WO2021238297A1 - 一种植物纤维塑化材料及其制备方法 - Google Patents

一种植物纤维塑化材料及其制备方法 Download PDF

Info

Publication number
WO2021238297A1
WO2021238297A1 PCT/CN2021/075157 CN2021075157W WO2021238297A1 WO 2021238297 A1 WO2021238297 A1 WO 2021238297A1 CN 2021075157 W CN2021075157 W CN 2021075157W WO 2021238297 A1 WO2021238297 A1 WO 2021238297A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
plant fiber
lubricant
plasticized material
mixture
Prior art date
Application number
PCT/CN2021/075157
Other languages
English (en)
French (fr)
Inventor
李小文
Original Assignee
李小文
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李小文 filed Critical 李小文
Publication of WO2021238297A1 publication Critical patent/WO2021238297A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • This application relates to the technical field of degradable materials, in particular to a plant fiber plasticized material and a preparation method thereof.
  • renewable biomass resources The development and utilization of renewable biomass resources is considered to be one of the effective ways to alleviate the resource crisis and solve environmental problems.
  • it will be transformed into new high-value products through technical means such as modification and modification.
  • plant resources to produce new energy and chemicals is highly valued, its high technical difficulty and transformation costs have slowed its development.
  • renewable natural plant resources such as wood, bamboo, and straw to develop new "green" bio-based products has attracted more and more attention.
  • Natural plant fiber is the most abundant renewable resource in nature. It has the characteristics of biodegradability and environmental friendliness. Its main components cellulose, hemicellulose and lignin macromolecular structure contain functional groups that can participate in chemical reactions. Prepare functional materials for a variety of purposes.
  • Thermoplasticization is a new way of using natural fibers. The basic principle is to introduce soft side chains or hydrophobic structures into the molecular backbone of natural fiber chemical components to achieve the depolymerization, softening and depolymerization of the crystal structure of the natural fiber aggregation state. The purpose of lowering the melting temperature and reducing or eliminating the hygroscopicity, so as to realize the thermoplastic processing of fiber materials, which can replace some petroleum products, and process them into various composite materials with excellent performance and natural degradation through the processing method of hot pressing.
  • the purpose of the embodiments of the present application is to solve the technical problems of low thermoplasticity of existing plant fibers, low mechanical properties of materials, and easy carbonization during processing.
  • the embodiments of the present application provide a plant fiber plasticizing material, which adopts the following technical solutions:
  • the plant fiber plasticizing material includes: in parts by mass, 50 to 150 parts of plant fiber powder, 5 to 15 parts of polyol, 1 to 20 parts of stearic acid, 1 to 20 parts of first lubricant, and second lubricant 1-20 parts, 200-600 parts PBAT and 1-3 parts coupling agent; wherein the lubrication temperature range of the first lubricant is lower than the lubrication temperature range of the second lubricant.
  • the raw material of the plant fiber plasticized material further includes: 5 to 80 parts of polylactic acid.
  • the raw material of the plant fiber plasticized material further includes: 5 to 80 parts of inorganic filler.
  • the raw material of the plant fiber plasticized material further includes: at least one of 1 to 3 parts of a third lubricant, 1 to 3 parts of antioxidants, and 1 to 3 parts of compatibilizers; Wherein, the lubrication use temperature range of the third lubricant is lower than the lubrication use temperature range of the second lubricant.
  • the first lubricant is stearate; the second lubricant is ethylene bisstearic acid amide.
  • the third lubricant is pentaerythritol stearate.
  • the embodiments of the present application also provide a method for preparing plant fiber plasticized material, which adopts the following technical solutions:
  • the preparation method of the plant fiber plasticized material, in parts by mass, includes the following steps:
  • Step a Add 50 to 150 parts of plant fiber powder, 5 to 15 parts of polyol, and 1 to 3 parts of coupling agent to the mixer respectively, and stir to obtain the first mixture;
  • Step b Add 1-20 parts of stearic acid, 1-20 parts of the first lubricant, 1-20 parts of the second lubricant, and 200-600 parts of PBAT to the first mixture and stir to obtain a second mixture. material;
  • Step c Put the second mixture in a granulator to prepare a plant fiber plasticized material.
  • step b it further includes adding 5 to 80 parts of polylactic acid to a mixer and stirring to obtain the second mixture.
  • step b it further includes adding 5 to 80 parts of inorganic filler into a mixer and stirring to obtain the second mixture.
  • step a it further comprises adding at least one of 1 to 3 parts of a third lubricant, 1 to 3 parts of antioxidants and 1 to 3 parts of compatibilizers Adding to a mixer for stirring to obtain the first mixture.
  • the plant fiber plasticized material and the preparation method thereof provided by the embodiments of the present invention mainly have the following beneficial effects:
  • thermoplasticity of the plant fiber reduces the hygroscopicity of the plant fiber, thereby reducing the deformation effect of the plant fiber after processing and forming, and improving the thermoplasticity of the plant fiber;
  • stearic acid can undergo an esterification reaction with the hydroxyl group in the plant fiber weakened by polyols, thereby changing
  • the physical and chemical properties of plant fiber are modified plant fiber material, the thermoplasticity is improved, the surface polarity is reduced, and the interface compatibility with other thermoplastic polymers can be improved;
  • PBAT is blended with the plant fiber material modified by polyol and stearic acid treatment and hot-pressed to form a plant fiber plasticized material, which can improve the impact resistance and ductility of the plant fiber plasticized material. And it can be completely degraded to avoid environmental pollution;
  • the first lubricant and the second lubricant can cooperate to play a lubricating effect.
  • the mixture formed by blending of the modified plant fiber material maintains good lubricity in each temperature range when the pelletizer is extruded and granulated, so as to prevent the heat generated by the friction between the pelletizer and the mixture from burning.
  • the mixture can avoid carbonization damage of the prepared plant fiber plasticized material.
  • compositions, step, method, product, or device containing the listed elements is not necessarily limited to those elements, but may include other elements not explicitly listed or inherent in such a composition, step, method, product, or device Elements.
  • Parts by mass refers to the basic measurement unit that represents the mass ratio relationship of multiple components.
  • 1 part can represent any unit mass, such as 1g, or 2.689g. If we say that the part by mass of component A is a part and the part by mass of component B is part b, it means the ratio of the mass of component A to the mass of component B is a:b. Or, it means that the mass of component A is aK, and the mass of component B is bK (K is an arbitrary number and represents a multiple factor). It should not be misunderstood that, unlike the number of parts by mass, the sum of parts by mass of all components is not limited to 100 parts.
