WO2021237974A1 - 基于伏安电子舌的黄豆酱理化指标的快速检测装置及方法 - Google Patents

基于伏安电子舌的黄豆酱理化指标的快速检测装置及方法 Download PDF

Info

Publication number
WO2021237974A1
WO2021237974A1 PCT/CN2020/113194 CN2020113194W WO2021237974A1 WO 2021237974 A1 WO2021237974 A1 WO 2021237974A1 CN 2020113194 W CN2020113194 W CN 2020113194W WO 2021237974 A1 WO2021237974 A1 WO 2021237974A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical
sensor
detection
soybean paste
electrode
Prior art date
Application number
PCT/CN2020/113194
Other languages
English (en)
French (fr)
Inventor
黄星奕
王沛昌
王成全
任晓锋
田潇瑜
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2021237974A1 publication Critical patent/WO2021237974A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising

Definitions

  • the invention relates to a method and device for detecting the quality of soybean paste, in particular to a rapid detection device and method for the physical and chemical indicators of soybean paste of a novel voltammetric electronic tongue, belonging to the field of rapid detection of food quality.
  • Soybean paste is a traditional seasoning sauce in my country. It has a strong sauce and ester aroma, and is salty and sweet. It is deeply loved by people. Soy bean paste is rich in linoleic acid, linolenic acid and soybean phospholipids, which are beneficial to lowering human cholesterol and reducing the incidence of cardiovascular diseases. Soy bean paste also has the effects of maintaining the elasticity of blood vessels, strengthening the brain and preventing the formation of fatty liver. Therefore, the quality assurance of soybean paste is of great practical significance for improving the health and nutritional level of consumers.
  • Physical and chemical indicators are an important reference for evaluating the quality of soybean paste, and are of great significance to the quality improvement and production control of soybean paste.
  • the detection indicators include amino acid nitrogen, ammonium salt and moisture.
  • the pretreatment process for the detection of amino acid nitrogen and ammonium salt is complicated, time-consuming and laborious, unable to achieve rapid detection, low efficiency, and requires a large amount of formaldehyde-based toxic reagents, which is harmful to the operator's body.
  • patent number: 201711295542.6 a method for rapidly detecting amino acid nitrogen and total acid content in soy sauce by mid-infrared spectroscopy, using mid-infrared spectroscopy technology for detection, not only the data processing is more cumbersome, but also the need for spectral bands Multiple screening; patent number: 201510228898.2, based on the method of electronic tongue for rapid detection of benzoic acid in juice, commercial electronic tongue is used to detect the juice, the equipment is relatively expensive, and the object is juice with simple ingredients. In summary, there are few reports on the detection method of the physical and chemical indexes of soybean paste based on the voltammetric electronic tongue.
  • the electronic tongue acquires sample information from the taste sensor array, and uses multivariate analysis methods to process the sensor output signals to achieve an objective and reliable analysis of the overall quality of the sample. Because the electronic tongue has the advantages of speed, accuracy, and good repeatability, it has been widely used in the field of food inspection.
  • the volt-ampere electronic tongue has the advantages of simple operation, strong adaptability, high sensitivity, and large amount of information. It is suitable for detecting foods containing complex organic matter.
  • the present invention develops a rapid detection device for physical and chemical indicators of soybean paste based on a new type of voltammetric electronic tongue, and successfully realizes the rapid and simple detection of physical and chemical indicators of amino acid nitrogen and ammonium salt content in soybean paste.
  • the present invention is developed
  • the volt-ampere electronic tongue device is simple in structure, easy to assemble, and low-cost, suitable for mass production and use in factories.
  • the invention aims to provide a method and device for detecting physical and chemical indexes of soybean paste by a novel voltammetric electronic tongue.
  • the detection scheme adopted by the present invention is summarized as follows: first, the taste sensor is used to collect the electrical signal data of soybean paste, and the sensor characteristic values such as peak value, inflection point value, and average value are extracted; secondly, the physical and chemical indicators of the sample are measured according to the chemical analysis method in the national standard , To obtain the content of amino acid nitrogen and ammonium salt; finally, the characteristic value obtained by the voltammetric electronic tongue and the content of physical and chemical indicators measured by the national standard method are used to construct a model, so as to realize the rapid and accurate quantitative detection of the physical and chemical indicators of soybean paste.
  • the invention is based on a new type of voltammetric electronic tongue, a rapid detection device for physical and chemical indicators of soybean paste, which is composed of a sample table, a sensor array, an excitation signal generator, a signal acquisition circuit, a data acquisition card and a computer, wherein the sensor array is respectively connected with the excitation signal generator ,
  • the signal acquisition circuit is connected by wires, the data acquisition card and the signal acquisition circuit are connected by wires, and the data acquisition card is connected to the computer by a data cable;
  • the sample stage is square and includes a magnetic stirrer.
  • the center of the sample stage is provided with a circular groove to
  • the fixed sample cell is equipped with a bracket.
  • the bracket is equipped with a sliding guide rail and a vertical connecting sleeve.
  • the connecting sleeve includes screws and wires, respectively connecting the excitation signal generator and the working electrode sensor, the signal acquisition circuit and the auxiliary electrode sensor; sensor array Including: graphene-modified gold, silver, palladium, platinum working electrode, silver chloride/silver reference electrode, and platinum column auxiliary electrode, including graphene-modified gold, silver, palladium, platinum electrode and excitation signal generator and The silver chloride/silver reference electrode is connected, and the platinum column auxiliary electrode is connected to the signal acquisition circuit; the signal acquisition circuit includes: a constant potential circuit, a current-voltage conversion circuit, and a program-controlled amplifier circuit.
