WO2021238016A1 - 细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法 - Google Patents

细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法 Download PDF

Info

Publication number
WO2021238016A1
WO2021238016A1 PCT/CN2020/120419 CN2020120419W WO2021238016A1 WO 2021238016 A1 WO2021238016 A1 WO 2021238016A1 CN 2020120419 W CN2020120419 W CN 2020120419W WO 2021238016 A1 WO2021238016 A1 WO 2021238016A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistant
starch
coarse
sieving
water
Prior art date
Application number
PCT/CN2020/120419
Other languages
English (en)
French (fr)
Inventor
张斌
丁丽
黄强
扶雄
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021238016A1 publication Critical patent/WO2021238016A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/003Crosslinking of starch
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the invention relates to the field of modification and intensive processing of starch-rich food raw materials, in particular to a high heat-resistant, slow-digestible and resistant starch prepared by cell wall cross-linking and a production method.
  • Chinese invention patent 2011100893737 discloses a method for preparing resistant starch by simultaneously using cross-linking and wet heat treatment. This method adjusts the pH value of starch milk with a weight concentration of 30-45% at 25-50°C to 10.5-12.5, and then adds 0.2-12% sodium trimetaphosphate/sodium tripolyphosphate, which accounts for the weight of the starch dry basis, to maintain 30-240min, bake to a moisture content of 15-45% by weight, put the product in a humid heat reactor, and react at 100-140°C for 1-72h; after washing, drying, crushing and sieving, the product is obtained, resistant starch
  • the content is 40-85% by weight, the overall resistant starch content needs to be improved, and the technology uses pure starch as the raw material with a single nutrient composition. At the same time, it has obvious defects in stability and palatability when used as a food ingredient, and the addition amount is limited. This severely restricts the application of resistant starch or slow digestion starch in health food.
  • the present invention provides a high heat-resistant slow digestion and resistant starch prepared by cell wall cross-linking and a production method, and the slow digestion and resistant starch with a content of more than 90 wt% is prepared by the method , Wherein the content of resistant starch exceeds 80wt%; the present invention can not only fully retain the nutritional value, but also meet the palatability of food, and has good thermal stability, and has wide applications in special dietary products and nutritional health products for diabetic patients.
  • the method for producing high heat-resistant slow digestion and resistant starch by cell wall cross-linking includes the following steps:
  • step 6) Adjusting step 6) The pH of the system is 6-6.5 to terminate the cross-linking reaction, and the whole powder is washed and dried to obtain high heat-resistant, slow-digestible and resistant starch.
  • the starch-rich plant tissue in step 1) is potato, sweet potato, mixed beans, corn, wheat, sorghum or rice.
  • step 1) the starch-rich plant tissue is immersed in 4-12 times the volume of 0.01-0.1M HCl solution, and shaken at a constant speed of 80-200rpm for 6-24h.
  • step 2) the acid-soaked plant tissue is rinsed with tap water or purified water until it is neutral, and immersed in 4-12 times the volume of 0.02-0.06M NaOH solution and shaken at a constant speed of 80-200rpm 12-24h.
  • the sieving is 1-5 times through a 125-180 ⁇ m sieve.
  • the washing is 1-3 times with 3-6 times the volume of absolute ethanol, the sieving is through a 45-85 ⁇ m sieve, and the number of sieving is 2-5. Times;
  • the drying is carried out in an oven at 40-45°C.
  • the mass ratio of sodium trimetaphosphate to sodium tripolyphosphate in the sodium trimetaphosphate/sodium tripolyphosphate composite crosslinking agent described in step 6) is 97:1-99:1, and sodium trimetaphosphate/sodium tripolyphosphate
  • the addition amount of the sodium tripolyphosphate composite crosslinking agent is 3%-15% of the dry basis mass of the whole powder.
  • the amount of sodium sulfate added in step 6) is 8%-12% of the dry basis mass of the whole powder; adjusting the pH of the system to 9-12 is carried out by 0.5M NaOH solution; the obtained whole powder is 3-6 Disperse in twice the volume of water.
  • the adjustment in step 7) in step 6) is carried out in an oven at 40-45°C.
  • the high heat-resistant slow digestion and resistant starch prepared by cell wall cross-linking is prepared by the above production method, and the sum of the content of the slow digestion and resistant starch in the obtained product exceeds 90% by weight.
  • the present invention has the following advantages:
  • the present invention enhances the strength of the cell wall through cross-linking, the cross-linked cell wall significantly increases the resistant starch by 10-50wt%, and the sum of the content of slow digestion and resistant starch exceeds 90wt%, which is significantly higher than the prior art, especially the product has Good thermal stability, regardless of raw food, partially cooked or cooked food, can significantly slow down the digestibility of starch, and has a wide range of applications in special diets and nutritional health products for diabetic patients.
  • the present invention retains all the nutrients of the plant tissue by retaining the integrity of the cell wall, the nutrients are comprehensive and the palatability is excellent, at the same time, the added amount is relatively high, and the application range is wide.
  • the present invention directly targets starch-rich plant tissues, has a wide source of raw materials, can be implemented in a variety of food raw materials, is not restricted by the place of production and season, and has low production cost, simple processing technology, and easy realization of large-scale production.
  • Fig. 1 is a photomicrograph of the whole cross-linked potato flour rich in high heat-resistant slow digestion and resistant starch obtained in Example 1.
  • Fig. 2 is a microscopic photograph of the cross-linked kidney bean whole powder rich in high heat-resistant, slow-digestible and resistant starch obtained in Example 2.
