WO2021240898A1 - 電子制御装置 - Google Patents

電子制御装置 Download PDF

Info

Publication number
WO2021240898A1
WO2021240898A1 PCT/JP2021/004276 JP2021004276W WO2021240898A1 WO 2021240898 A1 WO2021240898 A1 WO 2021240898A1 JP 2021004276 W JP2021004276 W JP 2021004276W WO 2021240898 A1 WO2021240898 A1 WO 2021240898A1
Authority
WO
WIPO (PCT)
Prior art keywords
inflection
ignition
control device
coil
electronic control
Prior art date
Application number
PCT/JP2021/004276
Other languages
English (en)
French (fr)
Inventor
英一郎 大畠
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2022527507A priority Critical patent/JP7318125B2/ja
Publication of WO2021240898A1 publication Critical patent/WO2021240898A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits

Definitions

  • the present invention relates to an electronic control device.
  • the amount of fuel and air in the combustion chamber deviates from the theoretical value, so that ignition failure of the fuel by the spark plug is likely to occur. Therefore, by increasing the gas flow velocity in the combustion chamber, the flow velocity between the electrodes of the spark plug is increased so that the discharge path is formed longer, so that the contact length between the discharge path and the gas is lengthened. There is a way to suppress ignition failure.
  • the flow velocity between the electrodes of the spark plug is increased, the frequency of blowout of the discharge path and the accompanying re-discharge increases.
  • dielectric breakdown occurs due to capacitive discharge. Since the current density of the capacitive discharge is high, the electrode melts due to the high current, and the wear of the electrode is promoted.
  • Patent Document 1 an ignition coil having a main primary coil and a secondary primary coil is used, and after the spark plug is generated with a discharge spark by the main primary coil, it is determined in consideration of the time necessary and sufficient for the spark plug to be discharged.
  • a control device for an internal combustion engine is disclosed in which a current is superposed by a secondary primary coil until the superimposition current energization time elapses.
  • the present invention has been made by paying attention to the above-mentioned problems, and an object thereof is to suppress the electrode wear of the spark plug in the internal combustion engine while suppressing the ignition failure of the gas by the spark plug.
  • the electronic control device controls the energization of an ignition coil including a main primary coil and a sub primary coil arranged on the primary side and a secondary coil arranged on the secondary side, respectively. Therefore, in the secondary voltage generated in the secondary coil, the timing at which the nth (where n is a natural number) variation point occurs from the time when the ignition signal to the main primary coil is transmitted is the nth.
  • the secondary voltage is the second voltage between the nth change point and the n + 1th change point.
  • an ignition signal to the sub-primary coil is transmitted.
  • the present invention it is possible to suppress the electrode wear of the spark plug in the internal combustion engine while suppressing the ignition failure of the gas by the spark plug.
  • control device 1 which is one aspect of the electronic control device according to the embodiment of the present invention will be described.
  • the control device 1 controls the discharge (ignition) of the spark plug 200 provided in each cylinder 150 of the four-cylinder internal combustion engine 100
  • a combination of a partial configuration or all configurations of the internal combustion engine 100 and a partial configuration or all configurations of the control device 1 is referred to as a control device 1 of the internal combustion engine 100.
  • FIG. 1 is a diagram illustrating a main configuration of an internal combustion engine 100 and an ignition device for an internal combustion engine.
  • FIG. 2 is a partially enlarged view illustrating electrodes 210 and 220 of the spark plug 200.
  • the air sucked from the outside passes through the air cleaner 110, the intake pipe 111, and the intake manifold 112, and when the intake valve 151 is opened, it flows into each cylinder 150.
  • the amount of air flowing into each cylinder 150 is adjusted by the throttle valve 113, and the amount of air adjusted by the throttle valve 113 is measured by the flow rate sensor 114.
  • the throttle valve 113 is provided with a throttle opening sensor 113a that detects the opening of the throttle.
  • the opening degree information of the throttle valve 113 detected by the throttle opening degree sensor 113a is output to the control device (Electronic Control Unit: ECU) 1.
  • ECU Electronic Control Unit
  • the throttle valve 113 uses an electronic throttle valve driven by an electric motor, but may be another method as long as the air flow rate can be appropriately adjusted.
  • the temperature of the gas flowing into each cylinder 150 is detected by the intake air temperature sensor 115.
  • a crank angle sensor 121 is provided on the radial outer side of the ring gear 120 attached to the crankshaft 123.
  • the crank angle sensor 121 detects the rotation angle of the crankshaft 123.
  • the crank angle sensor 121 detects the rotation angle of the crankshaft 123, for example, every 10 ° and every combustion cycle.
  • a water temperature sensor 122 is provided on the water jacket (not shown) of the cylinder head.
  • the water temperature sensor 122 detects the temperature of the cooling water of the internal combustion engine 100.
  • the vehicle is provided with an accelerator position sensor (Accelerator Position Sensor: APS) 126 that detects the displacement amount (depression amount) of the accelerator pedal 125.
  • the accelerator position sensor 126 detects the torque required by the driver.
  • the required torque of the driver detected by the accelerator position sensor 126 is output to the control device 1 described later.
  • the control device 1 controls the throttle valve 113 based on this required torque.
  • the fuel stored in the fuel tank 130 is sucked and pressurized by the fuel pump 131, then flows through the fuel pipe 133 provided with the pressure regulator 132, and is guided to the fuel injection valve (injector) 134.
  • the fuel output from the fuel pump 131 is adjusted to a predetermined pressure by the pressure regulator 132, and is injected into each cylinder 150 from the fuel injection valve (injector) 134.
  • excess fuel is returned to the fuel tank 130 via a return pipe (not shown).
  • the cylinder head (not shown) of the internal combustion engine 100 is provided with a combustion pressure sensor (CylinderPressure Sensor: CPS, also referred to as an in-cylinder pressure sensor) 140.
  • the combustion pressure sensor 140 is provided in each cylinder 150 and detects the pressure (combustion pressure) in the cylinder 150.
  • combustion pressure sensor 140 a piezoelectric or gauge type pressure sensor is used, and it is possible to detect the combustion pressure (in-cylinder pressure) in the cylinder 150 over a wide temperature range.
  • Each cylinder 150 is equipped with an exhaust valve 152 and an exhaust manifold 160 that exhausts the gas (exhaust gas) after combustion to the outside of the cylinder 150.
  • a three-way catalyst 161 is provided on the exhaust side of the exhaust manifold 160. When the exhaust valve 152 is opened, exhaust gas is discharged from the cylinder 150 to the exhaust manifold 160. This exhaust gas is purified by the three-way catalyst 161 through the exhaust manifold 160 and then discharged to the atmosphere.
  • An upstream air-fuel ratio sensor 162 is provided on the upstream side of the three-way catalyst 161.
  • the upstream air-fuel ratio sensor 162 continuously detects the air-fuel ratio of the exhaust gas discharged from each cylinder 150.
  • a downstream air-fuel ratio sensor 163 is provided on the downstream side of the three-way catalyst 161.
  • the downstream air-fuel ratio sensor 163 outputs a switch-like detection signal in the vicinity of the theoretical air-fuel ratio.
  • the downstream air-fuel ratio sensor 163 is, for example, an O2 sensor.
  • a spark plug 200 is provided on the upper part of each cylinder 150. Due to the discharge (ignition) of the spark plug 200, sparks are ignited in the air-fuel mixture in the cylinder 150, an explosion occurs in the cylinder 150, and the piston 170 is pushed down. When the piston 170 is pushed down, the crankshaft 123 rotates.
  • the spark plug 200 is connected to an ignition coil 300 that generates electrical energy (voltage) supplied to the spark plug 200.
  • the voltage generated by the ignition coil 300 causes a discharge between the center electrode 210 and the outer electrode 220 of the spark plug 200 (see FIG. 2).
  • the center electrode 210 is supported by the insulator 230 in an insulated state.
  • a predetermined voltage (for example, 20,000V to 40,000V in the embodiment) is applied to the center electrode 210.
  • the outer electrode 220 is grounded. When a predetermined voltage is applied to the center electrode 210, a discharge (ignition) occurs between the center electrode 210 and the outer electrode 220.
  • the voltage at which discharge (ignition) occurs due to dielectric breakdown of the gas component fluctuates depending on the state of the gas (gas) existing between the center electrode 210 and the outer electrode 220 and the in-cylinder pressure. ..
  • the voltage at which this discharge occurs is called the breakdown voltage.
  • the discharge control (ignition control) of the spark plug 200 is performed by the ignition control unit 83 of the control device 1 described later.
  • the output signals from various sensors such as the throttle opening sensor 113a, the flow rate sensor 114, the crank angle sensor 121, the accelerator position sensor 126, the water temperature sensor 122, and the combustion pressure sensor 140 described above are sent to the control device 1. It is output.
  • the control device 1 detects the operating state of the internal combustion engine 100 based on the output signals from these various sensors, and controls the amount of air sent into the cylinder 150, the fuel injection amount, the ignition timing of the spark plug 200, and the like. ..
  • the control device 1 includes an analog input unit 10, a digital input unit 20, an A / D (Analog / Digital) conversion unit 30, a RAM (Random Access Memory) 40, and an MPU (Micro-). It has a Processing Unit) 50, a ROM (Read Only Memory) 60, an I / O (Input / Output) port 70, and an output circuit 80.
  • the analog input unit 10 is provided with various sensors such as a throttle opening sensor 113a, a flow rate sensor 114, an accelerator position sensor 126, an upstream air fuel ratio sensor 162, a downstream air fuel ratio sensor 163, a combustion pressure sensor 140, and a water temperature sensor 122.
  • An analog output signal is input.
  • the A / D conversion unit 30 is connected to the analog input unit 10.
  • the analog output signals from various sensors input to the analog input unit 10 are converted into digital signals by the A / D conversion unit 30 after signal processing such as noise removal, and stored in the RAM 40.
  • a digital output signal from the crank angle sensor 121 is input to the digital input unit 20.
  • An I / O port 70 is connected to the digital input unit 20, and the digital output signal input to the digital input unit 20 is stored in the RAM 40 via the I / O port 70.
  • Each output signal stored in the RAM 40 is arithmetically processed by the MPU 50.
  • the MPU 50 executes a control program (not shown) stored in the ROM 60 to perform arithmetic processing on the output signal stored in the RAM 40 according to the control program.
  • the MPU 50 calculates a control value that defines the operating amount of each actuator (for example, throttle valve 113, pressure regulator 132, spark plug 200, etc.) that drives the internal combustion engine 100 according to a control program, and temporarily stores it in the RAM 40. ..
  • the control value that defines the operating amount of the actuator stored in the RAM 40 is output to the output circuit 80 via the I / O port 70.
  • the output circuit 80 is provided with a function of an ignition control unit 83 (see FIG. 3) that controls a voltage applied to the spark plug 200.
  • control device functional block Next, the functional configuration of the control device 1 according to the embodiment of the present invention will be described.
  • FIG. 3 is a functional block diagram illustrating the functional configuration of the control device 1 according to the embodiment of the present invention.
  • Each function of the control device 1 is realized in the output circuit 80, for example, by the MPU 50 executing a control program stored in the ROM 60.
  • the output circuit 80 of the control device 1 includes an overall control unit 81, a fuel injection control unit 82, and an ignition control unit 83.
  • the overall control unit 81 is connected to the accelerator position sensor 126 and the combustion pressure sensor 140 (CPS), and has the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the combustion pressure sensor 140. Accept.
  • the overall control unit 81 controls the fuel injection control unit 82 and the ignition control unit 83 as a whole based on the required torque (acceleration signal S1) from the accelerator position sensor 126 and the output signal S2 from the combustion pressure sensor 140. I do.
  • the fuel injection control unit 82 includes a cylinder discrimination unit 84 that discriminates each cylinder 150 of the internal combustion engine 100, an angle information generation unit 85 that measures the crank angle of the crankshaft 123, and a rotation speed information generation unit that measures the engine rotation speed.
  • the cylinder discrimination information S3 from the cylinder discrimination unit 84, the crank angle information S4 from the angle information generation unit 85, and the engine rotation speed information S5 from the rotation speed information generation unit 86 are connected to the 86. accept.
  • the fuel injection control unit 82 measures the temperature of the engine cooling water, the intake amount measuring unit 87 that measures the intake amount of the air taken into the cylinder 150, the load information generation unit 88 that measures the engine load, and the engine cooling water. Connected to the water temperature measuring unit 89, the intake air amount information S6 from the intake air amount measuring unit 87, the engine load information S7 from the load information generation unit 88, and the cooling water temperature information S8 from the water temperature measuring unit 89. , Is accepted.
  • the fuel injection control unit 82 calculates the injection amount and injection time of the fuel injected from the fuel injection valve 134 (fuel injection valve control information S9) based on each received information, and the calculated fuel injection amount and injection.
  • the fuel injection valve 134 is controlled based on the time.
  • the ignition control unit 83 is connected to the cylinder discrimination unit 84, the angle information generation unit 85, the rotation speed information generation unit 86, the load information generation unit 88, and the water temperature measurement unit 89, in addition to the overall control unit 81. We accept each information from these.
  • the ignition control unit 83 energizes the primary side coil (not shown) of the ignition coil 300 with the current amount (energization angle), the energization start time, and the primary side coil. Calculate the time to cut off the current (ignition time).
  • the ignition control unit 83 outputs an ignition signal SA to the primary coil of the ignition coil 300 based on the calculated energization angle, the energization start time, and the ignition time, thereby controlling the discharge (ignition) by the spark plug 200. Control).
  • the function of the ignition control unit 83 to control the ignition of the spark plug 200 by using the ignition signal SA corresponds to the electronic control device of the present invention.
  • FIG. 4 is a diagram illustrating the relationship between the operating state of the internal combustion engine 100 and the gas flow velocity around the spark plug 200.
  • the higher the engine speed and the load the higher the gas flow rate in the cylinder 150, and the higher the gas flow rate around the spark plug 200. Therefore, the gas flows at high speed between the center electrode 210 and the outer electrode 220 of the spark plug 200.
  • the EGR rate is set, for example, as shown in FIG. 4, according to the relationship between the engine rotation speed and the load. It should be noted that the larger the high EGR region in which the EGR rate is set higher, the lower the fuel consumption and the lower the exhaust gas, but the ignition failure is likely to occur in the spark plug 200.
  • FIG. 5 is a diagram illustrating the relationship between the discharge path and the flow velocity between the electrodes of the spark plug 200.
  • a high voltage is generated in the secondary side coil of the ignition coil 300 and dielectric breakdown occurs between the center electrode 210 and the outer electrode 220 of the spark plug 200
  • the current flowing between these electrodes becomes a constant value or less.
  • a discharge path is formed between the electrodes of the spark plug 200.
  • flame nuclei grow and lead to combustion. Since the discharge path moves under the influence of the gas flow between the electrodes, the higher the gas flow velocity, the longer the discharge path is formed, and the lower the gas flow velocity, the shorter the discharge path.
  • FIG. 5A shows an example of the discharge path 211 when the gas flow velocity is high
  • FIG. 5B shows an example of the discharge path 212 when the gas flow velocity is low.
  • the probability that the flame nucleus grows even if the combustible gas comes into contact with the discharge path decreases, so it is necessary to increase the chances that the combustible gas comes into contact with the discharge path.