  • the constant potential circuit is connected to the working electrode and the silver chloride/
  • the silver reference electrode is connected, the current-voltage conversion circuit is respectively connected with the auxiliary electrode and the program-controlled amplifier circuit;
  • the signal acquisition circuit is connected with the data acquisition card, the data acquisition card is connected with the computer, and the collected data is processed by the computer.
  • the sensor array is composed of metal electrodes modified with graphene: gold, silver, palladium, and platinum electrodes; the modification method is: the inert metal electrode is washed with ethanol and deionized water and dried, and the micro-injector takes 2uL graphene oxide to disperse Liquid (2mg/mL) was dripped on the surface of the treated electrode, dried under infrared light to obtain a graphene oxide modified electrode, and then cyclic voltammetry was used to scan at a rate of 100mV/s at a potential of -1.7 ⁇ 0.0V for 5 cycles , The graphene modified electrode is obtained. Soybean paste has a weak response to the excitation current, while graphene improves the sensor's ability to capture weak electrical signals, so it can improve the detection effect of the volt-ampere electronic tongue.
  • the modification method is: the inert metal electrode is washed with ethanol and deionized water and dried, and the micro-injector takes 2uL graph
  • the detection method of the present invention is based on the rapid detection device of the physical and chemical indicators of soybean paste based on the novel voltammetric electronic tongue, according to the following steps:
  • Step (1) Use the chemical analysis method in the national standard to determine the amino acid nitrogen and ammonium salt content of soybean paste;
  • Step (2) Sample pretreatment: Soybean paste is ground until there are no obvious coarse particles, and deionized water is added to dissolve it;
  • Step (3) Pretreatment of the sensor array experiment: ultrasonic cleaning with deionized water and ethanol in sequence, drying with nitrogen, and initializing cyclic voltammetry pre-scanning;
  • Step (4) Use the new voltammetric electronic tongue device to measure the soybean paste sample, record the response value of the electronic tongue sensor array, obtain the response curve of the sensor array to different samples, and store it in the computer;
  • Step (5) Process (4) the information of the soybean paste obtained by the voltammetric electronic tongue, extract the characteristic value, and construct a quantitative model with the content of the physical and chemical indicators in step (1).
  • the detection method of amino acid nitrogen is the formaldehyde value method.
  • the principle is to use the amphiphilic effect of amino acids, add formaldehyde to fix the alkalinity of the amino group, and make the carboxyl group show acidity. After titration with sodium hydroxide standard solution, it is quantified. Determine the end point with an acidity meter;
  • the detection method of ammonium salt is the semi-trace nitrogen determination method, the principle is that the sample is heated and distilled in an alkaline solution to make the ammonia freely distilled out, absorbed by the boric acid solution, and then titrated with a standard hydrochloric acid solution to calculate the content;
  • step (2) the mass of each soybean paste sample is 5g; use a porcelain mortar to grind for 2 minutes; during the grinding operation, the pestle is kept vertical, and the large beans are crushed and then ground;
  • step (2) the mass ratio of soybean paste to deionized water is 1:10;
  • step (3) the sensor is sonicated in deionized water and ethanol for half a minute in sequence, and the electrode tip is suspended in the ultrasonic bath during ultrasonic;
  • step (3) cyclic voltammetry uses the sensor to pre-scan the mixed solution of 2mmoL/L potassium ferricyanide and 1moL/L potassium nitrate, and the peak current value is used as an index to judge the performance of the sensor;
  • step (4) the detection steps of the voltammetric electronic tongue device are as follows: firstly, place the sample cell in the corresponding circular groove of the sample stage, and then slide the connecting sleeve of the installed sensor array to make the sensor array completely submerged in the sample In the middle, fix the connection sleeve, then turn on the excitation signal generator and the computer to set the experimental parameters, and finally detect and record the data;
  • step (4) during voltammetric electronic tongue detection, deionized water is used to electrochemically clean the sensor array every two detection intervals;
  • step (4) the experimental parameters of the excitation signal generator are mainly the signal output waveform, frequency, amplitude, and initial phase; the parameters of the computer (data acquisition card) are mainly the sampling interval;
  • step (4) when the first sample is tested, the first two cycles are used to determine the collection sensitivity
  • step (4) the voltammetric electronic tongue tests each sample for 5 cycles, and repeats the test 2-5 times for each sample;
  • step (5) preliminary processing is performed on the data obtained from the voltammetric electronic tongue detection sample, and the average value obtained from the peak value and inflection point value of the sensor detection curve for 5 cycles is extracted as the characteristic value;
  • step (5) the characteristic value obtained after the detection curve of each sensor is extracted is weighted and added as the final parameter value detected by the sensor:
  • Ai represents the final parameter value detected by the sensor; Indicates the average value of the peak value in the sensor detection curve; Indicates the average value of the inflection point value in the sensor detection curve; m and n are weights; i is the sensor code, ranging from 1-4;
  • step (5) the partial least squares method is used to analyze the correlation between the content of each physical and chemical component of soybean paste and the parameter value of each sensor, so as to establish a detection model for the content of each physical and chemical component of soy sauce.
  • the final parameter value of each sensor is compared with step (1
  • the physical and chemical component content detection model established in soybean paste based on the physical and chemical index content measured in) is:
  • Y J represents the detection model result of the content of the physical and chemical component j of soybean paste
  • a 1-4 represents the final parameter value detected by the four sensors