  • Figure 3 is a photomicrograph of the whole cross-linked pea flour rich in high heat-resistant slow digestion and resistant starch obtained in Example 3.
  • porcine pancreatic alpha-amylase model P7545, enzyme activity 8 ⁇ USP
  • amyloglucosidase model A7095, enzyme activity>260U/mL
  • the specific method is: accurately weigh the sample (total starch content ⁇ 600mg) into a 50mL centrifuge tube with a lid, add 20mL sodium acetate buffer solution (pH 5.2, 0.1M), vortex evenly, and place in a 37°C water bath.
  • G20 the glucose content (mg) produced after 20 minutes of amylase hydrolysis
  • G120 the glucose content produced after 120 minutes of amylase hydrolysis (mg)
  • TS the total starch content in the sample (mg).
  • step 4) Crushed the coarse particles in step 3) again to make mud, add tap water or purified water through a 150 ⁇ m screen 4 times, collect the coarse particles and coarse slurry obtained, and crush the coarse particles again to make mud, add tap water or The purified water was passed through a 150 ⁇ m screen 4 times and repeated 3 times to collect the resulting coarse slurry.
  • Fig. 1 is a photomicrograph of the whole cross-linked potato powder prepared in this example taken under ordinary light with an optical microscope at a magnification of 100 times. In the whole potato powder, the cell wall is intact, and many starch granules are tightly wrapped.
  • the slow digestion and resistant starch content of the sample were 3.7% by weight and 92.6% by weight, respectively, while the content of resistant starch prepared by the Chinese invention patent 2011100893737 was 40-85% by weight.
  • the resistant starch content of the prepared sample is increased by about 10-50wt%, and the method can not only significantly increase the resistant starch content, but also retain all the nutrients, improve the taste and flavor, and have excellent palatability. It can solve the problems of poor palatability and limited addition amount in the prior art.
  • the prepared sample was treated in a water bath at 95° C. for 30 min to test its high temperature resistance.
  • the measured high temperature resistant slow digestion and resistant starch content of the sample were 27.6 wt% and 13.6 wt%, respectively. It shows that the slow-digestible and resistant starch prepared by the method has good thermal stability, can reach the purpose of raw food, partially cooked or cooked food, can significantly slow down the digestibility of starch, and has a wide range of applications.
  • step 4) Crushed the coarse particles in step 3) again to make mud, add tap water or purified water through a 180 ⁇ m screen 5 times, collect the coarse particles and coarse slurry obtained, and then crush the coarse particles again to make mud, add tap water or The purified water was passed through a 180 ⁇ m screen 5 times, repeated 4 times, and the resulting coarse slurry was collected.
  • Fig. 2 is a microscope photograph of the whole cross-linked kidney bean powder prepared in this example with an optical microscope under ordinary light and magnified 100 times. It can be seen from the figure that the cell wall in the whole kidney bean powder is complete, and the cell wall and the protein matrix tightly wrap the kidney bean starch granules.
  • the slow digestion and resistant starch content of the sample are 10.2wt% and 84.0wt%, respectively.
  • the prepared sample was treated in a water bath at 95°C for 30 minutes to test its high temperature resistance.
  • the high temperature resistant slow digestion and resistant starch content of the sample were measured to be 42.6% by weight and 23.9% by weight, respectively.
  • step 4) Crushed the coarse particles in step 3) again to make mud, add tap water or purified water through a 125 ⁇ m screen 3 times, collect the coarse particles and coarse slurry obtained, and then crush the coarse particles to make mud again, add tap water or The purified water was passed through a 150 ⁇ m screen 4 times and repeated 3 times to collect the resulting coarse slurry.
  • Fig. 3 is a microscope photograph of the whole cross-linked wrinkled pea powder prepared in this example with an optical microscope under ordinary light and magnified 100 times. It can be seen from the figure that the cell wall in the whole wrinkled pea powder is complete, and the cell wall and the protein matrix tightly wrap the pea starch granules.
  • the slow digestion and resistant starch content of the sample are 9.5 wt% and 83.5% by weight, respectively.
  • the prepared sample was treated in a water bath at 95° C. for 30 minutes to test its high temperature resistance.
  • the measured high temperature resistant slow digestion and resistant starch content of the sample were 36.9 wt% and 27.3 wt%, respectively.
  • the test results of the above examples show that the present invention directly uses plant tissues as raw materials to remove pectin in the middle layer of plant tissues through acid-base soaking, thereby extracting a whole powder with intact cell walls, and further cross-linking the cell walls to prepare high Heat-resistant slow digestion and resistant starch.
  • the cross-linked cell wall can act as an effective physical barrier to block the contact between amylase and starch, thereby significantly slowing down the digestibility of starch. Therefore, the sum of the content of slow digestion and resistant starch in the prepared product exceeds 90wt%, of which the content of resistant starch exceeds 80wt%.
  • cross-linking can make the cell wall resistant to thermal dissolution and reduce the permeability of the cell wall.
  • the cross-linked cell wall can still act as an effective barrier to inhibit the expansion of internal starch and hinder the combination of amylase and starch substrate, so the prepared slow digestion Or resistant starch has good thermal stability. Regardless of raw food, partially cooked or cooked food, it can significantly slow down starch digestibility. Furthermore, the intact cell wall retains all the nutrients of plant tissues, such as protein, minerals and dietary fiber, with comprehensive nutritional components, and the prepared product has excellent taste and flavor, good palatability, and can be used in special diets for diabetic patients. It has a wide range of applications in food and nutrition and health products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

