WO2021230178A1 - レーザ加工のための教示システムおよび教示方法 - Google Patents

レーザ加工のための教示システムおよび教示方法 Download PDF

Info

Publication number
WO2021230178A1
WO2021230178A1 PCT/JP2021/017629 JP2021017629W WO2021230178A1 WO 2021230178 A1 WO2021230178 A1 WO 2021230178A1 JP 2021017629 W JP2021017629 W JP 2021017629W WO 2021230178 A1 WO2021230178 A1 WO 2021230178A1
Authority
WO
WIPO (PCT)
Prior art keywords
intensity
reflected light
processing
minimum value
value
Prior art date
Application number
PCT/JP2021/017629
Other languages
English (en)
French (fr)
Inventor
洋平 鈴木
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to CN202180034637.0A priority Critical patent/CN115551682A/zh
Priority to JP2022521890A priority patent/JP7414979B2/ja
Priority to DE112021000968.0T priority patent/DE112021000968T5/de
Priority to US17/914,923 priority patent/US20230158602A1/en
Publication of WO2021230178A1 publication Critical patent/WO2021230178A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/044Seam tracking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40613Camera, laser scanner on end effector, hand eye manipulator, local
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45104Lasrobot, welding robot

Definitions

  • This disclosure relates to a teaching system and a teaching method for laser processing.
  • a teaching device that automatically generates teaching data is known in a laser machining system in which a machining head equipped with a galvano scanner is mounted on the tip of a robot arm to perform machining such as welding on a workpiece (see, for example, Patent Document 1). ..
  • the irradiation angle of the laser light is too small with respect to the processing point, that is, when the laser light is irradiated at an angle close to perpendicular to the processing surface, the positive reflection of the laser light at the processing point causes the high intensity of the laser light. Reflected light may be incident on the processing head. In this case, the machining operation may be stopped or the machining head may be damaged. Therefore, it is preferable to limit the minimum value of the irradiation angle to avoid it as much as possible.
  • One aspect of the present disclosure is a teaching system for laser processing that teaches the operation of a robot equipped with a processing head that emits laser light and the operation of the processing head, and returns from the surface of the object to be processed to the processing head.
  • a sensor for detecting the intensity of the reflected light of the laser beam and at least one processor are provided, and the processor includes the normal line of the surface of the object to be machined at each machining point and the laser beam emitted from the machining head. Given the minimum and maximum values of the irradiation angle consisting of the angles formed by the light, and the coordinates of the processing points, all the processing points are lasered by the laser light of the irradiation angle of the minimum value or more and less than the maximum value.
  • the robot control device uses the laser beam set to generate processable teaching data and set the intensity of the reflected light to be equal to or less than the allowable value when the irradiation angle is set to the minimum value.
  • the operation program including the teaching data it is determined whether or not the intensity of the reflected light detected by the sensor at all the processing points exceeds a predetermined threshold, and the threshold is set.
  • the minimum value at the corresponding processing point is adjusted to be increased by a predetermined increment, and it is determined that there is no reflected light having an intensity exceeding the threshold value. It is a teaching system that repeats generation, determination, and adjustment of the minimum value of the teaching data using the minimum value after the latest adjustment.
  • the teaching system 100 irradiates a work (machined object) W with laser light from a processing head 50 attached to the tip of a robot 10 to perform laser welding (laser processing).
  • a processing head 50 attached to the tip of a robot 10 to perform laser welding (laser processing).
  • the robot 10 is, for example, a vertical articulated robot.
  • the processing head 50 includes a galvano scanner (hereinafter, simply referred to as a scanner) 51, and can emit laser light at a desired angle within a predetermined angle range.
  • a galvano scanner hereinafter, simply referred to as a scanner
  • the scanner 51 has a function of scanning a laser beam transmitted from a laser oscillator 30 via an optical fiber in a two-dimensional direction orthogonal to the optical axis by driving a half mirror 52, and a condenser lens 53 in the optical axis direction. It has a function to drive and move the focal position in the optical axis direction.
  • the teaching system 100 includes an optical sensor (sensor) 54 provided in the processing head 50 and at least one processor 40.
  • the optical sensor 54 is branched by the half mirror 52 on the way back from the surface of the work W via the scanner 51 in the optical path between the laser oscillator 30 connected to the processing head 50 and the scanner 51. Detects the intensity of reflected light.
  • the processor 40 generates an operation program (teaching data) (step S1), and causes the control device 20 to execute the generated operation program (step S2). ).
  • the optical sensor 54 detects the intensity I R of the reflected light (step S4), and the intensity I R of the detected reflected light by the processor 40 whether more than a predetermined threshold value Th Determination (step S5). Then, based on the determination result, the processor 40 adjusts the minimum irradiation angles ⁇ min and P for each hitting point (step S6).
  • the minimum value ⁇ min, P and the maximum value ⁇ max, P of the irradiation angle of the laser beam at each hitting point, and the position (coordinates) of the hitting point (machining point) are input. do.
  • the teaching data capable of welding all the hitting points is generated by the laser beam having an irradiation angle of the minimum value ⁇ min, P or more and the maximum value ⁇ max, P or less.
  • the irradiation angle is an angle formed by the normal of the surface of the work W at each hitting point and the laser beam emitted from the processing head 50.
  • the maximum values ⁇ max and P of the irradiation angle of the laser beam are set to angles at which welding can be properly performed at all the hitting points P.
  • the generation of the operation program by the processor 40 is carried out according to the flowchart shown in FIG.
  • the processor 40 reads various data necessary for the operation program creation process such as the model data of the robot 10, the jig, and the work W, the welding time of each striking point, and the welding pattern. Step S11).
  • Various data may be stored in advance in a storage device such as a memory, or may be input by an operation unit. Alternatively, various data may be input from an external device via a network.
  • step S12 a process of determining a dot group is performed (step S12). Grouping is done to meet the following criteria. (1) The distance between the path of the robot 10 passing through the hitting point group and each hitting point is the operating range (scanning range) of the machining head 50. (2) When a line segment having a length corresponding to the welding time is defined along the path at the position of the foot of the perpendicular line drawn from each hitting point to the path of the robot 10, the line segment corresponding to the welding time is on the path. The degree of density in the area should be uniform.
  • FIG. 5 is a flowchart showing the details of the dot group determination process performed in step S12 of FIG. As an example, a case where grouping is performed for the hitting point group G0 as shown on the left side of FIG. 7 will be described.
  • the dot group G0 is divided into temporary dot groups (step S21).
  • one group defines a plurality of hit points for welding while the robot 10 operates with one operation command.
  • the robot 10 operates with one operation command, and during that time, the machining head 50 performs a scanning operation to weld each hitting point belonging to the group.
  • the robot 10 operates linearly at a constant speed.
  • the dot group G0 is tentatively divided into three dot groups G1 to G3 shown on the right side of FIG. 7.
  • the path of the robot 10 passing through the center of the hitting point group is determined (step S22).
  • the straight line passing through the center of the dot group is obtained by, for example, the least squares method.
  • the path R1 is obtained as a straight line that minimizes the sum of squares of the distances from each hitting point 101 to 105 to the way R1. Since the hitting points are located on the three-dimensional space, the hitting points 101 to 105 are actually distributed in the three-dimensional space. The above route is determined assuming that the hit points 101 to 105 are present at the positions where the hit points 101 to 105 are projected onto this plane.
