WO2021232822A1 - 一种冷却壁进出水管加强结构 - Google Patents

一种冷却壁进出水管加强结构 Download PDF

Info

Publication number
WO2021232822A1
WO2021232822A1 PCT/CN2021/000014 CN2021000014W WO2021232822A1 WO 2021232822 A1 WO2021232822 A1 WO 2021232822A1 CN 2021000014 W CN2021000014 W CN 2021000014W WO 2021232822 A1 WO2021232822 A1 WO 2021232822A1
Authority
WO
WIPO (PCT)
Prior art keywords
water inlet
water
outlet
pipe
inlet
Prior art date
Application number
PCT/CN2021/000014
Other languages
English (en)
French (fr)
Inventor
佘京鹏
沈大伟
李立鸿
吴博伟
陈名炯
陈焕涛
Original Assignee
汕头华兴冶金设备股份有限公司
汕头华兴(饶平)铜业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汕头华兴冶金设备股份有限公司, 汕头华兴(饶平)铜业有限公司 filed Critical 汕头华兴冶金设备股份有限公司
Publication of WO2021232822A1 publication Critical patent/WO2021232822A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor

Definitions

  • the invention relates to a furnace body cooling device of a blast furnace, in particular to a reinforced structure of cooling wall inlet and outlet water pipes.
  • the cooling stave will produce certain cumulative deformation under long-term high temperature and high load environment.
  • the deformation of the cooling stave will extend into the furnace due to the restriction of one end of the inlet and outlet pipes.
  • the other end is welded to the cooling stave body, so the water inlet and outlet pipes are stretched axially when the cooling stave is thermally deformed. Damage, which may cause water leakage in the inlet and outlet pipes for a long time.
  • the Chinese Utility Model Patent Specification of Authorized Announcement Number CN201864735U discloses a cooling wall inlet and outlet water pipe protection device.
  • One end of the water inlet and outlet pipe passes through the furnace shell and is welded to the cooling wall.
  • the protection device includes a protection sleeve, which is located between the water inlet and outlet pipes and the furnace shell, and one end of the protection sleeve is welded to the cooling wall.
  • the protective sleeve includes a first sleeve and a second sleeve that are arranged concentrically.
  • the first sleeve and the second sleeve are connected by a ring wall.
  • the diameter of the first sleeve is larger than the diameter of the second sleeve.
  • the sleeve is welded on the cooling wall, and the second sleeve is located between the water inlet and outlet pipes and the furnace shell.
  • the protective sleeve of the protective device can effectively protect the water inlet and outlet pipes, and transfer the shear stress between the water inlet and outlet pipes and the cooling wall to the protective sleeve.
  • this structure can reduce the shearing and bending stress of the inlet and outlet pipes and the roots of the inlet and outlet pipes, and play a certain protective effect on the inlet and outlet pipes, the protective sleeve between the first sleeve and the second sleeve passes through the ring wall Connected to form a whole, and then welded to the cooling stave body, this structure has two disadvantages: First, because the protective sleeve is an integral structure, the outside of the protective sleeve is solidified refractory, and the thermal expansion of the cooling stave will cause displacement during use.
  • the problem to be solved by the present invention is to provide a reinforced structure for the inlet and outlet water pipes of the cooling wall.
  • This reinforced structure for the inlet and outlet water pipes of the cooling wall can not only reduce the welding seam of the inlet and outlet water pipes and the water inlet and outlet pipes when the cooling wall body is displaced.
  • the shear force and bending stress can greatly improve the axial tensile strength of the inlet and outlet pipes.
  • the reinforced structure of the inlet and outlet water pipes includes steel plate, water pipe sheath and protective steel pipe; the steel plate is fastened and installed on the cold surface of the cooling stave body; the water pipe sheath is sleeved on the outside of the water inlet and outlet pipes, and the inner end of the water pipe sheath is fixedly connected with the steel plate, and the water pipe The outer end of the sheath is in close contact with the inner surface of the furnace shell through the sealing material; the protective steel pipe is sleeved on the outside of the water inlet and outlet pipes, the inner end of the protective steel pipe is tightly installed on the steel plate, and the outer end of the
  • the side of the cooling stave body facing the blast furnace cavity is the hot side, and the side facing the blast furnace cavity is the cold side.
  • the inner ends of the water inlet and outlet pipes, water pipe sheaths, and protective steel pipes refer to the ends close to the blast furnace cavity, and the outer ends of the water inlet and outlet pipes, water pipe jackets, and protective steel pipes refer to the end away from the blast furnace cavity.
  • the cooling stave includes a cooling stave body and a plurality of water inlet and outlet pipes, each of which is matched with a water inlet and outlet pipe reinforcement structure.
  • the protective steel pipe and the water pipe sheath are separate structures that are independent of each other, and there is sufficient displacement space between the protective steel pipe and the water pipe sheath.
  • the protective steel pipe will not shear the water inlet and outlet pipes, which can greatly reduce the shearing force and bending stress on the welds of the water inlet and outlet pipes and the water inlet and outlet pipes; moreover, because of the protective steel pipe
  • the inner end of the steel pipe is fastened and installed on the steel plate (the steel plate is fastened and installed on the cold surface of the cooling stave body), and the outer end of the protective steel pipe is tightly connected with the inlet and outlet water pipes, thereby effectively strengthening the inlet and outlet water pipes in the axial direction, which can greatly Improve the axial tensile strength of the inlet and outlet pipes.
  • the above-mentioned stave body is a copper stave body.
  • the material of the copper stave body can be pure copper or copper alloy.
  • the stave body can be a flat plate or an arc-shaped plate.
  • the above-mentioned steel plate can be fastened to the stave body by bolts or welding, or it can be fastened to the stave body by a combination of bolts and welding (for example: after the bolts are installed in place, the edge of the steel plate is welded to the stave body ; Or after the bolt is installed in place, the head of the bolt is welded to the steel plate).
  • the shape of the above-mentioned steel plate is consistent with the shape of the corresponding position on the cold surface of the stave body (for example, when the stave body is a flat plate, the steel plate is also a flat plate; when the stave body is a curved plate, the steel plate is also a flat plate. Curved plate), so that the steel plate can be close to the cold surface of the stave body.
  • a whole large steel plate can be fixedly installed on the cold surface of the cooling stave body, and all the water inlet and outlet pipes share the whole large steel plate (that is, the steel plates in the reinforcement structure of each water inlet and outlet pipe are connected as a whole); it can also be installed on the cooling stave.
  • Multiple independent steel plates are fixedly installed on the cold surface of the body, one water inlet and outlet pipe corresponds to an independent steel plate, or several water inlet and outlet pipes share an independent steel plate.
