WO2021240448A1 - Electrolytic solution for secondary battery, and secondary battery comprising same - Google Patents

Electrolytic solution for secondary battery, and secondary battery comprising same Download PDF

Info

Publication number
WO2021240448A1
WO2021240448A1 PCT/IB2021/054671 IB2021054671W WO2021240448A1 WO 2021240448 A1 WO2021240448 A1 WO 2021240448A1 IB 2021054671 W IB2021054671 W IB 2021054671W WO 2021240448 A1 WO2021240448 A1 WO 2021240448A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carbonate
secondary battery
electrolyte
group
Prior art date
Application number
PCT/IB2021/054671
Other languages
French (fr)
Korean (ko)
Inventor
김동윤
박정현
김형락
Original Assignee
동화일렉트로라이트 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동화일렉트로라이트 주식회사 filed Critical 동화일렉트로라이트 주식회사
Publication of WO2021240448A1 publication Critical patent/WO2021240448A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Electrolyte for secondary battery and field of invention of secondary battery comprising same
  • the present invention relates to electrolyte for secondary battery and secondary battery including the same, and more specifically, to lithium ion secondary battery It relates to a non-aqueous electrolyte solution for a secondary battery having the effect of improving lifespan and high-temperature storage characteristics by adding a salt represented by Formula 1 or Formula 2 to an aqueous electrolyte solution, and a secondary battery including the same.
  • BACKGROUND ART Recently, portable electronic devices have been widely distributed, and accordingly, these portable electronic devices are becoming thinner, smaller, and lighter.
  • Secondary batteries include a lead-acid battery, nickel-cadmium ( ⁇ (1) battery, nickel-hydrogen ⁇ ) battery, lithium battery, etc., depending on the material or positive electrode (0 ⁇ 110(16) material.
  • lithium secondary batteries have high energy density due to the low oxidation/reduction potential and molecular weight of lithium, so they are widely used as a driving power source for portable electronic devices such as notebooks, camcorders, or mobile phones.
  • the positive electrode active material of the non-aqueous electrolyte secondary battery is made of lithium and/or lithium-containing metal oxide capable of occluding and releasing lithium and/or lithium ions, such a positive electrode Active material is overcharged 2021/240448 1» (When 1'/18201/054671 lithium is released, it is transformed into a thermally unstable structure.
  • Japanese Patent Application Laid-Open No. 2013-157305 discloses an electrolyte solution containing a compound having two isocyanate groups
  • Korean Patent No. 10-0412522 discloses di-_butylsilylbis (tri Fluoromethane sulfonate), trimethylsilylmethanesulfonate, trimethylsilylbenzenesulfonate, trimethylsilyl trifluoromethanesulfonate, triethylsilyl trifluoromethanesulfonate, etc.
  • An object of the present invention is to provide a non-aqueous electrolyte for a secondary battery with improved lifespan characteristics at room temperature and high temperature and output characteristics before and after high temperature.
  • Another object of the present invention is to provide a secondary battery having excellent lifespan characteristics at room temperature and high temperature and output characteristics before and after high temperature.
  • (Si lithium salt; ) Non-aqueous organic solvent; And (0 provides a non-aqueous electrolyte for a secondary battery comprising at least one additive selected from the group consisting of salts represented by Formulas 1 and 2.
  • the seed is an alkenyl group having 2 to 9 carbon atoms
  • the present invention also provides (3) a positive electrode comprising a positive electrode active material capable of occluding and discharging lithium; (A negative electrode comprising a negative electrode active material capable of intercalating and releasing lithium; ((:) the electrolyte solution for the secondary battery; and (!) provides a secondary battery including a separator.
  • the present invention provides a non-aqueous organic solvent (0 compound represented by Formula 1 and a salt represented by Formula 2) It provides a non-aqueous electrolyte for a secondary battery comprising at least one additive selected from the group consisting of [Formula 1] 2021/240448 1 ⁇ (:1 ⁇ 2021/054671
  • urea is an alkenyl group having 2 to 9 carbon atoms, o
  • M + is imidazolium, pyridinium,
  • a positive electrode comprising a positive electrode active material capable of occluding and discharging lithium
  • a negative electrode comprising an anode active material capable of occluding and releasing lithium
  • the electrolyte solution for the secondary battery and (d) relates to a secondary battery comprising a separator.
  • the non-aqueous electrolyte for a secondary battery according to the present invention is (A) a lithium salt; (B) non-aqueous 2021/240448 1 ⁇ (:1 ⁇ 2021/054671 organic solvent; and ⁇ ) may include one or more additives selected from the group consisting of salts represented by Chemical Formulas 1 and 2. [Formula 1] [Formula 2] o
  • a key is an alkenyl group having 2 to 9 carbon atoms
  • M + is imidazolium, pyridinium, pyrrolidinium, ammonium, phosphonium ) or sulfonium (su 1fonium).
  • the alkenyl group having 2 to 9 carbon atoms may include, but is not limited to, vinyl, allyl, 1-butenyl, 2-butenyl, 3-butenyl and isobutenyl groups.
  • the compound represented by Formula 1 is triethylammonium ethenesulfonate (1:) 3 ⁇ 4 ⁇ 13 ⁇ 4111111011 ⁇ 1111 Ethenesulfonate 2-ethyl 4-methyl imidazolium ( ]16]16311 0]1 6 2- ]3 ⁇ 4, 1 4_11161:]3 ⁇ 4, 1 (13 ⁇ 4 01 ⁇ 1111), a compound represented by Formula 1-2 Ethenesulfonate -methyl-2 -pyrrolidinium ( 116116311 011 6 - 1 1: ]3 ⁇ 4 ⁇ 1-2 0'01 1111 ⁇ ) as a compound represented by 1-3 or 1-to as a compound represented by Formula 1_4
  • Tenyl-111-imidazole- 3-ium ethenesulfonate (1_61:11613 ⁇ 4, 1-:na1-:11 (13 ⁇ 4 01-3 - : ⁇ 116116311 011 6) is preferably
  • the compound represented by Formula 2 is triethylammonium which is a compound represented by Formula 2 - 1 ⁇ ) 1103 to 11011 6), 2-ethyl-4 -methyl- 111-, which is a compound represented by Formula 2-2 vinylphosphonate) , 1-methyl-2oxopyrrolidine-!-um vinylphosphonate (1,61:]3 ⁇ 4,1-2-( «(3 ⁇ 4)71,1,01 111, a compound represented by Formula 2_3 -1-:1) ⁇ ⁇ 13 ⁇ 4, 1]]]]]]]] 103]]]] 1011 6) or 1-vinyl-111-imidazole-2-um vinylphosphonate (1- ⁇ 171-1 ⁇ 1-; [1111(13201-3-; [ ⁇ ⁇ 1711)11031)11011 6) is preferably used, but is not limited thereto.
  • it may further include one or more life performance enhancing additives selected from the group consisting of compounds represented by the following Chemical Formula Show-1, Chemical Formula / ⁇ 2 and Chemical Formula / ⁇ 3.
  • Chemical Formula Show-1 11 1 0 1) 011 6 ) 2021/240448 1 ⁇ (:1 ⁇ 2021/054671 vinyl ethylene carbonate)
  • At least one selected from the group consisting of compounds represented by Chemical Formula 0-1, Chemical Formula 0-2, Chemical Formula 0-3, and Chemical Formula 04 may further include an additive for improving performance.
  • One or more high temperature and output performance enhancing additives selected from the group consisting of compounds represented by -4 may be additionally included.
  • the lithium salt used as the solute of the electrolyte is Ni 1 ? 6 , Knee 8?4, Knee 3 ⁇ 43 ⁇ 4, 110104 Knee.23 ⁇ 4302)2 Knee 3 ⁇ 4302)2, ⁇ 0 3 Knee and It may be one or more types selected from the group consisting of 2021/240448 1» (G 1'/18201/054671 Ni 03 ⁇ 4302)3.
  • the concentration of lithium salt is
  • These lithium salts act as a source of lithium ions in the battery to enable the operation of a basic lithium secondary battery.
  • the non-aqueous organic solvent may be at least one selected from the group consisting of linear carbonate, cyclic carbonate, linear ester and cyclic ester, and the linear carbonate is dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl Propyl carbonate, ethyl propyl carbonate, ethyl methyl carbonate, and at least one carbonate selected from the group consisting of mixtures thereof, the cyclic carbonate is ethylene carbonate (ethyl carbonate, EC), propylene carbonate (propylene carbonate, PC), 1, 2 -Butylene carbonate;
  • the non-aqueous organic solvent is a mixture of a linear carbonate solvent and a cyclic carbonate solvent.
  • the mixing volume ratio of the linear carbonate solvent: the cyclic carbonate solvent may be 1:1 to 9:1, preferably 1.5:1 to 4:1 It can be used by mixing in a volume ratio of
  • the content of one or more additives selected from the group consisting of the compound represented by Formula 1 or the compound represented by Formula 2 is 0.01 to 10% by weight, preferably 0.01 to 5% by weight, based on the non-aqueous electrolyte; More preferably, it can be added in an amount of 0.1 to 1% by weight, and when it is less than 0.01% by weight, there is a problem in that high-temperature battery characteristics are deteriorated, and when it exceeds 10% by weight, there is a problem in that the ionic conductivity is lowered.
  • the electrolyte of the lithium ion secondary battery of the present invention usually maintains stable characteristics in a temperature range of -20 to 501.
  • the electrolyte of the present invention may be applied to a lithium ion secondary battery, a lithium ion polymer battery, and the like.
  • a positive electrode material for a lithium secondary battery in the present invention you 0) 02, your ⁇ 02, needle 02, needle 20 4, or you ⁇ - control (0 ⁇ 1, 0 ⁇ 7 ⁇ 1, 0 ⁇ +7 ⁇ 1, Eun Si, , Yo,
  • a lithium metal oxide such as La) is used, and a crystalline or amorphous carbon, carbon composite, lithium metal, or lithium alloy is used as the negative electrode material.
  • the active material is applied to the current collector of a thin plate with an appropriate thickness and length, or the active material itself is coated in a film shape and wound or laminated together with a separator, which is an insulator, to make an electrode group, and then placed in a can or similar container, followed by trialkyl
  • a lithium ion secondary battery is manufactured by injecting a non-aqueous electrolyte containing silyl sulfate and a phosphite-based stabilizer.
  • the separator polyethylene, polypropylene, etc.
  • Example 1 LiNiuCotoMnto ⁇ as a positive electrode active material, polyvinylidene fluoride (PVdF) as a binder, and carbon black as a conductive material were mixed in a weight ratio of 95.6:2.2:2.2, then N-methyl-2-pyrrole A positive electrode slurry was prepared by dispersing it in money. This slurry was coated on an aluminum foil having a thickness of 20/ffli, dried and rolled to prepare a positive electrode.
  • PVdF polyvinylidene fluoride
  • a negative active material slurry was prepared by mixing natural graphite as an anode active material, acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 85:8:7 and dispersing it in N-methyl-2-pyrrolidone. did This slurry was coated on a thick copper foil, dried and rolled to prepare a negative electrode.
  • PE polyethylene
  • a lithium secondary battery was prepared by injecting the following non-aqueous electrolyte solution.
  • the electrolyte is ethylene carbonate (EC): ethylmethyl carbonate (EMC) 2021/240448 1» (The 1'/18201/054671 mixed solvent (3: 7 volume ratio) is dissolved in 1 ⁇ 6 to 1. Then, triethylammonium ethenesulfone ] 16116311 011 6) It was prepared by adding 0.1% by weight.
  • Example 2 Triethylammonium ethenesulfone in electrolyte for secondary battery of Example 1 ]16116311 011 6) A lithium secondary battery was manufactured in the same manner except for adding 0.3% by weight.
  • Example 3 Triethylammonium ethenesulfone in the electrolyte for a secondary battery of Example 1 ]16116311 011 6) A lithium secondary battery was manufactured in the same manner except for adding 0.5 wt%. Comparative Example 1 Triethylammonium ethenesulfone in the electrolyte for secondary batteries of Example 1 ] A lithium secondary battery was manufactured in the same manner except that 16116311 011 6) was not added.
  • Comparative Example 2 A lithium secondary battery was prepared in the same manner except for adding 0.1 wt% of 1,3-propane sultone (1,3_1)1'(3 ⁇ 4)3116 31111:0116) to the electrolyte solution for a secondary battery of Example 1 2021/240448 1» (The 1'/18201/054671 was manufactured.
  • Comparative Example 3 A lithium secondary battery was prepared in the same manner except for adding 0.3% by weight of .3-propane sultone (1,3_]]1,(3 ⁇ 4)3116 31111:0116) to the electrolyte solution for secondary batteries of Example 1. manufactured.
  • Comparative Example 4 .3-propane in the electrolyte solution for secondary batteries of Example 1 31111:0116
  • a lithium secondary battery was prepared in the same manner except for adding 0.5 wt%.
  • Comparative Example 5 .3-propane in the electrolyte solution for secondary batteries of Example 1 31111:0116
  • a lithium secondary battery was prepared in the same manner except for adding 2% by weight.
  • the thickness of the cell was measured and expressed as a percentage compared to the initial thickness.
  • EIS After charging 1C up to 4., apply an AC signal of 10mV to adjust the voltage frequency.
  • DC-IR The same method as for physical property evaluation 2, but after charging at 1C until 4. and then discharging to S0C50, the evaluation was performed and the percentage compared to the initial DC-IR was indicated.
  • Retention, Recovery capacity After charging up to 1C , store at high temperature (70 ° C) for 7 days, discharge at 1C, 2.75V to measure retention capacity (discharge capacity), again
  • the recovery capacity (discharge capacity) was measured and expressed as a percentage compared to the initial discharge capacity.
  • Example 22 In the electrolyte for a secondary battery of Example 1, triethylammonium ethenesulfonate (1:1 61:]1 1...)]! ⁇ 116116311 011 6) instead of ethenesulfonate 2 ethyl 4-methyl imidazolium ( ]16]16311 0]1 6 2- ]3 ⁇ 4, 1 4_11161:]3 ⁇ 4, 1 1!1 (13 ⁇ 4 011 ⁇ , Formula 1-2) Performed in the same manner as in Example 1, except for adding 0.1 wt%
  • Example 23 In the electrolyte solution for secondary batteries of Example 1, triethylammonium ethenesulfonate (1:1 61:]1 1 ⁇ )]! ⁇ 116116311 011 6) instead of ethenesulfonate-methyl-2-p Rollidinium ( ]16]1631G 0]1 6 161:]3 ⁇ 4,
  • Example 24 2021/240448 1 ⁇ (:1 ⁇ 2021/054671
  • 1-ethenyl-1H-imidazole-3 -ium ethenesulfonate (l -ethenyl-lH-imidazol-3-ium ethenesulfonate, Formula 1-4)
  • 0.1 wt% was added
  • Example 25 Triethylammonium in the electrolyte for a secondary battery of Example 1 It was carried out in the same manner as in Example 1, except that 0.1 wt% of triethylammonium vinylphosphonate (Formula 2-1) was added instead of ethenesulfonate (triethylammonium ethenesulfonate).
  • Example 28 Triethylammonium in the electrolyte for a secondary battery of Example 1 Instead of 1-vinyl-in-imidazole-2 -um vinylphosphonate (11 1-in- ⁇ 3201-3 - ⁇ ⁇ ⁇ 13 ⁇ 4, 1! 11031) 11011 6, Formula 2 4) 0.1 wt% Except for the addition, it was carried out in the same manner as in Example 1.
  • Example 1 showed excellent performance in high temperature storage evaluation, and as in Examples 4 to 21, when the life performance enhancing additive, high temperature improving additive, and output improving additive were additionally added, the battery performance was further improved. Examples 5 to 7, in which the life performance improving additive was additionally added, improved life efficiency compared to Example 1.
  • Examples 8 to 13 in which the high-temperature performance-improving additive was additionally added, improved seedlings after high-temperature storage compared to Example 1, and cell swelling was more suppressed.
  • Examples 18 to 21 in which an additive in the form of a salt that improves both high temperature and Joule force performance was additionally added, cell swelling after storage at a higher temperature than Example 1 was suppressed, and EIS and output It has a very good performance effect.
  • the non-aqueous electrolyte according to the present invention has improved lifespan characteristics and high temperature storage characteristics at room temperature and high temperature by adding a salt represented by Formula 1 or Formula 2 2021/240448 1» (That 1'/18201/054671 has an effect. Since a specific part of the present invention has been described in detail above, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. will be. Accordingly, the substantial scope of the present invention will be defined by the claims and their equivalents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a non-aqueous electrolytic solution for a secondary battery, and a secondary battery comprising same. Adding a salt represented by chemical formula 1 or chemical formula 2 to a non-aqueous electrolytic solution for a secondary battery according to the present invention has the effect of improving lifespan characteristics and high-temperature storage characteristics.

