WO2021238677A1 - 一种增加包芯稳定性的多芯包芯纱结构及其制作工艺 - Google Patents

一种增加包芯稳定性的多芯包芯纱结构及其制作工艺 Download PDF

Info

Publication number
WO2021238677A1
WO2021238677A1 PCT/CN2021/093760 CN2021093760W WO2021238677A1 WO 2021238677 A1 WO2021238677 A1 WO 2021238677A1 CN 2021093760 W CN2021093760 W CN 2021093760W WO 2021238677 A1 WO2021238677 A1 WO 2021238677A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
yarn
spun
length
buffer
Prior art date
Application number
PCT/CN2021/093760
Other languages
English (en)
French (fr)
Inventor
何英杰
Original Assignee
常州科旭纺织有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州科旭纺织有限公司 filed Critical 常州科旭纺织有限公司
Priority to JP2021537702A priority Critical patent/JP7362149B2/ja
Publication of WO2021238677A1 publication Critical patent/WO2021238677A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/12Threads containing metallic filaments or strips
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/442Cut or abrasion resistant yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/22Physical properties protective against sunlight or UV radiation

Definitions

  • the invention relates to the technical field of multi-core core-spun yarns, in particular to a multi-core core-spun yarn structure that increases the stability of the core-spun yarn and its manufacturing process.
  • Core-spun yarn is a very important composite yarn. It has two components, one is the core yarn and the other is the short fiber covered by the outer covering. The two are made into yarns with obvious core yarn structure through the core-spun process. The core yarn and the outer fiber have their own characteristics, so that the yarn has the combined yarn properties of the two.
  • hard filaments such as single or multiple glass filaments/metal filaments/basalt filaments are often used as core yarns.
  • the utility model of the existing authorized announcement number CN206127534U discloses a multi-core core-spun yarn and The two-for-one twisted yarn, core-spun yarn and gloves and fabrics woven from it.
  • the technical means used in this application is that the multi-core core-spun yarn includes a core layer and an outer layer.
  • the core layer includes two or more core yarns.
  • the core yarn is measured by the ISO2062 method.
  • the core yarn adopts one or more of glass filament, metal filament or basalt filament.
  • the technical solution changes the traditional core-spun structure of one core yarn into a core-spun structure of multiple fine core yarns, wherein the core yarn adopts one or more of glass filament, metal filament or basalt filament.
  • These core yarn filaments are generally divided into two categories, metallic filaments and mineral filaments.
  • Metal filaments, such as steel wires, generally have no elasticity to retract after being stretched.
  • Mineral filaments such as basalt filaments are relatively brittle and tend to break after stretching.
  • these core yarns have elongation properties, the shrinkage properties after elongation are still not very good.
  • the core yarn After repeated wearing and taking off of protective equipment such as glove sleeves, the core yarn is subjected to repeated torsion and drafting, and the actual situation of the core yarn is basically that it cannot be retracted to its original state. Based on this, the core yarn exposure problem caused by the above reasons also needs to be solved urgently.
  • one of the objectives of the present invention is to provide a multi-core core-spun yarn structure that increases the stability of the core-spun yarn.
  • a multi-core core-spun yarn structure that increases the stability of the core-spun yarn, comprising a core yarn and a covering yarn, the core yarn has at least two core yarns, and The covering yarn is wrapped around the core yarn.
  • At least one core yarn is made of hard filaments, and at least one of the core yarns is a buffer core yarn with a breaking elongation of less than 50% and a shrinkage elasticity of 10% to 30%.
  • the quality filaments and the buffer core yarn are intertwined or arranged in parallel.
  • one of the core yarns is wound with a hard filament with a buffer core yarn that has both elongation and retraction capabilities.
  • the buffer core yarn can wrap the hard filament instead of providing it with deformability.
  • Gloves woven from this type of multi-core core-spun yarn provide extensibility. If the hard filament is a metal wire, it does not have the ability to retract after being stretched, and the extra part after being stretched can be entangled with the buffer core yarn, so that the arched part on a single spiral loop is very small, and it is not easy to appear The exposed metal filament arches up the problem of exposure.
  • the buffer core yarn constitutes a buffer protection member when the hard filaments are arched or broken, and together with the hard filaments, they form a core yarn with a buffer function.
  • Parallelly arranged core yarn when the yarn is stretched longitudinally, most of the stretching force is absorbed by the buffer core yarn as a buffer yarn, and the other hard filament receives less stretching force, so it will not break. Doesn't lengthen a lot.
  • the buffer core yarn with an elongation breaking rate greater than 50% has a large deformation range, and generally a single thread is thick.
  • the cushion core yarn with a shrinkage elasticity of less than 10% has poor shrinkage performance and cannot meet the ductility requirements of gloves.
  • Buffer core yarns with a retraction elasticity of more than 30% have too strong retraction performance, which easily causes the problem of hard filaments being squeezed and arched.
