WO2021235407A1 - セラミック板の製造方法、セッターの製造方法、及びセッターの再生方法 - Google Patents

セラミック板の製造方法、セッターの製造方法、及びセッターの再生方法 Download PDF

Info

Publication number
WO2021235407A1
WO2021235407A1 PCT/JP2021/018676 JP2021018676W WO2021235407A1 WO 2021235407 A1 WO2021235407 A1 WO 2021235407A1 JP 2021018676 W JP2021018676 W JP 2021018676W WO 2021235407 A1 WO2021235407 A1 WO 2021235407A1
Authority
WO
WIPO (PCT)
Prior art keywords
setter
ceramic green
green sheet
contact surface
ceramic
Prior art date
Application number
PCT/JP2021/018676
Other languages
English (en)
French (fr)
Inventor
利貴 山縣
満博 山口
里樹 東
江 尹
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022524473A priority Critical patent/JP7185099B2/ja
Publication of WO2021235407A1 publication Critical patent/WO2021235407A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes

Definitions

  • This disclosure relates to a method for manufacturing a ceramic plate, a method for manufacturing a setter, and a method for regenerating a setter.
  • Power modules that control large currents are used in fields such as automobiles, electric railways, industrial equipment, and power generation.
  • the circuit board mounted on the power module has an insulating ceramic plate.
  • a method for manufacturing a ceramic plate for example, the following manufacturing method as described in Patent Document 1 is known. That is, a step of extruding the ceramic powder into a sheet after mixing it with a sintering aid or the like, a step of punching to form a ceramic green sheet, and a step of firing the ceramic green sheet are performed. Then, a ceramic plate is manufactured. In the firing step of the ceramic green sheet, the ceramic green sheet is fired in a state where about 10 to 20 ceramic green sheets are laminated on the setter.
  • the present disclosure provides a method for manufacturing a ceramic plate, which can improve the production efficiency of the ceramic plate by regenerating the setter. Further, the present invention provides a method for manufacturing a setter and a method for regenerating the setter, which can effectively utilize resources.
  • the method for manufacturing a ceramic plate includes a first firing step of laminating and firing the setter and the first ceramic green sheet so as to be in contact with each other to obtain a ceramic plate, and a first ceramic green sheet.
  • the heating step of heating the setter with at least a part of the contact surface of the setter exposed and the second ceramic green sheet are laminated and fired so as to be in contact with each other at at least a part of the contact surface. It has a second firing step of obtaining a ceramic plate.
  • the setter is heated with at least a part of the contact surface of the setter exposed, which was in contact with the first ceramic green sheet.
  • the temperature may be higher than the temperature at which the foreign matter containing a component different from the component contained in the setter that adheres to the contact surface is decomposed.
  • the "component contained in the setter” in the present disclosure refers to a component originally contained in the setter before it is used in the method for manufacturing a ceramic plate. That is, it is a component (constituent component) contained in an unused setter.
  • the component contained in the setter composed of the boron nitride sintered body is boron nitride.
  • a plurality of setters including the above setter and a plurality of first ceramic green sheets including the first ceramic green sheet may be laminated and fired so as to be in contact with each other.
  • the plurality of setters may be heated with the contact surfaces of the plurality of setters in contact with the first ceramic green sheet separated from each other. This allows a plurality of setters to be heated and regenerated together. Therefore, the production efficiency of the ceramic plate can be further improved.
  • the first ceramic green sheet contains silicon nitride
  • the setter may be heated at 1450 to 2000 ° C. in an atmosphere of an inert gas.
  • the decomposition of silicon nitride contained in the foreign matter proceeds smoothly, and the time required for the heating step can be shortened.
  • foreign matter on the contact surface of the setter can be sufficiently reduced, and unevenness generated on the surface of the ceramic plate obtained in the second firing step can be further reduced.
  • the method for manufacturing a setter according to one aspect of the present disclosure is different from the components contained in the first setter on the contact surface with the ceramic green sheet by laminating and firing so that the first setter and the ceramic green sheet are in contact with each other. It has a firing step of obtaining a second setter to which foreign matter containing a component is attached, and a heating step of heating the second setter with at least a part of the contact surface exposed to reduce foreign matter on the contact surface. ..
  • the above-mentioned manufacturing method has a heating step of heating the second setter in which foreign matter adheres to the contact surface with the ceramic green sheet in the firing step.
  • the second setter is heated with at least a part of the contact surface exposed to reduce foreign matter on the contact surface.
  • the setter (third setter) obtained by reducing the amount of foreign matter can be laminated and fired so as to be in contact with the ceramic green sheet again.
  • the waste amount of the setter can be reduced and the resources can be effectively utilized by manufacturing the setter (third setter) in which the foreign matter is reduced from the second setter to which the foreign matter is attached. can.
  • the temperature may be higher than the temperature at which the foreign matter decomposes. As a result, foreign matter adhering to the contact surface can be sufficiently and smoothly reduced. Therefore, the setter can be efficiently manufactured.
  • a plurality of first setters including the first setter and a plurality of ceramic green sheets including the ceramic green sheet are laminated and fired so as to be in contact with each other, and a plurality of second setsters including the second setter are fired. You may get 2 setters.
  • the plurality of second setters may be heated with the contact surfaces of the plurality of second setters in contact with the ceramic green sheet separated from each other. Thereby, a plurality of second setters can be heated together to produce a plurality of setters at the same time. Therefore, the production efficiency of the setter can be improved.
  • the ceramic green sheet contains silicon nitride, and in the heating step, the second setter may be heated at 1450 to 2000 ° C. in an atmosphere of an inert gas.
  • the decomposition of silicon nitride contained in the foreign matter proceeds smoothly, and the time required for the heating step can be shortened.
  • the method for regenerating a setter according to one aspect of the present disclosure is different from the components contained in the first setter on the contact surface with the ceramic green sheet by laminating and firing so that the first setter and the ceramic green sheet are in contact with each other. It has a firing step of obtaining a second setter to which foreign matter containing a component is attached, and a heating step of heating the second setter with at least a part of the contact surface exposed to reduce foreign matter on the contact surface.
  • the above-mentioned regeneration method has a heating step of heating the second setter in which foreign matter adheres to the contact surface with the ceramic green sheet in the firing step.
  • the second setter is heated with at least a part of the contact surface exposed to reduce foreign matter on the contact surface.
  • the setter (third setter) obtained by reducing the amount of foreign matter can be laminated and fired so as to be in contact with the ceramic green sheet again.
  • the waste amount of the setter can be reduced and the resources can be effectively utilized by regenerating the setter (third setter) in which the foreign matter is reduced from the second setter to which the foreign matter is attached. can.
  • the present disclosure it is possible to provide a method for manufacturing a ceramic plate capable of improving the production efficiency of the ceramic plate by regenerating the setter. Further, it is possible to provide a method for manufacturing a setter and a method for regenerating the setter that can effectively utilize resources.
  • FIG. 6 is an SEM photograph showing an example of foreign matter (boron nitride particles) adhering to the contact surface of a setter made of a boron nitride sintered body. It is a figure which shows an example of a heating process. It is an SEM photograph which shows the main surface (before firing) of the setter used in Example 1.
  • FIG. 6 is an SEM photograph showing the main surface of FIG. 4 taken at a higher magnification than that of FIG.
  • FIG. 6 is an SEM photograph which shows the contact surface of the setter after the 1st firing step of Example 1.
  • FIG. 6 is an SEM photograph showing the contact surface of FIG. 6 taken at a higher magnification than that of FIG.
  • FIG. 6 is an SEM photograph showing the contact surface of FIG. 8 taken at a higher magnification than that of FIG. 6 is an SEM photograph showing the contact surface of the setter after the heating step of Comparative Example 1.
  • 11 is an SEM photograph showing the contact surface of FIG. 10 taken at a higher magnification than that of FIG. 11. It is a photograph which shows the example of the convex part on the surface of a silicon nitride plate.
  • a laminated body (first laminated body) laminated so that a setter and a ceramic green sheet (first ceramic green sheet) are in contact with each other is fired to obtain a ceramic plate.
  • the second firing to obtain a ceramic plate by firing the laminated body (second laminated body) in which the setter and the ceramic green sheet (second ceramic green sheet) are laminated so as to be in contact with each other at at least a part of the contact surface. It has a process.
  • the first ceramic green sheet and the second ceramic green sheet are ceramic green sheets laminated so as to be in contact with the setter.