  • the discharge path is generated by breaking the insulation of the gas, if the current required to maintain the discharge path is constant, it is necessary to output electric power according to the length of the discharge path. Therefore, when the gas flow velocity is high, the energization control of the ignition coil 300 is performed so that a large amount of electric power is output from the ignition coil 300 to the spark plug 200 in a short time, whereby the long discharge path as shown in FIG. 5A is performed.
  • the energization control of the ignition coil 300 is performed so that a small amount of power is continuously output from the ignition coil 300 to the spark plug 200 for a long period of time, whereby the short power as shown in FIG. 5 (b) is controlled.
  • the discharge path 212 it is preferable to obtain a contact opportunity with the gas passing near the electrode of the spark plug 200 for a longer period of time.
  • FIG. 6 is a diagram illustrating an electric circuit 400C including a conventional ignition coil 300C as a comparative example of the present invention.
  • the ignition coil 300C includes a primary coil 310 wound with a predetermined number of turns and a secondary coil 320 wound with a larger number of turns than the primary coil 310. Will be done.
  • One end of the primary side coil 310 is connected to the DC power supply 330.
  • a predetermined voltage for example, 12V
  • the other end of the primary coil 310 is connected to the igniter 340 and is grounded via the igniter 340.
  • a transistor, a field effect transistor (FET), or the like is used for the igniter 340.
  • the base (B) terminal of the igniter 340 is connected to the ignition control unit 83.
  • the ignition signal SA output from the ignition control unit 83 is input to the base (B) terminal of the igniter 340.
  • the collector (C) terminal and the emitter (E) terminal of the igniter 340 are energized, and the collector (C) terminal and the emitter (E) terminal are connected to each other.
  • the ignition signal SA is output from the ignition control unit 83 to the primary coil 310 of the ignition coil 300 via the igniter 340, a current flows through the primary coil 310, and electric power (electrical energy) is accumulated.
  • the ignition control unit 83 controls the energization of the ignition coil 300A by using the ignition signal SA by the operation of the electric circuit 400C as described above. As a result, ignition control for controlling the spark plug 200 is performed.
  • FIG. 7 is a diagram showing an example of a timing chart for explaining the relationship between the control signal input to the ignition coil and the output in the conventional discharge control.
  • the timing chart of FIG. 7 is an example when the spark plug 200 is discharged when the gas has a high flow velocity by using the conventional ignition coil 300C.
  • the ignition signal SA output from the ignition control unit 83, the primary current I1 flowing through the primary coil 310 in response to the ignition signal SA, the electrical energy E stored in the ignition coil 300C, and the secondary side
  • the relationship between the secondary current I2 flowing through the coil 320 and the secondary voltage V2 generated in the secondary coil 320 is shown.
  • the measurement points of the secondary current I2 and the secondary voltage V2 are between the spark plug 200 and the ignition coil 300C.
  • the measurement point of the primary current I1 is between the DC power supply 330 and the ignition coil 300C.
  • the igniter 340 When the ignition signal SA becomes HIGH, the igniter 340 energizes the primary coil 310 and the primary current I1 rises. While the primary coil 310 is energized, the electric energy E in the ignition coil 300C rises with time.
  • the igniter 340 cuts off the energization of the primary coil 310. As a result, an electromotive force is generated in the secondary coil 320, and the supply of electric energy E from the ignition coil 300C to the spark plug 200 is started.
  • the spark plug 200 starts to be discharged.
  • the discharge of the spark plug 200 accompanied by such dielectric breakdown is called capacitive discharge.
  • the electric energy E in the ignition coil 300C decreases with time, and the discharge of the spark plug 200 is maintained.
  • the discharge of the spark plug 200 without such dielectric breakdown is called an induced discharge.
  • the secondary current I2 greatly increases when the capacity is discharged.
  • the secondary current I2 due to this capacity discharge ends in a short time.
  • the secondary current I2 drops sharply and then drops with time during the subsequent induced discharge. Since the discharge path extends with the flow of gas, the secondary voltage V2 rises with the passage of time, and the electric energy (discharge required energy) required to maintain the discharge path rises accordingly.
  • the electric energy E supplied from the ignition coil 300C to the spark plug 200 decreases with time as described above. As a result, when the required discharge energy exceeds the energy supplied from the ignition coil 300C, the discharge path cannot be maintained and the discharge path is blown out.
  • the discharge period of the spark plug 200 is as short as about 1 to 2 msec, the gas flow between the electrodes during the discharge period can be regarded as almost constant.
  • the electrode itself becomes an obstacle to the gas flow, a Karman vortex is generated downstream of the electrode.
  • a change in gas pressure due to vortex shedding occurs at regular intervals.
  • this change in gas pressure destabilizes the discharge path, which triggers the discharge path to blow out. Therefore, as shown in FIG. 7, after the discharge start point A at the secondary voltage V2, the inflection points B, C, and D indicating the gas pressure change during the continuous discharge and the inflection points indicating the blowout of the discharge path are shown. E occurs at regular intervals.
  • the timing of the next and subsequent inflection points is estimated from the period of the inflection point of the secondary voltage V2, and the estimation result of the timing of the next inflection point when the secondary voltage V2 becomes a certain value or more is used. If additional electric energy E is supplied to the spark plug 200 at that timing, the probability that the discharge path will be blown out can be reduced.
  • the spark plug 200 uses this electrical energy E to discharge at the shortest distance between the electrodes. It will be resumed. As a result, as shown in FIG. 7, the spark plug 200 repeatedly blows out and re-discharges the discharge path. When the discharge is restarted, the dielectric breakdown between the electrodes occurs, so that the secondary current I2 flowing between the electrodes momentarily becomes a high current, causing evaporation of the electrode material. In particular, when the gas flow in the cylinder 150 is large, the discharge path expands quickly, so that the discharge is likely to occur, the re-discharge cycle is shortened, and the number of re-discharges increases. This causes an increase in the amount of evaporation of the electrode material and causes a decrease in the life of the electrode. Therefore, it is desired to reduce the blowout during the discharge period as much as possible.
  • an ignition coil 300 having two primary side coils is adopted, and discharge control is performed on the ignition coil 300 to suppress the number of capacitance discharges.
  • the discharge of the spark plug 200 is realized.
  • FIG. 8 is a diagram illustrating an electric circuit 400 including an ignition coil 300 according to the first embodiment of the present invention.
  • the ignition coil 300 has two types of primary coil 310 and 360 wound with a predetermined number of turns and a secondary side wound with a number of turns larger than the primary coil 310 and 360. It is configured to include and include a coil 320.
  • the electric power from the primary coil 310 is first supplied to the secondary coil 320, and the electric power from the primary coil 360 is superimposed on the electric power to the secondary coil 320. Is supplied to.
  • the primary coil 310 will be referred to as a “main primary coil” and the primary coil 360 will be referred to as a “secondary primary coil”. Further, the current flowing through the main primary coil 310 is referred to as “main primary current”, and the current flowing through the primary sub coil 360 is referred to as "secondary primary current”.
  • One end of the main primary coil 310 is connected to the DC power supply 330.
  • a predetermined voltage for example, 12V in the embodiment
  • the other end of the main primary coil 310 is connected to an igniter 340, which is a switch element for switching the conduction state of the main primary coil 310, and is grounded via the igniter 340.
  • a transistor, a field effect transistor (FET), or the like is used for the igniter 340.
  • the base (B) terminal of the igniter 340 is connected to the ignition signal output unit 384 provided in the ignition control unit 83.
  • the ignition signal output unit 384 outputs an ignition signal SA as a signal for controlling the on / off of the igniter 340.
  • the ignition signal SA output from the ignition signal output unit 384 is input to the base (B) terminal of the igniter 340.
  • the igniter 340 is turned on and the collector (C) terminal and the emitter (E) terminal are energized, and the collector (C) terminal and the emitter (E) are energized.
  • the ignition signal SA is output from the ignition control unit 83 to the main primary coil 310 of the ignition coil 300 via the igniter 340, and the main primary current flows through the main primary coil 310 to accumulate electric power (electrical energy). Will be done.
  • One end of the secondary primary coil 360 is connected to the DC power supply 330 in common with the main primary coil 310.
  • a predetermined voltage for example, 12V in the embodiment
  • the other end of the sub-primary coil 360 is connected to the igniter 350, which is a switch element for switching the conduction state of the sub-primary coil 360, and is grounded via the igniter 350.
  • the igniter 350 a transistor, a field effect transistor (FET), or the like is used.
  • the base (B) terminal of the igniter 350 is connected to the ignition signal output unit 384 provided in the ignition control unit 83.
  • the ignition signal output unit 384 outputs an ignition signal SB as a signal for controlling the on / off of the igniter 350.
  • the ignition signal SB output from the ignition signal output unit 384 is input to the base (B) terminal of the igniter 350.
  • the igniter 350 is turned on and the collector (C) terminal and the emitter (E) terminal are energized according to the voltage change of the ignition signal SB.
  • a current corresponding to the voltage change of the ignition signal SB flows between the collector (C) terminal and the emitter (E) terminal.
  • the ignition signal SB is output from the ignition control unit 83 to the sub-primary coil 360 of the ignition coil 300 via the igniter 350, and the sub-primary current flows through the sub-primary coil 360 to generate electric power (electrical energy). do.
  • the high voltage generated in the secondary coil 320 by the ignition signal SA is applied to the high voltage generated in the secondary coil 320 by the ignition signal SB and applied to the spark plug 200 (center electrode 210) to ignite.
  • a potential difference is generated between the center electrode 210 of the plug 200 and the outer electrode 220.
  • Vm dielectric breakdown voltage of the gas (air-fuel mixture in the cylinder 150)
  • the gas component is dielectrically broken down to the center electrode 210 and the outer electrode 220.
  • a discharge occurs between the two, and the fuel (air-fuel mixture) is ignited (ignited).
  • a voltage detection unit 370 for detecting the secondary voltage V2 flowing through the secondary coil 320 is provided between the secondary coil 320 and the spark plug 200.
  • the voltage detection unit 370 transmits the detected secondary voltage value to the inflection point detection unit 381 and the ignition signal output unit 384 provided in the ignition control unit 83.
  • the ignition control unit 83 is provided with an inflection point detection unit 381, a calculation unit 382, a prediction unit 383, and an ignition signal output unit 384. These are realized as the functions of the ignition control unit 83, respectively, and are realized in the output circuit 80 by, for example, the MPU 50 executing the control program stored in the ROM 60 as described with reference to FIGS. 1 and 3. Will be done.
  • the inflection point detection unit 381 calculates the differential value of the secondary voltage V2 detected by the voltage detection unit 370, and when this differential value exceeds a predetermined threshold value, the value of the secondary voltage V2 at that time is changed. Detect as an inflection.
  • the threshold information stored in advance in the ignition control unit 83 is input to the inflection point detection unit 381. Based on this threshold information, a threshold value when the inflection point detecting unit 381 detects an inflection point is set.
  • the calculation unit 382 calculates the cycle of the inflection point detected by the inflection point detection unit 381.
  • the period of the inflection point is calculated assuming that the inflection point corresponding to the gas pressure change due to the separation of the Karman vortex occurs at a fixed period in the secondary voltage V2. For example, starting from the time when the ignition signal SA is transmitted from the ignition signal output unit 384 to the main primary coil 310, the k-th (however, k is a natural number) inflection point and the next k + 1-th inflection point. The time interval is measured, and the cycle of the inflection point is calculated from this time interval.
  • the prediction unit 383 predicts the time point at which the next and subsequent inflection points will occur in the secondary voltage V2 based on the period of the inflection points calculated by the calculation unit 382. Specifically, the time when the cycle of the inflection has elapsed from the time when the last inflection is detected is predicted as the timing of the next inflection.
  • the ignition signal output unit 384 controls the output of the ignition signals SA and SB.
  • the ignition signal output unit 384 controls the output according to the state of the internal combustion engine 100. That is, as described above, the energization angle, energization start time, ignition time, etc. of the ignition coil 300 are calculated based on the crank angle, engine rotation speed, engine load, cooling water temperature, etc., and these calculation results are used.
  • the output timing of the ignition signal SA is determined.
  • the ignition signal output unit 384 performs output control using the prediction result of the next inflection point by the prediction unit 383 and the secondary voltage V2 detected by the voltage detection unit 370. The specific output control method of the ignition signal SB will be described later.
  • the ignition control unit 83 controls the energization of the ignition coil 300 by using the ignition signals SA and SB by the operation of the electric circuit 400 as described above. As a result, ignition control for controlling the spark plug 200 is performed.
  • the portion that controls the output of the ignition signal SA and the portion that controls the output of the ignition signal SB may be configured separately. In this case, the portion that controls the output of the ignition signal SB may not be provided inside the ignition control unit 83. In any case, since the portion operates according to the control of the ignition control unit 83, it can be said that the ignition control unit 83 controls the energization of the ignition coil 300.
  • FIG. 9 is a diagram showing an example of a timing chart for explaining the relationship between the control signal input to the ignition coil and the output in the discharge control according to the first embodiment of the present invention.
  • the timing chart of FIG. 9 is an example when the spark plug 200 is discharged when the gas has a high flow velocity by using the ignition coil 300 of the present embodiment.
  • an ignition signal SA output from the ignition signal output unit 384, a main primary current I1 flowing through the main primary coil 310 according to the ignition signal SA, and an ignition signal output from the ignition signal output unit 384.
  • the SB The SB, the sub-primary current I3 flowing in the sub-primary coil 360 according to the ignition signal SB, the electric energy E stored in the ignition coil 300, the secondary current I2 flowing in the secondary coil 320, and the secondary side.
  • the relationship between the secondary voltage V2 generated in the coil 320 and the differential value dV2 / dt of the secondary voltage V2 is shown.
  • the secondary voltage V2 is detected by the voltage detection unit 370 provided between the spark plug 200 and the ignition coil 300.
  • the differential value dV2 / dt of the secondary voltage V2 is calculated by the inflection point detecting unit 381 as described above.
  • the igniter 340 When the ignition signal SA becomes HIGH, the igniter 340 energizes the main primary coil 310, and the main primary current I1 rises. While the main primary coil 310 is energized, the electric energy E in the ignition coil 300 rises with time.
  • the igniter 340 cuts off the energization of the main primary coil 310. As a result, an electromotive force is generated in the secondary coil 320, and the supply of electric energy E from the ignition coil 300 to the spark plug 200 is started. When the insulation between the electrodes of the spark plug 200 is broken, discharge (capacitive discharge) of the spark plug 200 is started. After the discharge of the spark plug 200 is started, the electric energy E in the ignition coil 300 decreases with time, and the discharge (induced discharge) of the spark plug 200 is maintained.