  • the calculation of the shrinkage elasticity of the buffer core yarn is limited, and not all fibers are suitable for being used as a buffer protector for hard filaments.
  • the present invention can be further configured as: the covered yarn is a staple fiber, a plurality of the staple fibers are gathered on the surface of the core yarn to form a multi-core core-spun yarn, and the staple fibers include polyethylene staple fibers. , Aramid staple fiber, polyester, nylon, viscose, tencel, modal, polypropylene, cotton, acrylic fiber one or more.
  • the short fibers are slender, the number is large, and they are light and thin, and the multi-core core-spun yarn and its textile fabric are soft and have a good hand feeling.
  • the staple fiber can be made of the same material, or different kinds of materials can be used in combination. When different kinds of materials are used, the comprehensive performance of the textile can be improved.
  • the above-mentioned materials can all be multi-core core-spun yarns. After the core yarn has the anti-cutting ability and buffer protection ability, its performance is further enhanced.
  • Polyethylene staple fiber can improve the strength, cut resistance and abrasion resistance of textiles.
  • Aramid staple fiber can increase strength, cut resistance and flame retardancy.
  • Polyester and nylon can improve strength and comfort.
  • the textile made of viscose staple fiber has the advantages of being smooth and cool, breathable, antistatic, anti-ultraviolet, colorful, and good dye fastness. The use of Tencel helps to make textiles smooth to the touch.
  • the textile made of modal has good moisture absorption and perspiration permeability.
  • the textile made of polypropylene staple fiber is not only cut-proof, but also has the advantages of obvious moisture absorption and soft hand feeling.
  • the present invention can be further configured as follows: the length of the staple fiber is 20mm-75mm, and the thickness of the staple fiber is 0.8D-3.5D.
  • the softness of the staple fiber is higher, and the staple fibers are entangled with each other, and the wrapping effect is also good.
  • the present invention can be further configured as: the buffer core yarn is at least one of polyester filament, polyethylene filament, and aramid 1414 filament.
  • polyester filament, polyethylene filament and aramid 1414 filament all have good strength, wear resistance and elasticity.
  • the second objective of the present invention is to provide a manufacturing process of a multi-core core-spun yarn structure that increases the stability of the core-spun yarn.
  • the technical solution is as follows: It includes the following steps:
  • Hard filaments can be selected from metal filaments, glass fiber filaments, and basalt filaments; for the buffer core yarn, select fibers with a breaking elongation of less than 50% and a shrinkage elasticity of 10% to 30%.
  • Step 2 Double-twisting: The hard filament and the buffer core yarn are wound in the Z-direction or S-direction with a double-twisting machine or a covering machine to obtain the core yarn;
  • Step 3 Wrapping: The covered yarn and the core yarn are made into a multi-core core-spun yarn through a core-spun process.
  • a method for manufacturing multi-core core-spun yarn is provided.
  • the focus of this solution is on the selection of materials and the selection of raw materials is more special.
  • the other core yarn selected in this solution must not only meet the requirements of elongation at break, but also meet the requirements of shrinkage elasticity, in order to cushion and protect the hard filament core yarn.
  • the present invention can be further configured as follows:
  • the method for obtaining the calculated value of the retraction elasticity is as follows: the buffer core yarn to be selected is taken as a sample, and the length of each sample is equal. Specify any one in the range of 100-500mm as the rated length, and this length is taken as the original length L0; stretch the sample with a stretching device, each sample stretches the same distance, the total length of the stretched sample is Li; loosen For the stretching of the sample, measure the overall length of the sample in a stable state without any deformation, and this length is Lii; finally, the retraction elasticity is calculated by three values, and the buffer core yarn is selected.
  • the third objective of the present invention is to provide a manufacturing process of a multi-core core-spun yarn structure that increases the stability of the core-spun yarn.
  • the technical solution is as follows: It includes the following steps:
  • Hard filaments can be metal filaments or mineral fiber filaments; for the buffer core yarn, select fibers with breaking elongation less than 50% and retracting elasticity less than 30%.
  • Step 2 Double-twisting: The hard filament and the buffer core yarn are arranged in parallel on a doubling machine to obtain the core yarn;
  • Step 3 Wrapping: The covered yarn and the core yarn are made into a multi-core core-spun yarn through a core-spun process.
  • the present invention can be further configured as follows:
  • the method for obtaining the calculated value of the retraction elasticity is as follows: the buffer core yarn to be selected is taken as a sample, and the length of each sample is equal. Specify any one in the range of 100-500mm as the rated length, and this length is taken as the original length L0; stretch the sample with a stretching device, each sample stretches the same distance, the total length of the stretched sample is Li; loosen For the stretching of the sample, measure the overall length of the sample in a stable state without any deformation, and this length is Lii; finally, the retraction elasticity is calculated by three values, and the buffer core yarn is selected.