  • the first ceramic green sheet and the second ceramic green sheet laminated so as to be in contact with the setter in the first firing step and the second firing step are manufactured by, for example, the following procedure.
  • First, a raw material slurry containing a ceramic powder, a sintering aid and a binder is formed.
  • the ceramic is not particularly limited, and examples thereof include carbides, oxides, and nitrides. Specific examples thereof include silicon carbide, alumina, silicon nitride, aluminum nitride and boron nitride.
  • Binders include those containing organic components.
  • first ceramic green sheet and a second ceramic green sheet may be processed into a desired shape by, for example, cutting.
  • the materials and shapes of the first ceramic green sheet and the second ceramic green sheet may be the same or different.
  • the setter for example, a commercially available ceramic sintered body may be purchased, or may be manufactured by a known method.
  • the setter include those containing at least one selected from the group consisting of boron nitride, silicon carbide, alumina, zirconia, graphite, and silicon nitride.
  • a setter made of boron nitride is preferably used because it has both heat resistance and good machinability.
  • the material of the setter may be different from the material of the ceramic plate from the viewpoint of suppressing the adhesion between the setter and the ceramic plate after firing.
  • a boron nitride sintered body When a boron nitride sintered body is used as the setter, it can be manufactured by the following procedure. First, a molded product is produced using hexagonal boron nitride powder as a raw material. If necessary, a sintering aid may be added to the hexagonal boron nitride powder before molding. Examples of the sintering aid include alkaline earth oxides such as magnesium oxide and calcium oxide, rare earth oxides such as aluminum oxide, silicon oxide and yttrium oxide, and composite oxides such as spinel.
  • the molding may be performed by uniaxial pressure molding and CIP molding. Uniaxial pressure molding may be performed at 3 to 20 MPa. CIP molding may be performed at 50 to 300 MPa.
  • the obtained molded product is fired to obtain a boron nitride sintered body.
  • the firing may be carried out under the conditions of a non-oxidizing atmosphere, a heating rate of 150 ° C./hr or less, a maximum temperature of 1800 to 2200 ° C., and a holding time of 5 hours or more in this temperature range.
  • the non-oxidizing atmosphere include a nitride gas atmosphere such as nitrogen and ammonia.
  • the density of the boron nitride sintered body may be 1600 kg / m 3 or more.
  • the method for producing the boron nitride sintered body is not limited to the above method. For example, it may be manufactured by a hot press method. Ceramic sintered bodies other than the boron nitride sintered body can be produced by a known method.
  • the setter thus obtained and the first ceramic green sheet are laminated so as to be in contact with each other to produce a laminated body.
  • the number of setters and ceramic green sheets constituting the laminate is not particularly limited.
  • As the laminate for example, a plurality of (for example, 50 to 100) ceramic green sheets including the first ceramic green sheet may be sandwiched between a pair of setters. Further, one setter and a plurality of ceramic green sheets including the first ceramic green sheet may be arranged alternately. As described above, by firing a plurality of ceramic green sheets in the first firing step, a plurality of ceramic plates can be manufactured at the same time.
  • the material and shape of the ceramic green sheet laminated together with the first ceramic green sheet may be the same as or different from that of the first ceramic green sheet.
  • a mold release agent may be applied to the main surface of the ceramic green sheet (first ceramic green sheet) in order to prevent the adjacent ceramic green sheets from adhering to each other during firing. Further, the mold release agent may be applied to the surface of the setter facing the main surface of the first ceramic green sheet. Examples of the component contained in the release agent include ceramic powder such as boron nitride, graphite powder, and binder.
  • FIG. 1 is a diagram illustrating an example of the first firing step of the laminated body.
  • the laminate 50 includes three setters 10 and a plurality of ceramic green sheets 30.
  • the plurality of ceramic green sheets 30 include four first ceramic green sheets 30a adjacent to the three setters 10.
  • the pair of setters 10A and 10B are laminated at the bottom and top of the laminated body 50. Therefore, in the setters 10A and 10B, one main surface is in contact with the first ceramic green sheet 30a.
  • the remaining setter 10C is laminated in the central portion of the laminated body 50. Therefore, both main surfaces of the setter 10C are in contact with the first ceramic green sheet 30a.
  • the contact surface of the setter 10 in which the first ceramic green sheet 30a and the setter 10 come into contact with each other is included in one or both main surfaces.
  • the laminated body 50 is housed in a degreasing furnace 20 and heated to, for example, 300 ° C. to 700 ° C. As a result, the binder contained in the ceramic green sheet 30 is removed. Subsequently, the degreased laminate 50 is housed in the firing furnace 25 and heated to 1600 ° C to 2000 ° C. As a result, the ceramic green sheet is fired and a ceramic plate is obtained.
  • the degreasing furnace 20 used for degreasing and the firing furnace 25 used for firing may be the same furnace or different furnaces. Further, the heating temperature, time and atmosphere may be appropriately adjusted according to the composition of the ceramic green sheet.
  • the laminated body (first laminated body) fired in the first firing step is separated into a ceramic plate and a setter.
  • the obtained ceramic plate may be processed as necessary to form, for example, a circuit board.
  • Granular foreign matter containing a component different from the component contained in the setter adheres to the contact surface that has been in contact with the first ceramic green sheet 30a (ceramic plate) of the separated setter.
  • the components contained in the foreign substance include components contained in a ceramic green sheet or a ceramic plate, and reaction products of these components and components contained in a setter.
  • the particle size of the foreign matter may be larger than the particles constituting the setter. That is, the foreign matter may be coarse particles.
  • FIG. 2 is an SEM photograph showing an example of foreign matter (boron nitride particles) adhering to the contact surface of a setter composed of a boron nitride sintered body.
  • the composition of foreign matter can be measured by EDS analysis.
  • the setter is composed of a boron nitride sintered body and the foreign matter is silicon nitride particles, it is difficult to find the foreign matter with the naked eye because the colors of both are similar.
  • the presence or absence of a foreign substance can be determined by performing SEM observation at a high magnification (for example, 500 times or more) as shown in FIG.
  • the setter with such foreign matter adhering to the contact surface is heated with the contact surface exposed.
  • foreign matter adhering to the contact surface can be volatilized or decomposed and reduced.
  • the heating may be carried out in an atmosphere of an inert gas.
  • the inert gas include nitrogen gas and argon gas.
  • the heating temperature in the heating step may be higher than the firing temperature in the first firing step, and may be higher than the temperature at which the foreign matter is decomposed.
  • the specific heating temperature may be, for example, 1450 ° C. or higher, 1600 ° C. or higher, or 1700 ° C. or higher.
  • the heating temperature may be, for example, 2000 ° C. or lower, 1950 ° C. or lower, or 1900 ° C. or lower.
  • the heating time at the above heating temperature may be, for example, 0.5 to 10 hours, or may be 1 to 5 hours.
  • FIG. 3 is a diagram illustrating an example of a heating process.
  • a plurality of setters 11 are stacked on the bottom plate 13.
  • Spacers 12 are arranged between the setters 11 adjacent to each other in the vertical direction.
  • the contact surfaces of the adjacent setters 11 are arranged so as to be separated from each other at a predetermined interval.
  • a part or all of the contact surface included in the main surface of the setter 11 is heated in the heating furnace 28 in an exposed state.
  • the same one as that of the firing furnace 25 of FIG. 1 may be used, or a different one may be used.
  • the plurality of setters 11 can be regenerated at the same time.
  • each setter 11 may be heated one by one. Further, it is not essential to use the spacer 12, and it suffices if the contact surface of each setter 11 can be heated in an exposed state. For example, using a frame having a support portion that supports the setter 11, a plurality of setters may be heated in a state of being arranged horizontally or vertically so that the contact surfaces are separated from each other.
  • the setter and the second ceramic green sheet are laminated so that the second ceramic green sheet comes into contact with at least a part of the contact surface of the setter whose foreign matter has been reduced in the heating step (second).
  • 2 laminated body is produced.
  • This second laminated body is heated in a degreasing furnace and a firing furnace to obtain a ceramic plate.
  • the degreasing furnace and the firing furnace may be the same as those used in the first firing step, or may be different.
  • the second laminated body may have the same laminated structure as the first laminated body 50 produced in the first firing step, or may have a different laminated structure.
  • the ceramic plate can be obtained by sequentially performing degreasing and firing in the same manner as in the first firing step.