  • k j represents the constant in the detection model for the content of the physical and chemical component j of soybean paste
  • a j represents j silver content nm / graphene modified glassy carbon electrodes parameter value detection model soy sauce physicochemical component corresponding weight
  • B j represents the gold electrode parameter value j content detection model soy sauce physicochemical component corresponding weights
  • C j represents the soy sauce
  • d j represents the weight corresponding to the palladium electrode parameter value in the physical and chemical component j content detection model of soybean paste.
  • the invention develops a rapid detection device for the physical and chemical indexes of soybean paste based on the voltammetric electronic tongue, and successfully realizes the rapid and simple detection of the physical and chemical indexes of the amino acid nitrogen and ammonium salt content in the soybean paste.
  • the structure of the voltammetric electronic tongue device developed by the invention Simple, easy to assemble, low cost, suitable for mass production and use in factories.
  • Figure 1 is a diagram of a new type of voltammetric electronic tongue device
  • Figure 2 is the quantitative prediction model result of the novel voltammetric electronic tongue of the present invention for detecting the content of amino acid nitrogen;
  • Figure 3 is a quantitative prediction model result of the new voltammetric electronic tongue of the present invention for detecting ammonium salt content.
  • the invention is based on a voltammetric electronic tongue-based rapid detection device for physical and chemical indicators of soybean paste. It consists of a sample table (1), a sensor array (9), an excitation signal generator (10), a signal acquisition circuit (11), and a data acquisition card (12).
  • the sensor array is connected to the excitation signal generator and the signal acquisition circuit through wires, the data acquisition card and the signal acquisition circuit are connected through wires, and the data acquisition card is connected to the computer through the data line;
  • the sample stage is square , Including a magnetic stirrer (2), the center of the sample table is provided with a circular groove to fix the sample cell (3), on which is equipped with a bracket (4), a sliding guide (5) and a vertical connecting sleeve are installed on the bracket (6)
  • the connecting sleeve includes screws (7) and wires (8), respectively connecting the excitation signal generator and the working electrode sensor, the signal acquisition circuit and the auxiliary electrode sensor;
  • the sensor array includes: graphene modified gold, silver, palladium, Platinum working electrode, silver chloride/silver reference electrode, and platinum column auxiliary electrode, among which graphene-modified gold, silver, palladium and platinum electrodes are connected to the excitation signal generator and silver chloride/silver reference electrode, platinum column The auxiliary electrode
  • the constant potential circuit is connected to the working electrode and the silver chloride/silver reference electrode, and the current-voltage conversion circuit is connected to the
  • the auxiliary electrode and the program-controlled amplifier circuit are connected; the signal acquisition circuit is connected with the data acquisition card, and the data acquisition card is connected with the computer, and the collected data is processed by the computer.
  • the sensor array is composed of metal electrodes modified with graphene: gold, silver, palladium, and platinum electrodes; the modification method is: the metal electrodes are cleaned with ethanol and deionized water and dried, and 2uL graphene oxide dispersion is taken from the micro-injector ( 2mg/mL) was dripped on the surface of the treated electrode, dried under an infrared lamp to obtain a graphene oxide modified electrode, and then cyclic voltammetry was used to scan for 5 cycles at a potential of -1.7 ⁇ 0.0V at a rate of 100mV/s, that is The graphene modified electrode is obtained.
  • a method for detecting physical and chemical indexes of soybean paste based on voltammetric electronic tongue according to the following steps:
  • the chemical analysis method in the national standard GB/T24399-2009 is used to determine the amino acid nitrogen and ammonium salt content of the soybean paste sample;
  • the amino acid nitrogen detection method is the formaldehyde value method, and the ammonium salt detection method is the semi-trace nitrogen determination method ;
  • Graphene modified electrode For dry gold, silver, palladium, and platinum electrodes, take 2uL graphene oxide dispersion (2mg/mL) from the micro-injector and apply it to the surface of the treated electrode, and dry it under infrared light. Obtain a graphene oxide modified electrode, and then use cyclic voltammetry to scan at a rate of 100 mV/s at a potential of -1.7 to 0.0V for 5 cycles to obtain a graphene modified electrode;
  • the voltammetric electronic tongue device which is composed of a sensor array, an excitation signal generator, a signal acquisition circuit, a data acquisition card, a sample stage and a computer;
  • the sensor array includes: silver nano/graphene modified glassy carbon electrode, gold electrode, Platinum electrode, palladium electrode, silver chloride/silver reference electrode, platinum column auxiliary electrode;
  • signal acquisition circuit includes: constant potential circuit, current-voltage conversion circuit, programmable amplifier circuit;
  • the least square method is used to analyze and establish the soybean
  • the amino acid nitrogen content detection model Y 1 of the sauce is based on the ammonium salt content of the soybean sauce obtained in (2) and the final parameter values A 1 , A 2 , A 3 , and A 4 of each sensor obtained in (10).
  • the least square method is used to analyze and combine Establish the ammonium salt content detection model Y 2 of soybean paste:
  • Y 1 0.4734+0.2130*A 1 +0.0596*A 2 -0.4300*A 3 +0.0217*A 4 ;
  • Y 2 0.0921-0.3550*A 1 +0.2773*A 2 -0.0527*A 3 +0.3550*A 4 ;
  • the detection result of the amino acid nitrogen content detection model is shown in Figure 2, and the R 2 value of the model is 0.9533; the detection result of the ammonium salt content detection model is shown in Figure 3, and the R 2 value of the model is 0.9796; the model prediction effect is good.
  • the invention is also applicable to other brewed foods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种基于伏安电子舌的黄豆酱理化指标的快速检测装置及方法,其中,方法的步骤为:首先,采用味觉传感器采集黄豆酱的电信号数据,提取峰值、拐点值、平均值等传感器特征值;其次,按照国标中的化学分析方法测定样本的理化指标,获得氨基酸态氮、铵盐的含量;最后,将伏安电子舌获得的特征值与国标方法测得的理化指标含量构建模型,从而实现黄豆酱理化指标的快速、准确的定量检测。装置成功实现黄豆酱中氨基酸态氮和铵盐含量的理化指标的快速、简便检测,装置结构简单、易组装、低成本,适合工厂大量生产使用。