一种细胞壁交联制备的高耐热型慢消化和抗性淀粉的生产方法,将富含淀粉的植物组织浸泡于HCl溶液中,冲洗至呈中性,加入NaOH溶液浸泡,捣碎制泥,并加水过筛,得到植物组织的粗颗粒与粗浆;将所得粗颗粒再次捣碎制泥,并加水过筛,分别收集得到的粗颗粒与粗浆,收集各次得到的粗浆;所得粗浆过筛,收集筛网上残余物并洗涤,烘干,得到细胞壁完整的全粉;全粉在水中分散,添加三偏磷酸钠/三聚磷酸钠复合交联剂,再加入硫酸钠;调整体系pH为9-12,温育;终止交联反应,将全粉洗涤,烘干。还涉及由上述方法制得的产品。该产品富含高耐热型慢消化和抗性淀粉,具有良好的热稳定性。

Description

细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法 技术领域
本发明涉及富含淀粉食品原料改性及精深加工领域,特别涉及细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法。
背景技术
随着人们生活水平的提高,糖尿病患者数以惊人的速度增长。我国是糖尿病患者(20-79岁)数量最多的国家,高达1.164亿,糖尿病的防治已成为我国最主要的公共卫生问题。糖尿病人的糖代谢与淀粉的消化性密切相关,餐后血糖的释放速率很大程度上取决于快消化淀粉(RDS)的含量。而慢消化淀粉(SDS)或抗性淀粉(RS)含量高的食物属于低血糖生成指数(GI)的食品的范畴,能够持续缓慢地释放出能量,维持餐后血糖稳定,还可以降低餐后胰岛素分泌,提高机体对胰岛素的敏感性。因此提高食物中慢消化淀粉和抗性淀粉的含量有助于降低糖尿病和肥胖症等代谢疾病的发病几率,稳定糖尿病和肥胖症病人的餐后血糖。
中国发明专利2011100893737公开了一种同时采用交联和湿热处理制备抗性淀粉的方法。该方法将重量浓度为30-45%的淀粉乳在25-50℃下调节pH值至10.5-12.5,然后加入占淀粉干基重量0.2-12%的三偏磷酸钠/三聚磷酸钠,保持30-240min,烘至水分重量含量为15-45%,产物放入湿热反应器中,于100-140℃下湿热反应1-72h;洗涤、干燥、粉碎和过筛后得产品,抗性淀粉含量为40-85wt%,总体抗性淀粉含量有待提高,且该技术以纯淀粉为原料,营养成分单一,同时其作为食品配料时在稳定性和适口性等方面存在明显缺陷,且添加量有限,这严重制约了抗性淀粉或慢消化淀粉在健康食品中的应用。
发明内容
本发明针对现有技术的不足之处,提供一种细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法,并通过该方法制得含量超过90wt%的慢消化和抗性淀粉,其中抗性淀粉含量超过80wt%;本发明既可充分保留营养价值,又能满足食品的适口性,且具有良好热稳定性,在糖尿病人特膳食品和营养保健品等方面具有广泛应用。
本发明的目的通过以下技术方案实现:
细胞壁交联制备高耐热型慢消化和抗性淀粉的生产方法,包括以下步骤:
1)将富含淀粉的植物组织浸泡于HCl溶液中,匀速振摇;
2)将经酸浸泡后的植物组织用流水冲洗至呈中性,加入NaOH溶液浸泡,匀速振摇;
3)将酸碱浸泡后的植物组织捣碎制泥,并加水过筛,得到植物组织的粗颗粒与粗浆;
4)将所得粗颗粒再次捣碎制泥,并加水过筛,分别收集得到的粗颗粒与粗浆,所得粗颗粒再次捣碎制泥,加水过筛,重复3-5次,收集各次得到的粗浆;
5)将步骤3)和4)所得粗浆过筛,收集筛网上残余物并洗涤,烘干,得到细胞壁完整的全粉;
6)将所得全粉在水中分散,添加三偏磷酸钠/三聚磷酸钠复合交联剂,再加入硫酸钠;调整体系pH为9-12,在35-55℃条件下温育1-5小时;