  • the secondary current I2 and the secondary voltage V2 greatly increase when the capacity is discharged.
  • the increase in the secondary current I2 and the secondary voltage V2 due to this capacitance discharge ends in a short time.
  • the secondary current I2 and the secondary voltage V2 each drop sharply.
  • the secondary current I2 decreases with time.
  • the secondary voltage V2 rises with the passage of time.
  • the inflection point detection unit 381 After the ignition signal SA changes from HIGH to LOW and capacitance discharge is started, when the differential value dV2 / dt of the secondary voltage V2 becomes equal to or higher than a predetermined threshold value dV2 / dt_th set in advance, the inflection point detection unit 381 , The value of the secondary voltage V2 at that time is detected as an inflection point. As a result, the inflection points B, C, D, E, and F are sequentially detected each time the value of the secondary voltage V2 becomes equal to or higher than the threshold value dV2 / dt_th after the discharge start point A has elapsed.
  • the calculation unit 382 calculates the time interval T1 from the change point B to the change point C, and this time interval Let T1 be the variation period T of the secondary voltage V2.
  • the calculation unit 382 calculates the time interval T2 from the inflection point C to the inflection point D, and uses this time interval T2.
  • the inflection period T of the secondary voltage V2 is updated.
  • the ignition signal output unit 384 determines the time when the latest inflection point (here, the inflection point D) occurs.
  • the transmission timing of the ignition signal SB is determined so that the ignition signal SB is output within a period including at least the next inflection point E. That is, the timing at which the ignition signal SB is changed to HIGH and LOW so that the igniter 350 is turned on between the inflection point D and the next inflection point E and the igniter 350 is turned off after the inflection point E, respectively. To decide.
  • the time point at which the latest inflection point is detected is tun
  • the timing at which the ignition signal SB is changed to HIGH the overlap discharge start time th
  • the timing at which the ignition signal SB is returned to LOW after that overlap discharge.
  • tl tun + T + p ... (2)
  • P represents the energization time of the secondary primary coil 360.
  • This energization time P is set in advance according to the amount of electric energy to be supplied from the secondary primary coil 360 to the spark plug 200 in order to suppress the blowout of the discharge path and the amount of electric energy that can be stored in the secondary primary coil 360. It is set.
  • p represents the margin of energization time for the secondary primary coil 360. This margin p is included in the energization period of the secondary primary coil 360 even if there is a deviation between the prediction result of the timing of the next inflection point and the actual inflection point. It is preset according to the prediction accuracy of the next inflection point in 383.
  • the ignition signal output unit 384 repeats the above control until the secondary current I2 drops and the discharge between the electrodes stops.
  • the ignition signals SB are output to the inflection points E and F according to the transmission timing determined as described above.
  • the points G and I represent the overlapping discharge start time points th for the inflection points E and F, respectively, and these are determined based on the equation (1).
  • the points H and J represent the time points th at the end of the overlapping discharge with respect to the inflection points E and F, respectively, and these are determined based on the equation (2).
  • the secondary current I2 includes the current flowing through the secondary side coil 320 by the main primary coil 310 (hereinafter referred to as “first induced current”) and the secondary side coil by the secondary primary coil 360.
  • the current flowing through the 320 (hereinafter referred to as “second induced current”) is included.
  • the inflection point of the secondary voltage V2 is detected by calculating the differential value dV2 / dt obtained by time-differentiating the secondary voltage V2 and comparing this differential value with the predetermined threshold value dV2 / dt_th. I try to do it.
  • the time derivative is not limited to the first derivative, and the second derivative or the third derivative may be used as needed. If the inflection point required for calculating the cycle cannot be detected by the time the threshold value dV2 / dt_th is reached, the ignition timing for the secondary coil is determined based on the predetermined value defined in advance. May be.
  • FIG. 10 is an example of a flowchart illustrating a method of controlling the ignition coil 300 by the ignition control unit 83 according to the first embodiment of the present invention.
  • the ignition control unit 83 starts controlling the ignition coil 300 according to the flowchart of FIG.
  • the process shown in the flowchart of FIG. 10 represents the process for one cycle of the internal combustion engine 100, and the ignition control unit 83 carries out the process shown in the flowchart of FIG. 10 for each cycle.
  • step S201 when the ignition signal SA changes from HIGH to LOW and the spark plug 200 starts to be discharged, the ignition control unit 83 starts an operation to control the ignition signal SB.
  • step S202 the ignition control unit 83 sets the internal memory variable i and the initial value of the inflection cycle.
  • step S203 the inflection point detection unit 381 in the ignition control unit 83 calculates the time derivative dV2 / dt of the secondary voltage V2 detected by the voltage detection unit 370 and compares it with the predetermined threshold value dV2 / dt_th. As a result, when the differential value dV2 / dt exceeds the threshold value dV2 / dt_th, the current value of the secondary voltage V2 is detected as an inflection point, and the process proceeds to step S204. On the other hand, if the differential value dV2 / dt is equal to or less than the threshold value dV2 / dt_th, the process proceeds to step S209 without detecting the inflection point.
  • step S204 the ignition control unit 83 records the current time in the internal memory as the inflection time ti representing the timing at which the i-th inflection point occurs from the start of discharge of the spark plug 200.
  • step S205 the ignition control unit 83 determines whether or not the current value of the variable i is 2 or more. If i is 2 or more, the process proceeds to step S206, and if it is less than 2, that is, if the initial value of 1 remains, the process proceeds to step S208.
  • step S206 the calculation unit 382 in the ignition control unit 83 calculates the time interval from the previous inflection point to the current inflection point.
  • the difference from the inflection time ti is obtained, and this difference value is set as the i-1st time interval T (i-1).
  • step S207 the prediction unit 383 in the ignition control unit 83 uses the value of the i-1st time interval T (i-1) calculated in step S206 as the variation period T of the secondary voltage V2 as an internal memory. Record in. As a result, the timing at which the i + 1th and subsequent inflection points occur in the secondary voltage V2 is predicted.
  • step S208 the ignition control unit 83 adds 1 to the variable i.
  • step S210 if the value of the secondary voltage V2 is equal to or higher than the threshold value V2_th and the current time is between the overlap discharge start time th and the overlap discharge end point tl, that is, within the overlap discharge period, the process proceeds to step S210. .. On the other hand, if the value of the secondary voltage V2 is less than the threshold value V2_th, or if the current time is outside the overlapping discharge period, the process proceeds to step S211.
  • step S210 the ignition signal output unit 384 in the ignition control unit 83 sets the ignition signal SB output to the igniter 350 to HIGH.
  • the igniter 350 is turned on at the overlap discharge start time th between the latest change point ti and the next change time t (i + 1).
  • the ignition signal SB to the sub-primary coil 360 is transmitted to. After that, the process returns to step S203.
  • step S21 the ignition signal output unit 384 in the ignition control unit 83 sets the ignition signal SB output to the igniter 350 to LOW.
  • the ignition signal SB to the sub-primary coil 360 is transmitted so as to turn off the igniter 350 at the end point tl of the overlapping discharge after the next change point t (i + 1).
  • the process returns to step S203.
  • the ignition signal SB is set when both the condition that the value of the secondary voltage V2 is equal to or greater than the threshold value V2_th and the condition that the current time is within the overlapping discharge period are satisfied. It is set to HIGH. Therefore, when the value of the secondary voltage V2 exceeds the threshold value V2_th before the stacking discharge start time th, the ignition signal SB is set to HIGH at the stacking discharge start time th, and the igniter 350 is turned on accordingly. As a result, the supply of electric energy from the secondary primary coil 360 to the secondary coil 320 is started.
  • the ignition signal SB is set to HIGH when the value of the secondary voltage V2 exceeds the threshold value V2_th.
  • the timing of the inflection point from the next time onward is estimated by assuming that the gas flow velocity between the electrodes during the discharge period is constant, and the transmission timing of the ignition signal SB is determined.
  • this assumption may not hold. For example, when the EGR rate or the air dilution becomes large, it is necessary to advance the ignition timing according to the decrease in the combustion rate.
  • the in-cylinder volume during the discharge period is relatively large and the gas flow state is maintained at a high flow rate, changes in the gas flow velocity and turbulence of the gas flow are likely to occur in a short time. Therefore, the period of the inflection point of the secondary voltage V2 cannot be kept constant.
  • the transmission timing of the ignition signal SB by, for example, the following method in consideration of this.
  • the next inflection cycle can be obtained by weighted averaging the inflection cycles obtained in the past for each inflection point.
  • the weighting coefficient of each variation cycle may be changed according to the number of samples. For example, when the number of samples is 2, that is, when the inflection points up to the third have been detected and the calculation unit 382 has calculated these time intervals as the inflection cycles T1 and T2, each inflection cycle. Let the weighting factor of be 0.5.
  • the weighting coefficient of the song cycle may be different. For example, the weighting coefficient can be made smaller as the inflection period of the old (earlier) inflection point is smaller, and conversely, the weighting coefficient can be made larger as the inflection period of the newer (later order) inflection point is made.
  • the ignition signal SB may be forcibly set to Low regardless of the calculation result of the variation period. By doing so, it becomes possible to suppress wasteful energy consumption in a state where the possibility that the discharge path is blown out is low.
  • the control device 1 which is an electronic control device is an ignition provided with a main primary coil 310 and a secondary primary coil 360 arranged on the primary side, respectively, and a secondary coil 320 arranged on the secondary side. It controls the energization of the coil 300.
  • the secondary voltage V2 generated in the secondary coil 320 the timing at which the nth (where n is a natural number) inflection occurs from the time when the ignition signal SA to the main primary coil 310 is transmitted (the inflection point D).
  • Timing is the nth inflection time
  • the timing at which the n + 1th inflection occurs is the n + 1st inflection time, the nth inflection time and the n + 1st inflection time.
  • the ignition signal SB to the sub-primary coil 360 is transmitted. Since this is done, it is possible to suppress the electrode wear of the spark plug 200 in the internal combustion engine 100 while suppressing the ignition failure of the gas by the spark plug 200. Further, since the cycle of the inflection point fluctuates depending on the operating state, there is an advantage that it is possible to cope with various states as compared with the case of ignition control at a predetermined timing.
  • the ignition signal SB to the sub-primary coil 360 is a signal for controlling the on / off of the igniter 350, which is a switch element connected to one end of the sub-primary coil 360.
  • the control device 1 turns on the igniter 350 between the nth turn point and the n + 1th change point, and turns off the igniter 350 after the n + 1th change point.
  • the inflection period obtained from the k-th inflection (where k is a natural number satisfying k ⁇ n) and the k + 1-th inflection in the secondary voltage V2 is T, and the sub-primary coil 360 is used.
  • the time point after the lapse of TP from the nth inflection time point tn represented by the equation (1) is set as the overlapped discharge start time point th.
  • the ignition signal SB to the sub-primary coil 360 is transmitted so as to turn on the igniter 350 (steps S209 and S210). Since this is done, the auxiliary electric energy E is supplied from the ignition coil 300 to the spark plug 200 at the timing of the next inflection when the secondary voltage V2 exceeds a certain level.
  • the ignition signal SB for the primary coil 360 can be transmitted. Therefore, it is possible to effectively reduce the probability that the discharge path is blown out due to the periodic change of the gas pressure due to the separation of the Karman vortex generated on the downstream side of the electrode.
  • the control device 1 includes an inflection point detection unit 381, a calculation unit 382, and a prediction unit 383.
  • the inflection point detection unit 381 detects it as an inflection point of the secondary voltage V2 (step S203).
  • the calculation unit 382 calculates the inflection cycle T based on the time interval between the k-th inflection point and the k + 1-th inflection point detected by the inflection point detection unit 381 (step S206).
  • the prediction unit 383 predicts the time point at which the k + second and subsequent inflection points occur in the secondary voltage V2 based on the inflection period T calculated by the calculation unit 382 (step S207). Since this is done, the timing of the next inflection can be reliably predicted by reflecting the periodic change of the gas pressure due to the separation of the Karman vortex.
  • the calculation unit 382 can measure the time interval for each of the plurality of k values, and calculate the variation period T based on each measured time interval. For example, the variation period T can be calculated based on the relationship between the value of k obtained by the least squares method and each time interval or the weighted average of each time interval. By doing so, even when the change in the flow velocity of the gas or the turbulence of the flow cannot be ignored, the transmission timing of the ignition signal SB to the secondary primary coil 360 can be appropriately determined.
  • the calculation unit 382 excludes inflection points whose time interval from the immediately preceding inflection point is less than a predetermined value among the plurality of inflection points detected by the inflection point detection unit 381.
  • the period T can also be calculated. By doing so, even if the turbulence of the flow between the electrodes becomes strong and an inflection point of the secondary voltage V2 occurs due to a cause other than the electrode, the ignition signal SB for the secondary primary coil 360 is generated.
  • the transmission timing can be appropriately determined.
  • the control device 1 is set to turn on the igniter 350 at the stacking discharge start time th.
  • the ignition signal SB to the primary coil 360 is transmitted (steps S209 and S210). Further, when the secondary voltage V2 exceeds the first predetermined value after the overlap discharge start time th, the igniter 350 is turned on when the secondary voltage V2 exceeds the first predetermined value. , The ignition signal SB to the sub-primary coil 360 is transmitted (steps S209, S210). Since this is done, in any case, the electric energy can be supplied from the secondary primary coil 360 to the secondary coil 320 at an appropriate timing according to the next inflection point.
  • the control device 1 detects an inflection point in the secondary voltage V2 generated on the secondary side of the ignition coil 300 (step S203), and based on the timing when the inflection point is detected in the past, the next inflection Predict the timing of the inflection (step S207). Since this is done, the timing of the next inflection can be reliably predicted by reflecting the periodic change of the gas pressure due to the separation of the Karman vortex.
  • Control device 10: Analog input unit, 20: Digital input unit, 30: A / D conversion unit, 40: RAM, 50: MPU, 60: ROM, 70: I / O port, 80: Output circuit, 81 : Overall control unit, 82: Fuel injection control unit, 83: Ignition control unit, 84: Cylinder discrimination unit, 85: Angle information generation unit, 86: Rotation speed information generation unit, 87: Intake amount measurement unit, 88: Load information Generation unit, 89: Water temperature measurement unit, 100: Internal engine, 110: Air cleaner, 111: Intake pipe, 112: Intake manifold, 113: Throttle valve, 113a: Throttle opening sensor, 114: Flow sensor, 115: Intake temperature sensor , 120: Ring gear, 121: Crank angle sensor, 122: Water temperature sensor, 123: Crank shaft, 125: Accelerator pedal, 126: Accelerator position sensor, 130: Fuel tank, 131: Fuel pump, 132: Pressure regulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