  • a and/or B includes (A and B) and (A or B).
  • plant fiber plasticized material can be directly processed into various plastic materials with excellent properties and can be naturally degraded by plastic processing methods, or it can be blended with other synthetic polymers and processed by hot pressing into a functional type. New product.
  • the embodiments of the present application provide a plant fiber plasticized material.
  • the raw materials of the plant fiber plasticized material include:
  • 50-150 parts of plant fiber powder for example, 50 parts, 70 parts, 90 parts, 100 parts, 120 parts, 140 parts, 150 parts, etc. may be used.
  • the polyol is 5 to 15 parts, for example, 5 parts, 8 parts, 10 parts, 12 parts, 15 parts, and the like.
  • 1-20 parts of stearic acid for example, 1 part, 5 parts, 8 parts, 10 parts, 12 parts, 15 parts, 18 parts, 20 parts, etc. can be used.
  • 1-20 parts of the first lubricant for example, 1 part, 5 parts, 8 parts, 10 parts, 12 parts, 15 parts, 18 parts, 20 parts, etc. can be used.
  • 1-20 parts of the second lubricant for example, 1 part, 5 parts, 8 parts, 10 parts, 12 parts, 15 parts, 18 parts, 20 parts, etc. can be used.
  • 200-600 parts of PBAT for example, 200 parts, 300 parts, 400 parts, 500 parts, 600 parts, etc. can be used.
  • the coupling agent is an aluminum titanium coupling agent.
  • the lubrication use temperature range of the first lubricant is lower than the lubrication use temperature range of the second lubricant, where the lubrication use temperature range refers to the temperature range where the lubricant can play a lubricating effect.
  • the raw materials of the plant fiber powder include wood, sawdust, wood flour straw, cotton stalk and nutshell fiber, etc., which are refined into powder with more than 200 mesh.
  • the powdered plant fiber is easy to process and can make the surface of the processed plastic material smooth and delicate.
  • PBAT is a thermoplastic biodegradable plastic. It is a copolymer of butylene adipate and butylene terephthalate. It can be completely degraded. The degradation products are water and carbon dioxide, which does not pollute the environment.
  • the working principle of the plant fiber plasticized material is roughly as follows: the plant fiber plasticized material first adds polyols to the plant fiber powder, and the polyols can weaken the effect of the intermolecular and intramolecular hydrogen bonds of plant fibers. On the one hand, it is beneficial to the subsequent esterification reaction of plant fiber and stearic acid.
  • the plant fiber plasticized material can be obtained by blending PBAT with the plant fiber material modified by polyol and stearic acid treatment and hot pressing.
  • the impact resistance and ductility of the plant fiber plasticized material can be improved, and it can be completely degraded to avoid environmental pollution.
  • the first lubricant and the second lubricant can cooperate to play a lubricating effect, the first lubricant is used as a low-temperature lubricant, and the second lubricant is used as a high-temperature lubricant.
  • the lubrication temperature range of the first lubricant is lower than 120°C, and the lubrication temperature range of the second lubricant is higher than 120°C, so that the mixture formed by blending PBAT and the modified plant fiber material can be used in manufacturing
  • the granulator maintains good lubricity in each temperature range during extrusion and granulation, avoiding the heat generated by the friction between the granulator and the mixture to burn the mixture, thereby avoiding the carbonization of the prepared plant fiber plasticized material damage.
  • the plant fiber plasticized material has at least the following beneficial effects: the plant fiber plasticized material has good thermoplastic properties, is not easy to deform after molding, is not easy to be carbonized when processed in a pelletizer, and has good properties. Its degradation performance can avoid environmental pollution, the processing technology is simple, and the cost is low.
  • the polyol is preferably glycerol, which has the characteristics of easy availability of raw materials, low cost, and can better weaken the effect of hydrogen bonds between plant fibers.
  • the raw material of the plant fiber plasticized material further includes: 5 to 80 parts of polylactic acid, for example, 5 parts, 10 parts, 15 parts, 20 parts, 30 parts, 40 parts, 50 parts, 60 parts Servings, 70 Servings, 80 Servings, etc.
  • polylactic acid is a new type of biodegradable material made from the starch raw materials proposed by renewable plant resources (such as corn, etc.). Starch raw materials are fermented into lactic acid, and then converted into polylactic acid through chemical synthesis. It has good biodegradability. After use, it can be completely degraded by microorganisms in nature, and finally carbon dioxide and water are generated without polluting the environment.
  • the plant fiber plasticizing material can further improve the plant fiber by adding polylactic acid to the mixture of PBAT and the plant fiber material modified by polyol and stearic acid
  • the ductility of plasticized materials can be completely degraded to avoid environmental pollution.
  • the raw material of the plant fiber plasticizing material further includes: 5 to 80 parts of inorganic fillers, for example, 5 parts, 10 parts, 15 parts, 20 parts, 30 parts, 40 parts, 50 parts, 60, 70, 80, etc.
  • inorganic fillers include talc powder, calcium carbonate powder, furnace ash, and the like.
  • the plant fiber plasticizing material is obtained by adding inorganic fillers to the mixture of PBAT and plant fiber materials modified by polyol and stearic acid treatment, or adding PBAT, polylactic acid and polylactic acid. Alcohol and stearic acid can further improve the molding processability of the plant fiber plasticized material and reduce the cost.
  • the raw material of the plant fiber plasticized material further includes:
  • 1 to 3 parts of antioxidant for example, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, etc. can be used.
  • 1 to 3 parts of the compatibilizer for example, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, etc.
  • 1 to 3 parts of the third lubricant for example, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, etc.
  • the lubrication use temperature range of the third lubricant is lower than the lubrication use temperature range of the second lubricant.
  • the first lubricant is stearate, such as zinc stearate, calcium stearate, magnesium stearate, etc.; in this embodiment, it is preferably zinc stearate;
  • the second lubricant is ethylene bisstearic acid amide;
  • the third lubricant is pentaerythritol stearate.
  • the lubricating temperature range of pentaerythritol stearate is lower than 60°C; the lubricating temperature range of zinc stearate is lower than 120°C, and the temperature range is 60-120°C.
  • the lubrication effect is best when used in time; the lubricating temperature range of ethylene bis-stearic acid amide is higher than 120°C. Therefore, the plant fiber plasticized material can be formed by blending PBAT and modified plant fiber material by adding magnesium stearate, ethylene bisstearic acid amide and pentaerythritol stearate to plant fiber powder.
  • the mixture When the mixture is extruded and granulated by the granulator, it maintains good lubricity in each temperature range to avoid the heat generated by the friction between the granulator and the mixture from burning the mixture, thereby avoiding the carbonization of the plant fiber plasticized material damage.