  • the steel plate is provided with water pipe installation through holes at positions corresponding to the water inlet and outlet pipes, and the water inlet and outlet pipes are in the water pipe installation through holes.
  • the inner end of the protective steel pipe is welded to the steel plate.
  • the inner end of the protective steel pipe is fastened and installed on the steel plate through a threaded connection (for example, the inner wall of the water pipe installation through hole on the steel plate is provided with an internal thread, and the inner end of the protective steel pipe is provided with a matching outer Thread).
  • the inner end of the protective steel pipe is fastened and installed on the steel plate through a combination of screw connection and welding (for example, the inner wall of the water pipe installation through hole on the steel plate is provided with internal threads, and the inner end of the protective steel pipe is provided with External thread that matches with it; after the inner end of the protective steel pipe is screwed into the water pipe installation through hole in place, the protective steel pipe is welded to the steel plate).
  • a combination of screw connection and welding for example, the inner wall of the water pipe installation through hole on the steel plate is provided with internal threads, and the inner end of the protective steel pipe is provided with External thread that matches with it; after the inner end of the protective steel pipe is screwed into the water pipe installation through hole in place, the protective steel pipe is welded to the steel plate).
  • the outer end of the protective steel pipe is welded to the outer wall of the water inlet and outlet pipes.
  • the length of the above-mentioned protective steel pipe can be large or small.
  • the outer end of the protective steel pipe extends to the outside of the furnace shell (the outer end of the protective steel pipe can only extend out of the furnace shell for a short distance, or the protective steel pipe can cover most of the water inlet and outlet pipes).
  • the outer end of the above-mentioned protective steel pipe may also be inside the furnace shell.
  • the inner end of the water pipe sheath is welded to the steel plate through an annular weld. After welding, a seal is formed at the connection between the inner end of the water pipe sheath and the steel plate.
  • the water pipe sheath is made of steel.
  • the sealing material arranged between the outer end of the water pipe sheath and the inner surface of the furnace shell (the outer end of the water pipe sheath presses the sealing material on the inner surface of the furnace shell during installation), which can eliminate the outer end of the water pipe sheath
  • the gap between the inner surface of the furnace shell and the inner surface of the furnace shell ensures the sealing effect, which can better prevent the grout from entering the water pipe sheath during grouting and causing the inlet and outlet water pipes to lose buffer space; in addition, the sealing material can be between the cooling stave body and the furnace shell. Play a buffering role in between.
  • the sealing material between the outer end of the water pipe sheath and the inner surface of the furnace shell is a sealing ring.
  • the sealing ring is usually made of high temperature resistant and elastic material, preferably rubber, silicone or rubber-asbestos composite board.
  • a corrugated compensator is sleeved on the outer side of the water inlet and outlet pipes, and the inner end of the corrugated compensator is welded on the outer surface of the furnace shell.
  • a steel sleeve is sleeved on the outer side of the water inlet and outlet pipes, the steel sleeve is welded to the water inlet and outlet pipes, and the outer end of the corrugated compensator is welded to the steel sleeve.
  • the outer end of the protective steel pipe can be welded to the steel casing, or the protective steel pipe can be integrated with the steel casing (that is, a steel pipe is used, and its part close to the cooling stave body constitutes the protection
  • the steel pipe, whose part away from the cooling wall body constitutes a steel sleeve) can also protect the outer end of the steel pipe by welding directly on the outer wall of the water inlet and outlet pipes.
  • the invention strengthens the inlet and outlet water pipes by arranging mutually independent protective steel pipes and water pipe sheaths, and maintains sufficient displacement space between the protective steel pipes and the water pipe sheaths. When the cooling wall body is displaced during use, the water pipe sheaths are stressed.
  • the force will not be transmitted to the protective steel pipe and the water inlet and outlet pipes, and the protective steel pipe will not shear the water inlet and outlet pipes, which can greatly reduce the shearing force and bending stress on the welds of the water inlet and outlet pipes and the water inlet and outlet pipes; moreover, because of the protective steel pipe
  • the inner end of the steel pipe is fastened and installed on the steel plate (the steel plate is fastened and installed on the cold surface of the cooling stave body), and the outer end of the protective steel pipe is tightly connected with the inlet and outlet water pipes, thereby effectively strengthening the inlet and outlet water pipes in the axial direction, which can greatly Improve the axial tensile strength of the inlet and outlet pipes.
  • Figure 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Figure 2 is a partial cross-sectional view of A-A in Figure 1;
  • FIG. 3 is a schematic structural diagram of Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural diagram of Embodiment 5 of the present invention.
  • Figure 7 is a partial cross-sectional view of Figure 6 B-B;
  • Fig. 8 is a schematic diagram of the connection between the steel plate and the stave body in the sixth embodiment of the present invention.
  • the inner ends of the inlet and outlet water pipes 2 are welded to the cooling stave body 1, and the outer ends of the inlet and outlet water pipes 2 pass through to the outside of the furnace shell 3, and the inlet and outlet water pipes 2
  • the outer side is provided with a water inlet and outlet pipe reinforcement structure;
  • the water inlet and outlet pipe reinforcement structure includes steel plate 4, water pipe sheath 5 and protective steel pipe 6; steel plate 4 is fastened and installed on the cold surface 11 of the cooling stave body 1;
  • the inner end of the water pipe sheath 5 is fixedly connected with the steel plate 4, and the outer end of the water pipe sheath 5 is in close contact with the inner surface of the furnace shell 3 through a sealing material;
  • the inner end of the protective steel pipe 6 is tightly installed on the steel plate 4, and the outer end of the protective steel pipe 6 is tightly connected with the water inlet and outlet pipes 2.
  • the side of the stave body 1 facing the blast furnace cavity is a hot surface 12, and the side facing away from the blast furnace cavity is a cold surface 11.
  • the inner end of the water inlet and outlet pipe 2, the water pipe jacket 5, and the protective steel pipe 6 refers to the end close to the blast furnace cavity, and the outer end of the water inlet and outlet pipe 2, the water pipe jacket 5, and the protective steel pipe 6 refers to the end away from the blast furnace cavity.