Description

2021/240448 1»(그1’/182021/054671 이차전지용 전해액 및 이를 포함하는 이차전지 발명의 분야 본 발명은 이차전지용 전해액 및 이를 포함하는 이차전지에 관한 것으로서, 더욱 상세하게는 리튬이온 이차전지용 비수성 전해액에 화학식 1 또는 화학식 2로 표시되는 염을 첨가함으로써 수명과 고온 저장 특성을 향상시키는 효과가 있는 이차전지용 비수성 전해액 및 이를 포함하는 이차전지에 관한 것이다. 배경기술 최근 휴대전자기기들이 광범위하게 보급되고 있고, 이에 따라 이러한 휴대전자 기기들이 박막화, 소형화 및 경량화 되고 있다. 이에 따라 그 전원으로 사용되는 이차전지도 소형으로 경량이면서 장시간 충방전이 가능하며 고율특성을 높이고자 하는 노력이 집중되고 있다. 이차전지는 음극 ( 재료나 양극 (0^110(16) 재료에 따라 납축전지, 니켈-카드뮴 (附 (1) 전지, 니켈-수소 卜·) 전지, 리튬 전지 등이 있으며, 전극 재료의 고유특성에 의해 전위와 에너지 밀도가 결정된다. 이 중에서도 리튬 이차전지는 리튬의 낮은 산화/환원 전위와 분자량으로 인해 에너지 밀도가 높기 때문에 노트북, 캠코더 또는 휴대폰 등의 휴대용 전자기기의 구동 전원으로 많이 사용되고 있다. 그러나 리튬 이차전지는 연속 충전 시 발생되는 전지의 안전성 저하가 큰 문제가 된다. 전지의 안정성에 영향을 미칠 수 있는 원인 중의 하나는 양극의 구조 붕괴에 따른 발열로, 이차전지 그 중에서도 비수전해액 이차전지의 작용 원리에 따른 전지 안정성에 대해 살펴보면 다음과 같다. 즉, 비수전해액 이차전지의 양극활 물질은 리튬 및/또는 리튬 이온을 흡장 및 방출할 수 있는 리튬 함유 금속 산화물 등으로 이루어지는데, 이와 같은 양극활 물질은 과충전 2021/240448 1»(그1’/182021/054671 시 리튬이 다량 이탈됨에 따라 열적으로 불안정한 구조로 변형된다. 이러한 과충전 상태에서 외부의 물리적 충격, 예컨대 고온 노출 등으로 인하여 전지 온도가 임계 온도에 이르면 불안정한 구조의 양극활 물질로부터 산소가 방출되게 되고, 방출된 산소는 전해액 용매 등과 발열 분해 반응을 일으키게 된다. 특히, 양극으로부터 방출된 산소에 의하여 전해액의 연소는 더욱 가속화되므로, 이러한 연쇄적인 발열 반응에 의하여 열 폭주에 의한 전지의 발화 및 파열 현상이 초래된다. 또한, 음극에 석출한 양극 전이금속이 비수전해질의 분해를 촉진하는 촉매로 작용하여 전지 내부에 가스를 발생시키거나 음극의 층이 충/방전이 진행됨에 따라 리튬이온의 이동을 방해하는 등의 문제점으로 인해 전지성능 및 효율이 현저히 감소된다. 따라서 상기와 같은 문제점들을 해결하기 위해 일본공개특허 제 2013- 157305호에 2개의 이소시아네이트기를 가지는 화합물을 포함하는 전해액을 개시하고 있으며, 대한민국등록특허 제 10-0412522호에 디- _ 부틸실릴비스(트리플루오로메탄 설포네이트), 트리메틸실릴메탄설포네이트, 트리메틸실릴 벤젠설포네이트, 트리메틸실릴 트리플루오로메탄설포네이트, 트리에틸실릴 트리플루오로메탄설포네이트 등을 포함하는 전해액을 제안하고 있으나, 여전히 수명특성과 고온 저장 특성이 우수한 전해액에 대한 연구가 요구되고 있는 실정이다. 현재, 이차전지의 수명특성과 고온 저장 특성을 개선할 수 있는 첨가제의 개발이 요구되고 있는 실정이다. 이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 비수성 전해액에 알케닐설포네이트 염 또는 알케닐포스포네이트 염을 첨가할 경우, 수명특성 및 고온 저장 특성을 향상시킬 수 있는 것을 확인하고 본 발명을 완성하게 되었다. 2021/240448 1»(그1’/182021/054671 발명의 요약 본 발명의 목적은 상온 및 고온에서의 수명특성과 고온 전후의 출력특성이 향상된 이차전지용 비수성 전해액을 제공하는데 있다. 본 발명의 다른 목적은 상온 및 고온에서의 수명특성과 고온 전후의 출력특성이 우수한 이차전지를 제공하는데 있다. 상기 목적을 달성하기 위하여, (시 리튬염 ; ) 비수성 유기용매 ; 및 (0 화학식 1 및 화학식 2 로 표시되는 염으로 구성된 군에서 선택되는 1 종 이상의 첨가제를 포함하는 이차전지용 비수성 전해액을 제공한다. [화학식 1] 2021/240448 1» (1'/18201/054671 Electrolyte for secondary battery and field of invention of secondary battery comprising same The present invention relates to electrolyte for secondary battery and secondary battery including the same, and more specifically, to lithium ion secondary battery It relates to a non-aqueous electrolyte solution for a secondary battery having the effect of improving lifespan and high-temperature storage characteristics by adding a salt represented by Formula 1 or Formula 2 to an aqueous electrolyte solution, and a secondary battery including the same. BACKGROUND ART Recently, portable electronic devices have been widely distributed, and accordingly, these portable electronic devices are becoming thinner, smaller, and lighter. Accordingly, the secondary battery used as the power source is also small, lightweight, and capable of being charged and discharged for a long time, and efforts to improve high-rate characteristics are being concentrated. Secondary batteries include a lead-acid battery, nickel-cadmium (附 (1) battery, nickel-hydrogen 卜·) battery, lithium battery, etc., depending on the material or positive electrode (0^110(16) material. Among them, lithium secondary batteries have high energy density due to the low oxidation/reduction potential and molecular weight of lithium, so they are widely used as a driving power source for portable electronic devices such as notebooks, camcorders, or mobile phones. However, lithium secondary batteries are a major problem in the safety degradation that occurs during continuous charging.One of the causes that can affect the stability of the battery is heat generation due to the structural collapse of the positive electrode, and among secondary batteries, non-aqueous electrolyte secondary batteries The battery stability according to the principle of operation is as follows: That is, the positive electrode active material of the non-aqueous electrolyte secondary battery is made of lithium and/or lithium-containing metal oxide capable of occluding and releasing lithium and/or lithium ions, such a positive electrode Active material is overcharged 2021/240448 1» (When 1'/18201/054671 lithium is released, it is transformed into a thermally unstable structure. In this overcharged state, when the battery temperature reaches a critical temperature due to an external physical shock, for example, exposure to high temperature, oxygen is released from the positive electrode active material having an unstable structure, and the released oxygen causes an exothermic decomposition reaction with an electrolyte solvent and the like. In particular, since the combustion of the electrolyte is further accelerated by the oxygen released from the positive electrode, the battery fires and bursts due to thermal runaway by such a chain exothermic reaction. In addition, the positive transition metal deposited on the negative electrode acts as a catalyst for accelerating the decomposition of the non-aqueous electrolyte, generating gas inside the battery, or interfering with the movement of lithium ions as the negative electrode layer is charged/discharged. As a result, battery performance and efficiency are significantly reduced. Therefore, in order to solve the above problems, Japanese Patent Application Laid-Open No. 2013-157305 discloses an electrolyte solution containing a compound having two isocyanate groups, and Korean Patent No. 10-0412522 discloses di-_butylsilylbis (tri Fluoromethane sulfonate), trimethylsilylmethanesulfonate, trimethylsilylbenzenesulfonate, trimethylsilyl trifluoromethanesulfonate, triethylsilyl trifluoromethanesulfonate, etc. have been proposed, but still life characteristics There is a need for research on electrolytes with excellent high-temperature and high-temperature storage characteristics. Currently, there is a demand for the development of additives capable of improving the lifespan characteristics and high-temperature storage characteristics of secondary batteries. Accordingly, the present inventors have made diligent efforts to solve the above problems, and when an alkenyl sulfonate salt or an alkenyl phosphonate salt is added to the non-aqueous electrolyte, the lifespan characteristics and high temperature storage characteristics can be improved, and The present invention has been completed. 2021/240448 1» (Part 1'/18201/054671 Summary of Invention An object of the present invention is to provide a non-aqueous electrolyte for a secondary battery with improved lifespan characteristics at room temperature and high temperature and output characteristics before and after high temperature. Another object of the present invention is to provide a secondary battery having excellent lifespan characteristics at room temperature and high temperature and output characteristics before and after high temperature. In order to achieve the above object, (Si lithium salt; ) Non-aqueous organic solvent; And (0 provides a non-aqueous electrolyte for a secondary battery comprising at least one additive selected from the group consisting of salts represented by Formulas 1 and 2. [Formula 1]
+
Figure imgf000004_0001
― 0 一 - +
+
Figure imgf000004_0001
― 0 一 - +
000-關=1 000-關=1
[화학식 2] 民 화학식 1 또는 화학식 2에서 묘은 탄소수 2 내지 9의 알케닐 그룹이고,[Formula 2] Min In Formula 1 or Formula 2, the seed is an alkenyl group having 2 to 9 carbon atoms,
¾[+는 이미다졸륨( 11111(13201 ᅵ·),
Figure imgf000004_0002
피롤리디늄 1'1'01 1·) , 암모늄(■111011 !■) , 포스포늄(]〕]1031)]101111·) 또는 2021/240448 1»(그1’/182021/054671 설포늄 ( 1 0111 ■)이다 . 본 발명은 또한, (3) 리튬을 흡장 및 방출할 수 있는 양극활물질을 포함하는 양극 ; ( 리튬을 흡장 및 방출할 수 있는 음극활물질을 포함하는 음극 ; ((:) 상기 이차전지용 전해액 ; 및 ((!) 분리막을 포함하는 이차전지를 제공한다 . 발명의 상세한 설명 및 구체적인 구현예 다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명 이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다 . 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다 . 본 발명에서는 이차전지의 비수성 전해액에 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 염으로 구성된 군에서 선택되는 1종 이상의 첨가제를 첨가함으로써 이차전지의 상온 수명과 출력 특성을 현저히 상승시키는 것을 확인하였다 . 따라서, 본 발명은 일 관점에서, (시 리튬염 ; ) 비수성 유기용매 ; (0 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 염으로 구성된 군에서 선택되는 1종 이상의 첨가제를 포함하는 이차전지용 비수성 전해액을 제공한다 . [화학식 1] 2021/240448 1^(:1^ 2021/054671
¾ [ + is imidazolium ( 11111 (13201 ᅵ ·),
Figure imgf000004_0002