  • the plane passing through the average position of each hitting point position can be obtained, for example, by using the least squares method (or using Newell's algorithm). It is assumed that the routes R1, R2, and R3 are determined as the routes of the hitting point groups G1, G2, and G3 by the processing in step S22, respectively.
  • the paths R1, R2, and R3 may be determined as paths in which the foot of the perpendicular line drawn from the irradiation position of the laser beam to the plane defining the hitting point groups G1, G2, and G3 moves on the plane.
  • the plane on which the hit points 101 to 105 of the hit point groups R1, R2 and R3 are projected may be defined as a plane inclined with respect to the horizontal direction depending on the distribution state (shape of the welded surface) of the hit points 101 to 105. ..
  • the plane H1 that defines the dot group G1 is preferably defined as a plane that is inclined with respect to the plane H2 that defines the dot group G2.
  • FIG. 8 also shows an example of the operating range of the processing head 50 set at the laser beam irradiation positions D1 and D2. While the robot 10 is on the path corresponding to the hitting point group G2, the machining head 50 is directed to the plane H2 by controlling the posture of the robot 10.
  • step S23 For each hitting point group R1, R2, R3, it is confirmed whether or not each hitting point 101 to 105 is within the operating range of the machining head 50 (step S23). For example, when the hitting point group G1 is described, it is possible to confirm in this step S23 depending on whether or not the distance from each hitting point 101 to 105 to the path R1 is within the operating range of the machining head 50. When a hitting point outside the operating range of the processing head 50 is found, the grouping is redone from the step S21.
  • the grouping is optimized based on the distribution of the hit points in the hit point group and the welding time of each hit point (steps S24 to S26).
  • the optimization of grouping will be described assuming a dot group as shown in FIG.
  • the hitting points 131 to 138 are distributed in one hitting point group G10.
  • the route P10 is a route set by the process of step S22 with respect to the dot group G10.
  • the robot 10 operates at a constant speed in the operation corresponding to one operation command. Therefore, when the operating speed of the robot 10 is set low so that the robot 10 can complete the welding of all the hit points 131 to 135 in the portion 140 where the hit points are dense, the robot 10 is unnecessarily slow in the portion 141 where the hit points are sparse. It will work.
  • a line segment having a length corresponding to the welding time of the hitting points 131 to 138 is set on the path P10 centering on the position of the foot of the perpendicular line drawn from each hitting point 131 to 138 on the path. do. Since this line segment corresponds to the welding time of one hit point in the moving time of the path P10 by the robot 10, it is hereinafter referred to as the welding time.
  • the welding time 132s is set around the position 132c of the foot of the perpendicular line drawn from the hitting point 132 to the path P10.
  • each welding time is indicated by a thick double-headed arrow line for convenience.
  • the density (degree of sparseness) of the welding time on the path P10 is calculated (step S24).
  • the density of welding time can also be expressed as the degree of concentration of welding time. For example, as shown in the upper part of FIG. 11, when the intervals d1 and d2 between the welding times SG1, SG2 and SG3 set on the path P10 are wide, the welding time density is low (sparse state). Equivalent to.
  • the state where the intervals d11 and d12 between the welding times SG10, SG11 and SG12 are narrow corresponds to the state where the welding time is high (dense state).
  • the wide spacing between adjacent weld times indicates that the speed of the robot 10 can be increased in the portion on the path P10 corresponding to those weld times.
  • the state where the interval between the adjacent welding times is narrow indicates that the speed of the robot 10 cannot be increased in the portion on the path P10 corresponding to those welding times.
  • the unevenness of the density of the welding time (unevenness in the sparse and dense state) set in the path of a certain dot group is evaluated, and if the unevenness of the density is high, the grouping is performed again.
  • the overall welding speed can be improved by reducing the unevenness of the welding time density of each dot group.
  • a value representing the unevenness of the density is calculated for the interval between the welding times set on the path of a certain dot group (step S24).
  • the unevenness of the welding time density may be calculated based on the variation in the welding time by obtaining the welding time density for each small section of a certain length on the path. Then, the evaluation value is calculated so that the smaller the unevenness of the density, the higher the score (step S25).
  • step S26 it is determined whether or not the evaluation value of each hitting point group is equal to or higher than a predetermined threshold value. If there is a group whose evaluation value is less than a predetermined threshold value, the group is grouped again so that the evaluation value becomes higher, and the process from step S21 is repeated.
  • step S27 If the evaluation value is equal to or higher than the threshold value for all the RBI groups, the process proceeds to step S27.
  • a genetic algorithm may be used.
  • step S27 the movement order between the hitting point groups and the hitting point order within the hitting point group are optimized.
  • the grouping and the route are determined as shown on the left side of FIG. 12 by the processing up to step S26.
  • the dot group to be welded is divided into three dot groups G201 to G203, and the paths P201 to P203 are set in each dot group G201 to G203.
  • the moving directions of the paths P201 to P203 set in the hitting point groups G201 to G203 and the moving order between the hitting point groups G201 to G203 are optimized (step S27).
  • the state before optimization is shown on the left side, and the state after optimization is shown on the right side.
  • the order between the hitting point groups G201 and G203 is the hitting point group G201 ⁇ the hitting point group G203 ⁇ the hitting point group G202.
  • the dot group G201 has a dot order from the bottom to the top in the figure
  • the dot group G203 has a dot order from the bottom to the top in the figure
  • the dot group G202 has a dot order from the left to the right in the figure.
  • the movement order between the dot group G201 and G203 is in the order of dot group G201 ⁇ dot group G202 ⁇ dot group G203. Further, the hitting order is determined from the bottom to the top for the hitting point group G201, the hitting order from the left to the right for the hitting point group G202, and the hitting order from the top to the bottom for the hitting point group G203.
  • the total distance of movement between the hitting point groups is the minimum in the state after optimization.
  • various methods known in the art for solving the so-called traveling salesman problem can be used.
  • step S13 of the flowchart of FIG. 4 the operating speed of the robot 10 for each hitting point group is determined.
  • FIG. 6 is a flowchart showing the details of this operation speed determination process.
  • a temporary operation speed is set for each hitting point group (step S31).
  • a low speed at which it is considered that the hitting points of each hitting point group can be welded without any problem may be set uniformly for all the hitting point groups.
  • a typical speed based on the experience value may be set uniformly for each RBI group.
  • an operation program of the robot 10 is generated using the path of the robot 10 determined in step S12 of the flowchart of FIG. 4 and the operation speed of each dot group determined in step S31, and the operation simulation of the robot 10 is performed.
  • Execute step S32.
  • the motion simulation By executing the motion simulation, the position data (hereinafter, also referred to as the motion path) for each interpolation cycle of the robot 10 is acquired.
  • Step S33 using the motion path of the robot 10 obtained by the motion simulation of the robot 10, a period corresponding to the range in which each hitting point can be welded on the motion path of the robot 10 (hereinafter referred to as a weldable period) is calculated (hereinafter referred to as a weldable period).
  • a weldable period a period corresponding to the range in which each hitting point can be welded on the motion path of the robot 10
  • the position of the processing head 50 attached to the tip of the arm of the robot 10 (specifically, for example, the position of the condenser lens 53 in the processing head 50) is determined based on the position on the operation path L1 of the robot 10.
  • the path of the laser beam connecting the position of the processing head 50 and the position of the striking point 151 is obtained.
  • the path of the laser beam does not interfere with the work W and jig.
  • the path of the laser beam is the operating range of the processing head 50.
