WO2021228254A1 - 弱相位漂移的铌酸锂波导 - Google Patents

弱相位漂移的铌酸锂波导 Download PDF

Info

Publication number
WO2021228254A1
WO2021228254A1 PCT/CN2021/093946 CN2021093946W WO2021228254A1 WO 2021228254 A1 WO2021228254 A1 WO 2021228254A1 CN 2021093946 W CN2021093946 W CN 2021093946W WO 2021228254 A1 WO2021228254 A1 WO 2021228254A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium niobate
layer
phase shift
waveguide
weak phase
Prior art date
Application number
PCT/CN2021/093946
Other languages
English (en)
French (fr)
Inventor
梁寒潇
宋一品
周颖聪
巫海苍
毛文浩
宋时伟
孙维祺
俞清扬
Original Assignee
上海徕刻科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海徕刻科技有限公司 filed Critical 上海徕刻科技有限公司
Priority to US17/638,819 priority Critical patent/US20220308371A1/en
Priority to EP21804171.3A priority patent/EP4020069A4/en
Priority to JP2022519394A priority patent/JP2022549713A/ja
Publication of WO2021228254A1 publication Critical patent/WO2021228254A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • G02F2201/063Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide ridge; rib; strip loaded
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3

Definitions

  • the invention relates to the field of electronic communication, in particular to a lithium niobate waveguide with weak phase shift.
  • Lithium niobate is one of the materials widely used in optoelectronic devices.
  • the various optoelectronic properties of lithium niobate make it used to manufacture a variety of optoelectronic devices, such as optical waveguides, high-speed optical modulators, optical frequency converters, and so on.
  • thin-film lithium niobate-on-insulator has made thin-film lithium niobate optical waveguides compatible with modern integrated circuit manufacturing processes have been widely studied.
  • Thin-film lithium niobate optical waveguides can be applied to high-speed optoelectronic devices, such as Mach-Zehnder optical modulators and micro-ring resonators.
  • Integrated optical circuit devices such as modulators and optical switches need a suitable bias operating point for normal operation, that is, a suitable phase bias point is applied to the device.
  • a suitable bias operating point for normal operation, that is, a suitable phase bias point is applied to the device.
  • lithium niobate modulators are used in optical communication systems, and the bit error rate needs to be reduced, which requires a basically stable bias operating point; when applied to CATV systems, the interference and the need to be phase biased at ⁇ /2 The best linearity can be obtained near the operating point; when applied to optical switches, a suitable bias voltage is also required to adjust the maximum or minimum light transmittance to map the zero point or ⁇ phase bias point.
  • phase stability of the lithium niobate waveguide modulator will be affected by a series of external environmental influences, such as external electric field, mechanical force, temperature, etc., which will cause the modulation phase to drift, and the DC bias zero point of the device will also have a larger amplitude or Small, high or low drift in frequency. This drift will cause the failure of the lithium niobate waveguide device and limit the application of the lithium niobate waveguide device in the actual environment.
  • the main purpose of this application is to provide a lithium niobate waveguide with weak phase shift to achieve the purpose of suppressing phase shift and enhance the stability of the device.
  • the present application provides a lithium niobate waveguide with weak phase shift, including a lithium niobate layer, a metal electrode, and a base layer.
  • the lithium niobate layer includes a lithium niobate center ridge and a lithium niobate center
  • the lithium niobate extension surface extends on both sides of the ridge, the upper surface of the lithium niobate central ridge is provided with a metal oxide layer, and the base layer is located on the lower surface of the lithium niobate layer.
  • the base layer is made of silicon, silicon dioxide, silicon and silicon dioxide multilayer materials or silicon dioxide, metal and silicon multilayer materials.
  • the upper surface of the lithium niobate extension surface and the side surface of the central ridge are provided with a metal oxide layer.
  • it further comprises a covering layer located on the upper surface of the metal oxide layer and the lithium niobate layer not covered with the metal oxide, and the covering layer is made of silicon dioxide.
  • the metal electrode is connected to the upper surface of the metal oxide layer.
  • the metal electrode passes through the part or all of the metal oxide layer and/or part or all of the extended surface of lithium niobate and/or part or all of the lower base layer, it is connected to the lowermost layer that is passed through. Surface connection.
  • the metal electrode is connected to the upper surface of the lithium niobate extension surface.
  • the metal electrode passes through part or all of the extended surface of lithium niobate and/or part or all of the lower base layer, it is connected to the surface of the lowermost layer passed through.
