WO2021227136A1 - 一种苯选择性加氢制备环己酮的强化反应***及方法 - Google Patents

一种苯选择性加氢制备环己酮的强化反应***及方法 Download PDF

Info

Publication number
WO2021227136A1
WO2021227136A1 PCT/CN2020/092789 CN2020092789W WO2021227136A1 WO 2021227136 A1 WO2021227136 A1 WO 2021227136A1 CN 2020092789 W CN2020092789 W CN 2020092789W WO 2021227136 A1 WO2021227136 A1 WO 2021227136A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
reactor
benzene
cyclohexanone
micro
Prior art date
Application number
PCT/CN2020/092789
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Priority to DE212020000665.2U priority Critical patent/DE212020000665U1/de
Priority to JP2022600015U priority patent/JP3238259U/ja
Publication of WO2021227136A1 publication Critical patent/WO2021227136A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/002Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/04Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the invention belongs to the technical field of micro-interface strengthening reactions, and in particular relates to a strengthening reaction system and method for preparing cyclohexanone by selective hydrogenation of benzene.
  • Cyclohexanone is a very widely used chemical raw material, which plays an important role in industrial production and daily life. According to its use, cyclohexanone is often divided into two categories: amide and non-amide, 70% of which are Cyclohexanone for amides accounts for most of the amount of cyclohexanone.
  • the commonly used fibers nylon 6 and nylon 66 are prepared from cyclohexanone for amides; because cyclohexanone has high solubility and low volatility, it is also It can be used as an organic solvent, that is, cyclohexanone for non-amides. Cyclohexanone can be mixed with other solvents to adjust the evaporation rate of the system.
  • cyclohexanone also has a wide range of applications in the field of medicine and anti-aging agents. It can be seen from the above that cyclohexanone has become a very important chemical raw material in industrial production, especially in the polyamide industry.
  • the selective hydrogenation of benzene to produce cyclohexanone is currently the latest production process of cyclohexanone, which mainly includes the hydrogenation of benzene to produce cyclohexene.
  • Hydrogen produces cyclohexene.
  • Cyclohexene and acetic acid undergo an esterification reaction under the action of a solid acid catalyst to produce cyclohexyl acetate.
  • the produced cyclohexyl acetate and hydrogen undergo an addition reaction on a ketone catalyst to produce acetic acid and cyclohexanol.
  • Cyclohexanol is dehydrogenated under the action of a dehydrogenation catalyst to obtain cyclohexanone.
  • the process has high conversion rate and selectivity, almost no three wastes are generated, and has high atomic economy.
  • the separation process of cyclohexane/cyclohexene is omitted, which significantly reduces energy consumption.
  • the by-product ethanol can be used in other chemical production, increasing the added value of the product and increasing the benefit.
  • the selective hydrogenation of benzene to produce cyclohexanone has obvious technological advantages, it also has some disadvantages.
  • the gas-liquid mass transfer area of the existing hydrogenation reactor and addition reactor is limited, and the reaction process In this process, the hydrogen and liquid phase materials cannot be fully mixed, the mass transfer efficiency between the gas and the liquid phase is low, the reaction efficiency is low, and the energy consumption is high; on the other hand, the temperature and pressure inside the reactor are high, which leads to the safety of the entire system. And stability is greatly reduced.
  • the first object of the present invention is to provide an enhanced reaction system for the selective hydrogenation of benzene to produce cyclohexanone.
  • the reaction system is equipped with a micro-interface generator at the raw material inlets of the hydrogenation reactor and the addition reactor.
  • the micro-interface generator After the micro-interface generator is set up, on the one hand, hydrogen can be dispersed and broken into micro-sized micro-bubbles, increasing the area of the phase boundary between the hydrogen and the liquid material, so that the mass transfer space is fully satisfied, and the hydrogen in the liquid phase is increased.
  • the residence time in the medium reduces the consumption of hydrogen, thereby greatly improving the reaction efficiency and significantly reducing the energy consumption of the reaction process; on the other hand, it reduces the temperature and pressure inside the reactor, thereby improving the safety and stability of the entire system.
  • the second object of the present invention is to provide a method for preparing cyclohexanone using the above-mentioned intensified reaction system.
  • the method has milder operating conditions, lowers the reaction temperature and pressure while ensuring the reaction efficiency, and has high safety performance and energy efficiency.
  • the consumption is low, and the reaction effect is better than that of the existing process.
  • the present invention provides an enhanced reaction system for the selective hydrogenation of benzene to prepare cyclohexanone, which includes a hydrogenation reactor; the hydrogenation reactor is provided with a discharge port which is connected to a catalyst separator for The catalyst in the reaction product is separated; the top of the catalyst separator is provided with an oil phase outlet, and the oil phase outlet is connected to an esterification reactor for the esterification reaction of cyclohexene and acetic acid;
  • the side wall is provided with a cyclohexyl acetate outlet, the cyclohexyl acetate outlet is connected to an addition reactor for the addition reaction of cyclohexyl acetate and hydrogen; the bottom of the addition reactor is provided with a mixture outlet, so The mixture outlet is connected to an ethanol rectification tower for separating ethanol; the bottom of the ethanol rectification tower is provided with a heavy component outlet, and the heavy component outlet is connected to a cyclohexanol rectifying tower for separating gas phase cyclo
  • the side wall of the hydrogenation reactor is provided with a first raw material inlet, and the first raw material inlet is provided with a first micro-interface generator for dispersing the broken gas into bubbles; the side wall of the addition reactor is provided with The second raw material inlet is provided with a second micro-interface generator for dispersing the crushed gas into bubbles.
