WO2021223695A1 - 一种功率模块 - Google Patents

一种功率模块 Download PDF

Info

Publication number
WO2021223695A1
WO2021223695A1 PCT/CN2021/091814 CN2021091814W WO2021223695A1 WO 2021223695 A1 WO2021223695 A1 WO 2021223695A1 CN 2021091814 W CN2021091814 W CN 2021091814W WO 2021223695 A1 WO2021223695 A1 WO 2021223695A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
power
chip
power module
power chip
Prior art date
Application number
PCT/CN2021/091814
Other languages
English (en)
French (fr)
Inventor
晏新海
Original Assignee
Yan Xinhai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yan Xinhai filed Critical Yan Xinhai
Publication of WO2021223695A1 publication Critical patent/WO2021223695A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/49Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions wire-like arrangements or pins or rods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to the technical field of power chip manufacturing, in particular to a power module.
  • the power module is a module that is re-encapsulated into power electronic devices according to a certain combination of functions.
  • IGBT power module is a power module composed of insulated gate bipolar transistors. Since the IGBT power module is a MOSFET structure, the gate of the IGBT power module is electrically isolated from the emitter by a layer of oxide film, which has excellent device performance. It is widely used in servo motors, frequency converters, frequency conversion household appliances and other fields.
  • the IPM intelligent power module is an advanced hybrid integrated power component with IGBT as the core, which is composed of a high-speed low-power die, an optimized gate drive circuit, and a fast protection circuit.
  • Existing power modules usually include a double-sided copper-clad ceramic board (DBC, Direct Bonding Copper) and power chips soldered on a double-sided copper-clad ceramic board.
  • DBC Double-sided copper-clad ceramic board
  • the thermal resistance of the double-sided copper-clad ceramic board accounts for more than half of the overall thermal resistance of the system , Which severely limits the heat dissipation capacity of the power module system and affects the normal operation of the power chip. Therefore, how to improve the heat dissipation capacity of the functional module has become an urgent problem to be solved.
  • the main purpose of the present invention is to provide a power module, which aims to improve the heat dissipation capacity of the power module and improve the stability of the power module, so that the power chip maintains a normal working state.
  • the present invention provides a power module, the power module includes:
  • a substrate the substrate is provided with a liquid inlet, a liquid outlet, and a cooling fluid channel connecting the liquid inlet and the liquid outlet;
  • the power chip is mounted on the substrate;
  • the housing, the substrate and the power chip are all packaged in the housing.
  • the substrate includes a first sub-substrate and a second sub-substrate disposed opposite to the first sub-substrate;
  • the first sub-substrate has a first bonding surface
  • the first bonding surface is provided with a first cooling liquid tank communicating with both side walls of the first sub-substrate
  • the second sub-substrate has a second bonding surface
  • the second bonding surface is provided with a second cooling liquid tank connected to the side walls on both sides thereof at a position corresponding to the first cooling liquid tank.
  • the first bonding surface of the first sub-substrate and the second sub-substrate The second bonding surface of the substrate is bonded by welding to form the liquid inlet, the liquid outlet, and the coolant channel;
  • At least one of the first sub-substrate and the second sub-substrate is provided with two openings and a cavity connecting the two openings to form the liquid inlet, the liquid outlet, and the The cooling liquid channel;
  • the power chip includes a first power chip and a second power chip, the first power chip is disposed on a side of the first sub-substrate that faces away from the coolant channel, and the second power chip is disposed on The second sub-substrate faces a side of the cooling liquid channel.
  • liquid inlet and the liquid outlet are equipped with pipe joints.
  • the number of the cooling fluid channels is multiple, and the multiple cooling fluid channels are all arranged inside the substrate.
  • the power module further includes:
  • a double-sided copper-clad ceramic board is mounted on the substrate and arranged close to the power chip.
  • the double-sided copper-clad ceramic board has an upper copper layer, a ceramic layer, and a lower copper layer that are stacked, and the double-sided copper-clad
  • the lower copper layer of the ceramic board is attached and mounted on the substrate, and the upper copper layer of the double-sided copper-clad ceramic board is provided with a control circuit, the control circuit includes a control chip, the control chip and the power chip It is connected through the upper copper layer and the connector.
  • the upper copper layer has multiple lines corresponding to the control chip, and the multiple power chips are connected to each other.
  • the components are connected to the multiple lines in a one-to-one correspondence.