  • the compatibilizer is a mixture of equal parts by mass of citric acid and maleic anhydride;
  • the antioxidant is a BASF antioxidant. Understandably, antioxidants can prevent oxidation of the mixture formed by blending PBAT and modified plant fiber materials, and compatibilizers can improve the compatibility of PBAT with modified plant fiber materials, so as to further improve plants. Mechanical properties of fiber plasticized materials.
  • inventions of the present application also provide a method for preparing a plant fiber plasticized material.
  • the preparation method of the plant fiber plasticized material includes the following steps:
  • Step a Add the plant fiber powder, polyol, and coupling agent of the above formula into a mixer, respectively, and stir to obtain a first mixture;
  • Step b adding the stearic acid, the first lubricant, the second lubricant and the PBAT in the above formula amount to the first mixture and stirring to obtain the second mixture;
  • Step c Place the second mixture in a granulator to prepare a plant fiber plasticized material that can be repeatedly thermoformed.
  • step a in the step a, it further includes adding at least one of the third lubricant, antioxidant, and compatibilizer in the above-mentioned formula amount to a mixer for stirring to obtain the first mixture.
  • step b it further includes adding the polylactic acid in the above formula amount to a mixer for stirring to obtain the second mixture.
  • step b it further includes adding the inorganic filler of the above formula amount into a mixer to stir to obtain the second mixture.
  • the stirring time range of the mixer is 10-30 min, for example, it can be 10 min, 15 min, 20 min, 25 min, 30 min, etc.
  • the stirring time range of the mixer is 10-30 min, for example, it may be 10 min, 15 min, 20 min, 25 min, 30 min, etc.
  • a preparation method of plant fiber plasticized material, in parts by mass comprises the following steps:
  • Step a Add 100 parts of plant fiber powder, 5 parts of glycerol, and 2 parts of aluminum-titanium coupling agent into the mixer respectively, and stir for 10 minutes to obtain the first mixture;
  • Step b Add 2 parts of stearic acid, 2 parts of zinc stearate, 2 parts of ethylene bis-stearic acid amide, and 400 parts of PBAT to the first mixture and stir for 10 minutes to obtain a second mixture;
  • Step c Put the second mixture in a granulator to prepare a plant fiber plasticized material.
  • a preparation method of plant fiber plasticized material, in parts by mass comprises the following steps:
  • Step a Add 50 parts of plant fiber powder, 5 parts of glycerol, and 1 part of aluminum-titanium coupling agent into the mixer respectively, and stir for 10 minutes to obtain the first mixture;
  • Step b Add 1 part of stearic acid, 1 part of zinc stearate, 1 part of ethylene bisstearic acid amide, and 200 parts of PBAT to the first mixture and stir for 10 minutes to obtain a second mixture.
  • a preparation method of plant fiber plasticized material, in parts by mass comprises the following steps:
  • Step a Add 150 parts of plant fiber powder, 12 parts of glycerol, and 3 parts of aluminum-titanium coupling agent into the mixer respectively, and stir for 10 minutes to obtain the first mixture;
  • Step b Add 20 parts of stearic acid, 20 parts of zinc stearate, 20 parts of ethylene bisstearic acid amide, and 600 parts of PBAT to the first mixture and stir for 10 minutes to obtain a second mixture.
  • a preparation method of plant fiber plasticized material, in parts by mass comprises the following steps:
  • step a it further includes adding 2 parts of pentaerythritol stearate, 2 parts of BASF antioxidant, 1 part of citric acid and 1 part of maleic anhydride into a mixer and stirring to obtain the first mixture;
  • step b 2 parts of stearic acid, 2 parts of zinc stearate, 2 parts of ethylene bisstearic acid amide, 350 parts of PBAT, and 50 parts of polylactic acid are added to the mixer and stirred to obtain the second mixture material.
  • step b add 2 parts of stearic acid, 2 parts of zinc stearate, 2 parts of ethylene bisstearic acid amide, 350 parts of PBAT, 50 parts of polylactic acid, and 50 parts of inorganic fillers into the mixer for stirring.
  • the second mixture is obtained.
  • a preparation method of plant fiber plasticized material, in parts by mass comprises the following steps:
  • step b 2 parts of stearic acid, 2 parts of zinc stearate, 2 parts of ethylene bisstearic acid amide, 350 parts of PBAT, and 50 parts of inorganic filler are added to the mixer for stirring to obtain the second Mixture.
  • Step a Add 100 parts of plant fiber powder and 2 parts of aluminum-titanium coupling agent to the mixer respectively, and stir to obtain the first mixture;
  • Step b Add 2 parts of stearic acid, 2 parts of zinc stearate, 2 parts of ethylene bisstearic acid amide, and 400 parts of PBAT to the first mixture and stir to obtain a second mixture.
  • Step a Add 100 parts of plant fiber powder, 5 parts of glycerol, and 2 parts of aluminum-titanium coupling agent into the mixer respectively, and stir to obtain the first mixture;
  • Step b Adding 2 parts of zinc stearate, 2 parts of ethylene bisstearic acid amide, and 400 parts of PBAT to the first mixture, respectively, and stirring to obtain a second mixture.
  • Step a Add 100 parts of plant fiber powder, 5 parts of glycerol, and 2 parts of aluminum-titanium coupling agent into the mixer respectively, and stir to obtain the first mixture;
  • Step b Add 2 parts of stearic acid and 400 parts of PBAT to the first mixture and stir to obtain a second mixture.
  • Step a Add 100 parts of plant fiber powder, 5 parts of glycerol, and 2 parts of aluminum-titanium coupling agent into the mixer respectively, and stir to obtain the first mixture;
  • Step b Add 2 parts of stearic acid, 2 parts of zinc stearate, and 400 parts of PBAT to the first mixture and stir to obtain a second mixture.
  • Step a Add 100 parts of plant fiber powder, 5 parts of glycerol, and 2 parts of aluminum-titanium coupling agent into the mixer respectively, and stir to obtain the first mixture;
  • Step b Add 2 parts of stearic acid, 2 parts of ethylene bisstearic acid amide, and 400 parts of PBAT to the first mixture and stir to obtain a second mixture.
  • the plant fiber plasticized materials prepared in the foregoing Examples 1 to 7 and Comparative Examples 1 to 5 are put into a film blowing machine to form a long strip film.
  • the length of the film is 15cm, the width is 1.5cm, and the thickness is 4c.
  • the tensile tester is used to test the mechanical properties of the shaped film, and the test structure is shown in Table 1.
  • Example 4 since pentaerythritol stearate, BASF antioxidants, citric acid and maleic anhydride can further improve the compatibility of PBTA with the modified plant fiber material, it can further improve the plant fiber plastic
  • the impact resistance and ductility of the chemical material in Example 5, PBTA, polylactic acid and the modified plant fiber material are blended, so the ductility of the plant fiber plasticized material can be further improved; in Example 7 Among them, the mechanical properties of the plant fiber plasticized material are basically the same as those of Example 4. Therefore, the inorganic filler can replace a part of PBAT to prepare the plant fiber plasticized material, which can reduce the cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本申请属于降解材料技术领域,涉及一种植物纤维塑化材料及其制备方法,按质量份数计,该植物纤维塑化材料的原材料包括:植物纤维粉50~150份、多元醇5~15份、硬脂酸1~20份、第一润滑剂1~20份、第二润滑剂1~20份、200~600份PBAT和1~3份偶联剂;其中,第一润滑剂的润滑使用温度区间低于第二润滑剂的润滑使用温度区间。该植物纤维塑化材料及其制备方法提供的技术方案能够得到具有良好的热塑性能的植物纤维塑化材料,成型后不易变形,在造粒机中加工不易碳化,且具有良好的降解性能,能够避免污染环境,加工工艺简单,成本低。