  • the present invention includes at least one of the following beneficial technical effects:
  • the hard filament is buffered and protected by the buffer core yarn that meets certain requirements, which solves the problem that the hard filament does not have shrinkage performance or is easy to break after stretching, and also controls the occurrence of core yarn exposure;
  • FIG. 1 is a schematic diagram of the structure of Embodiment 1.
  • FIG. 1 is a schematic diagram of the structure of Embodiment 1.
  • Fig. 2 is a flowchart of the first embodiment.
  • FIG. 3 is a schematic diagram of the structure of Embodiment 2.
  • FIG. 3 is a schematic diagram of the structure of Embodiment 2.
  • Figure 1 Covered yarn; 2. Hard filament; 3. Buffer core yarn.
  • a multi-core core-spun yarn structure for increasing core-spun stability includes a core yarn and a cover yarn 1.
  • the core yarn has at least two core yarns, and the cover yarn 1 is wrapped outside the core yarn.
  • the covering yarn 1 is preferably a staple fiber.
  • staple fibers are gathered on the surface of the core yarn to form a multi-core core-spun yarn.
  • the staple fibers include polyethylene staple fiber, aramid staple fiber, polyester, nylon, viscose, Tencel, modal, and polypropylene. One or more of, cotton and acrylic.
  • the length of the staple fiber is controlled to be 20mm-75mm, and the thickness of the staple fiber is controlled to be 0.8D-3.5D.
  • At least one of the core yarns uses hard filament 2, and at least one of the core yarns uses a buffer core yarn 3 with a breaking elongation of less than 50% and a shrinkage elasticity of 10% to 30%.
  • the hard filament 2 and the buffer The core yarns 3 are entangled with each other.
  • the hard filament 2 may be one of metal filaments, glass fiber filaments, and basalt filaments.
  • the hard filaments 2 are preferably hard filaments that have undergone drawing, vibration, and winding treatments. Such hard filaments 2 are pretreated, and the amount of deformation of the woven fabric is small in the later stage.
  • RLII expresses the shrinkage of the buffer core yarn 3 after stretching in percentage
  • Li refers to the overall length of the buffer core yarn 3 after stretching, in mm;
  • Lii refers to the overall length of the stretched buffer core yarn 3 when it is loosened and restored to a fixed state, in mm.
  • a manufacturing process of a multi-core core-spun yarn structure with increased core-spun stability includes the following steps:
  • Hard filament 2 can choose one of metal wire, glass fiber filament, and basalt filament; buffer core yarn 3 should have a breaking elongation of less than 50% and a shrinkage elasticity of 10% to 30%.
  • the method for obtaining the calculated value of the shrinkage elasticity is as follows: Take a section of the buffer core yarn to be selected as a sample, and the length of each sample is equal, and any one in the range of 100-500mm is designated as the rated length, and this length is used as the original length L0; Use a stretching device to stretch the sample, each sample stretches the same distance, the total length of the stretched sample is Li; loosen the stretch of the sample, and measure the overall length of the sample in a stable state without any deformation , The length is Lii; finally, the retraction elasticity is calculated through three values, and the buffer core yarn is selected.
  • Step 2 A step of pretreatment of the core yarn material, the pretreatment method is: the hard filament 2 is drawn, vibrated, and wound.
  • the drawing process refers to the drawing process of the hard filament 2 through the tension roller at least once with the conveying roller.
  • Vibration processing means that during the pulling and conveying process of the hard filament 2, the two ends of a section of the hard filament 2 are fixed, and the hard filament 2 is oscillated up and down manually or with a device with a swing arm. Treatment that generates vibration.
  • swinging the hard filament is equal to shaking up and down, and the hard filament undergoes some deformation, thereby generating deformation in advance and reducing the deformation of the glove product made in the later stage.
  • the winding process refers to a process in which the hard filament 2 is rewinded at least once before being three-folded with the buffer core yarn, so as to improve the deformation adaptability of the hard filament 2.
  • the hard filament has undergone some deformation, which can reduce the problem of excessive deformation caused by excessive stretching in the later use, thereby solving the problem of exposed core yarn.
  • Step 3 Two-for-one twisting: The hard filament 2 and the buffer core yarn 3 are twisted with each other in the Z-direction or S-direction using a two-for-one twister to obtain the core yarn.
  • Step 4 Wrapping: The covered yarn and core yarn are made into a multi-core core-spun yarn through a core-spun process. Among them, ring spinning, vortex spinning or friction spinning can be used to obtain staple fiber covered yarn.
  • Embodiment 1 lies in that: as shown in FIG. 3, the hard filament 2 and the buffer core yarn 3 are arranged in parallel.
  • the hard filament 2 and the buffer core yarn 3 are arranged in parallel by using a doubling machine to obtain the core yarn.
  • Parallelly arranged core yarn when the yarn is stretched in the longitudinal direction, most of the stretching force is absorbed by the buffer core yarn as a buffer yarn, and the other hard filament receives less stretching force, so it will not break or break. Doesn't lengthen a lot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