Description

基于伏安电子舌的黄豆酱理化指标的快速检测装置及方法 技术领域
本发明涉及黄豆酱品质的检测方法及装置,特别是一种新型伏安电子舌的黄豆酱理化指标的快速检测装置及方法,属于食品品质快速检测领域。
背景技术
黄豆酱是我国传统的调味酱,具有浓郁的酱香和酯香且咸甜适口,深受人们喜爱。黄豆酱富含亚油酸,亚麻酸和大豆磷脂,对降低人体胆固醇、降低心血管疾病的发病率均有益处;黄豆酱还具有保持血管弹性、健脑和防止脂肪肝形成的作用。因此,黄豆酱品质保障对提高消费者健康和营养水平具有十分重要的现实意义。
理化指标是评价黄豆酱品质的重要参考,对黄豆酱的品质改良及生产控制具有重要意义。目前,针对黄豆酱理化指标检测主要依据国家标准(GB/T24399-2009)的化学分析方法,检测指标包括氨基酸态氮、铵盐以及水分。其中,氨基酸态氮与铵盐的检测过程预处理复杂、耗时费力,无法实现快速检测,效率较低,并且需要大量甲醛类的有毒试剂,对操作人员的身体有危害。经检索相关专利,专利号:201711295542.6,一种用中红外光谱快速检测酱油中氨基酸态氮和总酸含量的方法中,采用中红外光谱技术进行检测,不仅数据处理较为繁琐,而且需要对光谱波段进行多次筛选;专利号:201510228898.2,基于电子舌快速检测果汁中苯甲酸的方法中,使用商用电子舌对果汁进行检测,设备价格较为高昂,且对象为成分简单的果汁。综上所述,基于伏安电子舌的黄豆酱理化指标检测方法鲜有报道。
电子舌是由味觉传感器阵列获取样本信息,利用多元分析方法对传感器 输出信号进行处理,实现对样本整体品质的客观、可靠分析。由于电子舌具有快速、准确、重复性好等优点,在食品检测领域得到了广泛应用。伏安电子舌具有操作简单、适应性强、敏感度高、信息量大等优点,适合对含有复杂有机物的食品进行检测。
本发明针对上述的现实问题,开发了基于新型伏安电子舌的黄豆酱理化指标的快速检测装置,成功实现黄豆酱中氨基酸态氮和铵盐含量的理化指标的快速、简便检测,本发明研制的伏安电子舌装置结构简单、易组装、低成本,适合工厂大量生产使用。
发明内容
本发明旨在提供一种新型伏安电子舌对黄豆酱理化指标的检测方法及装置。本发明所采用的检测方案概括为:首先,采用味觉传感器采集黄豆酱的电信号数据,提取峰值、拐点值、平均值等传感器特征值;其次,按照国标中的化学分析方法测定样本的理化指标,获得氨基酸态氮、铵盐的含量;最后,将伏安电子舌获得的特征值与国标方法测得的理化指标含量构建模型,从而实现黄豆酱理化指标的快速、准确的定量检测。
本发明基于新型伏安电子舌的黄豆酱理化指标的快速检测装置,由样品台、传感器阵列、激励信号发生器、信号采集电路、数据采集卡和计算机组成,其中传感器阵列分别与激励信号发生器、信号采集电路通过导线连接,数据采集卡与信号采集电路通过导线连接,数据采集卡通过数据线与计算机连接;样品台呈方形,包括磁力搅拌器,样品台的中央设有圆形凹槽以固定样品池,其上配备支架,支架上装有滑动导轨及保持竖直的连接套,连接套包括螺钉和导线,分别连接激励信号发生器与工作电极传感器、信号采集电路与辅助电极传感器;传感器阵列包括:石墨烯修饰的金、银、钯、铂工作 电极,氯化银/银参比电极,以及铂柱辅助电极,其中石墨烯修饰的金、银、钯、铂电极与激励信号发生器以及氯化银/银参比电极连接,铂柱辅助电极与信号采集电路连接;信号采集电路包括:恒电位电路、电流电压转换电路、程控放大电路,恒电位电路分别与工作电极、氯化银/银参比电极连接,电流电压转换电路分别与辅助电极、程控放大电路连接;信号采集电路与数据采集卡连接,数据采集卡与计算机连接,采集的数据由计算机处理。
其中传感器阵列由使用石墨烯修饰的金属电极:金、银、钯、铂电极组成;修饰方法为:惰性金属电极使用乙醇和去离子水清洗后烘干,微量进样器取2uL氧化石墨烯分散液(2mg/mL)滴涂在处理好的电极表面,红外灯下烘干得到氧化石墨烯修饰电极,再使用循环伏安法在-1.7~0.0V电位下以100mV/s的速率扫描5周期,即得到石墨烯修饰电极。黄豆酱对于激励电流的响应比较微弱,而石墨烯提高了传感器对微弱电信号的捕捉能力,因此可以提高伏安电子舌的检测效果。
本发明基于新型伏安电子舌的黄豆酱理化指标的快速检测装置的检测方法,按照下述步骤进行:
步骤(1):采用国标中的化学分析方法测定黄豆酱的氨基酸态氮和铵盐含量;
步骤(2):样本前处理:黄豆酱经过研磨至无明显粗颗粒,添加去离子水溶解;
步骤(3):传感器阵列实验前处理:去离子水、乙醇依次超声清洗,氮气吹干,循环伏安法预扫描初始化;
步骤(4):采用新型伏安电子舌装置对黄豆酱样本进行测定,记录电子舌传感器阵列的响应值,得到传感器阵列对不同样本的响应曲线,将其存储 于计算机中;
步骤(5):对(4)伏安电子舌获得黄豆酱的信息进行处理,提取特征值,构建与步骤(1)中理化指标含量的定量模型。