  • the irradiation angle which is the angle between the normal direction of the work W and the laser beam at each hitting point position, is within a predetermined allowable range. When the condition of is satisfied, it is determined that welding is possible for this laser beam path.
  • the above condition (3) is applied in order to avoid unevenness in the irradiation intensity of the laser beam to the work W, maintain the welding quality, and prevent the adverse effect of the reflected light.
  • the period corresponding to the range in which the path of the laser beam is continuously determined to be weldable on the operation path L1 is the weldable period for each hitting point obtained in step S33.
  • the reference numeral L101 represents the weldable period.
  • the weldable period may be determined at a plurality of locations on the operation path L1. Since the weldable period L101 needs to be longer than the welding time of the target hitting point, the range that does not satisfy this is discarded.
  • the condition that the irradiation angle is equal to or more than the minimum value ⁇ min, P and less than the maximum value ⁇ max, P is input. If the above is not satisfied, the weldable period L101 is excluded. That is, as shown in FIG. 14, the laser beam is not irradiated to the region (hollow region) indicated by the diagonal line where the minimum value of the irradiation angle is ⁇ min, P or less.
  • the robot 10 while the robot 10 is moving along the operation path L1, when the laser beam is irradiated on the path LL1 passing through the hollow region as shown by the broken line in FIG. 14, the weldable period is interrupted.
  • the machining head 50 is controlled so that the laser beam is irradiated along the path LL2 that avoids the hollow region, so that the weldable period can be made continuous. It is possible to secure a weldable period that satisfies the welding time.
  • step S34 the position and time for welding each hitting point are determined using the weldable period for each hitting point determined in step S33 (step S34).
  • the welding time of each hitting point is taken into consideration, and the welding time is ensured that the welding time of each hitting point is satisfied without depending on the start time of the weldable period of each hitting point. To determine.
  • the weldable period of the spot A is 1 to 4 seconds from the start of operation
  • the weldable period of the spot B is 1.1 seconds from the start of operation. It is assumed that it is 2.1 seconds from the eye. In this case, it is the hitting point A that can be welded first, but if the hitting point A is welded from the first second to the second second, the hitting point B cannot be welded. In such a case, in step S34, the hitting point B is welded from the 1.1th second to the 2.1th second, and the hitting point B is welded from the 2.1st second to the 3.1th second.
  • step S34 as a second condition, if there is a hitting point that can be welded first depending on the positional relationship between the operation path and the work W or the jig without depending on the arrangement order of the hitting points, the hitting point is preferentially welded. do.
  • the arrangement of the hit points along the operation path L2 is in the order of the hit points 161, 162.
  • the hitting point 161 is hidden behind the protrusion 180 of the work W, and the hitting point 162 may be welded first.
  • the welding point 161 is first welded at the position 202 on the operation path L2, and the welding point 162 is welded at the position 203 behind it.
  • step S35 the operating speed is adjusted and optimized so that all the hit points can be welded and the cycle time is shortened.
  • the operating speed of the robot 10 is set to the same value for all the hitting points, the operating speed is lowered until welding is possible for all the hitting points, and then the operating speed is increased for each hitting point group.
  • the operation speed determination processing step S13 in the flowchart of FIG. 4 ends. If it is not optimized, the process from step S31 is repeated.
  • an operation program for the robot 10 and the machining head 50 is generated using the results obtained by the above processes of steps S11 to S13 (step S14).
  • the operation program of the robot 10 is created so that the robot 10 operates at the operation speed determined in step S13 along the path set in all the hitting point groups by the process of step S2.
  • the operation program of the machining head 50 is a position of the machining head 50 so that the laser beam is applied to the hit points over the welding time set for each hit point when the robot 10 moves on the movement path according to the movement program. And is created as a group of motion commands that define the posture. In this way, the optimum operation path of the robot 10 and the optimum timing for welding each hitting point can be automatically determined.
  • the processor 40 and sends the thus work program generated by the control unit 20 sets the intensity I T of the laser light to be emitted from the machining head 50 below the allowable value I R0, an operation program It is executed (step S2).
  • the permissible value IR0 is, for example, even if the work W is not welded even if the surface of the work W of the laser beam is irradiated and the specular reflected light on the surface of the work W is incident on the processing head 50, the processing head The strength is set so as not to adversely affect 50.
  • the intensity I R of the reflected light is monitored by an optical sensor provided in the processing head 50 (step S4), and the processor, or the intensity I R of the reflected light exceeds a predetermined threshold value Th not Is determined (step S5).
  • the threshold value Th is calculated by, for example, the following equation (1).
  • I S is the intensity of the laser beam used in the actual laser processing
  • I T is the intensity of the laser light emitted from the processing head 50 during the teaching.
  • the threshold Th the ratio of the intensity I R of the reflected light to the intensity I T of the laser light emitted from the processing head 50 during teachings, the allowable reflected light to the actual intensity of the laser beam I S used in laser processing It is set so as to be equal to or less than the ratio of the intensity IRO.
  • the intensity I R of the reflected light exceeds the threshold value Th, the minimum value theta min of the irradiation angle in the relevant RBI, increased P by a predetermined increment [Delta] [theta] (step S6), and stops the detection of the reflected light, It waits until the welding time of the corresponding hitting point P is completed (step S7). After the welding time of the dot P is completed, the steps from step S4 are repeated for the next dot P + 1 (step S8) until the operation program is completed (step S9).
  • step S4 If the intensity of the reflected light is within the threshold value Th, the steps from step S4 are repeated until the operation program is completed (step S9). After the operation program is completed, the intensity I R of the reflected light in all RBI whether less than a predetermined threshold value Th is determined (step S10), and the intensity I R of the reflected light in one of RBI exceeds the threshold value Th In that case, the process from step S1 is repeated. If the intensity I R of the reflected light in all hitting point the threshold Th or less in step S10, and outputs the final motion program (step S10A).
  • the reflected light of the laser beam on the surface of the work W does not adversely affect the processing head 50, and all the hitting points to be welded can be welded and the cycle time is the shortest. It has the advantage of being able to determine the speed.
  • the advantage is that there is no need to adjust the program.
  • the minimum value theta min of irradiation angle of each weld point P unlike the method of suppressing the intensity I R of the reflected light over the entire operating program previously set large initial value theta min of P, and the intensity I R of the reflected light
  • the minimum minimum value ⁇ min, P that can be suppressed to the allowable reflected light intensity IR0 can be obtained, and the irradiation angle range does not need to be excessively limited. This has the advantage that the desired cycle time for laser machining can be easily achieved.
  • the minimum value ⁇ min of the irradiation angle of the laser beam and the initial value ⁇ min of P are set to zero, but instead of this, a value other than zero may be set. ..
  • a value other than zero may be set.
  • the vertical articulated robot is exemplified as the robot 10, but the robot is not limited to this, and other types of robots may be used.
  • a laser scanning device other than the galvano scanner 51 may be used.
  • laser welding is exemplified as laser processing, but instead of this, it may be applied to any other laser processing.
  • Robot 20 Control device 40
  • Processor 50 Machining head 54
  • Optical sensor (sensor) 100
  • Teaching system W work (workpiece) Th threshold ⁇ min minimum value ⁇ max maximum value IR reflected light intensity