pyrrolidinium 1'1'01 1·) , ammonium (■111011 !■) , phosphonium (]]]1031)]101111·) or 2021/240448 1» (that 1'/18201/054671 sulfonium ( 1 0111 ■) . The present invention also provides (3) a positive electrode comprising a positive electrode active material capable of occluding and discharging lithium; (A negative electrode comprising a negative electrode active material capable of intercalating and releasing lithium; ((:) the electrolyte solution for the secondary battery; and (!) provides a secondary battery including a separator. Detailed description of the invention and specific embodiments Other formula Unless defined as, all technical and scientific terms used herein have the same meaning as commonly understood by a person skilled in the art to which the present invention belongs. In the present invention, by adding at least one additive selected from the group consisting of the compound represented by Formula 1 and the salt represented by Formula 2 to the non-aqueous electrolyte of a secondary battery, the secondary battery Therefore, in one aspect, the present invention provides a non-aqueous organic solvent (0 compound represented by Formula 1 and a salt represented by Formula 2) It provides a non-aqueous electrolyte for a secondary battery comprising at least one additive selected from the group consisting of [Formula 1] 2021/240448 1^(:1^ 2021/054671
O O
R — S II — O |y]÷ o II R — S II — O y] ÷ o II
[화학식 2] [Formula 2]
+ 화학식 1 또는 화학식 2에서 요은 탄소수 2 내지 9의 알케닐 그룹이고, o + In Formula 1 or Formula 2, urea is an alkenyl group having 2 to 9 carbon atoms, o
M+는 이미다졸륨(imidazolium) , 피리디늄(pyridinium) , M + is imidazolium, pyridinium,
OOP MNL + 피롤리디늄(pyrrolidinium), 암모늄 (ammonium), 포스포늄 (phosphonium) 또는 설포늄(su 1fonium )이다. 본 발명은 다른 관점에서 , (a) 리튬을 흡장 및 방출할 수 있는 양극활물질을 포함하는 양극; (b) 리튬을 흡장 및 방출할 수 있는 음극활물질을 포함하는 음극; (c) 상기 이차전지용 전해액 ; 및 (d) 분리막을 포함하는 이차전지에 관한 것이다. 이하, 본 발명을 상세하게 설명한다. 본 발명에 의한 이차전지용 비수성 전해액은 (A) 리튬염 ; (B) 비수성 2021/240448 1^(:1^ 2021/054671 유기용매 ; 및 犯) 화학식 1 및 화학식 2로 표시되는 염으로 구성된 군에서 선택되는 1종 이상의 첨가제를 포함할 수 있다. [화학식 1]
Figure imgf000007_0001
[화학식 2] o
OOP MNL + pyrrolidinium (pyrrolidinium), ammonium (ammonium), phosphonium (phosphonium) or sulfonium (su 1fonium ). In another aspect, the present invention, (a) a positive electrode comprising a positive electrode active material capable of occluding and discharging lithium; (b) a negative electrode comprising an anode active material capable of occluding and releasing lithium; (c) the electrolyte solution for the secondary battery; And (d) relates to a secondary battery comprising a separator. Hereinafter, the present invention will be described in detail. The non-aqueous electrolyte for a secondary battery according to the present invention is (A) a lithium salt; (B) non-aqueous 2021/240448 1^ (:1^ 2021/054671 organic solvent; and 犯) may include one or more additives selected from the group consisting of salts represented by Chemical Formulas 1 and 2. [Formula 1]
Figure imgf000007_0001
[Formula 2] o
OOFyNI 화학식 1 또는 화학식 2에서 요은 탄소수 2 내지 9의 알케닐 그룹이고, M+는 이미다졸륨(imidazolium) , 피리디늄(pyridinium) , 피롤리디늄(pyrrolidinium) , 암모늄 (ammonium) , 포스포늄 (phosphonium) 또는 설포늄(su 1fonium )이다. 본 발명에 있어서 , 탄소수 2 내지 9의 알케닐기는 비닐 , 알릴 , 1-부테닐 , 2 -부테닐 , 3 -부테닐 및 이소부테닐기 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 2021/240448 1^(:1^ 2021/054671 본 발명에 있어서 , 상기 화학식 1로 표시되는 화합물은 화학식 1-1로 표시되는 화합물인 트리에틸암모늄 에텐설포네이트( 1:]¾^1¾111111011八1111
Figure imgf000008_0001
화학식 1-2로 표시되는 화합물인 에텐설포네이트 2 -에틸 4 - 메틸 이미다졸륨( ]16]16311 0]1 6 2- ]¾,1 4_11161:]¾,1 (1¾ 01八1111) , 화학식 1-3로 표시되는 화합물인 에텐설포네이트 -메틸- 2 -피롤리디늄( 116116311 011 6 - 1 1:]¾^1-2 0'01 1111·) 또는 화학식 1_4로 표시되는 화합물인 1 -에테닐- 111- 이미다졸- 3 -윰 에텐설포네이트(1_61:1161¾,1-:나1-:11 (1¾ 01-3 - :ᅡ· 116116311 011 6)가 바람직하게 사용되나, 이에 한정되는 것은 아니다.
OOFyNI In Formula 1 or Formula 2, a key is an alkenyl group having 2 to 9 carbon atoms, M + is imidazolium, pyridinium, pyrrolidinium, ammonium, phosphonium ) or sulfonium (su 1fonium). In the present invention, the alkenyl group having 2 to 9 carbon atoms may include, but is not limited to, vinyl, allyl, 1-butenyl, 2-butenyl, 3-butenyl and isobutenyl groups. 2021/240448 1^ (:1^ 2021/054671 In the present invention, the compound represented by Formula 1 is triethylammonium ethenesulfonate (1:) ¾^1¾111111011八1111
Figure imgf000008_0001
Ethenesulfonate 2-ethyl 4-methyl imidazolium ( ]16]16311 0]1 6 2- ]¾, 1 4_11161:]¾, 1 (1¾ 01八1111), a compound represented by Formula 1-2 Ethenesulfonate -methyl-2 -pyrrolidinium ( 116116311 011 6 - 1 1: ]¾^1-2 0'01 1111·) as a compound represented by 1-3 or 1-to as a compound represented by Formula 1_4 Tenyl-111-imidazole- 3-ium ethenesulfonate (1_61:1161¾, 1-:na1-:11 (1¾ 01-3 - :ᅡ· 116116311 011 6) is preferably used, but is not limited thereto .
[화학식 1-1]
Figure imgf000008_0002
2021/240448 1»(그1’/182021/054671
[Formula 1-1]
Figure imgf000008_0002
2021/240448 1» (Part 1'/18201/054671
[화학식 1-4]
Figure imgf000009_0001
또한, 본 발명에 있어서, 상기 화학식 2로 표시되는 화합물은 화학식 2 - 1로 표시되는 화합물인 트리에틸암모늄
Figure imgf000009_0002
^)1103?11011 6), 화학식 2-2로 표시되는 화합물인 2 -에틸- 4 -메틸- 111-
Figure imgf000009_0003
vinylphosphonate) , 화학식 2_3로 표시되는 화합물인 1 -메틸- 2옥소피롤리딘-!-윰 비닐포스포네이트 (1,61:]¾,1-2-(«(¾)71,1,01 111-1-:1)· 〜 1¾,1]〕]103]〕]1011 6) 또는 화학식 2-4로 표시되는 화합물인 1 -비닐- 111-이미다졸- 2 -윰 비닐포스포네이트 (1- \ 171-1}1-;[1111(13201-3-;[· \ 1711)11031)11011 6)가 바람직하게 사용되나, 이에 한정되는 것은 아니다.
[Formula 1-4]
Figure imgf000009_0001
In addition, in the present invention, the compound represented by Formula 2 is triethylammonium which is a compound represented by Formula 2 - 1
Figure imgf000009_0002
^) 1103 to 11011 6), 2-ethyl-4 -methyl- 111-, which is a compound represented by Formula 2-2
Figure imgf000009_0003
vinylphosphonate) , 1-methyl-2oxopyrrolidine-!-um vinylphosphonate (1,61:]¾,1-2-(«(¾)71,1,01 111, a compound represented by Formula 2_3 -1-:1)· 〜 1¾, 1]]]] 103]]] 1011 6) or 1-vinyl-111-imidazole-2-um vinylphosphonate (1- \ 171-1}1-; [1111(13201-3-; [· \ 1711)11031)11011 6) is preferably used, but is not limited thereto.
[화학식 2-1]
Figure imgf000009_0004
[Formula 2-1]
Figure imgf000009_0004
[화학식 2-2] 2021/240448 1^(:1^ 2021/054671
Figure imgf000010_0001
본 발명에 있어서, 상기 은 화학식 3 내지 화학식 9로 표시되는 유기 양이온일 수 있다.
[Formula 2-2] 2021/240448 1^(:1^ 2021/054671
Figure imgf000010_0001
In the present invention, the above may be an organic cation represented by Chemical Formulas 3 to 9.
[화학식 3] 2021/240448 1^(:1^ 2021/054671
Figure imgf000011_0001
[Formula 3] 2021/240448 1^(:1^ 2021/054671
Figure imgf000011_0001
[화학식 6] [Formula 6]
2021/240448 1^(:1^ 2021/054671 2021/240448 1^(:1^ 2021/054671
3
Figure imgf000012_0001
3
Figure imgf000012_0001
[화학식 則 0落」 [Chemical formula 則0落]
2 2
[화학식 9] 2021/240448 1»(그1’/182021/054671
Figure imgf000013_0001
화학식 3 내지 화학식 9에서 은 수소, 탄소수 1 내지 9의 알킬, 탄소수 1 내지 9의 알큭시, 탄소수 2 내지 9의 알케닐 또는 탄소수 2 내지 9의 알킨이고, ^ 내지 ^는 각각 독립적으로 할로겐 또는 탄소수 1 내지 9의 알킬, 탄소수 1 내지 9의 알큭시, 탄소수 2 내지 9의 알케닐 또는 탄소수 2 내지 9의 알킨이다 . 본 발명 에 있어서, 하기 화학식 쇼-1, 화학식 /ᅡ2 및 화학식 /ᅡ3으로 표시되는 화합물로 구성된 군에서 선택되는 1종 이상의 수명 성능 향상 첨가제를 추가로 포함할 수 있다 . [화학식 쇼-1] 11 1 0 1)011 6
Figure imgf000013_0002
2021/240448 1^(:1^ 2021/054671 비닐 에틸렌 카보네이트 (vinyl ethylene carbonate)
[Formula 9] 2021/240448 1» (Part 1'/18201/054671
Figure imgf000013_0001
In Formulas 3 to 9, is hydrogen, alkyl having 1 to 9 carbon atoms, alkoxy having 1 to 9 carbon atoms, alkenyl having 2 to 9 carbon atoms, or alkyne having 2 to 9 carbon atoms, ^ to ^ are each independently halogen or carbon number alkyl having 1 to 9 carbon atoms, alkoxy having 1 to 9 carbon atoms, alkenyl having 2 to 9 carbon atoms, or alkyne having 2 to 9 carbon atoms. In the present invention, it may further include one or more life performance enhancing additives selected from the group consisting of compounds represented by the following Chemical Formula Show-1, Chemical Formula /ᅡ2 and Chemical Formula /ᅡ3. [Formula show-1] 11 1 0 1) 011 6 )
Figure imgf000013_0002
2021/240448 1^(:1^ 2021/054671 vinyl ethylene carbonate)
[화학식 A-3]
Figure imgf000014_0001
즐로오로에틸렌 카보네이트 (f luoroethylene carbonate) 본 발명에 있어서, 하기 화학식 B-1 , 화학식 B-2, 화학식 B-3 , 화학식 B-, 화학식 B-5 및 화학식 B-6으로 표시되는 화합물로 구성된 군에서 선택되는 종 이상의 고온 성능 향상 첨가제를 추가로 포함할 수 있다. [화학식 B-1]
Figure imgf000014_0002
에틸렌 설페이트 ( 1¾^16116
[Formula A-3]
Figure imgf000014_0001
In the present invention, the group consisting of compounds represented by the following Chemical Formula B-1, Chemical Formula B-2, Chemical Formula B-3, Chemical Formula B-, Chemical Formula B-5 and Chemical Formula B-6 It may further include a high-temperature performance-improving additive of at least a species selected from. [Formula B-1]
Figure imgf000014_0002
Ethylene Sulfate ( 1¾^16116
[화학식 6-2]
Figure imgf000014_0003
[Formula 6-2]
Figure imgf000014_0003
1 , 3 -프로펜- 1 , 3 -설톤 ( 1 , 3_ 매6]16-1 , 3-3111\ ( 己 ) 2021/240448 1^(:1^ 2021/0546711 , 3 -propene-1 , 3 -sultone ( 1 , 3_ hawk 6]16-1 , 3-3111\ ( 己 ) 2021/240448 1^(:1^ 2021/054671
[화학식 6-3]
Figure imgf000015_0001
[Formula 6-3]
Figure imgf000015_0001
1,4 -
Figure imgf000015_0002
1,4 -
Figure imgf000015_0002
[화학식 6-4]
Figure imgf000015_0003
[Formula 6-4]
Figure imgf000015_0003
1,3 -프로판디올사이클릭 설페이트 (1,3- 매¾116(1101 070110 1,3-propanediol cyclic sulfate (1,3-every ¾116 (1101 070110)