步骤(1)中,氨基酸态氮的检测方法为甲醛值法,原理是利用氨基酸的两性作用,加入甲醛以固定氨基的碱性,使羧基显示出酸性,用氢氧化钠标准溶液滴定后定量,以酸度计测定终点;
步骤(1)中,铵盐的检测方法为半微量定氮法,原理是试样在碱性溶液中加热蒸馏,使氨游离蒸出,被硼酸溶液吸收,然后用盐酸标准溶液滴定计算含量;
步骤(2)中,每份黄豆酱样品质量为5g;使用瓷质研钵研磨,时间为2分钟;进行研磨操作时,研杵保持垂直,大块的豆粒先压碎再研磨;
步骤(2)中,黄豆酱与去离子水的质量比为1:10;
步骤(3)中,传感器分别在去离子水和乙醇中依次超声半分钟,超声时电极头悬浮于超声池中;
步骤(3)中,循环伏安法使用传感器对2mmoL/L铁***和1moL/L硝酸钾的混合溶液进行预扫描,峰电流值作为评判传感器性能的指标;
步骤(4)中,伏安电子舌装置检测的步骤为:首先将样品池置于样品台对应的圆形凹槽内,其次将安装好传感器阵列的连接套下滑,使传感器阵列完全淹没于样品中,固定连接套,之后打开激励信号发生器和计算机设置实验参数,最后检测并记录数据;
步骤(4)中,伏安电子舌检测时,每两次检测间隔使用去离子水对传感器阵列进行电化学清洗;
步骤(4)中,激励信号发生器的实验参数主要是信号输出波形、频率、 振幅、初相;计算机(数据采集卡)的参数主要是采样间隔;
步骤(4)中,进行第一个样品检测时,前两个周期用于确定采集灵敏度;
步骤(4)中,伏安电子舌对每个样品检测5个周期,每个样品重复检测2-5次;
步骤(5)中,将伏安电子舌检测样品获得的数据进行初步处理,提取传感器检测曲线5个周期的峰值、拐点值求得的平均值作为特征值;
步骤(5)中,每个传感器检测曲线提取后求得的特征值进行权重加和作为该传感器检测的最终参数值:
Figure PCTCN2020113194-appb-000001
其中,A i表示传感器检测的最终参数值;
Figure PCTCN2020113194-appb-000002
表示传感器检测曲线中峰值的平均值;
Figure PCTCN2020113194-appb-000003
表示传感器检测曲线中拐点值的平均值;m、n为权重;i为传感器代号取值范围1-4;
步骤(5)中,,采用偏最小二乘法分析黄豆酱的各理化成分含量与各传感器参数值的相关性,从而建立酱油各理化成分含量检测模型,每个传感器的最终参数值与步骤(1)中测得的理化指标含量建立的黄豆酱各理化成分含量检测模型为:
Y J=k j+a j*A 1+b j*A 2+c j*A 3+d j*A 4
其中,Y J表示黄豆酱理化成分j含量的检测模型结果;A 1-4表示四根传感器检测的最终参数值;k j表示在黄豆酱理化成分j含量检测模型中的常数;a j表示在黄豆酱理化成分j含量检测模型中银纳米/石墨烯修饰玻碳电极参数值对应的权重;b j表示在黄豆酱理化成分j含量检测模型中金电极参数值对应的权重;c j表示在黄豆酱理化成分j含量检测模型中铂金电极参数值对应的权重;d j表示在黄豆酱理化成分j含量检测模型中钯电极参数值对应的权重。
本发明开发了基于伏安电子舌的黄豆酱理化指标的快速检测装置,成功实现黄豆酱中氨基酸态氮和铵盐含量的理化指标的快速、简便检测,本发明研制的伏安电子舌装置结构简单、易组装、低成本,适合工厂大量生产使用。
附图说明
图1是新型伏安电子舌装置图;
其中:1、样品台;2、磁力搅拌器;3、样品池;4、支架;5、导轨;6、连接套;7、螺钉;8、导线;9、传感器阵列;10、激励信号发生器;11、信号采集电路;12、数据采集卡;13、计算机;
图2是本发明新型伏安电子舌检测氨基酸态氮含量的定量预测模型结果;
图3是本发明新型伏安电子舌检测铵盐含量的定量预测模型结果。
具体实施方式
以下结合附图和较佳实施例,对依据本发明提出的一种基于伏安电子舌对黄豆酱理化指标的检测方法及装置的具体实施方式、特征与功效,做如下详细说明。
本发明基于伏安电子舌的黄豆酱理化指标的快速检测装置,由样品台(1)、传感器阵列(9)、激励信号发生器(10)、信号采集电路(11)、数据采集卡(12)和计算机(13)组成,其中传感器阵列分别与激励信号发生器、信号采集电路通过导线连接,数据采集卡与信号采集电路通过导线连接,数据采集卡通过数据线与计算机连接;样品台呈方形,包括磁力搅拌器(2),样品台的中央设有圆形凹槽以固定样品池(3),其上配备支架(4),支架上装有滑动导轨(5)及保持竖直的连接套(6),连接套包括螺钉(7)和导线(8),分别连接激励信号发生器与工作电极传感器、信号采集电路与辅助电极传感器;传感器阵列包括:石墨烯修饰的金、银、钯、铂工作电极,氯化银/银参 比电极,以及铂柱辅助电极,其中石墨烯修饰的金、银、钯、铂电极与激励信号发生器以及氯化银/银参比电极连接,铂柱辅助电极与信号采集电路连接;信号采集电路包括:恒电位电路、电流电压转换电路、程控放大电路,恒电位电路分别与工作电极、氯化银/银参比电极连接,电流电压转换电路分别与辅助电极、程控放大电路连接;信号采集电路与数据采集卡连接,数据采集卡与计算机连接,采集的数据由计算机处理。