Description

一种植物纤维塑化材料及其制备方法
本申请要求于2020年5月27日提交中国专利局、申请号为202010462785.X,发明名称为“一种植物纤维塑化材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及降解材料技术领域,尤其涉及一种植物纤维塑化材料及其制备方法。
背景技术
可再生生物质资源的开发利用被认为是缓解资源危机和解决环境问题的有效途径之一。目前,对可再生植物资源的转化利用主要有两种方式:一是直接利用它们生产能源和化学品,代替石油、天然气、煤等能源和化石基化工产品;二是在保留其天然优良特性的前提下,通过改性、修饰等技术手段将其转化为新的高价值产品。在现阶段,虽然利用植物资源生产新能源和化学品受到高度重视,但其高的技术难度与转化成本使其发展缓慢。相反,利用木材、竹材、秸秆等可再生天然植物资源开发“绿色”的生物基新产品,却越来越受到重视。
天然植物纤维是自然界中最为丰富的可再生资源,具有生物可降解性和环境友好性的特点,其主要成分纤维素、半纤维素和木素大分子结构中含有能够参与化学反应的官能团,可制备出多种用途的功能性材料。热塑化是天然纤维利用的一种新方式,其基本原理是通过在天然纤维化学组分分子主链上导入柔顺侧链或憎水结构,达到天然纤维聚集态的结晶结构解聚、软化和熔融温度降低、吸湿性减弱或消除的目的,从而实现纤维材料的热塑性加工,可代替部分石油产品,通过热压成型的加工方法加工成各种性能优良,并可自然降解的复合材料。
但是发明人发现,由于植物纤维的特性,容易使植物纤维的应力在界面不 能有效地传递,材料力学性能较低,加工成型的产品容易变形,热塑性较低,同时在加工过程中极易碳化。
发明内容
本申请实施例的目的在于解决现有植物纤维热塑性低、材料力学性能较低、加工过程容易碳化的技术问题。
为了解决上述技术问题,本申请实施例提供一种植物纤维塑化材料,采用了如下所述的技术方案:
该植物纤维塑化材料包括:按质量份数计,植物纤维粉50~150份、多元醇5~15份、硬脂酸1~20份、第一润滑剂1~20份、第二润滑剂1~20份、200~600份PBAT和1~3份偶联剂;其中,所述第一润滑剂的润滑使用温度区间低于所述第二润滑剂的润滑使用温度区间。
基于上述的植物纤维塑化材料,所述植物纤维塑化材料的原材料还包括:5~80份聚乳酸。
基于上述的植物纤维塑化材料,所述植物纤维塑化材料的原材料还包括:5~80份无机填充料。
基于上述的植物纤维塑化材料,所述植物纤维塑化材料的原材料还包括:1~3份第三润滑剂、1~3份抗氧化剂和1~3份增容剂中的至少一种;其中,所述第三润滑剂的润滑使用温度区间低于所述第二润滑剂的润滑使用温度区间。
基于上述的植物纤维塑化材料,所述第一润滑剂为硬脂酸盐;所述第二润滑剂为乙撑双硬脂酸酰胺。
基于上述的植物纤维塑化材料,所述第三润滑剂为季戊四醇硬脂酸酯。
为了解决上述技术问题,本申请实施例还提供一种植物纤维塑化材料的制备方法,采用了如下所述的技术方案:
该植物纤维塑化材料的制备方法,按质量份计,包括如下步骤:
步骤a.将50~150份植物纤维粉、5~15份多元醇、1~3份偶联剂分别加入搅拌机中,进行搅拌得到第一混合料;
步骤b.将1~20份硬脂酸、1~20份第一润滑剂、1~20份第二润滑剂和200~600份PBAT分别加入所述第一混合料中进行搅拌得到第二混合料;
步骤c.将所述第二混合料置于造粒机中制备出植物纤维塑化材料。
基于上述的植物纤维塑化材料的制备方法,在所述步骤b中,还包括将5~80份聚乳酸加入搅拌机中进行搅拌得到所述第二混合料。
基于上述的植物纤维塑化材料的制备方法,在所述步骤b中,还包括将5~80份无机填充料加入搅拌机中进行搅拌得到所述第二混合料。
基于上述的植物纤维塑化材料的制备方法,在所述步骤a中,还包括将1~3份第三润滑剂、1~3份抗氧化剂和1~3份增容剂中的至少一种加入搅拌机中进行搅拌得到所述第一混合料。
与现有技术相比,本发明实施例提供的植物纤维塑化材料及其制备方法主要有以下有益效果:
(1)利用轻工业和农业中废弃的木材、锯末、木粉秸秆、棉杆和果壳纤维等植物纤维再生资源,制备新型环保经济的塑化产品,充分利用农林废弃物,变废为宝,且具有良好的降解性能,能够避免污染环境,加工工艺简单,成本低;
(2)通过多元醇、硬脂酸对植物纤维进行处理,多元醇能够弱化植物纤维分子间以及分子内氢键的作用,一方面利于随后的植物纤维与硬脂酸的酯化的反应,另一方面降低植物纤维的吸湿性,从而降低植物纤维在加工成型后的形变影响,提高植物纤维的热塑性;硬脂酸能够与经多元醇弱化后的植物纤维中的羟基发生酯化反应,从而改变植物纤维的理化性能得到改性后的植物纤维料,热塑性能提高,表面的极性降低,与其他热塑性聚合物界面相容性可以得到改善;
(3)PBAT与经多元醇、硬脂酸处理改性后的植物纤维料共混并热压加工成型得到植物纤维塑化材料,能够提高该植物纤维塑化材料的抗冲击性和延展性,且能够完全降解,避免污染环境;
(4)在热压加工成型过程中,第一润滑剂和第二润滑剂能够协同起到润滑 作用,第一润滑剂作为低温润滑剂,第二润滑剂作为高温润滑剂,以使PBAT与改性后的植物纤维料共混后形成的混合料在造粒机进行挤压造粒时在各温度区间下均保持良好的润滑性,避免造粒机与混合料之间摩擦产生的热量烧糊混合料,从而能够避免制得的植物纤维塑化材料碳化损坏。
具体实施方式
如本文所用之术语:
“由……制备”与“包含”同义。本文中所用的术语“包含”、“包括”、“具有”、“含有”或其任何其它变形,意在覆盖非排它性的包括。例如,包含所列要素的组合物、步骤、方法、制品或装置不必仅限于那些要素,而是可以包括未明确列出的其它要素或此种组合物、步骤、方法、制品或装置所固有的要素。
连接词“由……组成”排除任何未指出的要素、步骤或组分。如果用于权利要求中,此短语将使权利要求为封闭式,使其不包含除那些描述的材料以外的材料,但与其相关的常规杂质除外。当短语“由……组成”出现在权利要求主体的子句中而不是紧接在主题之后时,其仅限定在该子句中描述的要素;其它要素并不被排除在作为整体的所述权利要求之外。
当量、浓度、或者其它值或参数以范围、优选范围、或一系列上限优选值和下限优选值限定的范围表示时,这应当被理解为具体公开了由任何范围上限或优选值与任何范围下限或优选值的任一配对所形成的所有范围,而不论该范围是否单独公开了。例如,当公开了范围“1~5”时,所描述的范围应被解释为包括范围“1~4”、“1~3”、“1~2”、“1~2和4~5”、“1~3和5”等。当数值范围在本文中被描述时,除非另外说明,否则该范围意图包括其端值和在该范围内的所有整数和分数。
在这些实施例中,除非另有指明,所述的份和百分比均按质量计。
“质量份”指表示多个组分的质量比例关系的基本计量单位,1份可表示任意的单位质量,如可以表示为1g,也可表示2.689g等。假如我们说A组分的质量份为a份,B组分的质量份为b份,则表示A组分的质量和B组分的质 量之比a:b。或者,表示A组分的质量为aK,B组分的质量为bK(K为任意数,表示倍数因子)。不可误解的是,与质量份数不同的是,所有组分的质量份之和并不受限于100份之限制。