  • the setter comes into contact with the second ceramic green sheet on the contact surface where foreign matter is reduced. Therefore, foreign matter on the contact surface between the second ceramic green sheet and the setter is reduced. Therefore, it is possible to prevent the ceramic plate obtained in the second firing step from having irregularities. In this way, the yield of the ceramic plate can be maintained even if the setter used in the first firing step is reused. Therefore, the production efficiency of the ceramic plate can be improved.
  • the heating step and the second firing step may be repeated.
  • the number of repetitions may be once or multiple times.
  • the setter may be heated with the contact surface with the second ceramic green sheet exposed each time the laminate is fired, or the laminate may be manufactured, the laminate may be fired, and the ceramic plate and the setter may be heated.
  • the heating step may be performed after the sorting is repeated a plurality of times.
  • the frequency of the heating step may be adjusted according to the presence or absence of foreign matter on the contact surface or the amount of foreign matter. In any case, by repeatedly regenerating and using the setter, it is possible to effectively utilize resources and reduce the manufacturing cost of the ceramic plate.
  • the ceramic plates obtained in the first firing step and the second firing step of the above-mentioned manufacturing method have the same surface quality. Therefore, it can be used for the same purpose.
  • the ceramic plate may be used as a circuit board by forming an electric circuit composed of a metal layer on one or both main surfaces, for example.
  • a laminated body in which the first setter and the ceramic green sheet are laminated so as to be in contact with each other is fired, and the contact surface of the first setter is formed on the contact surface with the ceramic green sheet.
  • the firing step can be performed in the same manner as the first firing step described above. That is, the first setter may be a commercially available ceramic sintered body or may be manufactured by a known method. Examples of the setter include those composed of at least one selected from the group consisting of boron nitride, silicon carbide, alumina, zirconia, graphite, and silicon nitride. The manufacturing procedure when the boron nitride sintered body is used as the first setter may be as described above. In the firing step, the laminate as shown in FIG. 1 may be housed in the firing furnace 25 and heated.
  • first setter the setter before firing in the firing step (first firing step)
  • second setter the setter baked in the firing step and having foreign matter adhered to the contact surface
  • the laminate obtained in the firing step is separated into a ceramic plate and a second setter, and the second setter is in a state where at least a part of the contact surface with the ceramic green sheet (ceramic plate) of the second setter is exposed. Heat the setter. As a result, the foreign matter adhering to the contact surface is volatilized or decomposed, and the foreign matter can be reduced.
  • a setter in which foreign matter is reduced by the heating step in this way may be referred to as a "third setter".
  • the heating conditions in the heating step may be the same as the heating step in the embodiment of the method for manufacturing a ceramic plate described above. Foreign matter adhering to the surface of the setter (third setter) obtained by the heating step is sufficiently reduced.
  • This setter (third setter) may have, for example, the same surface quality as the first setter.
  • the setter (third setter) thus obtained through the heating step may be used in the firing step (second firing step) instead of the first setter.
  • the second setter in which the foreign matter adheres to the contact surface is obtained again together with the ceramic plate. After this, the heating step may be performed again.
  • the used second setter can be regenerated as the third setter, and the amount of waste of the second setter can be reduced.
  • the second firing step and the heating step may be repeated a plurality of times. In this case, the reproduction of the second setter to the third setter and the production of the ceramic plate using the third setter (generation of the second setter) are repeatedly performed. Therefore, effective use of resources can be further promoted.
  • the setter manufacturing method of the present embodiment heats the used second setter used in the firing step to newly create a setter (third setter) in which foreign matter on the surface is reduced. Corresponds to the manufacturing method of. From another point of view, since the used setter is surface-treated and the used setter is regenerated, it can be said that the setter is surface-treated or the setter is regenerated.
  • the ceramic plate, the ceramic green sheet, and the setter may have a shape other than the rectangular parallelepiped shape. These may be chamfered at the corners. Further, the setter may be arranged only below the laminated body.
  • Example 1 Manufacturing of ceramic plates and regeneration of setters.
  • Example 1 A molded body (sheet material) was prepared by uniaxial pressure molding of a raw material powder containing silicon nitride powder and a sintering aid (magnesium oxide powder, yttrium oxide powder and silicon dioxide powder). This sheet material was punched out using a cutting device to form 68 ceramic green sheets having a rectangular parallelepiped shape.
  • three setters made of boron nitride having a rectangular parallelepiped shape manufactured by Denka Co., Ltd., trade name: NB-1000
  • FIG. 4 is an SEM photograph (100 times) of the main surface (before firing) of the setter.
  • FIG. 4 is an SEM photograph (100 times) of the main surface (before firing) of the setter.
  • FIG. 5 is an SEM photograph (500 times) of the main surface (before firing) of the setter taken at a higher magnification than that of FIG. As shown in FIGS. 4 and 5, no foreign matter was detected on the main surface of the setter (first setter) before firing. In the following, a laminate was produced so that the main surface and the ceramic green sheet were in contact with each other.
  • 34 ceramic green sheets were stacked between the lower setter and the central setter, and between the central setter and the upper setter.
  • a slurry for mold release was applied to the contact surface of the setter with the ceramic green sheet and one main surface of each ceramic green sheet.
  • the degreasing furnace and a firing furnace the prepared laminate was degreased and fired.
  • the degreasing temperature was 500 ° C. and the degreasing time was 30 hours.
  • the firing temperature was 1800 ° C. and the firing time was 30 hours.
  • the laminate was taken out from the firing furnace, the ceramic plate was removed from the laminate, and a pair of setters were recovered.
  • FIG. 6 is an SEM photograph (100 times) of the contact surface of the setter recovered from the laminated body.
  • FIG. 7 is an SEM photograph (500 times) of the contact surface of the setter taken at a higher magnification than that of FIG. Although the presence of foreign matter could not be confirmed visually, when the contact surface was observed at a high magnification (about 500 times) using an SEM as shown in FIG. 7, it was confirmed that the foreign matter 40 had adhered. When EDS analysis of this foreign substance was performed, Si and N were detected. From this, it was confirmed that the silicon nitride particles, which are the components contained in the ceramic green sheet (ceramic plate), were present as foreign substances on the contact surface of the setter.
  • ⁇ Heating process> As shown in FIG. 3, three setters (three second setters) confirmed to have foreign matter attached to the contact surface were stacked via spacers and placed in the firing furnace. The portion of the contact surface to which foreign matter adhered was exposed to the space inside the firing furnace without contacting the spacer. Using a calcining furnace, three setters were heated at 1850 ° C. for 2 hours in a nitrogen gas atmosphere.
  • FIG. 8 is an SEM photograph (100 times) of the contact surface of the setter after heating in the heating step.
  • FIG. 9 is an SEM photograph (500 times) of the contact surface of the setter taken at a higher magnification than that of FIG.
  • FIG. 9 shows the contact surface of the setter magnified at the same magnification as in FIG. As shown in FIG. 9, the heating process sufficiently reduced the foreign matter adhering to the contact surface.
  • Example 1 The firing step was carried out in the same manner as in Example 1 to obtain three setters (three second setters) to which foreign matter adhered to the contact surface.
  • the heating step was performed in the same manner as in Example 1 except that the contact surfaces of the three setters were stacked so as to be in contact with each other and heated in the firing furnace. That is, the three setters were fired so that the contact surfaces of the three setters were not exposed to the space inside the firing furnace.
  • FIG. 10 is an SEM photograph (100 times) of the contact surface of the setter after heating in the heating step.
  • FIG. 11 is an SEM photograph (500 times) of the contact surface of the setter taken at a higher magnification than that of FIG. As shown in FIGS. 10 and 11, foreign matter 42 that had grown and coarsened in the heating step was present on the contact surface of the setter.
  • FIG. 12 is a photograph showing an example of a convex portion on the surface of the silicon nitride plate obtained in the second firing step. In FIG. 12, a convex portion 60 formed in the central portion of the main surface of the silicon nitride plate is shown.
  • each silicon nitride plate obtained in the second firing step of Example 1 and Comparative Example 1 was evaluated. Specifically, the main surface of the silicon nitride plate was observed with a one-shot 3D shape measuring machine (model: VR-3000) manufactured by KEYENCE CORPORATION, and the size of the unevenness on the surface was examined. A defective product was determined to have a convex portion having a height of 11 ⁇ m or more or a concave portion having a depth of 11 ⁇ m or more. As a result, in Example 1, the ratio of defective products could be reduced to 1/3 or less as compared with Comparative Example 1.

