) * 2005-09-22 2007-04-05 Hitachi Constr Mach Co Ltd 作業現場の安全管理装置及びこれに適用される作業機械
WO2011158955A1 (ja) * 2010-06-18 2011-12-22 日立建機株式会社 作業機械の周囲監視装置
JP2015210775A (ja) * 2014-04-30 2015-11-24 三菱電機株式会社 情報処理装置、情報処理方法および情報処理システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050251A (ja) * 1998-07-30 2000-02-18 Sekyurion Nijuyon Kk 輸送車防犯記録システム、防犯記録方法及び記録媒体
US7667731B2 (en) * 2003-09-30 2010-02-23 At&T Intellectual Property I, L.P. Video recorder
JP6178280B2 (ja) * 2014-04-24 2017-08-09 日立建機株式会社 作業機械の周囲監視装置
KR102333783B1 (ko) * 2014-04-25 2021-11-30 스미토모 겐키 가부시키가이샤 건설기계 및 건설기계의 제어방법
EP3073449A1 (en) * 2015-03-23 2016-09-28 Continental Automotive GmbH Apparatus and method for recording data associated with a vehicle
JPWO2016157463A1 (ja) * 2015-03-31 2018-01-18 株式会社小松製作所 作業機械の周辺監視装置
WO2015125979A1 (ja) 2015-04-28 2015-08-27 株式会社小松製作所 作業機械の周辺監視装置及び作業機械の周辺監視方法
US9871968B2 (en) * 2015-05-22 2018-01-16 Caterpillar Inc. Imaging system for generating a surround-view image
US9902355B2 (en) * 2016-05-27 2018-02-27 GM Global Technology Operations LLC Camera activation response to vehicle safety event
JP6608345B2 (ja) 2016-09-28 2019-11-20 日立建機株式会社 作業機械
US10911725B2 (en) * 2017-03-09 2021-02-02 Digital Ally, Inc. System for automatically triggering a recording
JP6909641B2 (ja) * 2017-05-31 2021-07-28 株式会社小松製作所 表示システム
WO2019111859A1 (ja) * 2017-12-04 2019-06-13 住友重機械工業株式会社 周辺監視装置、情報処理端末、情報処理装置、情報処理プログラム
CN112955610A (zh) * 2018-11-08 2021-06-11 住友建机株式会社 挖土机、信息处理装置、信息处理方法、信息处理程序、终端装置、显示方法、显示程序

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224105A (ja) 2003-01-21 2004-08-12 Matsushita Electric Ind Co Ltd ドライブレコーダ装置
JP2007085091A (ja) * 2005-09-22 2007-04-05 Hitachi Constr Mach Co Ltd 作業現場の安全管理装置及びこれに適用される作業機械
WO2011158955A1 (ja) * 2010-06-18 2011-12-22 日立建機株式会社 作業機械の周囲監視装置
JP2015210775A (ja) * 2014-04-30 2015-11-24 三菱電機株式会社 情報処理装置、情報処理方法および情報処理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4101996A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120598A1 (ja) * 2021-12-22 2023-06-29 住友建機株式会社 情報処理システム、プログラム、及び情報処理方法
WO2023190047A1 (ja) * 2022-03-28 2023-10-05 日立建機株式会社 映像記録装置

Also Published As

Publication number Publication date
EP4101996A1 (en) 2022-12-14
EP4101996A4 (en) 2024-04-03
US12060697B2 (en) 2024-08-13
CN115298394A (zh) 2022-11-04
KR20220140610A (ko) 2022-10-18
JPWO2021241033A1 (ja) 2021-12-02
US20230123942A1 (en) 2023-04-20
JP7332805B2 (ja) 2023-08-23

Similar Documents

Publication Publication Date Title
WO2021241033A1 (ja) 作業機械
CN107075840B (zh) 作业机械的周边监视装置以及作业机械的周边监视方法
CN107406035B (zh) 工程作业机械
KR102638315B1 (ko) 쇼벨
CN108699817B (zh) 工程机械
JP7439053B2 (ja) ショベル及びショベルの管理装置
CN112955610A (zh) 挖土机、信息处理装置、信息处理方法、信息处理程序、终端装置、显示方法、显示程序
US20210002850A1 (en) Shovel
CN118007731A (zh) 挖土机及挖土机的管理***
JP2023047506A (ja) 作業機械用制御システム、作業機械、作業機械の制御方法及び作業機械用制御プログラム
KR20230132373A (ko) 작업 기계용 제어 시스템, 작업 기계, 작업 기계의 제어 방법 및 작업 기계용 제어 프로그램
WO2020194878A1 (ja) 作業機械
WO2021241716A1 (ja) ショベル用の施工支援システム
US20210363732A1 (en) System and method for selectively displaying image data in a working machine
CN117145004A (zh) 作业机械的控制方法、作业机械用控制程序、作业机械用控制***以及作业机械
CN117988414A (zh) 作业机械的控制方法、作业机械用控制程序、作业机械用控制***以及作业机械
CA3166503A1 (en) Remote operation system for work machine
CN117306635A (zh) 作业机械的控制方法、作业机械用控制程序、作业机械用控制***以及作业机械
CN117248587A (zh) 作业机械的控制方法、作业机械用控制程序、作业机械用控制***以及作业机械
CN117248592A (zh) 作业机械的控制方法、作业机械用控制程序、作业机械用控制***以及作业机械
AU2021223406B2 (en) Work machine and remote operation system for work machine
WO2021149775A1 (ja) 作業機械、情報処理装置
AU2020322381B2 (en) Display system, remote operation system, and display method
JP2023019920A (ja) 作業機械の制御方法、作業機械用制御プログラム、作業機械用制御システム及び作業機械
JP2022060896A (ja) 作業車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527560

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227031544

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021814363

Country of ref document: EP

Effective date: 20220909

NENP Non-entry into the national phase

Ref country code: DE