WO2021239137A1 - 热管理*** - Google Patents

热管理*** Download PDF

Info

Publication number
WO2021239137A1
WO2021239137A1 PCT/CN2021/096958 CN2021096958W WO2021239137A1 WO 2021239137 A1 WO2021239137 A1 WO 2021239137A1 CN 2021096958 W CN2021096958 W CN 2021096958W WO 2021239137 A1 WO2021239137 A1 WO 2021239137A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat exchanger
compressor
exchange part
branch
Prior art date
Application number
PCT/CN2021/096958
Other languages
English (en)
French (fr)
Inventor
董军启
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to US17/928,611 priority Critical patent/US20230271478A1/en
Priority to EP21812715.7A priority patent/EP4151440A4/en
Publication of WO2021239137A1 publication Critical patent/WO2021239137A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00907Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/034Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from the cooling liquid of the propulsion plant and from an electric heating device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00935Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising four way valves for controlling the fluid direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00957Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising locations with heat exchange within the refrigerant circuit itself, e.g. cross-, counter-, or parallel heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units

Definitions

  • This application relates to the field of thermal management technology, and in particular to a thermal management system.
  • the thermal management system of the automobile can realize the cooling, heating, ventilation and air purification of the indoor air, and provide a comfortable environment for the indoor personnel. How to optimize the thermal management system to improve the performance of the thermal management system is the current focus.
  • the present application provides a thermal management system with a simple structure.
  • a thermal management system including: a refrigerant system and a cooling liquid system;
  • the refrigerant system includes a compressor, an indoor heat exchanger, a first flow adjustment device, a first A heat exchanger and an outdoor heat exchanger, the outdoor heat exchanger includes a first port of the outdoor heat exchanger and a second port of the outdoor heat exchanger, the first flow regulating device has a bidirectional throttling function;
  • a heat exchanger includes a first heat exchange part and a second heat exchange part that are not connected, and the first heat exchange part and the second heat exchange part can exchange heat;
  • the thermal management system includes a heating mode and a cooling mode.
  • the heating mode the outlet of the compressor, the indoor heat exchanger, the first flow regulating device, the outdoor heat exchanger, the The first heat exchange part and the inlet of the compressor are communicated to form a refrigerant circuit, the first flow adjustment device is in a refrigerant throttling state, and the refrigerant in the first heat exchange part absorbs the second heat exchange The heat of the coolant in the part; in the cooling mode, the outlet of the compressor, the first heat exchange part, the outdoor heat exchanger, the first flow adjustment device, the indoor heat exchanger, The inlet of the compressor is connected to form a refrigerant circuit, the first flow adjustment device is in a refrigerant throttling state, and the heat of the refrigerant in the first heat exchange part is transferred to the second heat exchange part. Coolant.
  • the first flow adjustment device of the thermal management system of the present application has a bidirectional throttling function.
  • the thermal management system including heating mode and cooling mode can be realized by the same first flow adjustment device.
  • the structure of the thermal management system is simple and the cost is low. .
  • FIG. 1 is a schematic diagram of the working principle of the first heating mode of an embodiment of the thermal management system of the present application
  • FIG. 2 is a schematic diagram of the working principle of the first state of the second heating mode of an embodiment of the thermal management system of the present application
  • FIG. 3 is a schematic diagram of the working principle of the second heating mode in the second state of an embodiment of the thermal management system of the present application
  • FIG. 4 is a schematic diagram of the working principle of the second heating mode in the third state of an embodiment of the thermal management system of the present application.
  • FIG. 5 is a schematic diagram of the working principle of the first cooling mode of an embodiment of the thermal management system of the present application.
  • FIG. 6 is a schematic diagram of the working principle of the first state of the second cooling mode of an embodiment of the thermal management system of the present application
  • FIG. 7 is a schematic diagram of the working principle of the second cooling mode in the second state of an embodiment of the thermal management system of the present application.
  • FIG. 8 is a schematic diagram of the working principle of the heating and dehumidifying mode of an embodiment of the thermal management system of the present application.
  • FIG. 9 is a schematic diagram of the working principle of the first defrosting mode of an embodiment of the thermal management system of the present application.
  • FIG. 10 is a schematic diagram of the working principle of the second defrost mode of an embodiment of the thermal management system of the present application.
  • FIG. 11 is a schematic diagram of the working principle of the first heat dissipation mode of an embodiment of the thermal management system of the present application.
  • FIG. 12 is a schematic diagram of the working principle of the second heat dissipation mode of an embodiment of the thermal management system of the present application.
  • FIG. 13 is a schematic diagram of an exemplary working principle of another embodiment of the thermal management system of the present application, in which the third fluid switching device is in the first working mode;
  • FIG. 14 is a schematic diagram of an exemplary working principle of another embodiment of the thermal management system of the present application, in which the third fluid switching device is in the second working mode;
  • 15 is a schematic diagram of an exemplary working principle of another embodiment of the thermal management system of the present application, in which the third fluid switching device is in the first working mode;
  • FIG. 16 is a schematic diagram of another embodiment of the thermal management system of the present application, in which the third fluid switching device is in the second working mode;
  • Fig. 17 is a partial schematic diagram of a three-dimensional structure of a related shell-and-tube liquid-cooled heat exchanger.
  • thermal management system of an exemplary embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • the thermal management system provided in the embodiments of the present application can be used in electric vehicles. In the case of no conflict, the following embodiments and features in the implementation manners can be mutually supplemented or combined with each other.
  • the thermal management system includes a compressor 1, an indoor heat exchanger 2, a first flow adjustment device 3, a second flow adjustment device 4, and an outdoor heat exchanger 5.
  • the first heat exchanger 7 includes a first heat exchange part 72 and a second heat exchange part 71 capable of performing heat exchange.
  • the first heat exchange part 72 and the second heat exchange part 71 are both provided with a flow channel, and the first heat exchange part The flow channel of 72 and the flow channel of the second heat exchange part 71 are isolated from each other and not connected.
  • the second heat exchanger 6 includes a third heat exchange part 61 and a fourth heat exchange part 62 capable of heat exchange.
  • the third heat exchange part 61 and the fourth heat exchange part 62 are both provided with a flow channel, and the third heat exchange part The flow channel of 61 and the flow channel of the fourth heat exchange part 62 are isolated from each other and not connected.
  • the refrigerant can exchange heat with the coolant through the first heat exchanger 7, and the first heat exchanger 7 can be a plate heat exchanger, a shell-and-tube liquid-cooled heat exchanger, or other liquid-cooled heat exchangers.
  • the refrigerant can exchange heat with the cooling liquid through the second heat exchanger 6, and the second heat exchanger 6 can be a plate heat exchanger, a shell-and-tube liquid-cooled heat exchanger, or other liquid-cooled heat exchangers.
  • the second heat exchanger 6 and the first heat exchanger 7 may be the same or different.
  • the second heat exchanger 6 and the first heat exchanger 7 are both shell-and-tube heat exchangers.
  • the shell-and-tube heat exchanger has the pressure resistance capability Stronger, lower risk of blasting.
  • the shell-and-tube heat exchanger includes several parallel microchannel flat tubes 100, a first current collector 200 connected to one end of the microchannel flat tube 100, and a first first collector 200 connected to the other end of the microchannel flat tube 100.
  • the refrigerant can flow from a cavity of the first collector 200 on one side, flow through a part of the microchannel flat tube 100 to the second collector 300 on the other side, and then pass through another part of the microchannel flat tube 100 from the first collector.
  • the other cavity of a collector 200 flows out, and the cooling liquid flows in the gap between the cavity formed by the housing 400 and the microchannel flat tube 100, so as to realize the heat exchange between the refrigerant and the cooling liquid.
  • the circuit connected to the compressor 1 is a refrigerant circuit
  • the circuit connected to the first fluid drive device 11 and the second fluid drive device 12 is a coolant circuit.
  • the flow path of the third heat exchange part 61 is used for circulating refrigerant
  • the flow path of the fourth heat exchange part 62 is used for circulating coolant
  • the flow path of the first heat exchange part 72 is used for circulating refrigerant
  • the second heat exchange part The flow channel of 71 is used to circulate cooling liquid.
  • the refrigerant can be R134A or carbon dioxide or other heat exchange media.
  • the cooling liquid may be a mixed solution of ethanol and water
  • the first fluid driving device 11 and the second fluid driving device 12 may be devices that drive liquid flow such as electronic water pumps.
  • the various components of the thermal management system are connected by pipelines to form two major subsystems, namely the refrigerant system and the coolant system.
  • the refrigerant of the refrigerant system and the coolant of the coolant system are isolated from each other and do not circulate.
  • the third heat exchange The flow path of the part 61 and the flow path of the first heat exchange part 72 are connected to the refrigerant system, and the flow path of the fourth heat exchange part 62 and the flow path of the second heat exchange part 71 are connected to the coolant system.
  • the flow passage of the third heat exchange part 61 and the flow passage of the first heat exchange part 72 are connected to the refrigerant system” mentioned here means that the refrigerant in the refrigerant system can flow into and out of the third heat exchange part.
  • the flow passage of the heat exchange part 61 and the flow passage of the first heat exchange part 72, the third heat exchange part 61 and the first heat exchange part 72 can be connected to the components in the refrigerant system through pipelines, and when the heat management system is working After connecting through the pipeline, a loop is formed.
  • the “flow passage of the fourth heat exchange part 62 and the flow passage of the second heat exchange part 71 are connected to the cooling liquid system” mentioned here means that the cooling liquid in the cooling liquid system can flow into and out of the fourth heat exchange part 62
  • the flow channel and the flow channel of the second heat exchange part 71, the fourth heat exchange part 62 and the second heat exchange part 71 can be connected to the components in the cooling liquid system through pipelines, and are connected through the pipelines when the thermal management system is working. Form a loop.
  • the refrigerant system includes: a compressor 1, an indoor heat exchanger 2, a first flow adjustment device 3, a second flow adjustment device 4, an outdoor heat exchanger 5, a third heat exchange part 61 of the second heat exchanger 6, and a third heat exchange part 61 of the second heat exchanger 6.
  • the first heat exchange part 72, the third fluid switching device 13 and the gas-liquid separator 14 of a heat exchanger 7 can be indirectly connected to the above-mentioned components through pipelines or valves.
  • the refrigerant system includes a first branch a and a second branch b arranged in parallel, the first flow regulating device 3 and the indoor heat exchanger 2 are arranged in the first branch a, the second flow regulating device 4 and the third heat exchange
  • the section 61 is provided on the second branch b.
  • the first flow adjustment device 3 and the second flow adjustment device 4 may be two-way throttle valves, and the first flow adjustment device 3 and the second flow adjustment device 4 may also be a combination of other valve parts, and may have a conducting valve. , Cut-off and two-way throttling function.
  • the first branch a includes the first end a1 of the first branch and the second end a2 of the first branch
  • the second branch b includes the first end b1 of the second branch and the second end of the second branch.
  • the first end a1 of the first branch and the first end b1 of the second branch are both connected to the first port 51 of the outdoor heat exchanger
  • the first flow regulating device 3 is connected to the first port of the outdoor heat exchanger Between 51 and the indoor heat exchanger 2.
  • the indoor heat exchanger 2 is provided with only one heat exchanger.
  • the second flow adjustment device 4 of the second branch b is connected between the first port 51 of the outdoor heat exchanger and the third heat exchange portion 61 of the second heat exchanger 6.
  • the second port 52 of the outdoor heat exchanger communicates with the outlet of the compressor 1, and the first heat exchange part 72 is connected to the outdoor heat exchanger 5. Between the compressor 1 and the second end a2 of the first branch and the second end b2 of the second branch are both connected to the inlet of the compressor 1.
  • the second port 52 of the outdoor heat exchanger is connected to the inlet of the compressor 1, and the first heat exchange part 72 is connected between the outdoor heat exchanger 5 and the compressor 1.
  • Both the second end a2 of the branch circuit and the second end b2 of the second branch circuit are in communication with the outlet of the compressor 1.
  • the first end a1 of the first branch, the first end b1 of the second branch, and the outdoor heat exchanger 5 can be connected by a three-way pipe.
  • the second end b2 of the branch and the compressor 1 can be connected by a three-way pipe.
  • multiple ports may be provided between the two ports of the outdoor heat exchanger 5, the inlet and outlet of the compressor 1, the two ends of the first branch a, and the two ends of the second branch b. Stop valve, or three-way valve or multiple valve components, so as to realize the flow direction control of the refrigerant in the refrigerant system.
  • the thermal management system switches the refrigerant flow direction in the refrigerant system through the third fluid switching device 13.
  • the third fluid switching device 13 may be a four-way valve or a combination of multiple valve parts.
  • the third fluid switching device 13 is a four-way valve.
  • the third fluid switching device 13 includes a first connection port 131, a second connection port 132, a third connection port 133, and a fourth connection port 134, the first connection port 131 and the compressor 1
  • the outlet is connected by a pipeline
  • the second end a2 of the first branch and the second end b2 of the second branch are both connected with the second connection port 132 by a pipeline
  • the third connection port 133 The inlet of the gas-liquid separator 14 is connected by a pipeline
  • the outlet of the gas-liquid separator 14 is connected with the inlet of the compressor 1 by a pipeline
  • the fourth connection port 134 is connected to the outdoor heat exchanger.
  • the second port 52 is connected by a pipeline.
  • the gas-liquid separator 14 may not be provided, and the third connection port 133 is directly connected to the inlet of the compressor 1 through a pipeline.
  • the third fluid switching device 13 includes a first working mode and a second working mode; in the first working mode, the first connection port 131 and the second connection port 132 are in communication, and the third connection The port 133 communicates with the fourth connection port 134. In the second working mode, the first connection port 131 and the fourth connection port 134 are in communication, and the second connection port 132 and the third connection port 133 are in communication.
  • the coolant system includes a battery heat exchange assembly 8, a first fluid drive device 11, a fourth heat exchange unit 62, a motor heat exchange assembly 9, a first fluid switching device 10, a second heat exchange unit 71, and a third heat exchanger 16 And the second fluid switching device 17.
  • the coolant system includes a first flow path c and a second flow path d.
  • the first flow path c and the second flow path d can be arranged in series or in parallel, that is, the first flow path c and the second flow path d
  • the two flow paths d can operate independently of each other to form a loop, or they can be connected to each other to form a loop and operate together.
  • the first fluid switching device 10 includes a first port 101, a second port 102, a third port 103, and a fourth port 104.
  • One end of the first flow path c is connected to the first port 101, and the other end of the first flow path c is connected to the second port 101.
  • the interface 102 is connected, one end of the second flow path d is connected to the third interface 103, and the other end of the second flow path d is connected to the fourth interface 104.
  • the battery heat exchange assembly 8, the fourth heat exchange part 62 and the first fluid drive device 11 are arranged in the first flow path c.
  • the flow path of the fourth heat exchange part 62 is a part of the coolant circuit.
  • the second heat exchange part 71, the motor heat exchange assembly 9, the second fluid drive device 12, the third heat exchanger 16 and the second fluid switching device 17 are arranged in the second flow path d.
  • the second exchange The flow path of the hot part 71 is a part of the coolant circuit.
  • the second flow path d includes a third branch d1 and a fourth branch d2 arranged in parallel, the third branch d1 is composed of a pipeline, and the third heat exchanger 16 is provided in the fourth branch d2.
  • the third heat exchanger 16 may be a low temperature water tank, and the third heat exchanger 16 exchanges heat with the ambient air, which can reduce the temperature of the cooling liquid.
  • the third branch d1 is connected between the first fluid switching device 10 and the second fluid switching device 17, and the fourth branch d2 is connected between the first fluid switching device 10 and the second fluid switching device 17.
  • the second fluid switching device 17 includes a fifth port 171, a sixth port 172, and a seventh port 173.
  • One end of the third branch d1 is connected to the fifth port 171 and the other end is connected to the fourth port 104.
  • One end of the branch d2 is connected to the seventh interface 173 and the other end is connected to the fourth interface 104, and the sixth interface 172 is connected to the second heat exchange part 71.
  • the coolant system has a first working state and a second working state. 1 and 5, in the first working state, the first fluid switching device 10 is in the first communication state, the first interface 101 is in communication with the second interface 102, the third interface 103 is in communication with the fourth interface 104, and the first interface 101 is in communication with the second interface 102.
  • the fluid driving device 11, the first fluid switching device 10, the fourth heat exchange portion 62, and the battery heat exchange assembly 8 are connected to form a first coolant circuit
  • the second fluid driving device 12, the motor heat exchange assembly 9, and the second heat exchange Section 71, the first fluid switching device 10 and the third branch d1 are connected to form a second coolant circuit
  • the second fluid driving device 12, the motor heat exchange assembly 9, the second heat exchange portion 71, the first fluid switching device 10 and the fourth branch d2 are connected to form a second cooling liquid circuit.
  • the first cooling liquid circuit and the second cooling liquid circuit operate independently of each other. When the second flow regulating device 4 is not cut off, the cooling liquid in the first cooling liquid circuit can pass The second heat exchanger 6 exchanges heat with the refrigerant.
  • the coolant in the second coolant circuit can exchange heat with the refrigerant through the first heat exchanger 7.
  • the second coolant circuit The intermediate coolant can exchange heat with the refrigerant through the first heat exchanger 7.
  • the first fluid driving device 11 can drive the cooling liquid to flow in the first cooling liquid circuit, and the second heat exchanger 6 can be used to adjust the temperature of the battery heat exchange assembly 8.
  • the second fluid driving device 12 can drive the cooling liquid to flow in the second cooling liquid circuit, the third heat exchanger 16 and/or the first heat exchanger 7 can be used to adjust the temperature of the motor heat exchange assembly 9, the first cooling liquid circuit
  • the cooling liquid in the second cooling liquid circuit is not connected with the cooling liquid in the second cooling liquid circuit. At this time, by setting the working state of the second fluid switching device 17, the third branch d1 or the fourth branch d2 can be selectively connected.
  • the first fluid driving device 11 may be in working state, that is, the cooling in the first flow path c
  • the liquid is in a state of continuing to flow, but because the second flow adjustment device 4 is cut off, the refrigerant and the coolant at the second heat exchanger 6 do not exchange heat.
  • the coolant in the first flow path c is in a state of continuing to flow, so that In the thermal management system, the temperature of the battery heat exchange assembly 8 is measured more accurately, so that the battery heat exchange assembly 8 can perform thermal management more accurately.
  • the cooling liquid is in a state of continuing to flow, and the battery heat exchange assembly 8 can exchange heat with the cooling liquid.
  • the first fluid switching device 10 is in the second communication state, the first interface 101 communicates with the fourth interface 104, and the second interface 102 communicates with the third interface 103 ,
  • the branch d1 is connected to form a third circuit, or, the second fluid driving device 12, the motor heat exchange assembly 9, the second heat exchange part 71, the first fluid switching device 10, the fourth heat exchange part 62, and the battery heat exchange assembly 8 ,
  • the first fluid driving device 11 and the fourth branch d2 are connected to form a third circuit.
  • the first flow path c and the second flow path d are connected in series through the first fluid switching device 10.
  • the coolant It can exchange heat with the refrigerant through the second heat exchanger 6 and the first heat exchanger 7 respectively.
  • the second flow adjustment device 4 is turned off, the coolant can exchange heat with the refrigerant through the first heat exchanger 7.
  • a fluid driving device 11 and a second fluid driving device 12 jointly drive the cooling liquid to flow in the third circuit. At this time, by setting the working state of the second fluid switching device 17, the third branch d1 or the fourth branch d2 can be selectively connected.
  • the thermal management system further includes a heating device 18 arranged adjacent to the indoor heat exchanger 2.
  • the heating device 18 is located on the downstream side of the air flow relative to the indoor heat exchanger 2, and the heating device 18 may be air-cooled. PTC electric heater or liquid-cooled PTC electric heater.
  • the indoor heat exchanger 2 and the heating device 18 are installed in the air-conditioning box of the automobile.
  • the front end module composed of the outdoor heat exchanger 5 and the third heat exchanger 16 (low temperature water tank) is arranged near the front air intake grille of the automobile, and the compressor 1 and the gas-liquid separator 14 are arranged in the front chamber of the cab.
  • the thermal management system of this embodiment has multiple working modes, including heating mode, cooling mode, heating and dehumidifying mode, defrosting mode, and heat dissipation mode.
  • the outdoor heat exchanger 5 can be used as an evaporator or a condenser.
  • the indoor heat exchanger 2 and the heating device 18 can exchange heat with the air entering the air-conditioning box of the passenger compartment.
  • the indoor heat exchanger 2 and the heating device 18 are arranged in the air-conditioning box, and the air-conditioning box can also be provided with a blower for conveying Air.
  • the indoor heat exchanger 2 can be used as a condenser in the heating mode, and can be used as an evaporator in the cooling mode, so as to adjust the air temperature in the passenger compartment.
  • the thermal management system of this embodiment is not only applicable to vehicles, but also applicable to other heat exchange systems that require thermal management.
  • the description of this application takes a vehicle as an example for description.