Abstract

セラミック板の製造方法は、セッターと第1セラミックグリーンシートとが互いに接触するように積層して焼成しセラミック板を得る第1焼成工程と、第1セラミックグリーンシートとのセッターの接触面の少なくとも一部が露出した状態でセッターを加熱する加熱工程と、セッターと第2セラミックグリーンシートとが上記接触面の少なくとも一部において互いに接触するように積層して焼成しセラミック板を得る第2焼成工程とを有する。

Description

セラミック板の製造方法、セッターの製造方法、及びセッターの再生方法
 本開示は、セラミック板の製造方法、セッターの製造方法、及びセッターの再生方法に関する。
 自動車、電鉄、産業用機器、及び発電関係等の分野には、大電流を制御するパワーモジュールが用いられている。パワーモジュールに搭載される回路基板は、絶縁性のセラミック板を有する。セラミック板の製造方法としては、例えば特許文献1に記載されるような以下の製造方法が知られている。すなわち、セラミックの粉末を焼結助剤等と混合した後にシート状に押出成形する工程と、打抜加工してセラミックグリーンシートを形成する工程と、セラミックグリーンシートを焼成する工程とが行われることで、セラミック板が製造される。セラミックグリーンシートの焼成工程では、セッターの上に10~20枚程度のセラミックグリーンシートが積層された状態でセラミックグリーンシートの焼成が行われる。
特開平3-60469号公報
 セラミックグリーンシートの焼成工程で用いられたセッターは、資源の有効活用の観点から、使用後に再生して再利用することが好ましい。そこで、本開示では、セッターを再生することによって、セラミック板の生産効率を向上することが可能なセラミック板の製造方法を提供する。また、資源を有効活用することが可能なセッターの製造方法及びセッターの再生方法を提供する。
 セラミックグリーンシートの焼成にセッターを繰り返し使用すると、焼成前のセッターの対向面が平滑であっても、セラミック板の表面に凹凸が発生する場合がある。本発明者らの検討によれば、セッターに付着していた、セラミックグリーンシート又はセラミック板の含有成分に起因する微小な異物が、焼成によって成長して粗大粒子となり、この粗大粒子の形状が転写されてセラミック板の表面に凹凸を生じさせることが分かった。
 そこで、本開示の一側面に係るセラミック板の製造方法は、セッターと第1セラミックグリーンシートとが互いに接触するように積層して焼成しセラミック板を得る第1焼成工程と、第1セラミックグリーンシートとのセッターの接触面の少なくとも一部が露出した状態でセッターを加熱する加熱工程と、セッターと第2セラミックグリーンシートとが上記接触面の少なくとも一部において互いに接触するように積層して焼成しセラミック板を得る第2焼成工程と、を有する。
 上述の製造方法では、第1セラミックグリーンシートと接触していた、セッターの接触面の少なくとも一部が露出した状態で当該セッターを加熱している。このようにセッターを加熱することで、第1セラミックグリーンシートに由来する微小な異物が低減され、第2焼成工程で得られるセラミック板に凹凸が生じることを抑制できる。このように、セッターを繰り返し使用してもセラミック板の歩留まりを維持できることから、セラミック板の生産効率を向上することができる。
 加熱工程では、上記接触面に付着する、セッターの含有成分とは異なる成分を含む異物が分解する温度以上に加熱してもよい。これによって、接触面に付着する異物を十分に低減し、セラミック板の表面に発生する凹凸を十分に低減することができる。したがって、セラミック板の歩留まりを一層向上することができる。本開示における「セッターの含有成分」とは、セラミック板の製造方法に用いられる前から、元々セッターに含まれていた成分をいう。すなわち、未使用のセッターに含まれる成分(構成成分)である。例えば、窒化ホウ素焼結体で構成されるセッターの含有成分は、窒化ホウ素である。
 第1焼成工程では、上記セッターを含む複数のセッターと、上記第1セラミックグリーンシートを含む複数の第1セラミックグリーンシートと、がそれぞれ接触するように積層して焼成してよい。このとき、加熱工程では、複数のセッターの、第1セラミックグリーンシートと接触していた接触面同士を互いに離した状態で複数のセッターを加熱してもよい。これによって、複数のセッターを一緒に加熱して再生することができる。したがって、セラミック板の生産効率を一層向上することができる。
 第1セラミックグリーンシートは窒化ケイ素を含み、加熱工程では、不活性ガス雰囲気中でセッターを1450~2000℃で加熱してもよい。これによって、異物に含まれる窒化ケイ素の分解が円滑に進行し、加熱工程の所要時間を短縮することができる。また、セッターの接触面における異物を十分に低減し、第2焼成工程で得られるセラミック板の表面に発生する凹凸を一層低減できる。
 本開示の一側面に係るセッターの製造方法は、第1セッターとセラミックグリーンシートとが互いに接触するように積層して焼成し、セラミックグリーンシートとの接触面に第1セッターの含有成分とは異なる成分を含む異物が付着した第2セッターを得る焼成工程と、上記接触面の少なくとも一部が露出した状態で第2セッターを加熱して、上記接触面における異物を低減する加熱工程と、を有する。
 上述の製造方法では、焼成工程においてセラミックグリーンシートとの接触面に異物が付着した第2セッターを加熱する加熱工程を有する。加熱工程では、接触面の少なくとも一部が露出した状態で第2セッターを加熱して、接触面における異物を低減している。異物を低減して得られるセッター(第3セッター)は、再びセラミックグリーンシートと接触するように積層して焼成することができる。このように上記セッターの製造方法では、異物が付着した第2セッターから、異物が低減されたセッター(第3セッター)を製造することによってセッターの廃棄量を低減し、資源を有効活用することができる。
 加熱工程では、異物が分解する温度以上に加熱してもよい。これによって、接触面に付着していた異物を十分且つ円滑に低減することができる。したがって、効率よくセッターを製造することができる。
 焼成工程では、上記第1セッターを含む複数の第1セッターと、上記セラミックグリーンシートを含む複数のセラミックグリーンシートとがそれぞれ接触するように積層して焼成し、上記第2セッターを含む複数の第2セッターを得てもよい。このとき、加熱工程では、複数の第2セッターの、セラミックグリーンシートと接触していた接触面同士を互いに離した状態で複数の第2セッターを加熱してもよい。これによって、複数の第2セッターを一緒に加熱して複数のセッターを同時に製造することができる。したがって、セッターの生産効率を向上することができる。
 上記セラミックグリーンシートは窒化ケイ素を含み、加熱工程では、不活性ガス雰囲気中で第2セッターを1450~2000℃で加熱してもよい。これによって、異物に含まれる窒化ケイ素の分解が円滑に進行し、加熱工程の所要時間を短縮することができる。また、異物が十分に低減されたセッターを得ることができる。
 本開示の一側面に係るセッターの再生方法は、第1セッターとセラミックグリーンシートとが互いに接触するように積層して焼成し、セラミックグリーンシートとの接触面に第1セッターの含有成分とは異なる成分を含む異物が付着した第2セッターを得る焼成工程と、接触面の少なくとも一部が露出した状態で第2セッターを加熱して、接触面における異物を低減する加熱工程と、を有する。