“和/或”用于表示所说明的情况的一者或两者均可能发生,例如,A和/或B包括(A和B)和(A或B)。
需说明的是,该植物纤维塑化材料可以直接用于利用塑性加工方法加工成各种性能优良,并可自然降解的塑性材料,或者与其他合成高聚物共混并热压加工成功能型新产品。
本申请实施例提供一种植物纤维塑化材料,按质量份数计,该植物纤维塑化材料的原材料包括:
植物纤维粉50~150份,例如可以是50份、70份、90份、100份、120份、140份、150份等。
多元醇5~15份,例如可以是5份、8份、10份、12份、15份等。
硬脂酸1~20份,例如可以是1份、5份、8份、10份、12份、15份、18份、20份等。
第一润滑剂1~20份,例如可以是1份、5份、8份、10份、12份、15份、18份、20份等。
第二润滑剂1~20份,例如可以是1份、5份、8份、10份、12份、15份、18份、20份等。
200~600份PBAT,例如可以为200份、300份、400份、500份、600份等。
1~3份偶联剂,例如可以为1份、1.5份、2份、2.5份、3份等。具体的,所述偶联剂为铝钛偶联剂。
需要说明的是,第一润滑剂的润滑使用温度区间低于第二润滑剂的润滑使用温度区间,其中,润滑使用温度区间是指在润滑剂能够起到润滑作用的温度区间。该植物纤维粉的原料包括木材、锯末、木粉秸秆、棉杆和果壳纤维等细化为200目以上的粉末,粉末状的植物纤维易于加工,且能够使得加工成型的塑性材料表面光滑细腻。PBAT属于热塑性生物降解塑料,是己二酸丁二醇酯和 对苯二甲酸丁二醇酯的共聚物,其能够完全降解,降解产物为水和二氧化碳,对环境没有污染伤害。
可以理解地,该植物纤维塑化材料的工作原理大致如下:该植物纤维塑化材料首先通过在植物纤维粉中加入多元醇,多元醇能够弱化植物纤维分子间以及分子内氢键的作用,一方面利于随后的植物纤维与硬脂酸的酯化的反应,另一方面降低植物纤维的吸湿性,从而降低植物纤维在加工成型后的形变影响,提高植物纤维的热塑性;在植物纤维粉中加入硬脂酸,其中硬脂酸能够与经多元醇弱化后的植物纤维中的羟基发生酯化反应,从而改变植物纤维的理化性能得到改性后的植物纤维料,热塑性能提高,表面的极性降低,与其他热塑性聚合物界面相容性可以得到改善;因此,通过将PBAT与经多元醇、硬脂酸处理改性后的植物纤维料共混并热压加工成型得到植物纤维塑化材料,能够提高该植物纤维塑化材料的抗冲击性和延展性,且能够完全降解,避免污染环境。其中,在热压加工成型过程中,第一润滑剂和第二润滑剂能够协同起到润滑作用,第一润滑剂作为低温润滑剂,第二润滑剂作为高温润滑剂,例如在本实施例中,第一润滑剂的润滑使用温度区间低于120℃,第二润滑剂的润滑使用温度区间为高于120℃,以使PBAT与改性后的植物纤维料共混后形成的混合料在造粒机进行挤压造粒时在各温度区间下均保持良好的润滑性,避免造粒机与混合料之间摩擦产生的热量烧糊混合料,从而能够避免制得的植物纤维塑化材料碳化损坏。
综上,相比现有技术,该植物纤维塑化材料至少具有以下有益效果:该植物纤维塑化材料具有良好的热塑性能,成型后不易变形,在造粒机中加工不易碳化,且具有良好的降解性能,能够避免污染环境,加工工艺简单,成本低。
在一些实施例中,该多元醇优选为丙三醇,其具有原料易得,成本低的特点,且能够较好地弱化植物纤维分子间氢键的作用。
在一些实施例中,所述植物纤维塑化材料的原材料还包括:5~80份聚乳酸,例如可以为5份、10份、15份、20份、30份、40份、50份、60份、70份、80份等。可以理解地,聚乳酸是一种新型的生物降解材料,使用可再生的植物 资源(如玉米等)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸,具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境。因此,在本实施例中,该植物纤维塑化材料通过将聚乳酸加入PBAT与经多元醇、硬脂酸处理改性后的植物纤维料共混后的混合料中,能够进一步提高该植物纤维塑化材料的延展性能,且能够完全降解,避免污染环境。
在一些实施例中,所述植物纤维塑化材料的原材料还包括:5~80份无机填充料,例如可以为5份、10份、15份、20份、30份、40份、50份、60份、70份、80份等。需要说明的是,无机填充料包括滑石粉、碳酸钙粉末、炉灰等。可以理解地,该植物纤维塑化材料通过将无机填充料加入PBAT与经多元醇、硬脂酸处理改性后的植物纤维料共混后的混合料中,或者加入PBAT、聚乳酸以及经多元醇、硬脂酸处理改性后的植物纤维料共混后的混合料中,能够进一步改善植物纤维塑化材料的成型加工性能,并降低成本。
在一些实施例中,所述植物纤维塑化材料的原材料还包括:
1~3份抗氧化剂,例如可以为1份、1.5份、2份、2.5份、3份等。
1~3份增容剂,例如可以为1份、1.5份、2份、2.5份、3份等。
1~3份第三润滑剂,例如可以为1份、1.5份、2份、2.5份、3份等。
其中,所述第三润滑剂的润滑使用温度区间低于所述第二润滑剂的润滑使用温度区间。
在一些实施例中,所述第一润滑剂为硬脂酸盐,例如可以为硬脂酸锌、硬脂酸钙、硬脂酸镁等;在本实施例中,优选为硬脂酸锌;所述第二润滑剂为乙撑双硬脂酸酰胺;所述第三润滑剂为季戊四醇硬脂酸酯。
可以理解地,在本实施例中,季戊四醇硬脂酸酯的润滑使用温度区间为低于60℃;硬脂酸锌的润滑使用温度区间低于120℃,且在温度区间为60~120℃之间使用润滑效果最佳;乙撑双硬脂酸酰胺的润滑使用温度区间为高于120℃。因此,该植物纤维塑化材料通过将硬脂酸镁、乙撑双硬脂酸酰胺和季戊四醇硬脂酸酯加入植物纤维粉中,能够对PBAT与改性后的植物纤维料共混后形成的 混合料在造粒机进行挤压造粒时在各温度区间下均保持良好的润滑性,避免造粒机与混合料之间摩擦产生的热量烧糊混合料,从而避免植物纤维塑化材料碳化损坏。
需要说明的是,该增容剂为等质量份数的柠檬酸和马来酸酐的混合物;该抗氧化剂为巴斯夫抗氧化剂。可以理解地,抗氧化剂能够避免PBAT与改性后的植物纤维料共混后形成的混合料的氧化,增容剂能够提高PBAT与改性后的植物纤维料的相容性,以便进一步提高植物纤维塑化材料的力学性能。
基于上述的植物纤维塑化材料,本申请实施例还提供一种植物纤维塑化材料的制备方法,该植物纤维塑化材料的制备方法包括如下步骤:
步骤a.将上述配方量的植物纤维粉、多元醇、偶联剂分别加入搅拌机中,进行搅拌得到第一混合料;
步骤b.将上述配方量的硬脂酸、第一润滑剂、第二润滑剂和PBAT分别加入所述第一混合料中进行搅拌得到第二混合料;
步骤c.将所述第二混合料置于造粒机中制备出可反复热塑成型的植物纤维塑化材料。
在一些实施例中,在所述步骤a中,还包括将上述配方量的第三润滑剂、抗氧化剂、增容剂中的至少一种加入搅拌机中进行搅拌得到所述第一混合料。
在一些实施例中,在所述步骤b中,还包括将上述配方量的聚乳酸加入搅拌机中进行搅拌得到所述第二混合料。