[화학식 6-5] [Formula 6-5]
4
Figure imgf000015_0004
, , , , , , , ,,3,2- 0 ¾1:]1101¾116, 2,2,2' ,2' - 대 선
4
Figure imgf000015_0004
, , , , , , , ,,3,2- 0 ¾1:]1101¾116, 2,2,2 ' ,2 ' - large line
[화학식 6-6] 2021/240448 1^(:1^ 2021/054671
Figure imgf000016_0002
본 발명에 있어서, 화학식 0-1, 화학식 0-2, 화학식 0-3 및 화학식 04로 표시되는 화합물로 구성된 군에서 선택되는 1종 이상의 줄력 성능 향상 첨가제를 추가로 포함할 수 있다.
[Formula 6-6] 2021/240448 1^(:1^ 2021/054671
Figure imgf000016_0002
In the present invention, at least one selected from the group consisting of compounds represented by Chemical Formula 0-1, Chemical Formula 0-2, Chemical Formula 0-3, and Chemical Formula 04 may further include an additive for improving performance.
[화학식 0-1] ’ 5 유 2 ( 卜 [Formula 0-1] ’ 5 Yu 2 ( 卜
I !! I 내5 0 내 5 비스(트리에틸실릴)설페이트 03^( 1:]1 1^ 1 1) 3111은 I!! I in 5 0 in 5 bis(triethylsilyl)sulfate 03^( 1:]1 1^ 1 1) 3111 is
[화학식 0-2]
Figure imgf000016_0001
비스(트리메틸실릴)설페이트 03^( ^1161:]1 1^ 1 1) 2021/240448 1^(:1^ 2021/054671
[Formula 0-2]
Figure imgf000016_0001
Bis(trimethylsilyl)sulfate 03^( ^1161:]1 1^ 1 1) 2021/240448 1^(:1^ 2021/054671
[화학식 0-3] 설포네이트 ( 111161:11 1^ 1 1 116116311 011 6)
Figure imgf000017_0001
트리에틸실릴 에텐설포네이트 (1;!· 1;1171 1 1 116116311 011 6) 본 발명에 있어서, 하기 화학식 1)-1, 화학식 1)-2, 화학식 1)-3 및 화학식
[Formula 0-3] Sulfonate ( 111161: 11 1^ 1 1 116116311 011 6)
Figure imgf000017_0001
Triethylsilyl ethenesulfonate (1;!·1; 1171 1 1 116116311 011 6) In the present invention, the following Chemical Formula 1 ) -1, Chemical Formula 1 ) -2, Chemical Formula 1 ) -3 and Chemical Formula 1)
1)-4로표시되는 화합물로구성된 군에서 선택되는 1종 이상의 고온 및 출력 성능 향상 첨가제를추가로 포함할수 있다. 1) One or more high temperature and output performance enhancing additives selected from the group consisting of compounds represented by -4 may be additionally included.
[화학식 1)-1]
Figure imgf000017_0002
리튬디를루오로포스페이트 ( 111土1· (11   11101X)^03^^6)
[Formula 1)-1]
Figure imgf000017_0002
Lithium diluorophosphate ( 111土1· (11 11101X)^03^^6)
[화학식 1)-2] 2021/240448 1^(:1^ 2021/054671 [Formula 1)-2] 2021/240448 1^(:1^ 2021/054671
11發
Figure imgf000018_0001
리튬-비스(옥살레이토)보레이트(111:111· - 1)^(0 ¾1¾1:0)130대 6)
11 發
Figure imgf000018_0001
Lithium-bis(oxalato)borate (111:111·-1)^(0 ¾1¾1:0)130 to 6)
[화학식 1)-3]
Figure imgf000018_0002
[Formula 1)-3]
Figure imgf000018_0002
O i O i
F— _S
Figure imgf000018_0004
F— _S
Figure imgf000018_0004
O o 리튬 비스(플루오로설포닐)이미드(1 ] · 1)^(은 11101'0311 01171)^1^(16)O o Lithium bis(fluorosulfonyl)imide (1 ] 1)^(silver 11101'0311 01171)^1^(16)
[화학식 1)-4]
Figure imgf000018_0003
리튬 디플루오로 비스(옥살레이트)포스페이트(1 · (1^1110^ bis(oxalato) phosphate) 본 발명에 있어서 , 전해질의 용질로 사용되는 리튬염으로는 니 1? 6, 니8?4, 니¾¾, 110104, 니 。2¾302)2, 니 ¾302)2, ^03니 및 2021/240448 1»(그1’/182021/054671 니 0¾302)3으로 구성된 군에서 선택되는 1종 이상일 수 있다. 리튬염의 농도는
[Formula 1)-4]
Figure imgf000018_0003
Lithium difluorobis (oxalate) phosphate (1 · (1^1110^ bis(oxalato) phosphate) In the present invention, the lithium salt used as the solute of the electrolyte is Ni 1 ? 6 , Knee 8?4, Knee ¾¾, 110104 Knee.2¾302)2 Knee ¾302)2, ^0 3 Knee and It may be one or more types selected from the group consisting of 2021/240448 1» (G 1'/18201/054671 Ni 0¾302)3. The concentration of lithium salt is
0.1M 내지 2.0M 범위 내에서 사용하는 것이 바람직하고, 더욱 바람직하게는 0.7M 내지 1.6M 일 수 있으며, 0.1M 미만일 경우에는 전해액의 전도도가 감소하여 전해액 성능이 떨어지고, 2.0M을 초과할 경우에는 전해액의 점도가 증가하여 리튬 이온의 이동성이 감소되는 문제점이 있다. 이들 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 한다. 본 발명에 있어서, 상기 비수성 유기용매는 선형 카보네이트, 환형 카보네이트, 선형 에스테르 및 환형 에스테르로 구성된 군에서 선택되는 1종 이상일 수 있으며, 상기 선형 카보네이트는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트 , 에틸메틸카보네이트 및 이들의 혼합물로 구성된 군에서 선택되는 하나 이상의 카보네이트이고, 상기 환형 카보네이트는 에틸렌카보네이트 (ethyl carbonate, EC) , 프로필렌카보네이트 (propylene carbonate, PC) , 1 ,2 -부틸렌카보네이트,It is preferable to use within the range of 0.1M to 2.0M, and more preferably, it may be 0.7M to 1.6M, and when it is less than 0.1M, the conductivity of the electrolyte decreases to deteriorate the electrolyte performance, and when it exceeds 2.0M, There is a problem in that the mobility of lithium ions is reduced due to an increase in the viscosity of the electrolyte. These lithium salts act as a source of lithium ions in the battery to enable the operation of a basic lithium secondary battery. In the present invention, the non-aqueous organic solvent may be at least one selected from the group consisting of linear carbonate, cyclic carbonate, linear ester and cyclic ester, and the linear carbonate is dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl Propyl carbonate, ethyl propyl carbonate, ethyl methyl carbonate, and at least one carbonate selected from the group consisting of mixtures thereof, the cyclic carbonate is ethylene carbonate (ethyl carbonate, EC), propylene carbonate (propylene carbonate, PC), 1, 2 -Butylene carbonate;
2, 3 -부틸렌카보네이트, 1 ,2 -펜틸렌 카보네이트, 2, 3 -펜틸렌카보네이트, 비닐렌카보네이트 (vinylene carbonate, VC) , 비닐에틸렌카보네이트 및 플루오로에틸렌카보네이트로 구성된 군에서 선택되는 하나 이상의 카보네이트이며, 상기 선형 에스테르는 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 아세테이트, 부틸 아세테이트 및 에틸 아세테이트로 구성된 군에서 선택되는 하나 이상의 에스테르이고, 상기 환형 에스테르는 감마부티로락톤, 카프로락톤 및 발레로락톤으로 구성된 군에서 선택되는 하나 이상의 에스테르일 수 있다. 본 발명의 일 실시 예에 따른 전해액에 있어서, 상기 비수성 유기용매는 선형 카보네이트 용매와 환형 카보네이트계 용매의 2021/240448 1»(그1’/182021/054671 혼합용매일 경우에는 선형 카보네이트 용매 :환형 카보네이트 용매의 혼합 부피비가 1:1 내지 9:1일 수 있으며, 바람직하게는 1.5:1 내지 4:1의 부피비로 혼합하여 사용될 수 있다. 본 발명에 있어서, 화학식 1로 표시되는 화합물 또는 화학식 2로 표시되는 화합물로 구성된 군에서 선택된 1종 이상의 첨가제의 함량은 비수성 전해액에 대하여 0.01〜 10중량%, 바람직하게는 0.01〜 5중량%, 더욱 바람직하게는 0.1〜 1중량%로 첨가할 수 있으며, 0.01중량% 미만일 경우에는 고온 전지 특성이 저하되는 문제점이 있으며, 10중량%를 초과할 경우에는 이온 전도도가 저하되는 문제점이 있다. 본 발명의 리튬이온 이차전지의 전해액은 통상 -20〜 501의 온도 범위에서 안정한 특성을 유지한다. 본 발명의 전해액은 리튬이온 이차전지, 리튬이온 폴리머 전지 등에 적용될 수 있다. 본 발명에서 리튬 이차전지의 양극 재료로는 니0)02, 니附02, 니 02, 니 204, 또는 니附 - 어 (0< <1, 0<7<1, 0< +7<1, 은 시, , 요,2, 3-butylene carbonate, 1,2-pentylene carbonate, 2, 3-pentylene carbonate, vinylene carbonate (vinylene carbonate, VC), at least one selected from the group consisting of vinyl ethylene carbonate and fluoroethylene carbonate carbonate, wherein the linear ester is at least one ester selected from the group consisting of methyl propionate, ethyl propionate, propyl acetate, butyl acetate and ethyl acetate, and the cyclic ester is gamma butyrolactone, caprolactone and valero It may be one or more esters selected from the group consisting of lactones. In the electrolyte solution according to an embodiment of the present invention, the non-aqueous organic solvent is a mixture of a linear carbonate solvent and a cyclic carbonate solvent. 2021/240448 1 » (In the case of the 1'/18201/054671 mixed solvent, the mixing volume ratio of the linear carbonate solvent: the cyclic carbonate solvent may be 1:1 to 9:1, preferably 1.5:1 to 4:1 It can be used by mixing in a volume ratio of In the present invention, the content of one or more additives selected from the group consisting of the compound represented by Formula 1 or the compound represented by Formula 2 is 0.01 to 10% by weight, preferably 0.01 to 5% by weight, based on the non-aqueous electrolyte; More preferably, it can be added in an amount of 0.1 to 1% by weight, and when it is less than 0.01% by weight, there is a problem in that high-temperature battery characteristics are deteriorated, and when it exceeds 10% by weight, there is a problem in that the ionic conductivity is lowered. The electrolyte of the lithium ion secondary battery of the present invention usually maintains stable characteristics in a temperature range of -20 to 501. The electrolyte of the present invention may be applied to a lithium ion secondary battery, a lithium ion polymer battery, and the like. A positive electrode material for a lithium secondary battery in the present invention, you 0) 02, your附02, needle 02, needle 20 4, or you附- control (0 <<1, 0 <7 <1, 0 <+7 < 1, Eun Si, , Yo,
La 등의 금속)와 같은 리튬 금속 산화물을사용하고, 음극 재료로는 결정질 또는 비정질의 탄소, 탄소 복합체, 리튬 금속, 또는 리튬 합금을 사용한다. 상기 활물질을 적당한 두께와길이로 박판의 집전체에 도포하거나 또는 활물질 자체를 필름 형상으로 도포하여 절연체인 세퍼레이터와 함께 감거나 적층하여 전극군을 만든 다음, 캔 또는 이와 유사한 용기에 넣은 후, 트리알킬실릴 설페이트와 포스파이트계 안정화제가 첨가된 비수성계 전해액을 주입하여 리튬이온 이차전지를 제조한다. 상기 세퍼레이터로는 폴리에틸렌, 폴리프로필렌 등의 2021/240448 1»(그1’/182021/054671 수지가 사용될 수 있다. 이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. A lithium metal oxide such as La) is used, and a crystalline or amorphous carbon, carbon composite, lithium metal, or lithium alloy is used as the negative electrode material. The active material is applied to the current collector of a thin plate with an appropriate thickness and length, or the active material itself is coated in a film shape and wound or laminated together with a separator, which is an insulator, to make an electrode group, and then placed in a can or similar container, followed by trialkyl A lithium ion secondary battery is manufactured by injecting a non-aqueous electrolyte containing silyl sulfate and a phosphite-based stabilizer. As the separator, polyethylene, polypropylene, etc. 2021/240448 1» (The 1'/18201/054671 resin can be used. Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples.