  • the reaction of selective hydrogenation of benzene to prepare cyclohexanone has the following problems: On the one hand, the gas-liquid mass transfer area of the existing reactor is limited, and during the reaction process, the reaction mixture raw materials and hydrogen cannot be fully mixed. The energy consumption is large and the reaction efficiency is low; on the other hand, due to the high temperature and pressure during the reaction process, the safety and stability of the entire system cannot be guaranteed.
  • the intensified reaction system for preparing cyclohexanone by the selective hydrogenation of benzene of the present invention can disperse and break hydrogen gas into micrometers in diameter by installing a micro-interface generator at the raw material inlets of the hydrogenation reactor and the addition reactor.
  • the level of microbubbles increases the phase boundary area between the hydrogen and the liquid phase material, so that the mass transfer space is fully satisfied, and the residence time of hydrogen in the liquid phase is increased, reducing the consumption of hydrogen, thereby greatly improving the reaction efficiency, Significantly reduce the energy consumption of the reaction process; on the other hand, reduce the temperature and pressure inside the reactor, thereby improving the safety and stability of the entire system.
  • the bottom of the catalyst separator is provided with a catalyst outlet for recycling the catalyst into the hydrogenation reactor for recycling.
  • the recovered catalyst is returned to the hydrogenation reactor for reuse, reducing the loss of the catalyst, and the catalyst can be continuously taken out, regenerated and replenished, maintaining high activity and high selectivity, so that it can be carried out in a long-term, continuous and stable manner. Production.
  • a kettle liquid outlet is provided at the bottom of the cyclohexanol rectification tower, and the kettle liquid outlet is connected to the esterification reactor for reuse of unreacted cyclohexyl acetate.
  • the reactant contains a small amount of unreacted cyclohexyl acetate, which flows out from the kettle liquid outlet after ethanol distillation and cyclohexanol distillation, and returns to the esterification reactor to participate in the esterification reaction again , Fully improve the utilization rate of raw materials.
  • a hydrogen outlet is provided on the top of the gas-liquid separator, and the hydrogen outlet is connected to the second micro-interface generator for reuse of the separated hydrogen.
  • the product after cyclohexanol dehydrogenation reaction will contain a large amount of hydrogen. This part of hydrogen can be recovered through the gas-liquid separator, which fully improves the utilization rate of hydrogen.
  • the hydrogen outlet is provided with a hydrogen compressor for compressing the hydrogen before recycling.
  • first micro-interface generator and the second micro-interface generator are both pneumatic micro-interface generators; the number of the first micro-interface generator and the second micro-interface generator is at least For more than one.
  • the arrangement of the first micro-interface generator and the second micro-interface generator is not limited, the setting position is not limited, and the number is not limited; more preferably, the number of the micro-interface generator is more than one It is arranged in parallel from top to bottom before the reactor, and the incoming hydrogen can be dispersed and crushed at the same time through the multi-row parallel micro-interface generator, which can effectively improve the subsequent reaction efficiency.
  • micro-interface generator used in the present invention has been embodied in the inventor’s previous patents, such as application numbers CN201610641119.6, 201610641251.7, CN201710766435.0, CN106187660, CN105903425A, CN109437390A, CN205833127U and CN207581700U patents.
  • the prior patent CN201610641119.6 detailed the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator).
  • the body is provided with an inlet communicating with the cavity, the opposite first end and the second end of the cavity are both open, and the cross-sectional area of the cavity is from the middle of the cavity to the first end of the cavity and The second end is reduced; the secondary crushing piece is provided at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is set in the cavity, and the secondary crushing piece is open to both ends of the cavity An annular channel is formed between the through holes.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, it can be known that the specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe.
  • the micro-bubble generator In the bubble generator, ultra-high-speed rotation and cutting the gas, the gas bubbles are broken into micron-level micro-bubbles, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to a pneumatic micro-interface generation Device.
  • the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet.
  • the secondary bubble breaker connects the feed port with the gas-liquid mixture outlet, indicating that the bubble breakers are all It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating fluid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is The mixture is simultaneously passed into the elliptical rotating sphere for rotation, so as to achieve bubble breakage during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage micro-interface generator.
  • micro-interface generator used in the present invention is not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the previous patent is only one of the forms that the micro-interface generator of the present invention can adopt.
  • the previous patent 201710766435.0 records that "the principle of the bubble breaker is high-speed jets to achieve gas collisions", and also explained that it can be used in a micro-interface strengthening reactor, verifying the difference between the bubble breaker and the micro-interface generator.
  • the previous patent CN106187660 is also a related record in the previous patent CN106187660 about the specific structure of the bubble breaker. For details, see paragraphs [0031]-[0041] in the specification, as well as the part of the drawings, which is related to the bubble breaker S-2 The specific working principle of the bubble breaker is explained in detail.
  • the top of the bubble breaker is the liquid phase inlet, and the side is the gas phase inlet.
  • the liquid phase coming in from the top provides the entrainment power to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the attached drawings.
