WO2021227928A1 - 数据的重复传输方法 - Google Patents

数据的重复传输方法 Download PDF

Info

Publication number
WO2021227928A1
WO2021227928A1 PCT/CN2021/091948 CN2021091948W WO2021227928A1 WO 2021227928 A1 WO2021227928 A1 WO 2021227928A1 CN 2021091948 W CN2021091948 W CN 2021091948W WO 2021227928 A1 WO2021227928 A1 WO 2021227928A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
pdsch
tci
domain resource
indicate
Prior art date
Application number
PCT/CN2021/091948
Other languages
English (en)
French (fr)
Inventor
张云昊
徐修强
骆喆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021227928A1 publication Critical patent/WO2021227928A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to communication technology, and in particular to a method for repeated transmission of data.
  • network devices and terminal devices can perform data transmission based on business scenarios.
  • this business scenario includes but is not limited to at least one of the following: enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (URLLC), and large-scale machine types Communications (massive machine-type communications, mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • mMTC massive machine-type communications
  • the network device and the terminal device can perform uplink data transmission, for example, the terminal device can send uplink data to the network device; and/or, the network device and the terminal device can perform downlink data transmission, for example, the network device can send downlink data to the terminal device.
  • the embodiment of the present application provides a method for repeated transmission of data, which aims to reduce the processing complexity of the terminal device during multi-beam transmission, thereby reducing the power consumption of the terminal device.
  • a method for repeated transmission of data including: receiving N repeated data from a network device, wherein the i-th repeated data in the N repeated data is set by using the i-th antenna port set. On each resource, it is carried by the i-th physical downlink shared channel PDSCH.
  • the value of i is 1 to N, that is, the value of i traverses from 1 to N, and N is an integer greater than or equal to 2, and the i-th resource includes the i-th frequency domain resource.
  • the i-th antenna port set includes one or more antenna ports.
  • the one or more antenna ports are the same as one or more antenna ports of the demodulation reference signal DMRS of the i-th PDSCH.
  • the N pieces of repeated data include N identical transport blocks TB.
  • frequency domain resources are independently configured for each beam.
  • the frequency diversity gain can be used without configuring a larger bandwidth for each beam, so the terminal side can be reduced.
  • Receive processing pressure which can reduce power consumption and cost on the terminal side.
  • the i-th frequency domain resource is predefined. Through this method, the signaling overhead for configuring the i-th frequency domain resource can be saved.
  • the method includes: receiving first indication information from the network device, which is used to indicate the i-th frequency domain resource.
  • the type of the first indication information is DCI
  • the frequency domain resource allocation field in the first indication information is used to indicate the i-th frequency domain resource.
  • the i-th frequency domain resource can be configured according to parameters such as channel conditions, so that the reception quality of the signal transmitted on the resource can be higher.
  • the antenna ports included in the i-th antenna port set are predefined. Through this method, the signaling overhead for configuring the i-th antenna port set can be saved.
  • the method includes: receiving first indication information from the network device, which is used to indicate the antenna ports included in the i-th antenna port set.
  • the i-th antenna port set includes the antenna port of the i-th PDSCH or the antenna port of the DMRS of the i-th PDSCH.
  • the type of the first indication information is DCI.
  • the antenna port set can be configured according to parameters such as channel conditions and/or required received energy, so that the reception quality of the signal transmitted on the antenna port set can be higher.
  • the i-th resource includes the i-th time domain resource, and the i-th time domain resource is predefined. Through this method, the signaling overhead for configuring the i-th time domain resource can be saved.
  • the i-th resource includes an i-th time domain resource
  • the method includes: receiving first indication information from the network device for indicating the i-th time domain resource.
  • the type of the first indication information is DCI
  • the time domain resource allocation field in the first indication information is used to indicate the i-th time domain resource.
  • the specific positions of any two time domain resources from the first time domain resource to the Nth time domain resource may be the same or different, which is not limited in the embodiment of the present application.
  • the method further includes: receiving second indication information from the network device, where the second indication information is used to indicate QCL information of the DMRS of the i-th PDSCH.
  • the QCL information may be regarded as QCL information of the i-th antenna port set, and the one or more antenna ports in the i-th antenna port set are one or more of the DMRS of the i-th PDSCH Multiple antenna ports.
  • the QCL information may be regarded as the QCL information corresponding to the i-th frequency domain resource.
  • each antenna port set can be more accurately obtained.
  • PDSCH channel estimation can improve the correct rate of demodulation and decoding of PDSCH at the receiving end.
  • the second indication information is used to indicate the QCL information of the DMRS of the i-th PDSCH, including: the second indication information is used to indicate that the DMRS of the i-th PDSCH is at least one signal of the QCL , And the DMRS of the i-th PDSCH and the QCL type of each signal in the at least one signal.
  • the second indication information is used to indicate the QCL information of the DMRS of the i-th PDSCH, including: the second indication information is used to indicate the M2 set of QCL information, and the information of the DMRS of the i-th PDSCH
  • the QCL information includes the M2 set of QCL information, and the M2 set of QCL information is included in the M1 set of candidate QCL information.
  • M1 is an integer greater than or equal to 1
  • M2 is an integer greater than or equal to 1 and less than or equal to M1.
  • Any set of information in the M1 set of candidate QCL information is used to indicate a signal and a QCL type
  • the DMRS of the i-th PDSCH and the signal are QCL
  • the DMRS of the i-th PDSCH and The QCL type of the one signal is the one QCL type.
  • the second indication information is used to indicate the QCL information of the DMRS of the i-th PDSCH, including: the second indication information is used to indicate a transmission configuration number-state TCI-state, the one The TCI-state is included in the S1 TCI-states, and the one TCI-state is used to indicate that the DMRS of the i-th PDSCH is at least one signal of QCL, and the DMRS used to indicate the i-th PDSCH and the The QCL type of each signal in at least one signal.
  • each TCI-state in the S1 TCI-states is used to indicate at least one signal and a QCL type corresponding to each signal in the at least one signal.
  • the method includes: receiving third indication information from the network device, where the third indication information is used to indicate the S1 TCI-state information.
  • the second indication information is used to indicate QCL information of the DMRS of the i-th PDSCH, including: the second indication information is used to indicate a first pattern, and the first pattern is included in Among the F1 candidate first patterns, each of the F1 candidate first patterns is used to indicate TCI-state, where r i is the number of sub-frequency domain resources included in the i-th frequency domain resource, and the The j-th TCI-state in the r i TCI-states corresponding to the i-th frequency domain resource in the two TCI-states is used to indicate at least one signal and the QCL type corresponding to each signal in the at least one signal.
  • At least one signal indicated by the j-th TCI-state in the r i- th TCI-states corresponding to the i-th frequency domain resource indicated by a second pattern indicated by the second indication information and the j-th child of the i-th frequency domain resource is QCL, where r i is an integer greater than or equal to 1, j ranges from 1 to r i , and F1 is an integer greater than or equal to 1.
  • the method includes: receiving third indication information from the network device, where the third indication information is used to indicate the F1 candidate first patterns.
  • the second indication information is used to indicate the QCL information of the DMRS of the i-th PDSCH, including: the second indication information is used to indicate a second pattern, and the second pattern is included in In the P1 candidate second patterns, each second pattern in the P1 candidate second patterns is used to indicate the first pattern of each time unit in a group of time units.
  • the introduction of the first pattern is the same as the previous article, so I won't repeat it here.
  • the first pattern indicated by the first pattern At least one signal indicated by the jth TCI-state in the ith TCI-stater i corresponding to the i -th frequency domain resource in each TCI-state and transmitted on the jth sub-frequency domain resource of the i-th frequency domain resource
  • the DMRS of PDSCH is QCL.
  • the i-th PDSCH is transmitted in the first time unit.
  • the method includes: receiving third indication information from the network device, where the third indication information is used to indicate the P1 candidate second patterns.
  • the second indication information is used to indicate the QCL information of the DMRS of the i-th PDSCH, including: the second indication information is used to indicate Z2 third patterns, and the Z2 The three patterns are included in the Z1 candidate third patterns; wherein, for one third pattern among the Z2 third patterns, the one third pattern corresponds to one TCI-state, and the one third pattern is used for instruct Elements, the Elements corresponding to the first frequency domain resource to the Nth frequency domain resource in a one-to-one manner Sub-frequency domain resources, where r i is the number of sub-frequency domain resources included in the i-th frequency domain resource, for the One of the r i elements corresponding to the i-th frequency domain resource among the elements.
  • the DMRS of the i-th PDSCH transmitted on the sub-frequency domain resource corresponding to the one element At least one signal indicated by the one TCI state is QCL, and the corresponding QCL type is the QCL type indicated by the one TCI-state.
  • the method includes: receiving third indication information from the network device, where the third indication information is used to indicate the Z1 candidate third patterns.
  • the second indication information is used to indicate the QCL information of the DMRS of the i-th PDSCH, including: the second indication information is used to indicate X2 fourth patterns, and the X2 fourth patterns Four patterns are included in the X1 candidate fourth patterns; wherein, for one fourth pattern among the X2 fourth patterns, the one fourth pattern corresponds to one TCI-state, and the one fourth pattern corresponds to one TCI-state.
  • the pattern is used to indicate the corresponding to each time unit in a set of time units Elements, the Elements corresponding to the first frequency domain resource to the Nth frequency domain resource in a one-to-one manner Sub-frequency domain resources, where r i is the number of sub-frequency domain resources included in the i-th frequency domain resource; for the first time unit One of the r i elements corresponding to the i-th frequency domain resource among the elements.
  • the at least one signal indicated by the one TCI state is QCL
  • the one TCI-state is also used to indicate the QCL type corresponding to each signal in the at least one signal, wherein the i-th PDSCH is in the The first time unit is transmitted.
  • the method includes: receiving third indication information from the network device, where the third indication information is used to indicate the X1 candidate fourth patterns.
  • a method for repeated transmission of data including: sending N repeated data to a terminal device, wherein the i-th repeated data in the N repeated data is set by using the i-th antenna port set at the i-th antenna port. On each resource, it is carried by the i-th physical downlink shared channel PDSCH.
  • the value of i is 1 to N, that is, the value of i traverses from 1 to N, and N is an integer greater than or equal to 2, and the i-th resource includes the i-th frequency domain resource.
  • the i-th antenna port set includes one or more antenna ports.
  • the one or more antenna ports are the same as one or more antenna ports of the demodulation reference signal DMRS of the i-th PDSCH.
  • the N pieces of repeated data include N identical transport blocks TB.
  • the i-th antenna port set for the introduction of the i-th resource, the i-th antenna port set, the i-th PDSCH, and the DMRS of the i-th PDSCH, please refer to the first aspect, which will not be repeated here.
  • a device in a third aspect, may be a terminal device or another device capable of implementing the method described in the first aspect.
  • the other device can be installed in the terminal device, or can be matched and used with the terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module.
  • the communication module is used to receive N repeated data from the network device, where the i-th repeated data in the N repeated data is to use the i-th antenna port set, on the i-th resource, through It is carried by the i-th physical downlink shared channel PDSCH.
  • the value of i is 1 to N, that is, the value of i traverses from 1 to N, and N is an integer greater than or equal to 2, and the i-th resource includes the i-th frequency domain resource.
  • the processing module is used to process (for example, demodulate and decode) PDSCH.
  • the i-th antenna port set for the introduction of the i-th resource, the i-th antenna port set, the i-th PDSCH, and the DMRS of the i-th PDSCH, please refer to the first aspect, which will not be repeated here.
  • a device in a fourth aspect, may be a network device or another device capable of implementing the method described in the second aspect.
  • the other device can be installed in the network equipment, or can be matched and used with the network equipment.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the second aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module.
  • the communication module is used to send N repeated data to the terminal device, where the i-th repeated data in the N repeated data is the i-th antenna port set, on the i-th resource, through It is carried by the i-th physical downlink shared channel PDSCH.
  • the value of i is 1 to N, that is, the value of i traverses from 1 to N, and N is an integer greater than or equal to 2, and the i-th resource includes the i-th frequency domain resource.
  • the processing module is used to generate PDSCH.
  • the i-th antenna port set for the introduction of the i-th resource, the i-th antenna port set, the i-th PDSCH, and the DMRS of the i-th PDSCH, please refer to the second aspect, which will not be repeated here.
  • an embodiment of the present application provides a device, which includes a processor, configured to implement the method described in the first aspect.
  • the device may also include a memory for storing instructions.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the first aspect can be implemented.
  • the device may also include a communication interface, and the communication interface is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the other device may be a network device.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to use a communication interface to receive N repeated data from the network device, where the i-th repeated data in the N repeated data uses the i-th antenna port set, on the i-th resource, and passes through the i-th
  • the physical downlink shared channel PDSCH carries.
  • the value of i is 1 to N, that is, the value of i traverses from 1 to N, and N is an integer greater than or equal to 2, and the i-th resource includes the i-th frequency domain resource.
  • the i-th antenna port set for the introduction of the i-th resource, the i-th antenna port set, the i-th PDSCH, and the DMRS of the i-th PDSCH, please refer to the first aspect, which will not be repeated here.
  • an embodiment of the present application provides a device, the device includes a processor, and is configured to implement the method described in the second aspect.
  • the device may also include a memory for storing instructions.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the method described in the second aspect can be implemented.
  • the device may also include a communication interface, and the communication interface is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the other device may be a terminal device.
  • the device includes:
  • Memory used to store program instructions
  • the processor is configured to use the communication interface to send N repeated data to the terminal device, where the i-th repeated data in the N repeated data is the i-th antenna port set, on the i-th resource, and passed through the i-th repetitive data.
  • the physical downlink shared channel PDSCH carries.
  • the value of i is 1 to N, that is, the value of i traverses from 1 to N, and N is an integer greater than or equal to 2, and the i-th resource includes the i-th frequency domain resource.
  • the i-th antenna port set for the introduction of the i-th resource, the i-th antenna port set, the i-th PDSCH, and the DMRS of the i-th PDSCH, please refer to the second aspect, which will not be repeated here.
  • a communication system including the device of the third aspect or the fifth aspect, and the device of the fourth aspect or the sixth aspect.
  • a computer-readable storage medium including instructions, which when run on a computer, cause the computer to execute the method described in the first aspect or the second aspect.
  • a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in the first aspect or the second aspect.
  • a chip system in a tenth aspect, includes a processor and may also include a memory for implementing the method described in the first or second aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 shows an example flow chart of a method for repeated transmission of downlink data provided by an embodiment of the application
  • FIG. 2 shows an example diagram of a time-frequency resource grid provided by an embodiment of this application
  • FIG. 3 shows an example diagram of a method for repeated transmission of downlink data provided by an embodiment of the application
  • FIG. 6 shows an example diagram of a candidate second pattern provided by an embodiment of this application
  • FIG. 7 shows an example diagram of a candidate third pattern provided by an embodiment of this application.
  • FIG. 8 shows an example diagram of a candidate fourth pattern provided by an embodiment of this application.
  • FIG. 9 shows an example diagram of a flow of data transmission between a base station and a UE according to an embodiment of the application.
  • FIGS 10-11 are diagrams showing an example of the structure of an apparatus provided by an embodiment of this application.
  • LTE long term evolution
  • 5G fifth generation
  • WiFi wireless-fidelity
  • future communication system or a system integrating multiple communication systems, etc.
  • 5G can also be called new radio (NR).
  • mMTC may include one or more of the following communications: industrial wireless sensor network (IWSN) communications, video surveillance (video surveillance) scenarios, and communications with wearable devices Wait.
  • IWSN industrial wireless sensor network
  • video surveillance video surveillance
  • Communication between communication devices may include: communication between a network device and a terminal device, communication between a network device and a network device, and/or communication between a terminal device and a terminal device.
  • the term “communication” can also be described as “transmission”, “information transmission”, or “signal transmission” and so on. Transmission can include sending and/or receiving. Taking the communication between the network device and the terminal device as an example, the technical solution of the embodiment of the present application is described. Those skilled in the art can also use the technical solution for communication between other scheduling entities and subordinate entities, such as between a macro base station and a micro base station.
  • Air interface resources include one or more of the following resources: time domain resources, frequency domain resources, code resources, and space resources.
  • the multiple types may be two, three, four, or more types, which are not limited in the embodiments of the present application.
  • the communication between the network device and the terminal device includes: the network device sends a downlink signal or information to the terminal device, and/or the terminal device sends an uplink signal or information to the network device.
  • "/" can indicate that the associated objects are in an "or” relationship.
  • A/B can indicate A or B; and "and/or” can be used to describe that there are three types of associated objects.
  • the relationship, for example, A and/or B can mean that: A alone exists, A and B exist at the same time, and B exists alone. Among them, A and B can be singular or plural.
  • words such as “first”, “second”, “A”, “B”, etc. may be used to distinguish technical features with the same or similar functions. The words “first”, “second”, “A”, “B” and the like do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used to indicate examples, illustrations, or illustrations, and embodiments or design solutions described as “exemplary” or “for example” should not be interpreted as It is more preferable or advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner to facilitate understanding.
  • the terminal device involved in the embodiment of the present application may also be referred to as a terminal, and may be a device with a wireless transceiver function.
  • the terminal can be deployed on land, including indoor, outdoor, handheld, and/or vehicle-mounted; it can also be deployed on the water (such as a ship, etc.); it can also be deployed in the air (such as aeroplane, balloon, satellite, etc.).
  • the terminal equipment may be user equipment (UE).
  • the UE includes a handheld device, a vehicle-mounted device, a wearable device, or a computing device with wireless communication functions.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, and/or wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • Wireless terminals in power grids wireless terminals in smart cities, and/or wireless terminals in smart homes, etc.
  • the network device involved in the embodiment of the present application includes a base station (BS), which may be a device that is deployed in a wireless access network and can communicate with terminal devices wirelessly.
  • the base station may have many forms, such as a macro base station, a micro base station, a relay station, or an access point.
  • the base station involved in the embodiment of the present application may be a base station in a 5G system, a base station in an LTE system, or a base station in other systems, without limitation.
  • the base station in the 5G system may also be referred to as a transmission reception point (TRP) or a next-generation Node B (gNB or gNodeB).
  • TRP transmission reception point
  • gNB next-generation Node B
  • a light terminal device can be introduced relative to a traditional terminal device, such as an eMBB terminal.
  • the light terminal device may also be referred to as a reduced capability (REDCAP) terminal.
  • the eMBB terminal is a terminal capable of transmitting eMBB services.
  • the traditional terminal device can be a high-capacity terminal or a terminal with unlimited capabilities.
  • the traditional terminal equipment can be replaced with a high-capacity terminal that will be introduced in the future relative to the REDCAP terminal.
  • the feature comparison between the high-capability terminal and the REDCAP terminal satisfies at least one of the following items 1 to 9.
  • at least one item may be one or more items, for example, two items, three items or more items, which are not limited in the embodiments of the present application.
  • the first item the maximum bandwidth supported by the high-capability terminal is greater than the maximum bandwidth supported by the REDCAP terminal.
  • the maximum bandwidth supported by a high-capability terminal is 100MHz (megahertz) or 200MHz
  • the maximum bandwidth supported by a REDCAP terminal is 20MHz, 10MHz, or 5MHz.
  • the second item The number of antennas of high-capability terminals is more than that of REDCAP terminals.
  • the number of antennas may be the number of antennas set for the terminal or the maximum number of antennas used for transmission and/or reception.
  • a high-capacity terminal supports up to 4 antennas to receive and 2 antennas to transmit
  • a REDCAP terminal supports up to 2 antennas to receive and 1 antenna to transmit.
  • the antenna selective transmission capabilities are different.
  • both high-capacity terminals and low-capacity terminals support 2-antenna transmission, but high-capacity terminals support antenna selective transmission, and low-capacity terminals do not support antenna selective transmission.
  • high-capacity terminals can realize single-antenna port data transmission and switch between two transmitting antennas, and this data transmission can obtain spatial diversity gain; while low-capacity terminals can only use single-antenna port data transmission at 2 Simultaneous transmission on two transmitting antennas is equivalent to the transmission performance of one transmitting antenna.
  • the maximum transmission power supported by the high-capability terminal is greater than the maximum transmission power supported by the REDCAP terminal.
  • the maximum transmit power supported by the high-capability terminal is 23 decibel-milliwatt (dBm) or 26 dBm
  • the maximum transmit power supported by the REDCAP terminal is a value from 4 dBm to 20 dBm.
  • Item 4 High-capacity terminals support carrier aggregation (CA), and REDCAP terminals do not support carrier aggregation.
  • CA carrier aggregation
  • REDCAP terminals do not support carrier aggregation.
  • the maximum number of carriers supported by the high-capability terminal is greater than the maximum number of carriers supported by the REDCAP terminal.
  • a high-capability terminal supports a maximum of 32 carriers or an aggregation of 5 carriers
  • a REDCAP terminal supports a maximum of 2 carriers.
  • High-capability terminals and REDCAP terminals are introduced in different protocol versions.
  • the high-capability terminal is the terminal introduced in the version (Release, R) 15 of the protocol
  • the REDCAP terminal is the terminal introduced in the R17 of the protocol.
  • Item 7 The duplex capabilities of high-capacity terminals and REDCAP terminals are different.
  • the duplex capability of high-capacity terminals is stronger.
  • high-capacity terminals support full-duplex frequency division duplex (FDD), that is, high-capability terminals support simultaneous reception and transmission when supporting FDD
  • REDCAP terminals support half-duplex FDD, that is, REDCAP terminals do not support FDD. Support simultaneous receiving and sending.
  • FDD frequency division duplex
  • REDCAP terminals support half-duplex FDD, that is, REDCAP terminals do not support FDD. Support simultaneous receiving and sending.
  • Item 8 The data processing capability of high-capacity terminals is stronger than that of REDCAP terminals.
  • a high-capacity terminal can process more data in the same time, or a high-capacity terminal can process the same data in a shorter time.
  • the time when the terminal receives the downlink data from the network device is T1
  • the time when the terminal sends the feedback of the downlink data to the network device is T2
  • the time between T2 and T1 of the high-capability terminal The time delay (time difference) is less than the time delay between T2 and T1 of the REDCAP terminal.
  • the feedback of downlink data may be ACK or NACK feedback.
  • the peak data transmission rate of the high-capacity terminal is greater than the peak data transmission rate of the REDCAP terminal.
  • the data transmission includes uplink data transmission (that is, the terminal sends data to the network device) and/or downlink data transmission (that is, the terminal receives data from the network device).
  • the high-capability terminal may also be referred to as a non-REDCAP terminal.
  • the REDCAP terminal can be applied to various scenarios such as the Internet of Things, mMTC, or V2X. As described above, the limited capabilities of the REDCAP terminal will cause the terminal's uplink and/or downlink coverage to be limited, thereby affecting the data transmission rate. In order to improve the coverage of the REDCAP terminal, an embodiment of the present application provides a method for repeated transmission of data, and in particular, a method for repeated transmission of downlink data is proposed.
  • the method provided in the embodiments of the present application can also be applied to other types of terminals, such as high-capacity terminals (such as eMBB terminals, or URLLC terminals supporting URLLC services) to improve the coverage of the terminals, thereby improving user experience.
  • high-capacity terminals such as eMBB terminals, or URLLC terminals supporting URLLC services
  • the embodiment of the present application takes the REDCAP terminal as an example for description.
  • the device used to implement the function of the terminal device may be a terminal device; it may also be a device capable of supporting the terminal device to implement the function, such as a chip system.
  • the device can be installed in terminal equipment or matched with terminal equipment.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal equipment is the terminal equipment, and the terminal equipment is the UE as an example to describe the technical solutions provided in the embodiments of the present application.
  • the device used to implement the function of the network device may be a network device; it may also be a device capable of supporting the network device to implement the function, such as a chip system.
  • the device can be installed in or matched with network equipment.
  • the device used to implement the functions of the network equipment is the network equipment, and the network equipment is a base station as an example to describe the technical solutions provided by the embodiments of the present application.
  • Figure 1 shows a method for repeated transmission of downlink data provided by an embodiment of the application.
  • the base station sends N repeated data to the UE, where the i-th repeated data in the N repeated data is carried on the i-th resource and through the i-th downlink channel by using the i-th antenna port set. in.
  • the value of i is 1 to N, and N is an integer greater than or equal to 2.
  • the value of i can also be 0 to N-1.
  • N is 2, 3, 4, 6 or other integers, which is not limited in the embodiment of the present application.
  • the UE receives the N repeated data from the base station.
  • the UE can access the base station and communicate with the base station.
  • a base station can manage one or more (for example, 2, 3, or 6, etc.) cells, and the UE can access the base station in at least one of the one or more cells, and access the base station in the UE. Communicate with the base station in the accessed cell.
  • the UE accessing the base station in the at least one cell can also be described as: the UE accesses the at least one cell.
  • at least one may be one, two, three, or more, which is not limited in the embodiments of the present application.
  • the base station may send downlink data to the UE through a downlink channel, for example, a downlink physical channel.
  • the downlink channel may be a physical downlink shared channel (PDSCH) or a channel with other names, which is not limited in the embodiment of the present application.
  • PDSCH physical downlink shared channel
  • the base station sending downlink data to the UE through the PDSCH can also be described as: the base station sends the PDSCH to the UE, and the PDSCH carries the downlink data.
  • the base station sending N repeated data to the UE includes sending N repeated transport blocks (TB) to the UE.
  • the N repeated TBs are N TBs carrying the same information.
  • the N TBs carrying the same information are N identical TBs, or the N TBs carrying the same information are N TBs with different redundancy versions.
  • the base station sends a TB to the UE, it can also perform physical layer operations on the TB.
  • the physical layer operation includes at least one of the following sub-operations: segmentation, adding cyclic redundancy check (cyclic redundancy check, CRC), channel coding, scrambling, layer mapping, precoding, and modulation.
  • the physical layer operations for the two TBs may be the same or different; if the physical layer operations for the two TBs both include the same During the sub-operation, the configuration parameters for the sub-operation may be the same or different, and the embodiment of the present application does not impose restrictions. For example, when the physical layer operations for the two TBs both include channel coding, the code rate may be different; and/or when the physical layer operations for the two TBs both include modulation, the modulation order may be different.