  • each of the power chips has three electrodes, wherein two of the electrodes are provided on the front side of the power chip, and the other electrode is provided on the back side of the power chip;
  • a plurality of pins are protruding from the housing, and the plurality of pins at least include a first pin, a second pin, and a third pin that correspond to the three electrodes of the power chip in a one-to-one manner;
  • two electrodes located on the front of the power chip are connected to the upper copper layer of the double-sided copper-clad ceramic board, the electrodes located on the back of the power chip are attached to the substrate, and the first pins, The second pin and the third pin are connected with the upper copper layer of the double-sided copper-clad ceramic board to form the input terminal and the output terminal of the power module.
  • each of the power chips has three electrodes, wherein two of the electrodes are provided on the front side of the power chip, and the other electrode is provided on the back side of the power chip;
  • a plurality of pins are protruding from the housing, and the plurality of pins at least include a first pin, a second pin, and a third pin that correspond to the three electrodes of the power chip in a one-to-one manner;
  • a copper connection layer is provided between the power chip and the substrate, and the copper connection layer and the substrate are fixed by welding or the copper connection layer and the substrate are integrally formed;
  • One electrode on the front side of the power chip is attached to the copper connection layer of the substrate, and the other electrode on the front side of the power chip is connected to the upper copper layer of the double-sided copper-clad ceramic board.
  • the electrode on the back of the chip is connected to the upper copper layer through a connector, and the first pin, the second pin, and the third pin are connected to the upper copper layer to form the power module Input terminal and output terminal.
  • the power module further includes a temperature sensor, and the temperature sensor is mounted on the substrate;
  • the temperature sensor is used to detect the working temperature of the power chip and/or the substrate and send the working temperature to the controller of the coolant circulation system, so as to adjust the cooling under the control of the controller Liquid inlet temperature, flow rate or pressure difference between inlet and outlet.
  • the power module is an IGBT power module, an IPM power module or a SiC power module.
  • the substrate of the power module is provided with a liquid inlet, a liquid outlet, and a coolant channel connecting the liquid inlet and the liquid outlet
  • the power chip is mounted on the substrate, and the substrate, DBC and power chip They are all enclosed in a shell, where the liquid inlet is used to communicate with the discharge end of the cooling liquid circulation system, and the liquid outlet is used to communicate with the liquid inlet end of the cooling liquid circulation system, and driven by the cooling liquid circulation system, the cooling liquid passes through The liquid inlet to the cooling liquid channel circulates to the liquid outlet, and the cooling liquid passes through the substrate to take away its heat, thereby improving the heat dissipation capacity of the power module, and also improving the stability, so that the power chip maintains a normal working state and improves The current-carrying capacity and service life of the power chip are improved.
  • Figure 1 is a graph of the relationship between the failure rate of the power chip and the junction temperature
  • Fig. 2 is a schematic structural diagram of an embodiment of a power module of the present invention
  • Figure 3 is a longitudinal sectional view of Figure 2;
  • Figure 4 is a transverse cross-sectional view of Figure 2;
  • FIG. 5 is a cross-sectional view of an embodiment of the IGBT power module of the present invention.
  • Figure 6 is a cross-sectional view of another part of Figure 5;
  • FIG. 7 is a cross-sectional view of another embodiment of the IGBT power module of the present invention.
  • FIG. 8 is a schematic structural diagram and a cross-sectional view of a substrate in an embodiment of the power module of the present invention.
  • Fig. 9 is a schematic structural diagram of a pipe joint in an embodiment of the power module of the present invention.
  • Label name Label name 100 Substrate 110 First sub-substrate 200 Power chip 120 Second sub-substrate 300 shell 101 Liquid inlet 103 Coolant channel 102 Outlet 400 Pipe joint 131 Lower copper layer 132 Ceramic layer 133 Upper copper layer 111 Solder layer 112 Copper connection layer 104 Connector E Emitter 130 Double-sided copper clad ceramic board C collector 140 Control chip G Grid
  • the power module is a module that is refilled into power electronic devices according to a certain combination of functions.
  • IGBT power module is a power module composed of insulated gate bipolar transistors. Since the IGBT power module is a MOSFET structure, the gate of the IGBT power module is electrically isolated from the emitter by a layer of oxide film, which has excellent device performance. It is widely used in servo motors, frequency converters, frequency conversion household appliances and other fields.
  • the IPM intelligent power module is an advanced hybrid integrated power component with IGBT as the core, which is composed of a high-speed low-power die, an optimized gate drive circuit, and a fast protection circuit.
  • Existing power modules usually include a double-sided copper-clad ceramic board (DBC, Direct Bonding Copper) and power chips soldered on a double-sided copper-clad ceramic board.