7)调整步骤6)体系pH为6-6.5以终止交联反应,将全粉洗涤,烘干,即得到高耐热型慢消化和抗性淀粉。
为进一步实现本发明目的,优选地,步骤1)所述富含淀粉的植物组织为马铃薯、红薯、杂豆、玉米、小麦、高粱或大米。
优选地,步骤1)中,将富含淀粉的植物组织浸泡于4-12倍体积0.01-0.1M的HCl溶液中,以80-200rpm的转速匀速振摇6-24h。
优选地,步骤2)中,将经酸浸泡后的植物组织用自来水或纯净水冲洗至呈中性,浸泡于4-12倍体积0.02-0.06M的NaOH溶液以80-200rpm的转速匀速振摇12-24h。
优选地,步骤3)和步骤4)中,所述的过筛为过125-180μm筛网1-5次。
优选地,,步骤5)中,所述的洗涤是用3-6倍体积的无水乙醇洗涤1-3次,所述的过筛是过45-85μm筛网,过筛次数为2-5次;所述的烘干是在40-45℃烘箱中进行。
优选地,步骤6)中所述的三偏磷酸钠/三聚磷酸钠复合交联剂中三偏磷酸钠与三聚磷酸钠的质量比为97:1-99:1,三偏磷酸钠/三聚磷酸钠复合交联剂的添加量为全粉干基质量的3%-15%。
优选地,步骤6)中所述的硫酸钠的添加量为全粉干基质量的8%-12%;调整体系pH为9-12是通过0.5M NaOH溶液进行;所得全粉在3-6倍体积的水中分散。
优选地,步骤7)中所述的调整步骤6)体系pH为6-6.5是通过0.5M HCl溶液进行;所述的洗涤是用自来水或纯净水洗涤3-5次后用全粉3-6倍体积的无水乙醇洗涤1-3次;步骤7)所述的烘干是在40-45℃烘箱中进行。
细胞壁交联制备的高耐热型慢消化和抗性淀粉,由上述的生产方法制得,所得产品慢消化和抗性淀粉的含量之和超90wt%。
与现有技术相比,本发明具有以下优点:
1)本发明通过交联增强细胞壁强度,交联细胞壁显著提高10-50wt%的抗性淀粉,慢消化和抗性淀粉的含量之和超90wt%,显著高于现有技术,尤其是产品具有良好热稳定性,不论生食,部分熟化或熟食均能显著减缓淀粉消化性,在糖尿病人特膳食品和营养保健品等方面具有广泛应用。
2)本发明通过保留细胞壁完整性进而保留植物组织的全部营养物质,营养成分全面且适口性优良,同时添加量较高,适用面广。
3)本发明直接以富含淀粉的植物组织为对象,原料来源广,能在多种食品原料中实现,不受产地和季节限制,且生产成本低,加工工艺简单,易于实现规模化生产。
附图说明
图1为实施例1所得富含高耐热型慢消化和抗性淀粉的交联马铃薯全粉显微照片。
图2为实施例2所得富含高耐热型慢消化和抗性淀粉的交联芸豆全粉显微镜照片。
图3为实施例3所得富含高耐热型慢消化和抗性淀粉的交联皱皮豌豆全粉显微照片。
具体实施方式
为更好地理解本发明,以下结合实施例与附图对本发明作进一步的说明,但本发明的实施方式不限于此。
实施例中采用Megazyme公司生产的猪胰α淀粉酶(型号P7545,酶活力8×USP)和淀粉葡萄糖苷酶(型号A7095,酶活力>260U/mL),参照Englyst提出的体外酶解方法测定样品中慢消化和抗性淀粉含量。具体方法为:准确称取样品(总淀粉含量≤600mg)于50mL带盖离心管中,加入20mL乙酸钠缓冲溶液(pH 5.2,0.1M),涡旋均匀后置于37℃水浴锅中。加入含有猪胰酶(1012USP/mL)和葡萄糖淀粉酶(12U/mL)的混合酶5mL,充分涡旋,并准确计时。取出0.25mL水解20min和120min的酶解液,加入10mL 66%(v/v)的乙醇,在4300r/min离心5min。取100μL上清液,加3mL GOPOD(试剂盒),50℃水浴30min,于510nm处测吸光值。水解20min和120min酶解液的葡萄糖含量分别记为G20和G120。慢消化(SDS)和抗性淀粉(RS)含量的计算公式如下:
SDS(%)=(G120-G20)×0.9/TS
RS(%)=[TS-(RDS+SDS)]/TS
其中:G20,淀粉酶水解20min后产生的葡萄糖含量(mg);G120,淀粉酶水解120min后产生的葡萄糖含量(mg);TS,样品中总淀粉含量(mg)。
经测定,该产品的慢消化和抗性淀粉的含量之和超过90wt%,其中抗性淀粉含量超过80wt%。将样品在95℃水浴处理30min以测试其耐高温性,经高温水热处理后仍保留超 过40wt%的慢消化和抗性淀粉(SDS+RS)。
实施例1
1)将马铃薯去皮,切成5mm×5mm×5mm的块,浸泡于8倍体积0.05M的HCl溶液中,以100rpm的转速匀速振摇6h;
2)将经酸浸泡后的马铃薯块用自来水或纯净水冲洗至呈中性,浸泡于8倍体积0.025M的NaOH溶液,以100rpm的转速匀速振摇12h;
3)将酸碱浸泡后的马铃薯揉碎制泥,然后在马铃薯泥中加入自来水或纯净水,过150μm筛网4次,得到马铃薯粗颗粒与粗浆;
4)将步骤3)中的粗颗粒再次揉碎制泥,加入自来水或纯净水过150μm筛网4次,分别收集得到的粗颗粒与粗浆,所得粗颗粒再次捣碎制泥,加自来水或纯净水过150μm筛网4次,重复3次,收集得到的粗浆。
5)将步骤3)和4)所得粗浆过75μm筛网5次,收集筛网上残余物并用5倍体积无水乙醇洗涤3次,然后在40℃烘箱中烘干,得到细胞壁完整的马铃薯全粉。
6)将所得马铃薯全粉在5倍体积的水中分散,添加全粉干基质量12%的三偏磷酸钠/三聚磷酸钠复合交联剂,三偏磷酸钠与三聚磷酸钠质量比例为99:1,再加入全粉干基质量的10%的Na 2SO 4。用0.5M NaOH溶液调整体系pH为11,在45℃条件下温育3h。
7)用0.5M HCl溶液调整步骤6)体系pH为6.5以终止交联反应,将全粉用自来水或纯净水洗涤3次后用5倍体积的无水乙醇洗涤3次,然后在40℃烘箱中烘干,即得到富含高耐热型慢消化和抗性淀粉的交联马铃薯全粉。图1为光学显微镜在普通光下,放大100倍拍摄的本实施例制备得到的交联马铃薯全粉的显微照片。马铃薯全粉中细胞壁完整,紧紧包裹着多颗淀粉颗粒。
8)经测定,样品的慢消化和抗性淀粉含量分别为3.7wt%和92.6wt%,而中国发明专利2011100893737制得的抗性淀粉含量为40-85wt%。与现有技术相比,制得样品的抗性淀粉含量约提高10-50wt%,且本方法既能显著提高抗性淀粉含量,又能保留全部营养成分,改善口感和风味,适口性优良,可以解决现有技术适口性差和添加量有限等问题。将制得样品在95℃水浴处理30min,以测试其耐高温性,测得样品的耐高温慢消化和抗性淀粉含量分别为27.6wt%和13.6wt%。说明本方法制备的慢消化和抗性淀粉具有良好热稳定性,能达到生食,部分熟化或熟食均能显著减缓淀粉消化性的目的,适用面广。
实施例2
1)取成熟饱满的芸豆,去皮后浸泡于12倍体积0.1M的HCl溶液中,以150rpm的 转速匀速振摇24h;
2)将经酸浸泡后的芸豆用自来水或纯净水冲洗至呈中性,浸泡于12倍体积0.06M的NaOH溶液,以200rpm的转速匀速振摇24h;
3)将酸碱浸泡后的芸豆捣碎制泥,然后在芸豆泥中加入自来水或纯净水,过180μm筛网5次,得到芸豆粗颗粒与粗浆;
4)将步骤3)中的粗颗粒再次揉碎制泥,加入自来水或纯净水过180μm筛网5次,分别收集得到的粗颗粒与粗浆,所得粗颗粒再次捣碎制泥,加自来水或纯净水过180μm筛网5次,重复4次,收集得到的粗浆。
5)将步骤3)和4)所得粗浆过50μm筛网5次,收集筛网上残余物并用6倍体积无水乙醇洗涤2次,然后在45℃烘箱中烘干,得到细胞壁完整的芸豆全粉。