  • the metal electrode passes through the part or all of the covering layer and/or part or all of the metal oxide layer and/or part or all of the extension surface of lithium niobate and/or part or all of the underlying base layer, it is connected to the The surface of the lowermost layer that is passed through is connected.
  • the top surface of the metal electrode is higher or lower than or equal to the surface height of the covering layer.
  • the metal electrode is located in the base layer.
  • the outer surface of the metal oxide layer has an undulating structure, and the maximum thickness of the metal oxide layer is less than 2 ⁇ m.
  • the metal oxide layer is aluminum oxide, hafnium oxide, tantalum oxide, halo dioxide, titanium dioxide, or the like.
  • the thickness of the central ridge of lithium niobate is 0.2-3 ⁇ m
  • the thickness of the extension surface of lithium niobate is 0.1-1 ⁇ m
  • the width of the central ridge of lithium niobate is 0.3-3 ⁇ m.
  • the beneficial effect of the present application is: by covering or partially covering the surface of the lithium niobate waveguide with a metal oxide layer, such as aluminum oxide, hafnium oxide, tantalum oxide, hafnium dioxide or titanium dioxide, to absorb free electrons in the material,
  • a metal oxide layer such as aluminum oxide, hafnium oxide, tantalum oxide, hafnium dioxide or titanium dioxide
  • the metal electrode can be arranged on the surface of the metal oxide layer or directly on the surface of the lithium niobate layer, which can further achieve the purpose of suppressing phase shift.
  • the lithium niobate waveguide has a simple structure. Compared with other hybrid or other structures, the structure is simple in manufacturing method, and at the same time, it produces a very good phase shift suppression effect.
  • Fig. 1 is a specific embodiment 1 of a lithium niobate waveguide with weak phase shift
  • Fig. 2 is a second embodiment of a lithium niobate waveguide with weak phase shift
  • Fig. 3 is a third embodiment of a lithium niobate waveguide with weak phase shift
  • 4 is a fourth embodiment of a lithium niobate waveguide with weak phase shift
  • Fig. 5 is a fifth embodiment of a lithium niobate waveguide with weak phase shift
  • Fig. 6 is a sixth embodiment of a lithium niobate waveguide with weak phase shift.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or two devices, components, or The internal communication between the components.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or two devices, components, or The internal communication between the components.
  • the present invention provides a lithium niobate waveguide with weak phase shift, including a lithium niobate layer 1, a metal electrode 3, and the lithium niobate layer 1 includes a lithium niobate central ridge 11 and a lithium niobate
  • the lithium niobate extension surface 12 extends on both sides of the central ridge 11, the upper surface of the lithium niobate central ridge 11 is provided with a metal oxide layer 2, and the base layer 4 is located on the lower surface of the lithium niobate layer.
  • the base layer is made of silicon dioxide material.
  • the metal electrode 3 is connected to the upper surface of the lithium niobate extension surface 12.
  • the thickness of the central ridge of lithium niobate is 0.2 ⁇ m
  • the thickness of the extension surface of lithium niobate is 0.1 ⁇ m
  • the width of the central ridge of lithium niobate is 0.3 ⁇ m.
  • the metal oxide layer is aluminum oxide.
  • the present invention provides a lithium niobate waveguide with weak phase shift, which includes a lithium niobate layer and a metal electrode.
  • An extended lithium niobate extension surface is provided with a metal oxide layer on the upper surface of the central ridge of lithium niobate, and a metal oxide layer 3 is provided on the upper surface of the lithium niobate extension surface.
  • the base layer 4 is located on the lower surface of the lithium niobate layer.
  • the base layer is made of silicon material.
  • the metal electrode 3 is connected to the upper surface of the metal oxide layer 2.
  • the thickness of the central ridge of lithium niobate is 1.2 ⁇ m, the thickness of the extension surface of lithium niobate is 0.6 ⁇ m, and the width of the central ridge of lithium niobate is 1.5 ⁇ m.
  • the metal oxide layer is aluminum oxide or hafnium oxide.
  • the present invention provides a lithium niobate waveguide with weak phase shift, which includes a lithium niobate layer 1, a metal electrode 3, and a base layer 4.
  • the lithium niobate layer includes a lithium niobate central ridge and a Lithium niobate extended surfaces extending on both sides of the lithium niobate central ridge, and the upper surface of the lithium niobate central ridge is provided with a metal oxide layer.
  • the base layer 4 is located on the lower surface of the lithium niobate layer.
  • the metal electrode is connected to the base layer 4 through the extension surface of the lithium niobate.