  • the bubble breaker has a cone-shaped structure, and the diameter of the upper part is larger than that of the lower part, which is also for the liquid phase to provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed at the early stage of the patent application, it was named micro-bubble generator (CN201610641119.6) and bubble breaker (201710766435.0) in the early days. With continuous technological improvement, it was later renamed as micro-interface generator. Now the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the name is different.
  • the micro-interface generator of the present invention belongs to the prior art. Although some bubble breakers are pneumatic bubble breakers, some bubble breakers are hydraulic bubble breakers, and some are pneumatic bubble breakers.
  • the type of liquid-linked bubble breaker but the difference between the types is mainly selected according to the specific working conditions.
  • connection of the micro-interface generator and the reactor, and other equipment, including the connection structure and the connection position, according to the micro-interface It depends on the structure of the interface generator, which is not limited.
  • a benzene refiner for refining raw benzene
  • a refined benzene outlet is provided at the bottom of the benzene refiner
  • the refined benzene outlet is connected to the first micro-interface generator.
  • the benzene refiner is provided with a desulfurization adsorbent packing layer, and the benzene refiner can refine the raw material benzene to remove the sulfur-containing impurities in the raw material benzene.
  • the sulfur content of the benzene from the benzene refiner is less than or equal to 5PPb. , So as to avoid the catalyst poisoning caused by the impurities contained in the raw material benzene.
  • a cyclohexanone reflux tank the bottom of which is provided with a reflux pipeline for returning part of the cyclohexanone to the cyclohexanone rectification tower.
  • a reflux pump is provided on the reflux pipeline.
  • a part of the condensate in the cyclohexanone reflux tank is pressurized by the reflux pump and then returned to the cyclohexanone rectification tower as a reflux pipeline to absorb excess heat at the top of the cyclohexanone rectification tower to maintain
  • the heat balance of the whole tower can also improve the recovery purity of cyclohexanone after multiple refluxing.
  • the reflux pump can be used to adjust the reflux, so that the reflux is stable and the operability is good.
  • the hydrogenation reactor and the addition reactor are both fixed-bed catalytic reactors. Since the internal catalyst of the fixed-bed catalytic reactor is directly loaded on the fixed bed, it is not easy to wear in the bed and can be used for a long time. The structure of the reactor is simple and the operation is convenient.
  • the present invention also provides a method for preparing cyclohexanone by selective hydrogenation of benzene, which includes the following steps:
  • the hydrogen After the hydrogen is dispersed and broken into microbubbles, it undergoes a catalytic hydrogenation reaction with benzene, and an esterification reaction with acetic acid to obtain a reaction product;
  • the crude benzene is first refined by a benzene refiner and then passed into the inside of the first micro-interface generator, and at the same time, hydrogen is passed into the inside of the first micro-interface generator to break it into micro-bubbles with a diameter of micrometers. After being dispersed and broken into microbubbles, it is fully emulsified with benzene.
  • the emulsified liquid enters the hydrogenation reactor for hydrogenation reaction.
  • the reaction product enters the catalyst separator for catalyst separation, and the separated catalyst is returned to the hydrogenation reactor for recycling.
  • the cyclohexene from which the catalyst is removed enters the esterification reactor, and undergoes an esterification reaction with acetic acid under the action of the catalyst, and the esterification product cyclohexyl acetate enters the inside of the second micro-interface generator; at the same time, hydrogen is passed into the second micro-interface
  • the inside of the generator is broken into micro-bubbles with a diameter of micrometers. Hydrogen and cyclohexyl acetate are fully emulsified.
  • the emulsified liquid then enters the addition reactor and undergoes addition reaction under the action of the catalyst.
  • the product enters after ethanol separation.
  • the gas phase cyclohexanol then enters the dehydrogenation reactor for dehydrogenation reaction.
  • the bottom of the cyclohexanol rectification tower contains unreacted cyclohexyl acetate and returns to the addition reactor Reuse, the dehydrogenated product enters the gas-liquid separator to separate hydrogen, and at the same time, the separated hydrogen is returned to the second micro-interface generator for reuse.
  • the alcohol and ketone liquid after the hydrogen is separated finally enters the cyclohexane Cyclohexanone is separated and collected in the ketone distillation tower.
  • the temperature of the hydrogenation reactor is 115-138°C; the pressure is 2.1-2.6 MPa; the temperature of the addition reactor is 185-210°C; the pressure is 2.2-3.1 MPa.
  • the present invention has the following beneficial effects:
  • the intensified reaction system for preparing cyclohexanone by the selective hydrogenation of benzene of the present invention can disperse and break hydrogen gas into micrometers in diameter by installing a micro-interface generator at the raw material inlets of the hydrogenation reactor and the addition reactor.
  • the level of microbubbles increases the phase boundary area between the hydrogen and the liquid phase material, so that the mass transfer space is fully satisfied, and the residence time of hydrogen in the liquid phase is increased, reducing the consumption of hydrogen, thereby greatly improving the reaction efficiency, Significantly reduce the energy consumption of the reaction process; on the other hand, reduce the temperature and pressure inside the reactor, thereby improving the safety and stability of the entire system.
  • Figure 1 is a schematic structural diagram of an enhanced reaction system for selective hydrogenation of benzene to produce cyclohexanone according to an embodiment of the present invention.