点火プラグによる燃料への着火不良を抑えつつ、内燃機関における点火プラグの電極摩耗を抑制する。 内燃機関用の制御装置は、2次コイル320に発生する2次電圧において、主1次コイル310への点火信号SAを送信した時点を起点にn番目(ただしnは自然数)の変曲点が生じるタイミングをn番目の変曲時点とし、n+1番目の変曲点が生じるタイミングをn+1番目の変曲時点としたとき、n番目の変曲時点とn+1番目の変曲時点との間に2次電圧が第1の所定値を超える場合に、副1次コイル360への点火信号SBを送信する。

Description

電子制御装置
 本発明は、電子制御装置に関する。
 近年、車両の燃費向上のため、理論空燃比よりも薄い混合気を燃焼して内燃機関を運転する技術や、燃焼後の排気ガスの一部を取り入れて再度吸気させる技術などを導入した内燃機関の制御装置が開発されている。
 この種の内燃機関の制御装置では、燃焼室における燃料や空気の量が理論値から乖離するため、点火プラグによる燃料への着火不良が生じやすくなる。そこで、燃焼室内のガス流速を高くすることで、点火プラグの電極間の流速を高くして放電路が長く形成されるようにすることで、放電路とガスの接触長さを長くして、着火不良を抑制する方法がある。
しかし、点火プラグの電極間の流速を高くすると、放電路の吹き消えとこれに伴う再放電の発生頻度が高くなる。再放電の際、容量放電による絶縁破壊が生じる。容量放電の電流密度は高いため、高電流による電極溶融が生じて、電極の消耗が促進されてしまう。
 容量放電の発生頻度を低減して点火プラグの電極摩耗を抑制するためには、放電路が形成された後に十分な電流量で電流供給を続けることで、放電路をできるだけ長時間維持する必要がある。しかしながら、一般的に点火コイルは、放電開始から時間経過と共に内部エネルギーが低下し続けるため、次第に放電路の維持に必要な電流を供給できなくなる。
その結果、ガスの燃焼途中で放電路の維持ができなくなり、再放電が必要になってしまうという問題が生じる。
 特許文献1には、主一次コイルと副一次コイルを有する点火コイルを用いて、主一次コイルにより点火プラグに放電火花を発生させた後に、点火プラグの放電に必要十分な時間を勘案して定めた重畳電流通電時間が経過するまでの間、副一次コイルにより電流を重畳させるようにした内燃機関の制御装置が開示されている。
特開2019-31911号公報
 特許文献1に開示されている技術では、燃焼状態に関わらず重畳電流通電時間が一定であるため、内燃機関のサイクル変動に応じて重畳電流通電時間を適切に調整できない。サイクル変動に対応できるようにするためには、過大なマージンを含めた重畳電流通電時間を設定する必要がある。しかしながら、このように重畳電流通電時間を設定すると、放電路の維持に必要な分を上回る重畳電流が流れてしまい、点火コイルの発熱や、点火プラグ電極の摩耗、エネルギー効率の低下などが問題となる。逆に、重畳電流通電時間のマージンを削減すると、点火コイル内部のエネルギーが低下することで、放電路を維持できなくなる可能性が生じる。
 したがって、本発明は、上記の課題に着目してなされたもので、点火プラグによるガスへの着火不良を抑えつつ、内燃機関における点火プラグの電極摩耗を抑制することを目的とする。
 本発明による電子制御装置は、1次側にそれぞれ配置された主1次コイルおよび副1次コイルと、2次側に配置された2次コイルとを備えた点火コイルの通電を制御するものであって、前記2次コイルに発生する2次電圧において、前記主1次コイルへの点火信号を送信した時点を起点にn番目(ただしnは自然数)の変曲点が生じるタイミングをn番目の変曲時点とし、n+1番目の変曲点が生じるタイミングをn+1番目の変曲時点としたとき、前記n番目の変曲時点と前記n+1番目の変曲時点との間に前記2次電圧が第1の所定値を超える場合に、前記副1次コイルへの点火信号を送信する。
 本発明によれば、点火プラグによるガスへの着火不良を抑えつつ、内燃機関における点火プラグの電極摩耗を抑制することができる。
実施の形態にかかる内燃機関及び内燃機機関の制御装置の要部構成を説明する図である。 点火プラグを説明する部分拡大図である。 実施の形態にかかる制御装置の機能構成を説明する機能ブロック図である。 内燃機関の運転状態と点火プラグ周囲のガス流速との関係を説明する図である。 点火プラグの電極間における放電路と流速の関係を説明する図である。 従来の点火コイルを含む電気回路を説明する図である。 従来の放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。 第1の実施形態にかかる点火コイルを含む電気回路を説明する図である。 第1の実施形態にかかる放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。 第1の実施形態にかかる点火コイルの制御方法を説明するフローチャートの一例である。 最小二乗法による近似線を基に次回の変曲周期を求める方法を説明する図である。
 以下、本発明の実施形態にかかる電子制御装置を説明する。
 以下、本発明の一実施形態にかかる電子制御装置の一態様である制御装置1を説明する。この実施の形態では、制御装置1により、4気筒の内燃機関100の各気筒150に各々設けられた点火プラグ200の放電(点火)を制御する場合を例示して説明する。
 以下、実施の形態において、内燃機関100の一部の構成又は全ての構成及び制御装置1の一部の構成又は全ての構成を組み合わせたものを、内燃機関100の制御装置1と言う。
[内燃機関]
 図1は、内燃機関100及び内燃機関用点火装置の要部構成を説明する図である。
 図2は、点火プラグ200の電極210、220を説明する部分拡大図である。
 内燃機関100では、外部から吸引した空気はエアクリーナ110、吸気管111、吸気マニホールド112を通流し、吸気弁151が開くと各気筒150に流入する。各気筒150に流入する空気量は、スロットル弁113により調整され、スロットル弁113で調整された空気量は、流量センサ114により測定される。
 スロットル弁113には、スロットルの開度を検出するスロットル開度センサ113aが設けられている。このスロットル開度センサ113aで検出されたスロットル弁113の開度情報は、制御装置(Electronic Control Unit:ECU)1に出力される。
 なお、スロットル弁113は、電動機で駆動される電子スロットル弁が用いられるが、空気の流量を適切に調整できるものであれば、その他の方式によるものでもよい。
 各気筒150に流入したガスの温度は、吸気温センサ115で検出される。
 クランクシャフト123に取り付けられたリングギア120の径方向外側には、クランク角センサ121が設けられている。このクランク角センサ121により、クランクシャフト123の回転角度が検出される。実施の形態では、クランク角センサ121は、例えば10°毎及び燃焼周期毎のクランクシャフト123の回転角度を検出する。
 シリンダヘッドのウォータジャケット(図示せず)には、水温センサ122が設けられている。この水温センサ122により、内燃機関100の冷却水の温度を検出する。
 また、車両には、アクセルペダル125の変位量(踏み込み量)を検出するアクセルポジションセンサ(Accelerator Position Sensor:APS)126が設けられている。このアクセルポジションセンサ126により、運転者の要求トルクを検出する。このアクセルポジションセンサ126で検出された運転者の要求トルクは、後述する制御装置1に出力される。制御装置1は、この要求トルクに基づいて、スロットル弁113を制御する。
 燃料タンク130に貯留された燃料は、燃料ポンプ131によって吸引及び加圧された後、プレッシャレギュレータ132が設けられた燃料配管133を通流し、燃料噴射弁(インジェクタ)134に誘導される。燃料ポンプ131から出力された燃料は、プレッシャレギュレータ132で所定の圧力に調整され、燃料噴射弁(インジェクタ)134から各気筒150内に噴射される。プレッシャレギュレータ132で圧力調整された結果、余分な燃料は戻り配管(図示せず)を介して燃料タンク130に戻される。
 内燃機関100のシリンダヘッド(図示せず)には、燃焼圧センサ(CylinderPressure Sensor:CPS、筒内圧センサとも言う)140が設けられている。燃焼圧センサ140は、各気筒150内に設けられており、気筒150内の圧力(燃焼圧)を検出する。
 燃焼圧センサ140は、圧電式又はゲージ式の圧力センサが用いられ、広い温度領域に渡って気筒150内の燃焼圧(筒内圧)を検出することができるようになっている。
 各気筒150には、排気弁152と、燃焼後のガス(排気ガス)を気筒150の外側に排出する排気マニホールド160が取り付けられている。この排気マニホールド160の排気側には、三元触媒161が設けられている。排気弁152が開くと、気筒150から排気マニホールド160に排気ガスが排出される。この排気ガスは、排気マニホールド160を通って三元触媒161で浄化された後、大気に排出される。
 三元触媒161の上流側には、上流側空燃比センサ162が設けられている。この上流側空燃比センサ162は、各気筒150から排出された排気ガスの空燃比を連続的に検出する。
 また、三元触媒161の下流側には、下流側空燃比センサ163が設けられている。この下流側空燃比センサ163は、理論空燃比近傍でスイッチ的な検出信号を出力する。実施の形態では、下流側空燃比センサ163は、例えばO2センサである。
 また、各気筒150の上部には、点火プラグ200が各々設けられている。点火プラグ200の放電(点火)により、気筒150内の空気と燃料との混合気に火花が着火し、気筒150内で爆発が起こり、ピストン170が押し下げられる。ピストン170が押し下げられることにより、クランクシャフト123が回転する。
 点火プラグ200には、点火プラグ200に供給される電気エネルギー(電圧)を生成する点火コイル300が接続されている。点火コイル300で発生した電圧により、点火プラグ200の中心電極210と外側電極220との間に放電が生じる(図2参照)。
 図2に示すように、点火プラグ200では、中心電極210は、絶縁体230により絶縁状態で支持されている。この中心電極210に所定の電圧(実施の形態では、例えば20,000V~40,000V)が印加される。
 外側電極220は接地されている。中心電極210に所定の電圧が印加されると、中心電極210と外側電極220との間で放電(点火)が生じる。
 なお、点火プラグ200において、中心電極210と外側電極220との間に存在する気体(ガス)の状態や筒内圧によって、ガス成分の絶縁破壊を起こして放電(点火)が発生する電圧が変動する。この放電が発生する電圧を絶縁破壊電圧と言う。
 点火プラグ200の放電制御(点火制御)は、後述する制御装置1の点火制御部83により行われる。
 図1に戻って、前述したスロットル開度センサ113a、流量センサ114、クランク角センサ121、アクセルポジションセンサ126、水温センサ122、燃焼圧センサ140等の各種センサからの出力信号は、制御装置1に出力される。制御装置1では、これら各種センサからの出力信号に基づいて、内燃機関100の運転状態を検出し、気筒150内に送出する空気量、燃料噴射量、点火プラグ200の点火タイミング等の制御を行う。
[制御装置のハードウェア構成]
 次に、制御装置1のハードウェアの全体構成を説明する。
 図1に示すように、制御装置1は、アナログ入力部10と、デジタル入力部20と、A/D(Analog/Digital)変換部30と、RAM(Random Access Memory)40と、MPU(Micro-Processing Unit)50と、ROM(Read Only Memory)60と、I/O(Input/Output)ポート70と、出力回路80と、を有する。
 アナログ入力部10には、スロットル開度センサ113a、流量センサ114、アクセルポジションセンサ126、上流側空燃比センサ162、下流側空燃比センサ163、燃焼圧センサ140、水温センサ122等の各種センサからのアナログ出力信号が入力される。
 アナログ入力部10には、A/D変換部30が接続されている。アナログ入力部10に入力された各種センサからのアナログ出力信号は、ノイズ除去等の信号処理が行われた後、A/D変換部30でデジタル信号に変換され、RAM40に記憶される。
 デジタル入力部20には、クランク角センサ121からのデジタル出力信号が入力される。
 デジタル入力部20には、I/Oポート70が接続されており、デジタル入力部20に入力されたデジタル出力信号は、このI/Oポート70を介してRAM40に記憶される。
 RAM40に記憶された各出力信号は、MPU50で演算処理される。
 MPU50は、ROM60に記憶された制御プログラム(図示せず)を実行することで、RAM40に記憶された出力信号を、制御プログラムに従って演算処理する。MPU50は、制御プログラムに従って、内燃機関100を駆動する各アクチュエータ(例えば、スロットル弁113、プレッシャレギュレータ132、点火プラグ200等)の作動量を規定する制御値を算出し、RAM40に一時的に記憶する。
 RAM40に記憶されたアクチュエータの作動量を規定する制御値は、I/Oポート70を介して出力回路80に出力される。
 出力回路80には、点火プラグ200に印加する電圧を制御する点火制御部83(図3参照)の機能などが設けられている。
[制御装置の機能ブロック]
 次に、本発明の実施形態にかかる制御装置1の機能構成を説明する。
 図3は、本発明の一実施形態にかかる制御装置1の機能構成を説明する機能ブロック図である。この制御装置1の各機能は、例えばMPU50がROM60に記憶された制御プログラムを実行することで、出力回路80で実現される。
 図3に示すように、第1の実施形態にかかる制御装置1の出力回路80は、全体制御部81と、燃料噴射制御部82と、点火制御部83とを有する。
 全体制御部81は、アクセルポジションセンサ126と、燃焼圧センサ140(CPS)に接続されており、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、燃焼圧センサ140からの出力信号S2とを受け付ける。