6)将所得芸豆全粉在4倍体积的水中分散,添加全粉干基质量5%的三偏磷酸钠/三聚磷酸钠复合交联剂,其比例为99:1,再加入全粉干基质量12%的Na 2SO 4。用0.5M NaOH溶液调整体系pH为9,在35℃条件下温育4h。
7)用0.5M HCl溶液调整步骤6)体系pH为6以终止交联反应,将全粉用自来水或纯净水洗涤4次后用6倍体积无水乙醇洗涤2次,然后在45℃烘箱中烘干,即得到富含耐热型慢消化和抗性淀粉的交联芸豆全粉。图2为采用光学显微镜在普通光下,放大100倍拍摄本实施例制备得到的交联芸豆全粉的显微镜照片。从图中可以看出芸豆全粉中细胞壁完整,细胞壁与蛋白质基质一起紧紧包裹着芸豆淀粉颗粒。
8)经测定,样品的慢消化和抗性淀粉含量分别为10.2wt%和84.0wt%。将制得样品在95℃水浴处理30min,以测试其耐高温性,测得样品的耐高温慢消化和抗性淀粉含量分别为42.6wt%和23.9wt%。
实施例3
1)取成熟饱满的皱皮豌豆,去皮后浸泡于10倍体积0.08M的HCl溶液中以150rpm的转速匀速振摇12h;
2)将经酸浸泡后的豌豆用自来水或纯净水冲洗至呈中性,浸泡于10倍体积0.04M的NaOH溶液,以150rpm的转速匀速振摇24h;
3)将酸碱浸泡后的豌豆捣碎制泥,然后在豌豆泥中加入自来水或纯净水,过125μm筛网3次,得到豌豆粗颗粒与粗浆;
4)将步骤3)中的粗颗粒再次揉碎制泥,加入自来水或纯净水过125μm筛网3次,分别收集得到的粗颗粒与粗浆,所得粗颗粒再次捣碎制泥,加自来水或纯净水过150μm筛 网4次,重复3次,收集得到的粗浆。
5)将步骤3)和4)所得粗浆过45μm筛网3次,收集筛网上残余物并用4倍体积无水乙醇洗涤2次,然后在45℃烘箱中烘干,得到细胞壁完整的豌豆全粉。
6)将所得豌豆全粉在4倍体积水中分散,添加全粉干基质量10%的三偏磷酸钠/三聚磷酸钠复合交联剂,其比例为99:1,再加入全粉干基质量的8%的Na 2SO 4。用0.5M NaOH溶液调整体系pH为9,在55℃条件下温育2h。
7)用0.5M HCl溶液调整步骤6)体系pH为6以终止交联反应,将全粉用自来水或纯净水洗涤5次后用4倍体积无水乙醇洗涤1次,然后在45℃烘箱中烘干,即得到富含耐热型慢消化和抗性淀粉的交联皱皮豌豆全粉。图3为采用光学显微镜在普通光下,放大100倍拍摄本实施例制备得到的交联皱皮豌豆全粉的显微镜照片。从图中可以看出皱皮豌豆全粉中细胞壁完整,细胞壁与蛋白质基质一起紧紧包裹着豌豆淀粉颗粒。
8)经测定,样品的慢消化和抗性淀粉含量分别为9.5wt%和83.5wt%。将制得样品在95℃水浴处理30min,以测试其耐高温性,测得样品的耐高温慢消化和抗性淀粉含量分别为36.9wt%和27.3wt%。
上述实施例的测试结果可见,本发明直接以植物组织为原料,通过酸碱浸泡去除植物组织中间层的果胶,从而提取出细胞壁完整的全粉,并进一步对细胞壁进行交联从而制备出高耐热型慢消化和抗性淀粉。交联细胞壁可以作为有效物理屏障阻挡淀粉酶与淀粉的接触,进而显著减缓淀粉的消化性,因此制备出的产品中慢消化和抗性淀粉的含量之和超90wt%,其中抗性淀粉含量超过80wt%。同时,交联能使细胞壁抵抗热溶解,降低细胞壁通透性,高温热处理后交联细胞壁仍能作为有效屏障抑制内部淀粉的膨胀及阻碍淀粉酶与淀粉底物的结合,因而制备出的慢消化或抗性淀粉具有良好热稳定性,不论生食,部分熟化或熟食均能显著减缓淀粉消化性。再者,完整细胞壁保留了植物组织的全部营养物质,如蛋白质、矿物质和膳食纤维等,营养成分全面,且制备出的产品具有优良的口感和风味,适口性好,可在糖尿病人特膳食品和营养保健品等方面具有广泛应用。