  • an enhanced reaction system for the selective hydrogenation of benzene to produce cyclohexanone includes a hydrogenation reactor 10; the hydrogenation reactor 10 is provided with a discharge port 11, The feed port 11 is connected to a catalyst separator 20 for separating the catalyst from the reaction product; the bottom of the catalyst separator 20 is provided with a catalyst outlet 21 for recycling the catalyst into the hydrogenation reactor 10 for recycling, after recovery
  • the catalyst is returned to the hydrogenation reactor 10 for reuse, reducing the loss of the catalyst, and the catalyst can be continuously taken out, regenerated and supplemented, maintaining high activity and high selectivity, so that it can be produced continuously and stably for a long time.
  • An oil phase outlet 22 is provided on the top of the catalyst separator 20, and the oil phase outlet 22 is connected to the esterification reactor 30 for the esterification reaction of cyclohexene and acetic acid; the side wall of the esterification reactor 30 A cyclohexyl acetate outlet 31 is provided, and the cyclohexyl acetate outlet 31 is connected to the addition reactor 40 for the addition reaction of cyclohexyl acetate and hydrogen.
  • the side wall of the hydrogenation reactor 10 is provided with a first raw material inlet 12, and the first raw material inlet 12 is provided with a first micro-interface generator 101 for dispersing crushed gas into bubbles;
  • the side wall of the addition reactor 40 is provided with a second raw material inlet 41, and the second raw material inlet 41 is provided with a second micro-interface generator 401 for dispersing the crushed gas into bubbles.
  • the first micro-interface generator 101 and the second micro-interface generator 401 are both pneumatic micro-interface generators.
  • a mixture outlet 42 is provided at the bottom of the addition reactor 40, and the mixture outlet 42 is connected to an ethanol rectification tower 50 for separating ethanol; the bottom of the ethanol rectification tower 50 is provided with a heavy component outlet 51.
  • the heavy component outlet 51 is connected to the cyclohexanol rectification tower 60, the bottom of the cyclohexanol rectification tower 60 is provided with a kettle liquid outlet 61, and the kettle liquid outlet 61 is connected to the esterification reactor 30 to Used for the reuse of unreacted cyclohexyl acetate; the top of the cyclohexanol rectification tower 60 is provided with a gas phase outlet 62, and the gas phase outlet 62 is connected to the dehydrogenation reactor 70 for the removal of cyclohexanol. Hydrogen reaction.
  • the side wall of the dehydrogenation reactor 70 is provided with a product outlet 71, and the product outlet 71 is connected to a gas-liquid separator 80 for separating hydrogen; the bottom of the gas-liquid separator 80 is provided with alcohol and ketone.
  • the liquid outlet 81, the alcohol and ketone liquid outlet 81 is connected to the cyclohexanone rectification tower 90 for separating cyclohexanone; the top of the gas-liquid separator 80 is provided with a hydrogen outlet 82, and the hydrogen outlet 82 is connected to the
  • the second micro-interface generator 401 is used for the separated hydrogen to be reused.
  • this embodiment also includes a benzene refiner 100 for refining raw benzene.
  • the bottom of the benzene refiner 100 is provided with a refined benzene outlet 110, and the refined benzene outlet 110 is connected to the first micro-interface generator 101. .
  • the cyclohexanone reflux tank 120 is further included, and the bottom of the cyclohexanone reflux tank 120 is provided with a reflux pipeline for returning part of the cyclohexanone to the cyclohexanone rectification tower.
  • the hydrogenation reactor 10 and the addition reactor 40 are both fixed-bed catalytic reactors. Since the internal catalyst of the fixed-bed catalytic reactor is directly loaded on the fixed bed, it is not easy to wear in the bed and can be used for a long time. The structure of the reactor is simple and the operation is convenient.
  • the crude benzene After being refined by the benzene refiner 100, the crude benzene enters the inside of the first micro-interface generator 101. At the same time, hydrogen is passed into the first micro-interface generator 101 to break it into micro-bubbles with a diameter of micrometers. The hydrogen is dispersed and broken into After the microbubbles are fully emulsified with benzene, the emulsified liquid enters the hydrogenation reactor 10 for hydrogenation reaction, the reaction product enters the catalyst separator 20 through the discharge port 11 for catalyst separation, and the separated catalyst is returned through the catalyst outlet 21 again To the inside of the hydrogenation reactor 10 for recycling.
  • the cyclohexene from which the catalyst is removed enters the esterification reactor 30 and undergoes an esterification reaction with acetic acid under the action of the catalyst.
  • the esterification product cyclohexene acetate enters the second micro-interface generator 401 through the cyclohexyl acetate outlet 31, and at the same time
  • the hydrogen is passed into the second micro-interface generator 401 to break it into micro-bubbles with a diameter of micrometers.
  • the hydrogen and cyclohexyl acetate are fully emulsified, and the emulsified liquid then enters the addition reactor 40 and is generated under the action of the catalyst.
  • the product enters the ethanol rectification tower 50 through the mixture outlet 42 to separate ethanol, the separated ethanol mixture then enters the cyclohexanol rectification tower 60, and the gas phase cyclohexanone enters the dehydrogenation reactor 70 through the gas phase outlet 62
  • the dehydrogenation reaction is carried out.
  • the unreacted cyclohexyl acetate is returned to the addition reactor 40 through the kettle liquid outlet 61 for reuse.
  • the dehydrogenated product enters the gas-liquid separator 80 to separate hydrogen, and at the same time, separate
  • the discharged hydrogen is returned to the second micro-interface generator 401 through the hydrogen outlet 82 for reuse, and the alcohol and ketone liquid after the separated hydrogen enters the cyclohexanone rectification tower 90 through the alcohol and ketone liquid outlet 81 for cyclohexanone rectification. Separation and collection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种苯选择性加氢制备环己酮的强化反应***及方法,包括加氢反应器(10);加氢反应器(10)设置有出料口(11),出料口(11)连接催化剂分离器(20)以用于分离反应产物中的催化剂;气液分离器(80)的底部设置有醇酮液出口(81),醇酮液出口(81)连接环己酮精馏塔(90)以用于分离环己酮;加氢反应器(10)的侧壁设置有第一原料进口(12),第一原料进口(12)设置有第一微界面发生器(101)以用于分散破碎气体成气泡;加成反应器(40)的侧壁设置有第二原料进口(41),第二原料进口(41)设置有第二微界面发生器(401)以用于分散破碎气体成气泡。通过在加氢反应器(10)和加成反应器(40)的原料进口设置了微界面发生器后,增大了氢气与液相物料之间的传质面积,提高了反应效率;并且降低了反应温度和压力,提高了整个***的安全性和稳定性。