  • the cooling stave includes a cooling stave body 1 and a plurality of water inlet and outlet pipes 2, and each water inlet and outlet pipe 2 is matched with a water inlet and outlet pipe reinforcement structure.
  • the cooling stave body 1 is provided with a cooling water channel 13 communicating with the water inlet and outlet pipes.
  • the stave body 1 is a copper stave body.
  • the material of the copper stave body can be pure copper or copper alloy.
  • the stave body 1 of this embodiment is a flat plate, and the cold surface 11 and the hot surface 12 of the stave body 1 are both flat surfaces.
  • the stave body 1 may also be an arc-shaped plate.
  • the steel plate 4 is fastened to the stave body 1 by bolts 7.
  • a plurality of independent steel plates 4 are fixedly installed on the cold surface 11 of the cooling stave body 1, and one water inlet and outlet pipe corresponds to one independent steel plate 4.
  • the shape of the steel plate 4 matches the shape of the corresponding position on the cold surface 11 of the stave body (for example, when the stave body is a flat plate, the steel plate is also a flat plate; when the stave body is an arc-shaped plate, the steel plate is also flat It is an arc-shaped plate), so that the steel plate 4 can be close to the cold surface 11 of the stave body 1.
  • the steel plate 4 is provided with a water pipe installation through hole 41 at a position corresponding to the water inlet and outlet pipes 2, and the water inlet and outlet pipes 2 are in the water pipe installation through holes 41 (during installation, the steel plate 4 can be inserted into the water inlet and outlet pipes 2 from the outer end of the water inlet and outlet pipes, and then moved Until it comes into contact with the cold surface 11 of the stave body 1, bolts 7 are installed to fasten the steel plate 4 on the stave body 1).
  • the inner end of the protective steel pipe 6 is welded to the steel plate 4.
  • the outer end of the protective steel pipe 6 is welded to the outer wall of the water inlet and outlet pipe 2 (the outer end of the protective steel pipe 6 is directly welded to the outer wall of the water inlet and outlet pipe 2).
  • the outer end of the protective steel pipe 6 extends to the outside of the furnace shell 3.
  • the inner end of the water pipe sheath 5 is welded to the steel plate 4 through an annular weld 8. After welding, a seal is formed at the connection between the inner end of the water pipe sheath 5 and the steel plate 4.
  • the water pipe sheath 5 is made of steel.
  • the sealing material between the outer end of the water pipe sheath 5 and the inner surface of the furnace shell 3 is a sealing ring 9.
  • the sealing ring is made of high temperature resistant and elastic material, such as rubber, silicone or rubber-asbestos composite board.
  • the sealing ring 9 can eliminate the gap between the outer end of the water pipe sheath 5 and the inner surface of the furnace shell 3, ensuring the sealing effect, and can better prevent the grout from entering the water pipe sheath during grouting and causing the inlet and outlet water pipes to lose buffer space;
  • the sealing ring 9 can also play a buffering role between the cooling stave body 1 and the furnace shell 3.
  • a corrugated compensator 10 is sleeved on the outer side of the water inlet and outlet pipe 2, and the inner end of the corrugated compensator 10 is welded to the outer surface of the furnace shell 3.
  • a steel sleeve 21 is sleeved on the outside of the water inlet and outlet pipe 2, the steel sleeve 21 is welded to the water inlet and outlet pipe 2, and the outer end of the corrugated compensator 10 is welded to the steel sleeve 21.
  • the protective steel pipe 6 and the water pipe sheath 5 are separated structures independent of each other, and there is sufficient displacement space between the protective steel pipe 6 and the water pipe sheath 5, so that when the stave body 1 is displaced during use After the water pipe sheath 5 is stressed, the force will not be transmitted to the protective steel pipe 6 and the inlet and outlet pipes 2, and the protective steel pipe will not shear the inlet and outlet pipes, which can greatly reduce the shear on the inlet and outlet pipes 2 and the welds 22 of the inlet and outlet pipes. Shear and bending stress.
  • the upward reinforcement of the water inlet and outlet pipes 2 can greatly increase the axial tensile strength of the water inlet and outlet pipes 2 and provide better protection for the water inlet and outlet pipes 2 and the welds 22 of the water inlet and outlet pipes.
  • the inner end of the protective steel pipe 6 is fastened and installed on the steel plate 4 (the steel plate 4) through a combination of screw connection and welding.
  • the inner wall of the water pipe installation through hole 41 is provided with internal threads, and the inner end of the protective steel pipe 6 is provided with a matching external thread; after the inner end of the protective steel pipe 6 is screwed into the water pipe installation through hole in place, the protective steel pipe 6 and the steel plate 4 are welded and welded Then a circular weld 23) is formed.
  • the outer end of the protective steel pipe 6 is welded to the steel sleeve 21, and there is an annular gap 24 between the protective steel pipe 6 and the water inlet and outlet pipe 2. .
  • the main difference between this embodiment and embodiment 1 is that: in this embodiment, the protective steel pipe 6 and the steel sleeve 21 are made into one piece (that is, a steel pipe is used, and its part close to the cooling stave body 1 constitutes The protective steel pipe 6, whose part away from the cooling stave body 1 constitutes a steel sleeve 21).
  • the steel plate 4 is fastened to the stave body 1 by welding (the edge of the steel plate 4 passes through the rectangular weld 25 and the cooling The cold surface 11 of the wall body 1 is welded).
  • the steel plate is fastened to the stave body by a combination of bolts and welding (first, the steel plate 4 is fastened to the stave body by bolts 7). On the stave body 1; after the bolts 7 are installed in place, the edge of the steel plate 4 is welded to the cold surface 11 of the stave body 1 through a rectangular weld 25).
  • a whole large steel plate can also be fixedly installed on the cold surface of the cooling stave body, and all the water inlet and outlet pipes share the whole large steel plate (that is, the steel plates in the reinforced structure of the water inlet and outlet pipes are connected as a whole); Multiple independent steel plates are fixedly installed on the cold surface of the cooling stave body, and several water inlet and outlet pipes share an independent steel plate.
  • the steel plate can also be fastened to the stave body by a combination of bolts and welding, specifically: after the bolts are installed in place, the head of the bolt is welded to the steel plate.
  • the inner end of the protective steel pipe can also be fastened to the steel plate by threaded connection (for example, the inner wall of the water pipe installation through hole on the steel plate is provided with internal threads, and the inner end of the protective steel pipe is provided with matching external threads. ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Blast Furnaces (AREA)