一种增加包芯稳定性的多芯包芯纱结构及其制作工艺,该多芯包芯纱包括芯纱和包纱(1),芯纱至少具有两根,包纱(1)包裹在芯纱外部,芯纱包括至少一根采用硬质长丝(2)和至少一根采用断裂伸长率小于50%且回缩弹性小于30%的缓冲芯纱(3),硬质长丝(2)与缓冲芯纱(3)相互缠绕或平行排列。本多芯包芯纱结构及其制作工艺通过采用符合一定要求的缓冲芯纱对硬质长丝进行缓冲保护,解决了硬质长丝不具有回缩性能或拉伸后易断裂的问题,也控制了芯纱裸露问题的发生几率。

Description

一种增加包芯稳定性的多芯包芯纱结构及其制作工艺 技术领域
本发明涉及多芯包芯纱技术领域,尤其是涉及一种增加包芯稳定性的多芯包芯纱结构及其制作工艺。
背景技术
包芯纱是一种非常重要的复合纱线,具有两个组分,一个为芯纱,一个为外包的短纤维,两者经过包芯工艺制成具有明显芯纱结构的纱线,从而发挥芯纱和外包纤维各自的特点,使成纱兼有二者相结合的纱线性能。
现有技术中常采用单根或多根玻璃长丝/金属丝/玄武岩长丝等硬质长丝作为芯纱,例如现有授权公告号为CN206127534U的实用新型公开了一种多芯包芯纱及其倍捻纱线、包芯纱和其织造而成的手套和面料。此为本申请人早前申请的一个专利,该申请采用的技术手段是,多芯包芯纱包括核心层和外包层,核心层包括两根或以上的芯纱,芯纱为经ISO2062方法测定断裂伸长小于50%的硬质芯纱,芯纱采用玻璃长丝、金属丝或者玄武岩长丝中的一种或几种。
该技术方案将传统的一根芯纱的包芯结构变成多根细芯纱的包芯结构,其中芯纱采用玻璃长丝、金属丝或者玄武岩长丝中的一种或几种。这些芯纱长丝总体分为两类,金属类长丝和矿物类长丝。金属长丝例如钢丝,拉伸后一般便再没有回缩的弹性。矿物类长丝例如玄武岩长丝,由于其比较脆,拉伸后容易断裂。这些芯纱虽然具有伸长性能,但是伸长后的回缩性仍然不太好。手套护袖等防护用品经过反复穿脱,芯纱受到反复曲挠牵伸,芯纱的实际情况是基本不能再回缩到原始的状态。基于此,由上述原因产生的芯纱外露问题也亟需解决。
发明内容
针对现有技术存在的不足,本发明的目的之一是提供一种增加包芯稳定性的多芯包芯纱结构。
本发明的上述发明的目的一是通过以下技术方案得以实现的:一种增加包芯稳定性的多芯包芯纱结构,包括芯纱和包纱,所述芯纱至少具有两根,所述包纱包裹在芯纱外部,所述芯纱至少一根采用硬质长丝,至少一根采用断裂伸长率小于50%且回缩弹性在10%~30%的缓冲芯纱,所述硬质长丝与缓冲芯纱相互缠绕或平行排列。
通过采用上述技术方案,芯纱之一采用具有伸长能力也具有回缩能力的缓冲芯纱与硬质长丝进行缠绕,缓冲芯纱可以包裹住硬质长丝,代替其提供形变能力,为该类型的多芯包芯纱编织成的手套提供延展性能。如硬质长丝为金属丝,其拉伸后不具有回缩性能,伸长后多出的部分可以与缓冲芯纱缠绕住,这样单独一个螺旋圈上拱起的部分就非常少,不易出现裸露金属长丝拱起裸露的问题。如果硬质长丝为玄武岩长丝,恶劣情况下有断裂情况出现时,芯纱仍然相对比较稳定,缓冲芯纱因将其缠住进行了保护,避免断裂的硬质长丝直接长段裸露在外的情况发生。这样,缓冲芯纱构成了硬质长丝发生拱起或断裂情况时的缓冲保护件,与硬质长丝共同构成一种具有缓冲功能的芯纱。平行排列的芯纱,在纵向拉伸纱线时,大部分拉伸力被作为缓冲纱线的缓冲芯纱承受,另一个硬质长丝受到的拉伸力较小,因此并不会断裂也不会拉长很多。
伸长断裂率大于50%的缓冲芯纱,可形变范围过大,一般单根线体较粗。回缩弹性小于10%的缓冲芯纱,回缩性能较差,不能满足手套的延展性使用要求。回缩弹性大于30%的缓冲芯纱,回缩性能过强,容易引起硬质长丝被挤压拱起的问题。
本发明在一较佳示例中可以进一步配置为:所述回缩弹性根据公式
Figure PCTCN2021093760-appb-000001
Figure PCTCN2021093760-appb-000002
获得,式中,ΔL=Li-Lii ΔL=Li-Lii;RLII是以百分率表示缓冲芯纱拉伸后的回缩情况;Li是指拉伸后缓冲芯纱的总体长度,单位mm;Lii是指被拉伸的缓冲芯纱松开后恢复到固定状态时的总体长度,单位mm。