[실시예 ] 실시예 1 양극 활물질로서 LiNiuCotoMnto^와 바인더로서 폴리비닐리덴 플루오라이드 (PVdF) 및 도전재로서 카본블랙을 95.6:2.2:2.2의 중량비로 혼합한 다음, N-메틸- 2 -피롤리돈에 분산시켜 양극 슬러리를 제조하였다. 이 슬러리를 두께 20/ffli의 알루미늄 호일에 코팅한 후 건조, 압연하여 양극을 제조하였다. 음극 활물질로 천연흑연과 도전재로서 아세틸렌블랙 및 바인더로서 폴리비닐리덴 플루오라이드 (PVdF)를 85:8:7의 중량비로 혼합하고 N-메틸- 2 - 피롤리돈에 분산시켜 음극 활물질 슬러리를 제조하였다. 이 슬러리를 두께 의 구리 호일에 코팅한 후 건조, 압연하여 음극을 제조하였다. 상기 제조된 전극들 사이에 두께 20/ffli의 폴리에틸렌 (PE) 재질의 필름 세퍼레이터를 스택킹 (stacking)하여 권취 및 압축하여 두께 6mm x 가로 35mm x 세로 60mm 사이즈의 파우치를 이용하여 셀 (cel l)을 구성하였고, 하기 비수성 전해액을 주입하여 리튬 이차전지를 제조하였다. 전해액은 에틸렌 카보네이트 (EC) :에틸메틸 카보네이트 (EMC)의 2021/240448 1»(그1’/182021/054671 혼합용매 (3: 7 부피비 )에 1 ¥6을 1. 이 되도록 용해시킨 다음, 트리에틸암모늄 에텐설포네
Figure imgf000022_0001
]16116311 011 6) 0.1중량%를 첨가하여 제조하였다. 실시예 2 실시예 1의 이차전지용 전해액에서 트리에틸암모늄 에텐설포네
Figure imgf000022_0002
]16116311 011 6) 0.3중량%를 첨가하는 것을 제외하고는 동일한 방법으로 리튬 이차전지를 제조하였다. 실시예 3 실시예 1의 이차전지용 전해액에서 트리에틸암모늄 에텐설포네
Figure imgf000022_0003
]16116311 011 6) 0.5중량%를 첨가하는 것을 제외하고는 동일한 방법으로 리튬 이차전지를 제조하였다. 비교예 1 실시예 1의 이차전지용 전해액에 트리에틸암모늄 에텐설포네
Figure imgf000022_0004
]16116311 011 6)를 첨가하지 않은 것을 제외하고는 동일한 방법으로 리튬 이차전지를 제조하였다. 비교예 2 실시예 1의 이차전지용 전해액에 1,3 -프로판 설톤 (1,3_1)1'(¾)3116 31111:0116) 0.1중량%를 첨가하는 것을 제외하고는 동일한 방법으로 리튬 이차전지를 2021/240448 1»(그1’/182021/054671 제조하였다 . 비교예 3 실시 예 1의 이차전지용 전해 액에 .3 -프로판 설톤 (1,3_]〕1,(¾)3116 31111:0116) 0.3중량%를 첨가하는 것을 제외하고는 동일한 방법으로 리튬 이차전지를 제조하였다 . 비교예 4 실시 예 1의 이차전지용 전해 액에 .3 -프로판
Figure imgf000023_0001
31111:0116) 0.5중량%를 첨가하는 것을 제외하고는 동일한 방법으로 리튬 이차전지를 제조하였다 . 비교예 5 실시 예 1의 이차전지용 전해 액에 .3 -프로판
Figure imgf000023_0002
31111:0116) 2중량%를 첨가하는 것을 제외하고는 동일한 방법으로 리튬 이차전지를 제조하였다 .
[Example] Example 1 LiNiuCotoMnto^ as a positive electrode active material, polyvinylidene fluoride (PVdF) as a binder, and carbon black as a conductive material were mixed in a weight ratio of 95.6:2.2:2.2, then N-methyl-2-pyrrole A positive electrode slurry was prepared by dispersing it in money. This slurry was coated on an aluminum foil having a thickness of 20/ffli, dried and rolled to prepare a positive electrode. A negative active material slurry was prepared by mixing natural graphite as an anode active material, acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 85:8:7 and dispersing it in N-methyl-2-pyrrolidone. did This slurry was coated on a thick copper foil, dried and rolled to prepare a negative electrode. A film separator made of polyethylene (PE) having a thickness of 20/fli was stacked between the prepared electrodes, wound and compressed, and the cell (cell) using a pouch having a thickness of 6 mm x 35 mm x 60 mm in size. A lithium secondary battery was prepared by injecting the following non-aqueous electrolyte solution. The electrolyte is ethylene carbonate (EC): ethylmethyl carbonate (EMC) 2021/240448 1» (The 1'/18201/054671 mixed solvent (3: 7 volume ratio) is dissolved in 1 ¥ 6 to 1. Then, triethylammonium ethenesulfone
Figure imgf000022_0001
] 16116311 011 6) It was prepared by adding 0.1% by weight. Example 2 Triethylammonium ethenesulfone in electrolyte for secondary battery of Example 1
Figure imgf000022_0002
]16116311 011 6) A lithium secondary battery was manufactured in the same manner except for adding 0.3% by weight. Example 3 Triethylammonium ethenesulfone in the electrolyte for a secondary battery of Example 1
Figure imgf000022_0003
]16116311 011 6) A lithium secondary battery was manufactured in the same manner except for adding 0.5 wt%. Comparative Example 1 Triethylammonium ethenesulfone in the electrolyte for secondary batteries of Example 1
Figure imgf000022_0004
] A lithium secondary battery was manufactured in the same manner except that 16116311 011 6) was not added. Comparative Example 2 A lithium secondary battery was prepared in the same manner except for adding 0.1 wt% of 1,3-propane sultone (1,3_1)1'(¾)3116 31111:0116) to the electrolyte solution for a secondary battery of Example 1 2021/240448 1» (The 1'/18201/054671 was manufactured. Comparative Example 3 A lithium secondary battery was prepared in the same manner except for adding 0.3% by weight of .3-propane sultone (1,3_]]1,(¾)3116 31111:0116) to the electrolyte solution for secondary batteries of Example 1. manufactured. Comparative Example 4 .3-propane in the electrolyte solution for secondary batteries of Example 1
Figure imgf000023_0001
31111:0116) A lithium secondary battery was prepared in the same manner except for adding 0.5 wt%. Comparative Example 5 .3-propane in the electrolyte solution for secondary batteries of Example 1
Figure imgf000023_0002
31111:0116) A lithium secondary battery was prepared in the same manner except for adding 2% by weight.
【표 1]
Figure imgf000023_0003
2021/240448 1»(그1’/182021/054671
Figure imgf000024_0001
실시 예 4 내지 실시 예 21 실시 예 1에서 하기의 표 2 내지 표 4에 기재된 함량의 수명 성능 향상 첨가제, 고온 향상 첨가제, 출력 향상 첨가제 또는 고온 및 출력 향상 첨가제를 추가로 첨가한 것을 제외하고는 실시 예 1과 동일하게 실시하였다. 비교예 4 내지 비교예 22 비교예 1에서 하기의 표 5 내지 표 7에 기재된 함량의 수명 성능 향상 첨가제, 고온 향상 첨가제, 출력 향상 첨가제 또는 고온 및 출력 향상 첨가제를 추가로 첨가한 것을 제외하고는 비교예 1과 동일하게 실시하였다. 물성 평가 1: 수명평가 제조된 전지를 4. 까지 1(:충전 후, 까지 比 방전하였으며, 이 과정을 300회 반복하여 수명 유지율을 측정하고, 수명 유지율 평가는 상온 (251 ) 및 고온 (451 )에서 평가하였다. 초기 방전용량 대비 30007016 방전용량 백분율로 표기하였다. 물성 평가 2: 고온 저장 평가
【Table 1】
Figure imgf000023_0003
2021/240448 1» (Part 1'/18201/054671
Figure imgf000024_0001
Examples 4 to 21 Implemented except that in Example 1, the life performance improving additive, high temperature improving additive, output improving additive, or high temperature and output improving additive of the contents shown in Tables 2 to 4 below were additionally added It was carried out in the same manner as in Example 1. Comparative Examples 4 to 22 Comparison except that in Comparative Example 1, the life performance improving additive, high temperature improving additive, output improving additive, or high temperature and output improving additive in the amounts shown in Tables 5 to 7 below were additionally added It was carried out in the same manner as in Example 1. Physical property evaluation 1: Life evaluation The manufactured battery was discharged from 4 to 1 (: after charging and then discharged to ), and this process was repeated 300 times to measure the life retention rate, and the life maintenance rate evaluation was performed at room temperature (251) and high temperature (451). It was evaluated in. It was expressed as a percentage of 30007016 discharge capacity compared to the initial discharge capacity.
1) 0611 두께 : 4. 까지 10 충전 후 고온 (701 )에서 7일 동안 보관한 뒤, 2021/240448 1»(그1’/182021/054671 1) 0611 thickness: After charging 10 to 4. and storing at high temperature (701 ) for 7 days, 2021/240448 1» (Part 1'/18201/054671
Cell의 두께를 측정하여 초기 두께 대비 백분율로표기하였다. The thickness of the cell was measured and expressed as a percentage compared to the initial thickness.
2) EIS: 4. 까지 1C 충전 후 10mV의 AC 신호를 가해 전압 주파수를2) EIS: After charging 1C up to 4., apply an AC signal of 10mV to adjust the voltage frequency.
9000CK).05Hz로 변경하면서 초기 EIS(Electrochemical impedance spectroscopy)를 측정하고 4. 까지 1C충전 후 고온 (70 °C)에서 7일 보관한다음 4. 까지 1C 충전 후 1C 방전을 2회 진행 후 초기 EIS 측정방법과 동일하게 고온 (70°C) 보관후묘 를 측정하였다. 9000CK). Measure the initial EIS (Electrochemical Impedance Spectroscopy) while changing to 05Hz, and store it at high temperature (70 ° C) for 7 days after charging at 1C until 4. The seedlings were measured after storage at high temperature (70°C) in the same manner as in the measurement method.
3) DC-IR: 물성평가 2와 동일한 방법이나, 4. 까지 1C 충전 후 S0C50으로 방전시킨 후, 평가실시하여 초기 DC-IR대비 백분율표기하였다. 3) DC-IR: The same method as for physical property evaluation 2, but after charging at 1C until 4. and then discharging to S0C50, the evaluation was performed and the percentage compared to the initial DC-IR was indicated.
4) Retention, Recovery용량: 4. 까지 1C충전 후, 고온 (70°C)에서 7일 동안 보관한 뒤, 1C, 2.75V로 방전하여 retention용량 (방전 용량)을 측정, 다시4) Retention, Recovery capacity: After charging up to 1C , store at high temperature (70 ° C) for 7 days, discharge at 1C, 2.75V to measure retention capacity (discharge capacity), again
1C, 4.2V 충전하여 1C, 2.75V 방전한 뒤 recovery 용량 (방전 용량) 측정하여 초기 방전 용량 대비 백분율표기하였다. After charging at 1C, 4.2V and discharging at 1C and 2.75V, the recovery capacity (discharge capacity) was measured and expressed as a percentage compared to the initial discharge capacity.
【표 2]
Figure imgf000025_0001
2021/240448 1^(:1^ 2021/054671
Figure imgf000026_0001
【Table 2】
Figure imgf000025_0001
2021/240448 1^(:1^ 2021/054671
Figure imgf000026_0001
【표 3]
Figure imgf000026_0002
2021/240448 1^(:1^ 2021/054671
Figure imgf000027_0001
【Table 3】
Figure imgf000026_0002