Description

一种苯选择性加氢制备环己酮的强化反应***及方法 技术领域
本发明属于微界面强化反应技术领域,具体涉及一种苯选择性加氢制备环己酮的强化反应***及方法。
背景技术
环己酮是一种应用非常广泛的化工原料,在工业生产、日常生活中起着重要的作用,环己酮按其用途常分为酰胺用和非酰胺用两大类,其中有70%的酰胺用环己酮,占环己酮的大部分用量,人们常用的纤维尼龙6和尼龙66就是由酰胺用环己酮制备而来;由于环己酮具有高溶解性和低挥发等特点,还可作为有机溶剂使用,即非酰胺用环己酮,环己酮与其他溶剂混合使用,可调节***蒸发速度;另外,环己酮在医药领域、防老化剂等方面亦有广泛的应用,综上可知,环己酮已经成为工业生产中非常重要的化工原料,尤其是聚酰胺行业。
苯选择性加氢制备环己酮是目前最新的环己酮生产工艺,主要有苯加氢反应生成环己烯,环己烯该套工艺以苯为原料,在负载钌催化剂催化下选择性加氢,生成环己烯,环己烯和醋酸在固体酸催化剂作用下发生酯化反应,反应生产醋酸环己酯。生产的醋酸环己酯和氢气在酮系催化剂发生加成反应,生成醋酸和环己醇,环己醇在脱氢催化剂作用下脱氢制得环己酮。该套工艺具有较高的转化率和选择性,几乎没有三废产生,具有较高的原子经济性。同时相较于环己烯水合法省去环己烷/环己烯的分离工艺,显著的降低了能耗。并且副产物乙醇可以用于其他化工生产,增加了产品附加值,增加了效益。然而,苯选择性加氢制备环己酮虽然有着明显的工艺优势,但也存在着一些缺陷:一方面,现有加氢反应器和加成反应器的气液相传质面积有限,反应过程中,氢气和液相物料无法得到充分混合,气液相之间的传质效率低下,反应效率低下,能耗 高;另一方面反应器内部的温度和压力较高,导致整套***的安全性和稳定性大大的降低。
有鉴于此,特提出本发明。
发明内容
鉴于此,本发明的第一目的在于提供一种苯选择性加氢制备环己酮的强化反应***,该反应***在加氢反应器和加成反应器的原料进口设置微界面发生器,通过设置了微界面发生器后,一方面可以将氢气分散破碎成直径微米级的微气泡,增加氢气和液相物料之间的相界面积,使得传质空间充分满足,而且增加了氢气在液相中的停留时间,降低了氢气的耗量,从而大幅提高反应效率、显著降低反应过程的能耗;另一方面降低了反应器内部的温度以及压力,从而提高了整套***安全性和稳定性。
本发明的第二目的在于提供一种采用上述强化反应***制备环己酮的方法,该方法的操作条件更加温和,在保证反应效率的同时降低了反应的温度和压力,而且安全性能高、能耗低,达到了比现有工艺更佳的反应效果。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种苯选择性加氢制备环己酮的强化反应***,包括加氢反应器;所述加氢反应器设置有出料口,所述出料口连接催化剂分离器以用于分离反应产物中的催化剂;所述催化剂分离器的顶部设置有油相出口,所述油相出口连接酯化反应器以用于环己烯和醋酸进行酯化反应;所述酯化反应器的侧壁设置有醋酸环己酯出口,所述醋酸环己酯出口连接加成反应器以用于醋酸环己酯和氢气进行加成反应;所述加成反应器的底部设置有混合物出口,所述混合物出口连接乙醇精馏塔以用于分离乙醇;所述乙醇精馏塔的塔底设置有重组分出口,所述重组分出口连接环己醇精馏塔以用于分离气相环己醇;所述环己醇精馏塔的顶部设置有气相出口,所述气相出口连接脱氢反应器以用于进行环己醇脱氢反应;所述脱氢反应器的侧壁设置有产物出口,所述产物出口连接气 液分离器以用于分离氢气;所述气液分离器的底部设置有醇酮液出口,所述醇酮液出口连接环己酮精馏塔以用于分离环己酮;
所述加氢反应器的侧壁设置有第一原料进口,所述第一原料进口设置有第一微界面发生器以用于分散破碎气体成气泡;所述加成反应器的侧壁设置有第二原料进口,所述第二原料进口设置有第二微界面发生器以用于分散破碎气体成气泡。
现有技术中,苯选择性加氢制备环己酮的反应存在以下问题:一方面,现有反应器的气液相传质面积有限,反应过程中,反应混合原料和氢气无法得到充分混合,能耗大而且反应效率低下;另一方面,由于反应过程中温度和压力过高,导致整套***的安全性和稳定性无法得到保证。本发明的苯选择性加氢制备环己酮的强化反应***,通过在加氢反应器和加成反应器的原料进口均设置了微界面发生器后,一方面可以将氢气分散破碎成直径微米级的微气泡,增加氢气和液相物料之间的相界面积,使得传质空间充分满足,而且增加了氢气在液相中的停留时间,降低了氢气的耗量,从而大幅提高反应效率、显著降低反应过程的能耗;另一方面降低了反应器内部的温度以及压力,从而提高了整套***安全性和稳定性。
进一步的,所述催化剂分离器的底部设置有催化剂出口以用于回收催化剂进入所述加氢反应器内部循环使用。回收后的催化剂重新送回加氢反应器内部重复利用,降低了催化剂的损耗,并且催化剂得以连续的取出、再生并补充,保持了高活性和高选择性,从而可长期的、连续稳定的进行生产。
进一步的,所述环己醇精馏塔的底部设置有釜液出口,所述釜液出口连接所述酯化反应器以用于未反应的醋酸环己酯重新返回利用。经过酯化反应后的反应物中含有少量的未反应的醋酸环己酯,在经过乙醇精馏和环己醇精馏后从釜液出口流出,回到酯化反应器中重新参与酯化反应,充分提高了原料的利用率。
进一步的,所述气液分离器的顶部设置有氢气出口,所述氢气出口连接所 述第二微界面发生器以用于分离出的氢气重新返回利用。经过环己醇脱氢反应后的产物中会含有大量氢气,通过气液分离器可以回收这部分氢气,充分提高了氢气的利用率。优选地,所述氢气出口设置有氢气压缩机以用于在氢气回收利用前先进行压缩。
进一步的,所述第一微界面发生器和所述第二微界面发生器均为气动式微界面发生器;所述第一微界面发生器和所述第二微界面发生器的设置数量均至少为一个以上。
进一步的,所述第一微界面发生器和所述第二微界面发生器的设置方式不限、设置位置不限,数量也不限;更优选的,所述微界面发生器数量为一个以上,在反应器之前由上到下依次并列设置,通过这种多排并列设置的微界面发生器同时对进来的氢气进行分散破碎,更能够有效的提升后续的反应效率。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进 口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。
此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。
综上所述,本发明的微界面发生器属于现有技术,虽然有的气泡破碎器属于气动式气泡破碎器类型,有的气泡破碎器属于液动式气泡破碎器类型,还有的属于气液联动式气泡破碎器类型,但是类型之间的差别主要是根据具体工况的不同进行选择,另外关于微界面发生器与反应器、以及其他设备的连接,包括连接结构、连接位置,根据微界面发生器的结构而定,此不作限定。