Abstract

一种冷却壁进出水管加强结构,进出水管(2)的内端焊接在冷却壁本体(1)上,进出水管(2)的外端穿出至炉壳(3)外面,进出水管(2)的外侧设有进出水管加强结构;进出水管加强结构包括钢板(4)、水管护套(5)和保护钢管(6);钢板(4)紧固安装在冷却壁本体(3)的冷面(11)上;水管护套(5)套接在进出水管(2)的外侧,水管护套(5)的内端与钢板(4)固定连接,水管护套(5)的外端通过密封材料与炉壳(3)的内表面紧密接触;保护钢管(6)套接在进出水管(2)的外侧,保护钢管(6)的内端紧固安装在钢板(4)上,保护钢管(6)的外端与进出水管(2)紧固连接。该进出水管加强结构不仅在冷却壁本体发生位移时能够减小进出水管及进出水管焊缝所受的剪切力和弯曲应力,而且能够大幅提高进出水管的轴向拉伸强度。

Description

一种冷却壁进出水管加强结构 技术领域
本发明涉及高炉的炉体冷却设备,具体涉及一种冷却壁进出水管加强结构。
背景技术
在现代高炉的冷却设备中,冷却壁特别是铜冷却壁以其优良的冷却性能,被广泛应用在高炉的炉身中下部、炉腰和炉腹等温度高、热应力大、炉况条件比较恶劣的区域,为高炉长寿起到重要作用。但由于部分高炉安装冷却壁进出水管用的炉壳开孔设计直径太小、或者冷却壁的安装不符合设计要求、或者炉壳的变形较大,造成冷却壁进出水管与炉壳之间的间隙太小,甚至进出水管接触到炉壳,导致冷却壁进出水管在使用过程中没有足够的活动空间,使进出水管受到炉壳的剪切。另外,冷却壁在长期高温高负荷的环境下会产生一定的累积变形,当冷却壁与炉壳之间的耐材保持不变时,冷却壁的变形会向炉内延伸,由于进出水管一端约束在炉壳上,另一端焊接在冷却壁本体上,因此进出水管在冷却壁热变形时受到轴向拉伸,特别是进出水管与冷却壁本体的焊接部位容易成为进出水管质量的薄弱位置而受损,长期可能导致进出水管漏水。
针对上述存在问题,近年来业界提出一些优化改进方案,例如授权公告号CN201864735U的中国实用新型专利说明书公开的一种冷却壁进出水管保护装置,进出水管的一端穿过炉壳而焊接在冷却壁上,保护装置包括保护套管,保护套管位于进出水管与炉壳之间,且保护套管的一端焊接在冷却壁上。所述保护套管包括同心设置的第一套管和第二套管,第一套管、二套管之间通过环壁连接,第一套管的直径大于第二套管的直径,第一套管焊接在所述冷却壁上,第二套管位于所述进出水管与炉壳之间。通过保护装置的保护套管能有效地对进出水管形成保护,将进出水管与冷却壁之间的剪切应力转移到保护套管上。虽然这种结构能减小进出水管和进出水管根部的剪切和弯曲应力,对进出水管起到一定的保护作用,但由于保护套管中第一套管和第二套管之间通过环壁连接形成一个整体,再焊接在冷却壁本体上,这种结构存在两方面的缺点:一是由于保护套管为整体结构,保护套管外面是固化耐材,冷却壁在使用中热膨胀会产生位移,保护套管受力后会通过其与进出水管接触的位置,将力传导到进出水管,使进出水管该位 置受到剪切力;二是这种结构没能提高进出水管的轴向拉伸强度。
发明内容
本发明所要解决的问题是提供一种冷却壁进出水管加强结构,这种冷却壁进出水管加强结构,这种加强结构不仅在冷却壁本体发生位移时能够减小进出水管及进出水管焊缝所受的剪切力和弯曲应力,而且能够大幅提高进出水管的轴向拉伸强度。采用的技术方案如下:
一种冷却壁进出水管加强结构,进出水管的内端焊接在冷却壁本体上,进出水管的外端穿出至炉壳外面,进出水管的外侧设有进出水管加强结构,其特征在于:所述进出水管加强结构包括钢板、水管护套和保护钢管;钢板紧固安装在冷却壁本体的冷面上;水管护套套接在进出水管的外侧,水管护套的内端与钢板固定连接,水管护套的外端通过密封材料与炉壳的内表面紧密接触;保护钢管套接在进出水管的外侧,保护钢管的内端紧固安装在钢板上,保护钢管的外端与进出水管紧固连接。
上述冷却壁本体朝向高炉炉腔的一面为热面,背向高炉炉腔的一面为冷面。上述进出水管、水管护套、保护钢管的内端是指其靠近高炉炉腔的一端,上述进出水管、水管护套、保护钢管的外端是指其远离高炉炉腔的一端。
通常,冷却壁包括一个冷却壁本体和多个进出水管,每个进出水管分别配套设置一个进出水管加强结构。
本发明中,保护钢管与水管护套为相互独立的分离结构,保护钢管与水管护套之间保持有足够的位移空间,这样,在使用过程中冷却壁本体发生位移时,水管护套受力后不会将力传导到保护钢管和进出水管,保护钢管不会对进出水管形成剪切,能够大大减小进出水管及进出水管焊缝所受的剪切力和弯曲应力;而且,由于保护钢管的内端紧固安装在钢板上(钢板紧固安装在冷却壁本体的冷面上),且保护钢管的外端与进出水管紧固连接,从而在轴向上有效对进出水管加固,能够大幅提高进出水管的轴向拉伸强度。