通过采用上述技术方案,对缓冲芯纱的回缩弹性计算进行了限定,并不是所有的纤维都适合用来做硬质长丝的缓冲保护件。
本发明在一较佳示例中可以进一步配置为:所述包纱为短纤,若干根所述短纤在所述芯纱表层聚集形成多芯包芯纱,所述短纤包括聚乙烯短纤、芳纶短纤、涤纶、锦纶、黏胶、天丝、莫代尔、丙纶、棉、腈纶中的一种或几种。
通过采用上述技术方案,采用若干短纤,短纤纤细,根数多,轻薄,制造成的多芯包芯纱及其纺织品柔软,手感好。其中短纤可以采用同一种材料,也可以采用不同种的材料进行组合,当使用不同种时可以提高纺织品的综合性能。
而上述材料均可以为多芯包芯纱在芯纱具有防切割能力和缓冲保护能力后,进一步为其增强性能。聚乙烯短纤可以提高纺织品的强度、防切割和耐磨性。芳纶短纤可以增加强度、防切割和阻燃性能。涤纶、锦纶可以提高强度和舒适性。采用黏胶短纤制成的纺织品具有光滑凉爽、透气、抗静电、防紫外线,色彩绚丽,染色牢度较好的优点。采 用天丝帮助制成的纺织品触感光滑。采用莫代尔制成的纺织品吸湿排汗透气性好。采用丙纶短纤帮助制成的纺织品不光防切割,还具有吸湿效果明显,且手感柔软的优点。
本发明在一较佳示例中可以进一步配置为:所述短纤的长度为20mm-75mm,所述短纤粗细0.8D-3.5D。
通过采用上述技术方案,使得短纤的柔软度较高,并且短纤之间相互牵绊,包裹效果也好。
本发明在一较佳示例中可以进一步配置为:所述缓冲芯纱为涤纶长丝、聚乙烯长丝、芳纶1414长丝中的至少一种。
通过采用上述技术方案,涤纶长丝、聚乙烯长丝和芳纶1414长丝均具有良好的强度、耐磨性和弹性。
本发明的目的之二是提供一种增加包芯稳定性的多芯包芯纱结构的制作工艺,其技术方案如下:包括如下步骤:
步骤一、选材:硬质长丝可以选择金属丝、玻璃纤维长丝、玄武岩长丝的一种;缓冲芯纱选择断裂伸长率小于50%且回缩弹性在10%~30%的纤维,回缩弹性的数值可根据
Figure PCTCN2021093760-appb-000003
计算获得,式中,ΔL=Li-Lii,ΔL=Li-Lii;
步骤二、倍捻:将硬质长丝和缓冲芯纱采用倍捻机或包覆机Z向或S向相互缠绕,获得芯纱;
步骤三、包裹:将包纱与芯纱通过包芯工艺制成多芯包芯纱。
通过采用上述技术方案,提供了一种多芯包芯纱的制作方法,相对于传统环境,本方案的重点在选材,对原材料的选择更为特别。本方案中选择的另一根芯纱除了要满足断裂伸长率的要求,还要满足回缩弹性的要求,才能对硬质长丝芯纱起到缓冲保护的作用。
本发明在一较佳示例中可以进一步配置为:所述步骤一中,回缩弹性的计算数值获得方法如下:待选择的缓冲芯纱,取一段为试样,每个样本的长度相等,在100-500mm范畴中任指定一个作为额定长度,该长度作为原始长度L0;使用拉伸器械对样本进行拉伸,每个样本拉伸的距离相同,拉伸后的样品总长度为Li;松开对样品的拉伸,测量样品不在有形变,在稳定状态时的总体长度,该长度为Lii;最后通过三个数值计算出回缩弹性,选择出缓冲芯纱。
通过采用上述技术方案,可获得准确的回缩弹性的数值,从而获得优选的缓冲芯纱。
本发明的目的之三是提供一种增加包芯稳定性的多芯包芯纱结构的制作工艺,其技术方案如下:包括如下步骤:
步骤一、选材:硬质长丝可以选择金属丝、矿物纤维长丝的一种;缓冲芯纱选择断裂伸长率小于50%且回缩弹性小于30%的纤维,回缩弹性的数值可根据RLII=ΔL/Li×100计算获得,式中,ΔL=Li-Lii;
步骤二、倍捻:将硬质长丝和缓冲芯纱采用并线机平行排列获得芯纱;
步骤三、包裹:将包纱与芯纱通过包芯工艺制成多芯包芯纱。
通过采用上述技术方案,提供了另一种多芯包芯纱的制作方法,与上一种方法的主要区别在于两根芯纱的排布方式不同。平行排列的芯纱,在纵向拉伸纱线时,大部分拉伸力被作为缓冲纱线的缓冲芯纱承受,另一个硬质长丝受到的拉伸力较小,因此并不会断裂也不会拉长很多。
本发明在一较佳示例中可以进一步配置为:所述步骤一中,回缩弹性的计算数值获得方法如下:待选择的缓冲芯纱,取一段为试样,每个样本的长度相等,在100-500mm范畴中任指定一个作为额定长度,该长度作为原始长度L0;使用拉伸器械对样本进行拉伸,每个样本拉伸的距离相同,拉伸后的样品总长度为Li;松开对样品的拉伸,测量样品不在有形变,在稳定状态时的总体长度,该长度为Lii;最后通过三个数值计算出回缩弹性,选择出缓冲芯纱。