  • the base layer 4 is made of silicon, silicon dioxide, silicon and silicon dioxide multilayer materials or silicon dioxide, metal and silicon multilayer materials.
  • the thickness of the central ridge of lithium niobate is 3 ⁇ m
  • the thickness of the extension surface of lithium niobate is 1 ⁇ m
  • the width of the central ridge of lithium niobate is 3 ⁇ m.
  • the metal oxide layer is tantalum oxide or halo dioxide.
  • the present invention provides a lithium niobate waveguide with weak phase shift, including a lithium niobate layer 1, a metal electrode 3, a base layer 4, and a cover layer 5.
  • the lithium niobate layer 1 includes lithium niobate A central ridge and a lithium niobate extension surface extending to both sides of the lithium niobate central ridge, and the upper surface of the lithium niobate central ridge is provided with a metal oxide layer.
  • the base layer is located on the lower surface of the lithium niobate layer.
  • the metal electrode 3 is connected to the lithium niobate layer 1.
  • a covering layer 5 is provided on the upper surface of the metal oxide layer.
  • the base layer is made of silicon dioxide material.
  • the metal electrode is located in the base layer 4.
  • the thickness of the central ridge of lithium niobate is 0.6 ⁇ m
  • the thickness of the extension surface of lithium niobate is 0.5 ⁇ m
  • the width of the central ridge of lithium niobate is 0.8 ⁇ m.
  • the metal oxide layer is aluminum oxide, hafnium oxide, tantalum oxide, halo dioxide or titanium dioxide.
  • the present invention provides a lithium niobate waveguide with weak phase shift, including a lithium niobate layer 1, a metal electrode 3, a base layer 4, and a cover layer 5.
  • the lithium niobate layer includes a lithium niobate center The ridge and the lithium niobate extension surface extending to both sides of the central ridge of lithium niobate, and the upper surface of the central ridge of lithium niobate is provided with a metal oxide layer.
  • the upper surface of the lithium niobate extension surface is provided with a metal oxide layer.
  • the base layer 4 is located on the lower surface of the lithium niobate layer 1.
  • the base layer is made of silicon dioxide material.
  • the metal electrode 4 is connected to the metal oxide layer 2.
  • the covering layer 5 is located on the upper surface of the metal oxide layer 2.
  • the metal electrode 3 is located in the covering layer 5.
  • the thickness of the central ridge of lithium niobate is 0.8 ⁇ m
  • the thickness of the extension surface of lithium niobate is 0.5 ⁇ m
  • the width of the central ridge of lithium niobate is 1.2 ⁇ m.
  • the metal oxide layer is aluminum oxide, hafnium oxide, tantalum oxide, hafnium dioxide or titanium dioxide.
  • the present invention provides a lithium niobate waveguide with weak phase shift, including a lithium niobate layer 1, a metal electrode 3, a base layer 4, and a cover layer 5.
  • the lithium niobate layer includes a lithium niobate center
  • the ridge and the lithium niobate extension surface extending to both sides of the central ridge of lithium niobate, and the upper surface of the central ridge of lithium niobate is provided with a metal oxide layer.
  • the upper surface of the lithium niobate extension surface is provided with a metal oxide layer.
  • the base layer 4 is located on the lower surface of the lithium niobate layer.
  • the metal electrode is connected to the base layer 4 through the extension surface of the lithium niobate.
  • the covering layer 5 is located on the upper surface of the metal oxide layer.
  • the base layer 4 is made of a multilayer material of silicon and silicon dioxide.
  • the metal electrode is located in the base layer 4.
  • the thickness of the central ridge of lithium niobate is 0.6 ⁇ m
  • the thickness of the extension surface of lithium niobate is 0.5 ⁇ m
  • the width of the central ridge of lithium niobate is 0.8 ⁇ m.
  • the metal oxide layer is aluminum oxide, hafnium oxide, tantalum oxide, halo dioxide, titanium dioxide, or the like.
  • the metal electrode By covering or partially covering the surface of the lithium niobate waveguide with a metal oxide layer, such as aluminum oxide, hafnium oxide, tantalum oxide, Hafnium dioxide or titanium dioxide, to absorb free electrons in the material, the metal electrode can be set on the metal.
  • the surface of the oxide layer can also be directly arranged on the surface of the lithium niobate layer, or it can penetrate the metal oxide layer and the lithium niobate layer and be arranged on the surface of the silicon dioxide substrate layer to further achieve the purpose of suppressing phase shift .
  • the lithium niobate waveguide has a simple structure. Compared with other hybrid or other structures, the structure is simple in manufacturing method, and at the same time, it produces a very good phase shift suppression effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本申请公开了一种弱相位漂移的铌酸锂波导,包括铌酸锂层、金属电极以及基底层,所述铌酸锂层包括铌酸锂中心脊和向铌酸锂中心脊两侧延伸的铌酸锂延伸面,所述铌酸锂中心脊的上表面设有金属氧化物层,所述基底层位于所述铌酸锂层的下表面,所述基底层由硅,二氧化硅,硅和二氧化硅多层材料或者二氧化硅、金属与硅的多层材料制成,以此进一步达到达到抑制相位漂移的目的。相较于其他参杂或者其他结构,本结构制作方法简单,同时产生非常好的相位漂移抑制效果。