  • the base station may perform physical layer operations on the bit stream of the TB carried on the PDSCH, convert the output signal of the physical layer operation into a radio frequency signal, and send the radio frequency signal to the UE through the antenna array on the base station side.
  • the base station can use beamforming technology based on the antenna array to transmit the PDSCH in the form of a beam.
  • the antenna array may be installed on the base station, connected (wired or wirelessly) to the base station, or exist on the base station side in other forms, which is not limited in the embodiment of the present application.
  • the beamforming technology weights the large-scale antenna array so that the transmission energy is concentrated in a certain direction, such as the direction where the UE is located, thereby increasing the efficiency of the UE to receive downlink signals and increasing the coverage distance of the network.
  • the beamforming technology may reduce the lateral coverage of the transmitted radio frequency signal.
  • the communication between the UE and the base station may be rapidly weakened or even interrupted. Beam recovery can be performed after communication is interrupted, but the time required for beam recovery is very long, about 100 milliseconds (millisecond, ms).
  • the base station may repeatedly send downlink data to the UE through multiple beams, for example, the data is sent repeatedly on each beam, so as to increase the robustness of the transmitted data.
  • the method based on the beamforming technology provided in the embodiments of the present application can be applied to frequency range (Frequency Range, FR) 2 frequency bands.
  • the FR2 frequency band is a millimeter wave (MMW) frequency band with a frequency value greater than 24 gigahertz (giga hertz, GHz).
  • MMW millimeter wave
  • the base station can use frequency domain resources in the frequency band to transmit data to the UE. Due to the small size of the MMW band antenna, it is conducive to the application of large-scale antenna arrays, and therefore the application of beamforming technology.
  • the embodiments of the present application are not limited thereto, and the methods provided in the embodiments of the present application may also be applied to other frequency bands, such as the FR1 frequency band, or other radio frequency bands between 6 GHz and 24 GHz.
  • the FR1 frequency band is a frequency band with a frequency value of less than 6 GHz.
  • the base station and UE can use antenna ports to transmit PDSCH in the form of beams through physical transmitting antennas.
  • the base station and UE can use one or more antenna ports to transmit PDSCH.
  • Each antenna port of the multiple antenna ports may correspond to a same time-frequency resource grid.
  • the time-frequency resource grid is used to describe time-frequency resources within a time unit.
  • the time unit includes one or more symbols.
  • the time unit may be a subframe, or a time slot, etc., which is not limited in the embodiment of the present application.
  • Figure 2 shows an example diagram of a time-frequency resource grid.
  • the time domain of the time-frequency resource grid is a time slot including 14 symbols, and the frequency-domain resource of the time-frequency resource grid includes one or more sub Carrier.
  • One symbol in the time domain and one subcarrier in the frequency domain form a resource element (RE).
  • RE resource element
  • RE is the minimum time-frequency resource granularity used to map data.
  • one or more (for example, 6 or 12, etc.) subcarriers may be included in one resource block (resource block, RB).
  • An RB may also include the concept of time domain, for example, a group of REs formed by one or more (for example, 2, 4, 7, or 14) symbols in the time domain and one or more subcarriers in the frequency domain is included in one RB , Or described as one RB including one or more symbols in the time domain and one or more subcarriers in the frequency domain.
  • one RB includes 12 subcarriers in the frequency domain.
  • the antenna port is a logical concept.
  • One antenna port can correspond to one physical transmit antenna or multiple physical transmit antennas. In these two cases, the UE does not need to know whether the PDSCH from the same antenna port is from one or more physical transmit antennas. In order to achieve PDSCH reception, the UE does not need to know whether the PDSCH is a PDSCH transmitted by a single physical transmit antenna or a PDSCH combined by multiple PDSCHs transmitted by multiple physical transmit antennas. The UE analyzes the corresponding antenna port of the PDSCH. .
  • the antenna port of the PDSCH demodulation reference signal (demodulation reference signal, DMRS) can be configured in a predefined manner or in a manner instructed by the base station for the UE through signaling.
  • the antenna ports of the PDSCH and the antenna ports of the DMRS of the PDSCH have a one-to-one correspondence.
  • one antenna port of the PDSCH uniquely corresponds to one antenna port of the DMRS of the PDSCH.
  • the two antenna ports are the same antenna port.
  • the UE can receive the DMRS transmitted on the antenna port, use the received DMRS to perform channel estimation, and use the channel estimation result to demodulate and decode the PDSCH.
  • the UE can receive the DMRS transmitted on each antenna port, use the received multiple DMRS to perform channel estimation, and use the channel estimation result to demodulate and decode the PDSCH.
  • a beam may be weighted and formed by signals sent on one or more antenna ports.
  • One or more antenna ports used to form a beam can be regarded as an antenna port set.
  • the signals sent on n antenna ports are used to form a beam y, where n is an integer greater than or equal to 1, then it can be considered Among them, the value of j ranges from 0 to n-1, s j represents the signal sent on the j+1th antenna port, and w j represents the weighting coefficient of the signal sent on the j+1th antenna port.
  • w j is a complex number with an amplitude of 1, and w j ⁇ s j indicates that s j is phase rotated.
  • n 1
  • n 1
  • n 1
  • n 1
  • n 1
  • n 1
  • n 1
  • n 1
  • n 1
  • n 1
  • n 1
  • n 1
  • n 1
  • n 1
  • n is greater than 1, it means that the wide beams transmitted on multiple antenna ports are weighted to form a narrow beam.
  • the base station can use the same beam to transmit the PDSCH and the DMRS of the PDSCH, that is, the base station uses the same antenna port to transmit the PDSCH and the DMRS of the PDSCH, so the UE does not need to know how the base station side uses the signal sent on the antenna port to form the transmit beam .
  • the goal of the UE is to receive the PDSCH correctly. Therefore, as described above, the UE can estimate the channel of each antenna port of the DMRS of the PDSCH, and use the channel estimation result to demodulate and decode the PDSCH.
  • the names of the PDSCHs sent on different beams are distinguished.
  • the multiple PDSCHs may also be referred to as repeated PDSCHs.
  • the method shown in FIG. 1 can also be described as: the base station uses N beams to send N repeated data to the UE.
  • the i-th repetitive data in the N repetitive data is carried on the i-th resource on the i-th downlink channel by using the i-th beam among the N beams.
  • the value of i is 1 to N, and N is an integer greater than or equal to 2. That is, the i-th beam corresponds to the i-th antenna port set.
  • the i-th antenna port set includes one or more antenna ports. The number of antenna ports included in different antenna port sets may be the same or different, which is not limited in the embodiment of the present application.
  • the antenna ports included in the i-th antenna port set may be predefined, or may be indicated by the base station through signaling, such as first indication information or other signaling, for the UE.
  • the base station indicates the antenna port of the DMRS of the i-th PDSCH for the UE through signaling, such as RRC signaling, MAC CE, or DCI.
  • the DCI may be the DCI used to schedule the i-th PDSCH, that is, the DCI carries the transmission parameters of the i-th PDSCH.
  • the UE After receiving the signaling, the UE determines the antenna port of the DMRS of the i-th PDSCH, and determines that the antenna port of the i-th PDSCH is the same as the antenna port of the DMRS of the i-th PDSCH, that is, determines that the antenna port of the i-th PDSCH is that of the i-th PDSCH Antenna port of DMRS.
  • the DMRS of the i-th PDSCH and the i-th PDSCH are transmitted, the DMRS of the i-th PDSCH and the i-th PDSCH are mapped to the time-frequency resources of the same antenna port.
  • the antenna ports of the DMRS of the i-th PDSCH and the i-th PDSCH are the same, and the antenna port (set) of the i-th PDSCH can also be described as the antenna port (set) of the DMRS of the i-th PDSCH.
  • multiple beams are used to repeatedly transmit the PDSCH.
  • the base station repeatedly sends downlink data to the UE through the first beam (beam 1) and the second beam (beam 2), and the UE correctly receives any one of the repeated downlink data, and the data can be correct. take over. Therefore, this method can increase the coverage of the network and reduce the communication interruption between the base station and the UE.
  • the base station can independently set beams or set the weighting values for beam formation for different UEs according to one or more of the following parameters: the location of the UE, the moving speed of the UE, and so on.
  • the number of antenna port sets of different UEs may be the same or different.
  • the number of antenna ports included in a single antenna port set of different UEs may be the same or different.
  • each antenna port can correspond to the same time-frequency resource grid.
  • the frequency domain resources of the time-frequency resource grid corresponding to the antenna port may be referred to as the available frequency domain resources of the antenna port.
  • Part or all of the resources for the PDSCH of the UE may be allocated from the available frequency domain resources of the antenna port for the base station to send the PDSCH to the UE.
  • the time domain resources of the PDSCH may be predefined, or configured by the base station for the UE through signaling, which is not limited in the embodiment of the present application.
  • the DMRS of the PDSCH can be mapped to the time-frequency resource of the PDSCH, or mapped to the time-frequency resource related to the time-frequency resource of the PDSCH (for example, in the previous symbol adjacent to the time-frequency resource, or the time-frequency resource).
  • the symbols after the adjacent resource are sent by the base station to the UE.
  • the frequency domain resources allocated for the PDSCH include one or more RBs, or one or more resource block groups (RBG). Among them, one RBG includes one or more RBs, for example, 4, 6, 8, or 9 RBs.
  • transmission is performed with beam granularity, that is, the base station uses the same resource to send the PDSCH to the UE on each antenna port in an antenna port set.
  • the i-th resource is set for the i-th PDSCH, the value of i is 2 to N, and N is an integer greater than or equal to 2.
  • the i-th resource includes the i-th frequency domain resource.
  • the i-th frequency domain resource may be predefined, or may be indicated by the base station through signaling, such as the first indication information, for the UE.
  • the i-th resource includes the i-th time domain resource.
  • the i-th time domain resource may be predefined, or may be indicated by the base station through signaling, such as the first indication information, for the UE.
  • a total of N time domain resources from the first time domain resource to the Nth time domain resource in the method shown in FIG. 1 are all indicated by the base station for the UE through the first indication information.
  • the type of signaling, message, or (indication) information sent by the base station to the UE may be broadcast message, system information block (SIB), radio resource control (RRC) Signaling, media access control (MAC) control element (CE), or downlink control information (DCI) are not limited in this embodiment of the application.
  • SIB system information block
  • RRC radio resource control
  • MAC media access control
  • CE control element
  • DCI downlink control information
  • the type of the first indication information is RRC, MAC CE, or DCI.
  • the first indication information is the DCI used to schedule the first PDSCH to the Nth PDSCH, and the DCI carries the transmission parameters of the first PDSCH to the Nth PDSCH.
  • the method shown in Figure 1 can improve the robustness of data transmission under the condition of low resource utilization. If the N frequency domain resources in this method are not independently configured, but the same frequency domain resource is configured, in order to avoid channel fading in a frequency domain causing a large amount of distortion of the transmitted data, it may be necessary to configure the same frequency domain resources.
  • the frequency domain resource is a wider frequency domain resource to use frequency diversity gain to increase the robustness of the transmitted data. At this time, resources may be wasted.
  • the method shown in FIG. 1 independently configures each of the N frequency domain resources, so that the combined equivalent bandwidth of the N frequency domain resources can be configured, without requiring the bandwidth of each frequency domain resource. Both are relatively large.
  • this method can not only use frequency diversity gain to improve the robustness of data transmission, but also because the bandwidth of each frequency domain resource does not need to be too large, it will not cause excessive receiving processing burden on the UE.
  • this method can relieve the pressure of receiving and processing, reduce the power consumption of the terminal, and therefore can reduce the cost of the terminal.
  • the method shown in FIG. 1 mainly emphasizes the independent configuration of each frequency domain resource, so that fewer resources can be used in the system to improve the robustness of data transmission, instead of having to emphasize the configuration result of frequency domain resources.
  • the base station may configure the N frequency domain resources of some UEs to be the same, and the N frequency domain resources of some UEs to be configured to be different.
  • the configuration may be determined based on at least one of the traffic volume in the cell, the processing capabilities of each UE, and the scheduling priority.
  • the receiving end can use the reference signal to perform channel estimation for demodulating data channels or obtaining channel state information.
  • the reference signal can also be called a pilot.
  • the UE may use the DMRS of the PDSCH to perform channel estimation for demodulating and decoding the PDSCH.
  • the sequence value of the reference signal is predefined, and is known by both the sending end and the receiving end. Then, the receiving end can estimate the channel experienced by the reference signal based on the value of the received reference signal and the value of the sent reference signal, that is, it can perform channel estimation.
  • the receiver uses the reference signal for channel estimation, it can estimate the large-scale parameters of the channel, such as delay spread, average delay, doppler spread, and Doppler shift ( One or more of the doppler shift) and spatial reception parameters (spatial reception parameters), and the estimated large-scale parameters are used for channel estimation.
  • the spatial reception parameters can be used for multiple-input multiple-output (MIMO) transmission, and the spatial reception parameters can include one or more of the following: angle of arrival (AOA), average AOA, AOA Extension, angle of departure (AOD), average angle of departure AOD, AOD extension, receiving antenna spatial correlation parameter, transmitting antenna spatial correlation parameter, transmitting beam, receiving beam, and resource identification.
  • the reference signal A and another signal B may be configured to be quasi co-location (QCL). That is, the large-scale parameters of the channel configured to transmit the reference signal A and the channel used to transmit the signal B are approximately the same. Therefore, if the receiving end estimates the large-scale parameters experienced by the signal B in its channel, the large-scale parameters can be used to estimate the channel of the reference signal A.
  • QCL quasi co-location
  • a method for configuring the QCL information of the DMRS of the i-th PDSCH will be introduced, where the value of i is 1 to N, and N is an integer greater than or equal to 2.
  • the DMRS of the i-th PDSCH may be referred to as the i-th DMRS.
  • the QCL information of the i-th DMRS may also be referred to as the QCL information of the i-th antenna port set.
  • the one or more antenna ports included in the i-th antenna port set are the same as the antenna port of the i-th DMRS, that is, the i-th DMRS is also transmitted through one or more antenna ports included in the i-th antenna port set.
  • Both the i-th DMRS and the i-th PDSCH are mapped to time-frequency resources corresponding to one or more antenna ports included in the i-th antenna port set.
  • the QCL information of the i-th DMRS may also be referred to as the i-th QCL information, or the QCL information of the i-th frequency domain resource, etc., which is not limited in the embodiment of the present application.
  • QCL can be independently configured for the DMRS of the PDSCH corresponding to each antenna port set. Information to obtain the channel estimation of each PDSCH more accurately, thereby improving the accuracy of demodulating and decoding PDSCH on the UE side.
  • the base station can indicate the QCL information of the first DMRS to the Nth DMRS to the UE through the same signaling; or the base station may indicate the first DMRS to the Nth DMRS to the UE through multiple signalings (such as N signaling).
  • the base station sends the second indication information to the UE, which is used to indicate the QCL information of the i-th DMRS, where the value of i is 1 to N, and N is an integer greater than or equal to 2.
  • the base station may indicate the QCL information of the DMRS of the PDSCH transmitted on an antenna port or a set of antenna ports for the UE through the method described in any one of the following examples A to F.
  • an antenna port set may also be described as an antenna port set.
  • the i-th antenna port set when the i-th antenna port set includes one antenna port, the i-th antenna port set may also be referred to as the i-th antenna port.
  • the base station may indicate to the UE that the i-th DMRS is a QCL signal (denoted as signal A).
  • the QCL type of the i-th DMRS and signal A may be predefined, or the base station may indicate the QCL type of the i-th DMRS and signal A for the UE through signaling.
  • the signaling may be the second indication information or other signaling, which is not limited in the embodiment of the present application.
  • the signal A may be one signal or multiple signals, which is not limited in the embodiment of the present application.
  • the second indication information may be a system message, an RRC message, MAC CE, or DCI.
  • the signal that is the QCL and the other signal may be a downlink reference signal or a downlink channel, for example, may be one or more of the following signals: synchronization signal (synchronization signal, SS), master synchronization signal ( primary synchronization signal (PSS), secondary synchronization signal (secondary synchronization signal, SSS), physical broadcast channel (physical broadcast channel, PBCH), synchronization signal block (synchronization signal and PBCH block, SSB), DMRS of PBCH, DMRS of PDCCH, PDSCH DMRS, channel state information reference signal (channel state information-reference signal, CSI-RS), and tracking reference signal (tracking reference signal, TRS).
  • the PDCCH may be a PDCCH used to schedule the PDSCH, or other PDCCH, which is not limited in the embodiment of the present application.
  • SSB includes PSS, SSS and PBCH.
  • the QCL type is used to indicate the type of quasi co-located large-scale parameters between signals (for example, between signal B and signal C).
  • the type may be one or more of Type A to Type D described below.
  • Type A (QCL_A): denoted as ⁇ Doppler frequency shift, Doppler spread, delay spread, average delay ⁇ . Indicates that the Doppler frequency shift, Doppler spread, delay spread, and average delay of signal B and signal C are correlated. Then the receiving end can use the Doppler shift, Doppler spread, delay spread, and average delay experienced by the signal B to perform channel estimation on the channel experienced by the signal C; or the receiving end can use the experience experienced by the signal C Doppler frequency shift, Doppler spread, time delay spread, and average delay of the signal B are used for channel estimation of the channel experienced by signal B. That is, it is considered that the Doppler shift, Doppler spread, delay spread, and average delay experienced by signal B are respectively the same as the Doppler shift, Doppler spread, delay spread, and average delay experienced by signal C. The delay is approximately the same.
  • Type B denoted as ⁇ Doppler frequency shift, Doppler spread ⁇ . It means that the Doppler frequency shift and Doppler spread of signal B and signal C are correlated. Then the receiving end can use the Doppler shift and Doppler spread experienced by the signal B to perform channel estimation on the channel experienced by the signal C; or the receiving end can use the Doppler shift and Doppler spread experienced by the signal C. Re-spreading, channel estimation is performed on the channel experienced by signal B. That is, it is considered that the Doppler shift and Doppler spread experienced by the signal B are approximately the same as the Doppler shift and Doppler spread experienced by the signal C, respectively.
  • Type C (QCL_C): denoted as ⁇ delay extension, average delay ⁇ . Indicates that the delay spread of signal B and signal C is correlated with the average delay. Then the receiving end can use the delay spread and average delay experienced by signal B to perform channel estimation on the channel experienced by signal C; or, the receiving end can use the delay spread and average delay experienced by signal C to estimate the signal B Channel estimation is performed on the experienced channel. That is, it is considered that the delay spread and average delay experienced by signal B are approximately the same as the delay spread and average delay experienced by signal C, respectively.
  • Type D (QCL_D): denoted as ⁇ space receiving parameter ⁇ . Indicates that the spatial reception parameters of signal B and signal C are correlated. Then the receiving end can use the spatial reception parameters experienced by signal B to perform channel estimation on the channel experienced by signal C; or, the receiving end can use the spatial reception parameters experienced by signal C to perform channel estimation on the channel experienced by signal B.
  • the foregoing types A to D are used as examples, and the embodiments of the present application may also include other QCL types. That is, it is considered that the spatial reception parameters experienced by the signal B and the spatial reception parameters experienced by the signal C are approximately the same.
  • the base station may configure for the UE one or more signals that are QCL with the i-th DMRS.
  • the base station may use the second indication information to configure its QCL information for the UE as: SSB
  • the base station may use the second indication information to configure its QCL information for the UE as: SSB
  • the base station can indicate the QCL information of the i-th DMRS for the UE from the M1 set of candidate QCL information.
  • the QCL information of the i-th DMRS is the M2 set of QCL information in the M1 set of candidate QCL information, where M1 is greater than An integer equal to 1, and M2 is an integer greater than or equal to 1 and less than or equal to M1.
  • the set of QCL information indicates a signal.
  • the QCL type corresponding to the signal can be pre-configured, or the set of QCL information indicates the QCL type corresponding to the signal.
  • the signal and DMRS indicated by the set of QCL information are QCL.
  • the corresponding QCL type is the QCL type indicated by the set of QCL information.
  • each set of QCL information in the foregoing M1 set of candidate QCL information uniquely corresponds to an index
  • the M1 set of candidate QCL information corresponds to a total of M1 indexes.
  • the base station indicates to the UE the M2 indexes of the M1 indexes through the second indication information, and the M2 sets of QCL information corresponding to the M2 indexes are the QCL information of the i-th DMRS.
  • the length of the bit information used to indicate any one of the M2 indexes is Bits, of which, Indicates rounding up.
  • Table 1 shows 6 sets of candidate QCL information. It can be understood that the QCL information shown in Table 1 is only used as an example, and does not constitute a limitation to the embodiments of the present application.
  • the base station may indicate 2 indexes through the second indication information, so as to configure the QCL information of the i-th DMRS for the UE.
  • the decimal values of the 2 indexes are 0 and 4, or the binary values of the 2 indexes are 000 and 100, respectively.
  • the UE After the UE receives the second information, it can determine that the Doppler shift, Doppler spread, delay spread, and average delay of the i-th DMRS and SSB are correlated with the average delay, and the spatial reception of the i-th DMRS and CSI-RS The parameters are relevant.
  • the UE can use the Doppler frequency shift, Doppler spread, delay spread, and average delay estimated according to the SSB, and can use the spatial reception parameters estimated according to the CSI-RS to perform channel estimation on the i-th DMRS,
  • the i-th PDSCH can be demodulated and decoded by using the channel estimation result.
  • the base station indicates the M2 set of QCL information in the M1 set of candidate QCL information for the UE through M1 elements, and the M2 set of QCL information is the QCL information of the ith DMRS.
  • the M1 elements correspond to the M1 set of candidate QCL information one-to-one.
  • the QCL information of the i-th DMRS includes a set of QCL information corresponding to the element.
  • the first QCL information i The QCL information of the DMRS does not include a set of QCL information corresponding to this element.
  • t1 and t2 are integers, for example, t1 is 1, and t2 is 0.
  • the M1 elements may be a bitmap including M1 bits, M1 cells, or M1 information, etc., which are not limited in the embodiment of the present application.
  • the base station can configure the QCL information of the i-th DMRS for the UE through the bitmap in the second indication information.
  • the bitmap includes 6 bits, and the value of the bitmap is 100001.
  • the UE After the UE receives the second information, it can determine that the Doppler shift, Doppler spread, delay spread, and average delay of the i-th DMRS and SSB are correlated, and the spatial reception parameters of the i-th DMRS and TRS have Correlation.
  • the UE can use the Doppler frequency shift, Doppler spread, delay spread, and average delay estimated according to the SSB, and can use the spatial reception parameters estimated according to the TRS to perform channel estimation on the i-th DMRS, and use this
  • the channel estimation result can demodulate and decode the i-th PDSCH.
  • the M1 set of candidate QCL information may be predefined, or may be indicated by the base station for the UE through third indication information (such as a broadcast message, SIB, RRC signaling, or MAC CE).
  • third indication information such as a broadcast message, SIB, RRC signaling, or MAC CE.
  • the second indication information may be RRC signaling, MAC CE, or DCI.
  • the M1 set of candidate QCL information is predefined, and the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is a broadcast message or SIB
  • the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is RRC signaling
  • the second indication information is MAC CE or DCI.
  • the third indication information is MAC CE
  • the second indication information is DCI
  • the second indication information and the first indication information are the same DCI.
  • the base station When the base station indicates the M1 set of candidate QCL information for the UE through the third indication information, it may directly indicate the specific configuration of the M1 set of candidate QCL information, or may indicate the activated M1 set of candidate QCL information from the M3 set of candidate QCL information.
  • the M3 set of candidate QCL information may be predefined, or indicated by the base station for the UE through fourth indication information (such as a broadcast message, SIB, RRC signaling, or MAC CE).
  • the M3 set of candidate QCL information is predefined, and the third indication information is a broadcast message, SIB, RRC signaling, or MAC CE.
  • the fourth indication information is a broadcast message or SIB
  • the third indication information is RRC signaling.
  • the fourth indication information is a broadcast message, SIB or RRC signaling, and the third indication information is MAC CE.
  • the method for the base station to indicate the activated M1 set of candidate QCL information from the M3 set of candidate QCL information through the fourth indication information is similar to the above-mentioned method for indicating the M2 set of QCL information from the M1 set of candidate QCL information, and will not be repeated here.
  • the base station can indicate the TCI-state of the i-th DMRS for the UE from S1 candidate transmission configuration index (TCI)-states.
  • TCI transmission configuration index
  • the TCI-state of the i-th DMRS is one of the S1 candidate TCI-states
  • S1 is an integer greater than or equal to 1.
  • the TCI-state indicates at least one signal and a QCL type corresponding to each of the at least one signal.
  • at least one signal indicated by the i-th DMRS and the one TCI-state is QCL
  • the corresponding QCL type is the QCL type indicated by the one TCI-state.
  • the foregoing method of indicating one TCI-state from S1 candidate TCI-states is similar: when M2 is equal to 1, the foregoing method of indicating M2 sets of QCL information from M1 sets of candidate QCL information is not repeated here.
  • Table 2 shows three candidate TCI-states. It can be understood that the TCI-state shown in Table 2 is only an example, and does not constitute a limitation to the embodiments of the present application.
  • the base station can use the Bit, indicating the TCI-state of the i-th DMRS for the UE.
  • the binary value of the 2 bits is 10.
  • the UE After the UE receives the second information, it can determine that the Doppler shift, Doppler spread, delay spread, and average delay of the i-th DMRS and TRS are correlated with the spatial reception parameters of the CSI-RS Correlation.
  • the 2-bit binary value is 00.
  • the UE can determine that the Doppler shift, Doppler spread, delay spread, and average delay of the i-th DMRS and TRS are correlated.
  • the information of the S1 candidate TCI-states may be predefined, or may be indicated by the base station for the UE through third indication information (such as a broadcast message, SIB, RRC signaling, or MAC CE).
  • third indication information such as a broadcast message, SIB, RRC signaling, or MAC CE.
  • the second indication information may be RRC signaling, MAC CE, or DCI.
  • the S1 candidate TCI-states are predefined, and the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is a broadcast message or SIB
  • the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is RRC signaling
  • the second indication information is MAC CE or DCI.
  • the third indication information is MAC CE
  • the second indication information is DCI
  • the second indication information includes a TCI field, which is used by the base station to indicate the TCI-state for the UE.
  • the second indication information and the first indication information are the same DCI.
  • the base station indicates the S1 candidate TCI-states for the UE through the third indication information, and may directly indicate the specific configuration of the S1 candidate TCI-states, or may indicate the activated S1 candidate TCI-states from the S2 candidate TCI-states -state.
  • the S2 candidate TCI-states may be predefined, or indicated by the base station for the UE through the fourth indication information (such as broadcast message, SIB, RRC signaling, or MAC CE).
  • the S2 candidate TCI-states are predefined, and the third indication information is a broadcast message, SIB, RRC signaling, or MAC CE.
  • the fourth indication information is a broadcast message or SIB
  • the third indication information is RRC signaling.
  • the fourth indication information is a broadcast message, SIB or RRC signaling, and the third indication information is MAC CE.
  • the method for the base station to indicate the activated S1 candidate TCI-states from the S2 candidate TCI-states through the fourth indication information is similar to the above-mentioned method for indicating M2 sets of QCL information from the M1 set of candidate QCL information, which will not be repeated here.
  • the base station indicates a first pattern for the UE from the F1 candidate first patterns (patterns), and the first pattern indicates each of the frequency domain resources from the first frequency domain resource to the Nth frequency domain resource.
  • the first pattern indicates TCI-state.