  • DBC Double-sided copper-clad ceramic board
  • the thermal resistance of the double-sided copper-clad ceramic board accounts for more than half of the overall thermal resistance of the system , which severely limits the heat dissipation capacity of the power module system and affects the normal operation of the power chip.
  • Figure 1 is a graph of the relationship between the failure rate of the power chip and the junction temperature. It can be seen from the figure that the lower the junction temperature, the lower the failure rate. Therefore, effectively controlling the junction temperature of the semiconductor power chip can significantly reduce the failure rate. Reduce product failure rate, increase its reliability and extend product life.
  • the present invention proposes a power module suitable for various semiconductor devices, especially electronic components with IGBT power modules, IPM power modules or SiC power modules, which are not limited here.
  • the power module includes a substrate 100, a power chip 200, and a housing 300.
  • the substrate 100 is provided with a liquid inlet 101, a liquid outlet 102, and a connection between the liquid inlet 101 and the outlet.
  • the power chip 200 is mounted on the substrate 100, and the substrate 100 and the power chip 200 are packaged in the housing 300.
  • the housing 300 is a plastic molding compound, which is formed by packaging.
  • the material of the substrate 100 is usually a copper plate.
  • the copper plate itself has good thermal conductivity. It can transfer the heat of the heating device such as the power chip 200 to the cooling liquid passing through the substrate 100 through thermal conduction.
  • the cooling liquid is then discharged through the liquid outlet 102 and The heat is taken away.
  • liquid-cooling a single power chip 200.
  • Multiple power chips 200, sensors and other electronic components can be provided on the substrate 100, and the substrate 100 can also be provided in multiples. At this point, the number of various chips, electronic components and substrates 100 is not limited.
  • liquid inlet 101 is used to communicate with the discharge end of the cooling liquid circulation system
  • liquid outlet 102 is used to communicate with the liquid inlet end of the cooling liquid circulation system, and the cooling liquid passes through the liquid inlet under the driving of the cooling liquid circulation system. From the port 101 to the cooling liquid channel 103 circulates to the liquid outlet 102.
  • a liquid inlet 101, a liquid outlet 102, and a cooling liquid channel 103 connecting the liquid inlet 101 and the liquid outlet 102 are opened on the substrate 100 of the power module, the power chip 200 is mounted on the substrate 100, and the power chip 200 They are all enclosed in a shell, where the liquid inlet 101 is used to communicate with the discharge end of the cooling liquid circulation system, and the liquid outlet 102 is used to communicate with the liquid inlet end of the cooling liquid circulation system, and the cooling liquid is driven by the cooling liquid circulation system.
  • the cooling liquid circulates to the liquid outlet 102 through the liquid inlet 101 to the cooling liquid channel 103, and the cooling liquid passes through the substrate 100 to take its heat away, thereby improving the heat dissipation capacity of the power module and improving the stability, so that the power chip 200 can maintain
  • the normal working condition improves the current carrying capacity and service life of the power chip.
  • the substrate 100 includes a first sub-substrate 110 and a second sub-substrate 120 disposed opposite to the first sub-substrate 110.
  • the first sub-substrate 110 has a first bonding surface
  • the first bonding surface is provided with a first cooling liquid tank connected to the side walls on both sides thereof
  • the second sub-substrate 120 has a second bonding surface
  • the second bonding surface is provided with a communicating position corresponding to the first cooling liquid tank.
  • the power chip 200 includes a first power chip and a second power chip.
  • the first power chip is disposed on the side of the first sub-substrate 110 facing away from the coolant channel 103
  • the second power chip is disposed on the second sub-substrate 120 facing away from the side.
  • the substrate 100 has a split structure, and the first sub-substrate 110 and the second sub-substrate 120 can be fixed together by welding, which facilitates the processing and manufacturing of the power module and improves the production efficiency.
  • At least one of the first sub-substrate 110 and the second sub-substrate 120 is provided with two openings (separately provided on both side walls) and a communication connecting the two openings.
  • the cavity forms a liquid inlet 101, a liquid outlet 102 and a cooling liquid channel 103.
  • it can also be a structure of a single substrate 100, which is not limited here.
  • the liquid inlet 101 and the liquid outlet 102 are equipped with pipe joints 400, and the two pipe joints 400 are respectively used to connect the liquid discharge end and the liquid inlet end of the cooling liquid circulation system.
  • the pipe joint 400 can be embedded in the housing 300 and communicate with the liquid inlet 101 or the liquid outlet 102. In this way, it is convenient for the power module to connect to the cooling liquid circulation system, and at the same time, better sealing performance is achieved, thereby avoiding cooling liquid leakage .