Description

弱相位漂移的铌酸锂波导
相关申请的交叉引用
本申请要求于2020年5月14日提交中国专利局,申请号为2020104103534,发明名称为“一种弱相位漂移的铌酸锂波导”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子通信领域,具体涉及一种弱相位漂移的铌酸锂波导。
背景技术
铌酸锂是一种被广泛应用于光电器件的材料之一。铌酸锂的各项光电特性,如低操作电压、低传输损耗等优势,使之被用于制造多种光电器件,例如光波导、高速光调制器、光学变频器等等。近年来薄膜铌酸锂-绝缘体(Lithium Niobate-on-Insulator)的发展使兼容现代集成电路制造工艺的薄膜铌酸锂光波导被广泛研究。薄膜铌酸锂光波导可以被应用于高速光电器件,例如马赫-曾德尔光调制器以及微环共振器等。
调制器、光开关等集成光路器件需要一个合适的偏置工作点来进行正常工作,即给器件施加以合适的相位偏置点。举几个例子,铌酸锂调制器应用于光通信***中,需要降低误码率,这就需要基本稳定的偏置工作点;应用于CATV***时,干涉与需要在π/2相位偏置工作点附近才能获得最佳的线性度;应用于光开关时也需要合适的偏置电压来调整最大或最小的光透过率来映射零点或π相位偏置点。但是铌酸锂波导调制器的相位稳定性会受到一系列外部环境影响,例如外电场、机械力、温度等影响,使得调制相位发生漂移,进而使器件的直流偏置零点也发生幅度或大或小、频率或高或低的漂移。这种漂移会导致铌酸锂波导器件失效,限制了铌酸锂波导器件在实际环境下的应用。
发明内容
本申请的主要目的在于提供一种弱相位漂移的铌酸锂波导,达到抑制相位漂移的目的,增强器件工作的稳定性。
为了实现上述目的,本申请提供了一种弱相位漂移的铌酸锂波导,包括铌酸锂层、金属电极以及基底层,所述铌酸锂层包括铌酸锂中心脊和向铌酸锂中心脊两侧延伸的铌酸锂延伸面,所述铌酸锂中心脊的上表面设有金属氧化物层,所述基底层位于所述铌酸锂层的下表面。
优选地,所述基底层由硅,二氧化硅,硅和二氧化硅多层材料或者二氧化硅、金属与硅的多层材料制成。
优选地,所述铌酸锂延伸面的上表面以及中心脊的侧表面设有金属氧化物层。
优选地,还包括覆盖层,所述覆盖层位于金属氧化物层和未覆盖金属氧化物的铌酸锂层的上表面,所述覆盖层由二氧化硅构成。
优选地,所述金属电极与所述金属氧化物层的上表面连接。
优选地,所述金属电极穿过所述部分或全部金属氧化物层和/或部分或全部铌酸锂延伸面和/或部分或全部下层基底层后,与所述被穿过的最下层的表面连接。
优选地,所述金属电极与所述铌酸锂延伸面的上表面连接。
优选地,所述金属电极穿过所述部分或全部铌酸锂延伸面和/或部分或全部下层基底层后,与所述被穿过的最下层的表面连接。
优选地,所述金属电极穿过所述部分或全部覆盖层和/或部分或全部金属氧化物层和/或部分或全部铌酸锂延伸面和/或部分或全部下层基底层后,与所述被穿过的最下层的表面连接。
优选地,所述金属电极顶面高于或者低于或者等于覆盖层的表面高度。
优选地,所述金属电极位于所述基底层内。
优选地,所述金属氧化层外表面为波浪起伏状结构,金属氧化层的最大厚度小于2μm。
优选地,所述金属氧化物层为氧化铝,氧化铪,氧化钽,二氧化皓或二氧化钛等。
优选地,所述铌酸锂中心脊的厚度为0.2-3μm,铌酸锂延伸面的厚度为0.1-1μm,所述铌酸锂中心脊的宽度为0.3-3μm。
本申请的有益效果是:通过在铌酸锂波导的表面覆盖或部分覆盖一层金属氧化物层,如氧化铝,氧化铪,氧化钽,二氧化皓或二氧化钛等以吸收材料中的自由电子,金属电极既可以设置在金属氧化物层的表面,也可以直接设置在铌酸锂层的表面,能进一步达到达到抑制相位漂移的目的。该铌酸锂波导结构简单,相较于其他参杂或者其他结构,本结构制作方法简单,同时产生非常好的相位漂移抑制效果。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是弱相位漂移的铌酸锂波导具体实施例一;
图2是弱相位漂移的铌酸锂波导具体实施例二;
图3是弱相位漂移的铌酸锂波导具体实施例三;
图4是弱相位漂移的铌酸锂波导具体实施例四;
图5是弱相位漂移的铌酸锂波导具体实施例五;
图6是弱相位漂移的铌酸锂波导具体实施例六。
图中,1-铌酸锂层,2-金属氧化物层,3-金属电极,4-基底层,11-铌酸锂中心脊,12-铌酸锂延伸面,5-覆盖层。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本发明中,术语“安装”、“设置”、“设有”、“连接”、“相连”、“套接”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。