传感器阵列由使用石墨烯修饰的金属电极:金、银、钯、铂电极组成;修饰方法为:金属电极使用乙醇和去离子水清洗后烘干,微量进样器取2uL氧化石墨烯分散液(2mg/mL)滴涂在处理好的电极表面,红外灯下烘干得到氧化石墨烯修饰电极,再使用循环伏安法在-1.7~0.0V电位下以100mV/s的速率扫描5周期,即得到石墨烯修饰电极。
一种基于伏安电子舌对黄豆酱理化指标的检测方法,按照下述步骤进行:
(1)待测样本制备:选取三种不同品牌(欣和、海天、李锦记)和三种生产批次(3个月、6个月、9个月)的黄豆酱样本,每种品牌取3种不同批次的黄豆酱,每批次9个样本;
(2)采用国标GB/T24399-2009中的化学分析方法测定黄豆酱样品的氨基酸态氮和铵盐含量;氨基酸态氮的检测方法为甲醛值法,铵盐的检测方法为半微量定氮法;
(3)称取5g不同品牌黄豆酱样品于干净干燥的研钵中,使用研杵将大块豆粒压碎至无明显豆粒后,继续按顺逆时针各研磨1分钟至样品呈均匀糊状,称取4g研磨样品于样品池中并加入40mL去离子水,搅拌均匀备用;
(4)将裸金属电极从储存盒中取出,去掉密封电极套,首先使用去离子水冲洗两次,然后置于烧杯中超声清洗,注意电极头不要接触杯底,超声顺 序为去离子水超声半分钟,乙醇超声半分钟,再去离子水超声半分钟;超声后的电极用氮气吹干后备用;
(5)石墨烯修饰电极:对干燥的金、银、钯、铂电极,微量进样器取2uL氧化石墨烯分散液(2mg/mL)滴涂在处理好的电极表面,红外灯下烘干得到氧化石墨烯修饰电极,再使用循环伏安法在-1.7~0.0V电位下以100mV/s的速率扫描5周期,即得到石墨烯修饰电极;
(6)取配置好的铁***/硝酸钾(铁***:2mmoL/L、硝酸钾:1moL/L)混合溶液40mL置于样品池中,准备进行传感器阵列的电化学检测;
(7)设置激励信号发生器的参数为循环伏安法、起始电位-0.2V、最高电位0.6V、最低电位-0.2V、周期32s;数据采集卡的采集间隔为0.01s;每根传感器循环5圈,观察循环伏安曲线和峰电流值确定传感器阵列状态无误;
(8)组装伏安电子舌装置,由传感器阵列、激励信号发生器、信号采集电路、数据采集卡、样品台和计算机组成;传感器阵列包括:银纳米/石墨烯修饰玻碳电极、金电极、铂金电极、钯电极、氯化银/银参比电极、铂柱辅助电极;信号采集电路包括:恒电位电路、电流电压转换电路、程控放大电路;
(9)开始样品检测,将装有样品的样品池置于样品台对应的圆形凹槽内,其次将安装好传感器阵列的连接套沿导轨下滑,使传感器阵列完全淹没于样品中,固定连接套,之后打开激励信号发生器和计算机并设置实验参数;激励信号发生器设置为常规脉冲伏安法、频率1Hz、振幅0.8V、初相0.8V,数据采集卡设置为采样间隔0.01s;
(10)预检测样品,确定采样灵敏度为1×e -4;在检测过程中,每两次检测间隔使用去离子水对传感器阵列进行电化学清洗,即在设置电压分别为±1.6V的情况下,在去离子水中各清洗3s;每个样品重复检测3次,每个样品 每次检测采集5个周期的数据,每次每根传感器采集500个信号值,从而得到传感器阵列对不同检测样品的响应曲线。
(11)对所获得的传感器阵列响应信号进行特征提取,提取每周期的峰值、拐点值,传感器检测曲线后5个周期的峰值、拐点值求得的平均值作为传感器的特征值;每个传感器检测曲线提取后求得的特征值进行权重加和作为该传感器检测的最终参数值:
Figure PCTCN2020113194-appb-000004
其中m、n取值0.5;
(12)在本实例中,根据(2)所得黄豆酱的氨基酸态氮含量与(10)所得各传感器最终参数值A 1、A 2、A 3、A 4,采用最小二乘法分析并建立黄豆酱的氨基酸态氮含量检测模型Y 1,根据(2)所得黄豆酱的铵盐含量与(10)所得各传感器最终参数值A 1、A 2、A 3、A 4,采用最小二乘法分析并建立黄豆酱的铵盐含量检测模型Y 2
Y 1=0.4734+0.2130*A 1+0.0596*A 2-0.4300*A 3+0.0217*A 4
Y 2=0.0921-0.3550*A 1+0.2773*A 2-0.0527*A 3+0.3550*A 4
氨基酸态氮含量检测模型的检测结果如图2所示,模型的R 2值为0.9533;铵盐含量检测模型的检测结果如图3所示,模型的R 2值为0.9796;模型预测效果良好。本发明同样适用于其他的酿造食品中。
上述实施例仅为明晰本发明检测过程所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (6)