  • the second flow adjustment device 4 As shown in Figures 1 to 4, when the ambient temperature is low, the passenger compartment has heating requirements. According to whether the motor heat exchange assembly 9 and the battery heat exchange assembly 8 have heat dissipation requirements, the second flow adjustment device 4, The state of the first fluid switching device 10 and the second fluid switching device 17, the coolant system realizes the heating of the battery heat exchange assembly 8 and the waste heat recovery of the motor heat exchange assembly 9, the battery heat exchange assembly 8 does not exchange heat with the refrigerant circuit and the motor exchanges The thermal component 9 waste heat recovery, the battery heat exchange component 8 and the motor heat exchange component 9 all dissipate heat to the environment, and the battery heat exchange component 8 does not exchange heat with the refrigerant circuit and the motor heat exchange component 9 radiates heat.
  • the thermal management system has a first heating mode and a second heating mode. According to whether the battery heat exchange component 8 and the motor heat exchange component 9 have heat dissipation requirements, the second heating mode is divided into It is the first state in the second heating mode, the second state in the second heating mode, and the third state in the second heating mode.
  • the thermal management system is in the first heating mode, and the second port 52 of the outdoor heat exchanger is compressed
  • the inlet of the machine 1 is connected, the second end a2 of the first branch and the second end b2 of the second branch are both connected to the outlet of the compressor 1, the third fluid switching device 13 is in the first working mode, and the first flow adjustment Both the device 3 and the second flow regulating device 4 are in a throttling state.
  • the compressor 1, the indoor heat exchanger 2, the first flow regulating device 3, the outdoor heat exchanger 5, the first heat exchange part 72, and the gas-liquid separator 14 communicate with each other to form a refrigerant circuit, and the compressor 1, the third
  • the heat exchange unit 61, the second flow adjustment device 4, the outdoor heat exchanger 5, the first heat exchange unit 72, and the gas-liquid separator 14 communicate with each other to form a refrigerant circuit.
  • the coolant system is in the first working state
  • the first flow path c is connected in parallel with the second flow path d
  • the fifth interface 171 of the second fluid switching device 17 is connected to the sixth interface 172
  • the third branch d1 is connected In the coolant circuit.
  • the first fluid driving device 11, the first fluid switching device 10, the fourth heat exchange portion 62 and the battery heat exchange assembly 8 are connected to form a first coolant circuit
  • the second heat exchange portion 71, the third branch d1, and the first fluid switching device 10 communicate with each other to form a second coolant circuit.
  • the refrigerant exchanges heat with the cooling liquid in the first cooling liquid circuit through the second heat exchanger 6, and the refrigerant exchanges heat with the cooling liquid in the second cooling liquid circuit through the first heat exchanger 7.
  • the high-temperature refrigerant compressed by the compressor 1 passes through the third fluid switching device 13 and is divided into two paths. One path flows to the first branch a, and the other path flows to the second branch b.
  • the refrigerant enters the connection connected to the first branch a.
  • the indoor heat exchanger 2 is used as a condenser, and the refrigerant exchanges heat with the air in the passenger cabin, thereby heating the air entering the passenger cabin, and achieving the purpose of heating the passenger cabin.
  • the refrigerant enters the third heat exchange section 61 connected to the second branch b.
  • the refrigerant in the third heat exchange section 61 exchanges heat with the coolant in the fourth heat exchange section 62, and the refrigerant with a higher temperature
  • the heat is transferred to the cooling liquid to raise the temperature of the cooling liquid, and the heated cooling liquid flows to the battery heat exchange assembly 8 under the driving of the first fluid driving device 11, so as to realize the heating of the battery heat exchange assembly 8.
  • the refrigerant flowing out of the indoor heat exchanger 2 is throttled and cooled by the first flow regulating device 3, and the refrigerant flowing out of the third heat exchange part 61 is throttled and cooled by the second flow regulating device 4, and the two refrigerants are first merged and then flow to the place.
  • the low-temperature refrigerant in the gas-liquid two-phase state absorbs the heat of the air in the outdoor heat exchanger 5.
  • the refrigerant flowing out of the outdoor heat exchanger 5 flows into the first heat exchange part 72, and the first heat exchange
  • the refrigerant in the section 72 exchanges heat with the cooling liquid in the second heat exchange section 71.
  • the higher-temperature cooling liquid transfers heat to the refrigerant, and the refrigerant absorbs the heat from the cooling liquid again in the first heat exchanger 7 Heat, so as to realize the waste heat recovery of the motor, and finally return to the compressor 1 after passing through the third fluid switching device 13 and the gas-liquid separator 14, and so on.
  • the outdoor heat exchanger 5 includes two connection ports, and the two refrigerants can also be directly merged in the outdoor heat exchanger 5.
  • the refrigerant absorbs the heat of the air in the outdoor heat exchanger 5, it absorbs the heat of the cooling liquid in the first heat exchanger 7, the dryness of the refrigerant increases, and finally flows to the gas-liquid separator 14.
  • the gas-liquid separator 14 is used to separate the gas-liquid two-phase refrigerant into gaseous refrigerant and liquid refrigerant.
  • the liquid refrigerant is stored in the gas-liquid separator 14, and the gaseous refrigerant flows to the compressor 1, reducing the compressor liquid. The risk of hitting.
  • the gas-liquid separator 14 may not be provided, and the refrigerant directly returns to the compressor 1 within.
  • Both the motor heat exchange assembly 9 and the battery heat exchange assembly 8 have a better working temperature range, in which the working efficiency is higher and the safety is higher.
  • both the passenger compartment and the battery heat exchange assembly 8 have heating requirements.
  • the second heat exchanger 6 utilizes cooling The temperature of the agent heats the battery heat exchange assembly 8, so that the battery heat exchange assembly 8 reaches a better working temperature.
  • the high pressure water circuit PTC in the coolant circuit can be omitted.
  • the refrigerant flowing out of the outdoor heat exchanger 5 absorbs the heat of the coolant through the first heat exchanger 7 and then returns to the compressor 1, which can improve the energy efficiency of the system Ratio (COP) and heating capacity can also achieve the purpose of cooling the motor.
  • COP system Ratio
  • the thermal management system is in the first state of the second heating mode, outdoor
  • the second port 52 of the heat exchanger is in communication with the inlet of the compressor 1
  • the second end a2 of the first branch a is in communication with the outlet of the compressor 1
  • the third fluid switching device 13 is in the first working mode, and the first flow rate is adjusted
  • the device 3 is in a throttling state
  • the second flow regulating device 4 is in a cut-off state.
  • the compressor 1, the indoor heat exchanger 2, the first flow regulating device 3, the outdoor heat exchanger 5, the first heat exchange unit 72, and the gas-liquid separator 14 communicate with each other to form a refrigerant circuit.
  • the cooling liquid system is in the first working state
  • the second flow adjustment device 4 is in the cut-off state
  • the refrigerant and the cooling liquid in the second heat exchanger 6 do not exchange heat
  • the second fluid in the second flow path d drives
  • the device 12 provides power for the circulating flow of the cooling liquid
  • the fifth interface 171 of the second fluid switching device 17 is in communication with the sixth interface 172
  • the third branch d1 is connected to the cooling liquid circuit.
  • the second fluid driving device 12, the motor heat exchange assembly 9, the second heat exchange portion 71, the third branch d1, and the first fluid switching device 10 communicate with each other to form a coolant circuit, and the refrigerant passes through the first heat exchanger 7 and The coolant exchanges heat.
  • the first fluid driving device 11 may be in the working state at this time, that is, the first fluid driving device 11 provides power for the circulating flow of the cooling liquid.
  • the first fluid driving device 11, the first fluid switching device 10, and the The four heat exchange parts 62 and the battery heat exchange assembly 8 are connected to form a cooling liquid circuit, but the cooling liquid and the refrigerant do not exchange heat.
  • the high-temperature refrigerant compressed by the compressor 1 passes through the third fluid switching device 13 and then flows to the first branch a.
  • the refrigerant enters the indoor heat exchanger 2 connected to the first branch a, and the indoor heat exchanger 2 is used as In the condenser, the refrigerant exchanges heat with the air to heat the air entering the passenger compartment to achieve the purpose of heating the passenger compartment.
  • the refrigerant flowing out of the indoor heat exchanger 2 is throttled and cooled by the first flow regulating device 3 and then flows to the outdoor heat exchanger 5.
  • the low-temperature refrigerant in the gas-liquid two-phase state absorbs the heat of the air in the outdoor heat exchanger 5.
  • the refrigerant flowing out of the outdoor heat exchanger 5 flows into the first heat exchange part 72, and the higher temperature coolant in the second heat exchange part 71 transfers heat to the refrigerant in the first heat exchange part 72 through the coolant circuit Circulating flow of the motor, so as to realize the waste heat recovery of the motor, and finally return to the compressor 1 after passing through the third fluid switching device 13 and the gas-liquid separator 14, and so on.
  • the refrigerant flowing out of the outdoor heat exchanger 5 absorbs the heat of the motor heat exchange assembly 9 through the first heat exchanger 7 and then returns to the compressor 1, which can improve the energy efficiency ratio of the system ( COP) and heating capacity can also achieve the purpose of cooling the motor.
  • the thermal management system is in the second state of the second heating mode, and the second port 52 of the outdoor heat exchanger 5 It is connected to the inlet of the compressor 1, the second end a2 of the first branch is connected to the outlet of the compressor 1, the third fluid switching device 13 is in the first working mode, the first flow regulating device 3 is in the throttling state, and the second The flow regulating device 4 is in the cut-off state.
  • the compressor 1, the indoor heat exchanger 2, the first flow regulating device 3, the outdoor heat exchanger 5, the first heat exchange unit 72, and the gas-liquid separator 14 communicate with each other to form a refrigerant circuit.
  • the coolant system is in the second working state
  • the first flow path c and the second flow path d are connected in series
  • the first fluid driving device 11 in the first flow path c and the second fluid driving device 12 in the second flow path d Together they provide power for the circulating flow of the cooling liquid
  • the sixth interface 172 of the second fluid switching device 17 is in communication with the seventh interface 173, and the fourth branch d2 is connected to the cooling liquid circuit.
  • the heat parts 62 communicate with each other to form a cooling liquid circuit, and the refrigerant exchanges heat with the cooling liquid through the first heat exchanger 7.
  • the flow state of the refrigerant in this mode is similar to the flow principle of the refrigerant in the first state of the second heating mode, and will not be repeated here.
  • the first flow path c and the second flow path d are connected in series to form a large coolant circuit, and the third heat exchanger 16 is connected to the coolant circuit.
  • the first heat exchanger 7 transfers part of the heat of the cooling liquid to the refrigerant, improving the energy efficiency ratio (COP) and heating capacity of the system; on the other hand, the cooling liquid exchanges heat with the air through the third heat exchanger 16 to achieve The purpose of reducing the temperature of the cooling liquid is to circulate the cooling liquid after cooling, thereby realizing heat dissipation for the motor heat exchange assembly 9 and the battery heat exchange assembly 8.
  • the thermal management system is in the second heating mode and the third state
  • the outdoor heat exchange The second port 52 of the compressor is in communication with the inlet of the compressor 1, the second end a2 of the first branch is in communication with the outlet of the compressor 1, the third fluid switching device 13 is in the first working mode, and the first flow regulating device 3 is in In the throttling state, the second flow regulating device 4 is in the cut-off state.
  • the compressor 1, the indoor heat exchanger 2, the first flow regulating device 3, the outdoor heat exchanger 5, the first heat exchange unit 72, and the gas-liquid separator 14 communicate with each other to form a refrigerant circuit.
  • the cooling liquid system is in the first working state
  • the second flow adjustment device 4 is in the cut-off state
  • the refrigerant and the cooling liquid in the second heat exchanger 6 do not exchange heat
  • the second fluid in the second flow path d drives
  • the device 12 provides power for the circulating flow of the cooling liquid
  • the sixth interface 172 of the second fluid switching device 17 is in communication with the seventh interface 173, and the fourth branch d2 is connected to the cooling liquid circuit.
  • the second fluid driving device 12, the motor heat exchange assembly 9, the second heat exchange portion 71, the third heat exchanger 16 and the first fluid switching device 10 are connected to form a coolant circuit, and the refrigerant passes through the first heat exchanger 7 Exchange heat with coolant.
  • the first fluid driving device 11 may be in the working state at this time, that is, the first fluid driving device 11 provides power for the circulating flow of the cooling liquid.
  • the first fluid driving device 11, the first fluid switching device 10, and the The four heat exchange parts 62 and the battery heat exchange assembly 8 are connected to form a cooling liquid circuit, but the cooling liquid and the refrigerant do not exchange heat.
  • the flow state of the refrigerant in this mode is similar to the flow principle of the refrigerant in the first state of the second heating mode, and will not be repeated here.
  • the third heat exchanger 16 in the second flow path d is connected to the coolant circuit.
  • part of the heat of the coolant is transferred to the refrigerant through the first heat exchanger 7.
  • the cooling liquid exchanges heat with the air through the third heat exchanger 16 to achieve the purpose of reducing the temperature of the cooling liquid, and the cooling liquid circulates after cooling to achieve Dissipate heat for the motor heat exchange component 9.
  • the passenger compartment needs to be cooled.
  • the second flow regulating device 4 the first The state of the fluid switching device 10 and the second fluid switching device 17 realizes that the battery heat exchange assembly 8 is cooled by the refrigerant and the motor heat exchange assembly 9 is cooled by the third heat exchanger 16, and the battery heat exchange assembly 8 is not connected to the refrigerant flow path.
  • the functions of heat exchange and heat dissipation of the motor heat exchange assembly 9, and the battery heat exchange assembly 8 and the motor heat exchange assembly 9 all pass through the third heat exchanger 16 to dissipate heat.
  • the thermal management system is divided into a first cooling mode and a second cooling mode.
  • the second refrigeration The modes are divided into the first state of the second cooling mode and the second state of the second cooling mode.
  • the battery heat exchange assembly 8 and the passenger compartment can be cooled by refrigerant, and the third heat exchanger 16 can exchange heat for the motor
  • the thermal management system is in the first cooling mode
  • the second port 52 of the outdoor heat exchanger is connected to the outlet of the compressor 1
  • the second end a2 of the first branch and the second end b2 of the second branch are both
  • the third fluid switching device 13 is in the second working mode
  • the first flow regulating device 3 and the second flow regulating device 4 are both in a throttling state.
  • the compressor 1, the first heat exchange unit 72, the outdoor heat exchanger 5, the first flow regulating device 3, the indoor heat exchanger 2 and the gas-liquid separator 14 communicate with each other to form a refrigerant circuit, and the compressor 1, the first The heat exchange part 72, the outdoor heat exchanger 5, the second flow regulator 4, the third heat exchange part 61, and the gas-liquid separator 14 communicate with each other to form a refrigerant circuit.
  • the coolant system is in the first working state
  • the first flow path c is connected in parallel with the second flow path d
  • the sixth interface 172 of the second fluid switching device 17 is connected to the seventh interface 173
  • the fourth branch d2 is connected In the coolant circuit.
  • the first fluid driving device 11, the first fluid switching device 10, the fourth heat exchange portion 62 and the battery heat exchange assembly 8 are connected to form a first coolant circuit
  • the second heat exchange part 71, the third heat exchanger 16 and the first fluid switching device 10 communicate with each other to form a second cooling liquid circuit.
  • the refrigerant exchanges heat with the cooling liquid in the first cooling liquid circuit through the second heat exchanger 6, and the refrigerant exchanges heat with the cooling liquid in the second cooling liquid circuit through the first heat exchanger 7.
  • the high-temperature refrigerant compressed by the compressor 1 flows into the first heat exchange part 72, and the higher temperature refrigerant in the first heat exchange part 72 transfers heat to the coolant in the second heat exchange part 71, and passes through the coolant.
  • the circulating flow of the circuit takes away part of the heat of the refrigerant, and then the refrigerant flows into the outdoor heat exchanger 5, and the temperature of the refrigerant decreases again after heat exchange with the air.
  • the refrigerant flowing out of the outdoor heat exchanger 5 is divided into two paths, one way Flow to the first branch a, and the other flow to the second branch b.
  • the refrigerant enters the first branch a is throttled by the first flow adjustment device 3, and then flows into the indoor heat exchanger 2.
  • the indoor heat exchanger 2 is used as an evaporator, and the refrigerant exchanges heat with the air in the air-conditioning box of the passenger compartment. So as to realize the cooling of the passenger cabin.
  • the refrigerant in the third heat exchange section 61 exchanges heat with the coolant in the fourth heat exchange section 62 ,
  • the temperature of the cooling liquid is reduced, and the cooling liquid is circulated to achieve the purpose of cooling the battery heat exchange assembly 8.
  • the refrigerant in the first branch a and the second branch b first merge and then flow to the gas-liquid separator 14, and then return to the compressor 1, and so on.
  • the gas-liquid separator 14 is used to separate the gas-liquid two-phase refrigerant into a gaseous refrigerant and a liquid refrigerant.
  • the liquid refrigerant is stored in the gas-liquid separator, and the gaseous refrigerant flows to the compressor 1.
  • the compressor 1 is provided with a liquid storage tank or the refrigerant flowing into the compressor 1 is all gaseous, the gas-liquid separator 14 may not be provided, and the refrigerant directly returns to the compressor 1.
  • the thermal management system of the present application reduces the temperature of the refrigerant twice before flowing to the first branch a and the second branch b through the functions of the first heat exchanger 7 and the outdoor heat exchanger 5, so as to make the refrigerant flow through
  • the refrigerant throttled by the first flow adjustment device 3 and the second flow adjustment device 4 has a lower temperature, so that the refrigerant in the first branch a can absorb more air heat in the indoor heat exchanger 2, and The cooling effect is improved, and the refrigerant in the second branch b absorbs more heat of the cooling liquid in the first cooling liquid circuit, and the cooling effect of the battery is improved.
  • the battery can be cooled by the refrigerant, and a better cooling effect can be achieved.
  • the cooling liquid in the second cooling liquid circuit exchanges heat with the air through the third heat exchanger 16 to achieve the purpose of reducing the temperature of the cooling liquid. The purpose of heat dissipation.
  • the motor heat exchange assembly 9 is cooled by the third heat exchanger 16 and the thermal management system is in the second cooling mode
  • the second port 52 of the outdoor heat exchanger 5 is in communication with the outlet of the compressor 1
  • the second end a2 of the first branch is in communication with the inlet of the compressor 1
  • the third fluid switching device 13 is in the second working mode
  • the first flow regulating device 3 is in a throttling state
  • the second flow regulating device 4 is in a cut-off state.
  • the compressor 1, the first heat exchange unit 72, the outdoor heat exchanger 5, the first flow regulating device 3, the indoor heat exchanger 2 and the gas-liquid separator 14 communicate with each other to form a refrigerant circuit.
  • the cooling liquid system is in the first working state
  • the second flow adjustment device 4 is in the cut-off state
  • the refrigerant and the cooling liquid in the second heat exchanger 6 do not exchange heat
  • the second fluid in the second flow path d drives
  • the device 12 provides power for the circulating flow of the cooling liquid
  • the sixth interface 172 of the second fluid switching device 17 is in communication with the seventh interface 173, and the fourth branch d2 is connected to the cooling liquid circuit.
  • the second fluid driving device 12, the motor heat exchange assembly 9, the second heat exchange portion 71, the third heat exchanger 16 and the first fluid switching device 10 communicate with each other to form a coolant circuit.
  • the refrigerant exchanges heat with the coolant through the first heat exchanger 7.
  • the first fluid driving device 11 may be in the working state at this time, that is, the first fluid driving device 11 provides power for the circulating flow of the cooling liquid.
  • the first fluid driving device 11, the first fluid switching device 10, and the The four heat exchange parts 62 and the battery heat exchange assembly 8 are connected to form a cooling liquid circuit, but the cooling liquid and the refrigerant do not exchange heat.
  • the high-temperature refrigerant compressed by the compressor 1 flows into the first heat exchange part 72, and the higher temperature refrigerant in the first heat exchange part 72 transfers heat to the coolant in the second heat exchange part 71, and passes through the coolant.
  • the circulating flow of the circuit takes away part of the heat of the refrigerant, and then the refrigerant flows into the outdoor heat exchanger 5, the temperature of the refrigerant decreases again after heat exchange with the air, and the refrigerant flowing out of the outdoor heat exchanger 5 flows to the first branch Road a.
  • the refrigerant enters the first branch a and flows into the indoor heat exchanger 2 after being throttled by the first flow adjustment device 3.
  • the indoor heat exchanger 2 is used as an evaporator, and the refrigerant exchanges heat with the air in the passenger compartment to achieve The passenger compartment cools down.
  • the refrigerant flowing out of the first branch a flows to the gas-liquid separator 14, and then returns to the compressor 1, and so on.
  • the gas-liquid separator 14 is used to separate the gas-liquid two-phase refrigerant into a gaseous refrigerant and a liquid refrigerant.
  • the liquid refrigerant is stored in the gas-liquid separator, and the gaseous refrigerant flows into the compressor 1.
  • the compressor 1 is provided with a liquid storage tank or the refrigerant flowing into the compressor 1 is all gaseous, the gas-liquid separator 14 may not be provided, and the refrigerant directly returns to the compressor 1.
  • the thermal management system is in the first state of the second cooling mode.
  • the third heat exchanger 16 exchanges heat with the air to reduce the temperature of the cooling liquid.
  • the circulating flow of the cooling liquid can achieve the purpose of cooling the motor heat exchange assembly 9.
  • the first heat exchanger 7 can also achieve the purpose of reducing the temperature of the refrigerant before entering and flowing into the first branch a, which can reduce the temperature of the motor heat exchange assembly 9 while improving the cooling effect of the thermal management system.
  • the battery heat exchange assembly 8 and the motor heat exchange assembly 9 can be cooled through the third heat exchanger 16, and the thermal management system is in In the second state of the second refrigeration mode, the second port 52 of the outdoor heat exchanger communicates with the outlet of the compressor 1, the second end a2 of the first branch communicates with the inlet of the compressor 1, and the third fluid switching device 13 is in the first In the second working mode, the first flow regulating device 3 is in a throttling state, and the second flow regulating device 4 is in a cut-off state.
  • the compressor 1, the first heat exchange unit 72, the outdoor heat exchanger 5, the first flow regulating device 3, the indoor heat exchanger 2 and the gas-liquid separator 14 communicate with each other to form a refrigerant circuit.
  • the coolant system is in the second working state
  • the first flow path c and the second flow path d are connected in series
  • the first fluid driving device 11 in the first flow path c and the second fluid driving device 12 in the second flow path d Together they provide power for the circulating flow of the cooling liquid