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Robotics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

反射光の強度を検出するセンサ(54)と、1以上のプロセッサ(40)とを備え、プロセッサが、各加工点におけるワーク(W)の法線と加工ヘッド(50)から射出されるレーザ光とのなす角度の最小値および最大値と、加工点の座標とを与えて、最小値以上最大値未満のレーザ光により、全ての加工点をレーザ加工可能な教示データを生成し、照射角度を最小値としたときの反射光強度が許容値以下となるレーザ光を用いて、生成された教示データを含む動作プログラムを実行させたときに、全ての加工点において反射光の強度に所定の閾値を超えるものが存在するか否かを判定し、閾値を超えると判定された場合に、該当する加工点における最小値を所定の増分だけ増大させ、閾値を超えないと判定されるまで、直近の最小値を用いた教示データの生成、判定および最小値の調整を繰り返す教示システム(100)である。

Description

レーザ加工のための教示システムおよび教示方法
 本開示は、レーザ加工のための教示システムおよび教示方法に関するものである。
 ロボットのアーム先端にガルバノスキャナを備える加工ヘッドを搭載してワークに対する溶接等の加工を行うレーザ加工システムにおいて、教示データを自動生成する教示装置が知られている(例えば、特許文献1参照。)。
特開2020-035404号公報
 加工点に対してレーザ光の照射角度が小さ過ぎる、すなわち、加工面に対して垂直に近い角度でレーザ光が照射されると、加工点におけるレーザ光の正反射により、レーザ光の高強度の反射光が加工ヘッドに入射する場合がある。この場合には、加工動作が停止したり加工ヘッドが損傷したりすることがあるので、照射角度の最小値を制限して、可能な限り回避することが好ましい。
 その一方で、反射光の強度は、加工面の状態あるいは材質により変動するので、一律に照射角度の最小値を制限することは、レーザ光の照射範囲を過度に制限してしまい、所望のサイクルタイムを達成するための教示データの作成が困難になる。したがって、レーザ光の照射範囲を過度に制限することなく、教示データを作成することが望まれている。
 本開示の一態様は、レーザ光を射出する加工ヘッドを装着したロボットの動作および前記加工ヘッドの動作を教示するレーザ加工のための教示システムであって、加工対象物表面から前記加工ヘッドに戻る前記レーザ光の反射光の強度を検出するセンサと、少なくとも1つのプロセッサとを備え、該プロセッサが、各加工点における前記加工対象物表面の法線と前記加工ヘッドから射出される前記レーザ光とのなす角度からなる照射角度の最小値および最大値と、前記加工点の座標とを与えて、前記最小値以上前記最大値未満の前記照射角度の前記レーザ光により、全ての前記加工点をレーザ加工可能な教示データを生成し、前記照射角度を前記最小値としたときの前記反射光の強度が許容値以下となる強度に設定された前記レーザ光を用いて、前記ロボットの制御装置に前記教示データを含む動作プログラムを実行させたときに、全ての前記加工点において前記センサにより検出された前記反射光の強度に所定の閾値を超えるものが存在するか否かを判定し、前記閾値を超える強度の前記反射光があると判定された場合に、該当する前記加工点における前記最小値を所定の増分だけ増大させるよう調整し、前記閾値を超える強度の前記反射光がないと判定されるまで、直近の調整後の前記最小値を用いた前記教示データの生成、判定および前記最小値の調整を繰り返す教示システムである。
本開示の一実施形態に係る教示システムを示す全体構成図である。 光センサを含めた加工ヘッドの構成図である。 図1の教示システムを用いた教示方法を説明するフローチャートである。 図3のフローチャートの動作プログラム作成処理を説明するフローチャートである。 図4のフローチャートの打点グループ決定処理を説明するフローチャートである。 図4のフローチャートの動作速度決定処理を説明するフローチャートである。 打点群のグループ分けを説明するための図である。 打点グループを定義する平面の例を表す図である。 フループ分けの最適化について説明するための図である。 溶接時間の疎密の度合いの例を示す図である。 溶接時間の疎密の度合いについて説明するための図である。 グループ間の移動順序の最適化について説明するための図である。 溶接可能期間の決定について説明するための図である。 溶接可能期間と照射角度の最小値を説明するための図である。 打点順序の決定について説明するための図である。
 本開示の一実施形態に係るレーザ加工のための教示システム100および教示方法について、図面を参照して以下に説明する。
 本実施形態に係る教示システム100は、図1に示されるように、ロボット10の先端に取り付けられた加工ヘッド50からレーザ光をワーク(加工対象物)Wに照射して、レーザ溶接(レーザ加工)を実施するための、ロボット10の動作および加工ヘッド50の動作の教示データを生成するシステムである。
 ロボット10は、例えば、垂直多関節型ロボットである。加工ヘッド50はガルバノスキャナ(以下、単にスキャナという。)51を備え、レーザ光を所定の角度範囲内の所望の角度で射出することができる。
 スキャナ51は、レーザ発振器30から光ファイバを経由して送られてくるレーザ光を、ハーフミラー52の駆動によって光軸に直交する2次元方向に走査させる機能および集光レンズ53を光軸方向に駆動して焦点位置を光軸方向に移動させる機能を有している。
 また、教示システム100は、図1に示されるように、加工ヘッド50に備えられた光センサ(センサ)54と、少なくとも1つのプロセッサ40とを備えている。
 光センサ54は、図2に示されるように加工ヘッド50に接続するレーザ発振器30とスキャナ51との間の光路において、ワークW表面からスキャナ51を経由して戻る途中でハーフミラー52により分岐された反射光の強度を検出する。
 本実施形態に係る教示方法は、プロセッサ40が、図3に示されるように、動作プログラム(教示データ)を生成し(ステップS1)、生成された動作プログラムを制御装置20に実行させる(ステップS2)。動作プログラムが実行されると、打点PがP=1にリセットされる(ステップS3)
 また、動作プログラムの実行中に、光センサ54により反射光の強度Iを検出し(ステップS4)、検出された反射光の強度Iが所定の閾値Thを超えるか否かをプロセッサ40によって判定する(ステップS5)。そして、判定結果に基づいて、プロセッサ40が照射角度の最小値θmin,Pを打点ごとに調整する(ステップS6)。
 プロセッサ40による動作プログラムの生成(ステップS1)は、各打点におけるレーザ光の照射角度の最小値θmin,Pおよび最大値θmax,Pと、打点(加工点)の位置(座標)とを入力する。そして、最小値θmin,P以上最大値θmax,P未満の照射角度のレーザ光により、全ての打点を溶接可能な教示データを生成する。ここで、照射角度は、各打点におけるワークW表面の法線と加工ヘッド50から射出されるレーザ光とのなす角度である。