在一些实施例中,在所述步骤b中,还包括将上述配方量的无机填充料加入搅拌机中进行搅拌得到所述第二混合料。
在一些实施例中,在所述步骤a中,所述搅拌机搅拌的时间范围为10~30min,例如可以为10min、15min、20min、25min、30min等。
在一些实施例中,在所述步骤b中,所述搅拌机搅拌的时间范围为10~30min,例如可以为10min、15min、20min、25min、30min等。
下面将结合具体实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限制本申请的范 围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
一种植物纤维塑化材料的制备方法,按质量份计,包括如下步骤:
步骤a.将100份植物纤维粉、5份丙三醇、2份铝钛偶联剂分别加入搅拌机中,搅拌10min得到第一混合料;
步骤b.将2份硬脂酸、2份硬脂酸锌、2份乙撑双硬脂酸酰胺、400份PBAT分别加入所述第一混合料中进行搅拌10min得到第二混合料;
步骤c.将所述第二混合料置于造粒机中制备出植物纤维塑化材料。
制得的植物纤维塑化材料的力学性能如表1所示。
实施例2
与实施例1相比,本实施例不同之处在于:
一种植物纤维塑化材料的制备方法,按质量份计,包括如下步骤:
步骤a.将50份植物纤维粉、5份丙三醇、1份铝钛偶联剂分别加入搅拌机中,搅拌10min得到第一混合料;
步骤b.将1份硬脂酸、1份硬脂酸锌、1份乙撑双硬脂酸酰胺、200份PBAT分别加入所述第一混合料中进行搅拌10min得到第二混合料。
制得的植物纤维塑化材料的力学性能如表1所示。
实施例3
与实施例1相比,本实施例不同之处在于:
一种植物纤维塑化材料的制备方法,按质量份计,包括如下步骤:
步骤a.将150份植物纤维粉、12份丙三醇、3份铝钛偶联剂分别加入搅拌机中,搅拌10min得到第一混合料;
步骤b.将20份硬脂酸、20份硬脂酸锌、20份乙撑双硬脂酸酰胺、600份PBAT分别加入所述第一混合料中进行搅拌10min得到第二混合料。
制得的植物纤维塑化材料的力学性能如表1所示。
实施例4
与实施例1相比,本实施例不同之处在于:
一种植物纤维塑化材料的制备方法,按质量份计,包括如下步骤:
在所述步骤a中,还包括将2份季戊四醇硬脂酸酯、2份巴斯夫抗氧化剂、1份柠檬酸和1份马来酸酐加入搅拌机中进行搅拌得到所述第一混合料;
制得的植物纤维塑化材料的力学性能如表1所示。
实施例5
与实施例1相比,本实施例不同之处在于:
在所述步骤b中,将2份硬脂酸、2份硬脂酸锌、2份乙撑双硬脂酸酰胺、350份PBAT、50份聚乳酸加入搅拌机中进行搅拌得到所述第二混合料。
制得的植物纤维塑化材料的力学性能如表1所示。
实施例6
与实施例1相比,本实施例不同之处在于:
在所述步骤b中,将2份硬脂酸、2份硬脂酸锌、2份乙撑双硬脂酸酰胺、350份PBAT、50份聚乳酸、50份无机填充料加入搅拌机中进行搅拌得到所述第二混合料。
制得的植物纤维塑化材料的力学性能如表1所示。
实施例7
与实施例1相比,本实施例不同之处在于:
一种植物纤维塑化材料的制备方法,按质量份计,包括如下步骤:
在所述步骤b中,将2份硬脂酸、2份硬脂酸锌、2份乙撑双硬脂酸酰胺、350份PBAT、50份无机填充料加入搅拌机中进行搅拌得到所述第二混合料。
制得的植物纤维塑化材料的力学性能如表1所示。
对比例1
与实施例1相比,本对比例不同之处在于:
步骤a.将100份植物纤维粉、2份铝钛偶联剂分别加入搅拌机中,进行搅拌得到第一混合料;
步骤b.将2份硬脂酸、2份硬脂酸锌、2份乙撑双硬脂酸酰胺、400份PBAT 分别加入所述第一混合料中进行搅拌得到第二混合料。
制得的植物纤维塑化材料的力学性能如表1所示。
对比例2
与实施例1相比,本对比例不同之处在于:
步骤a.将100份植物纤维粉、5份丙三醇、2份铝钛偶联剂分别加入搅拌机中,进行搅拌得到第一混合料;
步骤b.将2份硬脂酸锌、2份乙撑双硬脂酸酰胺、400份PBAT分别加入所述第一混合料中进行搅拌得到第二混合料。
制得的植物纤维塑化材料的力学性能如表1所示。
对比例3
与实施例1相比,本对比例不同之处在于:
步骤a.将100份植物纤维粉、5份丙三醇、2份铝钛偶联剂分别加入搅拌机中,进行搅拌得到第一混合料;
步骤b.将2份硬脂酸、400份PBAT加入所述第一混合料中进行搅拌得到第二混合料。
制得的植物纤维塑化材料的力学性能如表1所示。
对比例4
与实施例1相比,本对比例不同之处在于:
步骤a.将100份植物纤维粉、5份丙三醇、2份铝钛偶联剂分别加入搅拌机中,进行搅拌得到第一混合料;
步骤b.将2份硬脂酸、2份硬脂酸锌、400份PBAT加入所述第一混合料中进行搅拌得到第二混合料。
制得的植物纤维塑化材料的力学性能如表1所示。
对比例5
与实施例1相比,本对比例不同之处在于:
步骤a.将100份植物纤维粉、5份丙三醇、2份铝钛偶联剂分别加入搅拌机中,进行搅拌得到第一混合料;
步骤b.将2份硬脂酸、2份乙撑双硬脂酸酰胺、400份PBAT加入所述第一混合料中进行搅拌得到第二混合料。
制得的植物纤维塑化材料的力学性能如表1所示。
性能测试
对上述实施例1至7、对比例1至5制得的植物纤维塑化材料投入吹膜机中制成长条形薄膜,薄膜长度为15cm,宽度为1.5cm,厚度为4c,将该长条形薄膜采用拉力检测仪进行常规力学性能检测,检测结构如下表1。
表1.不同制备方法得到的植物纤维塑化材料的薄膜的力学性能
Figure PCTCN2021075157-appb-000001
结论:
(1)由表一可知,实施例1至7制备的植物纤维塑化材料的拉伸强度、断裂伸长率、直角撕裂强度、穿刺强度、热封强度、热封断裂伸长率和落标冲击力均要优于对比例1至2。此外,在实施例4中,由于季戊四醇硬脂酸酯、巴斯夫抗氧化剂、柠檬酸和马来酸酐能够进一步提高PBTA与改性后的植物纤维料的相容性,因此能够进一步提高该植物纤维塑化材料的抗冲击性和延展性;在实施例5中,通过PBTA、聚乳酸与改性后的植物纤维料共混,因此能够进一步 提高该植物纤维塑化材料的延展性;在实施例7中,其植物纤维塑化材料的力学性能与实施例4的性能基本一致,因此无机填充料能够代替一部分PBAT用于制备植物纤维塑化材料,可降低成本。
(2)由表一可知,对比例3至5中,由于硬脂酸锌和乙撑双硬脂酸酰胺需要配合使用才能使改性后的植物纤维料在造粒机进行挤压造粒时在各温度区间下均保持良好的润滑性,因此缺少硬脂酸锌和乙撑双硬脂酸酰胺任一种原料均容易导致植物纤维塑化材料在造粒机中碳化烧糊导致无法形成成品。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在上面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。公开于该背景技术部分的信息仅仅旨在加深对本申请的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。