 上述の再生方法では、焼成工程においてセラミックグリーンシートとの接触面に異物が付着した第2セッターを加熱する加熱工程を有する。加熱工程では、接触面の少なくとも一部が露出した状態で第2セッターを加熱して、接触面における異物を低減している。異物を低減して得られるセッター(第3セッター)は、再びセラミックグリーンシートと接触するように積層して焼成することができる。このように上記セッターの再生方法では、異物が付着した第2セッターから、異物が低減されたセッター(第3セッター)を再生することによってセッターの廃棄量を低減し、資源を有効活用することができる。
 本開示によれば、セッターを再生することによって、セラミック板の生産効率を向上することが可能なセラミック板の製造方法を提供することができる。また、資源を有効活用することが可能なセッターの製造方法及びセッターの再生方法を提供することができる。
積層体の焼成工程の一例を説明する図である。 窒化ホウ素焼結体で構成されるセッターの接触面に付着した異物(窒化ホウ素粒子)の例を示すSEM写真である。 加熱工程の一例を示す図である。 実施例1で用いたセッターの主面(焼成前)を示すSEM写真である。 図4よりも高い倍率で撮影された、図4の主面を示すSEM写真である。 実施例1の第1焼成工程後のセッターの接触面を示すSEM写真である。 図6よりも高い倍率で撮影された、図6の接触面を示すSEM写真である。 実施例1の加熱工程後のセッターの接触面を示すSEM写真である。 図8よりも高い倍率で撮影された、図8の接触面を示すSEM写真である。 比較例1の加熱工程後のセッターの接触面を示すSEM写真である。 図11よりも高い倍率で撮影された、図10の接触面を示すSEM写真である。 窒化ケイ素板の表面における凸部の例を示す写真である。
 以下、場合により図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。また、説明に使用される上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。
 本開示の一側面に係るセラミック板の製造方法は、セッターとセラミックグリーンシート(第1セラミックグリーンシート)とが互いに接触するように積層された積層体(第1積層体)を焼成してセラミック板を得る第1焼成工程と、第1積層体を、セッターとセラミック板とに分別し、セラミックグリーンシートと接触していたセッターの接触面の少なくとも一部が露出した状態でセッターを加熱する加熱工程と、セッターとセラミックグリーンシート(第2セラミックグリーンシート)とが上記接触面の少なくとも一部において互いに接触するように積層された積層体(第2積層体)を焼成しセラミック板を得る第2焼成工程と、を有する。
 第1セラミックグリーンシート及び第2セラミックグリーンシートは、セッターに接触するように積層されるセラミックグリーンシートである。第1焼成工程及び第2焼成工程でセッターと接触するように積層される第1セラミックグリーンシート及び第2セラミックグリーンシートは、例えば以下の手順で製造する。まず、セラミック粉末、焼結助剤及びバインダを含む原料スラリーを形成する。セラミックとしては、特に制限されず、例えば、炭化物、酸化物及び窒化物等が挙げられる。具体的には、炭化ケイ素、アルミナ、窒化ケイ素、窒化アルミニウム及び窒化ホウ素等が挙げられる。バインダは有機成分を含むものが挙げられる。
 原料スラリーをドクターブレード法、カレンダー法、又は押し出し法等によって離型フィルム上に所定の厚みで塗布する。その後、塗布された原料スラリーを乾燥させて離型フィルムから剥がすことによって、第1セラミックグリーンシート及び第2セラミックグリーンシートが得られる。第1セラミックグリーンシート及び第2セラミックグリーンシートは、例えば切断等によって所望の形状に加工してよい。第1セラミックグリーンシート及び第2セラミックグリーンシートの材質及び形状は、同一であってもよいし、異なっていてもよい。
 セッターは、例えば市販のセラミック焼結体を購入してもよいし、公知の方法で製造してもよい。セッターは、例えば、窒化ホウ素、炭化ケイ素、アルミナ、ジルコニア、グラファイト、及び窒化ケイ素からなる群より選ばれる少なくとも一種を含むものが挙げられる。これらのうち、窒化ホウ素製のセッターは、耐熱性と良好な切削性を兼ね備えるため、好適に用いられる。なお、焼成後のセッターとセラミック板との接着を抑制する観点から、セッターの材質は、セラミック板の材質とは異なるものであってよい。
 セッターとして、窒化ホウ素焼結体を用いる場合、以下の手順で製造することができる。まず、原料として、六方晶窒化ホウ素粉末を用いて成形体を作製する。必要に応じて、成形前に六方晶窒化ホウ素粉末に焼結助剤を配合してもよい。焼結助剤としては、酸化マグネシウム、酸化カルシウム等のアルカリ土類酸化物、酸化アルミニウム、酸化ケイ素、酸化イットリウム等の希土類酸化物、及び、スピネル等の複合酸化物が挙げられる。成形は、一軸加圧成形とCIP成形を行ってよい。一軸加圧成形は3~20MPaで行ってよい。CIP成形は、50~300MPaで行ってよい。
 得られた成形体の焼成を行って窒化ホウ素焼結体を得る。焼成は、非酸化性雰囲気下、昇温速度を150℃/hr以下、最高温度を1800~2200℃、この温度範囲における保持時間を5時間以上の条件で行ってよい。非酸化性雰囲気としては、例えば窒素、アンモニア等の窒化性ガス雰囲気が挙げられる。窒化ホウ素焼結体の密度は1600kg/m以上であってよい。なお、窒化ホウ素焼結体の製造方法は上述の方法に限定されない。例えば、ホットプレス法によって製造してもよい。窒化ホウ素焼結体以外のセラミック焼結体は公知の方法で製造することができる。
 このようにして得られたセッターと第1セラミックグリーンシートとが互いに接触するように積層して積層体を作製する。積層体を構成するセッター及びセラミックグリーンシートの枚数に特に制限はない。積層体は、例えば、一対のセッターの間に、第1セラミックグリーンシートを含む複数枚(例えば50~100枚)のセラミックグリーンシートを挟んでいてよい。また、1枚のセッターと第1セラミックグリーンシートを含む複数枚のセラミックグリーンシートとが交互に並んでいてもよい。このように、複数枚のセラミックグリーンシートを第1焼成工程で焼成することによって、複数のセラミック板を同時に製造することができる。
 第1セラミックグリーンシートとともに積層されるセラミックグリーンシートの材質及び形状は、第1セラミックグリーンシートと同一であってもよいし、異なっていてもよい。セラミックグリーンシート(第1セラミックグリーンシート)の主面には、焼成の際に隣り合うセラミックグリーンシート同士が接着することを抑制するため、離型剤が塗布されていてもよい。また、セッターの第1セラミックグリーンシートの主面との対向面にも、離型剤が塗布されていてもよい。離型剤の含有成分としては、窒化ホウ素等のセラミック粉末、黒鉛粉末、及びバインダ等が挙げられる。
 図1は、積層体の第1焼成工程の一例を説明する図である。積層体50は、3枚のセッター10と、複数のセラミックグリーンシート30を含む。複数のセラミックグリーンシート30は、3枚のセッター10に隣接する4枚の第1セラミックグリーンシート30aを含む。3枚のセッター10のうち、一対のセッター10A,10Bは、積層体50の最下部と最上部に積層されている。したがって、セッター10A、10Bでは、一方の主面が第1セラミックグリーンシート30aと接触している。残りのセッター10Cは、積層体50の中央部に積層されている。したがって、セッター10Cは、両方の主面が第1セラミックグリーンシート30aと接触している。このように、第1セラミックグリーンシート30aとセッター10とが接触するセッター10の接触面は、一方又は両方の主面に含まれる。