优选上述冷却壁本体为铜冷却壁本体。铜冷却壁本体的材料可以是纯铜或铜合金。冷却壁本体可以是平板,也可以弧形板。
上述钢板可通过螺栓或焊接紧固在冷却壁本体上,也可以采用螺栓和焊接相结合的方式紧固在冷却壁本体上(例如:在螺栓安装到位后,将钢板的边沿与冷 却壁本体焊接;或者在螺栓安装到位后,将螺栓的头部与钢板焊接)。
上述钢板的外形与冷却壁本体冷面上相应位置的形状相吻合(例如,在冷却壁本体是平板的情况下,钢板也为平板;在冷却壁本体是弧形板的情况下,钢板也为弧形板),使钢板能够紧贴冷却壁本体的冷面。具体设计时,可以在冷却壁本体的冷面上固定安装一整块大钢板,所有进出水管共用该整块大钢板(即各进出水管加强结构中的钢板连成整体);也可以在冷却壁本体的冷面上固定安装多个独立钢板,一个进出水管对应一个独立钢板,或者几个进出水管共用一个独立钢板。
通常,上述钢板上与进出水管对应的位置设有水管安装通孔,进出水管处在水管安装通孔中。
一种优选方案中,上述保护钢管的内端与钢板焊接。另一种优选方案中,上述保护钢管的内端通过螺纹连接方式紧固安装在钢板上(例如钢板上的水管安装通孔内壁设有内螺纹,保护钢管的内端设有与其相匹配的外螺纹)。另一种优选方案中,上述保护钢管的内端通过螺纹连接和焊接相结合的方式紧固安装在钢板上(例如钢板上的水管安装通孔内壁设有内螺纹,保护钢管的内端设有与其相匹配的外螺纹;保护钢管内端旋入水管安装通孔到位后,将保护钢管与钢板焊接)。
优选方案中,上述保护钢管的外端与进出水管的外壁焊接。
上述保护钢管的长度可大可小。优选上述保护钢管的外端伸出至炉壳外面(可使保护钢管的外端仅伸出炉壳一小段距离,也可使保护钢管覆盖进出水管的大部分)。上述保护钢管的外端也可以在炉壳内部。
优选方案中,上述水管护套的内端通过环形焊缝与钢板焊接。焊接后,在水管护套的内端与钢板之间的连接处形成密封。
优选方案中,上述水管护套由钢材制成。
设于水管护套的外端与炉壳的内表面之间的密封材料(安装时水管护套的外端将密封材料压紧在炉壳的内表面上),能够消除水管护套的外端与炉壳的内表面之间的间隙,确保密封效果,能更好地防止灌浆时灌浆料进入水管护套内部而导致进出水管失去缓冲余地;另外,密封材料能在冷却壁本体与炉壳之间起到缓冲作用。优选方案中,上述水管护套的外端与炉壳的内表面之间的密封材料为密封圈。密封圈通常采用耐高温且有弹性的材料制成,优选橡胶、硅胶或橡胶-石 棉复合板。
优选方案中,上述进出水管的外侧套接有波纹补偿器,波纹补偿器的内端焊接在炉壳的外表面上。
更优选方案中,上述进出水管的外侧套接有钢套管,钢套管焊接在进出水管上,波纹补偿器的外端焊接在钢套管上。在设有钢套管的情况下,保护钢管的外端可以焊接在钢套管上,也可以将保护钢管与钢套管制成一体(即采用一根钢管,其靠近冷却壁本体的部分构成保护钢管,其远离冷却壁本体的部分构成钢套管),也可以保护钢管的外端直接焊接在进出水管的外壁上。
本发明通过设置相互独立的保护钢管与水管护套对进出水管进行加强,保护钢管与水管护套之间保持有足够的位移空间,在使用过程中冷却壁本体发生位移时,水管护套受力后不会将力传导到保护钢管和进出水管,保护钢管不会对进出水管形成剪切,能够大大减小进出水管及进出水管焊缝所受的剪切力和弯曲应力;而且,由于保护钢管的内端紧固安装在钢板上(钢板紧固安装在冷却壁本体的冷面上),且保护钢管的外端与进出水管紧固连接,从而在轴向上有效对进出水管加固,能够大幅提高进出水管的轴向拉伸强度。
附图说明
图1是本发明实施例1的结构示意图;
图2是图1的A-A局部剖面图;
图3是本发明实施例2的结构示意图;
图4是本发明实施例3的结构示意图;
图5是本发明实施例4的结构示意图;
图6是本发明实施例5的结构示意图;
图7是图6的B-B局部剖面图;
图8是本发明实施例6中钢板与冷却壁本体连接的示意图。
具体实施方式
实施例1
如图1-图2所示,这种冷却壁进出水管加强结构中,进出水管2的内端焊接在冷却壁本体1上,进出水管2的外端穿出至炉壳3外面,进出水管2的外侧设有进出水管加强结构;进出水管加强结构包括钢板4、水管护套5和保护钢管 6;钢板4紧固安装在冷却壁本体1的冷面11上;水管护套5套接在进出水管2的外侧,水管护套5的内端与钢板4固定连接,水管护套5的外端通过密封材料与炉壳3的内表面紧密接触;保护钢管6套接在进出水管2的外侧,保护钢管6的内端紧固安装在钢板4上,保护钢管6的外端与进出水管2紧固连接。
冷却壁本体1朝向高炉炉腔的一面为热面12,背向高炉炉腔的一面为冷面11。进出水管2、水管护套5、保护钢管6的内端是指其靠近高炉炉腔的一端,进出水管2、水管护套5、保护钢管6的外端是指其远离高炉炉腔的一端。