上述实施例用来解释本发明,而不是对本发明进行限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 细胞壁交联制备高耐热型慢消化和抗性淀粉的生产方法,其特征在于包括以下步骤:
    1)将富含淀粉的植物组织浸泡于HCl溶液中,匀速振摇;
    2)将经酸浸泡后的植物组织用流水冲洗至呈中性,加入NaOH溶液浸泡,匀速振摇;
    3)将酸碱浸泡后的植物组织捣碎制泥,并加水过筛,得到植物组织的粗颗粒与粗浆;
    4)将所得粗颗粒再次捣碎制泥,并加水过筛,分别收集得到的粗颗粒与粗浆,所得粗颗粒再次捣碎制泥,加水过筛,重复3-5次,收集各次得到的粗浆;
    5)将步骤3)和4)所得粗浆过筛,收集筛网上残余物并洗涤,烘干,得到细胞壁完整的全粉;
    6)将所得全粉在水中分散,添加三偏磷酸钠/三聚磷酸钠复合交联剂,再加入硫酸钠;调整体系pH为9-12,在35-55℃条件下温育1-5小时;
    7)调整步骤6)体系pH为6-6.5以终止交联反应,将全粉洗涤,烘干,即得到高耐热型慢消化和抗性淀粉。
  2. 如权利要求1所述的方法,其特征在于,步骤1)所述富含淀粉的植物组织为马铃薯、红薯、杂豆、玉米、小麦、高粱或大米。
  3. 如权利要求1所述的方法,其特征在于,步骤1)中,将富含淀粉的植物组织浸泡于4-12倍体积0.01-0.1M的HCl溶液中,以80-200rpm的转速匀速振摇6-24h。
  4. 如权利要求1所述的方法,其特征在于,步骤2)中,将经酸浸泡后的植物组织用自来水或纯净水冲洗至呈中性,浸泡于4-12倍体积0.02-0.06M的NaOH溶液以80-200rpm的转速匀速振摇12-24h。
  5. 如权利要求1所述的方法,其特征在于,步骤3)和步骤4)中,所述的过筛为过125-180μm筛网1-5次。
  6. 如权利要求1所述的方法,其特征在于,步骤5)中,所述的洗涤是用3-6倍体积的无水乙醇洗涤1-3次,所述的过筛是过45-85μm筛网,过筛次数为2-5次;所述的烘干是在40-45℃烘箱中进行。
  7. 如权利要求1所述的方法,步骤6)中所述的三偏磷酸钠/三聚磷酸钠复合交联剂中三偏磷酸钠与三聚磷酸钠的质量比为97:1-99:1,三偏磷酸钠/三聚磷酸钠复合交联剂的添加量为全粉干基质量的3%-15%。
  8. 如权利要求1所述的方法,步骤6)中所述的硫酸钠的添加量为全粉干基质量的8%-12%;调整体系pH为9-12是通过0.5M NaOH溶液进行;所得全粉在3-6倍体积的水中分散。
  9. 如权利要求1所述的方法,步骤7)中所述的调整步骤6)体系pH为6-6.5是通过0.5MHCl溶液进行;所述的洗涤是用自来水或纯净水洗涤3-5次后用全粉3-6倍体积的无水乙醇洗涤1-3次;步骤7)所述的烘干是在40-45℃烘箱中进行。
  10. 一种细胞壁交联制备的高耐热型慢消化和抗性淀粉,由权利要求1-9任一项所述的生产方法制得,所得产品慢消化和抗性淀粉的含量之和超90wt%。
PCT/CN2020/120419 2020-05-25 2020-10-12 细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法 WO2021238016A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010449615.8A CN111657498A (zh) 2020-05-25 2020-05-25 细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法
CN202010449615.8 2020-05-25