  • the sixth interface 172 of the second fluid switching device 17 is in communication with the seventh interface 173, and the fourth branch d2 is connected to the cooling liquid circuit.
  • the heat parts 62 communicate with each other to form a cooling liquid circuit, and the refrigerant exchanges heat with the cooling liquid through the first heat exchanger 7.
  • the flow state of the refrigerant in this mode is similar to the flow principle of the refrigerant in the first state of the second refrigeration mode, and will not be repeated here.
  • the third heat exchanger 16 exchanges heat with the air to reduce the temperature of the cooling liquid.
  • the circulating flow of the cooling liquid can simultaneously provide the motor heat exchange assembly 9 and the battery heat exchange assembly 8.
  • the first heat exchanger 7 can also achieve the purpose of reducing the temperature of the refrigerant before entering the first branch a, which can reduce the temperature of the motor heat exchange assembly 9 and the battery heat exchange assembly 8 while increasing the temperature.
  • the first flow regulating device 3 and the second flow regulating device 4 of this embodiment are both two-way throttle valves, which reduces the number of valves and connecting pipes of the thermal management system, the structure of the thermal management system is simpler, and the first flow rate
  • the regulating device 3 and the second flow regulating device 4 are at the upstream or downstream end of their respective branches at the same time when the thermal management system is running.
  • the battery heat exchange assembly 8 can be heated, and when the passenger compartment is cooled, The battery heat exchange assembly 8 can be cooled, and the battery heat exchange assembly 8 can be heated or cooled by the refrigerant, and the high-pressure water-cooled PTC electric heater in the coolant circuit can be saved, which can reduce costs and improve safety.
  • first heat exchanger 7 between the outdoor heat exchanger 5 and the compressor 1.
  • the heat of the coolant circuit can be recovered and used to improve the heating effect of the system.
  • the passenger compartment is cooled, it can be The temperature of the coolant before throttling is reduced twice, and the cooling effect of the system is improved.
  • the thermal management system of this embodiment has a heating and dehumidifying mode. 8
  • the second port 52 of the outdoor heat exchanger is in communication with the outlet of the compressor 1
  • the second end a2 of the first branch is in communication with the inlet of the compressor 1
  • the third fluid switching device 13 is in the second working mode
  • the first flow regulating device 3 is in a throttle state.
  • the heating device 18 is turned on.
  • the heating device 18 is an air-cooled PTC electric heater.
  • the flow state of the coolant circuit and the state of the second flow adjustment device 4 are adjusted according to the state of the motor heat exchange assembly 9 and the battery heat exchange assembly 8.
  • the specific adjustment method can refer to the heating mode and cooling mode mentioned above. I won't repeat it here.
  • the high-temperature refrigerant compressed by the compressor 1 flows into the first heat exchange part 72, and the higher temperature refrigerant in the first heat exchange part 72 transfers heat to the coolant in the second heat exchange part 71, and passes through the coolant.
  • the circulating flow of the circuit takes away part of the heat of the refrigerant, and then the refrigerant flows into the outdoor heat exchanger 5, and the temperature of the refrigerant decreases again after heat exchange with the air, and the refrigerant flowing out of the outdoor heat exchanger 5 flows to the first branch Road a.
  • the refrigerant enters the first branch a, is throttled by the first flow regulator 3, and then flows into the indoor heat exchanger 2.
  • the indoor heat exchanger 2 is used as an evaporator.
  • the refrigerant exchanges heat with the air in the passenger compartment.
  • the temperature of the heat exchanger 2 is relatively low, and the air temperature in the passenger compartment air-conditioning box is relatively high.
  • the moisture in the air in the passenger compartment air-conditioning box condenses into water droplets in the air-conditioning box and then is discharged, thereby reducing the humidity of the air entering the passenger compartment
  • the heating device 18 is located on the downstream side of the air flow relative to the indoor heat exchanger 2, and the air flowing through the indoor heat exchanger 2 exchanges heat with the heating device 18, thereby heating the air entering the passenger compartment, thereby realizing the heating of the passenger compartment .
  • the refrigerant flowing out of the first branch a flows to the gas-liquid separator 14, and the refrigerant flowing out of the gas-liquid separator 14 flows into the compressor 1, and circulates in this way.
  • the gas-liquid separator 14 is used to separate the gas-liquid two-phase refrigerant into a gaseous refrigerant and a liquid refrigerant, and the gaseous refrigerant flows into the compressor 1.
  • the compressor 1 is provided with a liquid storage tank or the refrigerant flowing into the compressor 1 is all gaseous, the gas-liquid separator 14 may not be provided, and the refrigerant directly returns to the compressor 1.
  • the indoor heat exchanger 2 reduces the humidity of the air in the passenger compartment, and the heating device 18 heats the temperature of the air entering the passenger compartment to realize the heating and dehumidifying function.
  • the thermal management system runs for a period of time in the first heating mode, the first state of the second heating mode, the second state of the second heating mode, or the third state of the second heating mode.
  • the ambient temperature is low, and the outdoor heat exchanger 5 is used as an evaporator, the outdoor heat exchanger 5 may be frosted. After the outdoor heat exchanger 5 is frosted, the heat exchange performance of the outdoor heat exchanger 5 is reduced, which affects the heat
  • the normal operation of the management system will also affect the comfort of the passenger cabin.
  • the thermal management system of this embodiment has a first defrosting mode and a second defrosting mode.
  • the thermal management system is in the first defrosting mode, and the second port 52 of the outdoor heat exchanger communicates with the outlet of the compressor 1, and the second The second end b2 of the branch is in communication with the inlet of the compressor 1, the third fluid switching device 13 is in the second working mode, the first flow regulating device 3 is in the cut-off state, and the second flow regulating device 4 is in the throttling state.
  • the compressor 1, the first heat exchange unit 72, the outdoor heat exchanger 5, the second flow adjustment device 4, the third heat exchange unit 61, and the gas-liquid separator 14 communicate with each other to form a refrigerant circuit, and the heating device 18 is in heating State, thereby heating the air entering the passenger compartment.
  • the coolant system is in the first working state
  • the first fluid drive device 11 in the first flow path c provides power for the circulating flow of the coolant
  • the second fluid drive device 12 in the second flow path d does not work
  • the first fluid drive device 12 in the second flow path d does not work
  • the The fifth interface 171 of the second fluid switching device 17 is in communication with the sixth interface 172
  • the third branch d1 is connected to the cooling liquid circuit.
  • the first fluid driving device 11, the first fluid switching device 10, the fourth heat exchange unit 62 and the battery heat exchange assembly 8 communicate with each other to form a cooling liquid circuit, and the refrigerant exchanges heat with the cooling liquid through the second heat exchanger 6.
  • the cooling liquid in the second flow path d is used as a heat storage device, which can prevent the temperature of the refrigerant entering the outdoor heat exchanger 5 from being lowered and improve the performance of defrosting.
  • the outdoor heat exchanger 5 is used as a condenser, and the second heat exchanger 6 is used as an evaporator.
  • the high-temperature refrigerant compressed by the compressor 1 flows through the first heat exchange part 72 and then flows into the outdoor heat exchanger 5.
  • the high-temperature refrigerant exchanges heat with the air and the frost layer, and the temperature decreases.
  • the frost layer of the outdoor heat exchanger 5 It will be heated and then melted to achieve the purpose of defrosting.
  • the refrigerant flowing out of the outdoor heat exchanger 5 flows to the second branch b.
  • the refrigerant enters the second branch b, is throttled by the second flow adjustment device 4, and then flows into the third heat exchange section 61.
  • the lower temperature refrigerant in the third heat exchange section 61 and the cooling in the fourth heat exchange section 62 The liquid performs heat exchange, and the heat of the battery heat exchange assembly 8 is transferred to the refrigerant through the circulating flow of the cooling liquid circuit.
  • the heating device 18 is in a working state to heat the air entering the passenger compartment to realize heating of the passenger compartment.
  • the refrigerant flowing out of the second branch b flows to the gas-liquid separator 14.
  • the gas-liquid separator 14 is used to separate the gas-liquid two-phase refrigerant into a gaseous refrigerant and a liquid refrigerant, and the liquid refrigerant is stored in the gas-liquid separator In the device 14, the gaseous refrigerant flows into the compressor 1, and circulates in this way.
  • the compressor 1 is provided with a liquid storage tank or the refrigerant flowing into the compressor 1 is all gaseous, the gas-liquid separator 14 may not be provided, and the refrigerant directly returns to the compressor 1.
  • the outdoor heat exchanger 5 is used as a condenser
  • the second heat exchanger 6 is used as an evaporator and the heating function of the heating device 18 is turned on.
  • the waste heat of the battery heat exchange assembly 8 is used to realize the defrosting of the outdoor heat exchanger 5 , To keep the temperature of the passenger compartment stable and improve comfort.
  • the thermal management system works in the first defrosting mode for a period of time, the temperature of the battery heat exchange component 8 decreases and the motor heat exchange
  • the thermal management system is in the second defrosting mode
  • the second port 52 of the outdoor heat exchanger is connected to the outlet of the compressor 1
  • the second end b2 of the second branch is connected to the inlet of the compressor 1
  • the third fluid switching device 13 is in the second working mode
  • the first flow adjustment device 3 is in the cut-off state
  • the second flow adjustment device 4 is in the throttling state.
  • the compressor 1, the first heat exchange unit 72, the outdoor heat exchanger 5, the second flow adjustment device 4, the third heat exchange unit 61, and the gas-liquid separator 14 communicate with each other to form a refrigerant circuit, and the heating device 18 is in heating State, heating the air entering the passenger compartment.
  • the coolant system is in the second working state
  • the first flow path c and the second flow path d are connected in series
  • the first fluid driving device 11 and the second fluid driving device 12 provide power for the circulating flow of the coolant at the same time
  • the second fluid The fifth interface 171 of the switching device 17 is in communication with the sixth interface 172
  • the third branch d1 is connected to the cooling liquid circuit.
  • the portion 62 communicates to form a cooling liquid circuit, the refrigerant exchanges heat with the cooling liquid through the second heat exchanger 6, and the refrigerant exchanges heat with the cooling liquid through the first heat exchanger 7.
  • the outdoor heat exchanger 5 is used as a condenser, and the second heat exchanger 6 is used as an evaporator.
  • the flow state of the refrigerant in this mode is substantially the same as the flow state of the refrigerant in the first defrosting mode, and the similarities are not repeated here.
  • the battery heat exchange assembly 8 Since the battery heat exchange assembly 8 has no residual heat, if it operates in the first defrosting mode, the temperature of the battery heat exchange assembly 8 may be too low, thereby affecting the normal operation of the battery heat exchange assembly 8. At this time, the motor has waste heat.
  • the first flow path c and the second flow path d are connected in series, and through the circulation of the coolant, the waste heat of the motor is used to provide a heat source for the second heat exchanger 6 and to ensure the operation of the battery heat exchange assembly 8.
  • part of the heat of the refrigerant can be transferred to the cooling liquid through the first heat exchanger 7 and used at the second heat exchanger 6 through the circulating flow of the cooling liquid.
  • valves and pipelines can be provided to prevent the coolant in the second flow path d from flowing through the second heat exchange part 71, thereby reducing the influence of the first heat exchanger 7 on the defrosting effect.
  • the thermal management system of this embodiment has a first heat dissipation mode and a second heat dissipation mode .
  • the passenger compartment has no heating or cooling demand, and the compressor 1 is in the off state.
  • the thermal management system is in the first heat dissipation mode.
  • the coolant system is in the first working state
  • the sixth interface 172 of the second fluid switching device 17 is connected to the seventh interface 173
  • the fourth branch d2 is connected to the coolant circuit
  • the second fluid driving device 12 the motor heat exchange assembly 9
  • the second heat exchange part 71 and the third heat exchanger 16 are connected to form a cooling liquid circuit
  • the third heat exchanger 16 exchanges heat with the air to reduce the temperature of the cooling liquid, and the cooling liquid circulates to realize the cooling of the motor heat exchange assembly 9 the goal of.
  • the passenger compartment has no heating or cooling demand, and the compressor 1 is in the off state.
  • the thermal management system is in the second heat dissipation mode.
  • the cooling fluid system is in the second working state, the sixth interface 172 of the second fluid switching device 17 is connected to the seventh interface 173, the fourth branch d2 is connected to the cooling fluid circuit, the first fluid driving device 11, the battery heat exchange assembly 8 ,
  • the second fluid drive device 12, the motor heat exchange assembly 9, the second heat exchange portion 71, the third heat exchanger 16, the first fluid drive device 11, and the fourth heat exchange portion 62 are connected to form a coolant circuit, through the third
  • the heat exchanger 16 exchanges heat with the air to reduce the temperature of the cooling liquid, and the cooling liquid circulates to achieve the purpose of cooling the motor heat exchange assembly 9 and the battery heat exchange assembly 8.
  • the thermal management system further includes a fourth heat exchanger 15.
  • the fourth heat exchanger 15 includes a fifth heat exchange part 151 and a sixth heat exchange part 152, and the fifth heat exchange part 151 and the sixth heat exchange part The refrigerant in the same refrigerant system flows in the hot part 152.
  • the fourth heat exchanger 15 and the gas-liquid separator 14 are integrated to form a gas-liquid separation device, or they can be separately arranged and assembled close to each other to form a gas-liquid separation device.
  • the fifth heat exchange part 151 is connected between the inlet of the compressor 1 and the outlet of the gas-liquid separator 14, and the sixth heat exchange part 152 is connected to the outdoor Between the first port 51 of the heat exchanger and the first end a1 of the first branch, and the sixth heat exchange portion 152 is connected between the first port 51 of the outdoor heat exchanger and the first end b1 of the second branch .
  • the inlet of the gas-liquid separator 14 is connected to the second port 52 of the outdoor heat exchanger.
  • the gas-liquid separation The inlet of the device 14 is connected to the second end a2 of the first branch and the second end b2 of the second branch.
  • the refrigerant with a higher temperature in the sixth heat exchange portion 152 exchanges heat with the refrigerant with a lower temperature in the fifth heat exchange portion 151, which can reduce the entry into the first
  • the temperature of the refrigerant before branch a and the second branch b that is, the temperature of the refrigerant before throttling, improves the refrigeration effect of the system; it can also heat the refrigerant flowing out of the gas-liquid separator 14 to reduce the entry of liquid refrigerant
  • the possibility of compressor 1 reduces the risk of liquid strike of compressor 1.
  • the temperature of the refrigerant in the sixth heat exchange part 152 and the refrigerant in the fifth heat exchange part 151 are not much different, the heat exchange is less, and the influence of the thermal management system Smaller.
  • the fourth heat exchanger 15 and the gas-liquid separator 14 may also be designed as a whole. Specifically, the fourth heat exchanger 15 is at least partially disposed inside the gas-liquid separator 14, and the fifth heat exchange part 151 is a part of the gas-liquid separator 14, and the outlet of the gas-liquid separator 14 is connected with the inlet of the compressor 1.
  • the sixth heat exchange part 152 exchanges heat with the fifth heat exchange part 151, and the sixth heat exchange part 152 is fixedly connected to the gas-liquid separator 14.
  • the thermal management system of the present application As shown in Figs. 13 and 14, its structure is basically the same as that of the foregoing embodiment, and its working principle is also approximately the same as that of the foregoing embodiment.
  • the difference lies in: indoor heat exchange
  • the device 2 includes a first indoor heat exchanger 21 and a second indoor heat exchanger 22, and the thermal management system also includes a third flow regulating device 23 connected between the first indoor heat exchanger 21 and the second indoor heat exchanger 22, One end of the first indoor heat exchanger 21 is connected to the second branch b, the other end of the first indoor heat exchanger 21 is connected to the third flow regulating device 23, and the second indoor heat exchanger 22 is connected to the first flow regulating device 3 and the third flow adjustment device 23.
  • the first indoor heat exchanger 21 is located on the downstream side of the air flow relative to the second indoor heat exchanger 22, and the heating device 18 is located on the downstream side of the air flow relative to the first indoor heat exchanger 21.
  • the third flow regulating device 23 When the third fluid switching device 13 is in the first working mode, the third flow regulating device 23 is in the conducting or throttling state; when the third fluid switching device 13 is in the second working mode, the third flow regulating device 23 is in the conducting state. Pass state.
  • the third fluid switching device 13 when the third fluid switching device 13 is in the first working mode, the first flow regulating device 3 is in a throttling state, and the third flow regulating device 23 is in a conducting state, the first indoor heat exchanger 21 and the second The indoor heat exchanger 22 is used as a condenser, and the outdoor heat exchanger 5 is used as an evaporator. Compared with a structure with only one indoor heat exchanger, two indoor heat exchangers can improve the heating capacity.
  • the first indoor heat exchanger 21 is used as a condenser
  • the second indoor heat exchanger 22 and the outdoor heat exchanger 5 are both used as evaporators. Since the first indoor heat exchanger 21 is located on the downstream side of the air flow relative to the second indoor heat exchanger 22, the water vapor in the passenger cabin air is due to The effect of the second indoor heat exchanger 22 is condensed into water droplets and discharged from the air-conditioning box. The air dehumidified by the second indoor heat exchanger 22 is heated by the first indoor heat exchanger 21 and enters the passenger compartment to realize the thermal management system. Heating and dehumidification mode.
  • the heating and dehumidification mode is realized by adjusting the states of the first indoor heat exchanger 21, the second indoor heat exchanger 22, the first flow adjustment device 3, and the third flow adjustment device 23, without the need to adjust the refrigerant
  • the flow direction does not need to turn on the heating device 18 to heat, which reduces the energy loss caused by the change of the refrigerant flow direction and the temperature fluctuation in the passenger compartment. It can also reduce the use of the heating device 18, reduce the energy consumption of the thermal management system, and improve the vehicle. recharge mileage.
  • this embodiment can also use the same method as the above embodiment to realize the heating and dehumidification mode.
  • the third fluid switching device 13 is in the second working mode, the first flow regulating device 3 is in the throttling state, and the third flow regulating device is in the throttling state.
  • the device 23 is in a conducting state, and the heating device 18 is in a heating state.
  • the third fluid switching device 13 when the third fluid switching device 13 is in the second working mode, the first flow regulating device 3 is in a throttling state, the third flow regulating device 23 is in a conducting state, and the first indoor heat exchanger 21 and the second The indoor heat exchanger 22 is used as an evaporator, and the outdoor heat exchanger 5 is used as a condenser. Compared with a structure with only one indoor heat exchanger, two indoor heat exchangers can improve the cooling capacity.
  • the high-temperature refrigerant enters one of the indoor heat exchangers, and the air door controls the indoor heat exchanger to not exchange heat with the passenger cabin air, because There is no heat leakage of the indoor heat exchanger in this application, and the refrigeration effect is improved.
  • the flow state of the coolant circuit and the state of the second flow adjustment device 4 are adjusted according to the states of the motor heat exchange assembly 9 and the battery heat exchange assembly 8.
  • the specific adjustment method can refer to the above-mentioned embodiment.
  • the design of the working mode of the thermal management system of this embodiment is the same as that of the above-mentioned embodiment, which will not be repeated here.
  • the switching device 13 is composed of a first valve 13a, a second valve 13b, a third valve 13c, and a fourth valve 13d.
  • the first valve 13a includes a first end 13a1 of the first valve and a second end 13a2 of the first valve.
  • the second valve 13b includes a first end 13b1 of the second valve and a second end 13b2 of the second valve.
  • the fourth valve 13d includes the first end 13c1 of the third valve and the second end 13c2 of the third valve.
  • the fourth valve 13d includes the first end 13d1 of the fourth valve and the second end 13d2 of the fourth valve.
  • the first end 13a1 of the first valve is connected to the outlet of the compressor 1 and the first end 13b1 of the second valve, and the second end 13a2 of the first valve is connected to the first heat exchange portion 72 and the second end 13d2 of the fourth valve.
  • the second end 13b2 of the second valve is connected to the first end 13c1 of the third valve, and is connected to the second end a2 of the first branch and the second end b2 of the second branch.
  • the second end 13c2 of the third valve is connected to the inlet of the compressor 1 and the first end 13d1 of the fourth valve.
  • the first valve 13a, the second valve 13b, the third valve 13c, and the fourth valve 13d may all be one-way valves.
  • the common connection port of the first end 13a1 of the first valve and the first end 13b1 of the second valve is the first connection port 131
  • the common connection port of the second end 13b2 of the second valve and the first end 13c1 of the third valve is The second connection port 132
  • the common connection port of the second end 13c2 of the third valve and the first end 13d1 of the fourth valve is the third connection port 133
  • the common connection port of 13d2 is the fourth connection port 134.
  • first valve 13a and the second valve 13b may be designed as an integral part
  • the third valve 13c and the fourth valve 13d may be designed as an integral part
  • the first flow regulating device 3 and the second flow regulating device 4 It can be designed as an integral part to reduce the number of components of the thermal management system and simplify the pipeline design.
  • the first valve 13a, the second valve 13b, the third valve 13c, and the fourth valve 13d are designed as an integral part, which further simplifies the pipeline design.
  • the flow state of the refrigerant circuit, the flow state of the coolant circuit, and the state of the second flow adjustment device 4 are adjusted according to the state of the passenger compartment, the motor heat exchange assembly 9 and the battery heat exchange assembly 8.
  • the specific adjustments are The manner can refer to the above-mentioned embodiment.
  • the design of the working mode of the thermal management system of this embodiment is the same as that of the above-mentioned embodiment, which will not be repeated here.
  • connection between the two components in this application can be a direct connection or a pipeline connection.
  • the two components can only be equipped with pipelines, or they can also be equipped with valves or other components. part.
  • communication between the two components in this application can be direct communication or through pipelines.
  • the two components can be connected by pipelines alone, or they can also be connected between the two components. Connect with valves or other components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种热管理***,在制热模式下,压缩机(1)的出口、室内换热器(2)、第一流量调节装置(3)、室外换热器(5)、第一换热部(72)、压缩机(1)的进口连通形成制冷剂回路,第一流量调节装置(3)处于制冷剂节流状态;在制冷模式下,压缩机(1)的出口、第一换热部(72)、室外换热器(5)、第一流量调节装置(3)、室内换热器(2)、压缩机(1)的进口连通形成制冷剂回路,第一流量调节装置(3)处于制冷剂节流状态。热管理***的第一流量调节装置(3)具有双向节流功能,热管理***包括制热模式和制冷模式,可以通过同一个第一流量调节装置(3)实现,热管理***的结构简单,成本较低。