冷却壁包括一个冷却壁本体1和多个进出水管2,每个进出水管2分别配套设置一个进出水管加强结构。冷却壁本体1中设有与进出水管连通的冷却水道13。
冷却壁本体1为铜冷却壁本体。铜冷却壁本体的材料可以是纯铜或铜合金。本实施例的冷却壁本体1为平板,冷却壁本体1的冷面11、热面12均是平面。冷却壁本体1也可为弧形板。
本实施例中,钢板4通过螺栓7紧固在冷却壁本体1上。
本实施例中,在冷却壁本体1的冷面11上固定安装多个独立的钢板4,一个进出水管对应一个独立的钢板4。钢板4的外形与冷却壁本体冷面11上相应位置的形状相吻合(例如,在冷却壁本体是平板的情况下,钢板也为平板;在冷却壁本体是弧形板的情况下,钢板也为弧形板),使钢板4能够紧贴冷却壁本体1的冷面11。
钢板4上与进出水管2对应的位置设有水管安装通孔41,进出水管2处在水管安装通孔41中(安装时,可将钢板4自进出水管外端套入进出水管2,然后移动至与冷却壁本体1的冷面11接触,再安装螺栓7,将钢板4紧固在冷却壁本体1上)。
本实施例中,保护钢管6的内端与钢板4焊接。保护钢管6的外端与进出水管2的外壁焊接(保护钢管6的外端直接焊接在进出水管2的外壁上)。保护钢管6的外端伸出至炉壳3外面。
本实施例中,水管护套5的内端通过环形焊缝8与钢板4焊接。焊接后,在水管护套5的内端与钢板4之间的连接处形成密封。水管护套5由钢材制成。
本实施例中,水管护套5的外端与炉壳3的内表面之间的密封材料为密封圈 9。密封圈采用耐高温且有弹性的材料制成,例如橡胶、硅胶或橡胶-石棉复合板。安装时水管护套5的外端将密封圈9压紧在炉壳3的内表面上。密封圈9能够消除水管护套5的外端与炉壳3的内表面之间的间隙,确保密封效果,能更好的防止灌浆时灌浆料进入水管护套内部而导致进出水管失去缓冲余地;密封圈9还能在冷却壁本体1与炉壳3之间起到缓冲作用。
本实施例中,进出水管2的外侧套接有波纹补偿器10,波纹补偿器10的内端焊接在炉壳3的外表面上。进出水管2的外侧套接有钢套管21,钢套管21焊接在进出水管2上,波纹补偿器10的外端焊接在钢套管21上。
本实施例中,保护钢管6与水管护套5为相互独立的分离结构,保护钢管6与水管护套5之间保持有足够的位移空间,这样,在使用过程中冷却壁本体1发生位移时,水管护套5受力后不会将力传导到保护钢管6和进出水管2,保护钢管不会对进出水管形成剪切,能够大大减小进出水管2及进出水管焊缝22所受的剪切力和弯曲应力。由于保护钢管6的内端紧固安装在钢板4上(钢板4紧固安装在冷却壁本体1的冷面11上),且保护钢管6的外端与进出水管2紧固连接,从而在轴向上有效对进出水管2加固,能够大幅提高进出水管2的轴向拉伸强度,更好地为进出水管2及进出水管焊缝22提供保护。
实施例2
如图3所示,本实施例与实施例1的主要不同在于:本实施例中,保护钢管6的内端通过螺纹连接和焊接相结合的方式紧固安装在钢板4上(钢板4上的水管安装通孔41内壁设有内螺纹,保护钢管6的内端设有与其相匹配的外螺纹;保护钢管6内端旋入水管安装通孔到位后,将保护钢管6与钢板4焊接,焊接后形成环形焊缝23)。
本实施例的其余结构参考实施例1进行设置。
实施例3
如图4所示,本实施例与实施例1的主要不同在于:本实施例中,保护钢管6的外端焊接在钢套管21上,保护钢管6与进出水管2之间具有环形间隙24。
本实施例的其余结构参考实施例1进行设置。
实施例4
如图5所示,本实施例与实施例1的主要不同在于:本实施例中,保护钢管 6与钢套管21制成一体(即采用一根钢管,其靠近冷却壁本体1的部分构成保护钢管6,其远离冷却壁本体1的部分构成钢套管21)。
本实施例的其余结构参考实施例1进行设置。
实施例5
如图6-图7所示,本实施例与实施例1的主要不同在于:本实施例中,钢板4通过焊接紧固在冷却壁本体1上(钢板4边沿通过矩形的焊缝25与冷却壁本体1的冷面11焊接)。
本实施例的其余结构参考实施例1进行设置。
实施例6
如图8所示,本实施例与实施例1的主要不同在于:本实施例中,钢板采用螺栓和焊接相结合的方式紧固在冷却壁本体上(先通过螺栓7将钢板4紧固在冷却壁本体1上;在螺栓7安装到位后,再将钢板4边沿通过矩形的焊缝25与冷却壁本体1的冷面11焊接)。
本实施例的其余结构与实施例1相同。
其他实施方案中,也可以在冷却壁本体的冷面上固定安装一整块大钢板,所有进出水管共用该整块大钢板(即各进出水管加强结构中的钢板连成整体);也可以在冷却壁本体的冷面上固定安装多个独立钢板,几个进出水管共用一个独立钢板。
其他实施方案中,钢板也可以采用螺栓和焊接相结合的方式紧固在冷却壁本体上,具体为:在螺栓安装到位后,将螺栓的头部与钢板焊接。
其他实施方案中,保护钢管的内端也可通过螺纹连接方式紧固安装在钢板上(例如钢板上的水管安装通孔内壁设有内螺纹,保护钢管的内端设有与其相匹配的外螺纹)。