2021/240448 1^(:1^ 2021/054671
Figure imgf000027_0001
【표 4]
Figure imgf000027_0002
2021/240448 1^(:1^ 2021/054671
Figure imgf000028_0001
【Table 4】
Figure imgf000027_0002
2021/240448 1^(:1^ 2021/054671
Figure imgf000028_0001
【표 5]
Figure imgf000028_0002
【Table 5】
Figure imgf000028_0002
【표 6]
Figure imgf000028_0003
2021/240448 1^(:1^ 2021/054671
Figure imgf000029_0001
[Table 6]
Figure imgf000028_0003
2021/240448 1^(:1^ 2021/054671
Figure imgf000029_0001
【표 7]
Figure imgf000029_0002
2021/240448 1^(:1^ 2021/054671
Figure imgf000030_0001
실시 예 22 실시 예 1의 이차전지용 전해액에서 트리에틸암모늄 에텐설포네이트 (1:1 61:]1 1··)]!!· 116116311 011 6) 대신에 에텐설포네이트 2 에틸 4 -메틸 이미다졸륨 ( ]16]16311 0]1 6 2- ]¾,1 4_11161:]¾,1 1!1 (1¾ 011·, 화학식 1-2) 0.1중량%를 첨가하는 것을 제외하고는실시예 1과 동일하게 실시하였다. 실시 예 23 실시 예 1의 이차전지용 전해액에서 트리에틸암모늄 에텐설포네이트 (1:1 61:]1 1··)]!!· 116116311 011 6) 대신에 에텐설포네이트 - 메틸- 2 -피롤리디늄( ]16]1631그 0]1 6 161:]¾,1-2 70,01 1八1111, 화학식 1-3)
[Table 7]
Figure imgf000029_0002
2021/240448 1^(:1^ 2021/054671
Figure imgf000030_0001
Example 22 In the electrolyte for a secondary battery of Example 1, triethylammonium ethenesulfonate (1:1 61:]1 1...)]!!· 116116311 011 6) instead of ethenesulfonate 2 ethyl 4-methyl imidazolium ( ]16]16311 0]1 6 2- ]¾, 1 4_11161:]¾, 1 1!1 (1¾ 011·, Formula 1-2) Performed in the same manner as in Example 1, except for adding 0.1 wt% Example 23 In the electrolyte solution for secondary batteries of Example 1, triethylammonium ethenesulfonate (1:1 61:]1 1··)]!!· 116116311 011 6) instead of ethenesulfonate-methyl-2-p Rollidinium ( ]16]1631G 0]1 6 161:]¾, 1-2 70 , 01 1八1111, Formula 1-3)
0.1중량%를 첨가하는 것을 제외하고는실시예 1과 동일하게 실시하였다. 실시 예 24 2021/240448 1^(:1^ 2021/054671 실시예 1의 이차전지용 전해액에서 트리에틸암모늄 에텐설포네이트(triethylammonium ethenesulfonate) 대신에 1-에테닐- 1H- 이미다졸- 3 -윰 에텐설포네이트 (l-ethenyl-lH-imidazol-3-ium ethenesulfonate, 화학식 1-4) 0.1중량%를 첨가하는 것을 제외하고는 실시예 1과 동일하게 실시하였다. 실시예 25 실시예 1의 이차전지용 전해액에서 트리에틸암모늄 에텐설포네이트(triethylammonium ethenesulfonate) 대신에 트리에틸암모늄 비닐포스포네이트(triethylammonium vinylphosphonate , 화학식 2-1) 0.1중량%를 첨가하는 것을 제외하고는 실시예 1과 동일하게 실시하였다. 실시예 26 실시예 1의 이차전지용 전해액에서 트리에틸암모늄 에텐설포네이트(triethylammonium ethenesulfonate) 대신에 2 -에틸- 4 -메틸- 1H- 이미다졸- 3윰 비닐포스포네이트 (2-ethyl-4-methyl-lH-imidazol-3-ium vinylphosphonate , 화학식 2-2) 0.1중량%를 첨가하는 것을 제외하고는 실시예 1과 동일하게 실시하였다. 실시예 27 실시예 1의 이차전지용 전해액에서 트리에틸암모늄 에텐설포네이트(triethylammonium ethenesulfonate) 대신에 1_메틸- 2021/240448 1»(그1’/182021/054671 It was carried out in the same manner as in Example 1 except for adding 0.1% by weight. Example 24 2021/240448 1^(:1^ 2021/054671 In the electrolyte for a secondary battery of Example 1, instead of triethylammonium ethenesulfonate, 1-ethenyl-1H-imidazole-3 -ium ethenesulfonate (l -ethenyl-lH-imidazol-3-ium ethenesulfonate, Formula 1-4), was carried out in the same manner as in Example 1, except that 0.1 wt% was added Example 25 Triethylammonium in the electrolyte for a secondary battery of Example 1 It was carried out in the same manner as in Example 1, except that 0.1 wt% of triethylammonium vinylphosphonate (Formula 2-1) was added instead of ethenesulfonate (triethylammonium ethenesulfonate). 2-ethyl-4-methyl-1H-imidazole-3-ium vinylphosphonate (2-ethyl-4-methyl-lH-imidazol-3) in the electrolyte for secondary batteries of -ium vinylphosphonate, Formula 2-2) was carried out in the same manner as in Example 1, except that 0.1 wt% was added. Example 27 In the electrolyte solution for secondary batteries of Example 1, triethylammonium ethenesulfonate was replaced in 1_methyl- 2021/240448 1 » (G 1'/18201/054671
2옥소피롤리딘- 1 -윰 비닐포스
Figure imgf000032_0001
vinylphosphonate, 화학식 2-3) 0.1중량%를 첨가하는 것을 제외하고는 실시예 1과 동일하게 실시하였다. 실시 예 28 실시 예 1의 이차전지용 전해액에서 트리에틸암모늄
Figure imgf000032_0002
대신에 1 -비닐-내-이미다졸- 2 -윰 비닐포스포네이트 (11 1-내-^ 3201-3 - ᅵ· \ 1¾,1!)11031)11011 6, 화학식 2 4) 0.1중량%를 첨가하는 것을 제외하고는 실시예 1과 동일하게 실시하였다. 【표 8]
Figure imgf000032_0003
표 1 내지 표 8에 나타낸 바와 같이 본 발명의 실시예 1 내지 28의 전해액이 수명 평가 및 고온 저장 평가에서 비교예 1 내지 22보다 수명 평가 및 고온 저장 평가가 향상된 것을 알 수 있다. 비교예 2 내지 비교예 5에 첨가된 1,3 -프로판 설톤의 경우 독성 물질로 2021/240448 1»(그1’/182021/054671 분류되어 대체 첨가제가 시급한 현실에서 가스 저감 성능 등의 고온 성능이 우수하여 전지 성능 면에서 대체 첨가제를 발굴하기 어려운 문제가 있었으나, 본 발명의 실시예의 결과로부터 1,3 -프로판 설톤의 대체 첨가제로서 전지 성능뿐만 아니라 첨가된 함량 측면에서도 1,3 -프로판 설톤 대비 매우 유리한 효과가 나타나 1,3 -프로판 설톤의 대체 첨가제로 사용하기에 손색이 없음이 증명되었다. 표 1 내지 표 8에 나타낸 바와 같이 본 발명의 실시예의 전해액이 비교예에 비하여 고온수명이 향상되고, EIS와 DC-IR의 감소 및 가스 저감 성능이 월등하게 향상되는 것을 확인하였다. 본 발명의 실시예는 고온 보관특성, 고온 수명특성을 향상시키는 효과가 있다. 실시예 1의 전해액이 고온보관 평가에서 우수한 성능을 보이며, 실시예 4 내지 21과 같이 수명 성능 향상 첨가제, 고온 향상 첨가제 및 출력 향상 첨가제를 추가로 첨가 시 전지 성능이 보다 향상되었다. 수명 성능 향상 첨가제가 추가로 첨가된 실시예 5 내지 7은 실시예 1보다 수명 효율이 향상된다. 고온 성능 향상 첨가제가 추가로 첨가된 실시예 8 내지 13은 실시예 1보다 고온 저장 후 묘 가 향상되며 전지 스웰링 (cel l swel l ing)이 보다 억제된다. 출력 향상 첨가제가 추가로 첨가된 실시예 14 내지 17은 실시예 1보다 고온 저장 꾸 줄력 성능이 우수하다. 또한, 고온 및 줄력 성능 모두 향상시키는 염 (salt) 형태의 첨가제가 추가로 첨가된 실시예 18 내지 21은 실시예 1보다 고온 저장 후 전지 스웰링 (cel l swel l ing)이 억제되며 EIS와 출력 성능이 월등히 뛰어난 효과가 있다. 산업상 이용가능성 본 발명에 따른 비수성 전해액은 화학식 1 또는 화학식 2로 표시되는 염을 첨가함으로써 상온 및 고온에서의 수명특성과 고온 저장 특성이 향상되는 2021/240448 1»(그1’/182021/054671 효과가 있다. 이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바 , 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
2-oxopyrrolidine- 1-um vinylphos
Figure imgf000032_0001
Vinylphosphonate, Chemical Formula 2-3) It was carried out in the same manner as in Example 1, except for adding 0.1% by weight. Example 28 Triethylammonium in the electrolyte for a secondary battery of Example 1
Figure imgf000032_0002
Instead of 1-vinyl-in-imidazole-2 -um vinylphosphonate (11 1-in-^ 3201-3 - ᅵ · \ 1¾, 1!) 11031) 11011 6, Formula 2 4) 0.1 wt% Except for the addition, it was carried out in the same manner as in Example 1. 【Table 8】
Figure imgf000032_0003
As shown in Tables 1 to 8, it can be seen that the electrolyte solutions of Examples 1 to 28 of the present invention have improved life evaluation and high temperature storage evaluation than Comparative Examples 1 to 22 in life evaluation and high temperature storage evaluation. In the case of 1,3-propane sultone added to Comparative Examples 2 to 5, it was used as a toxic substance. 2021/240448 1» (The 1'/18201/054671 Classified as an alternative additive is urgent in reality, so there was a problem in that it was difficult to discover an alternative additive in terms of battery performance due to excellent high-temperature performance such as gas reduction performance, but in the embodiment of the present invention From the results, it is found that as a substitute additive for 1,3-propane sultone, it has a very advantageous effect compared to 1,3-propane sultone in terms of battery performance as well as added content, so that it can be used as an alternative additive to 1,3-propane sultone. proved As shown in Tables 1 to 8, it was confirmed that the electrolyte solution of Examples of the present invention improved the high-temperature lifespan compared to Comparative Examples, and the reduction of EIS and DC-IR and the gas reduction performance were remarkably improved. The embodiment of the present invention has an effect of improving high temperature storage characteristics and high temperature lifespan characteristics. The electrolyte of Example 1 showed excellent performance in high temperature storage evaluation, and as in Examples 4 to 21, when the life performance enhancing additive, high temperature improving additive, and output improving additive were additionally added, the battery performance was further improved. Examples 5 to 7, in which the life performance improving additive was additionally added, improved life efficiency compared to Example 1. Examples 8 to 13, in which the high-temperature performance-improving additive was additionally added, improved seedlings after high-temperature storage compared to Example 1, and cell swelling was more suppressed. Examples 14 to 17, in which the output improving additive was additionally added, had better high-temperature storage stability than Example 1. In addition, in Examples 18 to 21, in which an additive in the form of a salt that improves both high temperature and Joule force performance was additionally added, cell swelling after storage at a higher temperature than Example 1 was suppressed, and EIS and output It has a very good performance effect. INDUSTRIAL APPLICABILITY The non-aqueous electrolyte according to the present invention has improved lifespan characteristics and high temperature storage characteristics at room temperature and high temperature by adding a salt represented by Formula 1 or Formula 2 2021/240448 1» (That 1'/18201/054671 has an effect. Since a specific part of the present invention has been described in detail above, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. will be. Accordingly, the substantial scope of the present invention will be defined by the claims and their equivalents.