Description

热管理***
相关申请的交叉引用
本申请要求于2020年5月29日申请的、申请号为202010482617.7、发明名称为“气液分离装置”的中国发明专利申请的优先权,该专利申请的相关内容以引用的形式并入本文中。
技术领域
本申请涉及热管理技术领域,尤其涉及一种热管理***。
背景技术
汽车的热管理***可以实现对室内空气进行制冷、加热、换气和空气净化,为室内人员提供舒适的环境。如何优化热管理***,以提高热管理***的性能为目前的重点。
相关热管理***中,在制热和制冷两种工作模式下分别需要不同的节流阀实现,热管理***的结构复杂、成本较高。
发明内容
鉴于相关技术存在的上述问题,本申请提供了一种结构简单的热管理***。
为了达到上述目的,本申请采用以下技术方案:一种热管理***,包括:制冷剂***和冷却液***;所述制冷剂***包括压缩机、室内换热器、第一流量调节装置、第一换热器及室外换热器,所述室外换热器包括室外换热器的第一端口和室外换热器的第二端口,所述第一流量调节装置具有双向节流功能;所述第一换热器包括不相连通的第一换热部和第二换热部,所述第一换热部和所述第二换热部能够进行热交换;
所述热管理***包括制热模式和制冷模式,在制热模式下,所述压缩机的出口、所述室内换热器、所述第一流量调节装置、所述室外换热器、所述第一换热部、所述压缩机的进口连通形成制冷剂回路,所述第一流量调节装置处于制冷剂节流状态,所述第一换热部中的制冷剂吸收所述第二换热部中的冷却液的热量;在制冷模式下,所述压缩机的出口、所述第一换热部、所述室外换热器、所述第一流量调节装置、所述室内换热器、所述压缩机的进口连通形成制冷剂回路,所述第一流量调节装置处于制冷剂节流状态,所述第一换热部中的制冷剂的热量传递至所述第二换热部中的冷却液。
本申请的热管理***第一流量调节装置具有双向节流功能,热管理***包括制热模式和制冷模式可以通过同一个第一流量调节装置就可实现,热管理***的结构简单,成本较低。
附图说明
图1是本申请的热管理***一实施例第一制热模式的工作原理示意图;
图2是本申请的热管理***一实施例第二制热模式第一状态的工作原理示意图;
图3是本申请的热管理***一实施例第二制热模式第二状态的工作原理示意图;
图4是本申请的热管理***一实施例第二制热模式第三状态的工作原理示意图;
图5是本申请的热管理***一实施例第一制冷模式的工作原理示意图;
图6是本申请的热管理***一实施例第二制冷模式第一状态的工作原理示意图;
图7是本申请的热管理***一实施例第二制冷模式第二状态的工作原理示意图;
图8是本申请的热管理***一实施例制热除湿模式工作原理示意图;
图9是本申请的热管理***一实施例第一化霜模式工作原理示意图;
图10是本申请的热管理***一实施例第二化霜模式工作原理示意图;
图11是本申请的热管理***一实施例第一散热模式工作原理示意图;
图12是本申请的热管理***一实施例第二散热模式工作原理示意图;
图13是本申请的热管理***另一实施例的示例性的工作原理示意图,其中第三流体切换装置处于第一工作模式;
图14是本申请的热管理***另一实施例的示例性的工作原理示意图,其中第三流体切换装置处于第二工作模式;
图15是本申请的热管理***又一实施例的示例性的工作原理示意图,其中第三流体切换装置处于第一工作模式;
图16是本申请的热管理***又一实施例的示意图,其中第三流体切换装置处于第二工作模式;
图17是相关管壳式液冷换热器的立体结构局部示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个;“多个”表示两个及两个以上的数量。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而 并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。
下面结合附图,对本申请示例性实施例的热管理***进行详细说明,本申请实施例提供的热管理***均可用于电动汽车。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互补充或相互组合。
根据本申请的热管理***一个具体实施例,参考图1所示,热管理***包括压缩机1、室内换热器2、第一流量调节装置3、第二流量调节装置4、室外换热器5、第二换热器6、第一换热器7、电池换热组件8、电机换热组件9、第一流体切换装置10、第一流体驱动装置11、第二流体驱动装置12、第三流体切换装置13、气液分离器14、第三换热器16、第二流体切换装置17及加热装置18。
第一换热器7包括能够进行热交换的第一换热部72和第二换热部71,第一换热部72和第二换热部71均设置有流道,第一换热部72的流道和第二换热部71的流道相互隔离不连通。第二换热器6包括能够进行热交换的第三换热部61和第四换热部62,第三换热部61和第四换热部62均设置有流道,第三换热部61的流道和第四换热部62的流道相互隔离不连通。制冷剂可以通过第一换热器7与冷却液进行热交换,第一换热器7可以是板式换热器、管壳式的液冷换热器或其他液冷换热器。制冷剂通过第二换热器6可以与冷却液进行热交换,第二换热器6可以是板式换热器、管壳式的液冷换热器或其他液冷换热器。第二换热器6和第一换热器7可以相同,也可以不同。
当制冷剂采用高压冷媒时(例如CO2冷媒),第二换热器6和第一换热器7均选取管壳式换热器,相对板式换热器,管壳式换热器耐压能力更强,***风险更低。参照图17,管壳式换热器包括若干并列排布的微通道扁管100、连接于微通道扁管100一端的第一集流件200、连接于微通道扁管100另一端的第一集流件300以及包围在微通道扁管100外且位于两集流件之间的外壳400。制冷剂可以从一侧第一集流件200的一腔体流入再经过一部分微通道扁管100流动至另一侧的第二集流件300,再经过另一部分微通道扁管100后从第一集流件200的另一腔体流出,冷却液在外壳400形成的腔体内与微通道扁管100之间的间隙中流动,从而实现制冷剂和冷却液的热量交换。
与压缩机1相连通的回路为制冷剂回路,与第一流体驱动装置11、第二流体驱动装置12相连通的回路为冷却液回路。第三换热部61的流道用于流通制冷剂,第四换热部62的流道用于流通冷却液,第一换热部72的流道用于流通制冷剂,第二换热部71的流道用于流通冷 却液。制冷剂可以是R134A或二氧化碳或其它换热介质。冷却液可以是乙醇和水的混合溶液,第一流体驱动装置11和第二流体驱动装置12可以是电子水泵等驱动液体流动的装置。
热管理***的各个组件通过管路连接形成两大子***,分别是制冷剂***和冷却液***,制冷剂***的制冷剂与冷却液***的冷却液相互隔离而不流通,其中第三换热部61的流道和第一换热部72的流道连接于制冷剂***,第四换热部62的流道和第二换热部71的流道连接于冷却液***。
需要解释的是,这里所述的“第三换热部61的流道和第一换热部72的流道连接于制冷剂***”指,制冷剂***中的制冷剂能够流入以及流出第三换热部61的流道和第一换热部72的流道,第三换热部61和第一换热部72能通过管路与制冷剂***中的部件连接,在热管理***工作时通过管路连通后形成回路。这里所述的“第四换热部62的流道和第二换热部71的流道连接于冷却液***”指,冷却液***中的冷却液能够流入以及流出第四换热部62的流道和第二换热部71的流道,第四换热部62和第二换热部71能通过管路与冷却液***中的部件连接,在热管理***工作时通过管路连通后形成回路。
制冷剂***包括:压缩机1、室内换热器2、第一流量调节装置3、第二流量调节装置4、室外换热器5、第二换热器6的第三换热部61、第一换热器7的第一换热部72、第三流体切换装置13及气液分离器14,上述部件与部件之间可以通过管路或阀件间接连接。
制冷剂***包括并联设置的第一支路a和第二支路b,第一流量调节装置3和室内换热器2设于第一支路a,第二流量调节装置4和第三换热部61设于第二支路b。可选的,第一流量调节装置3和第二流量调节装置4可以为双向节流阀,第一流量调节装置3和第二流量调节装置4也可以为其他阀件的组合,可以具有导通、截止和双向节流功能即可。
第一支路a包括第一支路的第一端a1和第一支路的第二端a2,第二支路b包括第二支路的第一端b1和第二支路的第二端b2,第一支路的第一端a1和第二支路的第一端b1均与室外换热器的第一端口51连接,第一流量调节装置3连接于室外换热器的第一端口51和室内换热器2之间。本实施例中,室内换热器2仅设有一个换热器。第二支路b的第二流量调节装置4连接于室外换热器的第一端口51和第二换热器6的第三换热部61之间。根据热管理***的工作模式的不同,在一些模式下(例如制冷模式),室外换热器的第二端口52与压缩机1的出口连通,第一换热部72连接于室外换热器5与压缩机1之间,第一支路的第二端a2和第二支路的第二端b2均与压缩机1的进口连通。在另外一些模式下(例如制热模式),室外换热器的第二端口52与压缩机1的进口连通,第一换热部72连接于室外换热器5与压缩机1之间,第一支路的第二端a2和第二支路的第二端b2均与压缩机1的出口连通。
所述第一支路的第一端a1、第二支路的第一端b1以及室外换热器5之间可以用三通管连接,所述第一支路的第二端a2、第二支路的第二端b2以及压缩机1之间可以用三通管连接。在一些实施例中,所述室外换热器5的两个端口、所述压缩机1进口和出口、第一支路 a的两端、第二支路b的两端之间可以设置多个截止阀、或三通阀或多个阀组件,从而实现制冷剂***中制冷剂的流向控制。
在本实施例中,所述热管理***通过所述第三流体切换装置13对制冷剂***中的制冷剂流向进行切换。可选的,所述第三流体切换装置13可以是四通阀或者多个阀件的组合。本实施例中,第三流体切换装置13是四通阀。具体的:所述第三流体切换装置13包括第一连接口131、第二连接口132、第三连接口133和第四连接口134,所述第一连接口131和所述压缩机1的出口通过管路连接,所述第一支路的第二端a2和所述第二支路的第二端b2均与所述第二连接口132通过管路连接,所述第三连接口133与所述气液分离器14的进口通过管路连接,气液分离器14的出口与所述压缩机1的进口通过管路连接,所述第四连接口134与所述室外换热器的第二端口52通过管路连接。在一些实施例中,可不设置气液分离器14,所述第三连接口133与所述压缩机1的进口通过管路直接连接。
所述第三流体切换装置13包括第一工作模式和第二工作模式;在所述第一工作模式下,所述第一连接口131和所述第二连接口132连通,所述第三连接口133和所述第四连接口134连通。在所述第二工作模式下,所述第一连接口131和所述第四连接口134连通,所述第二连接口132和所述第三连接口133连通。
冷却液***包括电池换热组件8、第一流体驱动装置11、第四换热部62、电机换热组件9、第一流体切换装置10、第二换热部71、第三换热器16及第二流体切换装置17。
冷却液***包括第一流路c和第二流路d,通过切换第一流体切换装置10的状态,第一流路c和第二流路d可以串联或并联设置,即,第一流路c和第二流路d可以相互独立形成回路运行,也可以相互连通后形成回路共同运行。第一流体切换装置10包括第一接口101、第二接口102、第三接口103及第四接口104,第一流路c的一端与第一接口101连接,第一流路c的另一端与第二接口102连接,第二流路d的一端与第三接口103连接,第二流路d的另一端与第四接口104连接。
电池换热组件8、第四换热部62和第一流体驱动装置11设于第一流路c,热管理***运行时,第四换热部62的流道为冷却液回路的一部分。第二换热部71、电机换热组件9、第二流体驱动装置12、第三换热器16及第二流体切换装置17设于第二流路d,热管理***运行时,第二换热部71的流道为冷却液回路的一部分。第二流路d包括并联设置的第三支路d1和第四支路d2,第三支路d1由管路构成,第三换热器16设于第四支路d2。可选的,第三换热器16可以是低温水箱,第三换热器16与环境空气进行热交换,可以降低冷却液的温度。第三支路d1连接于第一流体切换装置10和第二流体切换装置17之间,第四支路d2连接于第一流体切换装置10和第二流体切换装置17之间。第二流体切换装置17包括第五接口171、 第六接口172及第七接口173,所述第三支路d1的一端连接于第五接口171另一端连接于第四接口104,所述第四支路d2一端连接于第七接口173另一端连接于第四接口104,第六接口172连接于第二换热部71。
冷却液***具有第一工作状态和第二工作状态。参照图1、5,在第一工作状态下,第一流体切换装置10处于第一连通状态,其第一接口101与第二接口102连通,第三接口103与第四接口104连通,第一流体驱动装置11、第一流体切换装置10、第四换热部62及电池换热组件8连通形成第一冷却液回路,且第二流体驱动装置12、电机换热组件9、第二换热部71、第一流体切换装置10及第三支路d1连通形成第二冷却液回路,或者,第二流体驱动装置12、电机换热组件9、第二换热部71、第一流体切换装置10及第四支路d2连通形成第二冷却液回路,第一冷却液回路和第二冷却液回路相互独立运行,第二流量调节装置4未截止时,第一冷却液回路中冷却液能够通过第二换热器6与制冷剂进行热交换,第二冷却液回路中冷却液能够通过第一换热器7与制冷剂进行热交换,第二流量调节装置4截止时,第二冷却液回路中冷却液能够通过第一换热器7与制冷剂进行热交换。第一流体驱动装置11可以驱动冷却液在第一冷却液回路中流动,第二换热器6可用于调节电池换热组件8的温度。第二流体驱动装置12可以驱动冷却液在第二冷却液回路中流动,第三换热器16和/或第一换热器7可用于调节电机换热组件9的温度,第一冷却液回路中的冷却液与第二冷却液回路中的冷却液不连通。此时,可通过设置第二流体切换装置17的工作状态,选择性的连通第三支路d1或第四支路d2。
需要理解的是,在冷却液***的第一工作状态和第二工作状态下,当第二流量调节装置4截止时,第一流体驱动装置11可以处于工作状态,即第一流路c中的冷却液处于继续流动状态,但由于第二流量调节装置4截止,所以第二换热器6处制冷剂与冷却液不发生热交换,此时第一流路c中的冷却液处于继续流动状态,以便于热管理***对电池换热组件8的温度进行较为准确的测量,从而较为准确的电池换热组件8进行热管理。另外,此时冷却液处于继续流动状态,电池换热组件8可以与冷却液进行热交换。
参照图3、7、10、12,在第二工作状态下,第一流体切换装置10处于第二连通状态,第一接口101与第四接口104连通,第二接口102与第三接口103连通,第二流体驱动装置12、电机换热组件9、第二换热部71、第一流体切换装置10、第四换热部62、电池换热组件8、第一流体驱动装置11及第三支路d1连通形成第三回路,或者,第二流体驱动装置12、电机换热组件9、第二换热部71、第一流体切换装置10、第四换热部62、电池换热组件8、第一流体驱动装置11及第四支路d2连通形成第三回路,第一流路c和第二流路d通过第一流体切换装置10串联,第二流量调节装置4未截止时,冷却液能够通过第二换热器6和第一换热器7分别与制冷剂进行热交换,第二流量调节装置4截止时,冷却液能够通过第一换热器7与制冷剂进行热交换,第一流体驱动装置11和第二流体驱动装置12共同驱动冷却液在 第三回路中流动。此时,可通过设置第二流体切换装置17的工作状态,选择性的连通第三支路d1或第四支路d2。
当第四支路d2接入冷却液回路中,即第三换热器16接入冷却液回路中时,可以实现通过第三换热器16与空气进行换热,实现降低冷却液温度的目的,从而可以降低电机换热组件9和电池换热组件8的温度。
于本实施例中,热管理***还包括与室内换热器2相邻设置的加热装置18,加热装置18相对室内换热器2位于空气流的下游侧,加热装置18可以为风冷型的PTC电加热器或者液冷型的PTC电加热器。室内换热器2和加热装置18设置于汽车空调箱内。室外换热器5和第三换热器16(低温水箱)组成的前端模块设置于汽车前进气格栅附近,压缩机1和气液分离器14设置于驾驶室的前方机腔内。
本实施例的热管理***具有多种工作模式,包括制热模式、制冷模式、制热除湿模式、化霜模式、散热模式。在不同工作模式中,室外换热器5可以用作蒸发器或冷凝器。所述室内换热器2和加热装置18可以与进入乘客舱空调箱内的空气进行热交换,室内换热器2和加热装置18设置在空调箱内,空调箱内还可以设置鼓风机用于输送空气。所述室内换热器2在制热模式下可以用作冷凝器,在制冷模式下可以用作蒸发器,从而对乘客舱内空气温度进行调节。
本实施例的热管理***不仅适用于车辆,还适用于其他需要热管理的换热***,为便于描述,本申请的说明书以车辆为例进行说明。
如图1至图4所示,当环境温度较低的情况下,乘客舱有加热需求,根据电机换热组件9和电池换热组件8是否有散热需求,可调节第二流量调节装置4、第一流体切换装置10和第二流体切换装置17的状态,冷却液***实现电池换热组件8加热且电机换热组件9余热回收、电池换热组件8不与制冷剂回路换热且电机换热组件9余热回收、电池换热组件8和电机换热组件9均散热至环境中,以及电池换热组件8不与制冷剂回路换热且电机换热组件9散热等功能。根据电池换热组件8是否有加热需求,热管理***具有第一制热模式和第二制热模式,根据电池换热组件8和电机换热组件9是否有散热需求,第二制热模式分为第二制热模式第一状态、第二制热模式第二状态及第二制热模式第三状态。