实施例1:
如图1所示,本发明提供一种弱相位漂移的铌酸锂波导,包括铌酸锂层1、金属电极3,所述铌酸锂层1包括铌酸锂中心脊11和向铌酸锂中心脊11两侧延伸的铌酸锂延伸面12,所述铌酸锂中心脊11的上表面设有金属氧化物层2,所述基底层4位于所述铌酸锂层的下表面。基底层为二氧化硅材料制成。所述金属电极3与所述铌酸锂延伸面12的上表面连接。所述铌酸锂中心脊的厚度为0.2μm,铌酸锂延伸面的厚度为0.1μm,所述铌酸锂中心脊的宽度为0.3μm。所述金属氧化物层为氧化铝。
实施例2:
如图2所示,本发明提供一种弱相位漂移的铌酸锂波导,包括铌酸锂层、金属电极,所述铌酸锂层包括铌酸锂中心脊和向铌酸锂中心脊两侧延伸的铌酸锂延伸面,所述铌酸锂中心脊的上表面设有金属氧化物层,所述铌酸锂延伸面的上表面设有金属氧化物层3。所述基底层4位于所述铌酸锂层的下表面。基底层为硅材料制成。所述金属电极3与所述金属氧化物层2的上表面连接。所述铌酸锂中心脊的厚度为1.2μm,铌酸锂延伸面的厚度为0.6μm,所述铌酸锂中心脊的宽度为1.5μm。所述金属氧化物层为氧化铝或氧化铪。
实施例3:
如图3所示,本发明提供一种弱相位漂移的铌酸锂波导,包括铌酸锂层1、金属电极3、基底层4,所述铌酸锂层包括铌酸锂中心脊和向铌酸锂中心脊两侧延伸的铌酸锂延伸面,所述铌酸锂中心脊的上表面设有金属氧化物层。所述基底层4位于所述铌酸锂层的下表面。所述金属电极穿过所述铌酸锂延伸面与所述基底层4连接。所述基底层4由硅,二氧化硅,硅和二氧化硅多层材料或者二氧化硅、金属与硅的多层材料制成。所述铌酸锂中心脊的厚度为3μm,铌酸锂延伸面的厚度为1μm,所述铌酸锂中心脊的宽度为3μm。所述金属氧化物层为氧化钽或二氧化皓。
实施例4:
如图4所示,本发明提供一种弱相位漂移的铌酸锂波导,包括铌酸锂层1、金属电极3、基底层4、覆盖层5,所述铌酸锂层1包括铌酸锂中心脊和向铌酸锂中心脊两侧延伸的铌酸锂延伸面,所述铌酸锂中心脊的上表面设有金属氧化物层。所述基底层位于所述铌酸锂层的下表面。所述金属电极3与铌酸锂层1连接。所述金属氧化物层的上表面设有覆盖层5。所述基底层由二氧化硅材料制成。所述金属电极位于所述基底层4内。所述铌酸锂中心脊的厚度为0.6μm,铌酸锂延伸面的厚度为0.5μm,所述铌酸锂中心脊的宽度为0.8μm。所述金属 氧化物层为氧化铝,氧化铪,氧化钽,二氧化皓或二氧化钛。
实施例5:
如图5所示,本发明提供一种弱相位漂移的铌酸锂波导,包括铌酸锂层1、金属电极3、基底层4、覆盖层5,所述铌酸锂层包括铌酸锂中心脊和向铌酸锂中心脊两侧延伸的铌酸锂延伸面,所述铌酸锂中心脊的上表面设有金属氧化物层。所述铌酸锂延伸面的上表面设有金属氧化物层。所述基底层4位于所述铌酸锂层1的下表面。所述基底层由二氧化硅材料制成。所述金属电极4与金属氧化物层2连接。所述覆盖层5位于金属氧化物层2的上表面。所述金属电极3位于所述覆盖层5内。所述铌酸锂中心脊的厚度为0.8μm,铌酸锂延伸面的厚度为0.5μm,所述铌酸锂中心脊的宽度为1.2μm。所述金属氧化物层为氧化铝,氧化铪,氧化钽,二氧化皓或二氧化钛。
实施例6:
如图6所示,本发明提供一种弱相位漂移的铌酸锂波导,包括铌酸锂层1、金属电极3、基底层4、覆盖层5,所述铌酸锂层包括铌酸锂中心脊和向铌酸锂中心脊两侧延伸的铌酸锂延伸面,所述铌酸锂中心脊的上表面设有金属氧化物层。所述铌酸锂延伸面的上表面设有金属氧化物层。所述基底层4位于所述铌酸锂层的下表面。所述金属电极穿过所述铌酸锂延伸面与所述基底层4连接。所述覆盖层5位于金属氧化物层的上表面。所述基底层4由硅和二氧化硅多层材料制成。所述金属电极位于所述基底层4内。所述铌酸锂中心脊的厚度为0.6μm,铌酸锂延伸面的厚度为0.5μm,所述铌酸锂中心脊的宽度为0.8μm。所述金属氧化物层为氧化铝,氧化铪,氧化钽,二氧化皓或二氧化钛等。
通过在铌酸锂波导的表面覆盖或部分覆盖一层金属氧化物层,如氧化铝,氧化铪,氧化钽,二氧化皓或二氧化钛等以吸收材料中的自由电子,金属电极既可以设置在金属氧化物层的表面,也可以直接设置在铌酸锂层的表面,也可以穿透金属氧化物层和铌酸锂层设置在二氧化硅衬底层表面,以此进一步达到达到抑制相位漂移的目的。该铌酸锂波导结构简单,相较于其他参杂或者其他结构,本结构制作方法简单,同时产生非常好的相位漂移抑制效果。
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (14)