进一步的,还包括苯精制器以用于对原料苯进行精制,所述苯精制器底部设置有精制苯出口,所述精制苯出口连接所述第一微界面发生器。所述苯精制器的内设置有脱硫吸附剂填料层,所述苯精制器能对原料苯进行精制,用于去除原料苯中的含硫杂质,从苯精制器中出来的苯含硫≤5PPb,从而避免原料苯中所含杂质使催化剂中毒。
进一步的,还包括环己酮回流罐,所述环己酮回流罐的底部设置有将部分环己酮返回到环己酮精馏塔内的回流管路。所述回流管路上设置有回流泵。一部分环己酮回流罐内的冷凝液经过回流泵加压后作为回流管路回流至所述环己酮精馏塔内,以用于摄取所述环己酮精馏塔塔顶多余热量,维持全塔热平衡,经过多次回流,还可以提高环己酮的回收纯度。相比自然回流,采用回流泵可调节回流量,使得回流量稳定,操作性好。
进一步的,所述加氢反应器和所述加成反应器均为固定床催化反应器。由于固定床催化反应器内部催化剂直接装填在固定床上,因此在床层内不易磨损,可长期使用,而且反应器结构简单,操作方便。
除此之外,本发明还提供了一种苯选择性加氢制备环己酮的方法,包括如下步骤:
氢气经过分散破碎成微气泡后,与苯进行催化加氢反应,与醋酸进行酯化反应得到反应产物;
所述反应产物与经过分散破碎的氢气继续加成反应后,脱氢。
进一步地,先将粗苯经过苯精制器精制后通入第一微界面发生器的内部,同时将氢气通入第一微界面发生器内部,使其破碎成直径为微米级别的微气泡,氢气经过分散破碎成微气泡后与苯进行充分乳化,乳化液进入加氢反应器内部进行加氢反应,反应产物进入催化剂分离器中进行催化剂分离,分离出的催化剂重新返回加氢反应器内部循环使用,除去催化剂的环己烯进入酯化反应器中,与醋酸在催化剂作用下进行酯化反应,酯化产物醋酸环己酯进入第二微界面发生器内部;同时将氢气通入第二微界面发生器内部,使其破碎成直径为 微米级别的微气泡,氢气与醋酸环己酯进行充分乳化,乳化液随后进入加成反应器中在催化剂作用下发生加成反应,产物经过乙醇分离后进入环己醇精馏塔内,气相环己醇接着进入脱氢反应器内部进行脱氢反应,同时,环己醇精馏塔塔底含有未反应完的醋酸环己酯返回至加成反应器内重新再利用,脱氢后的产物进入气液分离器内分离出氢气,同时,分离出的氢气返回至第二微界面发生器内重新再利用,分离出氢气后的醇酮液最后进入环己酮精馏塔内进行环己酮的分离和收集。
进一步的,所述加氢反应器的温度为115-138℃;压力为2.1-2.6MPa;所述加成反应器的温度为185-210℃;压力为2.2-3.1MPa。
与现有技术相比,本发明的有益效果在于:
本发明的苯选择性加氢制备环己酮的强化反应***,通过在加氢反应器和加成反应器的原料进口均设置了微界面发生器后,一方面可以将氢气分散破碎成直径微米级的微气泡,增加氢气和液相物料之间的相界面积,使得传质空间充分满足,而且增加了氢气在液相中的停留时间,降低了氢气的耗量,从而大幅提高反应效率、显著降低反应过程的能耗;另一方面降低了反应器内部的温度以及压力,从而提高了整套***安全性和稳定性。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的苯选择性加氢制备环己酮的强化反应***的结构示意图。
附图说明:
10-加氢反应器;                     11-出料口;
12-第一原料进口;                   101-第一微界面发生器;
20-催化剂分离器;                   21-催化剂出口;
22-油相出口;                       30-酯化反应器;
31-醋酸环己酯出口;                 40-加成反应器;
41-第二原料进口;                   42-混合物出口;
401-第二微界面发生器;              50-乙醇精馏塔;
51-重组分出口;                     60-环己醇精馏塔;
61-釜液出口;                       62-气相出口;
70-脱氢反应器;                     71-产物出口;
80-气液分离器;                     81-醇酮液出口;
82-氢气出口;                       90-环己酮精馏塔;
100-苯精制器;                      110-精制苯出口;
120-环己酮回流罐。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位 或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例的苯选择性加氢制备环己酮的强化反应***,包括加氢反应器10;所述加氢反应器10设置有出料口11,所述出料口11连接催化剂分离器20以用于分离反应产物中的催化剂;所述催化剂分离器20的底部设置有催化剂出口21以用于回收催化剂进入所述加氢反应器10内部循环使用,回收后的催化剂重新送回加氢反应器10内部重复利用,降低了催化剂的损耗,并且催化剂得以连续的取出、再生并补充,保持了高活性和高选择性,从而可长期的、连续稳定的进行生产。
所述催化剂分离器20的顶部设置有油相出口22,所述油相出口22连接酯化反应器30以用于环己烯和醋酸进行酯化反应;所述酯化反应器30的侧壁设置有醋酸环己酯出口31,所述醋酸环己酯出口31连接加成反应器40以用于醋酸环己酯和氢气进行加成反应。
需要强调的是,所述加氢反应器10的侧壁设置有第一原料进口12,所述第一原料进口12设置有第一微界面发生器101以用于分散破碎气体成气泡;所述加成反应器40的侧壁设置有第二原料进口41,所述第二原料进口41设置有第二微界面发生器401以用于分散破碎气体成气泡。优选地,所述第一微界面发生器101和所述第二微界面发生器401均为气动式微界面发生器。
进一步的,所述加成反应器40的底部设置有混合物出口42,所述混合物出口42连接乙醇精馏塔50以用于分离乙醇;所述乙醇精馏塔50的塔底设置有重组分出口51,所述重组分出口51连接环己醇精馏塔60,所述环己醇精馏塔60的底部设置有釜液出口61,所述釜液出口61连接所述酯化反应器30以 用于未反应的醋酸环己酯重新返回利用;所述环己醇精馏塔60的塔顶设置有气相出口62,所述气相出口62连接脱氢反应器70以用于进行环己醇脱氢反应。
具体而言,所述脱氢反应器70的侧壁设置有产物出口71,所述产物出口71连接气液分离器80以用于分离氢气;所述气液分离器80的底部设置有醇酮液出口81,所述醇酮液出口81连接环己酮精馏塔90以用于分离环己酮;所述气液分离器80的顶部设置有氢气出口82,所述氢气出口82连接所述第二微界面发生器401以用于分离出的氢气重新返回利用。