Claims (10)

  1. 一种冷却壁进出水管加强结构,进出水管的内端焊接在冷却壁本体上,进出水管的外端穿出至炉壳外面,进出水管的外侧设有进出水管加强结构,其特征在于:所述进出水管加强结构包括钢板、水管护套和保护钢管;钢板紧固安装在冷却壁本体的冷面上;水管护套套接在进出水管的外侧,水管护套的内端与钢板固定连接,水管护套的外端通过密封材料与炉壳的内表面紧密接触;保护钢管套接在进出水管的外侧,保护钢管的内端紧固安装在钢板上,保护钢管的外端与进出水管紧固连接。
  2. 根据权利要求1所述的冷却壁进出水管加强结构,其特征是:所述冷却壁本体为铜冷却壁本体;铜冷却壁本体的材料是纯铜或铜合金。
  3. 根据权利要求1或2所述的冷却壁进出水管加强结构,其特征是:所述钢板通过螺栓或焊接紧固在冷却壁本体上,或者采用螺栓和焊接相结合的方式紧固在冷却壁本体上。
  4. 根据权利要求1或2所述的冷却壁进出水管加强结构,其特征是:所述钢板上与进出水管对应的位置设有水管安装通孔,进出水管处在水管安装通孔中。
  5. 根据权利要求1或2所述的冷却壁进出水管加强结构,其特征是:所述保护钢管的内端与钢板焊接,或者通过螺纹连接方式紧固安装在钢板上,或者通过螺纹连接和焊接相结合的方式紧固安装在钢板上。
  6. 根据权利要求1或2所述的冷却壁进出水管加强结构,其特征是:所述保护钢管的外端与进出水管的外壁焊接。
  7. 根据权利要求1或2所述的冷却壁进出水管加强结构,其特征是:所述水管护套的内端通过环形焊缝与钢板焊接;水管护套由钢材制成。
  8. 根据权利要求1或2所述的冷却壁进出水管加强结构,其特征是:所述水管护套的外端与炉壳的内表面之间的密封材料为密封圈。
  9. 根据权利要求1或2所述的冷却壁进出水管加强结构,其特征是:所述进出水管的外侧套接有波纹补偿器,波纹补偿器的内端焊接在炉壳的外表面上。
  10. 根据权利要求9所述的冷却壁进出水管加强结构,其特征是:所述进出 水管的外侧套接有钢套管,钢套管焊接在进出水管上,波纹补偿器的外端焊接在钢套管上。
PCT/CN2021/000014 2020-05-16 2021-01-18 一种冷却壁进出水管加强结构 WO2021232822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010415849.0A CN111363872A (zh) 2020-05-16 2020-05-16 一种冷却壁进出水管加强结构
CN202010415849.0 2020-05-16

Publications (1)

Publication Number Publication Date
WO2021232822A1 true WO2021232822A1 (zh) 2021-11-25

Family

ID=71207508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/000014 WO2021232822A1 (zh) 2020-05-16 2021-01-18 一种冷却壁进出水管加强结构