  1. 一种弱相位漂移的铌酸锂波导,其特征在于,包括铌酸锂层、金属电极以及基底层,所述铌酸锂层包括铌酸锂中心脊和向铌酸锂中心脊两侧延伸的铌酸锂延伸面,所述铌酸锂中心脊的上表面设有金属氧化物层,所述基底层位于所述铌酸锂层的下表面。
  2. 如权利要求1所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述基底层由硅,二氧化硅,硅和二氧化硅多层材料或者二氧化硅、金属与硅的多层材料制成。
  3. 如权利要求1所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述铌酸锂延伸面的上表面以及中心脊的侧表面设有金属氧化物层。
  4. 如权利要求1至3任一项所述的一种弱相位漂移的铌酸锂波导,其特征在于,还包括覆盖层,所述覆盖层位于金属氧化物层和未覆盖金属氧化物的铌酸锂层的上表面,所述覆盖层由二氧化硅构成。
  5. 如权利要求3所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述金属电极与所述金属氧化物层的上表面连接。
  6. 如权利要求3所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述金属电极穿过部分或全部金属氧化物层和/或部分或全部铌酸锂延伸面和/或部分或全部下层基底层后,与被穿过的最下层的表面连接。
  7. 如权利要求1所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述金属电极与所述铌酸锂延伸面的上表面连接。
  8. 如权利要求1所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述金属电极穿过部分或全部铌酸锂延伸面和/或部分或全部下层基底层后,与被穿过的最下层的表面连接。
  9. 如权利要求4所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述金属电极穿过部分或全部覆盖层和/或部分或全部金属氧化物层和/或部分或全部铌酸锂延伸面和/或部分或全部下层基底层后,与被穿过的最下层的表面连接。
  10. 如权利要求4所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述金属电极顶面高于或者低于或者等于覆盖层的表面高度。
  11. 如权利要求4所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述金属电极位于所述基底层内。
  12. 如权利要求1至3任一项所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述金属氧化层最大厚度小于2μm。
  13. 如权利要求1所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述金属氧化物层为氧化铝,氧化铪,氧化钽,二氧化皓或二氧化钛。
  14. 如权利要求1所述的一种弱相位漂移的铌酸锂波导,其特征在于,所述铌酸锂中心脊的厚度为0.2-3μm,铌酸锂延伸面的厚度为0.1-1μm,所述铌酸锂中心脊的宽度为0.3-3μm。
PCT/CN2021/093946 2020-05-14 2021-05-14 弱相位漂移的铌酸锂波导 WO2021228254A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/638,819 US20220308371A1 (en) 2020-05-14 2021-05-14 Lithium niobate waveguide having weak phase drift
EP21804171.3A EP4020069A4 (en) 2020-05-14 2021-05-14 LITHIUM NIOBATE WAVEGUIDE WITH LOW PHASE DRIFT
JP2022519394A JP2022549713A (ja) 2020-05-14 2021-05-14 弱位相ドリフトを有するニオブ酸リチウムウェイブガイド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010410353.4 2020-05-14
CN202010410353.4A CN111522154A (zh) 2020-05-14 2020-05-14 一种弱相位漂移的铌酸锂波导