参照图1,当乘客舱和电池换热组件8均有加热需求且电机换热组件9有余热可回收时,热管理***处于第一制热模式,室外换热器的第二端口52和压缩机1的进口连通,第一支路的第二端a2和第二支路的第二端b2均与压缩机1的出口连通,第三流体切换装置13处于第一工作模式,第一流量调节装置3和第二流量调节装置4均处于节流状态。压缩机1、室内换热器2、第一流量调节装置3、室外换热器5、第一换热部72及气液分离器14之间连通形成制冷剂回路,且压缩机1、第三换热部61、第二流量调节装置4、室外换热器5、第一换热部72及气液分离器14之间连通形成制冷剂回路。
此时,冷却液***处于第一工作状态,第一流路c与第二流路d并联,且第二流体切换装置17的第五接口171与第六接口172连通,第三支路d1接入冷却液回路中。第一流体驱动装置11、第一流体切换装置10、第四换热部62及电池换热组件8之间连通形成第一冷却液回路,且第二流体驱动装置12、电机换热组件9、第二换热部71、第三支路d1及第一流体切换装置10之间连通形成第二冷却液回路。制冷剂通过第二换热器6与第一冷却液回路中的冷却液进行热交换,且制冷剂通过第一换热器7与第二冷却液回路中的冷却液进行热交换。
经压缩机1压缩后的高温制冷剂通过第三流体切换装置13后分成两路,一路流向第一支路a,另一路流向第二支路b,制冷剂进入连接在第一支路a的室内换热器2中,室内换热器2用作冷凝器,制冷剂与乘客舱的空气进行热交换,从而加热进入乘客舱内的空气,达到乘客舱制热的目的。制冷剂进入连接在第二支路b的第三换热部61内,第三换热部61内的制冷剂与第四换热部62内的冷却液进行热交换,温度较高的制冷剂将热量传递给冷却液,使冷却液升温,加热后的冷却液在第一流体驱动装置11的驱动下流向电池换热组件8,从而实现电池换热组件8的加热。流出室内换热器2的制冷剂经第一流量调节装置3节流降温,流出第三换热部61的制冷剂经第二流量调节装置4节流降温,两路制冷剂先汇合再流向所述室外换热器5,气液两相状态的低温制冷剂在室外换热器5内吸收空气的热量,流出室外换热器5的制冷剂流入第一换热部72中,第一换热部72内的制冷剂与第二换热部71内的冷却液进行热交换,温度较高的冷却液将热量传递给制冷剂,制冷剂在第一换热器7中再次吸收来自冷却液的热量,从而实现电机的余热回收,最后通过第三流体切换装置13和气液分离器14后回到压缩机1内,如此循环。
在一些实施例中,室外换热器5包括两个连接口,两路制冷剂也可以直接于所述室外换热器5内汇合。制冷剂在室外换热器5内吸收空气的热量之后,再在第一换热器7内吸收冷却液的热量,制冷剂的干度增加,最后流向所述气液分离器14。气液分离器14用于将气液两相状态的制冷剂分离成气态制冷剂和液态制冷剂,液态制冷剂储存在气液分离器14中,气态制冷剂流向压缩机1,减少压缩机液击的风险。在一些实施例中,压缩机1内设置有储液罐或者经室外换热器5吸热后的制冷剂全部为气态时,也可以不设置气液分离器14,制冷剂直接回到压缩机1内。
电机换热组件9和电池换热组件8均具有较佳的工作温度区间,在此温度区间内工作效率较高且安全性较高。当环境温度较低且电池换热组件8温度也较低时,乘客舱和电池换热组件8均有加热需求,在第一制热模式下,一方面,通过第二换热器6利用制冷剂的温度加热电池换热组件8,使电池换热组件8达到较佳的工作温度,相较于利用高压水路PTC电加热器加热电池换热组件8,可以省掉冷却液回路中高压水路PTC电加热器,从而降低成本并 提高安全性;另一方面,流出室外换热器5的制冷剂通过第一换热器7吸收冷却液的热量后再回到压缩机1,可以提高***的能效比(COP)和制热能力,还可以实现给电机冷却降温的目的。
参照图2,当电池换热组件8工作在较佳工作温度区间,仅乘客舱有加热需求且电机换热组件9有余热可回收时,热管理***处于第二制热模式第一状态,室外换热器的第二端口52和压缩机1的进口连通,第一支路a的第二端a2与压缩机1的出口连通,第三流体切换装置13处于第一工作模式,第一流量调节装置3处于节流状态,第二流量调节装置4处于截止状态。压缩机1、室内换热器2、第一流量调节装置3、室外换热器5、第一换热部72及气液分离器14之间连通形成制冷剂回路。
此时,冷却液***处于第一工作状态,第二流量调节装置4处于截止状态,第二换热器6中制冷剂与冷却液不进行热交换,第二流路d中的第二流体驱动装置12为冷却液循环流动提供动力,且第二流体切换装置17的第五接口171与第六接口172连通,第三支路d1接入冷却液回路中。第二流体驱动装置12、电机换热组件9、第二换热部71、第三支路d1及第一流体切换装置10之间连通形成冷却液回路,制冷剂通过第一换热器7与冷却液进行热交换。可以理解的是,此时第一流体驱动装置11可以处于工作状态,即第一流体驱动装置11为冷却液循环流动提供动力,此时第一流体驱动装置11、第一流体切换装置10、第四换热部62及电池换热组件8之间连通形成冷却液回路,但冷却液与制冷剂不发生热交换。
经压缩机1压缩后的高温制冷剂通过第三流体切换装置13后流向第一支路a,制冷剂进入连接在第一支路a的室内换热器2中,室内换热器2用作冷凝器,制冷剂与空气进行热交换,从而加热进入乘客舱内的空气,达到乘客舱制热的目的。流出室内换热器2的制冷剂经第一流量调节装置3节流降温后流向所述室外换热器5,气液两相状态的低温制冷剂在室外换热器5内吸收空气的热量,流出室外换热器5的制冷剂流入第一换热部72中,第二换热部71中温度较高的冷却液将热量传递给第一换热部72中的制冷剂,通过冷却液回路的循环流动,从而实现电机的余热回收,最后通过第三流体切换装置13和气液分离器14后回到压缩机1内,如此循环。
在第二制热模式第一状态下,流出室外换热器5的制冷剂通过第一换热器7吸收电机换热组件9的热量后再回到压缩机1,可以提高***的能效比(COP)和制热能力,还可以实现给电机冷却降温的目的。
参照图3,当乘客舱有加热需求且电池换热组件8和电机换热组件9有散热需求时,热管理***处于第二制热模式第二状态,室外换热器5的第二端口52和压缩机1的进口连通,第一支路的第二端a2与压缩机1的出口连通,第三流体切换装置13处于第一工作模式,第一流量调节装置3处于节流状态,第二流量调节装置4处于截止状态。压缩机1、室内换热 器2、第一流量调节装置3、室外换热器5、第一换热部72及气液分离器14之间连通形成制冷剂回路。
此时,冷却液***处于第二工作状态,第一流路c和第二流路d串联,第一流路c中的第一流体驱动装置11和第二流路d中的第二流体驱动装置12共同为冷却液循环流动提供动力,且第二流体切换装置17的第六接口172与第七接口173连通,第四支路d2接入冷却液回路中。第一流体驱动装置11、电池换热组件8、第二流体驱动装置12、电机换热组件9、第二换热部71、第三换热器16、第一流体切换装置10及第四换热部62之间连通形成冷却液回路,制冷剂通过第一换热器7与冷却液进行热交换。
该模式下的制冷剂的流动状态与第二制热模式第一状态下的制冷剂的流动原理类似,在此不再赘述。
在第二制热模式第二状态下,将第一流路c与第二流路d串联形成一个大的冷却液回路,并将第三换热器16接入冷却液回路中,一方面,通过第一换热器7传递冷却液的部分热量至制冷剂中,提高***的能效比(COP)和制热能力;另一方面,冷却液通过第三换热器16与空气进行热交换,实现降低冷却液温度的目的,降温后的冷却液循环流动,从而实现为电机换热组件9和电池换热组件8散热。
参照图4,当电池换热组件8工作在较佳工作温度区间,乘客舱有加热需求且电机换热组件9有散热需求时,热管理***处于第二制热模式第三状态,室外换热器的第二端口52和压缩机1的进口连通,第一支路的第二端a2与压缩机1的出口连通,第三流体切换装置13处于第一工作模式,第一流量调节装置3处于节流状态,第二流量调节装置4处于截止状态。压缩机1、室内换热器2、第一流量调节装置3、室外换热器5、第一换热部72及气液分离器14之间连通形成制冷剂回路。
此时,冷却液***处于第一工作状态,第二流量调节装置4处于截止状态,第二换热器6中制冷剂与冷却液不进行热交换,第二流路d中的第二流体驱动装置12为冷却液循环流动提供动力,且第二流体切换装置17的第六接口172与第七接口173连通,第四支路d2接入冷却液回路中。第二流体驱动装置12、电机换热组件9、第二换热部71、第三换热器16及第一流体切换装置10之间连通形成冷却液回路,制冷剂通过第一换热器7与冷却液进行热交换。可以理解的是,此时第一流体驱动装置11可以处于工作状态,即第一流体驱动装置11为冷却液循环流动提供动力,此时第一流体驱动装置11、第一流体切换装置10、第四换热部62及电池换热组件8之间连通形成冷却液回路,但冷却液与制冷剂不发生热交换。
该模式下的制冷剂的流动状态与第二制热模式第一状态下的制冷剂的流动原理类似,在此不再赘述。
在第二制热模式第三状态下,第二流路d中第三换热器16接入冷却液回路,一方面,通 过第一换热器7传递冷却液的部分热量至制冷剂中,提高***的能效比(COP)和制热能力;另一方面,冷却液通过第三换热器16与空气进行热交换,实现降低冷却液温度的目的,降温后的冷却液循环流动,从而实现为电机换热组件9散热。
如图5至图7所示,当环境温度较高的情况下,乘客舱有降温需求,根据电机换热组件9和电池换热组件8的温度,可调节第二流量调节装置4、第一流体切换装置10和第二流体切换装置17的状态,实现电池换热组件8通过制冷剂降温且电机换热组件9通过第三换热器16降温、电池换热组件8不与制冷剂流路换热且电机换热组件9散热、电池换热组件8和电机换热组件9均通过第三换热器16散热等功能。根据电池换热组件8是否通过制冷剂降温,热管理***分为第一制冷模式和第二制冷模式,根据电池换热组件8和电机换热组件9是否均通过冷却液回路降温,第二制冷模式分为第二制冷模式第一状态及第二制冷模式第二状态。
参照图5,当电池换热组件8、乘客舱及电机换热组件9均有降温需求,可以通过制冷剂给电池换热组件8和乘客舱降温,通过第三换热器16给电机换热组件9降温,热管理***处于第一制冷模式,室外换热器的第二端口52和压缩机1的出口连通,第一支路的第二端a2和第二支路的第二端b2均与压缩机1的进口连通,第三流体切换装置13处于第二工作模式,第一流量调节装置3和第二流量调节装置4均处于节流状态。压缩机1、第一换热部72、室外换热器5、第一流量调节装置3、室内换热器2及气液分离器14之间连通形成制冷剂回路,且压缩机1、第一换热部72、室外换热器5、第二流量调节装置4、第三换热部61及气液分离器14之间连通形成制冷剂回路。
此时,冷却液***处于第一工作状态,第一流路c与第二流路d并联,且第二流体切换装置17的第六接口172与第七接口173连通,第四支路d2接入冷却液回路中。第一流体驱动装置11、第一流体切换装置10、第四换热部62及电池换热组件8之间连通形成第一冷却液回路,且第二流体驱动装置12、电机换热组件9、第二换热部71、第三换热器16及第一流体切换装置10之间连通形成第二冷却液回路。制冷剂通过第二换热器6与第一冷却液回路中的冷却液进行热交换,且制冷剂通过第一换热器7与第二冷却液回路中的冷却液进行热交换。
经压缩机1压缩后的高温制冷剂流入第一换热部72中,第一换热部72中温度较高的制冷剂将热量传递给第二换热部71中的冷却液,通过冷却液回路的循环流动带走制冷剂的部分热量,然后制冷剂流入室外换热器5,与空气进行热交换后制冷剂温度再次降低,从室外换热器5中流出的制冷剂分成两路,一路流向第一支路a,另一路流向第二支路b。制冷剂进入第一支路a经第一流量调节装置3节流后流入室内换热器2中,室内换热器2用作蒸发器,制冷剂与乘客舱空调箱内的空气进行热交换,从而实现乘客舱降温。制冷剂进入第二支路b经第二流量调节装置4节流后流入第三换热部61,第三换热部61内的制冷剂与第四换热部 62内的冷却液进行热交换,使冷却液温度降低,通过冷却液的循环流动,从而实现电池换热组件8降温的目的。第一支路a和第二支路b中的制冷剂先汇合再流向气液分离器14,然后回到压缩机1,如此循环。气液分离器14用于将气液两相状态的制冷剂分离成气态制冷剂和液态制冷剂,液态制冷剂储存在气液分离器中,气态制冷剂流动至压缩机1。在一些实施例中,若压缩机1内设置有储液罐或者流入压缩机1的制冷剂全部为气态时,也可以不设置气液分离器14,制冷剂直接回到压缩机1内。
本申请的热管理***,通过第一换热器7和室外换热器5的作用,使制冷剂在分别流向第一支路a和第二支路b之前温度降低两次,从而使分别经第一流量调节装置3和第二流量调节装置4节流后的制冷剂具有更低的温度,从而使第一支路a的制冷剂可以在室内换热器2内吸收更多空气的热量,提升制冷效果,在第二支路b的制冷剂吸收更多第一冷却液回路中的冷却液的热量,提升电池冷却效果。在该模式下,可以通过制冷剂实现电池降温,可以达到较好的降温效果。另一方面,第二冷却液回路中的冷却液通过第三换热器16与空气进行热交换,实现降低冷却液温度的目的,降温后的冷却液循环流动,从而实现为电机换热组件9散热的目的。
参照图6,当电池换热组件8温度适宜,乘客舱及电机换热组件9均有降温需求时,通过第三换热器16给电机换热组件9降温,热管理***处于第二制冷模式第一状态,室外换热器5的第二端口52和压缩机1的出口连通,第一支路的第二端a2与压缩机1的进口连通,第三流体切换装置13处于第二工作模式,第一流量调节装置3处于节流状态,第二流量调节装置4处于截止状态。压缩机1、第一换热部72、室外换热器5、第一流量调节装置3、室内换热器2及气液分离器14之间连通形成制冷剂回路。
此时,冷却液***处于第一工作状态,第二流量调节装置4处于截止状态,第二换热器6中制冷剂与冷却液不进行热交换,第二流路d中的第二流体驱动装置12为冷却液循环流动提供动力,且第二流体切换装置17的第六接口172与第七接口173连通,第四支路d2接入冷却液回路中。第二流体驱动装置12、电机换热组件9、第二换热部71、第三换热器16及第一流体切换装置10之间连通形成冷却液回路。制冷剂通过第一换热器7与冷却液进行热交换。可以理解的是,此时第一流体驱动装置11可以处于工作状态,即第一流体驱动装置11为冷却液循环流动提供动力,此时第一流体驱动装置11、第一流体切换装置10、第四换热部62及电池换热组件8之间连通形成冷却液回路,但冷却液与制冷剂不发生热交换。
经压缩机1压缩后的高温制冷剂流入第一换热部72中,第一换热部72中温度较高的制冷剂将热量传递给第二换热部71中的冷却液,通过冷却液回路的循环流动带走制冷剂的部分热量,然后制冷剂流入室外换热器5,与空气进行热交换后制冷剂的温度再次降低,从室外 换热器5中流出的制冷剂流向第一支路a。制冷剂进入第一支路a经第一流量调节装置3节流后流入室内换热器2中,室内换热器2用作蒸发器,制冷剂与乘客舱内的空气进行热交换,从而实现乘客舱降温。流出第一支路a制冷剂流向气液分离器14,然后回到压缩机1,如此循环。气液分离器14用于将气液两相状态的制冷剂分离成气态制冷剂和液态制冷剂,液态制冷剂储存在气液分离器中,气态制冷剂流入压缩机1。在一些实施例中,若压缩机1内设置有储液罐或者流入压缩机1的制冷剂全部为气态时,也可以不设置气液分离器14,制冷剂直接回到压缩机1内。
热管理***处于第二制冷模式第一状态,通过第三换热器16与空气进行热交换,降低冷却液的温度,通过冷却液的循环流动既可以实现给电机换热组件9降温的目的,又可以通过第一换热器7实现降低进入流入第一支路a之前的制冷剂的温度的目的,可以在实现电机换热组件9降温的同时,提升热管理***的制冷效果。
参照图7,当电池换热组件8、乘客舱及电机换热组件9均有降温需求,可以通过第三换热器16给电池换热组件8和电机换热组件9降温,热管理***处于第二制冷模式第二状态,室外换热器的第二端口52和压缩机1的出口连通,第一支路的第二端a2与压缩机1的进口连通,第三流体切换装置13处于第二工作模式,第一流量调节装置3处于节流状态,第二流量调节装置4处于截止状态。压缩机1、第一换热部72、室外换热器5、第一流量调节装置3、室内换热器2及气液分离器14之间连通形成制冷剂回路。
此时,冷却液***处于第二工作状态,第一流路c和第二流路d串联,第一流路c中的第一流体驱动装置11和第二流路d中的第二流体驱动装置12共同为冷却液循环流动提供动力,且第二流体切换装置17的第六接口172与第七接口173连通,第四支路d2接入冷却液回路中。第一流体驱动装置11、电池换热组件8、第二流体驱动装置12、电机换热组件9、第二换热部71、第三换热器16、第一流体切换装置10及第四换热部62之间连通形成冷却液回路,制冷剂通过第一换热器7与冷却液进行热交换。
该模式下的制冷剂的流动状态与第二制冷模式第一状态下的制冷剂的流动原理类似,在此不再赘述。
第二制冷模式第二状态下,通过第三换热器16与空气进行热交换,降低冷却液的温度,通过冷却液的循环流动既可以同时实现给电机换热组件9和电池换热组件8降温的目的,又可以通过第一换热器7实现降低进入流入第一支路a之前的制冷剂的温度的目的,可以在实现电机换热组件9和电池换热组件8降温的同时,提升热管理***的制冷效果。