通过采用上述技术方案,可获得准确的回缩弹性的数值,从而获得优选的缓冲芯纱。
综上所述,本发明包括以下至少一种有益技术效果:
1.通过符合一定要求的缓冲芯纱对硬质长丝进行缓冲保护,解决了硬质长丝不具有回缩性能或拉伸后易断裂的问题,也控制了芯纱裸露问题的发生;
2.通过合理的公式为缓冲芯纱的选择提供依据,从而更准确地挑选出适合的缓冲芯纱。
附图说明
图1是实施例1的结构示意图。
图2是实施例1的流程框图。
图3是实施例2的结构示意图。
图1,1、包纱;2、硬质长丝;3、缓冲芯纱。
具体实施方式
以下结合附图对本发明作进一步详细说明。
实施例1:
如图1所示,一种增加包芯稳定性的多芯包芯纱结构,包括芯纱和包纱1,芯纱至少具有两根,包纱1包裹在芯纱外部。
包纱1优选为短纤,若干根短纤在芯纱表层聚集形成多芯包芯纱,短纤包括聚乙烯短纤、芳纶短纤、涤纶、锦纶、黏胶、天丝、莫代尔、丙纶、棉、腈纶中的一种或几种。短纤的长度控制为20mm-75mm,短纤粗细控制为0.8D-3.5D。
多根的芯纱中至少一根采用硬质长丝2,至少一根采用断裂伸长率小于50%且回缩弹性在10%~30%的缓冲芯纱3,硬质长丝2与缓冲芯纱3相互缠绕。
其中,硬质长丝2可以是金属丝、玻璃纤维长丝、玄武岩长丝的一种。硬质长丝2优选经过牵拉、振动、卷绕处理过的硬质长丝,这样的硬质长丝2经过预处理,后期制成编织品的变形量少。
其中,回缩弹性根据公式RLII=ΔL/Li×100获得;
式中,ΔL=Li-Lii;
RLII是以百分率表示缓冲芯纱3拉伸后的回缩情况;
Li是指拉伸后缓冲芯纱3的总体长度,单位mm;
Lii是指被拉伸的缓冲芯纱3松开后恢复到固定状态时的总体长度,单位mm。
通过上面的公式可获得准确的回缩弹性的数值,从而获得优选的合适的缓冲芯纱3。
如图2所示,一种增加包芯稳定性的多芯包芯纱结构的制作工艺,包括如下步骤:
步骤一、选材:硬质长丝2可以选择金属丝、玻璃纤维长丝、玄武岩长丝的一种;缓冲芯纱3选择断裂伸长率小于50%且回缩弹性在10%~30%的纤维,回缩弹性的数值可根据RLII=ΔL/Li×100计算获得,式中,ΔL=Li-Lii。
回缩弹性的计算数值获得方法如下:待选择的缓冲芯纱,取一段为试样,每个样本的长度相等,在100-500mm范畴中任指定一个作为额定长度,该长度作为原始长度L0;使用拉伸器械对样本进行拉伸,每个样本拉伸的距离相同,拉伸后的样品总长度为Li;松开对样品的拉伸,测量样品不在有形变,在稳定状态时的总体长度,该长度为Lii;最后通过三个数值计算出回缩弹性,选择出缓冲芯纱。
步骤二:对芯纱材料预处理的步骤,预处理的方法为:对硬质长丝2进行牵拉、振动、和卷绕处理。牵拉处理是指对用传送辊对硬质长丝2至少进行一次通过张力辊的拉 出牵引处理。振动处理是指在硬质长丝2牵拉输送过程中,将其中一段硬质长丝2的两端固定住,通过人工或具有摆臂的设备对硬质长丝2进行上下摆动,使其产生振动的处理。摆动时,硬质长丝等于进行了上下的甩动,硬质长丝发生一些形变,从而提前产生形变量,减小后期制成的手套制品的形变量。卷绕处理是指硬质长丝2在与缓冲芯纱3倍捻之前至少有一次再收卷的过程,以提高硬质长丝2的形变适应能力。硬质长丝已经发生过一些形变,可以减少在后期使用中因拉伸过长而造成形变过多的问题,从而解决芯纱裸露的问题。
步骤三、倍捻:将硬质长丝2和缓冲芯纱3采用倍捻机进行Z向或S向相互缠绕,获得芯纱。
步骤四、包裹:将包纱与芯纱通过包芯工艺制成多芯包芯纱。其中,可以采用环锭纺、涡流纺或摩擦纺获得短纤包纱。
实施例2:
与实施例1不同之处在于:如图3所示,硬质长丝2与缓冲芯纱3平行排列。将硬质长丝2和缓冲芯纱3采用并线机平行排列即可获得芯纱。平行排列的芯纱,在纵向拉伸纱线时,大部分拉伸力被作为缓冲纱线的缓冲芯纱承受,另一个硬质长丝受到的拉伸力较小,因此并不会断裂也不会拉长很多。
本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。