Publications (1)

Publication Number Publication Date
WO2021228254A1 true WO2021228254A1 (zh) 2021-11-18

Family

ID=71912696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093946 WO2021228254A1 (zh) 2020-05-14 2021-05-14 弱相位漂移的铌酸锂波导

Country Status (5)

Country Link
US (1) US20220308371A1 (zh)
EP (1) EP4020069A4 (zh)
JP (1) JP2022549713A (zh)
CN (1) CN111522154A (zh)
WO (1) WO2021228254A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111522154A (zh) * 2020-05-14 2020-08-11 上海徕刻科技有限公司 一种弱相位漂移的铌酸锂波导
US11624965B2 (en) * 2020-08-13 2023-04-11 Fujitsu Optical Components Limited Optical waveguide device
CN115808815A (zh) * 2021-09-15 2023-03-17 南京刻得不错光电科技有限公司 电光调制器和电光器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094396A (zh) * 2011-11-02 2013-05-08 三星电子株式会社 集成有波导的石墨烯光电探测器
US20170219854A1 (en) * 2016-02-01 2017-08-03 Sensor Electronic Technology, Inc. Integrated Optical Modulator
CN109298551A (zh) * 2018-11-28 2019-02-01 中国电子科技集团公司第四十四研究所 一种基于铌酸锂厚膜的高速电光调制器及其制备方法
CN110568551A (zh) * 2019-08-22 2019-12-13 易锐光电科技(安徽)有限公司 铌酸锂光波导芯片
CN110989214A (zh) * 2019-12-23 2020-04-10 武汉邮电科学研究院有限公司 一种电光调制器
CN111522154A (zh) * 2020-05-14 2020-08-11 上海徕刻科技有限公司 一种弱相位漂移的铌酸锂波导