本实施例的第一流量调节装置3和第二流量调节装置4均为双向节流阀,使热管理***阀件的数量和连接管路减少,热管理***的结构更加简单,且第一流量调节装置3和第二流 量调节装置4在热管理***运行时同时处于各自支路的上游端或下游端,当乘客舱制热时,可以给电池换热组件8加热,当乘客舱制冷时,可以给电池换热组件8冷却,可以通过制冷剂实现电池换热组件8的加热或降温,节省冷却液回路中的高压水冷PTC电加热器,可以降低成本且提高安全性。室外换热器5和压缩机1之间设有第一换热器7,当乘客舱制热时,可以回收利用冷却液回路的热量,提升***的制热效果,当乘客舱制冷时,可以实现两次降低节流前的冷却液的温度,提升***的制冷效果。
当冬天环境温度较低乘客舱内温度较高时,乘客舱内温度与车外环境温度相差较大,车窗上会凝结水雾或水珠,对视线造成影响,开车时会有安全隐患。本实施例的热管理***具有制热除湿模式。参照图8,室外换热器的第二端口52和压缩机1的出口连通,第一支路的第二端a2与压缩机1的进口连通,第三流体切换装置13处于第二工作模式,第一流量调节装置3处于节流状态。压缩机1、第一换热部72、室外换热器5、第一流量调节装置3、室内换热器2及气液分离器14之间连通形成制冷剂回路。此时,加热装置18开启,可选,加热装置18为风冷型PTC电加热器。
该模式下冷却液回路的流动状态及第二流量调节装置4的状态,根据电机换热组件9和电池换热组件8的状态进行调整,具体调整方式可参照上述制热模式和制冷模式,此处不再赘述。
经压缩机1压缩后的高温制冷剂流入第一换热部72中,第一换热部72中温度较高的制冷剂将热量传递给第二换热部71中的冷却液,通过冷却液回路的循环流动带走制冷剂的部分热量,然后制冷剂流入室外换热器5,与空气进行热交换后制冷剂的温度再次降低,从室外换热器5中流出的制冷剂流向第一支路a。制冷剂进入第一支路a经第一流量调节装置3节流后流入室内换热器2中,室内换热器2用作蒸发器,制冷剂与乘客舱内的空气进行热交换,由于室内换热器2的温度相对较低,乘客舱空调箱内空气温度较高,乘客舱空调箱内空气中的水分在空调箱中凝结成水珠然后排出,从而使乘客舱进入内空气的湿度降低,加热装置18相对室内换热器2位于空气流的下游侧,流过室内换热器2后的空气与加热装置18进行热交换,从而加热进入乘客舱内的空气,从而实现乘客舱的加热。流出第一支路a的制冷剂流向气液分离器14,流出气液分离器14的制冷剂流入压缩机1,如此循环。气液分离器14用于将气液两相状态的制冷剂分离成气态制冷剂和液态制冷剂,气态制冷剂流入压缩机1。在一些实施例中,若压缩机1内设置有储液罐或者流入压缩机1的制冷剂全部为气态时,也可以不设置气液分离器14,制冷剂直接回到压缩机1内。该模式下,通过室内换热器2,降低乘客舱内空气的湿度,并通过加热装置18加热进入乘客舱内空气的温度,实现制热除湿功能。
当乘客舱有加热需求,热管理***在第一制热模式、第二制热模式第一状态、第二制热 模式第二状态或第二制热模式第三状态运行一段时间后,由于室外环境温度较低,且室外换热器5用作蒸发器,室外换热器5会有结霜的可能,室外换热器5结霜后,室外换热器5的换热性能降低,影响热管理***的正常运行,对乘客舱内舒适性也会有影响。如图9和图10所示,根据热管理***的状态,本实施例的热管理***具有第一化霜模式和第二化霜模式。
参照图9,电机换热组件9温度适中,电池换热组件8具有余热时,热管理***处于第一化霜模式,室外换热器的第二端口52和压缩机1的出口连通,第二支路的第二端b2与压缩机1的进口连通,第三流体切换装置13处于第二工作模式,第一流量调节装置3处于截止状态,第二流量调节装置4处于节流状态。压缩机1、第一换热部72、室外换热器5、第二流量调节装置4、第三换热部61及气液分离器14之间连通形成制冷剂回路,且加热装置18处于加热状态,从而加热进入乘客舱内的空气。
此时,冷却液***处于第一工作状态,第一流路c中的第一流体驱动装置11为冷却液循环流动提供动力,第二流路d中的第二流体驱动装置12不工作,且第二流体切换装置17的第五接口171与第六接口172连通,第三支路d1接入冷却液回路中。第一流体驱动装置11、第一流体切换装置10、第四换热部62及电池换热组件8之间连通形成冷却液回路,制冷剂通过第二换热器6与冷却液进行热交换。第二流路d中的冷却液由于没有驱动动力,且第一流体切换装置10的第三接口103和第四接口104未连通,此时,制冷剂通过第一换热器7将热量传递至第二流路d的冷却液中,第二流路d中的冷却液作为一个热量储存器使用,可以避免进入室外换热器5的制冷剂温度被降低,提升化霜的性能。
在该模式下,室外换热器5作为冷凝器使用,第二换热器6作为蒸发器使用。经压缩机1压缩后的高温制冷剂流经第一换热部72后流入室外换热器5,高温的制冷剂与空气和霜层进行热交换后温度降低,室外换热器5的霜层会被加热然后融化,实现除霜的目的,从室外换热器5中流出的制冷剂流向第二支路b。制冷剂进入第二支路b经第二流量调节装置4节流后流入第三换热部61中,第三换热部61中温度较低的制冷剂与第四换热部62中的冷却液进行热交换,通过冷却液回路的循环流动将电池换热组件8的热量传递给制冷剂。此时,加热装置18处于工作状态,加热进入乘客舱的空气,实现乘客舱的加热。流出第二支路b的制冷剂流向气液分离器14,气液分离器14用于将气液两相状态的制冷剂分离成气态制冷剂和液态制冷剂,液态制冷剂储存在气液分离器14中,气态制冷剂流入压缩机1,如此循环。在一些实施例中,若压缩机1内设置有储液罐或者流入压缩机1的制冷剂全部为气态时,也可以不设置气液分离器14,制冷剂直接回到压缩机1内。通过室外换热器5作为冷凝器使用、第二换热器6作为蒸发器使用且开启加热装置18的加热功能,利用电池换热组件8的余热,在实现室外换热器5化霜的同时,保持乘客舱温度的稳定,提升舒适性。
参照图10,当电机换热组件9具有较多余热,电池换热组件8温度无余热时,或热管理 ***处于第一化霜模式工作一段时间后电池换热组件8温度降低且电机换热组件9温度升高时,热管理***处于第二化霜模式,室外换热器的第二端口52和压缩机1的出口连通,第二支路的第二端b2与压缩机1的进口连通,第三流体切换装置13处于第二工作模式,第一流量调节装置3处于截止状态,第二流量调节装置4处于节流状态。压缩机1、第一换热部72、室外换热器5、第二流量调节装置4、第三换热部61及气液分离器14之间连通形成制冷剂回路,且加热装置18处于加热状态,加热进入乘客舱内的空气。
此时,冷却液***处于第二工作状态,第一流路c和第二流路d串联,第一流体驱动装置11和第二流体驱动装置12同时为冷却液循环流动提供动力,且第二流体切换装置17的第五接口171与第六接口172连通,第三支路d1接入冷却液回路中。第一流体驱动装置11、电池换热组件8、第二流体驱动装置12、电机换热组件9、第二换热部71、第三支路d1、第一流体切换装置10及第四换热部62连通形成冷却液回路,制冷剂通过第二换热器6与冷却液进行热交换,且制冷剂通过第一换热器7与冷却液进行热交换。
在该模式下,室外换热器5作为冷凝器使用,第二换热器6作为蒸发器使用。该模式下的制冷剂的流动状态与第一化霜模式的制冷剂的流动状态大致相同,相同之处在此不再赘述。
由于电池换热组件8无余热,若按照第一化霜模式运行,可能会造成电池换热组件8温度过低,从而影响电池换热组件8的正常运行。此时电机具有余热,第一流路c与第二流路d串联,通过冷却液的循环流动,利用电机的余热为第二换热器6提供热量来源,并可以保证电池换热组件8的工作温度,由于电机换热组件9具有余热,冷却液温度相对也较高,第一换热器7中的热交换较少,对室外换热器5的化霜效果影响较小。从另一方面讲,可以通过第一换热器7将制冷剂的部分热量传递至冷却液,通过冷却液的循环流动用于第二换热器6处使用。
在一些其他实施例中,可以通过设置一些阀件和管路,使第二流路d中的冷却液不流经第二换热部71,降低第一换热器7对化霜效果的影响。
如图11和图12所示,当乘客舱无加热或降温需求,根据电机换热组件9和电池换热组件8的状态,本实施例的热管理***具有第一散热模式和第二散热模式。
参照图11,乘客舱无加热或降温需求,压缩机1处于关闭状态,当仅电机换热组件9具有降温需求时,热管理***处于第一散热模式。冷却液***处于第一工作状态,第二流体切换装置17的第六接口172与第七接口173连通,第四支路d2接入冷却液回路,第二流体驱动装置12、电机换热组件9、第二换热部71及第三换热器16连通形成冷却液回路,通过第三换热器16与空气进行热交换,降低冷却液的温度,冷却液循环流动实现电机换热组件9降温的目的。
参照图12,乘客舱无加热或降温需求,压缩机1处于关闭状态,当电机换热组件9和电池换热组件8均具有降温需求时,热管理***处于第二散热模式。冷却液***处于第二工作状态,第二流体切换装置17的第六接口172与第七接口173连通,第四支路d2接入冷却液回路,第一流体驱动装置11、电池换热组件8、第二流体驱动装置12、电机换热组件9、第二换热部71、第三换热器16、第一流体驱动装置11及第四换热部62连通形成冷却液回路,通过第三换热器16与空气进行热交换,降低冷却液的温度,冷却液循环流动实现电机换热组件9和电池换热组件8降温的目的。
在一些其他实施例中,热管理***还包括第四换热器15,第四换热器15包括第五换热部151和第六换热部152,第五换热部151和第六换热部152中流动的均为同一制冷剂***中的制冷剂。第四换热器15与气液分离器14集成为一个整体构成气液分离装置,也可以分开设置后相互靠近装配构成4构成气液分离装置。以第四换热器15和气液分离器14分开设置为例,第五换热部151连接于压缩机1进口与气液分离器14的出口之间,第六换热部152连接于室外换热器的第一端口51和第一支路的第一端a1之间,且第六换热部152连接于室外换热器的第一端口51和第二支路的第一端b1之间。
当第三流体切换装置13处于第一工作模式下,气液分离器14的进口与室外换热器的第二端口52连接,当第三流体切换装置13处于第二工作模式下,气液分离器14的进口与第一支路的第二端a2和第二支路的第二端b2连接。
当第三流体切换装置13处于第二工作模式下,第六换热部152中温度较高的制冷剂与第五换热部151中温度较低的制冷剂进行热交换,可以降低进入第一支路a和第二支路b前制冷剂的温度,即节流前的制冷剂的温度,提升***的制冷效果;还可以加热从气液分离器14流出的制冷剂,减少液态制冷剂进入压缩机1的可能性,减少压缩机1的液击风险。
当第三流体切换装置13处于第一工作模式下,第六换热部152中的制冷剂与第五换热部151中的制冷剂温度相差不大,热交换较少,热管理***的影响较小。
在一些其他实施例中,第四换热器15和气液分离器14还可以作为一个整体设计,具体地,第四换热器15至少部分设于气液分离器14内部,第五换热部151为气液分离器14的一部分,气液分离器14的出口与压缩机1进口连接。第六换热部152与第五换热部151进行热交换,第六换热部152与气液分离器14固定连接。
根据本申请的热管理***另一个具体实施例,如图13和14所示,其结构与上述实施例的结构基本相同,且工作原理也与上述实施例大致相同,其区别在于:室内换热器2包括第一室内换热器21和第二室内换热器22,热管理***还包括连接于第一室内换热器21和第二室内换热器22之间第三流量调节装置23,第一室内换热器21的一端与第二支路b连接,第 一室内换热器21的另一端与第三流量调节装置23连接,第二室内换热器22连接于第一流量调节装置3和第三流量调节装置23之间。第一室内换热器21相对第二室内换热器22位于空气流的下游侧,加热装置18相对第一室内换热器21位于空气流的下游侧。
当第三流体切换装置13处于第一工作模式下,第三流量调节装置23处于导通或者节流状态;当第三流体切换装置13处于第二工作模式下,第三流量调节装置23处于导通状态。
参照图13,当第三流体切换装置13处于第一工作模式,第一流量调节装置3处于节流状态,第三流量调节装置23处于导通状态时,第一室内换热器21和第二室内换热器22均作为冷凝器使用,室外换热器5作为蒸发器使用,相较于只有一个室内换热器的结构,两个室内换热器可以提升制热能力。当第三流体切换装置13处于第一工作模式,第一流量调节装置3处于导通或者节流状态,第三流量调节装置23处于节流状态时,第一室内换热器21作为冷凝器使用,第二室内换热器22和室外换热器5均作为蒸发器使用,由于第一室内换热器21相对第二室内换热器22位于空气流的下游侧,乘客舱空气中的水汽由于第二室内换热器22的作用凝结成水珠从空调箱中排出,经过第二室内换热器22除湿后的空气被第一室内换热器21加热后进入乘客舱,实现热管理***的制热除湿模式。
本实施例中,通过调整第一室内换热器21、第二室内换热器22、第一流量调节装置3及第三流量调节装置23的状态实现制热除湿模式,不需要调整制冷剂的流动方向,也不需要开启加热装置18加热,减少制冷剂流动方向改变带来的能量损耗和乘客舱内温度的波动,还可以减少加热装置18的使用,降低热管理***的能耗,提升车辆续航里程。当然本实施例也可以使用与上述实施例相同的方法实现制热除湿模式,此时,第三流体切换装置13处于第二工作模式,第一流量调节装置3处于节流状态,第三流量调节装置23处于导通状态,加热装置18处于加热状态。
参照图14,当第三流体切换装置13处于第二工作模式下,第一流量调节装置3处于节流状态,第三流量调节装置23处于导通状态,第一室内换热器21和第二室内换热器22均作为蒸发器使用,室外换热器5作为冷凝器使用,相较于只有一个室内换热器的结构,两个室内换热器可以提升制冷能力。另外,相较于相关技术中的两个室内换热器,制冷模式时,高温制冷剂进入其中一个室内换热器,通过风门控制该室内换热器与乘客舱空气不换热的方案,因为本申请无室内换热器的漏热,提高了制冷效果。
本实施例中,冷却液回路的流动状态及第二流量调节装置4的状态,根据电机换热组件9和电池换热组件8的状态进行调整,具体调整方式可参照上述实施例。本实施例热管理***的工作模式的设计与上述实施例相同之处,在此不再赘述。
根据本申请的热管理***另一个具体实施例,如图15和16所示,其结构与上述实施例 的结构基本相同,且工作原理也与上述实施例大致相同,其区别在于:第三流体切换装置13由第一阀13a、第二阀13b、第三阀13c及第四阀13d组成。第一阀13a包括第一阀的第一端13a1和第一阀的第二端13a2,第二阀13b包括第二阀的第一端13b1和第二阀的第二端13b2,第三阀13c包括第三阀的第一端13c1和第三阀的第二端13c2,第四阀13d包括第四阀的第一端13d1和第四阀的第二端13d2。第一阀的第一端13a1与压缩机1出口和第二阀的第一端13b1连接,第一阀的第二端13a2与第一换热部72和第四阀的第二端13d2连接。第二阀的第二端13b2与第三阀的第一端13c1连接,且与第一支路的第二端a2和第二支路的第二端b2连接。第三阀的第二端13c2与压缩机1的进口和第四阀的第一端13d1连接。通过调节第一阀13a、第二阀13b、第三阀13c及第四阀13d的状态,实现制冷剂流向的切换。可选的,第一阀13a、第二阀13b、第三阀13c及第四阀13d均可以为单向导通阀。
第一阀的第一端13a1和第二阀的第一端13b1的共同连接口为第一连接口131,第二阀的第二端13b2和第三阀的第一端13c1的共同连接口为第二连接口132,第三阀的第二端13c2和第四阀的第一端13d1的共同连接口为第三连接口133,第一阀的第二端13a2和第四阀的第二端13d2的共同连接口为第四连接口134。
参照图15,在第三流体切换装置13处于第一工作模式下:第一阀13a处于截止状态,第二阀13b处于导通状态,第三阀13c处于截止状态,第四阀13d处于导通状态。参照图16,在第三流体切换装置13处于第二工作模式下:第一阀13a处于导通状态,第二阀13b处于截止状态,第三阀13c处于导通状态,第四阀13d处于截止状态。
在一些实施例中,第一阀13a和第二阀13b可以设计为一个整体部件,第三阀13c和第四阀13d设计为一个整体部件,第一流量调节装置3和第二流量调节装置4可以设计为一个整体部件,达到减少热管理***部件数量的目的,简化管路设计。在一些实施例中,第一阀13a、第二阀13b、第三阀13c和第四阀13d设计为一个整体部件,进一步简化管路设计。
本实施例中,制冷剂回路的流动状态、冷却液回路的流动状态及第二流量调节装置4的状态,根据乘客舱、电机换热组件9和电池换热组件8的状态进行调整,具体调整方式可参照上述实施例。本实施例热管理***的工作模式的设计与上述实施例相同之处,在此不再赘述。
本申请中两个部件之间的“连接”可以是直接连接,也可以是通过管路连接,两个部件之间可以仅设有管路,也可以两者之间还设有阀件或其他部件。同样的,本申请中两个部件之间的“连通”可以是直接连通,也可以是通过管路实现连通,两个部件之间可以仅设有管路连通,也可以两者之间还设有阀件或其他部件后连通。
以上所述仅是本申请的较佳实施例而已,并非对本申请做任何形式上的限制,虽然本申 请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (15)