 全体制御部81は、アクセルポジションセンサ126からの要求トルク(加速信号S1)と、燃焼圧センサ140からの出力信号S2とに基づいて、燃料噴射制御部82と点火制御部83の全体的な制御を行う。
 燃料噴射制御部82は、内燃機関100の各気筒150を判別する気筒判別部84と、クランクシャフト123のクランク角を計測する角度情報生成部85と、エンジン回転数を計測する回転数情報生成部86と、に接続されており、気筒判別部84からの気筒判別情報S3と、角度情報生成部85からのクランク角度情報S4と、回転数情報生成部86からのエンジン回転数情報S5と、を受け付ける。
 また、燃料噴射制御部82は、気筒150内に吸気される空気の吸気量を計測する吸気量計測部87と、エンジン負荷を計測する負荷情報生成部88と、エンジン冷却水の温度を計測する水温計測部89と、に接続されており、吸気量計測部87からの吸気量情報S6と、負荷情報生成部88からのエンジン負荷情報S7と、水温計測部89からの冷却水温度情報S8と、を受け付ける。
 燃料噴射制御部82は、受け付けた各情報に基づいて、燃料噴射弁134から噴射される燃料の噴射量と噴射時間(燃料噴射弁制御情報S9)を算出し、算出した燃料の噴射量と噴射時間とに基づいて燃料噴射弁134を制御する。
 点火制御部83は、全体制御部81のほか、気筒判別部84と、角度情報生成部85と、回転数情報生成部86と、負荷情報生成部88と、水温計測部89とに接続されており、これらからの各情報を受け付ける。
 点火制御部83は、受け付けた各情報に基づいて、点火コイル300の1次側コイル(図示せず)に通電する電流量(通電角)と、通電開始時間と、1次側コイルに通電した電流を遮断する時間(点火時間)とを算出する。
 点火制御部83は、算出した通電角と、通電開始時間と、点火時間とに基づいて、点火コイル300の1次側コイルに点火信号SAを出力することで、点火プラグ200による放電制御(点火制御)を行う。
 なお、少なくとも、点火制御部83が点火信号SAを用いて点火プラグ200の点火制御を行う機能は、本発明の電子制御装置に相当する。
 図4は、内燃機関100の運転状態と点火プラグ200周囲のガス流速との関係を説明する図である。図4に示すように、一般にはエンジン回転数や負荷が高いほど、気筒150内のガス流速が高くなり、点火プラグ200周囲のガスも高流速になる。したがって、点火プラグ200の中心電極210と外側電極220の間において、ガスが高速に流れることとなる。また、排気再循環(EGR:Exhaust Gas Recirculation)が行われる内燃機関100では、エンジン回転数と負荷の関係に応じて、例えば図4に示すようにEGR率が設定される。なお、EGR率をより高く設定する高EGR領域を拡大するほど、低燃費化や低排気化を実現できるが、点火プラグ200において着火不良が生じやすくなる。
 図5は、点火プラグ200の電極間における放電路と流速の関係を説明する図である。
点火コイル300において2次側コイルに高電圧が発生し、点火プラグ200の中心電極210と外側電極220の間に絶縁破壊が生じると、これらの電極間に流れる電流が一定値以下になるまでの間、点火プラグ200の電極間に放電路が形成される。この放電路に可燃ガスが接触すると、火炎核が成長して燃焼に至る。放電路は、電極間のガス流れの影響を受けて移動するため、ガス流速が高いほど短時間で長い放電路を形成し、ガス流速が低いほど放電路が短くなる。図5(a)はガス流速が高いときの放電路211の例を示しており、図5(b)はガス流速が低いときの放電路212の例を示している。
 内燃機関100が高EGR率で運転される場合、可燃ガスが放電路と接触しても火炎核が成長する確率が下がるため、可燃ガスが放電路と接触する機会を増やす必要がある。前述のように、放電路はガスの絶縁を破壊して生成されるため、放電路の維持に必要な電流を一定とすれば、放電路の長さに応じた電力の出力が必要となる。このため、ガス流速が高い場合は、短時間で大きな電力を点火コイル300から点火プラグ200へ出力するように点火コイル300の通電制御を行い、これにより図5(a)のような長い放電路211を形成することで、より広範な空間のガスと接触機会を得ることが好ましい。一方、ガス流速が低い場合は、小さな電力を長時間の間に点火コイル300から点火プラグ200へ出力し続けるように点火コイル300の通電制御を行い、これにより図5(b)のような短い放電路212の形成を維持することで、点火プラグ200の電極付近を通過するガスとの接触機会をより長時間にわたって得ることが好ましい。
[従来の点火コイルの電気回路]
 次に、本発明の実施形態を説明する前に、従来の点火コイルについて説明する。
 図6は、本発明の比較例としての従来の点火コイル300Cを含む電気回路400Cを説明する図である。電気回路400Cにおいて、点火コイル300Cは、所定の巻き数で巻かれた1次側コイル310と、1次側コイル310よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。
 1次側コイル310の一端は、直流電源330に接続されている。これにより、1次側コイル310には、所定の電圧(例えば12V)が印加される。
 1次側コイル310の他端は、イグナイタ340に接続されており、イグナイタ340を介して接地されている。イグナイタ340には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。
 イグナイタ340のベース(B)端子は、点火制御部83に接続されている。点火制御部83から出力された点火信号SAは、イグナイタ340のベース(B)端子に入力される。イグナイタ340のベース(B)端子に点火信号SAが入力されると、イグナイタ340のコレクタ(C)端子とエミッタ(E)端子間が通電状態となり、コレクタ(C)端子とエミッタ(E)端子間に電流が流れる。これにより、点火制御部83からイグナイタ340を介して点火コイル300の1次側コイル310に点火信号SAが出力され、1次側コイル310に電流が流れて電力(電気エネルギー)が蓄積される。
 点火制御部83からの点火信号SAの出力が停止して、1次側コイル310に流れる電流が遮断されると、1次側コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。
 点火信号SAにより2次側コイル320に発生する高電圧が、点火プラグ200(中心電極210)に印加されることで、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じ、燃料(混合気)への点火(着火)が行われる。
 比較例では、点火制御部83は、以上説明したような電気回路400Cの動作により、点火信号SAを用いて点火コイル300Aの通電を制御する。これにより、点火プラグ200を制御するための点火制御を実施する。
[従来の点火コイルの放電制御]
 次に、従来の点火コイルの放電制御について説明する。図7は、従来の放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。図7のタイミングチャートは、従来の点火コイル300Cを用いてガスが高流速の場合に点火プラグ200を放電させたときの一例である。図7では、点火制御部83から出力される点火信号SAと、この点火信号SAに応じて1次側コイル310に流れる1次電流I1、点火コイル300Cに蓄積される電気エネルギーE、2次側コイル320に流れる2次電流I2、および2次側コイル320に発生する2次電圧V2との関係を示している。なお、2次電流I2と2次電圧V2の測定ポイントは、図6に示すように、点火プラグ200と点火コイル300Cの間としている。また、1次電流I1の測定ポイントは、直流電源330と点火コイル300Cの間としている。
 点火信号SAがHIGHになると、イグナイタ340が1次側コイル310を通電し、1次電流I1が上昇する。1次側コイル310の通電中は、点火コイル300C内の電気エネルギーEが時間と共に上昇する。
 その後、点火信号SAがLOWになると、イグナイタ340は1次側コイル310の通電を遮断する。これにより、2次側コイル320へ起電力が生じて、点火コイル300Cから点火プラグ200への電気エネルギーEの供給が開始される。点火プラグ200の電極間の絶縁が破壊されると、点火プラグ200の放電が開始される。このような絶縁破壊を伴う点火プラグ200の放電は、容量放電と呼ばれる。点火プラグ200の放電開始後は、点火コイル300C内の電気エネルギーEが時間と共に減少し、点火プラグ200の放電が維持される。このような絶縁破壊を伴わない点火プラグ200の放電は、誘導放電と呼ばれる。
 2次電流I2は、容量放電時に大きく上昇する。この容量放電による2次電流I2は短時間で終了する。点火プラグ200の放電が開始されて電極間に放電路が形成されると、2次電流I2は急激に低下し、その後の誘導放電時には時間と共に減少する。放電路はガスの流れと共に伸長するため、時間経過と共に2次電圧V2が上昇し、これに伴って放電路の維持に必要な電気エネルギー(放電要求エネルギー)が上昇する。一方、点火コイル300Cから点火プラグ200へ供給される電気エネルギーEは、上記のように時間と共に減少する。その結果、放電要求エネルギーが点火コイル300Cからの供給エネルギーを上回ると、放電路が維持できなくなり、放電路の吹き消えが生じる。
 ここで、点火プラグ200の放電期間は1~2msec程度と短期間のため、放電期間中の電極間のガス流れはほぼ一定と見なせる。しかし、電極自体がガス流れに対する障害物となるため、電極下流にはカルマン渦が生じる。これにより、電極の下流側では、渦の剥離に伴うガス圧力変化が一定期間ごとに生じる。そして、このガス圧力変化は放電路を不安定にするため、放電路が吹き消えるきっかけとなる。よって、図7に示すように、2次電圧V2において放電開始点Aの後に、放電継続中のガス圧力変化を表す変曲点B,C,Dと、放電路の吹き消えを表す変曲点Eとは、一定期間ごとに発生する。つまり、2次電圧V2の変曲点の周期から、次回以降の変曲点のタイミングを推定し、2次電圧V2が一定以上となったときの次の変曲点のタイミングの推定結果から、そのタイミングに合わせて点火プラグ200へ追加の電気エネルギーEが供給されるようにすれば、放電路の吹き消えが生じる確率を低減できることになる。
 また、放電路の吹き消えが生じた時点で点火コイル300C内に電気エネルギーEがまだ十分に残っている場合は、点火プラグ200において、この電気エネルギーEを用いて電極間の最短距離で放電が再開される。その結果、図7に示すように、点火プラグ200は放電路の吹き消えと再放電を繰り返すことになる。放電再開時には電極間の絶縁破壊が生じるため、電極間に流れる2次電流I2が瞬間的に高電流となり、電極材の蒸発を引き起こす。特に気筒150内のガス流動が大きい場合は、放電路の伸長が早いため吹き消えが生じやすくなり、再放電の周期が短くなって再放電回数が増加する。これは電極材の蒸発量の増加を引き起こして電極寿命の低下の原因となるため、放電期間中の吹き消えをなるべく減らすことが望まれる。
 本発明では、図6で説明した点火コイル300Cに替えて、1次側コイルを2つ有する点火コイル300を採用し、この点火コイル300に対して放電制御を行うことにより、容量放電回数を抑制した点火プラグ200の放電を実現している。
[第1の実施形態:点火コイルの電気回路]
 次に、本発明の第1の実施形態にかかる点火コイル300を含む電気回路400を説明する。
 図8は、本発明の第1の実施形態にかかる点火コイル300を含む電気回路400を説明する図である。電気回路400において、点火コイル300は、所定の巻き数でそれぞれ巻かれた2種類の1次側コイル310、360と、1次側コイル310、360よりも多い巻き数で巻かれた2次側コイル320と、を含んで構成される。ここで、点火プラグ200の点火時には、先に1次側コイル310からの電力が2次側コイル320に供給され、その電力に重ねて、1次側コイル360からの電力が2次側コイル320に供給される。そのため以下では、1次側コイル310を「主1次コイル」、1次側コイル360を「副1次コイル」とそれぞれ称する。また、主1次コイル310に流れる電流を「主1次電流」、1次副コイル360に流れる電流を「副1次電流」とそれぞれ称する。
 主1次コイル310の一端は、直流電源330に接続されている。これにより、主1次コイル310には、所定の電圧(実施の形態では、例えば12V)が印加される。
 主1次コイル310の他端は、主1次コイル310の導通状態を切り替えるためのスイッチ素子であるイグナイタ340に接続されており、イグナイタ340を介して接地されている。イグナイタ340には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。
 イグナイタ340のベース(B)端子は、点火制御部83内に設けられた点火信号出力部384に接続されている。点火信号出力部384は、イグナイタ340のオンオフを制御するための信号として、点火信号SAを出力する。点火信号出力部384から出力された点火信号SAは、イグナイタ340のベース(B)端子に入力される。イグナイタ340のベース(B)端子に点火信号SAが入力されると、イグナイタ340がオンされてコレクタ(C)端子とエミッタ(E)端子間が通電状態となり、コレクタ(C)端子とエミッタ(E)端子間に電流が流れる。これにより、点火制御部83からイグナイタ340を介して点火コイル300の主1次コイル310に点火信号SAが出力され、主1次コイル310に主1次電流が流れて電力(電気エネルギー)が蓄積される。
 点火信号出力部384からの点火信号SAの出力が停止してイグナイタ340がオフされることで、主1次コイル310に流れる主1次電流が遮断されると、主1次コイル310に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。
 副1次コイル360の一端は、主1次コイル310と共通で直流電源330に接続されている。これにより、副1次コイル360にも、所定の電圧(実施の形態では、例えば12V)が印加される。
 副1次コイル360の他端は、副1次コイル360の導通状態を切り替えるためのスイッチ素子であるイグナイタ350に接続されており、イグナイタ350を介して接地されている。イグナイタ350には、トランジスタや電界効果トランジスタ(Field Effect Transistor:FET)などが用いられる。