  • r i is the number of sub-frequency domain resources included in the i-th frequency domain resource.
  • the r i of different frequency domain resources may be the same or different.
  • r i is an integer greater than or equal to 1, the value of i is 1 to N, and N is an integer greater than or equal to 2.
  • the r i of at least one frequency domain resource is an integer greater than or equal to 2.
  • the size of the different sub-frequency domain resources may be the same or different, which is not limited in the embodiment of the present application.
  • the size of the sub-frequency domain resource may be the number of sub-carriers, the number of RBs, or the number of RBGs included in the sub-frequency domain resource, or the bandwidth of the sub-frequency domain resource.
  • the value of r i may be predefined, or may be indicated by the base station for the UE through signaling.
  • the frequency domain resource r i th size, or the frequency domain resource r i for each sub-sub-frequency domain resource in the ratio of the size of the frequency domain resource is predefined, or the base station for the UE by a signaling indication.
  • the bandwidth of the i-th frequency domain resource is U i RBs
  • the size of the r i sub-frequency domain resources of the i- th frequency domain resource is the same, and each sub-frequency domain resource includes RB, if U i cannot be divisible by r i , the remaining frequency domain resource RBs are not used to map the i-th PDSCH, that is, the i-th PDSCH is mapped to the r i sub-frequency domain resources RB on. in, Indicates rounding down.
  • the TCI-state of the j-th frequency domain resource of the i-th frequency domain resource indicates at least one signal and the QCL type corresponding to each signal in the at least one signal.
  • the TCI-state of the j-th frequency domain resource of the i-th frequency domain resource indicated by the first pattern indicates that the DMRS of the PDSCH transmitted on the j-th frequency domain resource is At least one signal of QCL, and a QCL type indicating the DMRS and each of the at least one signal.
  • j takes a value from 1 to r i .
  • the DMRS of the PDSCH transmitted on the j-th sub-frequency domain resource has one or more of the following characteristics: it is transmitted in the j-th sub-frequency-domain resource and in the bandwidth corresponding to the j-th sub-frequency-domain resource Transmission, and used to demodulate and decode the PDSCH transmitted on the j-th sub-frequency domain resource, etc.
  • the method for indicating a first pattern from the F1 candidate first patterns is similar: when M2 is equal to 1, the foregoing method for indicating M2 sets of QCL information from M1 sets of candidate QCL information is not repeated here.
  • each frequency domain resource includes 2 sub-frequency domain resources.
  • Table 3 shows 4 kinds of candidate first patterns. It can be understood that the first pattern shown in Table 3 is only used as an example, and does not constitute a limitation to the embodiment of the present application. Assume that the TCI-state indicated in Table 3 is the TCI-state shown in Table 2.
  • FIG. 4 shows an example diagram of the candidate first pattern corresponding to Table 3.
  • the base station can use the Bit, configure the first pattern of the UE for the UE.
  • the binary value of the 2 bits is 10.
  • the UE After the UE receives the second information, it can determine that the index of the TCI-state of the DMRS of the PDSCH transmitted on the first frequency domain resource of the first frequency domain resource is 0, that is, the UE can determine the Doppler frequency of the DMRS and TRS Shift, Doppler spread, delay spread, and average delay are related; it can be determined that the index of the TCI-state of the DMRS of the PDSCH transmitted on the second sub-frequency domain resource of the first frequency domain resource is 1, that is, the UE It can be determined that the spatial reception parameters of the DMRS and CSI-RS are correlated; it can be determined that the index of the TCI-state of the DMRS of the PDSCH transmitted on the first sub-frequency domain resource of the second frequency domain resource is 1, that is, the UE can determine the The spatial reception parameters of DMRS and
  • each r i in the above method is 1
  • the method is equivalent to the following method.
  • the base station indicates a first pattern from the F1 candidate first patterns, and the first pattern indicates the TCI-state of each DMRS from the first DMRS to the Nth DMRS. That is, the one first pattern is used to indicate N TCI-states, for example, to indicate the index of the N TCI-states, and the N TCI-states respectively correspond to the first DMRS to the Nth DMRS one-to-one. Similar to the foregoing example C, the TCI-state of the i-th DMRS indicates that the i-th DMRS and the i-th DMRS are at least one signal of QCL, and the i-th DMRS and the QCL type of each signal in the at least one signal are indicated.
  • F1 is an integer greater than or equal to 1.
  • Table 4 shows four candidate first patterns. It can be understood that the first pattern shown in Table 4 is only used as an example, and does not constitute a limitation to the embodiment of the present application. Assume that the TCI-state indicated in Table 4 is the TCI-state shown in Table 2.
  • FIG. 5 shows an example diagram of the candidate first pattern corresponding to Table 4.
  • the base station can use the Bit, configure the first pattern of the UE for the UE.
  • the binary value of the 2 bits is 10.
  • the UE can determine that the index of the TCI-state of the first DMRS is 1, and it can determine that the index of the TCI-state of the second DMRS is 2.
  • the UE can determine that the spatial reception parameters of the first DMRS and CSI-RS are correlated; it can be determined that the Doppler shift, Doppler spread, delay spread, and average delay of the second DMRS and TRS are correlated, and The spatial reception parameters of CSI-RS are correlated.
  • the F1 candidate first patterns may be predefined, or may be indicated by the base station for the UE through third indication information (such as a broadcast message, SIB, RRC signaling, or MAC CE).
  • the second indication information may be RRC signaling, MAC CE, or DCI.
  • F1 is equal to 1, it is not necessary to pass a first pattern through the second indication information.
  • the pattern is considered to be a pattern configured by the base station for the UE.
  • the F1 candidate first patterns are predefined, and the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is a broadcast message or SIB
  • the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is RRC signaling
  • the second indication information is MAC CE or DCI.
  • the third indication information is MAC CE
  • the second indication information is DCI
  • the second indication information includes a TCI field, which is used by the base station to indicate the first pattern for the UE.
  • the second indication information and the first indication information are the same DCI.
  • the base station indicates the F1 candidate first pattern for the UE through the third indication information, and may directly indicate the specific configuration of the F1 candidate first pattern, or may indicate the activated F1 candidate first pattern from the F2 candidate first patterns.
  • the F2 candidate first patterns may be predefined, or indicated by the base station for the UE through fourth indication information (such as a broadcast message, SIB, RRC signaling, or MAC CE).
  • the F2 candidate first patterns may be predefined, and the third indication information is a broadcast message, SIB, RRC signaling, or MAC CE.
  • the fourth indication information is a broadcast message or SIB
  • the third indication information is RRC signaling.
  • the fourth indication information is a broadcast message, SIB or RRC signaling, and the third indication information is MAC CE.
  • the method for the base station to indicate the activated F1 candidate first patterns from the F2 candidate patterns through the fourth indication information is similar to the above-mentioned method for indicating M2 sets of QCL information from the M1 sets of candidate QCL information, which will not be repeated here.
  • the base station indicates a second pattern from P1 candidate second patterns, and the second pattern indicates the first pattern of a group of time units.
  • the group of time units includes multiple time units, and each time unit corresponds to a first pattern.
  • P1 is an integer greater than or equal to 1.
  • the time unit may be a symbol, a time slot, a subframe, a transmission time interval, or a radio frame.
  • the introduction of the first pattern is the same as the description of Example D, so I won't repeat it here.
  • the group of time units includes the first time unit.
  • the first time unit is used to transmit the PDSCH in the method shown in FIG. 1. Therefore, the UE can determine the first pattern corresponding to the first time unit in the second pattern according to a second pattern indicated by the base station and the first time unit used to transmit PDSCH, so as to determine the TCI- of each PDSCH. state.
  • the i-th frequency domain resource includes 2 sub-frequency domain resources, and each second pattern is used to indicate the first pattern on 3 time units.
  • Table 5 shows the 4 candidate second patterns. pattern. It can be understood that the second pattern shown in Table 5 is only used as an example, and does not constitute a limitation to the embodiment of the present application. Assume that the first pattern indicated in Table 5 is the first pattern shown in Table 3.
  • FIG. 6 shows an example diagram of the candidate second pattern corresponding to Table 5.
  • the base station can use the Bit, configure the second pattern of the UE for the UE.
  • the binary value of the 2 bits is 11.
  • the UE can determine that the index of the TCI-state of the DMRS of the PDSCH sent on the first frequency domain resource of the first frequency domain resource is 0 , That is, the UE can determine that the Doppler frequency shift, Doppler spread, delay spread, and average delay of the DMRS and TRS are correlated; it can determine that the frequency domain resource of the first frequency domain resource is transmitted on the second sub-frequency domain resource.
  • the index of the TCI-state of the DMRS of the PDSCH is 1, that is, the UE can determine that the DMRS and the spatial reception parameters of the CSI-RS are correlated; it can determine the DMRS of the PDSCH sent on the first sub-frequency domain resource of the second frequency domain resource.
  • the index of the TCI-state is 1, that is, the UE can determine that the spatial reception parameters of the DMRS and the CSI-RS are correlated; and, it can determine the DMRS of the PDSCH transmitted on the second frequency domain resource of the second frequency domain resource.
  • the index of TCI-state is 2, that is, the UE can determine that the Doppler shift, Doppler spread, delay spread, and average delay of the DMRS and TRS are correlated with the spatial reception parameters of the CSI-RS Correlation.
  • the P1 candidate second pattern may be predefined, or may be indicated by the base station for the UE through third indication information (such as a broadcast message, SIB, RRC signaling, or MAC CE).
  • the second indication information may be RRC signaling, MAC CE, or DCI.
  • P1 is equal to 1
  • P1 is equal to 1
  • the second pattern is considered to be the second pattern configured by the base station for the UE.
  • the P1 candidate second pattern may be predefined, and the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is a broadcast message or SIB
  • the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is RRC signaling
  • the second indication information is MAC CE or DCI.
  • the third indication information is MAC CE
  • the second indication information is DCI
  • the second indication information includes a TCI field, which is used by the base station to indicate the second pattern for the UE.
  • the second indication information and the first indication information are the same DCI.
  • the base station indicates the P1 candidate second pattern for the UE through the third indication information, and may directly indicate the specific configuration of the P1 candidate second pattern, or may indicate the activated P1 candidate second pattern from the P2 candidate second pattern.
  • the P2 candidate second patterns may be predefined, or may be indicated by the base station for the UE through fourth indication information (such as a broadcast message, SIB, RRC signaling, or MAC CE).
  • the P2 candidate second patterns may be predefined, and the third indication information is a broadcast message, SIB, RRC signaling, or MAC CE.
  • the fourth indication information is a broadcast message or SIB
  • the third indication information is RRC signaling.
  • the fourth indication information is a broadcast message, SIB or RRC signaling, and the third indication information is MAC CE.
  • the method for the base station to indicate the activated P1 candidate second pattern from the P2 candidate second patterns through the fourth indication information is similar to the above-mentioned method for indicating the M2 set of QCL information from the M1 set of candidate QCL information, which will not be repeated here.
  • the base station indicates Z2 third patterns from Z1 candidate third patterns.
  • the third pattern corresponds to a TCI-state
  • the third pattern is used to indicate Elements
  • the The elements in sequence (for example, from high frequency to low frequency, or from low frequency to high frequency) correspond one-to-one to the first frequency domain resource to the Nth frequency domain resource Sub-resources.
  • the value of the element when the value of the element is t1, it means that the TCI-state corresponding to the third pattern is enabled on the sub-resource corresponding to the element.
  • the value of the element is not t1 or t2
  • t1 and t2 are integers, for example, t1 is 1, and t2 is 0.
  • Elements can include Bitmap of bits, Cells, Information bits, etc., are not limited in the embodiment of this application.
  • r i is the number of sub-frequency domain resources included in the i-th frequency domain resource.
  • the r i of different frequency domain resources can be the same or different, r i is an integer greater than or equal to 1, the value of i is 1 to N, and N is an integer greater than or equal to 2.
  • the r i of each frequency domain resource from the 1st frequency domain resource to the Nth frequency domain resource is 1. At this time, similar to the above example D, it can be considered that there is no need to distinguish the frequency domain resources in the frequency domain resources. Domain resources.
  • the method for indicating Z2 third patterns from Z3 candidate third patterns is similar to the above-mentioned method for indicating M2 sets of QCL information from M1 sets of candidate QCL information, which will not be repeated here.
  • the base station indicates the Z2 third patterns that can be used by the UE through the indicated Z2 third patterns.
  • the third pattern A for the third pattern A indicated
  • the value of this element is t1
  • the value of this element is not When it is t1 or t2, it means that the TC-state of the DMRS of the PDSCH transmitted on the sub-resource corresponding to the element does not include the TCI-state corresponding to the third pattern.
  • priority can be configured for the Z3 TCI-states corresponding to the Z1 candidate third pattern or the Z4 TCI-states corresponding to the Z2 third pattern.
  • the frequency domain resource is enabled, and the TCI-state with high priority is determined to be the TC-state of the DMRS of the PDSCH of the UE transmitted on the sub-frequency domain resource.
  • Z3 is less than or equal to Z1
  • Z4 is less than or equal to Z2.
  • the configured priority of each TCI-state may be predefined, or may be indicated by the base station for the UE through signaling, which is not limited in the embodiment of the present application.
  • Table 6 shows 4 candidate third patterns, assuming N is 2, each frequency domain resource includes 4 sub-frequency domain resources, and the TCI-state indicated in Table 6 is the TCI-state shown in Table 2.
  • FIG. 7 shows an example diagram of the candidate third pattern corresponding to Table 6.
  • the base station may indicate the indexes of two third patterns through the second indication information, and the values of the two indexes are 0 and 1, respectively.
  • the UE can determine that the index of the TCI-state of the DMRS of the PDSCH transmitted on the first to fourth sub-frequency resources of the first frequency domain resource is 1, and the indexes of the first to the second frequency domain resources are 1
  • the index of the TCI-state of the DMRS of the PDSCH transmitted on the fourth sub-frequency domain resource is 0.
  • the base station may indicate 3 indexes through the second indication information, and the values of the 3 indexes are 0, 1, and 2, respectively.
  • the priority of the TCI-state with index 2 is higher than the priority of the TCI-state with indexes 0 and 1.
  • the UE can determine that the index of the TCI-state of the DMRS of the PDSCH transmitted on the first and second sub-frequency resources of the first frequency domain resource is 1, the third and the third of the first frequency domain resource.
  • the index of the TCI-state of the DMRS of the PDSCH transmitted on the 4 frequency domain resources is 2, and the index of the TCI-state of the DMRS of the PDSCH transmitted on the first and second frequency domain resources of the second frequency domain resource is 0, And the index of the TCI-state of the DMRS of the PDSCH transmitted on the third and fourth sub-frequency resources of the second frequency domain resource is 2.
  • the Z1 candidate third patterns may be predefined, or may be indicated by the base station for the UE through third indication information (such as a broadcast message, SIB, RRC signaling, or MAC CE).
  • the second indication information may be RRC signaling, MAC CE, or DCI.
  • a third pattern may not be passed through the second indication information. At this time, the third pattern is considered to be the third pattern configured by the base station for the UE.
  • the Z1 candidate third patterns may be predefined, and the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is a broadcast message or SIB
  • the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is RRC signaling
  • the second indication information is MAC CE or DCI.
  • the third indication information is MAC CE
  • the second indication information is DCI
  • the second indication information includes a TCI field, which is used by the base station to indicate the third pattern for the UE.
  • the second indication information and the first indication information are the same DCI.
  • the base station indicates the Z1 candidate third pattern for the UE through the third indication information, and may directly indicate the specific configuration of the Z1 candidate third pattern, or may indicate the activated Z1 candidate third pattern from the Z3 candidate third patterns.
  • the Z3 candidate third patterns may be predefined, or indicated by the base station for the UE through fourth indication information (such as a broadcast message, SIB, RRC signaling, or MAC CE).
  • the Z3 candidate third patterns may be predefined, and the third indication information is a broadcast message, SIB, RRC signaling, or MAC CE.
  • the fourth indication information is a broadcast message or SIB
  • the third indication information is RRC signaling.
  • the fourth indication information is a broadcast message, SIB or RRC signaling, and the third indication information is MAC CE.
  • the method in which the base station indicates the activated Z1 candidate first patterns from the Z3 candidate third patterns through the fourth indication information is similar to the above-mentioned method of indicating M2 sets of QCL information from the M1 sets of candidate QCL information, which will not be repeated here.
  • the base station indicates X2 fourth patterns from X1 candidate fourth patterns, and each fourth pattern indicates a third pattern of a group of time units.
  • the introduction of a group of time units is the same as that of the above example E, and the introduction of the third pattern is the same as that of the example F, and will not be repeated here.
  • the group of time units includes the first time unit.
  • the first time unit is used to transmit the PDSCH in the method shown in FIG. 1. Therefore, the UE can determine the X2 third patterns corresponding to the first time unit in the X2 fourth patterns according to the X2 fourth patterns indicated by the base station and the first time unit for transmitting PDSCH, which can be similar to the above example F, determine the TCI-state of each PDSCH.
  • each frequency domain resource includes 4 sub-frequency domain resources, and each fourth pattern is used to indicate the third pattern on 3 time units.
  • Table 7 shows 4 kinds of candidate fourth patterns. pattern. It can be understood that the fourth pattern shown in Table 7 is only used as an example, and does not constitute a limitation to the embodiment of the present application. Assume that the third pattern indicated in Table 7 is the third pattern shown in Table 6.
  • FIG. 8 shows an example diagram of the candidate fourth pattern corresponding to Table 7.
  • the base station may indicate the indexes of the two fourth patterns for the UE through the second indication information, assuming that the indicated two indexes are 1 and 2, or the bitmap indicated for the UE is 0110 (assuming that the fourth pattern corresponds to the fourth pattern from low to high). Pattern 0 to Pattern 4 3).
  • the UE can determine the TCI-state of the DMRS of the PDSCH transmitted on the first to fourth sub-frequency resources of the first frequency domain resource.
  • the index is 1, and the index of the TCI-state of the DMRS of the PDSCH transmitted on the first to fourth sub-frequency domain resources of the second frequency domain resource is 0.
  • the X1 candidate fourth patterns may be predefined, or may be indicated by the base station for the UE through third indication information (such as a broadcast message, SIB, RRC signaling, or MAC CE).
  • the second indication information may be RRC signaling, MAC CE, or DCI.
  • X1 is equal to 1
  • the fourth pattern is considered to be the fourth pattern configured by the base station for the UE.
  • the X1 candidate fourth patterns may be predefined, and the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is a broadcast message or SIB
  • the second indication information is RRC signaling, MAC CE, or DCI.
  • the third indication information is RRC signaling
  • the second indication information is MAC CE or DCI.
  • the third indication information is MAC CE
  • the second indication information is DCI
  • the second indication information includes a TCI field, which is used by the base station to indicate the fourth pattern for the UE.
  • the second indication information and the first indication information are the same DCI.
  • the base station indicates the X1 candidate fourth pattern for the UE through the third indication information, and may directly indicate the specific configuration of the X1 candidate fourth pattern, or may indicate the activated X1 candidate fourth pattern from the X3 candidate fourth patterns.
  • the X3 candidate fourth patterns may be predefined, or indicated by the base station for the UE through fourth indication information (such as a broadcast message, SIB, RRC signaling, or MAC CE).
  • the X3 candidate fourth patterns may be predefined, and the third indication information is a broadcast message, SIB, RRC signaling, or MAC CE.
  • the fourth indication information is a broadcast message or SIB
  • the third indication information is RRC signaling.
  • the fourth indication information is a broadcast message, SIB or RRC signaling, and the third indication information is MAC CE.
  • the method for the base station to indicate the activated X1 candidate fourth patterns from the X3 candidate fourth patterns through the fourth indication information is similar to the above-mentioned method of indicating M2 sets of QCL information from the M1 sets of candidate QCL information, which will not be repeated here.
  • FIG. 9 shows an example flow chart of data transmission between the base station and the UE.
  • the base station sends a downlink signal to the UE. For example, sending SSB and/or CSI-RS.
  • S902 The UE performs channel estimation or channel measurement on the downlink signal received in S901, and feeds back the measurement result to the base station.
  • S903 The UE sends a sounding reference signal (sounding reference symbol, SRS) to the base station.
  • SRS sounding reference symbol
  • the base station determines, according to the measurement information reported by the UE in S902 and/or the channel measurement information obtained according to the SRS received in S403, multiple beams used to send PDSCH to the UE and frequency domain resources corresponding to the multiple beams , Antenna port collection, and QCL information.
  • the base station sends PDCCH and PDSCH to the UE.
  • the PDCCH carries DCI, and the DCI is used to implement the above-mentioned functions of the first indication information and the second indication information.
  • the DCI can indicate the following information of the first PDSCH to the Nth PDSCH: the first frequency domain resource to the Nth frequency domain resource, the first antenna port set to the Nth antenna port set, the first PDSCH to the Nth PDSCH DMRS QCL information.
  • the UE receives the PDSCH according to the indication of the DCI carried on the PDCCH.
  • the UE determines the following information of the first PDSCH to the Nth PDSCH for carrying N repetitive data according to the instructions of the DCI: the first frequency domain resource to the Nth frequency domain resource, the first antenna port set to the Nth antenna port set, QCL information of the DMRS from the 1st PDSCH to the Nth PDSCH. According to this information, the UE can receive the first PDSCH to the Nth PDSCH. As long as data is successfully received on at least one PDSCH from the first PDSCH to the Nth PDSCH, successful data transmission between the base station and the UE can be realized.
  • the methods provided in the embodiments of the present application are introduced from the perspective of network equipment (such as base station), terminal equipment (such as UE), and the interaction between network equipment and terminal equipment.
  • the network device and the terminal may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 10 shows a structural example diagram of an apparatus 300 provided by an embodiment of the application.
  • the apparatus 300 is used to implement the function of the terminal device in the foregoing method.
  • the device may be a terminal device or another device capable of realizing the function of the terminal device.
  • the other device can be installed in the terminal device or can be matched and used with the terminal device.
  • the device 300 includes a receiving module 301 for receiving signals or information. For example, it is used to receive one or more of the following signals from the network device: first indication information, second indication information, PDSCH and PDSCH DMRS.
  • the device 300 includes a sending module 302 for sending signals or information. For example, it is used to send SRS to network equipment.
  • the device 300 includes a processing module 303 for processing the received signal or information, for example, for decoding the signal or information received by the receiving module 301.
  • the processing module 303 may also generate a signal or information to be sent, for example, for generating a signal or information to be sent through the sending module 302.
  • the division of modules in the embodiments of the present application is illustrative, and is a logical function division, and there may be other division methods in actual implementation.
  • the receiving module 301 and the sending module 302 can also be integrated as a transceiver module or a communication module.
  • the functional modules in the various embodiments of the present application may be integrated into one module, or may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the apparatus 300 is used to implement the function of the network device in the foregoing method.
  • the device may be a network device or other devices that can realize the functions of the network device.
  • the other device can be installed in the network equipment or can be matched and used with the network equipment.
  • the device 300 includes a receiving module 301 for receiving signals or information. For example, it is used to receive SRS from a terminal device.
  • the device 300 includes a sending module 302 for sending signals or information. For example, it is used to send one or more of the following signals to the terminal device: first indication information, second indication information, PDSCH and PDSCH DMRS.
  • the device 300 includes a processing module 303 for processing the received signal or information, for example, for decoding the signal or information received by the receiving module 301.
  • the processing module 303 may also generate a signal or information to be sent, for example, for generating a signal or information to be sent through the sending module 302.
  • FIG. 11 shows an apparatus 400 provided by an embodiment of this application.
  • the apparatus 400 is used to implement the function of the terminal device in the foregoing method, and the apparatus may be a terminal device, or may be another apparatus capable of realizing the function of the terminal device.
  • the other device can be installed in the terminal device or can be matched and used with the terminal device.
  • the device 400 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 400 includes at least one processor 420, configured to implement the function of the terminal device in the method provided in the embodiment of the present application.
  • the processor 420 may generate and send signals such as SRS, and may be used to receive and process one or more of the following signals: first indication information, second indication information, PDSCH and PDSCH DMRS, see method for details The detailed description in the example will not be repeated here.
  • the device 400 may also include at least one memory 430 for storing program instructions and/or data.
  • the memory 430 and the processor 420 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 420 may cooperate with the memory 430.
  • the processor 420 may execute program instructions stored in the memory 430. At least one of the at least one memory may be included in the processor 420.
  • the apparatus 400 may further include a communication interface 410 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 400 can communicate with other devices.
  • the other device may be a network device.
  • the processor 420 uses the communication interface 410 to send and receive signals, and is used to implement the functions of the terminal device described in the foregoing method embodiments.
  • the apparatus 400 is used to implement the function of the network device in the foregoing method.
  • the apparatus may be a network device, or may be another apparatus capable of implementing the function of the network device.
  • the other device can be installed in the network equipment or can be matched and used with the network equipment.
  • the device 400 may be a chip system.
  • the apparatus 400 includes at least one processor 420, configured to implement the function of the network device in the method provided in the embodiment of the present application.
  • the processor 420 may receive and process signals such as SRS, and may be used to generate and send one or more of the following signals: first indication information, second indication information, PDSCH and PDSCH DMRS, see method for details The detailed description in the example will not be repeated here.
  • the device 400 may also include at least one memory 430 for storing program instructions and/or data.
  • the memory 430 and the processor 420 are coupled.
  • the processor 420 may cooperate with the memory 430.
  • the processor 420 may execute program instructions stored in the memory 430. At least one of the at least one memory may be included in the processor 420.
  • the apparatus 400 may further include a communication interface 410 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 400 can communicate with other devices.
  • the other device may be a terminal device.
  • the processor 420 uses the communication interface 410 to send and receive signals, and is used to implement the functions of the network device described in the foregoing method embodiments.
  • the specific connection medium between the above-mentioned communication interface 410, the processor 420, and the memory 430 is not limited in the embodiment of the present application.
  • the memory 430, the processor 420, and the transceiver 410 are connected by a bus 440 in FIG. 11, and the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the technical solutions provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server, or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium.
  • the embodiments can be mutually cited.
  • the methods and/or terms between the method embodiments can be mutually cited, such as the functions and/or functions between the device embodiments.
  • Or terms may refer to each other, for example, functions and/or terms between the device embodiment and the method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据的重复传输方法和装置。该方法可以利用N个波束进行数据的N次重复传输,其中,N为大于等于2的整数。该方法包括: 网络设备向终端设备发送第一指示信息,用于指示第i下行共享数据信道 PDSCH 的第i天线端口集合和第i频域资源,其中,第i天线端口集合中包括一个或多个天线端口;终端设备利用第i天线端口集合,在第i频域资源上从网络设备接收第i PDSCH,该第i PDSCH 上携带第i个重复数据; 其中,i的取值为1至 N。