 レーザ光の照射角度の最小値θmin,Pの初期値は、例えば、全ての打点Pにおいてθmin=0に設定される。
 レーザ光の照射角度の最大値θmax,Pは、全ての打点Pにおいて溶接を適正に実施することが可能な角度に設定される。
 具体的には、プロセッサ40による動作プログラムの生成は、図4に示されるフローチャートに従って実施される。
 まず、プロセッサ40には、上記照射角度および打点位置の他、ロボット10、ジグ、ワークWのモデルデータ、各打点の溶接時間および溶接パターン等の動作プログラム作成処理に必要な各種データが読み込まれる(ステップS11)。
 各種データは、メモリ等の記憶装置に予め格納されているものであってもよく、操作部によって入力されてもよい。あるいは、各種データは、外部装置からネットワークを経由して入力されてもよい。
 次に、打点グループを決定する処理が行われる(ステップS12)。グループ分けは、以下の基準を満たすように行われる。
(1)打点グループ内を通過するロボット10の経路と各打点との距離が加工ヘッド50の動作範囲(走査範囲)であること。
(2)各打点からロボット10の経路に下した垂線の足の位置に経路に沿って溶接時間に相当する長さの線分を定義した場合に、この溶接時間に相当する線分の経路上での密集の度合いが均一になること。
 図5は、図4のステップS12において行われる打点グループの決定処理の詳細を表すフローチャートである。一例として、図7の左側に示したような打点群G0についてグループ分けを行う場合について説明する。
 はじめに、打点群G0を仮の打点グループにグループ分けする(ステップS21)。ここで、1つのグループは、ロボット10が1つの動作命令で動作する間に溶接を行う複数の打点を規定する。1つのグループ内では、ロボット10が一つの動作命令で動作し、その間加工ヘッド50がスキャン動作を行うことでグループに属する各打点を溶接する。
 1つの動作命令においては、ロボット10は直線的に等速で動作する。ここでは、一例として、打点群G0を図7の右側に示す3つの打点グループG1~G3に仮に分けるものとする。
 次に、各打点グループG1~G3について、打点グループの中心を通るロボット10の経路を決定する(ステップS22)。打点グループの中心を通る直線は、例えば、最小二乗法により求める。
 一例として打点グループG1に関して述べると、経路R1は、各打点101~105から経路R1までの距離の二乗和が最小になる直線として求められる。なお、打点位置は3次元空間上の位置であるため各打点101~105は実際には3次元空間に分布しているが、各打点位置を平均した位置を通過する平面を定義して、各打点101~105をこの平面に投影した位置に各打点101~105が存在するものとして上記経路の決定を行う。
 各打点位置の平均した位置を通過する平面は、例えば、最小二乗法を用いて(或いはNewellのアルゴリズムを用いて)求めることができる。ステップS22での処理により、打点グループG1,G2,G3の経路としてそれぞれ経路R1,R2,R3が決定されたものとする。経路R1,R2,R3は、レーザ光の照射位置から打点グループG1,G2,G3を定義する平面に下した垂線の足が平面上を移動する経路として決定されてもよい。
 また、打点グループR1,R2,R3の打点101~105が投影される平面は、打点101~105の分布状態(溶接面の形状)によっては水平方向に対して傾斜した平面として定義されてもよい。例えば、図8に示すように、打点グループG1を定義する平面H1は、打点グループG2を定義する平面H2に対して傾斜した平面として定義することが好ましい。
 このように平面を決定することで、打点グループの分布に整合した平面を設定することができる。なお、図8には、レーザ光の照射位置D1,D2に設定される加工ヘッド50の動作範囲の例も図示されている。ロボット10が打点グループG2に対応する経路にある間は、ロボット10の姿勢を制御することにより、加工ヘッド50が平面H2を向けられる。
 次に、それぞれの打点グループR1,R2,R3について、各打点101~105が加工ヘッド50の動作範囲内にあるか否かの確認が行われる(ステップS23)。例えば、打点グループG1に関して説明すると、各打点101~105から経路R1までの距離が加工ヘッド50の動作範囲内であるか否かにより本ステップS23での確認を行うことができる。加工ヘッド50の動作範囲外である打点が見つかった場合には、ステップS21の工程からグループ分けをやり直す。
 次に、打点グループ内での打点の分布と各打点の溶接時間とに基づいてグループ分けを最適化する(ステップS24~S26)。図9に示したような打点グループを想定してグループ分けの最適化について説明する。
 図9の例では、一つの打点グループG10内に打点131~138が分布している。経路P10は、この打点グループG10に対してステップS22の処理により設定された経路である。
 上述の通り、1つの動作命令に対応する動作ではロボット10は等速で動作する。そのため、打点が密の部分140においてロボット10が全打点131~135の溶接を完了できるようにロボット10の動作速度を低く設定した場合、打点が疎の部分141ではロボット10が不必要に低速で動作することになる。
 したがって、この場合には打点グループG10を、部分140の打点グループと部分141の打点グループとに分けた方がロボット10の平均的な速度を高めることができる。すなわち、一打点グループ内での打点の分布が均一となるようにグループ分けを行うことが好ましいと言える。
 ただし、打点毎に溶接時間が異なることも考量する必要がある。
 そこで、図10に示すように各打点131~138から経路上に下した垂線の足の位置を中心とする、打点131~138の溶接時間に対応する長さの線分を経路P10上に設定する。この線分はロボット10による経路P10の移動時間における一打点の溶接時間に相当するため、以下、溶接時間と称することとする。
 一例として、図10において、打点132から経路P10におろした垂線の足の位置132cを中心とした溶接時間132sが設定されている。図10においては、各溶接時間は、便宜上太い両矢印線により示されている。
 まず、経路P10上に占める溶接時間の密度(疎密の度合い)を算出する(ステップS24)。この場合、溶接時間の密度は、溶接時間の集中の度合いと表現することもできる。
 例えば、図11の上段に示すように、経路P10上に設定される溶接時間SG1,SG2,SG3の間の間隔d1,d2が広い状態は、溶接時間の密度が低い状態(疎の状態)に相当する。
 それとは対照的に図11の下段で示すように、溶接時間SG10,SG11,SG12の間の間隔d11,d12が狭い状態は、溶接時間に密度が高い状態(密の状態)に相当する。隣接する溶接時間の間の間隔が広い状態は、それらの溶接時間に対応する経路P10上の部分ではロボット10の速度を上げることができることを表している。それに対し、隣接する溶接時間の間の間隔が狭い状態は、それらの溶接時間に対応する経路P10上の部分ではロボット10の速度を上げることができないことを表している。