 図1に示すように、積層体50を、脱脂炉20に収容し、例えば300℃~700℃に加熱する。これによって、セラミックグリーンシート30に含まれるバインダが除去される。続いて、脱脂された積層体50を焼成炉25に収容して、1600℃~2000℃に加熱する。これによって、セラミックグリーンシートが焼成され、セラミック板が得られる。なお、脱脂で用いる脱脂炉20と焼成で用いる焼成炉25は同一炉であってもよいし、異なる炉であってもよい。また、加熱の温度、時間及び雰囲気は、セラミックグリーンシートの組成に応じて適宜調整してよい。
 加熱工程では、第1焼成工程で焼成した積層体(第1積層体)を、セラミック板とセッターに分別する。得られたセラミック板は必要に応じて加工を行って、例えば回路基板にしてもよい。分別したセッターの第1セラミックグリーンシート30a(セラミック板)と接触していた接触面には、セッターの含有成分とは異なる成分を含む粒状の異物が付着している。異物に含まれる成分としては、例えば、セラミックグリーンシート又はセラミック板の含有成分、及び、これらの含有成分とセッターの含有成分との反応生成物が挙げられる。異物の粒径は、セッターを構成する粒子よりも大きくてよい。すなわち、異物は粗粒であってもよい。
 図2は、窒化ホウ素焼結体で構成されるセッターの接触面に付着した異物(窒化ホウ素粒子)の例を示すSEM写真である。異物の組成は、EDS分析によって測定することができる。セッターが窒化ホウ素焼結体で構成され、異物が窒化ケイ素粒子である場合、両者の色が近似しているため、肉眼では異物を見つけることが難しい。このような場合、図2に示すとおりSEM観察を高倍率(例えば500倍以上)で行うことによって異物の有無を判断することができる。
 このような異物が接触面に付着しているセッターを、接触面が露出した状態で加熱する。これによって接触面に付着している異物を揮発又は分解して低減することができる。加熱は、不活性ガス雰囲気中で行ってよい。不活性ガスとしては、例えば、窒素ガス、及びアルゴンガスが挙げられる。加熱工程における加熱温度は、第1焼成工程における焼成温度よりも高くてよく、異物が分解する温度以上であってよい。
 具体的な加熱温度は、例えば、1450℃以上であってよく、1600℃以上であってよく、1700℃以上であってもよい。加熱温度を高くすることによって、異物の分解を促進し、異物が十分に低減された主面(接触面)を有するセッターを得ることができる。このような加熱温度であれば、セラミック板として窒化ケイ素板を製造する場合に、セッターの接触面に異物として付着する窒化ケイ素粒子を十分に低減することできる。加熱温度は、例えば、2000℃以下であってよく、1950℃以下であってよく、1900℃以下であってもよい。これによって過剰な加熱を抑制してセッターのダメージを低減するとともに、エネルギー効率を向上することができる。上記加熱温度における加熱時間は、例えば0.5~10時間であってよく、1~5時間であってもよい。
 図3は、加熱工程の一例を説明する図である。加熱炉28中には、底板13の上に、複数のセッター11が積み上げられている。上下方向に隣り合うセッター11の間にはスペーサ12が配置されている。これによって、隣り合うセッター11の接触面同士は所定の間隔で離れるようにして配置される。その結果、セッター11の主面に含まれる接触面の一部又は全部は、露出した状態で加熱炉28中において加熱される。加熱炉28は、図1の焼成炉25と同一のものを用いてもよく、異なるものを用いてもよい。加熱炉28において複数のセッター11を同時に加熱することによって、複数のセッター11を同時に再生することができる。
 図3のように複数のセッター11を同時に加熱することは必須ではなく、セッター11を1枚ずつ加熱してもよい。また、スペーサ12を用いることは必須ではなく、各セッター11の接触面が露出した状態で加熱できればよい。例えば、セッター11を支持する支持部を有する枠体を用いて、複数のセッターを接触面同士が互いに離れるように水平方向又は鉛直方向に沿って並べた状態で加熱してもよい。
 第2焼成工程では、加熱工程で異物が低減されたセッターの接触面の少なくとも一部に第2セラミックグリーンシートが接触するように、セッターと第2セラミックグリーンシートとを積層して積層体(第2積層体)を作製する。この第2積層体を、脱脂炉及び焼成炉で加熱してセラミック板を得る。脱脂炉及び焼成炉は、第1焼成工程で用いたものと同じであってよく、異なっていてもよい。第2積層体は、第1焼成工程で作製した第1積層体50と同じ積層構造を有していてもよいし、異なる積層構造を有していてもよい。第2焼成工程では、第1焼成工程と同様に脱脂及び焼成を順次行ってセラミック板を得ることができる。
 第2積層体において、セッターは、異物が低減された接触面において第2セラミックグリーンシートと接触する。このため、第2セラミックグリーンシートとセッターの接触面における異物が低減されている。したがって、第2焼成工程で得られるセラミック板に凹凸が生じることを抑制できる。このように、第1焼成工程で使用済みのセッターを再利用しても、セラミック板の歩留まりを維持することができる。したがって、セラミック板の生産効率を向上することができる。
 第2焼成工程の後、加熱工程及び第2焼成工程を繰り返し行ってよい。繰り返し回数は1回でも複数回でもよい。セッターは、積層体として一度焼成される毎に、第2セラミックグリーンシートとの接触面を露出させた状態で加熱してもよいし、積層体の作製、積層体の焼成及びセラミック板とセッターの分別を複数回繰り返した後に加熱工程を行ってもよい。加熱工程の頻度は、接触面における異物の有無又は異物の量に応じて調整してよい。いずれにしても、セッターを繰り返して再生し使用することで資源の有効活用を図るとともに、セラミック板の製造コストを低減することができる。
 上述の製造方法の第1焼成工程と第2焼成工程で得られるセラミック板は、同等の表面品質を有する。このため、同様の用途に用いることができる。セラミック板は、例えば、一方又は両方の主面に金属層で構成される電気回路を形成して回路基板としてよい。
 一実施形態に係るセッターの製造方法(再生方法)は、第1セッターとセラミックグリーンシートとが互いに接触するように積層された積層体を焼成し、セラミックグリーンシートとの接触面に第1セッターの含有成分とは異なる成分を含む異物が付着した第2セッターを得る焼成工程(第1焼成工程)と、上記積層体を第2セッターとセラミック板とに分別し、上記接触面の少なくとも一部が露出した状態で第2セッターを加熱して、上記接触面における異物を低減する加熱工程と、を有する。
 焼成工程は、上述の第1焼成工程と同様にして行うことができる。すなわち、第1セッターは、市販のセラミック焼結体を購入してもよいし、公知の方法で製造してもよい。セッターは、例えば、窒化ホウ素、炭化ケイ素、アルミナ、ジルコニア、グラファイト、及び窒化ケイ素からなる群より選ばれる少なくとも一種で構成されるものが挙げられる。第1セッターとして窒化ホウ素焼結体を用いる場合の製造手順は、上述したとおりであってよい。焼成工程は、図1に示すような積層体を焼成炉25に収容して加熱してよい。本実施形態では、焼成工程(第1焼成工程)で焼成される前のセッターを「第1セッター」、焼成工程で焼成されて接触面に異物が付着したセッターを「第2セッター」と称している。
 加熱工程では、焼成工程で得られた積層体を、セラミック板と第2セッターに分別し、第2セッターのセラミックグリーンシート(セラミック板)との接触面の少なくとも一部が露出した状態で第2セッターを加熱する。これによって、接触面に付着していた異物が揮発又は分解し、異物を低減することができる。このように加熱工程によって異物が低減されたセッターを「第3セッター」と称する場合もある。