  1. 一种热管理***,其特征在于,包括:制冷剂***和冷却液***;
    所述制冷剂***包括压缩机(1)、室内换热器(2)、第一流量调节装置(3)、第一换热器(7)及室外换热器(5),所述室外换热器(5)包括室外换热器的第一端口(51)和室外换热器的第二端口(52),所述第一流量调节装置(3)具有双向节流功能;
    所述第一换热器(7)包括不相连通的第一换热部(72)和第二换热部(71),所述第一换热部(72)和所述第二换热部(71)能够进行热交换;
    所述热管理***包括制热模式和制冷模式,在制热模式下,所述压缩机(1)的出口、所述室内换热器(2)、所述第一流量调节装置(3)、所述室外换热器(5)、所述第一换热部(72)、所述压缩机(1)的进口连通形成制冷剂回路,所述第一流量调节装置(3)处于制冷剂节流状态,所述第一换热部(72)中的制冷剂吸收所述第二换热部(71)中的冷却液的热量;在制冷模式下,所述压缩机(1)的出口、所述第一换热部(72)、所述室外换热器(5)、所述第一流量调节装置(3)、所述室内换热器(2)、所述压缩机(1)的进口连通形成制冷剂回路,所述第一流量调节装置(3)处于制冷剂节流状态,所述第一换热部(72)中的制冷剂的热量传递至所述第二换热部(71)中的冷却液。
  2. 如权利要求1所述的一种热管理***,其特征在于,所述热管理***还包括第二流量调节装置(4)和第二换热器(6),所述第二流量调节装置(4)具有双向节流功能,所述第二换热器(6)包括不相连通的第三换热部(61)和第四换热部(62),所述第三换热部(61)连接于制冷剂***,所述第四换热部(62)连接于冷却液***,所述制冷剂***的制冷剂和所述冷却液***的冷却液能够通过第三换热部(61)和第四换热部(62)进行热交换;
    所述压缩机(1)和室外换热器(5)之间具有并联设置的第一支路和第二支路,所述第一流量调节装置(3)和室内换热器(2)连接于第一支路,所述第二流量调节装置(4)和第三换热部(61)连接于所述第二支路,所述第一支路包括第一支路的第一端(a1)和第一支路的第二端(a2),所述第二支路包括第二支路的第一端(b1)和第二支路的第二端(b2);
    所述第一支路的第一端(a1)和第二支路的第一端(b1)均与所述室外换热器的第一端口(51)连通,所述室外换热器的第二端口(52)和所述第一换热部(72)连通,所述第一换热部(72)和所述压缩机(1)的出口连通,所述第一支路的第二端(a2)和所述第二支路的第二端(b2)均与所述压缩机(1)的进口连通;或,所述第一支路的第二端(a2)和所述第二支路的第二端(b2)均与所述压缩机(1)的出口连通,所述第一换热部(72)和所述压缩机(1)的进口连通。
  3. 如权利要求2所述的一种热管理***,其特征在于,所述冷却液***包括第一流路(c)、第二流路(d)及第一流体切换装置(10),所述第一流路(c)和所述第二流路(d)均与所述第一流体切换装置(10)连接,所述第一流路(c)设有电池换热组件(8)和第一流体驱动装置(11),所述第四换热部(62)连接于所述第一流路(c),所述第二流路(d)设有电 机换热组件(9)和第二流体驱动装置(12);
    所述第一流体切换装置(10)包括第一接口(101)、第二接口(102)、第三接口(103)及第四接口(104),所述第一流体切换装置(10)具有第一连通状态和第二连通状态,所述第一流体切换装置(10)在第一连通状态下,第一接口(101)与第二接口(102)连通,第三接口(103)与第四接口(104)连通,所述第一流体驱动装置(11)、所述第一流体切换装置(10)、所述第四换热部(62)及所述电池换热组件(8)连通形成第一冷却液回路,第一冷却液回路中冷却液能够通过所述第二换热器(6)与所述制冷剂***的制冷剂进行热交换;所述第二流体驱动装置(12)、所述电机换热组件(9)、所述第二换热部(71)及所述第一流体切换装置(10)连通形成第二冷却液回路,第二冷却液回路中冷却液能够通过所述第一换热器(7)与所述制冷剂***的制冷剂进行热交换;
    所述第一流体切换装置(10)在第二连通状态下,第一接口(101)与第四接口(104)连通,第二接口(102)与第三接口(103)连通,所述第二流体驱动装置(12)、所述电机换热组件(9)、所述第二换热部(71)、所述第一流体切换装置(10)、所述第四换热部(62)、所述电池换热组件(8)、第一流体驱动装置(11)连通形成同一冷却液循环回路,冷却液***的冷却液能够通过所述第一换热器(7)与制冷剂***的制冷剂进行热交换,冷却液***的冷却液能够通过所述第二换热器(6)和所述第一换热器(7)与制冷剂***的制冷剂进行热交换。
  4. 如权利要求3所述的一种热管理***,其特征在于,所述冷却液***还包括第三换热器(16)和第二流体切换装置(17),所述第二流体切换装置(17)包括第五接口(171)、第六接口(172)及第七接口(173),所述第六接口(172)与所述第五接口(171)或所述第七接口(173)连通;
    所述第二流路(d)包括第三支路(d1)和第四支路(d2),所述第三换热器(16)连接于所述第四支路(d2),所述第三支路(d1)连接于所述第四接口(104)和所述第五接口(171)之间,所述第四支路(d2)连接于所述第四接口(104)和所述第七接口(173)之间,所述第二换热部(71)连接于所述第六接口(172)与所述电机换热组件(9)之间。
  5. 如权利要求1所述的一种热管理***,其特征在于,所述室内换热器(2)包括第一室内换热器(21)和第二室内换热器(22),所述制冷剂***包括串联于所述第一室内换热器(21)和第二室内换热器(22)之间的第三流量调节装置(23),所述第一室内换热器(21)的一端与压缩机(1)的进口或出口连接,所述第一室内换热器(21)的另一端与所述第三流量调节装置(23)连接,所述第二室内换热器(22)连接于所述第一流量调节装置(3)和所述第三流量调节装置(23)之间。
  6. 如权利要求2所述的一种热管理***,其特征在于,所述热管理***还包括第三流体切换装置(13),所述第三流体切换装置(13)包括第一连接口(131)、第二连接口(132)、 第三连接口(133)和第四连接口(134),所述第一连接口(131)和所述压缩机(1)的出口连接,所述第一支路的第二端(a2)和所述第二支路的第二端(b2)均与所述第二连接口(132)连接,所述第三连接口(133)与所述压缩机(1)的进口连接,所述第四连接口(134)与所述第一换热部(72)连接;
    所述第三流体切换装置(13)包括第一工作模式和第二工作模式;在所述第一工作模式下,所述第一连接口(131)和所述第二连接口(132)连通,所述第三连接口(133)和所述第四连接口(134)连通;在所述第二工作模式下,所述第一连接口(131)和所述第四连接口(134)连通,所述第二连接口(132)和所述第三连接口(133)连通。
  7. 如权利要求6所述的一种热管理***,其特征在于,所述第三流体切换装置(13)包括第一阀(13a)、第二阀(13b)、第三阀(13c)及第四阀(13d),所述第一阀(13a)包括第一阀的第一端(13a1)和第一阀的第二端(13a2),所述第二阀(13b)包括第二阀的第一端(13b1)和第二阀的第二端(13b2),所述第三阀(13c)包括第三阀的第一端(13c1)和第三阀的第二端(13c2),所述第四阀(13d)包括第四阀的第一端(13d1)和第四阀的第二端(13d2),所述第一阀的第一端(13a1)与所述压缩机(1)出口和所述第二阀的第一端(13b1)连接,所述第一阀的第二端(13a2)与所述第一换热部(72)和所述第四阀的第二端(13d2)连接;所述第二阀的第二端(13b2)与所述第三阀的第一端(13c1)连接,且与所述第一支路的第二端(a2)和所述第二支路的第二端(b2)连接;所述第三阀的第二端(13c2)与所述压缩机(1)的进口和所述第四阀的第一端(13d1)连接;
    在所述第三流体切换装置(13)的所述第一工作模式下:所述第一阀(13a)处于截止状态,所述第二阀(13b)处于导通状态,所述第三阀(13c)处于截止状态,所述第四阀(13d)处于导通状态;
    在所述第三流体切换装置(13)的所述第二工作模式下:所述第一阀(13a)处于导通状态,所述第二阀(13b)处于截止状态,所述第三阀(13c)处于导通状态,所述第四阀(13d)处于截止状态。
  8. 如权利要求2所述的一种热管理***,其特征在于,所述热管理***包括第一制热模式和第二制热模式:
    在所述第一制热模式下,所述室外换热器的第二端口(52)和所述压缩机(1)的进口连通,所述第一支路的第二端(a2)和所述第二支路的第二端(b2)均与所述压缩机(1)的出口连通,所述第一流量调节装置(3)和所述第二流量调节装置(4)均处于节流状态;所述压缩机(1)、所述室内换热器(2)、所述第一流量调节装置(3)、所述室外换热器(5)及所述第一换热部(72)连通形成制冷剂回路,且所述压缩机(1)、所述第三换热部(61)、所述 第二流量调节装置(4)、所述室外换热器(5)及所述第一换热部(72)连通形成制冷剂回路;
    在所述第二制热模式下,所述室外换热器的第二端口(52)和所述压缩机(1)的进口连通,所述第一支路的第二端(a2)与所述压缩机(1)的出口连通,所述第一流量调节装置(3)处于节流状态,所述第二流量调节装置(4)处于截止状态;所述压缩机(1)、所述室内换热器(2)、所述第一流量调节装置(3)、所述室外换热器(5)及所述第一换热部(72)连通形成制冷剂回路。
  9. 如权利要求2所述的一种热管理***,其特征在于,所述热管理***包括第一制冷模式和第二制冷模式:
    在所述第一制冷模式下,所述室外换热器的第二端口(52)和所述压缩机(1)的出口连通,所述第一支路的第二端(a2)和所述第二支路的第二端(b2)均与所述压缩机(1)的进口连通,所述第一流量调节装置(3)和所述第二流量调节装置(4)均处于节流状态;所述压缩机(1)、所述第一换热部(72)、所述室外换热器(5)、所述第一流量调节装置(3)、所述室内换热器(2)连通形成制冷剂回路,且所述压缩机(1)、所述第一换热部(72)、所述室外换热器(5)、所述第二流量调节装置(4)、所述第三换热部(61)连通形成制冷剂回路;
    在所述第二制冷模式下,所述室外换热器的第二端口(52)和所述压缩机(1)的出口连通,所述第一支路的第二端(a2)与所述压缩机(1)的进口连通,所述第一流量调节装置(3)处于节流状态,所述第二流量调节装置(4)处于截止状态;所述压缩机(1)、所述第一换热部(72)、所述室外换热器(5)、所述第一流量调节装置(3)、所述室内换热器(2)连通形成制冷剂回路。
  10. 如权利要求2所述的一种热管理***,其特征在于,所述热管理***还包括加热装置(18),所述加热装置(18)相对所述室内换热器(2)位于空气流的下游侧,所述热管理***包括制热除湿模式,在所述制热除湿模式下:
    所述室外换热器的第二端口(52)和所述压缩机(1)的出口连通,所述第一支路的第二端(a2)与所述压缩机(1)的进口连通,所述第一流量调节装置(3)处于节流状态,所述加热装置(18)处于加热状态;所述压缩机(1)、所述第一换热部(72)、所述室外换热器(5)、所述第一流量调节装置(3)、所述室内换热器(2)连通形成制冷剂回路。
  11. 如权利要求2所述的一种热管理***,其特征在于,所述热管理***还包括与所述室内换热器(2)相邻设置的加热装置(18),所述加热装置(18)相对所述室内换热器(2)位于空气流的下游侧,所述热管理***包括化霜模式,在所述化霜模式下:
    所述室外换热器的第二端口(52)和所述压缩机(1)的出口连通,所述第二支路的第二端(b2)与所述压缩机(1)的进口连通,所述第一流量调节装置(3)处于截止状态,所述第二流量调节装置(4)处于节流状态,所述加热装置(18)处于加热状态;所述压缩机(1)、所述第一换热部(72)、所述室外换热器(5)、所述第二流量调节装置(4)、所述第三换热部 (61)连通形成制冷剂回路,所述冷却液***处于运行状态。
  12. 如权利要求4所述的一种热管理***,其特征在于,所述热管理***包括第一散热模式和第二散热模式:
    在所述第一散热模式下,所述压缩机(1)处于停止状态,所述第一流体切换装置(10)处于所述第一连通状态,所述第二流体切换装置(17)的所述第六接口(172)与所述第七接口(173)连通;所述第二流体驱动装置(12)、所述电机换热组件(9)、所述第二换热部(71)及所述第三换热器(16)连通形成冷却液回路;
    在所述第二散热模式下,所述压缩机(1)处于停止状态,所述第一流体切换装置(10)处于所述第二连通状态,所述第二流体切换装置(17)的所述第六接口(172)与所述第七接口(173)连通;所述第二流体驱动装置(12)、所述电机换热组件(9)、所述第二换热部(71)、所述第三换热器(16)、所述第四换热部(62)、所述电池换热组件(8)、第一流体驱动装置(11)连通形成冷却液回路。
  13. 如权利要求5所述的一种热管理***,其特征在于,所述热管理***包括制热除湿模式,在所述制热除湿模式下:
    所述第一换热部(72)和所述压缩机(1)的进口连通,所述第一室内换热器(21)的一端口与所述压缩机(1)的出口连通,所述第一流量调节装置(3)处于导通状态,所述第三流量调节装置(23)处于节流状态;所述压缩机(1)、所述第一室内换热器(21)、所述第三流量调节装置(23)、所述第二室内换热器(22)、所述第一流量调节装置(3)及所述室外换热器(5)连通形成制冷剂回路。
  14. 如权利要求5所述的一种热管理***,其特征在于,所述热管理***包括制热模式和制冷模式;
    在所述制热模式下,所述第一换热部(72)和所述压缩机(1)的进口连通,所述第一室内换热器(21)的进口与所述压缩机(1)的出口连通,所述第一流量调节装置(3)处于节流状态,所述第三流量调节装置(23)处于导通状态;所述压缩机(1)、所述第一室内换热器(21)、所述第三流量调节装置(23)、所述第二室内换热器(22)、所述第一流量调节装置(3)、所述室外换热器(5)及所述第一换热部(72)连通形成制冷剂回路;
    在所述制冷模式下,所述第一换热部(72)和所述压缩机(1)的出口连通,所述第一室内换热器(21)的出口与所述压缩机(1)的进口连通,所述第一流量调节装置(3)处于节流状态,所述第三流量调节装置(23)处于导通状态;所述压缩机(1)、所述第一换热部(72)、所述室外换热器(5)、所述第一流量调节装置(3)、所述第一室内换热器(21)、所述第三流量调节装置(23)、所述第二室内换热器(22)连通形成制冷剂回路。
  15. 如权利要求2所述的一种热管理***,其特征在于,所述热管理***还包括气液分离装置,所述气液分离装置包括第四换热器(15)和气液分离器(14),
    所述第四换热器(15)与所述气液分离器(14)分开设置,所述第四换热器(15)包括第五换热部(151)和第六换热部(152),所述第五换热部(151)和所述第六换热部(152)均连接于制冷剂***,所述第五换热部(151)和所述第六换热部(152)能够进行热交换,所述第五换热部(151)连接于所述压缩机(1)进口与所述气液分离器(14)的出口之间,所述第六换热部(152)连接于所述室外换热器的第一端口(51)和所述第一支路的第一端(a1)之间,且所述第六换热部(152)连接于所述室外换热器的第一端口(51)和所述第二支路的第一端(b1)之间,所述气液分离器(14)的进口与所述第一换热部(72)连通,或,与所述第一支路的第二端(a2)和所述第二支路的第二端(b2)连通;或,
    所述第四换热器(15)至少部分位于所述气液分离器(14)内部,所述第四换热器(15)包括第五换热部(151)和第六换热部(152),所述第五换热部(151)和所述第六换热部(152)均连接于制冷剂***,所述第五换热部(151)和所述第六换热部(152)进行热交换,所述第六换热部(152)连接于所述室外换热器的第一端口(51)和所述第一支路的第一端(a1)之间,且所述第六换热部(152)连接于所述室外换热器的第一端口(51)和所述第二支路的第一端(b1)之间,所述气液分离器(14)的出口与所述压缩机(1)的进口连接,所述气液分离器(14)的进口与所述第一换热部(72)连接,或,与所述第一支路的第二端(a2)和所述第二支路的第二端(b2)连接,所述第五换热部(151)为所述气液分离器(14)的一部分,所述第六换热部(152)与所述气液分离器(14)固定连接。
PCT/CN2021/096958 2020-05-29 2021-05-28 热管理*** WO2021239137A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/928,611 US20230271478A1 (en) 2020-05-29 2021-05-28 Thermal management system with first flow regulating device having bi-directional throttling function and control method thereof
EP21812715.7A EP4151440A4 (en) 2020-05-29 2021-05-28 THERMAL MANAGEMENT SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010482617.7A CN112428768B (zh) 2020-05-29 2020-05-29 热管理***
CN202010482617.7 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021239137A1 true WO2021239137A1 (zh) 2021-12-02