Country Status (2)

Country Link
CN (1) CN111363872A (zh)
WO (1) WO2021232822A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111363872A (zh) * 2020-05-16 2020-07-03 汕头华兴冶金设备股份有限公司 一种冷却壁进出水管加强结构
CN114410864A (zh) * 2022-01-20 2022-04-29 中冶东方工程技术有限公司 一种冷却壁进出水管保护结构和应用其的高炉

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324986A (ja) * 2003-04-24 2004-11-18 Sumitomo Metal Ind Ltd ステーブクーラ
CN2659899Y (zh) * 2003-09-26 2004-12-01 首钢总公司 高效长寿钢冷却壁
CN201065409Y (zh) * 2007-05-30 2008-05-28 中冶赛迪工程技术股份有限公司 一种进出水管的保护管
CN101935724A (zh) * 2010-09-17 2011-01-05 中冶京诚工程技术有限公司 冷却壁进出水管保护装置
CN201864735U (zh) * 2010-09-17 2011-06-15 中冶京诚工程技术有限公司 冷却壁进出水管保护装置
CN202865249U (zh) * 2012-11-06 2013-04-10 中冶赛迪工程技术股份有限公司 一种冷却壁进出水管结构
CN105219902A (zh) * 2014-05-30 2016-01-06 五冶集团上海有限公司 高炉冷却壁试压快速接头及使用方法
JP2016194129A (ja) * 2015-04-01 2016-11-17 日新製鋼株式会社 ステーブクーラー
CN111363872A (zh) * 2020-05-16 2020-07-03 汕头华兴冶金设备股份有限公司 一种冷却壁进出水管加强结构
CN211112065U (zh) * 2020-05-16 2020-07-28 汕头华兴冶金设备股份有限公司 一种冷却壁进出水管加强结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010341A1 (fr) * 2001-07-24 2003-02-06 Nippon Steel Corporation Refroidisseur a colonne pour four a cuve
JP4751238B2 (ja) * 2006-05-17 2011-08-17 新日本製鐵株式会社 高炉用ステーブクーラ
CN203890374U (zh) * 2014-06-19 2014-10-22 中冶赛迪上海工程技术有限公司 带柔性套管的冷却壁安装结构
CN109022651A (zh) * 2018-10-11 2018-12-18 马鞍山钢铁股份有限公司 一种防止高炉铜冷却壁进出水管漏水的装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324986A (ja) * 2003-04-24 2004-11-18 Sumitomo Metal Ind Ltd ステーブクーラ
CN2659899Y (zh) * 2003-09-26 2004-12-01 首钢总公司 高效长寿钢冷却壁
CN201065409Y (zh) * 2007-05-30 2008-05-28 中冶赛迪工程技术股份有限公司 一种进出水管的保护管
CN101935724A (zh) * 2010-09-17 2011-01-05 中冶京诚工程技术有限公司 冷却壁进出水管保护装置
CN201864735U (zh) * 2010-09-17 2011-06-15 中冶京诚工程技术有限公司 冷却壁进出水管保护装置
CN202865249U (zh) * 2012-11-06 2013-04-10 中冶赛迪工程技术股份有限公司 一种冷却壁进出水管结构
CN105219902A (zh) * 2014-05-30 2016-01-06 五冶集团上海有限公司 高炉冷却壁试压快速接头及使用方法
JP2016194129A (ja) * 2015-04-01 2016-11-17 日新製鋼株式会社 ステーブクーラー
CN111363872A (zh) * 2020-05-16 2020-07-03 汕头华兴冶金设备股份有限公司 一种冷却壁进出水管加强结构
CN211112065U (zh) * 2020-05-16 2020-07-28 汕头华兴冶金设备股份有限公司 一种冷却壁进出水管加强结构

Also Published As

Publication number Publication date
CN111363872A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2021232822A1 (zh) 一种冷却壁进出水管加强结构
GB2057666A (en) Heat exchangers
JP4751238B2 (ja) 高炉用ステーブクーラ
CN115307862B (zh) 一种高超声速风洞混合加热气体喷流试验装置
CN201662444U (zh) 一种高炉十字测温装置
CN211112065U (zh) 一种冷却壁进出水管加强结构
CN209164874U (zh) 一种管道补偿器固定装置
CN110953430A (zh) 一种用于电力的耐磨型管道补偿器
CN211398901U (zh) 一种管道连接装置
CN104848003B (zh) 一种真空管结构及采用该真空管结构的低温管道
JP2002060818A (ja) ステーブクーラー冷却水配管取付け部の補強構造
KR0128018B1 (ko) 고로용 외연식 열풍로의 연결구조
CN210860241U (zh) 一种防爆型管道补偿器
CN112901873A (zh) 一种直埋套筒补偿器
CN214947271U (zh) 一种水泥窑用膨胀节密封结构
CN220337801U (zh) 一种高炉送风装置用补偿器
KR200461702Y1 (ko) 턴디쉬에 장착되는 어퍼 워터 재킷
CN213452334U (zh) 一种耐高温的波纹管补偿器
CN212840043U (zh) 一种防积灰非金属补偿器
CN212537107U (zh) 一种管道连接用膨胀节
JP7401762B2 (ja) ステーブの交換方法及びステーブ
CN218094875U (zh) 烧结风箱用高温耐磨型非金属补偿器
CN218972126U (zh) 一种变径管连接的耐高温补偿器
JP7401761B2 (ja) 銅又は銅合金製ステーブ
CN217948172U (zh) 冷却条安装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807973

Country of ref document: EP

Kind code of ref document: A1