Description

数据的重复传输方法
本申请要求于2020年05月09日提交中国国家知识产权局、申请号为202010388042.2、申请名称为“数据的重复传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及数据的重复传输方法。
背景技术
在无线通信***中,网络设备和终端设备可以基于业务场景进行数据传输。其中,该业务场景包括但不限于以下中的至少一种:增强移动宽带(enhance mobile broadband,eMBB)、超可靠低时延通信(ultra-reliable low-latency communication,URLLC)、和大规模机器类型通信(massive machine-type communications,mMTC)。
网络设备和终端设备可以进行上行数据传输,例如终端设备向网络设备发送上行数据;和/或,网络设备和终端设备可以进行下行数据传输,例如网络设备向终端设备发送下行数据。
发明内容
本申请实施例提供了一种数据的重复传输方法,旨在多波束传输时降低终端设备的处理复杂度,从而减小终端设备的功耗。
第一方面,提供了一种数据的重复传输方法,包括:从网络设备接收N个重复数据,其中,该N个重复数据中的第i个重复数据是利用第i天线端口集合、在第i个资源上、通过第i个物理下行共享信道PDSCH携带的。i的取值为1至N,即i的取值从1遍历至N,N为大于等于2的整数,第i资源中包括第i频域资源。第i天线端口集合中包括一个或多个天线端口。所述一个或多个天线端口和所述第i PDSCH的解调参考信号DMRS的一个或多个天线端口相同。可选地,所述N个重复数据包括N个相同的传输块TB。
上述方法中,在利用多波束重复传输下行数据时,为各波束独立配置频域资源,此时不需要为每个波束都配置较大的带宽便可以利用频率分集增益,因此可以降低终端侧的接收处理压力,从而可以降低终端侧的功耗和成本。
在一种可能的实现中,第i频域资源是预定义的。通过该方法,可以节省配置第i频域资源的信令开销。
在一种可能的实现中,所述方法包括:从所述网络设备接收第一指示信息,用于指示所述第i频域资源。例如,该第一指示信息的类型为DCI,该第一指示信息中的频域资源分配域用于指示第i频域资源。通过该方法,可以根据信道条件等参数配置 第i频域资源,从而可以使得该资源上传输的信号的接收质量更高。
在一种可能的实现中,第i天线端口集合中包括的天线端口是预定义的。通过该方法,可以节省配置第i天线端口集的信令开销。
在一种可能的实现中,所述方法包括:从所述网络设备接收第一指示信息,用于指示第i天线端口集合中包括的天线端口。该第i天线端口集合中包括的是第i PDSCH的天线端口,或者是第i PDSCH的DMRS的天线端口。例如,该第一指示信息的类型为DCI。通过该方法,可以根据信道条件、和/或所需的接收能量等参数配置天线端口集,从而可以使得该天线端口集上传输的信号的接收质量更高。
在一种可能的实现中,第i资源中包括第i时域资源,第i时域资源是预定义的。通过该方法,可以节省配置第i时域资源的信令开销。
在一种可能的实现中,第i资源中包括第i时域资源,所述方法包括:从所述网络设备接收第一指示信息,用于指示所述第i时域资源。例如,该第一指示信息的类型为DCI,该第一指示信息中的时域资源分配域用于指示第i时域资源。通过该方法,可以根据业务量等参数配置第i时域资源,从而可以避免资源浪费。
可选地,第1时域资源至第N时域资源中任意两个时域资源的具***置可以相同,也可以不同,本申请实施例不做限制。
在一种可能的实现中,所述方法还包括:从所述网络设备接收第二指示信息,所述第二指示信息用于指示第i PDSCH的DMRS的QCL信息。可选地,所述QCL信息可以看做所述第i天线端口集合的QCL信息,所述第i天线端口集合中的所述一个或多个天线端口是所述第i PDSCH的DMRS的一个或多个天线端口。可选地,所述QCL信息可以看做所述第i频域资源对应的QCL信息。
由于各天线端口集对应的PDSCH频域资源是独立配置的,为了匹配各PDSCH频域资源上的信道条件,通过为各天线端口集对应的PDSCH的DMRS独立配置QCL信息,可以更加精确地得到各PDSCH的信道估计,从而可以提高接收端解调和译码PDSCH的正确率。
在一种可能的实现,所述第二指示信息用于指示第i PDSCH的DMRS的QCL信息,包括:所述第二指示信息用于指示与所述第i PDSCH的DMRS是QCL的至少一个信号,以及所述第i PDSCH的DMRS与所述至少一个信号中的每个信号的QCL类型。通过该方法,可以简化***设计,通过比较简单的方法,便可灵活并有效地指示第i PDSCH的DMRS的QCL信息。
在一种可能的实现中,所述第二指示信息用于指示第i PDSCH的DMRS的QCL信息,包括:所述第二指示信息用于指示M2套QCL信息,所述第i PDSCH的DMRS的QCL信息包括所述M2套QCL信息,所述M2套QCL信息包括于M1套候选QCL信息中。其中,M1为大于等于1的整数,M2为大于等于1且小于等于M1的整数。所述M1套候选QCL信息中的任一套信息用于指示一种信号和一种QCL类型,所述第i PDSCH的DMRS和所述一种信号是QCL的,所述第i PDSCH的DMRS和所述一种信号的QCL类型是所述一种QCL类型。通过该方法,可以节省配置第i QCL信息时的信令开销。
在一种可能的实现中,所述第二指示信息用于指示第i PDSCH的DMRS的QCL信息,包括:所述第二指示信息用于指示一个传输配置编号-状态TCI-state,所述一个TCI-state包括于S1个TCI-state中,所述一个TCI-state用于指示与所述第i PDSCH的DMRS是QCL的至少一个信号、以及用于指示所述第i PDSCH的DMRS与所述至少一个信号中每个信号的QCL类型。其中,所述S1个TCI-state中的每个TCI-state用于指示至少一个信号、和所述至少一个信号中每个信号对应的QCL类型。
在一种可能的实现中,所述方法包括:从所述网络设备接收第三指示信息,所述第三指示信息用于指示所述S1个TCI-state的信息。
通过该方法,可以节省配置第i QCL信息时的信令开销。
在一种可能的实现中,所述第二指示信息用于指示第i PDSCH的DMRS的QCL信息,包括:所述第二指示信息用于指示一个第一图样,所述一个第一图样包括于F1个候选第一图样中,所述F1个候选第一图样中的每个第一图样用于指示
Figure PCTCN2021091948-appb-000001
个TCI-state,其中,r i是所述第i频域资源中包括的子频域资源个数,所述
Figure PCTCN2021091948-appb-000002
个TCI-state中第i频域资源对应的r i个TCI-state中的第j个TCI-state用于指示至少一个信号、和所述至少一个信号中每个信号对应的QCL类型,所述第二指示信息指示的一个第二图样指示的第i频域资源对应的r i个TCI-state中的第j个TCI-state指示的至少一个信号和所述第i频域资源的第j子频域资源上传输的PDSCH的DMRS是QCL的,其中,r i为大于或等于1的整数,j取值从1至r i,F1为大于等于1的整数。
在一种可能的实现中,所述方法包括:从所述网络设备接收第三指示信息,所述第三指示信息用于指示所述F1个候选第一图样。
通过该方法,可以节省配置第i QCL信息时的信令开销。
在一种可能的实现中,所述第二指示信息用于指示第i PDSCH的DMRS的QCL信息,包括:所述第二指示信息用于指示一个第二图样,所述一个第二图样包括于P1个候选第二图样中,所述P1个候选第二图样中的每个第二图样用于指示一组时间单元中的每个时间单元的第一图样。关于第一图样的介绍同前文,此处不再赘述。对于所述第二指示信息指示的一个第二图样指示的第一时间单元的第一图样,所述第一图样指示的
Figure PCTCN2021091948-appb-000003
个TCI-state中第i频域资源对应的r i个TCI-stater i中的第j个TCI-state指示的至少一个信号和所述第i频域资源的第j子频域资源上传输的PDSCH的DMRS是QCL的。所述第i PDSCH是在所述第一时间单元被传输的。
在一种可能的实现中,所述方法包括:从所述网络设备接收第三指示信息,所述第三指示信息用于指示所述P1个候选第二图样。
通过该方法,可以节省配置第i QCL信息时的信令开销。
在一种可能的实现中,所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息,包括:所述第二指示信息用于指示Z2个第三图样,所述Z2个第三图样包括于Z1个候选第三图样中;其中,对于所述Z2个第三图样中的一个第三图样,所述一个第三图样对应于一个TCI-state,所述一个第三图样用于指示
Figure PCTCN2021091948-appb-000004
个元素,所述
Figure PCTCN2021091948-appb-000005
个元素一对一地对应于第1频域资源至第N频域资源包括的
Figure PCTCN2021091948-appb-000006
个子频 域资源,其中,r i是所述第i频域资源中包括的子频域资源个数,对于所述
Figure PCTCN2021091948-appb-000007
个元素中第i频域资源对应的r i个元素中的一个元素,所述一个元素的值为t1时,所述一个元素对应的子频域资源上传输的所述第i PDSCH的DMRS的和所述一个TCI state指示的至少一种信号是QCL的,对应的QCL类型是所述一个TCI-state指示的QCL类型。
在一种可能的实现中,所述方法包括:从所述网络设备接收第三指示信息,所述第三指示信息用于指示所述Z1个候选第三图样。
通过该方法,可以节省配置第i QCL信息时的信令开销。
在一种可能的实现中,所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息,包括:所述第二指示信息用于指示X2个第四图样,所述X2个第四图样包括于X1个候选第四图样中;其中,对于所述对于所述X2个第四图样中的一个第四图样,所述一个第四图样对应于一个TCI-state,所述一个第四图样用于指示一组时间单元中每个时间单元对应的
Figure PCTCN2021091948-appb-000008
个元素,所述
Figure PCTCN2021091948-appb-000009
个元素一对一地对应于第1频域资源至第N频域资源包括的
Figure PCTCN2021091948-appb-000010
个子频域资源,其中,r i是所述第i频域资源中包括的子频域资源个数;对于第一时间单元的所述
Figure PCTCN2021091948-appb-000011
个元素中第i频域资源对应的r i个元素中的一个元素,所述一个元素的值为t1时,所述一个元素对应的子频域资源上传输的所述第i PDSCH的DMRS的和所述一个TCI state指示的至少一个信号是QCL的,所述一个TCI-state还用于指示所述至少一个信号中每个信号对应的QCL类型,其中,所述第i PDSCH是在所述第一时间单元被传输的。
在一种可能的实现中,所述方法包括:从所述网络设备接收第三指示信息,所述第三指示信息用于指示所述X1个候选第四图样。
通过该方法,可以节省配置第i QCL信息时的信令开销。
第二方面,提供了一种数据的重复传输方法,包括:向终端设备发送N个重复数据,其中,该N个重复数据中的第i个重复数据是利用第i天线端口集合、在第i个资源上、通过第i个物理下行共享信道PDSCH携带的。i的取值为1至N,即i的取值从1遍历至N,N为大于等于2的整数,第i资源中包括第i频域资源。第i天线端口集合中包括一个或多个天线端口。所述一个或多个天线端口和所述第i PDSCH的解调参考信号DMRS的一个或多个天线端口相同。可选地,所述N个重复数据包括N个相同的传输块TB。
关于第i资源、第i天线端口集合、第i PDSCH、第i PDSCH的DMRS等的介绍请参见第一方面,这里不再赘述。
第三方面,提供一种装置,该装置可以是终端设备,也可以是能够实现第一方面描述的方法的其它装置。该其它装置能够安装在终端设备中,或能够和终端设备匹配使用。一种设计中,该装置可以包括执行第一方面所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的设计中,通信模块用于从网络设备接收N个重复数据,其中,该N个重复数据中的第i个重复数据是利用第i天线端口集合、在第i个资源上、通过第i 个物理下行共享信道PDSCH携带的。i的取值为1至N,即i的取值从1遍历至N,N为大于等于2的整数,第i资源中包括第i频域资源。处理模块用于处理(例如解调和译码)PDSCH。
关于第i资源、第i天线端口集合、第i PDSCH、第i PDSCH的DMRS等的介绍请参见第一方面,这里不再赘述。
第四方面,提供一种装置,该装置可以是网络设备,也可以是能够实现第二方面描述的方法的其它装置。该其它装置能够安装在网络设备中,或能够和网络设备匹配使用。一种设计中,该装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的设计中,通信模块用于向终端设备发送N个重复数据,其中,该N个重复数据中的第i个重复数据是利用第i天线端口集合、在第i个资源上、通过第i个物理下行共享信道PDSCH携带的。i的取值为1至N,即i的取值从1遍历至N,N为大于等于2的整数,第i资源中包括第i频域资源。处理模块用于生成PDSCH。
关于第i资源、第i天线端口集合、第i PDSCH、第i PDSCH的DMRS等的介绍请参见第二方面,这里不再赘述。
第五方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。本申请实施例中,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。此时,该其它设备可以为网络设备。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,从网络设备接收N个重复数据,其中,该N个重复数据中的第i个重复数据是利用第i天线端口集合、在第i个资源上、通过第i个物理下行共享信道PDSCH携带的。i的取值为1至N,即i的取值从1遍历至N,N为大于等于2的整数,第i资源中包括第i频域资源。
关于第i资源、第i天线端口集合、第i PDSCH、第i PDSCH的DMRS等的介绍请参见第一方面,这里不再赘述。
第六方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第二方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第二方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。本申请实施例中,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。此时,该其它设备可以为终端设备。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,向终端设备发送N个重复数据,其中,该N个重复 数据中的第i个重复数据是利用第i天线端口集合、在第i个资源上、通过第i个物理下行共享信道PDSCH携带的。i的取值为1至N,即i的取值从1遍历至N,N为大于等于2的整数,第i资源中包括第i频域资源。
关于第i资源、第i天线端口集合、第i PDSCH、第i PDSCH的DMRS等的介绍请参见第二方面,这里不再赘述。
第七方面,提供一种通信***,包括第三方面或第五方面的装置,和第四方面或第六方面的装置。
第八方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第二方面所述的方法。
第九方面,提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第二方面所述的方法。
第十方面,提供了一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现上述第一方面或第二方面所述的方法。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1所示为本申请实施例提供的下行数据的重复传输方法的流程示例图;
图2所示为本申请实施例提供的时频资源网格示例图;
图3所示为本申请实施例提供的下行数据的重复传输方法的示例图;
图4和图5所示为本申请实施例提供的候选第一图样示例图;
图6所示为本申请实施例提供的候选第二图样示例图;
图7所示为本申请实施例提供的候选第三图样示例图;
图8所示为本申请实施例提供的候选第四图样示例图;
图9所示为本申请实施例提供的基站和UE进行数据传输的流程示例图;
图10-11所示为本申请实施例提供的装置结构示例图。
具体实施方式
本申请实施例提供的技术方案可以应用于各种通信***,例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、无线保真(wireless-fidelity,WiFi)***、未来的通信***、或者多种通信***融合的***等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:eMBB通信、URLLC、机器类型通信(machine type communication,MTC)、mMTC、设备到设备(device-to-device,D2D)通信、车辆外联(vehicle to everything,V2X)通信、车辆到车辆(vehicle to vehicle,V2V)通信、和物联网(internet of things,IoT)等。可选地,mMTC可以包括以下通信中的一种或多种:工业无线传感器网络(industrial wireless sens or network,IWSN)的通信、视频监控(video surveillance)场景中的通信、和可穿戴设备的通信等。
本申请实施例提供的技术方案可以应用于通信设备间的通信。通信设备间的通信可以包括:网络设备和终端设备间的通信、网络设备和网络设备间的通信、和/或终端设备和终端设备间的通信。在本申请实施例中,术语“通信”还可以描述为“传输”、“信息传输”、或“信号传输”等。传输可以包括发送和/或接收。以网络设备和终端设备间的通信为例描述本申请实施例的技术方案,本领域技术人员也可以将该技术方案用于进行其它调度实体和从属实体间的通信,例如宏基站和微基站之间的通信,例如第一终端设备和第二终端设备间的通信。其中,调度实体可以为从属实体分配空口资源。空口资源包括以下资源中的一种或多种:时域资源、频域资源、码资源和空间资源。在本申请实施例中,多种可以是两种、三种、四种或者更多种,本申请实施例不做限制。
在本申请实施例中,网络设备和终端设备间的通信包括:网络设备向终端设备发送下行信号或信息,和/或终端设备向网络设备发送上行信号或信息。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中A,B可以是单数或者复数。在本申请实施例中,可以采用“第一”、“第二”、“A”、“B”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”、“A”、“B”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内、室外、手持、和/或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、和/或智慧家庭(smart home)中的无线终端等等。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网中能够和终端设备进行无线通信的设备。基站可能有多种形式,比如宏基站、微基站、中继站或接入点等。本申请实施例涉及到的基站可以是5G***中的基站、LTE***中的基站或其它***中的基站,不做限制。其中,5G***中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(generation Node B,gNB或gNodeB)。
在通信***中,例如NR***或者其它***中,相对传统的终端设备,例如 eMBB终端,可以引入一种轻型(light)终端设备。该轻型终端设备也可以称为能力降低(reduced capability,REDCAP)终端。其中,eMBB终端是能够传输eMBB业务的终端。相对REDCAP终端,该传统的终端设备可以是高能力终端或能力不受限的终端。本申请实施例中,该传统的终端设备可以被替换为未来引进的、相对REDCAP终端的高能力终端。示例性地,高能力终端和REDCAP终端的特征对比满足以下第一项至第九项中的至少一项。其中,至少一项可以是一项或多项,例如2项、3项或者更多项,本申请实施例不做限制。
第一项:高能力终端支持的最大带宽大于REDCAP终端支持的最大带宽。例如:高能力终端支持的最大带宽是100MHz(兆赫兹)或200MHz,REDCAP终端支持的最大带宽是20MHz、10MHz或者5MHz。
第二项:高能力终端的天线数多于REDCAP终端的天线数。其中,该天线数可以是为终端设置的天线数,或是用于发送和/或接收的最大天线数。例如:高能力终端最高支持4天线收2天线发,REDCAP终端最高支持2天线收1天线发。或者,即使高能力终端的天线数等于NR REDCAP终端的天线数,但是在天线选择性传输上能力不同。例如高能力终端与低能力终端都支持2天线发送,但是高能力终端支持天线选择性传输,而低能力终端不支持天线选择性传输。以单天线端口数据传输为例,高能力终端可以实现单天线端口数据传输在2个发送天线上切换,该数据传输可以获得空间分集增益;而低能力终端的单天线端口数据传输只能在2个发送天线上同时发送,等价于1个发送天线的传输性能。
第三项:高能力终端支持的最大发射功率大于REDCAP终端支持的最大发射功率。例如:高能力终端支持的最大发射功率是23分贝毫瓦(decibel-milliwatt,dBm)或者26dBm,REDCAP终端支持的最大发射功率是4dBm至20dBm中的一个值。
第四项:高能力终端支持载波聚合(carrier aggregation,CA),REDCAP终端不支持载波聚合。
第五项:高能力终端和REDCAP终端都支持载波聚合时,高能力终端支持的最大载波数大于REDCAP终端支持的最大载波数。例如,高能力终端最多支持32个载波或者5个载波的聚合,REDCAP终端最多支持2个载波的聚合。
第六项:高能力终端和REDCAP终端在不同的协议版本中被引入。例如,在NR协议中,高能力终端是在协议的版本(Release,R)15中引入的终端,REDCAP终端是在协议的R17中引入的终端。
第七项:高能力终端和REDCAP终端的双工能力不同。高能力终端的双工能力更强。例如高能力终端支持全双工频分双工(frequency division duplex,FDD),即高能力终端在支持FDD时支持同时接收和发送,REDCAP终端支持半双工FDD,即REDCAP终端在支持FDD时不支持同时接收和发送。
第八项:高能力终端的数据处理能力比REDCAP终端的数据处理能力更强。高能力终端相同时间内可以处理的数据更多,或者高能力终端处理相同数据时处理时间更短。例如,记终端接收到来自网络设备的下行数据的时间为T1,终端处理该下行数据后,记终端向网络设备发送该下行数据的反馈的时间为T2,高能力终端的T2和 T1之间的时延(时间差)小于REDCAP终端的T2和T1之间的时延。其中,下行数据的反馈可以是ACK或者NACK反馈。
第九项:高能力终端的数据传输的峰值速率大于REDCAP终端的数据传输的峰值速率。其中,数据传输包括上行数据传输(即终端向网络设备发送数据)和/或下行数据传输(即终端从网络设备接收数据)。
可选地,为了便于区分,在本申请实施例中,高能力终端还可以称为非REDCAP终端。
REDCAP终端可以应用于物联网、mMTC、或V2X等各种场景。如上所述,REDCAP终端的能力受限,会造成终端的上行和/或下行覆盖受限,从而影响数据传输的速率。为了提高REDCAP终端的覆盖,本申请实施例提供了一种数据的重复传输方法,尤其提出了一种下行数据的重复传输方法。