Claims

2021/240448 1^(:1^ 2021/054671 청구의 범위 2021/240448 1^(:1^ 2021/054671 claims
1. 다음을 포함하는 이차전지용 비수성 전해액 : 1. A non-aqueous electrolyte for a secondary battery comprising:
(시 리튬염; ) 비수성 유기용매; 및 (0 화학식 1 및 화학식 2로 표시되는 염으로 구성된 군에서 선택되는(Si lithium salt; ) non-aqueous organic solvents; and (0 selected from the group consisting of salts represented by Formula 1 and Formula 2)
1종 이상의 첨가제. one or more additives.
[화학식 1]
Figure imgf000035_0001
[Formula 1]
Figure imgf000035_0001
[화학식 2] 十
Figure imgf000035_0002
十 I 화학식 1 및 화학식 2에서 묘은 탄소수 2 내지 9의 알케닐 그룹이고, 는 이미다졸륨( 11 (13201 ᅵ·), 피리디늄 1 1 11111), 피롤리디늄 1'011(111 ·), 암모늄(■ · ), 포스포늄
Figure imgf000035_0003
2021/240448 1^(:1^ 2021/054671
[Formula 2] 十
Figure imgf000035_0002
十 I In Chemical Formulas 1 and 2, the seed is an alkenyl group having 2 to 9 carbon atoms, is imidazolium ( 11 (13201 ᅵ ·), pyridinium 1 1 11111), pyrrolidinium 1'011 (111 ·), ammonium (■ · ), phosphonium
Figure imgf000035_0003
2021/240448 1^(:1^ 2021/054671
2. 제 1항에 있어서, 상기 화학식 1의 염은 화학식 1-1, 화학식 1-2, 화학식 1-3 또는 화학식 1-4로 표시되는 것을 특징으로 하는 이차전지용 전해액. [화학식 1-1]
Figure imgf000036_0001
2. The electrolyte according to claim 1, wherein the salt of Formula 1 is represented by Formula 1-1, Formula 1-2, Formula 1-3, or Formula 1-4. [Formula 1-1]
Figure imgf000036_0001
3. 제 1항에 있어서, 상기 화학식 2의 염은 화학식 2-1, 화학식 2-2 화학식 2-3 또는 화학식 2-4로 표시되는 것을 특징으로 하는 이차전지용 전해액. 2021/240448 1»(그1’/182021/054671 3. The electrolyte according to claim 1, wherein the salt of Formula 2 is represented by Formula 2-1, Formula 2-2, Formula 2-3, or Formula 2-4. 2021/240448 1» (Part 1'/18201/054671
[화학식 2-1] [Formula 2-1]
2021/240448 1^(:1^ 2021/054671 2021/240448 1^(:1^ 2021/054671
4. 제 1항에 있어서, 상기 은 화학식 3 내지 화학식 9로 표시되는 유기 양이온인 것을 특징으로 하는 이차전지용 전해액 . 4. The electrolyte for a secondary battery according to claim 1, wherein the silver is an organic cation represented by Chemical Formulas 3 to 9.
[화학식 3]
Figure imgf000038_0001
[Formula 3]
Figure imgf000038_0001
[화학식 6] 2021/240448 1^(:1^ 2021/054671 [Formula 6] 2021/240448 1^(:1^ 2021/054671
3
Figure imgf000039_0001
3
Figure imgf000039_0001
[화학식 則 0落」 [Chemical formula 則0落]
2 2
[화학식 9] 2021/240448 1»(그1’/182021/054671
Figure imgf000040_0001
화학식 3 내지 화학식 9에서 은 수소, 탄소수 1 내지 9의 알킬, 탄소수
[Formula 9] 2021/240448 1» (Part 1'/18201/054671
Figure imgf000040_0001
In Formulas 3 to 9, is hydrogen, alkyl having 1 to 9 carbon atoms,
1 내지 9의 알큭시, 탄소수 2 내지 9의 알케닐 또는 탄소수 2 내지 9의 알킨이고Alkyne having 1 to 9 carbon atoms, alkenyl having 2 to 9 carbon atoms, or alkyne having 2 to 9 carbon atoms;
^ 내지 ^는 각각 독립적으로 할로겐 또는 탄소수 1 내지 9의 알킬,
Figure imgf000040_0002
내지 9의 알큭시, 탄소수 2 내지 9의 알케닐 또는 탄소수 2 내지 9의 알킨이다 .
^ to ^ are each independently halogen or alkyl having 1 to 9 carbon atoms;
Figure imgf000040_0002
to 9 alkoxy, alkenyl having 2 to 9 carbon atoms, or alkyne having 2 to 9 carbon atoms.
5. 제 1항에 있어서, 화학식 1, 화학식 /ᅡ2 및 화학식 /ᅡ3으로 표시되는 화합물로 구성된 군에서 선택되는 1종 이상의 수명 성능 향상 첨가제를 추가로 포함하는 이차전지용 비수성 전해 액 . 5. The non-aqueous electrolyte for a secondary battery according to claim 1, further comprising one or more life performance enhancing additives selected from the group consisting of compounds represented by Chemical Formula 1, Chemical Formula /ᅡ2 and Chemical Formula /ᅡ3.
[화학식 쇼-1]
Figure imgf000040_0003
2021/240448 1^(:1^ 2021/054671
Figure imgf000041_0001
[Formula show-1]
Figure imgf000040_0003
2021/240448 1^(:1^ 2021/054671
Figure imgf000041_0001
6. 제 1항에 있어서, 화학식 6-1, 화학식 6-2, 화학식 6-3, 화학식 6-4, 화학식 6-5 및 화학식 6으로 표시되는 화합물로 구성된 군에서 선택되는 1종 이상의 고온 성능 향상 첨가제를 추가로 포함하는 이차전지용 비수성 전해액 . [화학식 6-1]
Figure imgf000041_0002
6. The high-temperature performance of at least one selected from the group consisting of compounds represented by Formula 6-1, Formula 6-2, Formula 6-3, Formula 6-4, Formula 6-5 and Formula 6 according to claim 1 A non-aqueous electrolyte for a secondary battery further comprising an enhancement additive. [Formula 6-1]
Figure imgf000041_0002
[화학식 6-2] [Formula 6-2]
° 於 的
Figure imgf000041_0004
公 0
°
Figure imgf000041_0004
public 0
[화학식 6-3]
Figure imgf000041_0003
[Formula 6-3]
Figure imgf000041_0003
[화학식 6-4] 2021/240448 1»(그1’/182021/054671
Figure imgf000042_0001
[Formula 6-4] 2021/240448 1» (Part 1'/18201/054671
Figure imgf000042_0001
[화학식 6-5]
Figure imgf000042_0002
[Formula 6-5]
Figure imgf000042_0002
[화학식 6-6]
Figure imgf000042_0003
[Formula 6-6]
Figure imgf000042_0003
7. 제 1항에 있어서, 화학식 0-1, 화학식 0-2, 화학식 0-3 및 화학식 0-7. The method according to claim 1, wherein Formula 0-1, Formula 0-2, Formula 0-3, and Formula 0-
4로 표시되는 화합물로 구성된 군에서 선택되는 1종 이상의 출력 성능 향상 첨가제를 추가로 포함하는 이차전지용 비수성 전해액 . A non-aqueous electrolyte for a secondary battery further comprising one or more output performance enhancing additives selected from the group consisting of the compound represented by 4 .
[화학식 0-1]
Figure imgf000042_0004
[Formula 0-1]
Figure imgf000042_0004
[화학식 0-2] 2021/240448 1»(그1’/182021/054671
Figure imgf000043_0001
[Formula 0-2] 2021/240448 1» (Part 1'/18201/054671
Figure imgf000043_0001
8. 제 1항에 있어서, 화학식 1)-1, 화학식 1)-2, 화학식 1)-3 및 화학식 I)-8. According to claim 1, Formula 1)-1, Formula 1)-2, Formula 1)-3 and Formula I)-
4로 표시되는 화합물로 구성된 군에서 선택되는 1종 이상의 고온 및 출력 성능 향상 첨가제를 추가로 포함하는 이차전지용 비수성 전해액 . A non-aqueous electrolyte for a secondary battery further comprising one or more high temperature and output performance enhancing additives selected from the group consisting of the compound represented by 4 .
[화학식 1)-1]
Figure imgf000043_0002
[화학식 1)-2] 2021/240448 1^(:1^ 2021/054671
[Formula 1)-1]
Figure imgf000043_0002
[Formula 1)-2] 2021/240448 1^(:1^ 2021/054671
11發
Figure imgf000044_0001
11 發
Figure imgf000044_0001
9. 제 1항에 있어서, 상기 리튬염은 1 ¥6, 니8?4, 니¾?6, 니쇼3?6, 니이04, 니 ¾¾302)2, 니 0¾302)2, 0^03니 및 니 0¾302)3으로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 하는 이차전지용 전해액. 9. The method of claim 1, wherein the lithium salt is 1 ¥ 6 , Ni 8? 4 , your ¾? 6 , Nissho 3? 6 , knee 0 4 , knee ¾¾30 2 ) 2 , knee 0¾30 2 ) 2 , 0^0 3 knee and knee 0¾30 2 ) 3 An electrolyte for a secondary battery, characterized in that at least one selected from the group consisting of 3 .
10. 제 9항에 있어서, 상기 리튬염은 상기 비수성 유기용매에 0.6 내지 2. 의 농도로포함되는 것을 특징으로 하는 이차전지용 전해액. 10. The electrolyte solution for a secondary battery according to claim 9, wherein the lithium salt is contained in the non-aqueous organic solvent at a concentration of 0.6 to 2.
11. 제 1항에 있어서, 상기 비수성 유기용매는 선형 카보네이트, 환형 2021/240448 1»(그1’/182021/054671 카보네이트, 선형 에스테르 및 환형 에스테르로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 하는 이차전지용 전해액 . 11. The method of claim 1, wherein the non-aqueous organic solvent is a linear carbonate, cyclic 2021/240448 1» (The 1'/18201/054671 Electrolyte for a secondary battery, characterized in that at least one selected from the group consisting of carbonates, linear esters and cyclic esters.