Claims (9)

  1. 一种增加包芯稳定性的多芯包芯纱结构,包括芯纱和包纱(1),所述芯纱至少具有两根,所述包纱(1)包裹在芯纱外部,其特征在于:所述芯纱至少一根采用硬质长丝(2),至少一根采用断裂伸长率小于50%且回缩弹性小于30%的缓冲芯纱(3),所述硬质长丝(2)与缓冲芯纱(3)相互缠绕或平行排列。
  2. 根据权利要求1所述的一种增加包芯稳定性的多芯包芯纱结构,其特征在于:所述回缩弹性根据公式
    Figure PCTCN2021093760-appb-100001
    获得,式中,ΔL=Li-Lii;RLII是以百分率表示缓冲芯纱拉(3)伸后的回缩情况;Li是指拉伸后缓冲芯纱的总体长度,单位mm;Lii是指被拉伸的缓冲芯纱(3)松开后恢复到固定状态时的总体长度,单位mm。
  3. 根据权利要求1所述的一种增加包芯稳定性的多芯包芯纱结构,其特征在于:所述包纱(1)为短纤,若干根所述短纤在所述芯纱表层聚集形成多芯包芯纱,所述短纤包括聚乙烯短纤、芳纶短纤、涤纶、锦纶、黏胶、天丝、莫代尔、丙纶、棉、腈纶中的一种或几种。
  4. 根据权利要求1所述的一种增加包芯稳定性的多芯包芯纱结构,其特征在于:所述短纤的长度为20mm-75mm,所述短纤粗细0.5D-3D。
  5. 根据权利要求1所述的一种增加包芯稳定性的多芯包芯纱结构,其特征在于:所述缓冲芯纱(3)含有涤纶、聚乙烯、芳纶、尼龙、丙纶、矿物纤维中的至少一种。
  6. 一种增加包芯稳定性的多芯包芯纱结构的制作工艺,其特征在于,包括如下步骤:
    步骤一、选材:硬质长丝(2)可以选择金属丝、矿物纤维长丝的一种;缓冲芯纱(3)选择断裂伸长率小于50%且回缩弹性小于30%的纤维,回缩弹性的数值可根据RLII=ΔL/Li×100计算获得,式中,ΔL=Li-Lii;
    步骤二、倍捻:将硬质长丝(2)和缓冲芯纱(3)采用倍捻机或包覆机Z向或S向相互缠绕,获得芯纱;
    步骤三、包裹:将包纱与芯纱通过包芯工艺制成多芯包芯纱。
  7. 根据权利要求6所述的多芯包芯纱的制作工艺,其特征在于:所述步骤一中,回缩弹性的计算数值获得方法如下:待选择的缓冲芯纱(3),取一段为试样,每个样本的长度相等,在100-500mm范畴中任指定一个作为额定长度,该长度作为原始长度L0;使用拉伸器械对样本进行拉伸,每个样本拉伸的距离相同,拉伸后的样品总长度为Li; 松开对样品的拉伸,测量样品不在有形变,在稳定状态时的总体长度,该长度为Lii;最后通过三个数值计算出回缩弹性,选择出缓冲芯纱(3)。
  8. 一种增加包芯稳定性的多芯包芯纱结构的制作工艺,其特征在于,包括如下步骤:
    步骤二、倍捻:将硬质长丝(2)和缓冲芯纱(3)采用并线机平行排列获得芯纱;
  9. 根据权利要求8所述的多芯包芯纱的制作工艺,其特征在于:所述步骤一中,回缩弹性的计算数值获得方法如下:待选择的缓冲芯纱(3),取一段为试样,每个样本的长度相等,在100-500mm范畴中任指定一个作为额定长度,该长度作为原始长度L0;使用拉伸器械对样本进行拉伸,每个样本拉伸的距离相同,拉伸后的样品总长度为Li;松开对样品的拉伸,测量样品不在有形变,在稳定状态时的总体长度,该长度为Lii;最后通过三个数值计算出回缩弹性,选择出缓冲芯纱(3)。
PCT/CN2021/093760 2020-05-26 2021-05-14 一种增加包芯稳定性的多芯包芯纱结构及其制作工艺 WO2021238677A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021537702A JP7362149B2 (ja) 2020-05-26 2021-05-14 芯糸被覆の安定性を向上させる多芯型コアヤーン構造及びその作製プロセス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010457029.8 2020-05-26
CN202010457029.8A CN111621887B (zh) 2020-05-26 2020-05-26 一种增加包芯稳定性的多芯包芯纱结构及其制作工艺

Publications (1)

Publication Number Publication Date
WO2021238677A1 true WO2021238677A1 (zh) 2021-12-02

Family

ID=72258194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093760 WO2021238677A1 (zh) 2020-05-26 2021-05-14 一种增加包芯稳定性的多芯包芯纱结构及其制作工艺

Country Status (3)

Country Link
JP (1) JP7362149B2 (zh)
CN (1) CN111621887B (zh)
WO (1) WO2021238677A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621887B (zh) * 2020-05-26 2024-06-14 常州科旭纺织有限公司 一种增加包芯稳定性的多芯包芯纱结构及其制作工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886539A (zh) * 2003-10-28 2006-12-27 高弹性材料公司 复合纱线及由其制造的产品
US7175908B2 (en) * 2003-06-30 2007-02-13 Connolly Jr Thomas J High temperature search line
CN203834094U (zh) * 2014-01-17 2014-09-17 绍兴超特合纤有限公司 高性能复合纱
CN206127533U (zh) * 2016-06-20 2017-04-26 常州科旭纺织有限公司 双包包芯纱
CN109667012A (zh) * 2017-10-16 2019-04-23 南良实业股份有限公司 高强力耐切割复合纱线及其制法
WO2019104370A1 (en) * 2017-11-29 2019-06-06 Ansell Limited Highly cut-resistant composite yarns
CN110892103A (zh) * 2017-07-10 2020-03-17 林捻丝株式会社 包芯纱、合股线及使用了其的纤维构造体
CN111088585A (zh) * 2020-01-06 2020-05-01 常州科旭纺织有限公司 短纤包覆手套及其制造工艺
CN111621887A (zh) * 2020-05-26 2020-09-04 常州科旭纺织有限公司 一种增加包芯稳定性的多芯包芯纱结构及其制作工艺
CN212741646U (zh) * 2020-05-26 2021-03-19 常州科旭纺织有限公司 一种增加包芯稳定性的多芯包芯纱结构