 したがって、ある打点グループの経路に設定される溶接時間の密度のむら(疎密状態のむら)を評価し、密度のむらが高い場合には再グループ分けをする。これにより、各打点グループの溶接時間の密度のむらを小さくすることにより、全体的な溶接動作の速度を向上させることができる。
 すなわち、ある打点グループの経路上に設定された溶接時間の間の間隔について密度のむらを表す値を算出する(ステップS24)。一例として、溶接時間の密度のむらは、経路上の一定の長さの小区間毎の溶接時間の密度を求めて当該密度のばらつきに基づいて算出してもよい。そして、密度のむらが小さいほど高得点になるように評価値を計算する(ステップS25)。
 次に、各打点グループの評価値が所定の閾値以上になっているか否かを判定する(ステップS26)。評価値が所定の閾値未満のグループがある場合には、グループについて評価値が高くなるように再度のグループ分けを行い、ステップS21からの処理を繰り返す。
 また、全打点グループについて評価値が閾値以上になっている場合には、ステップS27に進む。このようなループ処理により打点グループ分けの最適化を行うことができる。このような最適化のループ処理では、例えば、遺伝的アルゴリズムが用いられてもよい。
 ステップS27においては、打点グループ間の移動順序および打点グループ内での打点順序の最適化を行う。ここでは、ステップS26まででの処理により図12の左側に示すようにグループ分けおよび経路の決定がなされたものとする。
 図12の左側の例では、溶接対象の打点群は3つの打点グループG201~G203にグループ分けされ、各打点グループG201~G203に経路P201~P203が設定されている。打点グループG201~G203に設定された経路P201~P203の移動方向、打点グループG201~G203間の移動順序が最適化される(ステップS27)。図12において左側に最適化前の状態を示し、右側に最適化後の状態を示す。最適化前の状態では、打点グループG201~G203間の順序は、打点グループG201→打点グループG203→打点グループG202の順となっている。
 また、打点グループG201については図中下から上に向かう打点順序、打点グループG203については図中下から上に向かう打点順序、打点グループG202については図中左から右に向かう打点順序と決定されている。最適化前の状態は、打点グループG201~G203間の総移動距離が長く改善の余地があることが理解できる。
 図12の右側の最適化後の状態では、打点グループG201~G203間の移動順序は、打点グループG201→打点グループG202→打点グループG203の順となっている。また、打点グループG201については下から上に向かう打点順序、打点グループG202については左から右に向かう打点順序、打点グループG203については上から下に向かう打点順序に決定されている。
 最適化後の状態では打点グループ間の移動の総距離が最小となっていることが理解できる。打点グループ間の総移動距離を最小にする移動順序を決定する手法としては、いわゆる巡回セールスマン問題を解くための当分野で知られた各種手法を用いることができる。以上の処理により、図4のフローチャートにおける打点グループの決定処理(ステップS12)が完了する。
 次に、図4のフローチャートのステップS13において、打点グループ毎のロボット10の動作速度が決定される。図6は、この動作速度決定処理の詳細を表すフローチャートである。はじめに、各打点グループについての仮の動作速度を設定する(ステップS31)。
 仮の動作速度は、各打点グループの打点を問題なく溶接できると考えられる低い速度を全打点グループについて一律に設定してもよい。あるいは、経験値に基づく代表的な速度を各打点グループに一律に設定してもよい。
 次に、図4のフローチャートのステップS12において決定されたロボット10の経路、およびステップS31で決定された各打点グループの動作速度を用いてロボット10の動作プログラムを生成し、ロボット10の動作シミュレーションを実行する(ステップS32)。動作シミュレーションの実行により、ロボット10の補間周期毎の位置データ(以下、動作経路とも記す)を取得する。
 そして、ロボット10の動作シミュレーションにより得られたロボット10の動作経路を用いて、ロボット10の動作経路上で各打点を溶接できる範囲に対応する期間(以下、溶接可能期間と記す)を算出する(ステップS33)。図13のようにロボット10の動作経路L1に関して、打点151の溶接できる溶接可能期間を求める場合を例として取り上げてここでの処理を説明する。
 まず、ロボット10の動作経路L1上の位置に基づいてロボット10のアーム先端に取り付けられている加工ヘッド50の位置(具体的には、例えば、加工ヘッド50内の集光レンズ53の位置)を求め、加工ヘッド50の位置と打点151の位置とを結ぶレーザ光の経路を求める。
 このとき、
(1)レーザ光の経路がワークW、ジグと干渉しない、
(2)レーザ光の経路が加工ヘッド50の動作範囲である、
(3)各打点位置でのワークWの法線方向とレーザ光とがなす角度である照射角度が所定の許容範囲であること、
の条件を満たすとき、このレーザ光の経路については溶接可能であると判定する。
 なお、上記条件(3)を適用するのは、ワークWに対するレーザ光の照射強度にむらが発生することを回避し溶接品質を維持するとともに、反射光による悪影響を防ぐためである。動作経路L1上で連続してレーザ光の経路が溶接可能であると判定される範囲に対応する期間が、ステップS33において求める各打点についての溶接可能期間である。
 図13の例では、符号L101が、溶接可能期間を表している。動作経路L1上の複数個所に溶接可能期間が決定される場合もあり得る。なお、溶接可能期間L101は対象打点の溶接時間以上である必要があるので、これを満たさない範囲は破棄する。
 この場合において、打点ごとに照射角度の最小値θmin,Pと最大値θmax,Pとが入力されているので、照射角度が最小値θmin,P以上最大値θmax,P未満の条件を満たさない場合は溶接可能期間L101から除かれる。すなわち、図14に示されるように、照射角度の最小値θmin,P以下となる斜線で示される領域(中抜け領域)には、レーザ光は照射されない。
 したがって、ロボット10が動作経路L1に沿って移動する間に、図14に破線で示されるよう、中抜け領域を通過する経路LL1でレーザ光が照射される場合には、溶接可能期間が途切れる。しかし、図14に実線で示されるように、中抜け領域を回避する経路LL2に沿ってレーザ光が照射されるように、加工ヘッド50が制御されることにより、溶接可能期間を連続させることができ、溶接時間を満足する溶接可能期間を確保できる。
 次に、ステップS33で決定された各打点についての溶接可能期間を用いて、各打点を溶接する位置、時間を決定する(ステップS34)。ここでは、第1の条件として、各打点の溶接時間を考慮し、各打点の溶接可能期間の開始時間の先後に依存することなく、各打点の溶接時間が確実に満たされるように溶接の時間を決定する。