 イグナイタ350のベース(B)端子は、点火制御部83内に設けられた点火信号出力部384に接続されている。点火信号出力部384は、イグナイタ350のオンオフを制御するための信号として、点火信号SBを出力する。点火信号出力部384から出力された点火信号SBは、イグナイタ350のベース(B)端子に入力される。イグナイタ350のベース(B)端子に点火信号SBが入力されると、イグナイタ350がオンされてコレクタ(C)端子とエミッタ(E)端子間が点火信号SBの電圧変化に応じた通電状態となり、コレクタ(C)端子とエミッタ(E)端子間に点火信号SBの電圧変化に応じた電流が流れる。これにより、点火制御部83からイグナイタ350を介して点火コイル300の副1次コイル360に点火信号SBが出力され、副1次コイル360に副1次電流が流れて電力(電気エネルギー)が発生する。
 点火信号出力部384からの点火信号SBの出力が変化して、副1次コイル360に流れる副1次電流が変化すると、副1次コイル360に対するコイルの巻き数比に応じた高電圧が2次側コイル320に発生する。
 点火信号SAにより2次側コイル320に発生する高電圧に、点火信号SBにより2次側コイル320に発生する高電圧が加わって、点火プラグ200(中心電極210)に印加されることで、点火プラグ200の中心電極210と、外側電極220との間に電位差が発生する。この中心電極210と外側電極220との間に発生した電位差が、ガス(気筒150内の混合気)の絶縁破壊電圧Vm以上になると、ガス成分が絶縁破壊されて中心電極210と外側電極220との間に放電が生じ、燃料(混合気)への点火(着火)が行われる。
 2次側コイル320と点火プラグ200の間には、2次側コイル320に流れる2次電圧V2を検知するための電圧検知部370が設けられている。電圧検知部370は、検知した2次電圧値を、点火制御部83内に設けられた変曲点検知部381および点火信号出力部384へ送信する。
 点火制御部83には、変曲点検知部381、算出部382、予測部383および点火信号出力部384が設けられている。これらは、点火制御部83の機能としてそれぞれ実現されるものであり、図1、図3で説明したように、例えばMPU50がROM60に記憶された制御プログラムを実行することで、出力回路80において実現される。
 変曲点検知部381は、電圧検知部370が検知した2次電圧V2の微分値を計算し、この微分値が所定の閾値を超えた場合に、そのときの2次電圧V2の値を変曲点として検知する。変曲点検知部381には、点火制御部83において予め記憶された閾値情報が入力される。この閾値情報に基づいて、変曲点検知部381が変曲点を検知する際の閾値が設定される。
 算出部382は、変曲点検知部381が検知した変曲点の周期を算出する。ここでは、前述のように2次電圧V2において、カルマン渦の剥離によるガス圧力変化に応じた変曲点が一定期間ごとに発生するものとして、変曲点の周期を算出する。例えば、点火信号出力部384から主1次コイル310への点火信号SAが送信された時点を起点として、k番目(ただしkは自然数)の変曲点と次のk+1番目の変曲点との時間間隔を測定し、この時間間隔から変曲点の周期を算出する。
 予測部383は、算出部382が算出した変曲点の周期に基づいて、2次電圧V2において次回以降の変曲点が生じる時点を予測する。具体的には、最後に変曲点が検知された時点から変曲点の周期を経過した時点を、次の変曲点のタイミングとして予測する。
 点火信号出力部384は、点火信号SA,SBの出力制御を行う。点火信号SAの場合、点火信号出力部384は、内燃機関100の状態に応じて出力制御を行う。すなわち前述のように、クランク角、エンジン回転数、エンジン負荷、冷却水温度等に基づいて、点火コイル300の通電角、通電開始時間、点火時間等を算出し、これらの算出結果を用いて、点火信号SAの出力タイミングを決定する。一方、点火信号SBの場合、点火信号出力部384は、予測部383による次の変曲点の予測結果と、電圧検知部370が検知した2次電圧V2とを用いて出力制御を行う。なお、点火信号SBの具体的な出力制御方法については後述する。
 点火制御部83は、以上説明したような電気回路400の動作により、点火信号SAとSBを用いて点火コイル300の通電を制御する。これにより、点火プラグ200を制御するための点火制御を実施する。
 なお、点火信号出力部384において、点火信号SAの出力制御を行う部分と、点火信号SBの出力制御を行う部分とを別構成としてもよい。この場合、点火信号SBの出力制御を行う部分は、点火制御部83の内部に設けなくてもよい。いずれの場合であっても、当該部分は点火制御部83の制御に応じて動作するため、点火制御部83が点火コイル300の通電を制御すると言うことができる。
[第1の実施形態:点火コイルの放電制御]
 次に、本発明の第1の実施形態にかかる点火コイルの放電制御について説明する。図9は、本発明の第1の実施形態にかかる放電制御における点火コイルへ入力される制御信号と出力の関係を説明するタイミングチャートの一例を示す図である。図9のタイミングチャートは、本実施形態の点火コイル300を用いてガスが高流速の場合に点火プラグ200を放電させたときの一例である。図9では、点火信号出力部384から出力される点火信号SAと、この点火信号SAに応じて主1次コイル310に流れる主1次電流I1と、点火信号出力部384から出力される点火信号SBと、この点火信号SBに応じて副1次コイル360に流れる副1次電流I3と、点火コイル300に蓄積される電気エネルギーE、2次側コイル320に流れる2次電流I2、2次側コイル320に発生する2次電圧V2、および2次電圧V2の微分値dV2/dtとの関係を示している。なお、2次電圧V2は、図8に示すように、点火プラグ200と点火コイル300の間に設けられた電圧検知部370により検知されたものである。また、2次電圧V2の微分値dV2/dtは、前述のように、変曲点検知部381によって計算されたものである。
 点火信号SAがHIGHになると、イグナイタ340が主1次コイル310を通電し、主1次電流I1が上昇する。主1次コイル310の通電中は、点火コイル300内の電気エネルギーEが時間と共に上昇する。
 その後、点火信号SAがLOWになると、イグナイタ340は主1次コイル310の通電を遮断する。これにより、2次側コイル320へ起電力が生じて、点火コイル300から点火プラグ200への電気エネルギーEの供給が開始される。点火プラグ200の電極間の絶縁が破壊されると、点火プラグ200の放電(容量放電)が開始される。点火プラグ200の放電開始後は、点火コイル300内の電気エネルギーEが時間と共に減少し、点火プラグ200の放電(誘導放電)が維持される。
 2次電流I2および2次電圧V2は、容量放電時に大きく上昇する。この容量放電による2次電流I2および2次電圧V2の上昇は、短時間で終了する。点火プラグ200の放電が開始されて電極間に放電路が形成されると、2次電流I2と2次電圧V2はそれぞれ急激に低下する。その後の誘導放電時には、2次電流I2は時間と共に減少する。一方、放電路はガスの流れと共に伸長するため、時間経過と共に2次電圧V2が上昇する。
 点火信号SAがHIGHからLOWになって容量放電が開始された後、2次電圧V2の微分値dV2/dtが予め設定された所定の閾値dV2/dt_th以上になると、変曲点検知部381は、その時点での2次電圧V2の値を変曲点として検知する。これにより、2次電圧V2の値が放電開始点Aの経過後に閾値dV2/dt_th以上となるたびに、変曲点B,C,D,E,Fが順次検知される。
 変曲点検知部381によって2次電圧V2の変曲点B,Cが検知されると、算出部382は、変曲点Bから変曲点Cまでの時間間隔T1を算出し、この時間間隔T1を2次電圧V2の変曲周期Tとする。予測部383は、算出部382で求められた変曲周期T=T1を用いて、2次電圧V2の次の変曲点のタイミングを予測する。すなわち、変曲点Cから変曲周期T1を経過した時点で、2次電圧V2において次の変曲点Dが生じるものと推定する。
 同様に、変曲点検知部381によって変曲点Dが検知されると、算出部382は、変曲点Cから変曲点Dまでの時間間隔T2を算出し、この時間間隔T2を用いて2次電圧V2の変曲周期Tを更新する。予測部383は、算出部382で求められた変曲周期T=T2を用いて、2次電圧V2の次の変曲点のタイミングを予測する。すなわち、変曲点Dから変曲周期T2を経過した時点で、2次電圧V2において次の変曲点Eが生じるものと推定する。
 変曲点Dと変曲点Eの間で2次電圧V2の値が所定の閾値V2_thを超えると、点火信号出力部384は、直近の変曲点(ここでは変曲点D)の発生時点を基準に、少なくとも次の変曲点Eを含む期間内に点火信号SBが出力されるように、点火信号SBの送信タイミングを決定する。すなわち、変曲点Dと次の変曲点Eとの間でイグナイタ350をオンにし、変曲点E以降でイグナイタ350をオフにするように、点火信号SBをHIGHとLOWにそれぞれ変化させるタイミングを決定する。
 具体的には、直近の変曲点を検知した時点をtnとすると、点火信号SBをHIGHに変化させるタイミング(重ね放電開始時点th)と、その後に点火信号SBをLOWに戻すタイミング(重ね放電終了時点tl)とは、例えば以下の式(1)、式(2)でそれぞれ表される。
 th=tn+T-P  ・・・(1)
 tl=tn+T+p  ・・・(2)
 式(1)において、Pは副1次コイル360の通電時間を表している。この通電時間Pは、放電路の吹き消えを抑制するために副1次コイル360から点火プラグ200へ供給すべき電気エネルギー量や、副1次コイル360において蓄積可能な電気エネルギー量に応じて予め設定されている。また式(2)において、pは副1次コイル360に対する通電時間の余裕分を表している。この余裕分pは、次の変曲点のタイミングの予測結果と実際の変曲点との間にずれが生じても副1次コイル360の通電期間内に含まれるようにするため、予測部383における次の変曲点の予測精度に応じて予め設定されている。
 点火信号出力部384は、2次電圧V2の値が所定の閾値V2_thを超えると、その後に2次電流I2が低下して電極間の放電が停止するまで、上記の制御を繰り返す。これにより、変曲点E,Fに対して、上記のようにして決定した送信タイミングに従って点火信号SBがそれぞれ出力される。図9の点火信号SBにおいて、点G,Iは変曲点E,Fに対する重ね放電開始時点thをそれぞれ表し、これらは式(1)に基づいて決定される。また、点H,Jは変曲点E,Fに対する重ね放電終了時点thをそれぞれ表し、これらは式(2)に基づいて決定される。
 点火信号出力部384がイグナイタ350へ点火信号SBを出力している間、点火信号SAにより2次側コイル320に発生する高電圧に、点火信号SBにより2次側コイル320に発生する高電圧が加わる。この高電圧は点火プラグ200(中心電極210)に印加される。その結果、2次電流I2が増加して、放電路の維持が継続される。したがって、点火プラグ200において容量放電を伴う再放電(リストライク)の発生が抑制される。なお、このときの2次電流I2には、主1次コイル310により2次側コイル320に流れる電流(以下、「第1誘起電流」と言う)と、副1次コイル360により2次側コイル320に流れる電流(以下、「第2誘起電流」と言う)とが含まれる。
 図9に示されるように、2次電圧V2の変曲点では電圧値の変化が小さいため、2次電圧V2の変化から変曲点を直接検出しようとしても、必要な検出感度が得られない場合がある。そこで本実施形態では、2次電圧V2を時間微分した微分値dV2/dtを算出し、この微分値を予め定めた閾値dV2/dt_thと比較することで、2次電圧V2の変曲点を検知するようにしている。ただし、時間微分は1階微分とは限らず、必要に応じて、2階微分や3階微分を用いても良い。なお、閾値dV2/dt_thに到達するまでに、周期を算出するために必要な変曲点を検知できなかった場合には、あらかじめ定義した規定値に基づき、副次コイルへの点火タイミングを決定しても良い。
[第1の実施形態:点火コイルの放電制御フロー]
 次に、上記の放電制御を実施する際の点火制御部83による点火コイル300の制御方法を説明する。図10は、本発明の第1の実施形態にかかる点火制御部83による点火コイル300の制御方法を説明するフローチャートの一例である。本実施形態において、点火制御部83は、車両のイグニッションスイッチがONされて内燃機関100の電源が投入されると、図10のフローチャートに従って点火コイル300の制御を開始する。なお、図10のフローチャートに示す処理は、内燃機関100の1サイクル分の処理を表しており、点火制御部83は各サイクルごとに図10のフローチャートに示す処理を実施する。
 ステップS201において、点火制御部83は、点火信号SAがHIGHからLOWに変化して点火プラグ200の放電が開始されると、点火信号SBの制御を行うために動作を開始する。
 ステップS202において、点火制御部83は、内部のメモリ変数iと変曲周期の初期値を設定する。ここでは、i=1、T=0を初期値としてそれぞれ設定する。
 ステップS203において、点火制御部83内の変曲点検知部381は、電圧検知部370が検知した2次電圧V2の時間微分dV2/dtを計算し、予め定めた閾値dV2/dt_thと比較する。その結果、微分値dV2/dtが閾値dV2/dt_thを超過した場合は、現時点での2次電圧V2の値を変曲点として検知し、ステップS204へ進む。一方、微分値dV2/dtが閾値dV2/dt_th以下であれば、変曲点を検知せずにステップS209へ遷移する。
 ステップS204において、点火制御部83は、現在の時刻を、点火プラグ200の放電開始からi番目の変曲点が生じたタイミングを表す変曲時点tiとして内部メモリに記録する。
 ステップS205において、点火制御部83は、現在の変数iの値が2以上であるか否かを判定する。iが2以上であればステップS206へ進み、2未満の場合、すなわち初期値の1のままである場合はステップS208へ進む。