Family

ID=74690290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096958 WO2021239137A1 (zh) 2020-05-29 2021-05-28 热管理***

Country Status (4)

Country Link
US (1) US20230271478A1 (zh)
EP (1) EP4151440A4 (zh)
CN (1) CN112428768B (zh)
WO (1) WO2021239137A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114368263A (zh) * 2022-01-12 2022-04-19 清华大学 多联式电动车辆热管理***
EP3984795A4 (en) * 2019-10-30 2022-10-05 Hangzhou Sanhua Research Institute Co., Ltd. THERMAL MANAGEMENT SYSTEM
WO2023169048A1 (zh) * 2022-03-10 2023-09-14 浙江银轮机械股份有限公司 一种新能源汽车整车热管理***

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7280770B2 (ja) * 2019-07-29 2023-05-24 サンデン株式会社 車両用空気調和装置
CN112428768B (zh) * 2020-05-29 2024-06-11 杭州三花研究院有限公司 热管理***
US11548349B2 (en) * 2021-06-02 2023-01-10 Guangzhou Automobile Group Co., Ltd. Thermal management system and electric vehicle having the same
CN113263889B (zh) * 2021-06-25 2023-01-17 三花控股集团有限公司 热管理***
CN113619355B (zh) * 2021-08-18 2022-12-30 西安交通大学 基于跨临界二氧化碳热泵空调的电动车热管理***及方法
CN113725519A (zh) * 2021-08-31 2021-11-30 远景能源有限公司 一种具有除湿功能的液冷***
WO2023151639A1 (zh) * 2022-02-12 2023-08-17 浙江三花汽车零部件有限公司 热管理***
CN114901056A (zh) * 2022-06-30 2022-08-12 联想(北京)有限公司 散热装置及电子设备
CN115663357A (zh) * 2022-10-21 2023-01-31 华为数字能源技术有限公司 一种储能***和供电***

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106004329A (zh) * 2016-06-17 2016-10-12 南方英特空调有限公司 一种新能源汽车超低温热泵空调***及控制方法
JP2018075921A (ja) * 2016-11-08 2018-05-17 株式会社デンソー 車両用冷凍サイクル装置
CN108248331A (zh) * 2016-12-29 2018-07-06 比亚迪股份有限公司 热泵空调***及电动汽车
CN209022713U (zh) * 2018-07-25 2019-06-25 蔚来汽车有限公司 车用热管理***及车辆
US20200018222A1 (en) * 2018-07-10 2020-01-16 Volvo Car Corporation System for cooling heat-generating electronic components of a vehicle
CN110816218A (zh) * 2019-12-18 2020-02-21 上海加冷松芝汽车空调股份有限公司 一种车用热泵空调***
JP2020040430A (ja) * 2018-09-06 2020-03-19 株式会社デンソー 冷凍サイクル装置
CN112428768A (zh) * 2020-05-29 2021-03-02 杭州三花研究院有限公司 热管理***
CN112428771A (zh) * 2020-09-30 2021-03-02 三花控股集团有限公司 热管理***
CN112428769A (zh) * 2020-09-30 2021-03-02 三花控股集团有限公司 热管理***
CN212950033U (zh) * 2020-05-29 2021-04-13 杭州三花研究院有限公司 热管理***

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740397B1 (fr) * 1995-10-26 1997-12-05 Valeo Climatisation Dispositif de chauffage-climatisation de l'habitacle d'un vehicule automobile a moteur electrique
AU2361899A (en) * 1998-04-09 1999-10-21 Eaton Corporation Controlling refrigerant in a closed loop recirculating system
JP2000052754A (ja) * 1998-08-10 2000-02-22 Mitsubishi Heavy Ind Ltd 車両用空気調和装置
JP4770474B2 (ja) * 2006-01-20 2011-09-14 株式会社デンソー エジェクタ式冷凍サイクル用ユニットおよびその製造方法
NO320664B1 (no) * 2001-12-19 2006-01-16 Sinvent As System for oppvarming og kjoling av kjoretoy
CN100582500C (zh) * 2007-06-28 2010-01-20 上海交通大学 具有梯形结构的波纹翅片液压油冷却器
JP4803199B2 (ja) * 2008-03-27 2011-10-26 株式会社デンソー 冷凍サイクル装置
FR2942237B1 (fr) * 2009-02-13 2013-01-04 Arkema France Procede de chauffage et/ou climatisation d'un vehicule
FR2948898B1 (fr) * 2009-08-07 2012-04-06 Renault Sa Systeme de regulation thermique globale pour vehicule automobile a propulsion electrique.
CN103129348B (zh) * 2011-11-23 2017-07-11 杭州三花研究院有限公司 一种电动汽车热泵***
CN110966792B (zh) * 2018-09-30 2021-06-04 华为技术有限公司 车辆温度管理***

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106004329A (zh) * 2016-06-17 2016-10-12 南方英特空调有限公司 一种新能源汽车超低温热泵空调***及控制方法
JP2018075921A (ja) * 2016-11-08 2018-05-17 株式会社デンソー 車両用冷凍サイクル装置
CN108248331A (zh) * 2016-12-29 2018-07-06 比亚迪股份有限公司 热泵空调***及电动汽车
US20200018222A1 (en) * 2018-07-10 2020-01-16 Volvo Car Corporation System for cooling heat-generating electronic components of a vehicle
CN209022713U (zh) * 2018-07-25 2019-06-25 蔚来汽车有限公司 车用热管理***及车辆
JP2020040430A (ja) * 2018-09-06 2020-03-19 株式会社デンソー 冷凍サイクル装置
CN110816218A (zh) * 2019-12-18 2020-02-21 上海加冷松芝汽车空调股份有限公司 一种车用热泵空调***
CN112428768A (zh) * 2020-05-29 2021-03-02 杭州三花研究院有限公司 热管理***
CN212950033U (zh) * 2020-05-29 2021-04-13 杭州三花研究院有限公司 热管理***
CN112428771A (zh) * 2020-09-30 2021-03-02 三花控股集团有限公司 热管理***
CN112428769A (zh) * 2020-09-30 2021-03-02 三花控股集团有限公司 热管理***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4151440A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3984795A4 (en) * 2019-10-30 2022-10-05 Hangzhou Sanhua Research Institute Co., Ltd. THERMAL MANAGEMENT SYSTEM
CN114368263A (zh) * 2022-01-12 2022-04-19 清华大学 多联式电动车辆热管理***
CN114368263B (zh) * 2022-01-12 2023-07-25 清华大学 多联式电动车辆热管理***
WO2023169048A1 (zh) * 2022-03-10 2023-09-14 浙江银轮机械股份有限公司 一种新能源汽车整车热管理***

Also Published As

Publication number Publication date
CN112428768A (zh) 2021-03-02
EP4151440A4 (en) 2023-12-13
CN112428768B (zh) 2024-06-11
US20230271478A1 (en) 2023-08-31
EP4151440A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2021239137A1 (zh) 热管理***
US9751378B2 (en) Air conditioning system and heat exchanger
CN109291763B (zh) 一种热泵空调***及其控制方法和汽车
US20210268870A1 (en) Thermal management system
WO2021083067A1 (zh) 一种热管理***
CN212950033U (zh) 热管理***
CN112428767B (zh) 车辆热管理***
CN111231612B (zh) 热管理***
WO2017193856A1 (zh) 热泵空调***及电动汽车
CN114701323B (zh) 一种便于集成的新能源汽车热管理***
EP3982054A1 (en) Heat exchanger and heat exchange system
CN211892770U (zh) 热管理***
CN212194994U (zh) 车辆热管理***
WO2023160198A1 (zh) 汽车热管理***及新能源汽车
CN114388924A (zh) 电动车热管理***及电动车
US20210260955A1 (en) Heat pump system
CN113263889B (zh) 热管理***
CN115320326A (zh) 热管理***
CN217574780U (zh) 热管理***
CN114872512B (zh) 一种电动车用二氧化碳空调***及热管理方法
WO2023024604A1 (zh) 热管理***及其控制方法
CN115703321A (zh) 热管理***
CN114889396A (zh) 热管理***
CN115320323A (zh) 热管理***
CN115703322A (zh) 热管理***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021812715

Country of ref document: EP

Effective date: 20221216

NENP Non-entry into the national phase

Ref country code: DE