此外,本实施例还包括苯精制器100以用于对原料苯进行精制,所述苯精制器100底部设置有精制苯出口110,所述精制苯出口110连接所述第一微界面发生器101。
上述实施例中,还包括环己酮回流罐120,所述环己酮回流罐120的底部设置有将部分环己酮返回到环己酮精馏塔内的回流管路。
上述实施例中,所述加氢反应器10和所述加成反应器40均为固定床催化反应器。由于固定床催化反应器内部催化剂直接装填在固定床上,因此在床层内不易磨损,可长期使用,而且反应器结构简单,操作方便。
以下简要说明本发明苯选择性加氢制备环己酮的强化反应***的工作过程和原理。
粗苯经过苯精制器100精制后进入第一微界面发生器101内部,同时将氢气通入第一微界面发生器101内部,使其破碎成直径为微米级别的微气泡,氢气经过分散破碎成微气泡后与苯进行充分乳化,乳化液进入加氢反应器10内部进行加氢反应,反应产物经出料口11进入催化剂分离器20内进行催化剂分离,分离出的催化剂经催化剂出口21重新返回至加氢反应器10内部循环使用。除去催化剂的环己烯进入酯化反应器30中,与醋酸在催化剂作用下进行酯化反应,酯化产物醋酸环己酯通过醋酸环己酯出口31进入第二微界面发生器401内部,同时将氢气通入第二微界面发生器401内,使其破碎成直径为微米级别的微气泡,氢气与醋酸环己酯进行充分乳化,乳化液随后进入加成反应器40 内在催化剂的作用下发生加成反应,产物通过混合物出口42进入乙醇精馏塔50内分离乙醇,分离乙醇后的混合物再进入环己醇精馏塔60内,气相环己酮通过气相出口62进入脱氢反应器70内进行脱氢反应,同时,未反应完的醋酸环己酯通过釜液出口61返回加成反应器40内重新再利用,脱氢后的产物进入气液分离器80内分离出氢气,同时,分离出的氢气通过氢气出口82返回至第二微界面发生器401内重新再利用,分离出的氢气后的醇酮液经醇酮液出口81进入环己酮精馏塔90内进行环己酮的分离和收集。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种苯选择性加氢制备环己酮的强化反应***,其特征在于,包括加氢反应器;所述加氢反应器设置有出料口,所述出料口连接催化剂分离器以用于分离反应产物中的催化剂;所述催化剂分离器的顶部设置有油相出口,所述油相出口连接酯化反应器以用于环己烯和醋酸进行酯化反应;所述酯化反应器的侧壁设置有醋酸环己酯出口,所述醋酸环己酯出口连接加成反应器以用于醋酸环己酯和氢气进行加成反应;所述加成反应器的底部设置有混合物出口,所述混合物出口连接乙醇精馏塔以用于分离乙醇;所述乙醇精馏塔的塔底设置有重组分出口,所述重组分出口连接环己醇精馏塔以用于分离气相环己醇;所述环己醇精馏塔的顶部设置有气相出口,所述气相出口连接脱氢反应器以用于进行环己醇脱氢反应;所述脱氢反应器的侧壁设置有产物出口,所述产物出口连接气液分离器以用于分离氢气;所述气液分离器的底部设置有醇酮液出口,所述醇酮液出口连接环己酮精馏塔以用于分离环己酮;
    所述加氢反应器的侧壁设置有第一原料进口,所述第一原料进口设置有第一微界面发生器以用于分散破碎气体成气泡;所述加成反应器的侧壁设置有第二原料进口,所述第二原料进口设置有第二微界面发生器以用于分散破碎气体成气泡。
  2. 根据权利要求1所述的苯选择性加氢制备环己酮的强化反应***,其特征在于,所述催化剂分离器的底部设置有催化剂出口以用于回收催化剂进入所述加氢反应器内部循环使用。
  3. 根据权利要求1所述的苯选择性加氢制备环己酮的强化反应***,其特征在于,所述环己醇精馏塔的底部设置有釜液出口,所述釜液出口连接所述酯化反应器以用于未反应的醋酸环己酯重新返回利用。
  4. 根据权利要求1所述的苯选择性加氢制备环己酮的强化反应***,其特征在于,所述气液分离器的顶部设置有氢气出口,所述氢气出口连接所述第二微界面发生器以用于分离出的氢气重新返回利用。
  5. 根据权利要求1所述的苯选择性加氢制备环己酮的强化反应***,其特征在于,所述第一微界面发生器和所述第二微界面发生器均为气动式微界面发生器;所述第一微界面发生器和所述第二微界面发生器的设置数量均至少为一个以上。
  6. 根据权利要求1所述的苯选择性加氢制备环己酮的强化反应***,其特征在于,还包括苯精制器以用于对原料苯进行精制,所述苯精制器底部设置有精制苯出口,所述精制苯出口连接所述第一微界面发生器。
  7. 根据根据权利要求1所述的苯选择性加氢制备环己酮的强化反应***,其特征在于,还包括环己酮回流罐,所述环己酮回流罐的底部设置有将部分环己酮返回到环己酮精馏塔内的回流管路。
  8. 根据权利要求1-7任一项所述的苯选择性加氢制备环己酮的强化反应***,其特征在于,所述加氢反应器和所述加成反应器均为固定床催化反应器。
  9. 采用权利要求1-8任一项所述的强化反应***制备环己酮的方法,其特征在于,包括如下步骤:
    氢气经过分散破碎成微气泡后,与苯进行催化加氢反应,与醋酸进行酯化反应得到反应产物;
    所述反应产物与经过分散破碎的氢气继续加成反应后,脱氢。
  10. 根据权利要求9所述的方法,其特征在于,所述加氢反应器的温度为115-138℃;压力为2.1-2.6MPa;所述加成反应器的温度为185-210℃;压力为2.2-3.1MPa。
PCT/CN2020/092789 2020-05-14 2020-05-28 一种苯选择性加氢制备环己酮的强化反应***及方法 WO2021227136A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212020000665.2U DE212020000665U1 (de) 2020-05-14 2020-05-28 Verstärktes Reaktionssystem zum Herstellen vom Cyclohexanon durch selektive Hydrierung vom Benzol
JP2022600015U JP3238259U (ja) 2020-05-14 2020-05-28 ベンゼンを選択的に水素化してシクロヘキサノンを製造する強化反応システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010406253.4 2020-05-14
CN202010406253.4A CN111574342A (zh) 2020-05-14 2020-05-14 一种苯选择性加氢制备环己酮的强化反应***及方法