12. 제 11항에 있어서, 상기 선형 카보네이트는 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트, 에틸메틸카보네이트 및 이들의 혼합물로 구성된 군에서 선택되는 하나 이상의 카보네이트이고, 상기 환형 카보네이트는 에틸렌카보네이트, 프로필렌카보네이트, 1 ,2 - 부틸렌카보네이트, 2, 3 -부틸렌카보네이트, 1 ,2 -펜틸렌 카보네이트, 2,3- 펜틸렌카보네이트, 비닐렌카보네이트, 비닐에틸렌카보네이트 및 플루오로에틸렌카보네이트로 구성된 군에서 선택되는 하나 이상의 카보네이트이며, 상기 선형 에스테르는 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 아세테이트, 부틸 아세테이트 및 에틸 아세테이트로 구성된 군에서 선택되는 하나 이상의 에스테르이고, 상기 환형 에스테르는 감마부티로락톤, 카프로락톤 및 발레로락톤으로 구성된 군에서 선택되는 하나 이상의 에스테르인 것을 특징으로 하는 이차전지용 전해액 . 12. The method according to claim 11, wherein the linear carbonate is at least one carbonate selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, ethyl methyl carbonate, and mixtures thereof. Cyclic carbonate is ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinyl ethylene carbonate and fluorine At least one carbonate selected from the group consisting of roethylene carbonate, the linear ester is at least one ester selected from the group consisting of methyl propionate, ethyl propionate, propyl acetate, butyl acetate and ethyl acetate, the cyclic ester is an electrolyte for a secondary battery, characterized in that at least one ester selected from the group consisting of gamma butyrolactone, caprolactone and valerolactone.
13. 제 11항에 있어서, 상기 비수성 유기용매는 선형 카보네이트 : 환형 카보네이트가 1 :9 내지 9: 1의 부피비로 혼합된 것을 특징으로 하는 이차전지용 전해액 . 2021/240448 1»(그1’/182021/054671 13. The electrolyte solution for a secondary battery according to claim 11, wherein the non-aqueous organic solvent is a mixture of linear carbonate: cyclic carbonate in a volume ratio of 1:9 to 9:1. 2021/240448 1» (Part 1'/18201/054671
14. 제 1항에 있어서, 상기 화학식 1 또는 화학식 2로 표시되는 화합물의 함량은 상기 이차전지용 전해액에 대하여 0.1~10중량%인 것을 특징으로 하는 이차전지용 전해액 . 14. The electrolyte solution for a secondary battery according to claim 1, wherein the content of the compound represented by Formula 1 or Formula 2 is 0.1 to 10% by weight based on the electrolyte solution for a secondary battery.
15. 다음을 포함하는 리튬 이차전지 : ) 리튬을 흡장 및 방출할 수 있는 양극활물질을 포함하는 양극; 15. A lithium secondary battery comprising: ) a cathode comprising a cathode active material capable of occluding and discharging lithium;
( 리튬을 흡장 및 방출할 수 있는 음극활물질을 포함하는 음극; (Anode comprising an anode active material capable of occluding and releasing lithium;
(0) 제 1항 내지 제 14항 중 어느 한 항의 이차전지용 전해액 ; 및 ((1) 분리막. (0) the electrolyte solution for a secondary battery according to any one of claims 1 to 14; and ((1) separators.
PCT/IB2021/054671 2020-05-29 2021-05-28 Electrolytic solution for secondary battery, and secondary battery comprising same WO2021240448A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0065077 2020-05-29
KR20200065077 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021240448A1 true WO2021240448A1 (en) 2021-12-02

Family

ID=78723083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/054671 WO2021240448A1 (en) 2020-05-29 2021-05-28 Electrolytic solution for secondary battery, and secondary battery comprising same

Country Status (2)

Country Link
KR (1) KR102600045B1 (en)
WO (1) WO2021240448A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130057829A (en) * 2011-11-24 2013-06-03 동우 화인켐 주식회사 Electrolyte for lithium secondary battery
KR20160145055A (en) * 2014-04-03 2016-12-19 바스프 에스이 Use of reactive ionic liquids as additives for electrolytes in secondary lithium ion batteries
US20170054178A1 (en) * 2014-02-14 2017-02-23 Stella Chemifa Corporation Nonaqueous electrolyte solution for secondary batteries and secondary battery provided with same
KR20190143827A (en) * 2018-06-21 2019-12-31 파낙스 이텍(주) Electrolyte Solution for Secondary Battery and Secondary Battery Comprising the Same
KR20200018258A (en) * 2018-08-09 2020-02-19 파낙스 이텍(주) Electrolyte Solution for Secondary Battery and Secondary Battery Comprising the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130057829A (en) * 2011-11-24 2013-06-03 동우 화인켐 주식회사 Electrolyte for lithium secondary battery
US20170054178A1 (en) * 2014-02-14 2017-02-23 Stella Chemifa Corporation Nonaqueous electrolyte solution for secondary batteries and secondary battery provided with same
KR20160145055A (en) * 2014-04-03 2016-12-19 바스프 에스이 Use of reactive ionic liquids as additives for electrolytes in secondary lithium ion batteries
KR20190143827A (en) * 2018-06-21 2019-12-31 파낙스 이텍(주) Electrolyte Solution for Secondary Battery and Secondary Battery Comprising the Same
KR20200018258A (en) * 2018-08-09 2020-02-19 파낙스 이텍(주) Electrolyte Solution for Secondary Battery and Secondary Battery Comprising the Same

Also Published As

Publication number Publication date
KR20210147965A (en) 2021-12-07
KR102600045B1 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
JP6699876B2 (en) Lithium-sulfur battery electrolyte and lithium-sulfur battery containing the same
US20180006329A1 (en) Electrochemical cells that include lewis acid: lewis base complex electrolyte additives
KR20180050373A (en) An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
JP6699877B2 (en) Lithium-sulfur battery electrolyte and lithium-sulfur battery containing the same
KR20170092455A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
JP5062459B2 (en) Nonaqueous electrolyte secondary battery
WO2022262231A1 (en) Non-aqueous electrolyte and secondary battery thereof
KR20200002167A (en) Electrolyte composition for lithium secondary battery and lithium secondary battery using the same
WO2022213668A1 (en) Electrolyte additive and non-aqueous electrolyte and lithium ion battery containing additive
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
KR102488633B1 (en) Electrolyte Additives for Secondary Batteries, Non-Aqueous Electrolytes for Lithium Secondary Batteries Containing the Same, and Lithium Secondary Batteries Including the Same
WO2023109259A1 (en) Electrolyte additive, electrolyte, and lithium-ion secondary battery comprising same
KR20190143827A (en) Electrolyte Solution for Secondary Battery and Secondary Battery Comprising the Same
WO2023045164A1 (en) Non-aqueous electrolyte and lithium-ion battery thereof
JP2024508935A (en) Electrolyte for secondary batteries and secondary batteries containing the same
CN113497273A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP7265481B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and storage device
WO2021240448A1 (en) Electrolytic solution for secondary battery, and secondary battery comprising same
KR102601700B1 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR102486689B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
KR20190098432A (en) Electrolyte Solution for Secondary Battery and Secondary Battery Comprising the Same
KR102503055B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
CN115775919A (en) Lithium secondary battery
CN117638230A (en) Electrolyte, secondary battery and electric equipment
JP2023504467A (en) Electrolyte composition having fluorinated acyclic carbonate and fluorinated cyclic carbonate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813386

Country of ref document: EP

Kind code of ref document: A1