  1. 基于新型伏安电子舌的黄豆酱理化指标的快速检测装置,其特征在于由样品台、传感器阵列、激励信号发生器、信号采集电路、数据采集卡和计算机组成,其中传感器阵列分别与激励信号发生器、信号采集电路通过导线连接,数据采集卡与信号采集电路通过导线连接,数据采集卡通过数据线与计算机连接;样品台呈方形,包括磁力搅拌器,样品台的中央设有圆形凹槽以固定样品池,其上配备支架,支架上装有滑动导轨及保持竖直的连接套,连接套包括螺钉和导线,分别连接激励信号发生器与工作电极传感器、信号采集电路与辅助电极传感器;传感器阵列包括:石墨烯修饰的金、银、钯、铂工作电极,氯化银/银参比电极,以及铂柱辅助电极,其中石墨烯修饰的金、银、钯、铂电极与激励信号发生器以及氯化银/银参比电极连接,铂柱辅助电极与信号采集电路连接;信号采集电路包括:恒电位电路、电流电压转换电路、程控放大电路,恒电位电路分别与工作电极、氯化银/银参比电极连接,电流电压转换电路分别与辅助电极、程控放大电路连接;信号采集电路与数据采集卡连接,数据采集卡与计算机连接,采集的数据由计算机处理;
    其中传感器阵列由使用石墨烯修饰的金属电极:金、银、钯、铂电极组成;修饰方法为:惰性金属电极使用乙醇和去离子水清洗后烘干,微量进样器取2uL氧化石墨烯分散液(2mg/mL)滴涂在处理好的电极表面,红外灯下烘干得到氧化石墨烯修饰电极,再使用循环伏安法在-1.7~0.0V电位下以100mV/s的速率扫描5周期,即得到石墨烯修饰电极;黄豆酱对于激励电流的响应比较微弱,而石墨烯提高了传感器对微弱电信号的捕捉能力,因此可以提高伏安电子舌的检测效果。
  2. 基于权利要求1所述的新型伏安电子舌的黄豆酱理化指标的快速检测装置的检测方法,其特征在于按照下述步骤进行:
    步骤(1):采用国标中的化学分析方法测定黄豆酱的氨基酸态氮和铵盐含量;
    步骤(2):样本前处理:黄豆酱经过研磨至无明显粗颗粒,添加去离子水溶解;
    步骤(3):传感器阵列实验前处理:去离子水、乙醇依次超声清洗,氮气吹干,循环伏安法预扫描初始化;
    步骤(4):采用新型伏安电子舌装置对黄豆酱样本进行测定,记录电子舌传感器阵列的响应值,得到传感器阵列对不同样本的响应曲线,将其存储于计算机中;
    步骤(5):对(4)伏安电子舌获得黄豆酱的信息进行处理,提取特征值,构建与步骤(1)中理化指标含量的定量模型;
    步骤(4)中,伏安电子舌装置检测的步骤为:首先将样品池置于样品台对应的圆形凹槽内,其次将安装好传感器阵列的连接套下滑,使传感器阵列完全淹没于样品中,固定连接套,之后打开激励信号发生器和计算机设置实验参数,最后检测并记录数据;
    步骤(4)中,伏安电子舌检测时,每两次检测间隔使用去离子水对传感器阵列进行电化学清洗;
    步骤(4)中,激励信号发生器的实验参数主要是信号输出波形、频率、振幅、初相;计算机(数据采集卡)的参数主要是采样间隔;
    步骤(4)中,进行第一个样品检测时,前两个周期用于确定采集灵敏度;
    步骤(4)中,伏安电子舌对每个样品检测5个周期,每个样品重复检测2-5次;
    步骤(5)中,将伏安电子舌检测样品获得的数据进行初步处理,提取传感 器检测曲线5个周期的峰值、拐点值求得的平均值作为特征值;
    步骤(5)中,每个传感器检测曲线提取后求得的特征值进行权重加和作为该传感器检测的最终参数值:
    Figure PCTCN2020113194-appb-100001
    其中,A i表示传感器检测的最终参数值;
    Figure PCTCN2020113194-appb-100002
    表示传感器检测曲线中峰值的平均值;
    Figure PCTCN2020113194-appb-100003
    表示传感器检测曲线中拐点值的平均值;m、n为权重;i为传感器代号取值范围1-4。
  3. 根据权利要求2所述的新型伏安电子舌的黄豆酱理化指标的快速检测装置的检测方法,其特征在于步骤(1)中,氨基酸态氮的检测方法为甲醛值法,原理是利用氨基酸的两性作用,加入甲醛以固定氨基的碱性,使羧基显示出酸性,用氢氧化钠标准溶液滴定后定量,以酸度计测定终点;
    步骤(1)中,铵盐的检测方法为半微量定氮法,原理是试样在碱性溶液中加热蒸馏,使氨游离蒸出,被硼酸溶液吸收,然后用盐酸标准溶液滴定计算含量。
  4. 根据权利要求2所述的新型伏安电子舌的黄豆酱理化指标的快速检测装置的检测方法,其特征在于步骤(2)中,每份黄豆酱样品质量为5g;使用瓷质研钵研磨,时间为2分钟;进行研磨操作时,研杵保持垂直,大块的豆粒先压碎再研磨;
    步骤(2)中,黄豆酱与去离子水的质量比为1:10。
  5. 根据权利要求2所述的新型伏安电子舌的黄豆酱理化指标的快速检测装置的检测方法,其特征在于步骤(3)中,传感器分别在去离子水和乙醇中依次超声半分钟,超声时电极头悬浮于超声池中;
    步骤(3)中,循环伏安法使用传感器对2mmoL/L铁***和1moL/L硝酸 钾的混合溶液进行预扫描,峰电流值作为评判传感器性能的指标。
  6. 根据权利要求2所述的新型伏安电子舌的黄豆酱理化指标的快速检测装置的检测方法,其特征在于步骤(5)中,,采用偏最小二乘法分析黄豆酱的各理化成分含量与各传感器参数值的相关性,从而建立酱油各理化成分含量检测模型,每个传感器的最终参数值与步骤(1)中测得的理化指标含量建立的黄豆酱各理化成分含量检测模型为:
    Y J=k j+a j*A 1+b j*A 2+c j*A 3+d j*A 4
    其中,Y J表示黄豆酱理化成分j含量的检测模型结果;A 1-4表示四根传感器检测的最终参数值;k j表示在黄豆酱理化成分j含量检测模型中的常数;a j表示在黄豆酱理化成分j含量检测模型中银纳米/石墨烯修饰玻碳电极参数值对应的权重;b j表示在黄豆酱理化成分j含量检测模型中金电极参数值对应的权重;c j表示在黄豆酱理化成分j含量检测模型中铂金电极参数值对应的权重;d j表示在黄豆酱理化成分j含量检测模型中钯电极参数值对应的权重。
PCT/CN2020/113194 2020-05-26 2020-09-03 基于伏安电子舌的黄豆酱理化指标的快速检测装置及方法 WO2021237974A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010455847.4A CN111693594B (zh) 2020-05-26 2020-05-26 基于伏安电子舌的黄豆酱理化指标的快速检测装置及方法
CN202010455847.4 2020-05-26