  • FIG. 8 is a schematic structural diagram and a cross-sectional view of a substrate in an embodiment of a power module of the present invention
  • FIG. 9 is a schematic structural diagram of a pipe joint in an embodiment of the power module of the present invention.
  • the substrate 100 has sufficient load-bearing capacity and is provided with a cooling liquid channel 103 with a larger space.
  • the pipe joint 900 and the substrate 100 have good sealing performance, which can avoid the leakage of the cooling liquid, so that the power module can reach Better heat dissipation performance.
  • the connection hole reserved on the substrate 100 (where the emitter E is installed in the figure) is used for mechanical fixing of the power module.
  • the number of cooling liquid channels 103 is multiple, and the multiple cooling liquid channels 103 may be evenly arranged inside the substrate 100 at intervals.
  • the cross-sectional specification of each coolant channel 103 can be set to 1.2mm ⁇ 1.2mm or 1.5mm ⁇ 1.5mm. Of course, it can be set here according to the heat dissipation requirements of the power module, and larger specifications can be set in places with greater heat dissipation requirements.
  • a plurality of cooling liquid channels 103 can be set to share the same liquid inlet 101 and the same liquid outlet 102, or the corresponding liquid inlet 101 and liquid outlet 102 can be set independently.
  • the number of ports 101 and outlet ports 102 is not limited.
  • the power module of the present invention may be an IGBT power module, an IPM power module or a SiC power module, etc.
  • the structure of the IGBT power module will be described in detail below, which does not mean that the present invention is only applicable to IGBT power modules.
  • the substrate 100 is a copper plate
  • the power module further includes a double-sided copper-clad ceramic board 130.
  • the double-sided copper-clad ceramic board 130 is mounted on the substrate 100 and is located close to the power chip 200.
  • the copper ceramic board 130 has an upper copper layer 133, a ceramic layer 132, and a lower copper layer 131 that are stacked.
  • the lower copper layer 131 of the double-sided copper-clad ceramic board 130 is attached and mounted on the substrate 100.
  • a control circuit is provided on the upper copper layer 133, and the control circuit includes a control chip 140, and the control chip 140 and the power chip 200 are connected through the upper copper layer 133 and the connector 104.
  • control chip 140 is used to control the power chip 200 to turn on or turn off the corresponding work.
  • the upper copper layer 133 of the double-sided copper-clad ceramic board 130 is also provided with passive components, sensors, and other low-power chips connected to the control chip 140 to form a control circuit.
  • the double-sided copper-clad ceramic board 130 is composed of a lower copper layer 131, a ceramic layer 132, and an upper copper layer 133.
  • the lower copper layer 131 is soldered to the substrate 100 by solder, and the upper copper layer 133 is corroded to form a system wiring circuit for installation.
  • the electronic components of the control circuit such as the control chip 140, passive components, sensors, etc. form a multifunctional control power module.
  • the number of power chips 200 is multiple, and the multiple power chips 200 are respectively mounted on the substrate 100.
  • the upper copper layer 133 has multiple lines corresponding to the control chip 140, and the multiple power chips 200 pass through the connectors.
  • 104 is connected to multiple lines in a one-to-one correspondence.
  • each power chip 200 has three electrodes, two of which are provided on the front side of the power chip 200 and the other electrode is provided on the back side of the power chip 200.
  • the two electrodes on the front of the power chip 200 are connected to the upper copper layer 133 of the double-sided copper-clad ceramic board 130, the electrodes on the back of the power chip 200 are attached to the substrate 100, and the first pin, the second pin, and the The third pin is connected with the upper copper layer 133 of the double-sided copper-clad ceramic board 130 to form the input terminal and the output terminal of the power module.
  • Input terminals and output terminals (pins) can be set according to the design and application needs of the power module, and three or more can be set.
  • the number is not limited
  • the power chip 200 and the substrate 100 can be fixed by welding, and the lower copper layer 131 of the double-sided copper-clad ceramic board 130 and the substrate 100 can be fixed by welding to form the solder layer 111 shown in the figure. .
  • a high power chip 200 is arranged between the power chip 200 and the substrate 100.
  • the copper connection layer 112, the copper connection layer 112 and the substrate 100 are fixed by welding or the copper connection layer 112 and the substrate 100 are integrally formed to become a part of the substrate 100.
  • Each power chip 200 has three electrodes, of which two electrodes are provided on the front side of the power chip 200 and the other electrode is provided on the back side of the power chip 200.