Claims (10)

  1. 一种植物纤维塑化材料,按质量份数计,所述植物纤维塑化材料的原材料包括:植物纤维粉50~150份、多元醇5~15份、硬脂酸1~20份、第一润滑剂1~20份、第二润滑剂1~20份、200~600份PBAT和1~3份偶联剂;其中,所述第一润滑剂的润滑使用温度区间低于所述第二润滑剂的润滑使用温度区间。
  2. 根据权利要求1所述的植物纤维塑化材料,其中,所述植物纤维塑化材料的原材料还包括:5~80份聚乳酸。
  3. 根据权利要求1或2所述的植物纤维塑化材料,其中,所述植物纤维塑化材料的原材料还包括:5~80份无机填充料。
  4. 根据权利要求1所述的植物纤维塑化材料,其中,所述植物纤维塑化材料的原材料还包括:1~3份第三润滑剂、1~3份抗氧化剂和1~3份增容剂中的至少一种;其中,所述第三润滑剂的润滑使用温度区间低于所述第二润滑剂的润滑使用温度区间。
  5. 根据权利要求1所述的植物纤维塑化材料,其中,所述第一润滑剂为硬脂酸盐;所述第二润滑剂为乙撑双硬脂酸酰胺。
  6. 根据权利要求4所述的植物纤维塑化材料,其中,所述第三润滑剂为季戊四醇硬脂酸酯。
  7. 一种植物纤维塑化材料的制备方法,其中,按质量份计,包括如下步骤:
    步骤a.将50~150份植物纤维粉、5~15份多元醇、1~3份偶联剂分别加入搅拌机中,进行搅拌得到第一混合料;
    步骤b.将1~20份硬脂酸、1~20份第一润滑剂、1~20份第二润滑剂和200~600份PBAT分别加入所述第一混合料中进行搅拌得到第二混合料;
    步骤c.将所述第二混合料置于造粒机中制备出植物纤维塑化材料。
  8. 根据权利要求7所述的植物纤维塑化材料的制备方法,其中,在所述步骤b中,还包括将5~80份聚乳酸加入搅拌机中进行搅拌得到所述第二混合料。
  9. 根据权利要求7或8所述的植物纤维塑化材料的制备方法,其中,在所 述步骤b中,还包括将5~80份无机填充料加入搅拌机中进行搅拌得到所述第二混合料。
  10. 根据权利要求7所述的植物纤维塑化材料的制备方法,其中,在所述步骤a中,还包括将1~3份第三润滑剂、1~3份抗氧化剂和1~3份增容剂中的至少一种加入搅拌机中进行搅拌得到所述第一混合料。
PCT/CN2021/075157 2020-05-27 2021-02-04 一种植物纤维塑化材料及其制备方法 WO2021238297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010462785.X 2020-05-27
CN202010462785.XA CN113736220A (zh) 2020-05-27 2020-05-27 一种植物纤维塑化材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021238297A1 true WO2021238297A1 (zh) 2021-12-02