可选地,本申请实施例提供的方法还可以应用于其他类型终端,例如高能力终端(如eMBB终端,或支持URLLC业务的URLLC终端),用于提高终端的覆盖,从而可以提高用户体验。为了简化描述,本申请实施例以REDCAP终端为例进行描述。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片***。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备,以终端设备是UE为例,描述本申请实施例提供的技术方案。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片***。该装置可以被安装在网络设备中或者和网络设备匹配使用。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
如图1所示为本申请实施例提供的下行数据的重复传输方法。
操作101,基站向UE发送N个重复数据,其中,该N个重复数据中的第i个重复数据是利用第i天线端口集合、在第i资源上、通过第i下行信道携带的。其中。i的取值为1至N,N为大于等于2的整数。可选地,i的取值还可以为0至N-1。例如N为2、3、4、6或其他整数,本申请实施例不做限制。相应地,操作102,UE从基站接收该N个重复数据。
通信***中,UE可以接入基站,并和基站进行通信。示例性地,一个基站可以管理一个或多个(例如2个、3个或6个等)小区,UE可以在该一个或多个小区中的至少一个小区中接入基站,并在该UE所接入的小区中和基站进行通信。其中,UE在该至少一个小区中接入基站还可以描述为:UE接入该至少一个小区。在本申请实施例中,至少一个可以是1个、2个、3个或者更多个,本申请实施例不做限制。在本申请实施例中,多个可以是2个、3个、4个或者更多个,本申请实施例不做限制。
在本申请实施例中,基站可以通过下行信道,例如下行物理信道,向UE发送下 行数据。该下行信道可以是物理下行共享信道(physical downlink shared channel,PDSCH)或者其它名称的信道,本申请实施例不做限制。为了便于描述,下述本申请实施例以下行信道是PDSCH为例进行描述。在本申请实施例中,基站通过PDSCH向UE发送下行数据还可以描述为:基站向UE发送PDSCH,PDSCH上承载下行数据。
在本申请实施例中,基站向UE发送N个重复数据包括向UE发送N个重复的传输块(transport block,TB)。该N个重复的TB是N个携带相同信息的TB。例如,该N个携带相同信息的TB是N个相同的TB,或,该N个携带相同信息的TB是N个冗余版本不同的TB。基站向UE发送一个TB时,还可以对该TB进行物理层操作。其中,该物理层操作包括以下子操作中的至少一种:分段、添加循环冗余校验(cyclic redundancy check,CRC)、信道编码、加扰、层映射、预编码、和调制。基站在向UE重复发送N个TB时,对于其中任意两个TB,针对该两个TB的物理层操作可以相同,也可以不同;如果针对该两个TB的物理层操作都包括一种相同的子操作时,针对该子操作的配置参数可以相同,也可以不同,本申请实施例不做限制。例如,针对该两个TB的物理层操作都包括信道编码时,码率可以不同;和/或,针对该两个TB的物理层操作都包括调制时,调制阶数可以不同。
基站向UE发送PDSCH时,基站可以对PDSCH上承载的TB的比特流进行物理层操作、将该物理层操作的输出信号转换为射频信号、并通过基站侧的天线阵列向UE发送该射频信号。基站可以基于该天线阵列使用波束赋形技术,以波束的形式传输PDSCH。该天线阵列可以安装在基站上、连接(有线或无线的方式)到基站上、或者以其他形式存在于基站侧,本申请实施例不做限制。波束赋形技术通过对大规模天线阵列进行加权,使得发送能量集中到某个方向,例如UE所在方向,从而增加UE接收下行信号的效率,增加网络的覆盖距离。然而,由于将波束的能量集中到纵向的距离方向时可能会削弱波束的横向宽度,因此波束赋形技术可能缩小了被发送的射频信号的横向覆盖范围。相对传统的横向宽波束发送技术,使用波束赋形技术时,当UE移动到波束的横向覆盖范围之外时,UE与基站之间的通信可能会迅速减弱甚至中断。通信中断后可以进行波束恢复,但波束恢复需要的时间很长,大概为100毫秒(millisecond,ms)左右。为了增加网络的覆盖范围,基站可以通过多波束向UE重复发送下行数据,例如每个波束上重复发送一次数据,以增加被传输的数据的鲁棒性。
本申请实施例提供的基于波束赋形技术的方法,可以应用于频率范围(frequency range,FR)2频段。FR2频段是频率值大于24吉赫兹(giga hertz,GHz)的毫米波(millimeter wave,MMW)频段。在FR2频段中,可以设置一个或多个频带(band),每个频带的带宽可以是850MHz至3250MHz范围中的一个值。基站可以利用频带中的频域资源和UE传输数据。由于MMW频带天线尺寸较小,有利于大规模天线阵列的应用,因此有利于应用波束赋形技术。然而,本申请实施例并不限制于此,本申请实施例提供的方法还可以应用于其它频段,例如FR1频段,或介于6GHz至24GHz之间的其他无线电频段。其中,FR1频段是频率值小于6GHz的频段。
在一种可能的实现中,基站和UE可以利用天线端口,通过物理发射天线,实现 以波束的形式发送PDSCH。
基站和UE可以利用一个或多个天线端口传输PDSCH。该多个天线端口中的每个天线端口都可以对应一个相同的时频资源网格(time-frequency resource grid)。该时频资源网格用于描述一个时间单元内的时频资源。该时间单元中包括一个或多个符号。该时间单元可以是子帧、或时隙等,本申请实施例不做限制。例如图2所示为一个时频资源网格示例图,该时频资源网格的时域为一个包括14个符号的时隙,该时频资源网格的频域资源中包括一个或多个子载波。时域一个符号和频域一个子载波形成一个资源元素(resource element,RE)。RE为用于映射数据的最小时频资源粒度。可选地,一个或多个(例如6个或12个等)子载波可以包括于一个资源块(resouce block,RB)中。RB还可以包括时域概念,例如时域一个或多个(例如2个、4个、7个、或14个等)符号和频域一个或多个子载波形成的一组RE包括于一个RB中,或者描述为一个RB在时域包括一个或多个符号,且在频域包括一个或多个子载波。例如图2所示,1个RB在频域包括12个子载波。
天线端口是逻辑概念。一个天线端口可以对应一个物理发射天线,也可以对应多个物理发射天线。在这两种情况下,UE可以不用知道来自同一个天线端口的PDSCH是来自一个还是多个物理发射天线。为了实现PDSCH的接收,UE可以不用知道该PDSCH是单个物理发射天线所发射的PDSCH还是由多个物理发射天线发射的多个PDSCH合并而成的PDSCH,UE解析的是该PDSCH所对应的天线端口。在一种可能的实现中,可以利用预定义的方式或者利用基站通过信令为UE指示的方式,配置PDSCH的解调参考信号(demodulation reference signal,DMRS)的天线端口。PDSCH的天线端口和PDSCH的DMRS的天线端口一一对应。换句话说,PDSCH的一个天线端口唯一地对应PDSCH的DMRS的一个天线端口。例如,这两个天线端口是相同的天线端口。对于利用一个天线端口发送的PDSCH,UE可以接收该天线端口上发送的DMRS,利用所接收到的DMRS进行信道估计,并利用信道估计结果对PDSCH进行解调和译码。对于利用多个天线端口发送的PDSCH,UE可以接收每个天线端口上发送的DMRS,利用所接收到的多个DMRS进行信道估计,并利用信道估计结果对PDSCH进行解调和译码。
基站和UE利用天线端口实现基于波束的数据传输时,一个波束可以由一个或多个天线端口上发送的信号加权形成。用于形成一个波束的一个或多个天线端口可以看作是一个天线端口集。示例性地,n个天线端口上发送的信号用于形成一个波束y,其中,n为大于等于1的整数,则可以认为
Figure PCTCN2021091948-appb-000012
其中,j的取值为从0至n-1,s j表示第j+1个天线端口上发送的信号,w j表示第j+1个天线端口上发送的信号的加权系数。例如,w j是幅度为1的复数,w j×s j表示对s j进行相位旋转。示例性地,当n为1时,表示1个天线端口上发送的信号形成一个波束。示例性地,当n大于1时,表示多个天线端口上发送的宽波束通过加权形成一个窄波束。
由于基站可以使用相同的波束发送PDSCH和该PDSCH的DMRS,即基站利用相同的天线端口发送PDSCH和该PDSCH的DMRS,因此UE不需要知道基站侧是如 何利用天线端口上发送的信号形成发送波束的。UE的目标是正确接收PDSCH,因此如上所述,UE可以估计PDSCH的DMRS的各天线端口的信道,并利用信道估计结果解调和译码PDSCH。
本申请实施例中,使用多个波束发送PDSCH时,为了区分不同波束,对不同波束上发送的PDSCH的名称进行区分。当不同波束上的多个PDSCH携带重复的数据时,该多个PDSCH还可以称为重复的PDSCH。
基于上述介绍,图1所示的方法还可以描述为:基站利用N个波束,向UE发送N个重复数据。其中,该N个重复数据中的第i个重复数据是利用该N个波束中的第i个波束、在第i个资源上、通过第i个下行信道携带的。i的取值为1至N,N为大于等于2的整数。即,该第i个波束对应于第i天线端口集合。该第i天线端口集合中包括一个或多个天线端口。不同天线端口集合中包括的天线端口数可以相同,也可以不同,本申请实施例不做限制。
可选地,第i天线端口集合中包括的天线端口可以是预定义的,也可以是基站通过信令,例如第一指示信息或其他信令,为UE指示的。示例性地,基站通过信令,例如RRC信令、MAC CE或DCI为UE指示第i PDSCH的DMRS的天线端口。示例性地,该DCI可以是用于调度第i PDSCH的DCI,即该DCI携带第i PDSCH的传输参数。UE接收到该信令后,确定第i PDSCH的DMRS的天线端口,并确定第i PDSCH的天线端口和第i PDSCH的DMRS的天线端口相同,即确定第i PDSCH的天线端口为第i PDSCH的DMRS的天线端口。本申请实施例中,传输第i PDSCH和第i PDSCH的DMRS时,第i PDSCH和第i PDSCH的DMRS被映射至相同天线端口的时频资源中。即,本申请实施例中,第i PDSCH和第i PDSCH的DMRS的天线端口相同,第i PDSCH的天线端口(集)还可以描述为第i PDSCH的DMRS的天线端口(集)。
图1所示的方法中,利用多个波束重复发送PDSCH。例如图3所示,基站通过第一波束(波束1)和第二波束(波束2),向UE重复发送下行数据,UE正确接收其中任意一个重复的下行数据,便可以实现对该数据的正确接收。因此该方法可以增加网络的覆盖范围,减少基站和UE的通信中断。对于小区中的不同UE,基站可以根据以下参数中的一种或多种为不同UE独立设置波束或者设置形成波束的加权值:UE的位置、和UE的移动速度等。例如,不同UE的天线端口集的个数可以相同或不同。不同UE的单个天线端口集中包括的天线端口数可以相同或不同。
如上所述,每个天线端口都可以对应一个相同的时频资源网格。对于一个天线端口,该天线端口对应的时频资源网格的频域资源可以称为该天线端口的可用频域资源。可以从该天线端口的可用频域资源中为UE的PDSCH分配部分或者全部资源,用于基站向UE发送PDSCH。PDSCH的时域资源可以是预定义的,也可以是基站通过信令为UE配置的,本申请实施例不做限制。PDSCH的DMRS可以被映射于该PDSCH的时频资源中,或者被映射于与该PDSCH的时频资源相关的时频资源中(例如该时频资源相邻的之前的符号中、或该时频资源相邻的之后的符号中),由基站发送至UE。其中,为PDSCH分配的频域资源包括一个或多个RB、或者一个或多个资源块组(RB group,RBG)。其中,一个RBG中包括一个或多个RB,例如4 个、6个、8个或9个等。
在图1所示的方法中,以波束为粒度进行传输,即基站利用一个相同的资源、在一个天线端口集合中的每个天线端口上向UE发送PDSCH。图1所示的方法中,为第i PDSCH设置第i资源,i的取值为2至N,N为大于等于2的整数。第i资源中包括第i频域资源。第i频域资源可以是预定义的,也可以是基站通过信令,例如第一指示信息,为UE指示的。可选地,图1所示的方法中的第1频域资源至第N频域资源共N个频域资源都是基站通过第一指示信息为UE指示的。可选地,第i资源中包括第i时域资源。第i时域资源可以是预定义的,也可以是基站通过信令,例如第一指示信息,为UE指示的。可选地,图1所示的方法中的第1时域资源至第N时域资源共N个时域资源都是基站通过第一指示信息为UE指示的。
在本申请实施例中,基站发送给UE的信令、消息、或(指示)信息的类型可以是广播消息、***消息块(system information block,SIB)、无线资源控制(radio resource control,RRC)信令、媒体接入空间(media access control,MAC)控制元素(control element,CE)、或者下行控制信息(downlink control information,DCI),本申请实施例不做限制。示例性地,第一指示信息的类型为RRC、MAC CE或DCI。例如,第一指示信息为用于调度第1 PDSCH至第N PDSCH的DCI,该DCI中携带第1 PDSCH至第N PDSCH的传输参数。
图1所示的方法,可以在低资源利用率的条件下提高数据传输的鲁棒性。如果该方法中的N个频域资源不是独立配置的,而是配置一个相同的频域资源,为了避免在一个频域范围内的信道衰落导致所传输的数据大量失真,可能需要配置该相同的频域资源为较宽的频域资源,以利用频率分集增益来增加所传输的数据的鲁棒性。此时,可能会导致资源浪费。然而,图1所示的方法通过独立配置该N个频域资源中的各频域资源,可以配置该N个频域资源合起来的等效带宽较大,而无需每个频域资源的带宽都比较大。因此,该方法既可以利用频率分集增益提高数据传输的鲁棒性,又由于每个频域资源的带宽不必过大,所以不会给UE造成过重的接收处理负担。例如,对于处理能力较弱的REDCAP终端,该方法可以缓解其接收处理压力、降低终端的功耗,因此可以降低终端成本。
可以理解的是,图1所示的方法主要强调各频域资源的独立配置,使得在***中可以利用较少资源提高数据传输的鲁棒性,而不是必须强调频域资源的配置结果。例如,当基站在小区中和多个UE通信时,基站可以将某些UE的N个频域资源配置为相同,某些UE的N个频域资源配置为不同。该配置可以是基于小区中的业务量、各UE处理能力、和调度优先级等中的至少一种确定的。
在通信***中,接收端可以利用参考信号进行信道估计,用于解调数据信道或者获得信道状态信息。其中,参考信号还可以称为导频。例如,如上所述,UE可以利用PDSCH的DMRS进行信道估计,用于解调和译码PDSCH。其中,参考信号的序列值是预定义的,是发送端和接收端都已知的。则,接收端根据接收到的参考信号的值和被发送的参考信号的值,可以估计出参考信号所经历的信道,即可以进行信道估计。接收端利用参考信号进行信道估计时,可以估计信道的大尺度参数,例如时延扩展(delay spread)、平均时延(average delay)、多普勒扩展(doppler spread)、多 普勒频移(doppler shift)、和空间接收参数(spatial reception parameter)中一种或多种参数,并利用所估计的大尺度参数进行信道估计。其中,空间接收参数可以用于多入多出(multiple-input multiple-output,MIMO)传输,空间接收参数可以包括以下一种或多种:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
在一种可能的实现中,为了加快参考信号A的信道估计过程,可以配置该参考信号A和另一个信号B是准共址(quasi co-location,QCL)的。即配置用于传输参考信号A的信道和用于传输信号B的信道的大尺度参数是近似相同的。因此,如果接收端估计了信号B在其信道中经历的大尺度参数,可以利用该大尺度参数对参考信号A的信道进行估计。
下面,将基于图1所示的方法,介绍配置第i PDSCH的DMRS的QCL信息的方法,其中,i的取值为1至N,N为大于等于2的整数。为了便于描述,可以将第i PDSCH的DMRS称为第i DMRS。第i DMRS的QCL信息还可以称为第i天线端口集合的QCL信息。该第i天线端口集合中包括的一个或多个天线端口和该第i DMRS的天线端口相同,即第i DMRS也是通过第i天线端口集合中包括的一个或多个天线端口被发送的。第i DMRS和第i PDSCH都是被映射至第i天线端口集合中包括的一个或多个天线端口对应的时频资源中。可选地,第i DMRS的QCL信息还可以称为第i QCL信息、或第i频域资源的QCL信息等,本申请实施例不做限制。
图1所示的方法中,由于各天线端口集合对应的PDSCH频域资源是独立配置的,为了匹配各PDSCH频域资源上的信道条件,可以为各天线端口集合对应的PDSCH的DMRS独立配置QCL信息,以更加精确地得到各PDSCH的信道估计,从而可以提高UE侧解调及译码PDSCH的正确率。
对于i从1取值至N,基站可以通过一条相同的信令向UE指示第1DMRS至第N DMRS的QCL信息;或者基站可以通过多条信令(例如N条信令),向UE指示第1DMRS至第N DMRS的QCL信息,其中每条信令指示一个或多个DMRS的QCL信息,本申请实施例不做限制。
在一种可能的实现中,基站向UE发送第二指示信息,用于指示第i DMRS的QCL信息,其中,i的取值为1至N,N为大于等于2的整数。
在本申请实施例中,基站可以通过以下示例A至示例F中的任一个所描述的方法,为UE指示一个天线端口或者一个天线端口集合上发送的PDSCH的DMRS的QCL信息。在本申请实施例中,一个天线端口集合还可以描述为一个天线端口集。本申请实施例中,第i天线端口集中包括1个天线端口时,第i天线端口集还可以称为第i天线端口。
示例A:
对于第i DMRS,基站可以为UE指示与第i DMRS是QCL的信号(记为信号A)。进一步地,可以预定义第i DMRS和信号A的QCL类型,或者基站通过信令为UE指示第i DMRS和信号A的QCL类型。可选地,该信令可以是第二指示信 息,也可以是其他信令,本申请实施例不做限制。其中,信号A可以是一个信号,也可以是多个信号,本申请实施例不做限制。
可选地,示例A中,第二指示信息可以是***消息、RRC消息、MAC CE、或DCI。
在本申请实施例中,与另一个信号是QCL的信号可以是下行参考信号或者下行信道,例如可以是以下信号中的一种或多种:同步信号(synchronization signal,SS)、主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、物理广播信道(physical broadcast channel,PBCH)、同步信号块(synchronization signal and PBCH block,SSB)、PBCH的DMRS、PDCCH的DMRS、PDSCH的DMRS、信道状态信息参考信号(channel state information-reference signal,CSI-RS)、和跟踪参考信号(tracking reference signal,TRS)。其中,该PDCCH可以是用于调度该PDSCH的PDCCH,也可以是其他PDCCH,本申请实施例不做限制。SSB中包括PSS、SSS和PBCH。
在本申请实施例中,QCL类型用于指示信号之间(例如记为信号B和信号C之间)的准共址大尺度参数的类型。例如,该类型可以是下述类型A至类型D中的一种或多种。
类型A(QCL_A):记为{多普勒频移、多普勒扩展、时延扩展、平均时延}。表示信号B和信号C的多普勒频移、多普勒扩展、时延扩展、和平均时延具有相关性。则接收端可以利用信号B所经历的多普勒频移、多普勒扩展、时延扩展、和平均时延,对信号C经历的信道进行信道估计;或者,接收端可以利用信号C所经历的多普勒频移、多普勒扩展、时延扩展、和平均时延,对信号B经历的信道进行信道估计。即,认为信号B所经历的多普勒频移、多普勒扩展、时延扩展、和平均时延分别与信号C经历的多普勒频移、多普勒扩展、时延扩展、和平均时延近似相同。
类型B(QCL_B):记为{多普勒频移、多普勒扩展}。表示信号B和信号C的多普勒频移和多普勒扩展具有相关性。则接收端可以利用信号B所经历的多普勒频移和多普勒扩展,对信号C经历的信道进行信道估计;或者,接收端可以利用信号C所经历的多普勒频移和多普勒扩展,对信号B经历的信道进行信道估计。即,认为信号B所经历的多普勒频移和多普勒扩展分别与信号C经历的多普勒频移和多普勒扩展近似相同。
类型C(QCL_C):记为{时延扩展、平均时延}。表示信号B和信号C的时延扩展和平均时延具有相关性。则接收端可以利用信号B所经历的时延扩展和平均时延,对信号C经历的信道进行信道估计;或者,接收端可以利用信号C所经历的时延扩展和平均时延,对信号B经历的信道进行信道估计。即,认为信号B所经历的时延扩展和平均时延分别与信号C经历的时延扩展和平均时延近似相同。
类型D(QCL_D):记为{空间接收参数}。表示信号B和信号C的空间接收参数具有相关性。则接收端可以利用信号B所经历的空间接收参数,对信号C经历的信道进行信道估计;或者,接收端可以利用信号C所经历的空间接收参数,对信号B经历的信道进行信道估计。
上述类型A至类型D用于举例,本申请实施例还可以包括其他QCL类型。即,认为信号B所经历的空间接收参数与信号C经历的空间接收参数近似相同。
对于第i DMRS,基站可以为UE配置与该第i DMRS是QCL的一个或多个信号。
例如对于第i DMRS,基站可以通过第二指示信息,为UE配置其QCL信息为:SSB|QCL_A。则表示第i DMRS和SSB的多普勒频移、多普勒扩展、时延扩展、和平均时延具有相关性。再例如,对于第i DMRS,基站可以通过第二指示信息,为UE配置其QCL信息为:SSB|QCL_B、和TRS|QCL_D。则表示第i DMRS和SSB的多普勒频移和多普勒扩展具有相关性,以及第i DMRS和TRS的空间接收参数具有相关性。
示例B:
对于第i DMRS,基站可以从M1套候选QCL信息中,为UE指示第i DMRS的QCL信息,第i DMRS的QCL信息是该M1套候选QCL信息中的M2套QCL信息,其中,M1为大于等于1的整数,M2为大于等于1且小于等于M1的整数。对于M1套候选QCL信息中的任一套QCL信息,该套QCL信息指示一种信号。可以预配置该种信号对应的QCL类型,或者该套QCL信息指示该种信号对应的QCL类型。
对于M2套QCL信息中的任一套QCL信息,该套QCL信息指示的信号和i DMRS是QCL的。例如,对应的QCL类型是该套QCL信息指示的QCL类型。
可选地,上述M1套候选QCL信息中的每套QCL信息唯一地对应一个索引,M1套候选QCL信息共对应M1个索引。基站通过第二指示信息为UE指示该M1个索引中的M2个索引,该M2个索引对应的M2套QCL信息为第i DMRS的QCL信息。可选地,用于指示M2个索引中的任一个索引的比特信息的长度为
Figure PCTCN2021091948-appb-000013
个比特,其中,
Figure PCTCN2021091948-appb-000014
表示上取整。
示例性地,表1所示为6套候选QCL信息。可以理解的是,表1所示的QCL信息仅作为示例,并不构成对本申请实施例的限制。
表1候选QCL信息
Figure PCTCN2021091948-appb-000015
基于表1,例如对于第i DMRS,基站可以通过第二指示信息指示2个索引,从而为UE配置该第i DMRS的QCL信息。例如,该2个索引的十进制值分别为0和4,或者该2个索引的二进制值分别为000和100。UE接收到第二信息后,可以确定第i DMRS和SSB的多普勒频移、多普勒扩展、时延扩展、和平均时延具有相关性,并 且第i DMRS和CSI-RS的空间接收参数具有相关性。则,UE可以利用根据SSB估计的多普勒频移、多普勒扩展、时延扩展、和平均时延,并可以利用根据CSI-RS估计的空间接收参数,对第i DMRS进行信道估计,利用该信道估计结果可以对第i PDSCH进行解调和译码。
可选地,基站通过M1个元素,为UE指示M1套候选QCL信息中的M2套QCL信息,该M2套QCL信息为第i DMRS的QCL信息。该M1个元素一对一地对应于该M1套候选QCL信息。对于该M1个元素中的任一个元素,当该元素的值为t1时,第i DMRS的QCL信息包括该元素对应的一套QCL信息,当该元素的值不为t1或者为t2时,第i DMRS的QCL信息不包括该元素对应的一套QCL信息。其中,t1和t2为整数,例如t1为1,t2为0。其中,M1个元素可以是包括M1个比特的比特图、M1个信元、或M1个信息等,本申请实施例不做限制。