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1082223A (en) * 1964-02-06 1967-09-06 Kendall & Co Elastic yarn and stocking incorporating it
GB1158601A (en) * 1964-12-24 1969-07-16 Ici Ltd Core Yarns and processes and apparatus for making them
CA1133654A (en) * 1976-10-05 1982-10-19 Robert M. Byrnes, Sr. Protective gloves and the like and a yarn with flexible core wrapped with aramid fiber
US4470251A (en) * 1978-03-30 1984-09-11 Bettcher Industries, Inc. Knittable yarn and safety apparel made therewith
JPS61266627A (ja) * 1985-05-21 1986-11-26 旭化成株式会社 複合糸
JPS62153326U (zh) * 1986-03-24 1987-09-29
JPH02160943A (ja) * 1988-12-14 1990-06-20 Shikishima Boseki Kk カバーリングヤーンミシン糸
US7121077B2 (en) 2000-10-31 2006-10-17 World Fibers, Inc. Antimicrobial cut-resistant composite yarn and garments knitted or woven therefrom
JP3963007B2 (ja) * 2001-12-21 2007-08-22 東レ・デュポン株式会社 被覆糸およびそれを用いてなる編織物
US7155891B2 (en) * 2003-09-15 2007-01-02 E. I. Du Pont De Nemours And Company Composite twist core-spun yarn and method and device for its production
EP1873285B1 (en) * 2004-11-10 2015-10-21 Invista Technologies S.à.r.l. Method to make elastic shirting fabric comprising spandex and hard yarn
EP1780318B1 (en) 2005-08-01 2012-11-07 SHOWA GLOVE Co. Composite fiber and cut-resistant gloves made by using the same
CN201180180Y (zh) * 2008-02-04 2009-01-14 苏州市职业大学 双组分芯丝包覆机
EP2393968B1 (en) * 2009-02-09 2018-06-13 DSM IP Assets B.V. Cut resistant fabric
CN104328559A (zh) * 2014-09-29 2015-02-04 江阴职业技术学院 金银丝棉包芯纱线及其制造方法
CN108660569A (zh) * 2018-05-24 2018-10-16 河北新大东纺织有限公司 一种弹力纱及其生产方法和面料
CN109853099A (zh) * 2019-03-28 2019-06-07 南通神马线业有限公司 一种具有超强拉力降落伞用的锦纶线
CN110093701B (zh) * 2019-05-22 2022-01-07 绍兴程盛纺织有限公司 松弛弹性包芯纱的生产方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175908B2 (en) * 2003-06-30 2007-02-13 Connolly Jr Thomas J High temperature search line
CN1886539A (zh) * 2003-10-28 2006-12-27 高弹性材料公司 复合纱线及由其制造的产品
CN203834094U (zh) * 2014-01-17 2014-09-17 绍兴超特合纤有限公司 高性能复合纱
CN206127533U (zh) * 2016-06-20 2017-04-26 常州科旭纺织有限公司 双包包芯纱
CN110892103A (zh) * 2017-07-10 2020-03-17 林捻丝株式会社 包芯纱、合股线及使用了其的纤维构造体
CN109667012A (zh) * 2017-10-16 2019-04-23 南良实业股份有限公司 高强力耐切割复合纱线及其制法
WO2019104370A1 (en) * 2017-11-29 2019-06-06 Ansell Limited Highly cut-resistant composite yarns
CN111088585A (zh) * 2020-01-06 2020-05-01 常州科旭纺织有限公司 短纤包覆手套及其制造工艺
CN111621887A (zh) * 2020-05-26 2020-09-04 常州科旭纺织有限公司 一种增加包芯稳定性的多芯包芯纱结构及其制作工艺
CN212741646U (zh) * 2020-05-26 2021-03-19 常州科旭纺织有限公司 一种增加包芯稳定性的多芯包芯纱结构

Also Published As

Publication number Publication date
JP2022537859A (ja) 2022-08-31
CN111621887A (zh) 2020-09-04
JP7362149B2 (ja) 2023-10-17
CN111621887B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
EP2867393B1 (en) Core spun elastic composite yarn and woven fabric thereof
CN103981610A (zh) 一种阻燃复合纱线及其制造方法
CN111979624B (zh) 高刚性脆性纤维材料无损包覆纱线及其纺纱方法与织物
WO2021238677A1 (zh) 一种增加包芯稳定性的多芯包芯纱结构及其制作工艺
US6532724B2 (en) Cut-resistant yarn and method of manufacture
JP2013007149A (ja) 糸わた及び糸わたを用いた織編物
JP2018066072A (ja) 耐切創性手袋
CN213925205U (zh) 一种耐切割复合纱线及防切割手套
CN111088585B (zh) 短纤包覆手套及其制造工艺
CN212741646U (zh) 一种增加包芯稳定性的多芯包芯纱结构
JPH06257027A (ja) 複合糸及びその製造法
CN111501385A (zh) 高缓冲拒水动力挽索及其制作方法
JP2008174848A (ja) コアーヤーン縫糸およびその製造方法
Gong et al. Technical yarns
CN104544661B (zh) 一种激光防护面料的制作方法
JP6075148B2 (ja) 紡績糸およびそれを用いてなる布帛
CN216274552U (zh) 一种复合型耐磨纱线
JP3634052B2 (ja) 複合糸及びその製造方法
CN212865127U (zh) 一种多芯包芯纱及带有其的混合纱线、手套和面料
JP3511611B2 (ja) 耐摩耗性に優れる織編物およびその製造方法
CN210765669U (zh) 一种高韧性纱线
JPH08296138A (ja) 高強力複合糸およびその製造方法
CN212505584U (zh) 高缓冲拒水动力挽索
JP3289800B2 (ja) 防シワ性に優れた麻複合糸及び布帛
JP7319483B1 (ja) 多層構造紡績糸、その製造方法、生地及び衣類

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021537702

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813711

Country of ref document: EP

Kind code of ref document: A1