 例えば、溶接時間が同じ1秒の2つの打点A,Bがあり、打点Aの溶接可能期間が動作開始から1秒目から4秒目、打点Bの溶接可能期間が動作開始から1.1秒目から2.1秒目である場合を想定する。この場合、先に溶接可能になるのは打点Aであるが、打点Aを1秒目から2秒目に溶接すると打点Bの溶接ができなくなる。このような場合、ステップS34においては、打点Bを1.1秒目から2.1秒目に溶接し、打点Bを2.1秒目から3.1秒目に溶接する。
 また、ステップS34においては、第2の条件として、打点の並び順に依存することなく動作経路とワークWやジグとの位置関係により先に溶接可能となる打点があればその打点を優先して溶接する。例えば、図15に示すように、動作経路L2に沿った打点の並びは打点161,162の順である。しかし、動作経路L2上から打点方向をみた場合に打点161がワークWの突起部180の背後に隠れ打点162の方が先に溶接可能となるような場合がある。この場合には、先に動作経路L2上の位置202において打点161の溶接を行い、打点162の溶接はその後ろの位置203において行う。
 そして、全打点が溶接できて且つサイクルタイムが短くなるように動作速度を調整し最適化する(ステップS35)。例えば、全打点グループについてロボット10の動作速度を同じ値として全打点について溶接可能となるまで動作速度を下げ、次に、打点グループ毎に動作速度を上げるというやり方が考えられる。以上の処理により、最適化された場合は、図4のフローチャートの動作速度決定処理(ステップS13)が終了する。また、最適化されていない場合には、ステップS31からの工程を繰り返す。
 次に、以上のステップS11~S13の処理によって得られた結果を用いてロボット10および加工ヘッド50の動作プログラムが生成される(ステップS14)。ロボット10の動作プログラムは、ステップS2の処理によって全打点グループに設定された経路に沿って、ステップS13において決定された動作速度でロボット10が動作するように作成される。
 加工ヘッド50の動作プログラムは、ロボット10がその動作プログラムにしたがって動作経路上を移動するときに各打点に対して設定された溶接時間にわたってレーザ光が打点に照射されるように加工ヘッド50の位置および姿勢を規定する動作指令群として作成される。
 このようにして、ロボット10の最適な動作経路および各打点を溶接する最適なタイミングを自動的に決定することができる。
 次に、プロセッサ40は、このようにして生成された動作プログラムを制御装置20に送るとともに、加工ヘッド50から射出させるレーザ光の強度Iを許容値IR0以下に設定して、動作プログラムを実行させる(ステップS2)。ここで、許容値IR0は、例えば、レーザ光のワークW表面に照射されてもワークWが溶接されず、かつ、ワークW表面における正反射光が加工ヘッド50に入射されても、加工ヘッド50に悪影響を与えない強度に設定される。
 動作プログラムの実行中には、加工ヘッド50に備えられた光センサにより反射光の強度Iが監視され(ステップS4)、プロセッサにおいて、反射光の強度Iが所定の閾値Thを超えたか否かが判定される(ステップS5)。
 閾値Thは、例えば、下式(1)により算出される。
 Th≦IR0×I/I   (1)
 ここで、Iは実際のレーザ加工に使用されるレーザ光の強度であり、Iは教示時に加工ヘッド50から射出されるレーザ光の強度である。
 すなわち、閾値Thは、教示時に加工ヘッド50から射出されるレーザ光の強度Iに対する反射光の強度Iの比率が、実際のレーザ加工に使用されるレーザ光の強度Iに対する許容反射光強度IROの比率以下となるように設定される。
 反射光の強度Iが閾値Thを超えた場合には、該当する打点における照射角度の最小値θmin,Pを所定の増分Δθだけ増大させ(ステップS6)、反射光の検出を停止し、該当する打点Pの溶接時間が終了するまで待機する(ステップS7)。打点Pの溶接時間が終了した後には、次の打点P+1について(ステップS8)、動作プログラムが終了するまでステップS4からの工程を繰り返す(ステップS9)。
 反射光の強度が閾値Th以内であれば、動作プログラムが終了するまで、ステップS4からの工程を繰り返す(ステップS9)。動作プログラムが終了した後に、全打点で反射光の強度Iが所定の閾値Th以下か否かが判定され(ステップS10)、いずれかの打点で反射光の強度Iが閾値Thを超えた場合には、ステップS1からの工程を繰り返す。ステップS10において全打点で反射光の強度Iが閾値Th以下であれば、最終的な動作プログラムを出力する(ステップS10A)。
 このように、本実施形態によれば、ワークW表面におけるレーザ光の反射光が加工ヘッド50に悪影響を与えず、かつ、溶接対象の全打点が溶接可能でサイクルタイムが最短になるように動作速度を決定することができるという利点がある。
 すなわち、ワークWの素材あるいはワークWの表面状態によっては、照射するレーザ光の強度Iが一定であっても、加工ヘッド50に戻る反射光の強度Iは変動する。本実施形態によれば、動作プログラムの全体にわたって打点毎に反射光の強度Iを強度IR0以下に抑える照射角度の最小値θmin,Pを自動的に求めるので、作業者が手動で動作プログラムを調整する必要がないという利点がある。
 また、各打点Pの照射角度の最小値θmin,Pの初期値θminを予め大きく設定して動作プログラム全体にわたる反射光の強度Iを抑える方法とは異なり、反射光の強度Iを許容反射光強度IR0に抑える最小の最小値θmin,Pを得ることができ、照射角度範囲を過度に制限せずに済む。これにより、レーザ加工の所望のサイクルタイムを達成し易くすることができるという利点がある。
 なお、本実施形態においては、レーザ光の照射角度の最小値θmin,Pの初期値θminをゼロに設定することとしたが、これに代えて、ゼロ以外の値に設定してもよい。例えば、表面が鏡面に近いワークWを溶接する場合等、照射角度の最小値θmin,Pがゼロでは、明らかに許容反射光強度IR0を超える反射光が加工ヘッド50に入射されてしまう場合がある。このような場合に、最小値θmin,Pのゼロ以外の初期値θminを用いることにより、最初の1回以上の無駄な処理をなくして、適正な最小値を探索するまでの時間を短縮することができる。
 また、本実施形態においては、ロボット10として垂直多関節型のロボットを例示したが、これに限定されるものではなく、他のタイプのロボットが用いられてもよい。また、ガルバノスキャナ51以外のレーザ走査装置が用いられてもよい。
 また、本実施形態においては、レーザ加工としてレーザ溶接を例示したが、これに代えて、他の任意のレーザ加工に適用してもよい。
 10 ロボット
 20 制御装置
 40 プロセッサ
 50 加工ヘッド
 54 光センサ(センサ)
 100 教示システム
 W ワーク(加工対象物)
 Th 閾値
 θmin 最小値
 θmax 最大値
 IR 反射光の強度