 ステップS206において、点火制御部83内の算出部382は、前回の変曲点から今回の変曲点までの時間間隔を算出する。ここでは、前回のステップS204でi-1番目の変曲点に対して記録された変曲時点t(i-1)と、今回のステップS204でi番目の変曲点に対して記録された変曲時点tiとの差分を求め、この差分値をi-1番目の時間間隔T(i-1)とする。
 ステップS207において、点火制御部83内の予測部383は、ステップS206で算出されたi-1番目の時間間隔T(i-1)の値を、2次電圧V2の変曲周期Tとして内部メモリに記録する。これにより、2次電圧V2においてi+1番目以降の変曲点が生じるタイミングを予測する。
 ステップS208において、点火制御部83は、変数iへ1を加算する。
 ステップS209において、点火制御部83は、電圧検知部370により検知された現在の2次電圧V2の値を、予め定めた閾値V2_thと比較する。また、ステップS204で記録した直近の変曲時点tiに対して、tn=tiとして前述の式(1)、(2)をそれぞれ適用することにより、i番目の変曲点tiに対する重ね放電開始時点thと重ね放電終了時点tlを決定し、現在の時刻がこれらの間にあるか否かを判定する。その結果、2次電圧V2の値が閾値V2_th以上であり、かつ、現在の時刻が重ね放電開始時点thと重ね放電終了時点tlの間、すなわち重ね放電期間内にある場合は、ステップS210へ進む。一方、2次電圧V2の値が閾値V2_th未満であるか、または、現在の時刻が重ね放電期間外にある場合は、ステップS211へ進む。
 ステップS210において、点火制御部83内の点火信号出力部384は、イグナイタ350へ出力する点火信号SBをHIGHにする。これにより、2次電圧V2の値が閾値V2_thを超えると、直近の変曲時点tiと次の変曲時点t(i+1)との間に、重ね放電開始時点thでイグナイタ350をオンにするように、副1次コイル360への点火信号SBを送信する。その後、ステップS203へ戻る。
 ステップS211において、点火制御部83内の点火信号出力部384は、イグナイタ350へ出力する点火信号SBをLOWにする。これにより、次の変曲時点t(i+1)以降の重ね放電終了時点tlでイグナイタ350をオフにするように、副1次コイル360への点火信号SBを送信する。その後、ステップS203へ戻る。
 ここで、上記ステップS209、S210では、2次電圧V2の値が閾値V2_th以上であるという条件と、現在の時刻が重ね放電期間内であるという条件の両方を満たしたときに、点火信号SBをHIGHにしている。したがって、重ね放電開始時点thよりも前に2次電圧V2の値が閾値V2_thを超えた場合には、重ね放電開始時点thで点火信号SBがHIGHにされ、これに応じてイグナイタ350がオンになることで、副1次コイル360から2次側コイル320への電気エネルギー供給が開始される。一方、重ね放電開始時点thよりも後に2次電圧V2の値が閾値V2_thを超えた場合には、2次電圧V2の値が閾値V2_thを超えた時点で点火信号SBがHIGHにされ、これに応じてイグナイタ350がオンになることで、副1次コイル360から2次側コイル320への電気エネルギー供給が開始される。したがってどちらの場合でも、次の変曲点に応じた適切なタイミングで、副1次コイル360から2次側コイル320への電気エネルギー供給を行うことができる。
 なお、上記実施形態では、放電期間中の電極間のガス流速を一定と仮定して次回以降の変曲点のタイミングを推定し、点火信号SBの送信タイミングを決定していたが、内燃機関100の状態によっては、この仮定が成立しない場合がある。例えば、EGR率や空気希釈が大きくなると、燃焼速度の低下に合わせて点火時期を進角させる必要がある。この場合、放電期間中の筒内容積が比較的大きく、またガスの流動状態が高流動に保たれているため、短時間でのガス流速変化やガス流れの乱れが生じやすくなり、これに伴って2次電圧V2の変曲点の周期が一定に保たれなくなる。このように、ガスの流速変化や流れの乱れが無視できない場合には、これを考慮して、例えば以下のような方法で点火信号SBの送信タイミングを決定する必要がある。
[流速変化への対応1]
 点火制御部83内の算出部382において、過去に求めた変曲点ごとの変曲周期から、最小二乗法を用いて近似線を算出し、その近似線を基に次回の変曲周期を求める。具体的には、例えば図10のステップS206において、これまでに検知された1番目からn番目までの各変曲点に対して、図11の点501~507に示すような時間間隔Ti(i=1~n-1)の値が算出されていたとする。このような場合、最小二乗法により点501~507の関係性を近似した近似直線500を算出し、i=nのときに近似直線500上にある点508の値を、n番目の変曲点から次のn+1番目の変曲点までの変曲周期Tnとして求める。すなわち、2次電圧V2におけるk番目(ただしkはk<nを満たす自然数)の変曲点とk+1番目の変曲点との時間間隔を複数のkの値についてそれぞれ測定し、測定したkの値と各時間間隔との関係性を最小二乗法により求めて、その関係性から次の変曲周期Tを算出することができる。なお、本方法では短い演算周期の間に複雑な演算が必要になるため、最小二乗法には1次の相関を用いるのが適切である。
[流速変化への対応2]
 流速の変化が不規則な場合、上記の方法では次数が増えて演算負荷が高くなるため、実用的ではなくなる。このような場合には、過去に求めた変曲点ごとの変曲周期を加重平均することで、次回の変曲周期を求めることもできる。なお、本方法において加重平均する変曲周期のサンプル数が少ない場合には、各変曲周期の重み係数をサンプル数に合わせて変化させてもよい。例えば、サンプル数が2の場合、すなわち3番目までの変曲点を検知済みであり、算出部382がこれらの時間間隔を変曲周期T1,T2として算出済みである場合は、各変曲周期の重み係数を0.5とする。また、サンプル数が3の場合、すなわち4番目までの変曲点を検知済みであり、算出部382がこれらの時間間隔を変曲周期T1,T2,T3として算出済みである場合は、各変曲周期の重み係数を0.33にする。
さらに、各変曲周期の重み係数に差をつけてもよい。例えば、古い(順番が早い)変曲点の変曲周期ほど重み係数を小さくし、反対に新しい(順番が遅い)変曲点の変曲周期ほど重み係数を大きくすることができる。
[流れの乱れへの対応1]
 筒内流動のタンブル崩壊時には、電極間の流れの乱れが強くなり、電極起因以外の原因による2次電圧V2の変曲点が生じることがある。この場合、当該変曲点を変曲周期の算出対象から除外するために、点火制御部83内の算出部382において、変曲点検知部381が検知した各変曲点のうち、ステップS206で算出した直前の変曲点との時間間隔が予め定めた最小パルス幅(周期)未満の変曲点を、以降の処理対象から除外するようにしてもよい。なお、本方法では例えばデジタルフィルタを適用することができる。
[流れの乱れへの対応2]
 また、デジタルフィルタの適用が困難な場合の簡易的な方法として、放電開始から予め定めた時間内または、予め定めた2次電圧V2、2次電流I2、3次電流I3、3次電圧V3(IGBTのVce)の範囲内では、変曲周期の算出結果に関わらず、点火信号SBを強制的にLowにしてもよい。このようにすれば、放電路の吹き消えが生じる可能性が低い状態での無駄なエネルギー消費を抑制することが可能になる。
 以上説明した本発明の実施形態によれば、以下の作用効果を奏する。
(1)電子制御装置である制御装置1は、1次側にそれぞれ配置された主1次コイル310および副1次コイル360と、2次側に配置された2次コイル320とを備えた点火コイル300の通電を制御するものである。2次コイル320に発生する2次電圧V2において、主1次コイル310への点火信号SAを送信した時点を起点にn番目(ただしnは自然数)の変曲点が生じるタイミング(変曲点Dのタイミング)をn番目の変曲時点とし、n+1番目の変曲点が生じるタイミング(変曲点Eのタイミング)をn+1番目の変曲時点としたとき、n番目の変曲時点とn+1番目の変曲時点との間に2次電圧V2が第1の所定値(閾値V2_th)を超える場合に、副1次コイル360への点火信号SBを送信する。このようにしたので、点火プラグ200によるガスへの着火不良を抑えつつ、内燃機関100における点火プラグ200の電極摩耗を抑制することができる。また、運転状態によって変曲点の周期が変動するため、所定のタイミングで点火制御する場合に比べて種々の状態に対応することが可能であるとの利点もある。
(2)副1次コイル360への点火信号SBは、副1次コイル360の一端に接続されるスイッチ素子であるイグナイタ350のオンオフを制御する信号である。制御装置1は、n番目の変曲時点とn+1番目の変曲時点との間でイグナイタ350をオンにし、n+1番目の変曲時点以降でイグナイタ350をオフにするように、副1次コイル360への点火信号を送信する。具体的には、2次電圧V2におけるk番目(ただしkはk<nを満たす自然数)の変曲点とk+1番目の変曲点から求めた変曲周期をTとし、副1次コイル360に対して予め定めた通電時間をPとしたとき、式(1)で表されるn番目の変曲時点tnからT-P経過後の時点を重ね放電開始時点thとして、この重ね放電開始時点thでイグナイタ350をオンにするように、副1次コイル360への点火信号SBを送信する(ステップS209、S210)。このようにしたので、2次電圧V2が一定以上となったときの次の変曲点のタイミングに合わせて、点火コイル300から点火プラグ200へ追加の電気エネルギーEが供給されるように、副1次コイル360に対する点火信号SBを送信することができる。したがって、電極の下流側において発生するカルマン渦の剥離に伴うガス圧力の周期的な変化による放電路の吹き消えが生じる確率を、効果的に低減することが可能となる。
(3)制御装置1は、変曲点検知部381と、算出部382と、予測部383とを備える。変曲点検知部381は、2次電圧V2の微分値dV2/dtが第2の所定値(閾値dV2/dt_th)を超えた場合に、2次電圧V2の変曲点として検知する(ステップS203)。算出部382は、変曲点検知部381が検知したk番目の変曲点とk+1番目の変曲点との時間間隔に基づいて、変曲周期Tを算出する(ステップS206)。予測部383は、算出部382が算出した変曲周期Tに基づいて、2次電圧V2においてk+2番目以降の変曲点が生じる時点を予測する(ステップS207)。このようにしたので、カルマン渦の剥離に伴うガス圧力の周期的な変化を反映して、次の変曲点のタイミングを確実に予測することができる。
(4)算出部382は、複数のkの値について時間間隔をそれぞれ測定し、測定した各時間間隔に基づいて変曲周期Tを算出することができる。例えば、最小二乗法により求めたkの値と各時間間隔との関係性または各時間間隔の加重平均に基づいて、変曲周期Tを算出することができる。このようにすれば、ガスの流速変化や流れの乱れが無視できない場合であっても、副1次コイル360に対する点火信号SBの送信タイミングを適切に決定することができる。
(5)また算出部382は、変曲点検知部381が検知した複数の変曲点のうち、直前の変曲点との時間間隔が所定値未満の変曲点を除外して、変曲周期Tを算出することもできる。このようにすれば、電極間の流れの乱れが強くなり、電極起因以外の原因による2次電圧V2の変曲点が生じるような場合であっても、副1次コイル360に対する点火信号SBの送信タイミングを適切に決定することができる。
(6)算出部382において変曲周期Tを算出する際には、k=n-1として、直近の変曲点とその前の変曲点との時間間隔から変曲周期Tを算出することができる。このようにすれば、気筒内での直近のガス状態を反映して、次の変曲点のタイミングに応じた変曲周期Tを容易かつ正確に算出することができる。
(7)制御装置1は、2次電圧V2が重ね放電開始時点thよりも前に第1の所定値を超えた場合には、重ね放電開始時点thでイグナイタ350をオンにするように、副1次コイル360への点火信号SBを送信する(ステップS209、S210)。また、2次電圧V2が重ね放電開始時点thよりも後に第1の所定値を超えた場合には、2次電圧V2が第1の所定値を超えた時点でイグナイタ350をオンにするように、副1次コイル360への点火信号SBを送信する(ステップS209、S210)。このようにしたので、いずれの場合であっても、次の変曲点に応じた適切なタイミングで副1次コイル360から2次側コイル320への電気エネルギー供給を行うことができる。
(8)制御装置1は、点火コイル300の2次側に発生する2次電圧V2における変曲点を検知し(ステップS203)、過去に変曲点を検知したタイミングに基づいて、次の変曲点のタイミングを予測する(ステップS207)。このようにしたので、カルマン渦の剥離に伴うガス圧力の周期的な変化を反映して、次の変曲点のタイミングを確実に予測することができる。
 以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 1:制御装置、10:アナログ入力部、20:デジタル入力部、30:A/D変換部、40:RAM、50:MPU、60:ROM、70:I/Oポート、80:出力回路、81:全体制御部、82:燃料噴射制御部、83:点火制御部、84:気筒判別部、85:角度情報生成部、86:回転数情報生成部、87:吸気量計測部、88:負荷情報生成部、89:水温計測部、100:内燃機関、110:エアクリーナ、111:吸気管、112:吸気マニホールド、113:スロットル弁、113a:スロットル開度センサ、114:流量センサ、115:吸気温センサ、120:リングギア、121:クランク角センサ、122:水温センサ、123:クランクシャフト、125:アクセルペダル、126:アクセルポジションセンサ、130:燃料タンク、131:燃料ポンプ、132:プレッシャレギュレータ、133:燃料配管、134:燃料噴射弁、140:燃焼圧センサ、150:気筒、151:吸気弁、152:排気弁、160:排気マニホールド、161:三元触媒、162:上流側空燃比センサ、163:下流側空燃比センサ、170:ピストン、200:点火プラグ、210:中心電極、220:外側電極、230:絶縁体、300,300C:点火コイル、310:主1次コイル、320:2次側コイル、330:直流電源、340,350:イグナイタ、360:副1次コイル、370:電圧検知部、381:変曲点検知部、382:算出部、383:予測部、384:点火信号出力部、400,400C:電気回路