Family

ID=78723840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075157 WO2021238297A1 (zh) 2020-05-27 2021-02-04 一种植物纤维塑化材料及其制备方法

Country Status (2)

Country Link
CN (1) CN113736220A (zh)
WO (1) WO2021238297A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276646A (zh) * 2022-01-21 2022-04-05 台州市盛尔达塑业有限公司 一种植物墙新材料的配方及其制备方法
CN114874513A (zh) * 2022-06-17 2022-08-09 东莞市龙际家居服饰有限公司 一种橡胶生物机大底及其制备方法
CN115418088A (zh) * 2022-09-02 2022-12-02 苏州盛万达塑胶包装材料有限公司 一种增韧改性pla片材及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376236A (zh) * 2023-01-30 2023-07-04 吉安市碳宝新材料有限公司 超细植物纤维粉复合全降农膜料制备技术

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265716A (zh) * 2013-06-03 2013-08-28 河南省科学院同位素研究所有限责任公司 一种秸秆纤维/pbs/pbat复合材料及其制备方法
CN106800756A (zh) * 2017-01-11 2017-06-06 北京汽车集团有限公司 全生物基可降解材料及其制备方法和车辆内饰及车辆
CN107739499A (zh) * 2017-10-09 2018-02-27 北京林业大学 一种基于聚己二酸/对苯二甲酸丁二酯增强的麦秸秆生物可降解复合材料及其制备方法
CN108410145A (zh) * 2018-03-23 2018-08-17 河南省科学院同位素研究所有限责任公司 基于辐射改性制备秸秆纤维/pbat复合材料的方法
CN109971196A (zh) * 2019-02-26 2019-07-05 厦门壳氏新材料科技有限公司 一种稻壳纤维高含量填充pbat基复合材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535670B (zh) * 2018-11-16 2021-10-08 广东众塑降解材料有限公司 一种全降解仿真材料及其制备方法
CN109553945B (zh) * 2019-01-08 2021-01-26 东莞市华达新材料有限公司 一种环保型隔热塑料薄膜及其制备工艺
CN110655769A (zh) * 2019-11-08 2020-01-07 佰信(福建)新材料科技有限公司 一种高韧性全降解复合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265716A (zh) * 2013-06-03 2013-08-28 河南省科学院同位素研究所有限责任公司 一种秸秆纤维/pbs/pbat复合材料及其制备方法
CN106800756A (zh) * 2017-01-11 2017-06-06 北京汽车集团有限公司 全生物基可降解材料及其制备方法和车辆内饰及车辆
CN107739499A (zh) * 2017-10-09 2018-02-27 北京林业大学 一种基于聚己二酸/对苯二甲酸丁二酯增强的麦秸秆生物可降解复合材料及其制备方法
CN108410145A (zh) * 2018-03-23 2018-08-17 河南省科学院同位素研究所有限责任公司 基于辐射改性制备秸秆纤维/pbat复合材料的方法
CN109971196A (zh) * 2019-02-26 2019-07-05 厦门壳氏新材料科技有限公司 一种稻壳纤维高含量填充pbat基复合材料及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276646A (zh) * 2022-01-21 2022-04-05 台州市盛尔达塑业有限公司 一种植物墙新材料的配方及其制备方法
CN114276646B (zh) * 2022-01-21 2023-08-22 台州市盛尔达塑业有限公司 一种植物墙新材料的配方及其制备方法
CN114874513A (zh) * 2022-06-17 2022-08-09 东莞市龙际家居服饰有限公司 一种橡胶生物机大底及其制备方法
CN115418088A (zh) * 2022-09-02 2022-12-02 苏州盛万达塑胶包装材料有限公司 一种增韧改性pla片材及其制备方法

Also Published As

Publication number Publication date
CN113736220A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2021238297A1 (zh) 一种植物纤维塑化材料及其制备方法
US10759911B2 (en) Thermoplastic starch composition derivatives from agricultural byproducts
CN111704788A (zh) 一种全生物降解棉签棒及其制备方法
CN112080115B (zh) 一种用于环保餐具的高韧性聚乳酸复合材料及其制备方法
CN108219406A (zh) 一种阻燃型全降解塑料薄膜及其制备方法
WO2023104073A1 (zh) 一种延展性强的复合降解聚合物及其制备方法
CN111733474A (zh) 一种全生物降解牙线及其制备方法
CN111995820B (zh) 一种聚丙烯材料及其制备方法
EP3162841B2 (en) A biodegradable biocompostable biodigestible plastic
CN104672503A (zh) 一种高阻隔性降解塑料及其制备方法
US9925707B2 (en) Process for preparation of biodegradable biocompostable biodigestible polyolefins
CN112159579A (zh) 一种可控降解周期的功能性可降解材料及其制备方法
CN112094487B (zh) 一种用于环保餐具的易清洁耐高温聚乳酸复合材料
CN112280108A (zh) 一种淀粉基可降解安全环保包装盒及制备方法
CN112661638B (zh) 一种增韧中间体及其制备方法以及用于3d打印的增韧驱蚊高分子生物降解复合材料
CN116606536B (zh) 一种用于吸管的pha改性全生物降解塑料
CN114196182B (zh) 聚乳酸基生物质复合材料及其制备方法
CN117844267B (zh) 一种多元组合协同精制的生物降解吸管及其制备方法
CN111925634B (zh) 含杜仲胶的可降解包装材料及其制备方法
AU2015249059B2 (en) A process for preparation of biodegradable biocompostable biodigestible peplene polymer
CA2910848C (en) A process for preparation of biodegradable biocompostable biodigestible peplene polymer
CN114957945A (zh) 一种热塑性弹性体材料及其制备方法
CN116656099A (zh) 可堆肥降解吸塑片材及其制备方法
CN116218125A (zh) 一种pbat/塑化淀粉复合材料及制备方法
CN117343517A (zh) 一种竹基生物降解包装片材专用母粒及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21814168

Country of ref document: EP

Kind code of ref document: A1