Publications (1)

Publication Number Publication Date
WO2021237974A1 true WO2021237974A1 (zh) 2021-12-02

Family

ID=72478356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113194 WO2021237974A1 (zh) 2020-05-26 2020-09-03 基于伏安电子舌的黄豆酱理化指标的快速检测装置及方法

Country Status (2)

Country Link
CN (1) CN111693594B (zh)
WO (1) WO2021237974A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295704A (zh) * 2021-12-31 2022-04-08 杭州电子科技大学 一种基于特征参数提取的微浓度梯度溶液电化学测定方法
CN115598183A (zh) * 2022-11-11 2023-01-13 利诚检测认证集团股份有限公司(Cn) 一种液态食品电导率检测方法及装置
CN115656269A (zh) * 2022-11-11 2023-01-31 利诚检测认证集团股份有限公司 一种基于铂电极检测食用油酸价的方法
CN116609411A (zh) * 2023-07-20 2023-08-18 中国科学院烟台海岸带研究所 一种提高固体接触式离子选择性电极斜率灵敏度的方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502432A (zh) * 2014-12-22 2015-04-08 武汉中智博大科技有限公司 一种敏感膜及含有该敏感膜的丝网印刷电极及其应用
CN104698044A (zh) * 2013-12-10 2015-06-10 上海闵临机电科技有限公司 一种用于食品检测的电子舌
CN104849328A (zh) * 2015-05-06 2015-08-19 浙江大学 基于电子舌快速检测果汁中苯甲酸的方法
CN107121482A (zh) * 2017-04-13 2017-09-01 中国农业大学 一种嵌入式伏安电子舌检测***及方法
WO2019028162A1 (en) * 2017-08-01 2019-02-07 University Of Florida Research Foundation, Inc. DETERMINING THE VIABILITY OF BACTERIA BY MEASURING THE TRANSIENT PRODUCTION OF BIOGENIC AMINES
CN109991367A (zh) * 2019-03-20 2019-07-09 华南理工大学 基于电子舌的酱油理化成分检测方法、装置、介质和设备
CN110018203A (zh) * 2019-03-18 2019-07-16 江苏大学 基于电子鼻电子舌智能感官技术的香醋风味定量表征方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412013A (zh) * 2013-04-26 2013-11-27 河南工业大学 一种基于电子舌的鱼粉新鲜度检测装置
CN204613149U (zh) * 2015-04-23 2015-09-02 嘉兴学院 一种基于电子舌的大米品质检测装置
CN106501470B (zh) * 2016-11-23 2018-10-30 广东嘉豪食品有限公司 利用味觉***与电子鼻联合评价芥辣酱风味等级的方法
CN108960315B (zh) * 2018-06-27 2021-08-06 河南农业大学 一种调理肉制品品质智能评价***及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698044A (zh) * 2013-12-10 2015-06-10 上海闵临机电科技有限公司 一种用于食品检测的电子舌
CN104502432A (zh) * 2014-12-22 2015-04-08 武汉中智博大科技有限公司 一种敏感膜及含有该敏感膜的丝网印刷电极及其应用
CN104849328A (zh) * 2015-05-06 2015-08-19 浙江大学 基于电子舌快速检测果汁中苯甲酸的方法
CN107121482A (zh) * 2017-04-13 2017-09-01 中国农业大学 一种嵌入式伏安电子舌检测***及方法
WO2019028162A1 (en) * 2017-08-01 2019-02-07 University Of Florida Research Foundation, Inc. DETERMINING THE VIABILITY OF BACTERIA BY MEASURING THE TRANSIENT PRODUCTION OF BIOGENIC AMINES
CN110018203A (zh) * 2019-03-18 2019-07-16 江苏大学 基于电子鼻电子舌智能感官技术的香醋风味定量表征方法
CN109991367A (zh) * 2019-03-20 2019-07-09 华南理工大学 基于电子舌的酱油理化成分检测方法、装置、介质和设备

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295704A (zh) * 2021-12-31 2022-04-08 杭州电子科技大学 一种基于特征参数提取的微浓度梯度溶液电化学测定方法
CN114295704B (zh) * 2021-12-31 2023-11-14 杭州电子科技大学 一种基于特征参数提取的微浓度梯度溶液电化学测定方法
CN115598183A (zh) * 2022-11-11 2023-01-13 利诚检测认证集团股份有限公司(Cn) 一种液态食品电导率检测方法及装置
CN115656269A (zh) * 2022-11-11 2023-01-31 利诚检测认证集团股份有限公司 一种基于铂电极检测食用油酸价的方法
CN115656269B (zh) * 2022-11-11 2023-09-05 利诚检测认证集团股份有限公司 一种基于铂电极检测食用油酸价的方法
CN115598183B (zh) * 2022-11-11 2024-03-19 利诚检测认证集团股份有限公司 一种液态食品电导率检测方法及装置
CN116609411A (zh) * 2023-07-20 2023-08-18 中国科学院烟台海岸带研究所 一种提高固体接触式离子选择性电极斜率灵敏度的方法和应用
CN116609411B (zh) * 2023-07-20 2023-10-13 中国科学院烟台海岸带研究所 一种提高固体接触式离子选择性电极斜率灵敏度的方法和应用

Also Published As

Publication number Publication date
CN111693594B (zh) 2022-01-11
CN111693594A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2021237974A1 (zh) 基于伏安电子舌的黄豆酱理化指标的快速检测装置及方法
CN109254041B (zh) 一种辣椒中辣椒素的电化学检测方法
CN108088885A (zh) 一种土壤重金属电化学原位检测***及检测方法
CN110018203A (zh) 基于电子鼻电子舌智能感官技术的香醋风味定量表征方法
CN102879445B (zh) 一种基于多电极传感技术的黄酒酒龄鉴别方法
CN106501332B (zh) Zn-MOFs/玻碳电极及其制作方法和应用
CN102944598A (zh) 一种基于电化学还原氧化石墨/金纳米粒子复合膜细胞传感器的制备方法及其应用
CN108333232A (zh) 一种人工牛黄的电化学指纹图谱的检测方法
CN111307890B (zh) 氧化锰/石墨烯修饰电极以及基于其检测植物组织中水杨酸的方法
CN101413917A (zh) 奶制品中三聚氰胺的电化学快速检测方法
CN106290512A (zh) 修饰电极及其制备方法和应用
CN106645325B (zh) 检测食品中日落黄的电化学方法
CN106770522A (zh) 一种用于检测果汁纯度的电子舌***及检测方法
CN105891309B (zh) 检测溶液中l型色氨酸浓度的方法
CN107179345B (zh) 采用两步电沉积和溶出步骤的土壤重金属伏安检测方法
CN104777192B (zh) 一种食品甜度的检测方法
Norouzi et al. Ultrasensitive flow-injection electrochemical method using fast fourier transform square-wave voltammetry for detection of vitamin B1
CN106932449A (zh) 电化学传感器的制备方法及其在检测铅离子浓度中的应用
CN201090979Y (zh) 油品酸碱值快速测定仪
CN110823972B (zh) 基于Fe2O3电极的无酶葡萄糖光电化学传感器及其制备方法与检测方法
CN109655517B (zh) 一种水产品中2-甲基异茨醇的检测方式
CN113311040A (zh) 一种检测食品中辣椒素的电化学方法
CN105891310B (zh) 检测溶液中d型色氨酸浓度的方法
CN108241016A (zh) 一种红茶中茶黄素含量的快速检测方法及装置
CN108426939A (zh) 一种检测食品中抗氧化剂含量的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937208

Country of ref document: EP

Kind code of ref document: A1