Publications (1)

Publication Number Publication Date
WO2021227136A1 true WO2021227136A1 (zh) 2021-11-18

Family

ID=72109368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092789 WO2021227136A1 (zh) 2020-05-14 2020-05-28 一种苯选择性加氢制备环己酮的强化反应***及方法

Country Status (4)

Country Link
JP (1) JP3238259U (zh)
CN (1) CN111574342A (zh)
DE (1) DE212020000665U1 (zh)
WO (1) WO2021227136A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112156731A (zh) * 2020-09-08 2021-01-01 南京延长反应技术研究院有限公司 一种聚乙醇酸的强化微界面制备***及方法
CN114471377B (zh) * 2020-10-28 2023-07-04 中国石油化工股份有限公司 一种重整生成油脱烯烃反应器及反应方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013052216A1 (en) * 2011-10-07 2013-04-11 Exxonmobil Chemical Patents Inc. Process for producing phenol from cyclohexylbenzene hydroperoxide
CN104557465A (zh) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 一种联产环己醇和链烷醇的方法
CN107867986A (zh) * 2016-09-26 2018-04-03 青岛九洲千和机械有限公司 一种以焦化苯为原料生产环己酮的方法
CN108003017A (zh) * 2016-10-28 2018-05-08 中国石油化工股份有限公司 乙酸环己酯的分离方法以及乙酸环己酯的生产方法和环己醇的生产方法以及环己醇生产装置
CN108017498A (zh) * 2016-10-31 2018-05-11 中国石油化工股份有限公司 脱除乙酸的方法以及乙酸环己酯的生产方法和环己醇的生产方法
CN210045215U (zh) * 2019-01-29 2020-02-11 南京延长反应技术研究院有限公司 低压气液强化乳化床反应装置
CN210079476U (zh) * 2019-03-15 2020-02-18 南京延长反应技术研究院有限公司 一种微界面强化沸腾床加氢反应***
CN111574341A (zh) * 2020-05-14 2020-08-25 南京延长反应技术研究院有限公司 一种苯选择性加氢制备环己酮的智能反应***及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105903425B (zh) 2016-04-21 2018-09-07 南京大学 喷射反应器
CN205833127U (zh) 2016-05-11 2016-12-28 南京大学 一种由环己烷制备环己酮的超高效氧化反应装置
CN106187660B (zh) 2016-09-08 2018-11-20 南京大学 苯加氢生产环己烷的装置和工艺
CN207581700U (zh) 2017-06-19 2018-07-06 南京大学 一种四氯-2-氰基吡啶的液相氯化法生产装置
CN109437390A (zh) 2018-12-19 2019-03-08 南京大学盐城环保技术与工程研究院 一种臭氧催化氧化废水的反应器及其使用方法
CN210176791U (zh) * 2019-07-04 2020-03-24 南京延长反应技术研究院有限公司 一种煤与生物质的多级液化***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013052216A1 (en) * 2011-10-07 2013-04-11 Exxonmobil Chemical Patents Inc. Process for producing phenol from cyclohexylbenzene hydroperoxide
CN104557465A (zh) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 一种联产环己醇和链烷醇的方法
CN107867986A (zh) * 2016-09-26 2018-04-03 青岛九洲千和机械有限公司 一种以焦化苯为原料生产环己酮的方法
CN108003017A (zh) * 2016-10-28 2018-05-08 中国石油化工股份有限公司 乙酸环己酯的分离方法以及乙酸环己酯的生产方法和环己醇的生产方法以及环己醇生产装置
CN108017498A (zh) * 2016-10-31 2018-05-11 中国石油化工股份有限公司 脱除乙酸的方法以及乙酸环己酯的生产方法和环己醇的生产方法
CN210045215U (zh) * 2019-01-29 2020-02-11 南京延长反应技术研究院有限公司 低压气液强化乳化床反应装置
CN210079476U (zh) * 2019-03-15 2020-02-18 南京延长反应技术研究院有限公司 一种微界面强化沸腾床加氢反应***
CN111574341A (zh) * 2020-05-14 2020-08-25 南京延长反应技术研究院有限公司 一种苯选择性加氢制备环己酮的智能反应***及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, ZHIBING ET AL.: "Overview of Microinterface Intensification in Multiphase Reaction Systems", CIESC JOURNAL, vol. 69, no. 1, 31 December 2018 (2018-12-31), ISSN: 0438-1557 *

Also Published As

Publication number Publication date
DE212020000665U1 (de) 2022-04-26
CN111574342A (zh) 2020-08-25
JP3238259U (ja) 2022-07-13

Similar Documents

Publication Publication Date Title
CN105503492B (zh) 一种mtp装置及其新型分离工艺
WO2021078239A1 (zh) 气液鼓泡床反应器、反应***以及合成碳酸酯的方法
US8721842B2 (en) Catalytic reaction-rectification integrated process and specialized device thereof
WO2022036839A1 (zh) 一种丙烯羰基化制备丁辛醇的外置微界面强化***及方法
WO2021227136A1 (zh) 一种苯选择性加氢制备环己酮的强化反应***及方法
WO2021227135A1 (zh) 一种苯选择性加氢反应***及方法
WO2022011871A1 (zh) 一种煤制乙醇的微界面反应***及方法
WO2021208199A1 (zh) 一种氨肟化兼回收叔丁醇的反应***及方法
WO2022011870A1 (zh) 一种煤制乙醇的反应***及方法
CN111377802A (zh) 一种仲丁醇的制备方法及***
KR20240095299A (ko) 말레산 무수물 수소화 방법 및 이를 포함하는 석신산 생산 방법
CN109748790B (zh) 生产己二酸二甲酯的方法
CN101898930B (zh) 苯加氢生产环己烷的装置及合成工艺
WO2022052222A1 (zh) 一种草酸酯加氢制备乙醇酸酯的反应***及方法
CN115160106A (zh) 一种仲丁醇的生产装置及方法
CN219252166U (zh) 一种提高醋酸乙烯生产***中气体分离塔分离效果的装置
WO2021227137A1 (zh) 一种酯化法制备环己酮的外置微界面强化***及方法
CN109748791A (zh) 生产己二酸二甲酯的节能方法
CN205740823U (zh) 一种mtp装置
WO2022036838A1 (zh) 一种石油树脂加氢的微界面反应***及方法
CN110878006B (zh) 一种乙醇和乙酸乙酯的分离方法和装置
CN107285978A (zh) 正丁烷的制备方法
CN107285977A (zh) 一种由异丁烷正构化制备正丁烷的***装置
CN205347269U (zh) 一种环保发泡剂与溶剂油联产装置
CN116162025A (zh) 一种分离甲酸甲酯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022600015

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20935698

Country of ref document: EP

Kind code of ref document: A1