基于表1,例如对于第i DMRS,基站可以通过第二指示信息中的比特图,为UE配置该第i DMRS的QCL信息。例如,该比特图中包括6比特,且该比特图的值为100001。UE接收到第二信息后,可以确定第i DMRS和SSB的多普勒频移、多普勒扩展、时延扩展、和平均时延具有相关性,并且第i DMRS和TRS的空间接收参数具有相关性。则,UE可以利用根据SSB估计的多普勒频移、多普勒扩展、时延扩展、和平均时延,并可以利用根据TRS估计的空间接收参数,对第i DMRS进行信道估计,利用该信道估计结果可以对第i PDSCH进行解调和译码。
可选地,该M1套候选QCL信息可以是预定义的,或者可以是基站通过第三指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。第二指示信息可以是RRC信令、MAC CE、或DCI。
例如,该M1套候选QCL信息是预定义的,第二指示信息是RRC信令、MAC CE、或DCI。
例如,第三指示信息是广播消息或SIB,第二指示信息是RRC信令、MAC CE、或DCI。
例如,第三指示信息是RRC信令,第二指示信息是MAC CE、或DCI。
例如,第三指示信息是MAC CE,第二指示信息是DCI。
本申请实施例中,可选地,第二指示信息和第一指示信息是同一个DCI。
基站通过第三指示信息为UE指示该M1套候选QCL信息时,可以直接指示该M1套候选QCL信息的具体配置,或者可以从M3套候选QCL信息中指示所激活的该M1套候选QCL信息。其中,该M3套候选QCL信息可以是预定义的,或者是基站通过第四指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。
例如,该M3套候选QCL信息是预定义的,第三指示信息是广播消息、SIB、RRC信令或MAC CE。
例如,第四指示信息是广播消息、或SIB,第三指示信息是RRC信令。
例如,第四指示信息是广播消息、SIB或RRC信令,第三指示信息是MAC CE。
基站通过第四指示信息从M3套候选QCL信息中指示激活的M1套候选QCL信息的方法,类似上述从M1套候选QCL信息中指示M2套QCL信息的方法,此处不再赘述。
示例C:
对于第i DMRS,基站可以从S1个候选传输配置编号(transmission configuration index,TCI)-状态(state)中,为UE指示第i DMRS的TCI-state。其中,第i DMRS的TCI-state是该S1个候选TCI-state中的一个TCI-state,S1为大于等于1的整数。对于S1个候选TCI-state中的任一个TCI-state,该TCI-state指示至少一个信号、以及与该至少一个信号中的每个信号对应的QCL类型。对于基站为UE指示的一个TCI-state,第i DMRS与该一个TCI-state指示的至少一个信号是QCL的,对应的QCL类型为该一个TCI-state所指示的QCL类型。
可选地,上述从S1个候选TCI-state中指示一个TCI-state的方法类似:M2等于1时,上述从M1套候选QCL信息中指示M2套QCL信息的方法,此处不再赘述。
示例性地,表2所示为3个候选TCI-state。可以理解的是,表2所示的TCI-state仅作为示例,并不构成对本申请实施例的限制。
表2候选TCI-state
索引(十进制/二进制) 信号1|QCL类型1 信号2|QCL类型2
0/00 TRS|QCL_A /
1/01 CSI-RS|QCL_D /
2/10 TRS|QCL_A CSI-RS|QCL_D
基于表2,例如对于第i DMRS,基站可以通过第二指示信息中的
Figure PCTCN2021091948-appb-000016
比特,为UE指示第i DMRS的TCI-state。例如,该2比特的二进制值为10。UE接收到第二信息后,可以确定该第i DMRS和TRS的多普勒频移、多普勒扩展、时延扩展、和平均时延具有相关性,且和CSI-RS的空间接收参数具有相关性。例如,该2比特的二进制值为00。UE接收到第二信息后,可以确定该第i DMRS和TRS的多普勒频移、多普勒扩展、时延扩展、和平均时延具有相关性。
可选地,该S1个候选TCI-state的信息可以是预定义的,或者可以是基站通过第三指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。第二指示信息可以是RRC信令、MAC CE、或DCI。
例如,该S1个候选TCI-state是预定义的,第二指示信息是RRC信令、MAC CE、或DCI。
例如,第三指示信息是广播消息或SIB,第二指示信息是RRC信令、MAC CE、或DCI。
例如,第三指示信息是RRC信令,第二指示信息是MAC CE、或DCI。
例如,第三指示信息是MAC CE,第二指示信息是DCI。
本申请实施例中,可选地,第二指示信息中包括TCI字段,用于基站为UE指示TCI-state。
本申请实施例中,可选地,第二指示信息和第一指示信息是同一个DCI。
基站通过第三指示信息为UE指示该S1个候选TCI-state,可以直接指示该S1个候选TCI-state的具体配置,或者可以从S2个候选TCI-state中指示所激活的该S1个候选TCI-state。其中,该S2个候选TCI-state可以是预定义的,或者是基站通过第四 指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。
例如,该S2个候选TCI-state是预定义的,第三指示信息是广播消息、SIB、RRC信令或MAC CE。
例如,第四指示信息是广播消息、或SIB,第三指示信息是RRC信令。
例如,第四指示信息是广播消息、SIB或RRC信令,第三指示信息是MAC CE。
基站通过第四指示信息从S2个候选TCI-state中指示激活的S1个候选TCI-state的方法,类似上述从M1套候选QCL信息中指示M2套QCL信息的方法,此处不再赘述。
示例D:
一种可能的实现中,基站从F1个候选第一图样(pattern)中为UE指示一个第一图样,该一个第一图样指示了从第1频域资源到第N频域资源中、每个频域资源的子资频域资源的TCI-state。该第一图样共指示
Figure PCTCN2021091948-appb-000017
个TCI-state。其中,r i是第i频域资源中包括的子频域资源个数。不同频域资源的r i可以相同,也可以不同。r i为大于或等于1的整数,i的取值为1至N,N为大于等于2的整数。可选地,至少有一个频域资源的r i为大于或等于2的整数。
本申请实施例中,第i频域资源的r i个子频域资源中,不同子频域资源的大小可以相同,也可以不同,本申请实施例不做限制。其中,子频域资源的大小可以是该子频域资源包括的子载波个数、RB个数、或RBG个数,或者是该该子频域资源的带宽等。r i的值可以是预定义的,或者可以是基站通过信令为UE指示的。该r i个子频域资源的大小,或者该r i个子频域资源中每个子频域资源在该频域资源中的比例大小是预定义的,或者是基站通过信令为UE指示的。
例如,第i频域资源的带宽为U i个RB,第i频域资源的r i个子频域资源的大小相同,每个子频域资源中包括
Figure PCTCN2021091948-appb-000018
个RB,如果U i不能被r i整除,则该第i频域资源中剩余的
Figure PCTCN2021091948-appb-000019
个RB上不用于映射第i PDSCH,即第i PDSCH映射于该r i个子频域资源所在的
Figure PCTCN2021091948-appb-000020
个RB上。其中,
Figure PCTCN2021091948-appb-000021
表示下取整。
类似上述示例C,第i频域资源的第j子频域资源的TCI-state指示了至少一个信号、以及与该至少一个信号中的每个信号对应的QCL类型。对于基站为UE指示的一个第一图样,该第一图样指示的第i频域资源的第j子频域资源的TCI-state指示了与该第j子频域资源上传输的PDSCH的DMRS是QCL的至少一个信号、以及指示该DMRS和该至少一个信号中的每个信号的QCL类型。其中,j取值为从1至r i。本申请实施例中,第j个子频域资源上传输的PDSCH的DMRS具有以下特征中的一种或多种:在第j子频域资源中传输、在第j子频域资源对应的带宽中传输、和用于解调及译码第j子频域资源上传输的PDSCH等。
可选地,从F1个候选第一图样中指示一个第一图样的方法类似:M2等于1时,上述从M1套候选QCL信息中指示M2套QCL信息的方法,此处不再赘述。
示例性地,假设N为2,每个频域资源中包括2个子频域资源,表3所示为4种 候选第一图样。可以理解的是,表3所示的第一图样仅作为示例,并不构成对本申请实施例的限制。假设表3中指示的TCI-state为表2所示的TCI-state。图4所示为表3对应的候选第一图样示例图。
表3候选第一图样
Figure PCTCN2021091948-appb-000022
例如,基于表3,基站可以通过第二指示信息中的
Figure PCTCN2021091948-appb-000023
比特,为UE配置该UE的第一图样。例如,该2比特的二进制值为10。UE接收到第二信息后,可以确定第1频域资源的第1子频域资源上发送的PDSCH的DMRS的TCI-state的索引为0,即UE可以确定该DMRS和TRS的多普勒频移、多普勒扩展、时延扩展、和平均时延具有相关性;可以确定第1频域资源的第2子频域资源上发送的PDSCH的DMRS的TCI-state的索引为1,即UE可以确定该DMRS和CSI-RS的空间接收参数具有相关性;可以确定第2频域资源的第1子频域资源上发送的PDSCH的DMRS的TCI-state的索引为1,即UE可以确定该DMRS和CSI-RS的空间接收参数具有相关性;以及,可以确定第2频域资源的第2子频域资源上发送的PDSCH的DMRS的TCI-state的索引为2,即UE可以确定该DMRS和TRS的多普勒频移、多普勒扩展、时延扩展、和平均时延具有相关性,且和CSI-RS的空间接收参数具有相关性。
可选地,上述方法中每个r i的值都为1时,该方法等效于下述方法。
一种可能的实现中,基站从F1个候选第一图样(pattern)中指示一个第一图样,该一个第一图样指示了第1DMRS至第N DMRS中每个DMRS的TCI-state。即,该一个第一图样用于指示N个TCI-state,例如指示该N个TCI-state的索引,该N个TCI-state分别一对一地对应于第1DMRS至第N DMRS。类似上述示例C,第i DMRS的TCI-state指示与第i DMRS是QCL的至少一个信号、以及指示第i DMRS和该至少一个信号中的每个信号的QCL类型。F1为大于或等于1的整数。
示例性地,假设N为2,表4所示为4种候选第一图样。可以理解的是,表4所示的第一图样仅作为示例,并不构成对本申请实施例的限制。假设表4中指示的TCI-state为表2所示的TCI-state。图5所示为表4对应的候选第一图样示例图。
表4候选第一图样
Figure PCTCN2021091948-appb-000024
Figure PCTCN2021091948-appb-000025
例如,基于表4,基站可以通过第二指示信息中的
Figure PCTCN2021091948-appb-000026
比特,为UE配置该UE的第一图样。例如,该2比特的二进制值为10。UE接收到第二信息后,可以确定该第1DMRS的TCI-state的索引为1,可以确定第2DMRS的TCI-state的索引为2。则UE可以确定第1DMRS和CSI-RS的空间接收参数具有相关性;可以确定第2DMRS和TRS的多普勒频移、多普勒扩展、时延扩展、和平均时延具有相关性,且和CSI-RS的空间接收参数具有相关性。
可选地,该F1个候选第一图样可以是预定义的,或者可以是基站通过第三指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。第二指示信息可以是RRC信令、MAC CE、或DCI。可选地,如果F1等于1,可以不需要通过第二指示信息一个第一图样,此时认为该一个图样便是基站为UE配置的图样。
例如,该F1个候选第一图样是预定义的,第二指示信息是RRC信令、MAC CE、或DCI。
例如,第三指示信息是广播消息或SIB,第二指示信息是RRC信令、MAC CE、或DCI。
例如,第三指示信息是RRC信令,第二指示信息是MAC CE、或DCI。
例如,第三指示信息是MAC CE,第二指示信息是DCI。
本申请实施例中,可选地,第二指示信息中包括TCI字段,用于基站为UE指示第一图样。
本申请实施例中,可选地,第二指示信息和第一指示信息是同一个DCI。
基站通过第三指示信息为UE指示该F1个候选第一图样,可以直接指示该F1个候选第一图样的具体配置,或者可以从F2个候选第一图样中指示所激活的该F1个候选第一图样。其中,该F2个候选第一图样可以是预定义的,或者是基站通过第四指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。
例如,该F2个候选第一图样可以是预定义的,第三指示信息是广播消息、SIB、RRC信令或MAC CE。
例如,第四指示信息是广播消息、或SIB,第三指示信息是RRC信令。
例如,第四指示信息是广播消息、SIB或RRC信令,第三指示信息是MAC CE。
基站通过第四指示信息从F2个候选图样中指示激活的F1个候选第一图样的方法,类似上述从M1套候选QCL信息中指示M2套QCL信息的方法,此处不再赘述。
示例E:
一种可能的实现中,基站从P1个候选第二图样(pattern)中指示一个第二图样,该一个第二图样指示了一组时间单元的第一图样。其中,该一组时间单元中包括多个时间单元,每个时间单元对应一个第一图样。P1为大于等于1的整数。本申请实施例中,时间单元可以是符号、时隙、子帧、传输时间间隔、或无线帧等。关于第一图 样的介绍同示例D的描述,此处不再赘述。该组时间单元中包括第一时间单元。第一时间单元上用于传输图1所示的方法中的PDSCH。因此,UE根据基站指示的一个第二图样,以及用于传输PDSCH的第一时间单元,可以确定出该第二图样中第一时间单元对应的第一图样,从而可以确定出各PDSCH的TCI-state。
示例性地,假设N为2,第i频域资源中包括2个子频域资源,每个第二图样用于指示3个时间单元上的第一图样,表5所示为4种候选第二图样。可以理解的是,表5所示的第二图样仅作为示例,并不构成对本申请实施例的限制。假设表5中指示的第一图样为表3所示的第一图样。图6所示为表5对应的候选第二图样示例图。
表5候选第二图样
Figure PCTCN2021091948-appb-000027
例如,基于表5,基站可以通过第二指示信息中的
Figure PCTCN2021091948-appb-000028
比特,为UE配置该UE的第二图样。例如,该2比特的二进制值为11。UE接收到第二信息后,如果UE在第3个时间单元上接收PDSCH,则UE可以确定第1频域资源的第1子频域资源上发送的PDSCH的DMRS的TCI-state的索引为0,即UE可以确定该DMRS和TRS的多普勒频移、多普勒扩展、时延扩展、和平均时延具有相关性;可以确定第1频域资源的第2子频域资源上发送的PDSCH的DMRS的TCI-state的索引为1,即UE可以确定该DMRS和CSI-RS的空间接收参数具有相关性;可以确定第2频域资源的第1子频域资源上发送的PDSCH的DMRS的TCI-state的索引为1,即UE可以确定该DMRS和CSI-RS的空间接收参数具有相关性;以及,可以确定第2频域资源的第2子频域资源上发送的PDSCH的DMRS的TCI-state的索引为2,即UE可以确定该DMRS和TRS的多普勒频移、多普勒扩展、时延扩展、和平均时延具有相关性,且和CSI-RS的空间接收参数具有相关性。
可选地,该P1个候选第二图样可以是预定义的,或者可以是基站通过第三指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。第二指示信息可以是RRC信令、MAC CE、或DCI。可选地,如果P1等于1,可以不需要通过第二指示信息一个第二图样,此时认为该一个第二图样便是基站为UE配置的第二图样。
例如,该P1个候选第二图样可以是预定义的,第二指示信息是RRC信令、MAC CE、或DCI。
例如,第三指示信息是广播消息或SIB,第二指示信息是RRC信令、MAC CE、或DCI。
例如,第三指示信息是RRC信令,第二指示信息是MAC CE、或DCI。
例如,第三指示信息是MAC CE,第二指示信息是DCI。
本申请实施例中,可选地,第二指示信息中包括TCI字段,用于基站为UE指示第二图样。
本申请实施例中,可选地,第二指示信息和第一指示信息是同一个DCI。
基站通过第三指示信息为UE指示该P1个候选第二图样,可以直接指示该P1个候选第二图样的具体配置,或者可以从P2个候选第二图样中指示所激活的该P1个候选第二图样。其中,该P2个候选第二图样可以是预定义的,或者是基站通过第四指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。
例如,该P2个候选第二图样可以是预定义的,第三指示信息是广播消息、SIB、RRC信令或MAC CE。
例如,第四指示信息是广播消息、或SIB,第三指示信息是RRC信令。
例如,第四指示信息是广播消息、SIB或RRC信令,第三指示信息是MAC CE。
基站通过第四指示信息从P2个候选第二图样中指示激活的P1个候选第二图样的方法,类似上述从M1套候选QCL信息中指示M2套QCL信息的方法,此处不再赘述。
示例F:
一种可能的实现中,基站从Z1个候选第三图样中指示Z2个第三图样。
对于该Z1个候选第三图样中的任一个第三图样,该第三图样对应一个TCI-state,该第三图样用于指示
Figure PCTCN2021091948-appb-000029
个元素,该
Figure PCTCN2021091948-appb-000030
个元素依次(例如从高频到低频,或者从低频到高频)一对一地对应于第1频域资源到第N频域资源中的
Figure PCTCN2021091948-appb-000031
个子资源。对于该
Figure PCTCN2021091948-appb-000032
个元素中的任一个元素,当该元素的值为t1时,表示该元素对应的子资源上使能该第三图样对应的TCI-state,当该元素的值不为t1或者为t2时,表示该元素对应的子资源上不使能该第三图样对应的TCI-state。其中,t1和t2为整数,例如t1为1,t2为0。该
Figure PCTCN2021091948-appb-000033
个元素可以是包括
Figure PCTCN2021091948-appb-000034
个比特的比特图、
Figure PCTCN2021091948-appb-000035
个信元、
Figure PCTCN2021091948-appb-000036
个信息位等,本申请实施例不做限制。
关于该
Figure PCTCN2021091948-appb-000037
个子资源的介绍同上述示例D,r i是第i频域资源中包括的子频域资源个数。不同频域资源的r i可以相同,也可以不同,r i为大于或等于1的整数,i的取值为1至N,N为大于等于2的整数。一种特殊示例中,从第1频域资源至第N频域资源的每个频域资源的r i都为1,此时,类似上述示例D,可以认为频域资源中无需再区分子频域资源。
从Z3个候选第三图样中指示Z2个第三图样的方法类似上述从M1套候选QCL信息中指示M2套QCL信息的方法,此处不再赘述。
基站通过所指示的Z2个第三图样,指示能够被UE使用的Z2个第三图样。对于该Z2个第三图样中的任一个第三图样,例如第三图样A,对于该第三图样A指示的
Figure PCTCN2021091948-appb-000038
个元素中的任一个元素,该元素的值为t1时,表示该元素对应的子资源上传输的PDSCH的DMRS的TC-state包括该第三图样对应的TCI-state,当该元素的值不为t1或者为t2时,表示该元素对应的子资源上传输的PDSCH的DMRS的TC-state不包括该第三图样对应的TCI-state。
可选地,可以为上述Z1个候选第三图样对应的Z3个TCI-state或Z2第三图样对应的Z4个TCI-state配置优先级,当多个TCI-state针对同一个UE在相同的子频域资源上被使能,确定优先级高的TCI-state为该子频域资源上传输的该UE的PDSCH的 DMRS的TC-state。其中,Z3小于等于Z1,Z4小于等于Z2。所配置的各TCI-state的优先级可以是预定义的,或者可以是基站通过信令为UE指示的,本申请实施例不做限制。
例如,表6所示为4个候选第三图样,假设N为2,每个频域资源中包括4个子频域资源,表6中指示的TCI-state为表2所示的TCI-state。图7所示为表6对应的候选第三图样示例图。
表6候选第三图样
Figure PCTCN2021091948-appb-000039
例如,基于表6,基站可以通过第二指示信息指示2个第三图样的索引,该2个索引的值分别为0和1。UE接收到第二信息后,可以确定第1频域资源的第1至第4子频域资源上发送的PDSCH的DMRS的TCI-state的索引为1、且第2频域资源的第1至第4子频域资源上发送的PDSCH的DMRS的TCI-state的索引为0。
再例如,基于表6,基站可以通过第二指示信息指示3个索引,该3个索引的值分别为0、1和2。其中,索引为2的TCI-state的优先级高于索引为0和1的TCI-state的优先级。UE接收到第二信息后,可以确定第1频域资源的第1和第2子频域资源上发送的PDSCH的DMRS的TCI-state的索引为1、第1频域资源的第3和第4子频域资源上发送的PDSCH的DMRS的TCI-state的索引为2、第2频域资源的第1和第2子频域资源上发送的PDSCH的DMRS的TCI-state的索引为0、且第2频域资源的第3和第4子频域资源上发送的PDSCH的DMRS的TCI-state的索引为2。
可选地,该Z1个候选第三图样可以是预定义的,或者可以是基站通过第三指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。第二指示信息可以是RRC信令、MAC CE、或DCI。可选地,如果Z1等于1,可以不需要通过第二指示信息一个第三图样,此时认为该一个第三图样便是基站为UE配置的第三图样。
例如,该Z1个候选第三图样可以是预定义的,第二指示信息是RRC信令、MAC  CE、或DCI。
例如,第三指示信息是广播消息或SIB,第二指示信息是RRC信令、MAC CE、或DCI。
例如,第三指示信息是RRC信令,第二指示信息是MAC CE、或DCI。
例如,第三指示信息是MAC CE,第二指示信息是DCI。
本申请实施例中,可选地,第二指示信息中包括TCI字段,用于基站为UE指示第三图样。
本申请实施例中,可选地,第二指示信息和第一指示信息是同一个DCI。
基站通过第三指示信息为UE指示该Z1个候选第三图样,可以直接指示该Z1个候选第三图样的具体配置,或者可以从Z3个候选第三图样中指示所激活的该Z1个候选第三图样。其中,该Z3个候选第三图样可以是预定义的,或者是基站通过第四指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。
例如,该Z3个候选第三图样可以是预定义的,第三指示信息是广播消息、SIB、RRC信令或MAC CE。
例如,第四指示信息是广播消息、或SIB,第三指示信息是RRC信令。
例如,第四指示信息是广播消息、SIB或RRC信令,第三指示信息是MAC CE。
基站通过第四指示信息从Z3个候选第三图样中指示激活的Z1个候选第一图样的方法,类似上述从M1套候选QCL信息中指示M2套QCL信息的方法,此处不再赘述。
示例G:
一种可能的实现中,基站从X1个候选第四图样(pattern)中指示X2个第四图样,每个第四图样指示了一组时间单元的第三图样。关于一组时间单元的介绍同上述示例E,关于第三图样的介绍同示例F的描述,此处不再赘述。该组时间单元中包括第一时间单元。第一时间单元上用于传输图1所示的方法中的PDSCH。因此,UE根据基站指示X2个第四图样,以及用于传输PDSCH的第一时间单元,可以确定出该X2个第四图样中第一时间单元对应的X2个第三图样,从而可以类似上述示例F,确定出各PDSCH的TCI-state。
示例性地,假设N为2,每个频域资源中包括4个子频域资源,每个第四图样用于指示3个时间单元上的第三图样,表7所示为4种候选第四图样。可以理解的是,表7所示的第四图样仅作为示例,并不构成对本申请实施例的限制。假设表7中指示的第三图样为表6所示的第三图样。图8所示为表7对应的候选第四图样示例图。
表7候选第四图样
Figure PCTCN2021091948-appb-000040