Claims (10)

  1.  1次側にそれぞれ配置された主1次コイルおよび副1次コイルと、2次側に配置された2次コイルとを備えた点火コイルの通電を制御する電子制御装置であって、
     前記2次コイルに発生する2次電圧において、前記主1次コイルへの点火信号を送信した時点を起点にn番目(ただしnは自然数)の変曲点が生じるタイミングをn番目の変曲時点とし、n+1番目の変曲点が生じるタイミングをn+1番目の変曲時点としたとき、前記n番目の変曲時点と前記n+1番目の変曲時点との間に前記2次電圧が第1の所定値を超える場合に、前記副1次コイルへの点火信号を送信する電子制御装置。
  2.  請求項1に記載の電子制御装置において、
     前記副1次コイルへの点火信号は、前記副1次コイルの一端に接続されるスイッチ素子のオンオフを制御する信号であり、
     前記n番目の変曲時点と前記n+1番目の変曲時点との間で前記スイッチ素子をオンにし、前記n+1番目の変曲時点以降で前記スイッチ素子をオフにするように、前記副1次コイルへの点火信号を送信する電子制御装置。
  3.  請求項2に記載の電子制御装置において、
     前記2次電圧におけるk番目(ただしkはk<nを満たす自然数)の変曲点とk+1番目の変曲点から求めた変曲周期をTとし、前記副1次コイルに対して予め定めた通電時間をPとしたとき、前記n番目の変曲時点からT-P経過後の時点を重ね放電開始時点として、前記重ね放電開始時点で前記スイッチ素子をオンにするように、前記副1次コイルへの点火信号を送信する電子制御装置。
  4.  請求項3に記載の電子制御装置において、
     前記2次電圧の微分値が第2の所定値を超えた場合に、前記2次電圧の変曲点として検知する変曲点検知部と、
     前記変曲点検知部が検知した前記k番目の変曲点と前記k+1番目の変曲点との時間間隔に基づいて、前記変曲周期Tを算出する算出部と、
     前記算出部が算出した前記変曲周期Tに基づいて、前記2次電圧においてk+2番目以降の変曲点が生じる時点を予測する予測部と、を備える電子制御装置。
  5.  請求項4に記載の電子制御装置において、
     前記算出部は、複数のkの値について前記時間間隔をそれぞれ測定し、測定した各時間間隔に基づいて前記変曲周期Tを算出する電子制御装置。
  6.  請求項5に記載の電子制御装置において、
     前記算出部は、最小二乗法により求めた前記kの値と各時間間隔との関係性または各時間間隔の加重平均に基づいて、前記変曲周期Tを算出する電子制御装置。
  7.  請求項4に記載の電子制御装置において、
     前記算出部は、前記変曲点検知部が検知した複数の変曲点のうち、直前の変曲点との時間間隔が所定値未満の変曲点を除外して、前記変曲周期Tを算出する電子制御装置。
  8.  請求項3に記載の電子制御装置において、
     k=n-1である電子制御装置。
  9.  請求項3に記載の電子制御装置において、
     前記2次電圧が前記重ね放電開始時点よりも前に前記第1の所定値を超えた場合には、前記重ね放電開始時点で前記スイッチ素子をオンにするように、前記副1次コイルへの点火信号を送信し、
     前記2次電圧が前記重ね放電開始時点よりも後に前記第1の所定値を超えた場合には、前記2次電圧が前記第1の所定値を超えた時点で前記スイッチ素子をオンにするように、前記副1次コイルへの点火信号を送信する電子制御装置。
  10.  点火コイルの2次側に発生する2次電圧における変曲点を検知し、
     過去に前記変曲点を検知したタイミングに基づいて、次の前記変曲点のタイミングを予測する電子制御装置。
PCT/JP2021/004276 2020-05-25 2021-02-05 電子制御装置 WO2021240898A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022527507A JP7318125B2 (ja) 2020-05-25 2021-02-05 電子制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020090590 2020-05-25
JP2020-090590 2020-05-25

Publications (1)

Publication Number Publication Date
WO2021240898A1 true WO2021240898A1 (ja) 2021-12-02

Family

ID=78744244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004276 WO2021240898A1 (ja) 2020-05-25 2021-02-05 電子制御装置

Country Status (2)

Country Link
JP (1) JP7318125B2 (ja)
WO (1) WO2021240898A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038530A1 (ja) * 2011-09-14 2013-03-21 トヨタ自動車株式会社 内燃機関の点火制御装置
WO2014087504A1 (ja) * 2012-12-05 2014-06-12 トヨタ自動車株式会社 内燃機関の制御装置
WO2014115269A1 (ja) * 2013-01-23 2014-07-31 トヨタ自動車株式会社 内燃機関の点火制御装置
WO2019198119A1 (ja) * 2018-04-09 2019-10-17 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038530A1 (ja) * 2011-09-14 2013-03-21 トヨタ自動車株式会社 内燃機関の点火制御装置
WO2014087504A1 (ja) * 2012-12-05 2014-06-12 トヨタ自動車株式会社 内燃機関の制御装置
WO2014115269A1 (ja) * 2013-01-23 2014-07-31 トヨタ自動車株式会社 内燃機関の点火制御装置
WO2019198119A1 (ja) * 2018-04-09 2019-10-17 日立オートモティブシステムズ阪神株式会社 内燃機関用点火装置

Also Published As

Publication number Publication date
JP7318125B2 (ja) 2023-07-31
JPWO2021240898A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
US11802534B2 (en) Control device for internal combustion engine
WO2021106520A1 (ja) 内燃機関用制御装置
JP6893997B2 (ja) 内燃機関の制御装置および内燃機関の制御方法
JP2019210827A (ja) 内燃機関用制御装置
WO2021240898A1 (ja) 電子制御装置
JP7077420B2 (ja) 内燃機関用制御装置
JP7270040B2 (ja) 内燃機関用制御装置
JP6931127B2 (ja) 内燃機関用制御装置
JP7330383B2 (ja) 電子制御装置
JP6906106B2 (ja) 内燃機関用制御装置
JP7212177B2 (ja) 内燃機関用制御装置
JP7324384B2 (ja) 筒内圧力検出方法、筒内圧センサ診断方法及び内燃機関制御装置
JP7247364B2 (ja) 内燃機関用制御装置
WO2022123861A1 (ja) 内燃機関制御装置
WO2023223488A1 (ja) 内燃機関制御装置及び内燃機関制御方法
WO2023084573A1 (ja) 内燃機関の点火装置、電子制御装置、及び内燃機関の制御方法
JPH09144591A (ja) 内燃機関の燃料性状検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814257

Country of ref document: EP

Kind code of ref document: A1