Publications (1)

Publication Number Publication Date
WO2021238016A1 true WO2021238016A1 (zh) 2021-12-02

Family

ID=72384609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120419 WO2021238016A1 (zh) 2020-05-25 2020-10-12 细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法

Country Status (2)

Country Link
CN (1) CN111657498A (zh)
WO (1) WO2021238016A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111657498A (zh) * 2020-05-25 2020-09-15 华南理工大学 细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190737A (zh) * 2011-04-11 2011-09-21 华南理工大学 一种同时采用交联和湿热处理制备抗性淀粉的方法
CN102187996A (zh) * 2010-03-12 2011-09-21 Cj第一制糖株式会社 制备马铃薯膳食纤维的方法和食品组合物
CN103755818A (zh) * 2013-12-26 2014-04-30 河南天豫薯业股份有限公司 一种红薯淀粉除杂生产工艺
CN111657498A (zh) * 2020-05-25 2020-09-15 华南理工大学 细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506427A (ja) * 2009-10-02 2013-02-28 ユニバーシティ オブ アイダホ 強化した難消化性デンプン含有量および抑制された血糖上昇応答を有するジャガイモ製品ならびにその方法
CN102492046B (zh) * 2011-11-11 2014-02-05 山东龙力生物科技股份有限公司 一种高纯度抗性淀粉的制备方法
CN107663241B (zh) * 2017-11-16 2020-05-12 广西科技大学鹿山学院 一种高抗性淀粉含量的交联淀粉及其制备方法
CN110537690A (zh) * 2019-09-19 2019-12-06 齐鲁工业大学 一种山药泥的制备方法及其产品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187996A (zh) * 2010-03-12 2011-09-21 Cj第一制糖株式会社 制备马铃薯膳食纤维的方法和食品组合物
CN102190737A (zh) * 2011-04-11 2011-09-21 华南理工大学 一种同时采用交联和湿热处理制备抗性淀粉的方法
CN103755818A (zh) * 2013-12-26 2014-04-30 河南天豫薯业股份有限公司 一种红薯淀粉除杂生产工艺
CN111657498A (zh) * 2020-05-25 2020-09-15 华南理工大学 细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法

Also Published As

Publication number Publication date
CN111657498A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
CN105132492B (zh) 一种超高压协同酶制备的高抗性淀粉含量的产品及其制备方法
CN109511872A (zh) 一种营养米粉及其制备方法
CN103445259B (zh) 一种火麻仁蛋白浆料的制浆方法
JP2006217813A (ja) 米加工品およびその製造方法
CN101156691A (zh) 一种高活性玉米皮膳食纤维的生产方法及其产品
CN101919431B (zh) 一种含细菌纤维素的高膳食纤维饼干及其制备方法
CN109678983B (zh) 一种小麦麸皮多糖的提取方法及其制作的米线和方法
WO2021238016A1 (zh) 细胞壁交联制备的高耐热型慢消化和抗性淀粉及生产方法
TW200536485A (en) Germinating brown rice
CN111248313A (zh) 一种抗性淀粉奶茶固体饮料及其制备方法
CN110537690A (zh) 一种山药泥的制备方法及其产品
WO2018233197A1 (zh) 一种低gi值红糖及其制备方法
CN107319329A (zh) 一种降低gi指数的复合大米的加工方法
CN105166673B (zh) 一种米糠的处理方法及米糠米糕的制作方法
CN108095054B (zh) 一种减少膳食中糖分消化和吸收的植物性胶囊及其制备方法
CN114586988B (zh) 一种具有降糖功能的八月瓜果皮可溶性膳食纤维的提取工艺及应用
CN105410883A (zh) 一种芹菜粉丝及其制备方法
CN108271838A (zh) 一种银杏养生煎饼及其制备方法
CN102823803B (zh) 一种文冠果果仁的降压降脂谷物食品及其制备方法
CN104957497A (zh) 一种老醋酸辣味米线及其制备方法
CN111234558A (zh) 一种青稞麦绿素的提取方法
CN101675772A (zh) 膳食纤维豆腐
CN106820171A (zh) 一种柑橘渣膳食纤维的制备方法
CN114403348B (zh) 一种高纤荞麦挂面及其制备方法
CN115119921A (zh) 一种低gi值蒸谷米加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938374

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21.03.23)

122 Ep: pct application non-entry in european phase

Ref document number: 20938374

Country of ref document: EP

Kind code of ref document: A1