例如,基站可以通过第二指示信息为UE指示2个第四图样的索引,假设指示的2个索引为1和2,或者为UE指示的比特图为0110(假设从低位到高位依次对应第四图样0至第四图样3)。UE接收到第二信息后,如果UE在第1个时间单元上接收PDSCH,则UE可以确定第1频域资源的第1至第4子频域资源上发送的PDSCH的DMRS的TCI-state的索引为1、且第2频域资源的第1至第4子频域资源上发送的PDSCH的DMRS的TCI-state的索引为0。
可选地,该X1个候选第四图样可以是预定义的,或者可以是基站通过第三指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。第二指示信息可以是RRC信令、MAC CE、或DCI。可选地,如果X1等于1,可以不需要通过第二指示信息指示第四图样,此时认为该一个第四图样便是基站为UE配置的第四图样。
例如,该X1个候选第四图样可以是预定义的,第二指示信息是RRC信令、MAC CE、或DCI。
例如,第三指示信息是广播消息或SIB,第二指示信息是RRC信令、MAC CE、或DCI。
例如,第三指示信息是RRC信令,第二指示信息是MAC CE、或DCI。
例如,第三指示信息是MAC CE,第二指示信息是DCI。
本申请实施例中,可选地,第二指示信息中包括TCI字段,用于基站为UE指示第四图样。
本申请实施例中,可选地,第二指示信息和第一指示信息是同一个DCI。
基站通过第三指示信息为UE指示该X1个候选第四图样,可以直接指示该X1个候选第四图样的具体配置,或者可以从X3个候选第四图样中指示所激活的该X1个候选第四图样。其中,该X3个候选第四图样可以是预定义的,或者是基站通过第四指示信息(如广播消息、SIB、RRC信令或MAC CE)为UE指示的。
例如,该X3个候选第四图样可以是预定义的,第三指示信息是广播消息、SIB、RRC信令或MAC CE。
例如,第四指示信息是广播消息、或SIB,第三指示信息是RRC信令。
例如,第四指示信息是广播消息、SIB或RRC信令,第三指示信息是MAC CE。
基站通过第四指示信息从X3个候选第四图样中指示激活的X1个候选第四图样的方法,类似上述从M1套候选QCL信息中指示M2套QCL信息的方法,此处不再赘述。
基于前文介绍的方法,图9所示为基站和UE进行数据传输的一种流程示例图。
S901,基站向UE发送下行信号。例如,发送SSB、和/或CSI-RS。
S902,UE对S901中接收到的下行信号进行信道估计或者信道测量,并向基站反馈测量结果。
S903,UE向基站发送探测参考信号(sounding reference symbol,SRS)。
S904,基站根据UE在S902中上报的测量信息、和/或根据S403中接收到的SRS得到的信道测量信息,确定用于向UE发送PDSCH的多个波束、该多个波束对应的频域资源、天线端口集合、和QCL信息。
S905,基站向UE发送PDCCH和PDSCH。
该PDCCH上携带DCI,该DCI用于实现上述第一指示信息和第二指示信息的功能。例如,该DCI可以指示第1 PDSCH至第N PDSCH的以下信息:第1频域资源至第N频域资源,第1天线端口集合至第N天线端口集合、第1 PDSCH至第N PDSCH的DMRS的QCL信息。
UE根据PDCCH上携带的DCI的指示,接收PDSCH。
UE根据DCI的指示,确定用于携带N次重复数据的第1 PDSCH至第N PDSCH的以下信息:第1频域资源至第N频域资源,第1天线端口集合至第N天线端口集合、第1 PDSCH至第N PDSCH的DMRS的QCL信息。根据这些信息,UE可以接收第1 PDSCH至第N PDSCH。只要从第1 PDSCH至第N PDSCH中至少一个PDSCH上成功接收数据,便可以实现基站和UE的成功数传。
上述本申请提供的实施例中,分别从网络设备(例如基站)、终端设备(例如UE)、以及网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图10所示为本申请实施例提供的装置300的结构示例图。
在一种可能的实现中,装置300用于实现上述方法中终端设备的功能。该装置可以是终端设备,也可以是能够实现终端设备的功能的其他装置。其中,该其他装置能够安装在终端设备中或者能够和终端设备匹配使用。
装置300中包括接收模块301,用于接收信号或者信息。例如用于从网络设备接收以下信号中的一种或多种:第一指示信息、第二指示信息、PDSCH和PDSCH的DMRS。
装置300中包括发送模块302,用于发送信号或信息。例如用于向网络设备发送SRS。
装置300中包括处理模块303,用于处理所接收到的信号或者信息,例如用于解码接收模块301接收到的信号或者信息。处理模块303还可以生成要发送的信号或者信息,例如用于生成要通过发送模块302发送的信号或信息。
本申请实施例中对模块的划分是示意性的,为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如接收模块301和发送模块302还可以集成为收发模块或通信模块。另外,在本申请各个实施例中的各功能模块可以集成在一个模块中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
在一种可能的实现中,装置300用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是能够实现网络设备的功能的其他装置。其中,该其他装置能够安装在网络设备中或者能够和网络设备匹配使用。
装置300中包括接收模块301,用于接收信号或者信息。例如用于从终端设备接收SRS。
装置300中包括发送模块302,用于发送信号或信息。例如用于向终端设备发送以下信号中的一种或多种:第一指示信息、第二指示信息、PDSCH和PDSCH的DMRS。
装置300中包括处理模块303,用于处理所接收到的信号或者信息,例如用于解码接收模块301接收到的信号或者信息。处理模块303还可以生成要发送的信号或者信息,例如用于生成要通过发送模块302发送的信号或信息。
如图11所示为本申请实施例提供的装置400。
在一种可能的实现中,装置400用于实现上述方法中终端设备的功能,该装置可以是终端设备,也可以是能够实现终端设备的功能的其他装置。其中,该其他装置能够安装在终端设备中或者能够和终端设备匹配使用。例如,装置400可以为芯片***。本申请实施例中,芯片***可以由芯片构成,也可以包含芯片和其他分立器件。装置400包括至少一个处理器420,用于实现本申请实施例提供的方法中终端设备的功能。示例性地,处理器420可以生成和发送SRS等信号,可以用于接收和处理以下信号中的一种或多种:第一指示信息、第二指示信息、PDSCH和PDSCH的DMRS,具体参见方法示例中的详细描述,此处不做赘述。
装置400还可以包括至少一个存储器430,用于存储程序指令和/或数据。存储器430和处理器420耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器420可能和存储器430协同操作。处理器420可能执行存储器430中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器420中。
装置400还可以包括通信接口410,用于通过传输介质和其它设备进行通信,从而用于装置400中的装置可以和其它设备进行通信。示例性地,该其它设备可以是网络设备。处理器420利用通信接口410收发信号,并用于实现上述方法实施例中描述的终端设备的功能。
在一种可能的实现中,装置400用于实现上述方法中网络设备的功能,该装置可以是网络设备,也可以是能够实现网络设备的功能的其他装置。其中,该其他装置能够安装在网络设备中或者能够和网络设备匹配使用。例如,装置400可以为芯片***。装置400包括至少一个处理器420,用于实现本申请实施例提供的方法中网络设备的功能。示例性地,处理器420可以接收和处理SRS等信号,可以用于生成和发送以下信号中的一种或多种:第一指示信息、第二指示信息、PDSCH和PDSCH的DMRS,具体参见方法示例中的详细描述,此处不做赘述。
装置400还可以包括至少一个存储器430,用于存储程序指令和/或数据。存储器430和处理器420耦合。处理器420可能和存储器430协同操作。处理器420可能执行存储器430中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器420中。
装置400还可以包括通信接口410,用于通过传输介质和其它设备进行通信,从而用于装置400中的装置可以和其它设备进行通信。示例性地,该其它设备可以是终端设备。处理器420利用通信接口410收发信号,并用于实现上述方法实施例中描述的网络设备的功能。
本申请实施例中不限定上述通信接口410、处理器420以及存储器430之间的具体连接介质。本申请实施例在图11中以存储器430、处理器420以及收发器410之间通过总线440连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种数据的重复传输方法,其特征在于,包括:
    从网络设备接收第一指示信息,所述第一指示信息用于指示第i下行共享数据信道PDSCH的第i频域资源和所述第i PDSCH的解调参考信号DMRS的第i天线端口集合,其中,第i天线端口集合中包括一个或多个天线端口;
    利用所述第i天线端口集合,在所述第i频域资源上从所述网络设备接收所述第i PDSCH,所述第i PDSCH上携带第i个重复数据;
    其中,i的取值为1至N,N为大于等于2的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:从所述网络设备接收第二指示信息;其中,
    所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息,包括:
    所述第二指示信息用于指示一个传输配置编号-状态TCI-state,所述一个TCI-state包括于S1个TCI-state中,所述S1个TCI-state中的每个TCI-state用于指示至少一种信号、和所述至少一种信号中每种信号对应的QCL类型,所指示的一个TCI-state所指示的至少一种信号和所述第i PDSCH的DMRS是QCL的。
  4. 根据权利要求2所述的方法,其特征在于,所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息,包括:
    所述第二指示信息用于指示一个第一图样,所述一个第一图样包括于F1个候选第一图样中,所述F1个候选第一图样中的每个第一图样用于指示
    Figure PCTCN2021091948-appb-100001
    个TCI-state,其中,r i是所述第i频域资源中包括的子频域资源个数,所述
    Figure PCTCN2021091948-appb-100002
    个TCI-state中第i频域资源对应的r i个TCI-state中的第j个TCI-state用于指示至少一个信号、和所述至少一个信号中每个信号对应的QCL类型,所述第二指示信息指示的一个第一图样指示的第i频域资源对应的r i个TCI-state中的第j个TCI-state指示的至少一个信号和所述第i频域资源的第j子频域资源上传输的PDSCH的DMRS是QCL的,其中,r i为大于或等于1的整数,j取值从1至r i,F1为大于等于1的整数。
  5. 根据权利要求2所述的方法,其特在在于,所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息,包括:
    所述第二指示信息用于指示一个第二图样,所述一个第二图样包括于P1个候选第二图样中,所述P1个候选第二图样中的每个第二图样用于指示一组时间单元中每个时间单元的第一图样,所述每个时间单元的第一图样用于指示
    Figure PCTCN2021091948-appb-100003
    个TCI-state,其中,r i是所述第i频域资源中包括的子频域资源个数,所述
    Figure PCTCN2021091948-appb-100004
    个TCI-state中第i频域资源对应的r i个TCI-state中的第j个TCI-state用于指示至少一个信号、和所述至少一个信号中每个信号对应的QCL类型,所述第二指示信息指示的一个第二图样指示的第一时间单元对应的第一图样指示的第i频域资源对应的r i个TCI-state中的第j个TCI-state指示的至少一个信号和所述第i频域资源的第j子频域资源上传输的 PDSCH的DMRS是QCL的,其中,r i为大于或等于1的整数,j取值从1至r i,P1为大于等于1的整数,所述第i PDSCH是在所述第一时间单元被传输的。
  6. 根据权利要求2所述的方法,其特征在于,所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息,包括:
    所述第二指示信息用于指示Z2个第三图样,所述Z2个第三图样包括于Z1个候选第三图样中;
    其中,对于所述Z2个第三图样中的一个第三图样,所述一个第三图样对应于一个TCI-state,所述一个第三图样用于指示
    Figure PCTCN2021091948-appb-100005
    个元素,所述
    Figure PCTCN2021091948-appb-100006
    个元素一对一地对应于第1频域资源至第N频域资源包括的
    Figure PCTCN2021091948-appb-100007
    个子频域资源,其中,r i是所述第i频域资源中包括的子频域资源个数,对于所述
    Figure PCTCN2021091948-appb-100008
    个元素中第i频域资源对应的r i个元素中的一个元素,所述一个元素的值为t1时,所述一个元素对应的子频域资源上传输的所述第i PDSCH的DMRS的和所述一个TCI state指示的至少一个信号是QCL的,所述一个TCI-state还用于指示所述至少一个信号中每个信号对应的QCL类型。
  7. 根据权利要求2所述的方法,其特征在于,所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息,包括:
    所述第二指示信息用于指示X2个第四图样,所述X2个第四图样包括于X1个候选第四图样中;
    其中,对于所述对于所述X2个第四图样中的一个第四图样,所述一个第四图样对应于一个TCI-state,所述一个第四图样用于指示一组时间单元中每个时间单元对应的
    Figure PCTCN2021091948-appb-100009
    个元素,所述
    Figure PCTCN2021091948-appb-100010
    个元素一对一地对应于第1频域资源至第N频域资源包括的
    Figure PCTCN2021091948-appb-100011
    个子频域资源,其中,r i是所述第i频域资源中包括的子频域资源个数;
    对于第一时间单元的所述
    Figure PCTCN2021091948-appb-100012
    个元素中第i频域资源对应的r i个元素中的一个元素,所述一个元素的值为t1时,所述一个元素对应的子频域资源上传输的所述第i PDSCH的DMRS的和所述一个TCI state指示的至少一个信号是QCL的,所述一个TCI-state还用于指示所述至少一个信号中每个信号对应的QCL类型,其中,所述第i PDSCH是在所述第一时间单元被传输的。
  8. 一种数据的重复传输方法,其特征在于,包括:
    向终端设备发送第一指示信息,所述第一指示信息用于指示第i下行共享数据信道PDSCH的第i频域资源和所述第i PDSCH的解调参考信号DMRS的第i天线端口集合,其中,第i天线端口集合中包括一个或多个天线端口;
    利用所述第i天线端口集合,在所述第i频域资源上从向所述终端设备发送所述第i PDSCH,所述第i PDSCH上携带第i个重复数据;
    其中,i的取值为1至N,N为大于等于2的整数。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:向所述终端设备发送第二指示信息;其中,
    所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息。
  10. 根据权利要求9所述的方法,其特征在于,所述第二指示信息用于指示所述 第i PDSCH的DMRS的QCL信息,包括:
    所述第二指示信息用于指示一个传输配置编号-状态TCI-state,所述一个TCI-state包括于S1个TCI-state中,所述S1个TCI-state中的每个TCI-state用于指示至少一种信号、和所述至少一种信号中每种信号对应的QCL类型,所指示的一个TCI-state所指示的至少一种信号和所述第i PDSCH的DMRS是QCL的。
  11. 根据权利要求9所述的方法,其特征在于,所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息,包括:
    所述第二指示信息用于指示一个第一图样,所述一个第一图样包括于F1个候选第一图样中,所述F1个候选第一图样中的每个第一图样用于指示
    Figure PCTCN2021091948-appb-100013
    个TCI-state,其中,r i是所述第i频域资源中包括的子频域资源个数,所述
    Figure PCTCN2021091948-appb-100014
    个TCI-state中第i频域资源对应的r i个TCI-state中的第j个TCI-state用于指示至少一个信号、和所述至少一个信号中每个信号对应的QCL类型,所述第二指示信息指示的一个第一图样指示的第i频域资源对应的r i个TCI-state中的第j个TCI-state指示的至少一个信号和所述第i频域资源的第j子频域资源上传输的PDSCH的DMRS是QCL的,其中,r i为大于或等于1的整数,j取值从1至r i,F1为大于等于1的整数。
  12. 根据权利要求9所述的方法,其特在在于,所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息,包括:
    所述第二指示信息用于指示一个第二图样,所述一个第二图样包括于P1个候选第二图样中,所述P1个候选第二图样中的每个第二图样用于指示一组时间单元中每个时间单元的第一图样,所述每个时间单元的第一图样用于指示
    Figure PCTCN2021091948-appb-100015
    个TCI-state,其中,r i是所述第i频域资源中包括的子频域资源个数,所述
    Figure PCTCN2021091948-appb-100016
    个TCI-state中第i频域资源对应的r i个TCI-state中的第j个TCI-state用于指示至少一个信号、和所述至少一个信号中每个信号对应的QCL类型,所述第二指示信息指示的一个第二图样指示的第一时间单元对应的第一图样指示的第i频域资源对应的r i个TCI-state中的第j个TCI-state指示的至少一个信号和所述第i频域资源的第j子频域资源上传输的PDSCH的DMRS是QCL的,其中,r i为大于或等于1的整数,j取值从1至r i,P1为大于等于1的整数,所述第i PDSCH是在所述第一时间单元被传输的。
  13. 根据权利要求9所述的方法,其特征在于,所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息,包括:
    所述第二指示信息用于指示Z2个第三图样,所述Z2个第三图样包括于Z1个候选第三图样中;
    其中,对于所述Z2个第三图样中的一个第三图样,所述一个第三图样对应于一个TCI-state,所述一个第三图样用于指示
    Figure PCTCN2021091948-appb-100017
    个元素,所述
    Figure PCTCN2021091948-appb-100018
    个元素一对一地对应于第1频域资源至第N频域资源包括的
    Figure PCTCN2021091948-appb-100019
    个子频域资源,其中,r i是所述第i频域资源中包括的子频域资源个数,对于所述
    Figure PCTCN2021091948-appb-100020
    个元素中第i频域资源对应的r i个元素中的一个元素,所述一个元素的值为t1时,所述一个元素对应的子频域资源上传输的所述第i PDSCH的DMRS的和所述一个TCI state指示的至少一个信号是QCL的,所述一个TCI-state还用于指示所述至少一个信号中每个信号对应的QCL类型。
  14. 根据权利要求9所述的方法,其特征在于,所述第二指示信息用于指示所述第i PDSCH的DMRS的QCL信息,包括:
    所述第二指示信息用于指示X2个第四图样,所述X2个第四图样包括于X1个候选第四图样中;
    其中,对于所述对于所述X2个第四图样中的一个第四图样,所述一个第四图样对应于一个TCI-state,所述一个第四图样用于指示一组时间单元中每个时间单元对应的
    Figure PCTCN2021091948-appb-100021
    个元素,所述
    Figure PCTCN2021091948-appb-100022
    个元素一对一地对应于第1频域资源至第N频域资源包括的
    Figure PCTCN2021091948-appb-100023
    个子频域资源,其中,r i是所述第i频域资源中包括的子频域资源个数;
    对于第一时间单元的所述
    Figure PCTCN2021091948-appb-100024
    个元素中第i频域资源对应的r i个元素中的一个元素,所述一个元素的值为t1时,所述一个元素对应的子频域资源上传输的所述第i PDSCH的DMRS的和所述一个TCI state指示的至少一个信号是QCL的,所述一个TCI-state还用于指示所述至少一个信号中每个信号对应的QCL类型,其中,所述第i PDSCH是在所述第一时间单元被传输的。
  15. 一种通信装置,其特征在于,用于实现权利要求1-7任一项所述的方法。
  16. 一种通信装置,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1-7任一项所述的方法。
  17. 一种通信装置,包括处理器和通信接口,所述处理器利用所述通信接口:
    从网络设备接收第一指示信息,所述第一指示信息用于指示第i下行共享数据信道PDSCH的第i频域资源和所述第i PDSCH的解调参考信号DMRS的第i天线端口集合,其中,第i天线端口集合中包括一个或多个天线端口;
    利用所述第i天线端口集合,在所述第i频域资源上从所述网络设备接收所述第i PDSCH,所述第i PDSCH上携带第i个重复数据;
    其中,i的取值为1至N,N为大于等于2的整数。
  18. 一种通信装置,其特征在于,用于实现权利要求8-14任一项所述的方法。
  19. 一种通信装置,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求8-14任一项所述的方法。
  20. 一种通信装置,包括处理器和通信接口,所述处理器利用所述通信接口:
    向终端设备发送第一指示信息,所述第一指示信息用于指示第i下行共享数据信道PDSCH的第i频域资源和所述第i PDSCH的解调参考信号DMRS的第i天线端口集合,其中,第i天线端口集合中包括一个或多个天线端口;
    利用所述第i天线端口集合,在所述第i频域资源上从向所述终端设备发送所述第i PDSCH,所述第i PDSCH上携带第i个重复数据;
    其中,i的取值为1至N,N为大于等于2的整数。
  21. 一种通信***,包括权利要求15-17任一项所述的通信装置,和权利要求18-20任一项所述的通信装置。
  22. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行权利要求1-14任一项所述的方法。
PCT/CN2021/091948 2020-05-09 2021-05-06 数据的重复传输方法 WO2021227928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010388042.2 2020-05-09
CN202010388042.2A CN113630879A (zh) 2020-05-09 2020-05-09 数据的重复传输方法