 加熱工程における加熱条件は、上述のセラミック板の製造方法の実施形態における加熱工程と同じであってよい。加熱工程によって得られるセッター(第3セッター)の表面に付着する異物は十分に低減されている。このセッター(第3セッター)は、例えば、第1セッターと同等の表面品質を有していてよい。このように加熱工程を経て得られるセッター(第3セッター)を、第1セッターに代えて焼成工程(第2焼成工程)で用いてもよい。これによって、セラミック板とともに、接触面に異物が付着した第2セッターが再び得られる。この後、再び加熱工程を行ってよい。
 このように、本実施形態のセッターの製造方法(再生方法)によれば、使用済みの第2セッターを第3セッターとして再生し、第2セッターの廃棄量を低減することができる。これによって、資源の有効利用を図ることができる。第2焼成工程と加熱工程は、複数回繰り返して行ってよい。この場合、第2セッターから第3セッターの再生と、第3セッター用いたセラミック板の生産(第2セッターの生成)と、が繰り返し行われることとなる。したがって、資源の有効利用を一層図ることができる。
 なお、本実施形態のセッターの製造方法は、焼成工程で使用された使用済みの第2セッターを加熱し、表面における異物が低減されたセッター(第3セッター)を新しく作り出している点で、セッターの製造方法に該当する。別の観点からすると、使用済みのセッターの表面処理を行って、使用済みのセッターを再生していることから、セッターの表面処理方法、又は、セッターの再生方法ということもできる。
 以上、本開示の一実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、セラミック板、セラミックグリーンシート及びセッターは、直方体形状以外の形状を有していてもよい。これらは角部において面取りが施されていてもよい。また、セッターは、積層体の下方にのみ配置されてもよい。
[セラミック板の製造及びセッターの再生]
(実施例1)
<第1焼成工程>
 窒化ケイ素粉末と焼結助剤(酸化マグネシウム粉末、酸化イットリウム粉末及び二酸化ケイ素粉末)を含む原料粉末を一軸加圧成形して成形体(シート材)を作製した。このシート材を、切断装置を用いて打ち抜いて、直方体形状を有する68枚のセラミックグリーンシートを形成した。これとは別に、直方体形状を有する窒化ホウ素製のセッター(デンカ株式会社製、商品名:NB-1000)を3枚準備した。図4は、セッターの主面(焼成前)のSEM写真(100倍)である。図5は、図4よりも高い倍率で撮影したセッターの主面(焼成前)のSEM写真(500倍)である。図4及び図5に示すように、焼成前のセッター(第1セッター)の主面には異物は検出されなかった。以下では、この主面とセラミックグリーンシートとが接触するようにして積層体を作製した。
 68枚のセラミックグリーンシートを一対のセッターで上下に挟むとともに、中央部にセッターを配置して、3枚のセッター(3枚の第1セッター)と68枚のセラミックグリーンシートが積層された積層体を得た。この積層体では、下側のセッターと中央部のセッターとの間、及び中央部のセッターと上側のセッターとの間のそれぞれに、34枚のセラミックグリーンシートが積み重ねられていた。積層体を作製するにあたり、セラミックグリーンシートとのセッターの接触面、及び、各セラミックグリーンシートの一方の主面には、離型用のスラリーを塗布した。脱脂炉及び焼成炉を用い、作製した積層体の脱脂及び焼成を行った。脱脂温度は500℃、脱脂時間は30時間とした。また、焼成温度は1800℃、焼成時間は30時間とした。焼成後、焼成炉から積層体を取り出し、積層体からセラミック板を取り除いて一対のセッターを回収した。
 セラミックグリーンシートとのセッターの接触面(セラミックグリーンシートと対向していた主面)を、走査型電子顕微鏡(SEM)で観察した。図6は、積層体から回収されたセッターの接触面のSEM写真(100倍)である。図7は、図6よりも高い倍率で撮影したセッターの接触面のSEM写真(500倍)である。目視では、異物の存在が確認できなかったものの、図7に示すようにSEMを用いて接触面を高倍率(約500倍)で観察すると、異物40が付着していることが確認された。この異物のEDS分析を行ったところ、SiとNが検出された。このことから、セッターの接触面には、セラミックグリーンシート(セラミック板)の含有成分である窒化ケイ素粒子が異物として存在していたことが確認された。
<加熱工程>
 接触面に異物が付着していることが確認された3枚のセッター(3枚の第2セッター)を、図3に示すように、スペーサを介して積み重ねて、焼成炉内に配置した。接触面のうち異物が付着した部分は、スペーサと接触せずに焼成炉内の空間に露出するようにした。焼成炉を用いて、窒素ガス雰囲気中において3枚のセッターを1850℃で2時間加熱した。
 図8は、加熱工程で加熱した後のセッターの接触面のSEM写真(100倍)である。図9は、図8よりも高い倍率で撮影したセッターの接触面のSEM写真(500倍)である。図9は図7と同じ倍率で拡大されたセッターの接触面を示している。図9に示すとおり、加熱工程によって、接触面に付着していた異物が十分に低減されていた。
(比較例1)
 実施例1と同様にして焼成工程を行い、接触面に異物が付着する3枚のセッター(3枚の第2セッター)を得た。3枚のセッターの接触面同士が接触するように積み重ねて焼成炉で加熱したこと以外は、実施例1と同様にして加熱工程を行った。すなわち、3枚のセッターの接触面が焼成炉内の空間に露出しないようにして3枚のセッターを焼成した。
 図10は、加熱工程で加熱した後のセッターの接触面のSEM写真(100倍)である。図11は、図10よりも高い倍率で撮影したセッターの接触面のSEM写真(500倍)である。図10及び図11に示すとおり、セッターの接触面には、加熱工程で粒成長して粗大化した異物42が存在していた。
[セッターの再利用及びセラミック板の評価]
(実施例1及び比較例1)
<第2焼成工程>
 実施例1及び比較例1の上記加熱工程で得られたセッター(第3セッター)をそれぞれ用いて、第2焼成工程を行った。第2焼成工程の積層体の作製手順及び焼成条件は、上記第1焼成工程と同様にした。第2焼成工程で得られた各セラミック板(窒化ケイ素板)の表面における凹凸の有無を評価した。図12は、第2焼成工程で得られた窒化ケイ素板の表面における凸部の例を示す写真である。図12では、窒化ケイ素板の主面の中央部に形成された凸部60が示されている。
 実施例1及び比較例1の第2焼成工程で得られた各窒化ケイ素板の品質評価を行った。具体的には、窒化ケイ素板の主面を、株式会社キーエンス製のワンショット3D形状測定機(型式:VR-3000)で観察し、表面の凹凸のサイズを調べた。高さ11μm以上の凸部、又は深さ11μm以上の凹部がある場合を不良品と判定した。その結果、比較例1に対して実施例1では、不良品の比率を1/3以下に低減することができた。
 本開示によれば、セッターを再生することによって、セラミック板の生産効率を向上することが可能なセラミック板の製造方法を提供することができる。また、資源を有効活用することが可能なセッターの製造方法を提供することができる。
 10,10A,10B,10C,11…セッター,12…スペーサ,13…底板,20…脱脂炉,25…焼成炉,28…加熱炉,30…セラミックグリーンシート、30a…第1セラミックグリーンシート、40,42…異物,50…積層体,60…凸部。