Claims (4)

  1.  レーザ光を射出する加工ヘッドを装着したロボットの動作および前記加工ヘッドの動作を教示するレーザ加工のための教示システムであって、
     加工対象物表面から前記加工ヘッドに戻る前記レーザ光の反射光の強度を検出するセンサと、
     少なくとも1つのプロセッサとを備え、
     該プロセッサが、
     各加工点における前記加工対象物表面の法線と前記加工ヘッドから射出される前記レーザ光とのなす角度からなる照射角度の最小値および最大値と、前記加工点の座標とを与えて、前記最小値以上前記最大値未満の前記照射角度の前記レーザ光により、全ての前記加工点をレーザ加工可能な教示データを生成し、
     前記照射角度を前記最小値としたときの前記反射光の強度が許容値以下となる強度に設定された前記レーザ光を用いて、前記ロボットの制御装置に前記教示データを含む動作プログラムを実行させたときに、全ての前記加工点において前記センサにより検出された前記反射光の強度に所定の閾値を超えるものが存在するか否かを判定し、
     前記閾値を超える強度の前記反射光があると判定された場合に、該当する前記加工点における前記最小値を所定の増分だけ増大させるよう調整し、
     前記閾値を超える強度の前記反射光がないと判定されるまで、直近の調整後の前記最小値を用いた前記教示データの生成、判定および前記最小値の調整を繰り返す教示システム。
  2.  最初の前記教示データが、前記最小値をゼロに設定して生成されたものである請求項1に記載の教示システム。
  3.  最初の前記教示データが、前記最小値をゼロ以外の値に設定して生成されたものである請求項1に記載の教示システム。
  4.  レーザ光を射出する加工ヘッドを装着したロボットの動作および前記加工ヘッドの動作を教示するレーザ加工のための教示方法であって、
     各加工点における加工対象物表面の法線と前記加工ヘッドから射出される前記レーザ光とのなす角度からなる照射角度の最小値および最大値と、前記加工点の座標とを与えて、前記最小値以上前記最大値未満の前記照射角度の前記レーザ光により、全ての前記加工点をレーザ加工可能な教示データを生成し、
     前記照射角度を前記最小値としたときの前記加工対象物表面から前記加工ヘッドに戻る前記レーザ光の反射光の強度が許容値以下となる強度に設定された前記レーザ光を用いて、前記ロボットの制御装置に前記教示データを含む動作プログラムを実行させたときに、全ての前記加工点において、前記加工対象物表面から前記加工ヘッドに戻る前記レーザ光の反射光の強度に所定の閾値を超えるものが存在するか否かを判定し、
     前記閾値を超える強度の前記反射光があると判定された場合に、該当する加工点における前記最小値を所定の増分だけ増大させるよう調整し、
     前記閾値を超える強度の前記反射光がないと判定されるまで、直近の調整後の前記最小値を用いた前記教示データの生成、判定および前記最小値の調整を繰り返す教示方法。
PCT/JP2021/017629 2020-05-15 2021-05-10 レーザ加工のための教示システムおよび教示方法 WO2021230178A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180034637.0A CN115551682A (zh) 2020-05-15 2021-05-10 用于激光加工的示教***以及示教方法
JP2022521890A JP7414979B2 (ja) 2020-05-15 2021-05-10 レーザ加工のための教示システムおよび教示方法
DE112021000968.0T DE112021000968T5 (de) 2020-05-15 2021-05-10 Einlernsystem und Einlernverfahren für Laserbearbeitung
US17/914,923 US20230158602A1 (en) 2020-05-15 2021-05-10 Teaching system and teaching method for laser machining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-085796 2020-05-15
JP2020085796 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021230178A1 true WO2021230178A1 (ja) 2021-11-18

Family

ID=78525811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017629 WO2021230178A1 (ja) 2020-05-15 2021-05-10 レーザ加工のための教示システムおよび教示方法

Country Status (5)

Country Link
US (1) US20230158602A1 (ja)
JP (1) JP7414979B2 (ja)
CN (1) CN115551682A (ja)
DE (1) DE112021000968T5 (ja)
WO (1) WO2021230178A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019024A (ja) * 2018-07-30 2020-02-06 トヨタ自動車株式会社 レーザ照射角度調整治具
JP2020032456A (ja) * 2018-08-31 2020-03-05 ファナック株式会社 レーザ加工のための教示装置
JP2020035404A (ja) * 2018-08-31 2020-03-05 ファナック株式会社 レーザ加工のための教示装置、教示方法、及び教示プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019024A (ja) * 2018-07-30 2020-02-06 トヨタ自動車株式会社 レーザ照射角度調整治具
JP2020032456A (ja) * 2018-08-31 2020-03-05 ファナック株式会社 レーザ加工のための教示装置
JP2020035404A (ja) * 2018-08-31 2020-03-05 ファナック株式会社 レーザ加工のための教示装置、教示方法、及び教示プログラム

Also Published As

Publication number Publication date
DE112021000968T5 (de) 2022-12-01
CN115551682A (zh) 2022-12-30
JP7414979B2 (ja) 2024-01-16
US20230158602A1 (en) 2023-05-25
JPWO2021230178A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
US8168919B2 (en) Laser working apparatus and method of controlling laser working apparatus
EP1943048B1 (en) Laser processing robot control system, control method and control program medium
KR102137215B1 (ko) 레이저 빔과 레이저 툴과 레이저 장치와 제어 장치를 이용한 피가공물 가공 방법 및 툴
JP6838017B2 (ja) レーザ加工のための教示装置、教示方法、及び教示プログラム
JP6588498B2 (ja) レーザ加工装置
US11612963B2 (en) Laser cutting device including machining condition tables and laser cutting method thereof
JP2004174709A (ja) 工作物を加工するための方法および装置
JP6836558B2 (ja) レーザ加工のための教示装置
JP6795565B2 (ja) レーザ加工システム
EP1671740A1 (en) Laser welding system and control method for welding points with a first travelling speed for a robot arm and a second scanning speed for the welding head
KR20110124290A (ko) 레이저 용접 장치
WO2021230178A1 (ja) レーザ加工のための教示システムおよび教示方法
WO2022080446A1 (ja) レーザ加工システム及び制御方法
JP2008006467A5 (ja)
JP6643442B1 (ja) レーザ加工機及びレーザ加工方法
JP7293700B2 (ja) レーザ加工装置およびレーザ加工方法
US20230381890A1 (en) Laser processing system and control method
US20230381889A1 (en) Laser processing system and control method
CN116393815B (zh) 一种考虑焊接倾斜角的激光扫描焊接方法
WO2024057496A1 (ja) 加工システム、データ構造及び加工方法
JP5169460B2 (ja) レーザ溶接方法、この溶接方法によって形成された溶接物、およびレーザ溶接システム
TW202239512A (zh) 雷射打標裝置及其控制方法
JP2022110864A (ja) レーザ加工装置
KR20190091016A (ko) 관성 무시 가공 장치 및 관성 무시 가공 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521890

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21804189

Country of ref document: EP

Kind code of ref document: A1