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445977B2 (ja) * 2007-03-30 2010-04-07 住友大阪セメント株式会社 光制御素子
JP2014142411A (ja) * 2013-01-22 2014-08-07 Tdk Corp 光変調器
JP2015014715A (ja) * 2013-07-05 2015-01-22 Tdk株式会社 電気光学デバイス
US9244296B2 (en) * 2013-11-15 2016-01-26 Tdk Corporation Optical modulator
FR3034875B1 (fr) * 2015-04-08 2018-03-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'ajustement des proprietes d'un circuit photonique par implantation ionique post-fabrication, guide d'ondes et circuit photonique ainsi ajustes
WO2017082349A1 (ja) * 2015-11-12 2017-05-18 日本電信電話株式会社 光送信器及びバイアス電圧の制御方法
CN108732795A (zh) * 2017-04-14 2018-11-02 天津领芯科技发展有限公司 一种硅基铌酸锂高速光调制器及其制备方法
CN111051970B (zh) * 2017-08-24 2023-08-11 Tdk株式会社 光调制器
US11366344B2 (en) * 2017-10-02 2022-06-21 Tdk Corporation Optical modulator
CN108681111B (zh) * 2018-03-29 2021-07-13 北京航天时代光电科技有限公司 一种铌酸锂电光调制器
EP4001977A4 (en) * 2019-07-17 2023-03-29 Institute of Semiconductors, Chinese Academy Of Sciences PHOTONIC CHIP AND ASSOCIATED PREPARATION METHOD
JP7419806B2 (ja) * 2019-12-26 2024-01-23 住友大阪セメント株式会社 光導波路素子および光変調器
CN111061071B (zh) * 2020-01-09 2021-09-21 清华大学 电光调制器及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094396A (zh) * 2011-11-02 2013-05-08 三星电子株式会社 集成有波导的石墨烯光电探测器
US20170219854A1 (en) * 2016-02-01 2017-08-03 Sensor Electronic Technology, Inc. Integrated Optical Modulator
CN109298551A (zh) * 2018-11-28 2019-02-01 中国电子科技集团公司第四十四研究所 一种基于铌酸锂厚膜的高速电光调制器及其制备方法
CN110568551A (zh) * 2019-08-22 2019-12-13 易锐光电科技(安徽)有限公司 铌酸锂光波导芯片
CN110989214A (zh) * 2019-12-23 2020-04-10 武汉邮电科学研究院有限公司 一种电光调制器
CN111522154A (zh) * 2020-05-14 2020-08-11 上海徕刻科技有限公司 一种弱相位漂移的铌酸锂波导

Also Published As

Publication number Publication date
CN111522154A (zh) 2020-08-11
JP2022549713A (ja) 2022-11-28
EP4020069A1 (en) 2022-06-29
US20220308371A1 (en) 2022-09-29
EP4020069A4 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
WO2021228254A1 (zh) 弱相位漂移的铌酸锂波导
JP5435873B2 (ja) 耐湿性電気光学デバイス
US6069729A (en) High speed electro-optic modulator
US7408693B2 (en) Electro-optic device
US6055342A (en) Integrated optical intensity modulator and method for fabricating the same
US9703127B2 (en) Waveguide structure
US8774565B2 (en) Electro-optic device
US7099524B2 (en) Optical modulator
JP2006039569A (ja) バッファ層を有する低バイアス・ドリフト変調器
JPH1039266A (ja) 光制御デバイス
US20100310206A1 (en) Optical modulator
JP6394244B2 (ja) 光制御素子
JP2006317550A (ja) 光変調器
CN212694197U (zh) 一种弱相位漂移的铌酸锂波导
JP2007199500A (ja) 光変調器
JP2008233513A (ja) 光変調器
JPS62168101A (ja) リチウム・ニオベ−ト光導波素子およびその製造方法
CN212206096U (zh) 一种y分支光波导调制器芯片
WO2002097521A1 (fr) Dispositif de modulation optique presentant d'excellentes caracteristiques electriques grace a une restriction efficace du transfert de chaleur
CN113687529A (zh) 一种基于低折射率高介电常数的薄膜铌酸锂电光调制器
US11556041B2 (en) Electro-optic modulator
JP2007033793A (ja) 光変調器
US11624965B2 (en) Optical waveguide device
JP7526610B2 (ja) 光導波路デバイス
JP5010408B2 (ja) 光変調器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519394

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021804171

Country of ref document: EP

Effective date: 20220325

NENP Non-entry into the national phase

Ref country code: DE