 

Claims (9)

  1.  セッターと第1セラミックグリーンシートとが互いに接触するように積層して焼成しセラミック板を得る第1焼成工程と、
     前記第1セラミックグリーンシートとの前記セッターの接触面の少なくとも一部が露出した状態で前記セッターを加熱する加熱工程と、
     前記セッターと第2セラミックグリーンシートとが前記接触面の少なくとも一部において互いに接触するように積層して焼成しセラミック板を得る第2焼成工程と、を有する、セラミック板の製造方法。
  2.  前記加熱工程では、前記接触面に付着する、前記セッターの含有成分とは異なる成分を含む異物が分解する温度以上に加熱する、請求項1に記載のセラミック板の製造方法。
  3.  前記第1焼成工程では、複数のセッターと複数の第1セラミックグリーンシートとがそれぞれ接触するように積層して焼成し、
     前記加熱工程では、前記複数のセッターの、前記第1セラミックグリーンシートと接触していた接触面同士を互いに離した状態で前記複数のセッターを加熱する、請求項1又は2に記載のセラミック板の製造方法。
  4.  前記第1セラミックグリーンシートは窒化ケイ素を含み、
     前記加熱工程では、不活性ガス雰囲気中で前記セッターを1450~2000℃で加熱する、請求項1~3のいずれか一項に記載のセラミック板の製造方法。
  5.  第1セッターとセラミックグリーンシートとが互いに接触するように積層して焼成し、前記セラミックグリーンシートとの接触面に前記第1セッターの含有成分とは異なる成分を含む異物が付着した第2セッターを得る焼成工程と、
     前記接触面の少なくとも一部が露出した状態で前記第2セッターを加熱して、前記接触面における前記異物を低減する加熱工程と、を有する、セッターの製造方法。
  6.  前記加熱工程では、前記異物が分解する温度以上に加熱する、請求項5に記載のセッターの製造方法。
  7.  前記焼成工程では、複数の第1セッターと、複数のセラミックグリーンシートとがそれぞれ接触するように積層して焼成し複数の第2セッターを得て、
     前記加熱工程では、前記複数の第2セッターの、前記セラミックグリーンシートと接触していた接触面同士を互いに離した状態で前記複数の第2セッターを加熱する、請求項5又は6に記載のセッターの製造方法。
  8.  前記セラミックグリーンシートは窒化ケイ素を含み、
     前記加熱工程では、不活性ガス雰囲気中で前記第2セッターを1450~2000℃で加熱する、請求項5~7のいずれか一項に記載のセッターの製造方法。
  9.  第1セッターとセラミックグリーンシートとが互いに接触するように積層して焼成し、前記セラミックグリーンシートとの接触面に前記第1セッターの含有成分とは異なる成分を含む異物が付着した第2セッターを得る焼成工程と、
     前記接触面の少なくとも一部が露出した状態で前記第2セッターを加熱して、前記接触面における前記異物を低減する加熱工程と、を有する、セッターの再生方法。

     
PCT/JP2021/018676 2020-05-19 2021-05-17 セラミック板の製造方法、セッターの製造方法、及びセッターの再生方法 WO2021235407A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022524473A JP7185099B2 (ja) 2020-05-19 2021-05-17 セラミック板の製造方法、セッターの製造方法、及びセッターの再生方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020087479 2020-05-19
JP2020-087479 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021235407A1 true WO2021235407A1 (ja) 2021-11-25

Family

ID=78708530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018676 WO2021235407A1 (ja) 2020-05-19 2021-05-17 セラミック板の製造方法、セッターの製造方法、及びセッターの再生方法

Country Status (2)

Country Link
JP (1) JP7185099B2 (ja)
WO (1) WO2021235407A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038151A1 (ja) * 2021-09-13 2023-03-16 デンカ株式会社 窒化ホウ素焼結体の製造方法及び窒化ホウ素焼結体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213117A (ja) * 2004-01-30 2005-08-11 Tdk Corp セラミック基板の製造方法
JP2008254962A (ja) * 2007-04-04 2008-10-23 Inax Corp セッターの平坦化処理方法
JP2011178598A (ja) * 2010-03-01 2011-09-15 Hitachi Metals Ltd 窒化珪素基板の製造方法および窒化珪素基板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856571B2 (ja) 1998-07-30 2006-12-13 電気化学工業株式会社 六方晶窒化硼素焼結体の白色化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213117A (ja) * 2004-01-30 2005-08-11 Tdk Corp セラミック基板の製造方法
JP2008254962A (ja) * 2007-04-04 2008-10-23 Inax Corp セッターの平坦化処理方法
JP2011178598A (ja) * 2010-03-01 2011-09-15 Hitachi Metals Ltd 窒化珪素基板の製造方法および窒化珪素基板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038151A1 (ja) * 2021-09-13 2023-03-16 デンカ株式会社 窒化ホウ素焼結体の製造方法及び窒化ホウ素焼結体
JP7282279B1 (ja) * 2021-09-13 2023-05-26 デンカ株式会社 窒化ホウ素焼結体の製造方法及び窒化ホウ素焼結体

Also Published As

Publication number Publication date
JPWO2021235407A1 (ja) 2021-11-25
JP7185099B2 (ja) 2022-12-06

Similar Documents

Publication Publication Date Title
CN100404467C (zh) 陶瓷垫板及其制造方法
WO2021235407A1 (ja) セラミック板の製造方法、セッターの製造方法、及びセッターの再生方法
KR20200105367A (ko) 가압접합에 의한 고순도 정전척 제조방법 및 그 정전척
WO2022196693A1 (ja) 窒化珪素基板
WO2021193739A1 (ja) セラミック板の製造方法、及び、切削加工機の使用方法
JP7211549B2 (ja) 窒化珪素基板
CN100519482C (zh) 热处理用加热盘及使用它的陶瓷制品的制造方法
CN112912356B (zh) 氮化硅基板的制造方法以及氮化硅基板
CN114180942A (zh) 复合烧结体、半导体制造装置构件及复合烧结体的制造方法
JPS63176990A (ja) 材料焼成用のセラミツクス製炉床体
KR20080038171A (ko) 세라믹 벌집체의 개선된 결합제 제거 방법
JP4186099B2 (ja) 炭化珪素部材およびその製造方法
CN115057711A (zh) 平坦片材
JPH0251868B2 (ja)
JP3182094B2 (ja) セラミックの製造方法
JP7248187B2 (ja) 窒化珪素基板
JPH02279569A (ja) 窒化ホウ素シート
JPH059076A (ja) 窒化アルミニウム基板の製造方法
JP5751788B2 (ja) 金属−セラミックス複合材料およびその製造方法
JP2001073010A (ja) 金属多孔体の焼成方法
RU2697063C2 (ru) Способ изготовления спеченного изделия
JP2010228934A (ja) 薄板状成形体の加熱処理方法
JP2001089248A (ja) セラミック基板の製造方法及びそれに使用する冶具
JPH02243570A (ja) 窒化アルミニウム基板の製造方法
JPH10297971A (ja) 薄板状炭化珪素焼結体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809697

Country of ref document: EP

Kind code of ref document: A1