Publications (1)

Publication Number Publication Date
WO2021227928A1 true WO2021227928A1 (zh) 2021-11-18

Family

ID=78377572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091948 WO2021227928A1 (zh) 2020-05-09 2021-05-06 数据的重复传输方法

Country Status (2)

Country Link
CN (1) CN113630879A (zh)
WO (1) WO2021227928A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392111A (zh) * 2017-08-09 2019-02-26 电信科学技术研究院有限公司 一种pdsch调度方法、用户终端和网络侧设备
CN110535590A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、通信设备、***及存储介质
WO2020007293A1 (en) * 2018-07-05 2020-01-09 Huawei Technologies Co., Ltd. Method and system for enhancing data channel reliability using multiple transmit receive points
WO2020080916A1 (ko) * 2018-10-19 2020-04-23 엘지전자 주식회사 무선 통신 시스템에서 복수의 물리 하향링크 공유 채널들을 송수신하는 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392111A (zh) * 2017-08-09 2019-02-26 电信科学技术研究院有限公司 一种pdsch调度方法、用户终端和网络侧设备
WO2020007293A1 (en) * 2018-07-05 2020-01-09 Huawei Technologies Co., Ltd. Method and system for enhancing data channel reliability using multiple transmit receive points
CN110535590A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、通信设备、***及存储介质
WO2020080916A1 (ko) * 2018-10-19 2020-04-23 엘지전자 주식회사 무선 통신 시스템에서 복수의 물리 하향링크 공유 채널들을 송수신하는 방법 및 이를 위한 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1911184, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789956 *

Also Published As

Publication number Publication date
CN113630879A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
US10075218B2 (en) Method and apparatus for FD-MIMO based multicasting in vehicular communication systems
US11564205B2 (en) Method and apparatus for configuring DMRS information in V2X system
WO2018141272A1 (zh) 终端、网络设备和通信方法
WO2020220849A1 (zh) 数据接收和发送方法及装置
WO2020200114A1 (zh) Dmrs端口的指示方法及装置
WO2022143195A1 (zh) 确定终端的特性的方法和通信装置
CN114828252A (zh) 多传输点数据传输的方法及装置
WO2021238635A1 (zh) 一种通信方法及装置
WO2021227928A1 (zh) 数据的重复传输方法
WO2023029008A1 (zh) 信息传输方法、设备及存储介质
US20240178895A1 (en) Wireless communication method, first terminal device, and second terminal device
US20240244587A1 (en) Wireless communication method and terminal device
WO2023028987A1 (zh) 无线通信的方法和终端设备
WO2023019860A1 (zh) 无线通信的方法和终端设备
WO2023028988A1 (zh) 无线通信的方法和终端设备
US11102792B2 (en) Method and apparatus for demodulating signal by using subframe combination in wireless communication system
EP4311332A1 (en) Method for transmitting physical downlink control channel and device
US20220174653A1 (en) Method For Determining Transport Block Size And Apparatus
US20240187181A1 (en) Wireless communication method and terminal device
WO2023093610A1 (zh) 一种通信方法及装置
WO2023142122A1 (zh) 通信方法、装置、终端设备、芯片、介质、产品及程序
WO2024067244A1 (zh) 数据发送的方法和装置
US20240147507A1 (en) Interference cancellation capability awareness for sidelink communications
WO2023273996A1 (zh) 通信方法及装置
WO2022262620A1 (zh) 一种指示解调参考信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803218

Country of ref document: EP

Kind code of ref document: A1