  • the plurality of pins protruding from the housing 300, and the plurality of pins include at least a first pin, a second pin, and a third pin that correspond to the three electrodes of the power chip 200 one-to-one (from FIG. 3).
  • one electrode on the front of the power chip 200 is attached to the copper connection layer 112 of the substrate 100, and the other electrode on the front of the power chip 200 is connected to the upper copper layer 133 of the double-sided copper-clad ceramic board 130, and is located on the power chip 200.
  • the electrode on the back is connected with the upper copper layer 133 through the connector 104, and the first pin, the second pin, and the third pin are connected with the upper copper layer 133 to form the input terminal and the output terminal of the power module.
  • the input terminals and output terminals (pins) can be set according to the design and application needs of the power module, and three or more can be set. Here, the number is not limited
  • the copper connection layer 112 and the substrate 100 may be integrally formed and manufactured, or may be a separate structure bonded by welding or the like.
  • the reason why the present invention chooses copper as its connecting layer is because copper has good thermal conductivity.
  • other conductive metals with better thermal conductivity can also be used as the connecting layer, which is not limited here.
  • connecting member 104 may be a metal wire, a metal row or other connecting devices, which is not limited here.
  • the foregoing electrodes may be the collector C, the gate G, or the emitter E of the power chip 200, and there is no one-to-one limited relationship.
  • the collector C of the power chip 200 when the collector C of the power chip 200 is connected to the substrate 100, it is necessary to use insulating liquid such as oil as the cooling liquid to avoid the problem of short circuit in the cooling liquid circulation system.
  • insulating liquid such as oil
  • the emitter E of the power chip 200 when the emitter E of the power chip 200 is connected to the substrate 100, it may be considered to directly use water as the cooling liquid of the cooling liquid circulation system.
  • the power chip 200 and the substrate 100, the power chip 200 and the first section 1331 of the upper copper layer 133 of the double-sided copper-clad ceramic board 130 can be fixed by welding, and the lower copper of the double-sided copper-clad ceramic board 130
  • the layer 131 and the substrate 100 can be fixed by soldering to form the solder layer 111 as shown in the figure.
  • the upper copper layer 133, the lower copper layer 131, the copper connection layer 112, and the ceramic layer 132 mentioned above all have equivalent replacements of other materials, and the materials used are not limited.
  • the power module further includes a temperature sensor (not shown in the figure), and the temperature sensor is installed on the substrate 100 and connected to the controller of the cooling liquid circulation system.
  • the temperature sensor is used to detect the working temperature of the power chip 200 and/or the substrate 100 and send the working temperature to the controller of the coolant circulation system to adjust the inlet temperature, flow rate, or flow rate of the coolant under the control of the controller. Pressure difference and other parameters.
  • the power module realizes real-time monitoring of the working temperature of the power chip 200 or the substrate 100 by setting a temperature sensor.
  • the cooling liquid is adjusted under the control of the cooling liquid circulation system. Liquid temperature, flow rate, or pressure difference between the inlet and outlet of the liquid, etc., so as to adjust the actual working temperature of the power chip 200 to keep it in a normal working state all the time.
  • the power module of the present invention has the following advantages over the prior art:
  • the liquid cooling system inside the substrate 100 can be forced to cool, and the heat dissipation capacity is N times that of the traditional package heat conduction method;
  • the working temperature of the power chip 200 can be effectively adjusted by controlling the inlet and outlet pressures of the coolant circulation system to keep it in an efficient working temperature zone;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明公开了一种功率模块,该功率模块包括基板、与基板相连的DBC(双面覆铜陶瓷板)、安装于DBC上铜层的控制电路、功率芯片、模块输入/输出接线端子、及外壳,基板开设有进液口、出液口及连通进液口与出液口的冷却液通道,功率芯片安装于基板上,控制器件、小功率芯片及无源元件等安装于DBC上,基板、DBC和功率芯片封装于外壳内。其中,进液口用于连通冷却液循环***的排液端,出液口用于连通冷却液循环***的进液端,并且在冷却液循环***驱动下,冷却液经进液口至冷却液通道向出液口循环流动。本发明改进了功率模块的结构,提高了功率模块的散热能力,提升了其稳定性,以使功率芯片维持正常工作状态,并提升了功率芯片的载流能力和使用寿命。

Description

一种功率模块 技术领域
本发明涉及功率芯片制造技术领域,尤其涉及一种功率模块。
背景技术
功率模块是功率电力电子器件按一定的功能组合再灌封成的一个模块。其中,较为常见的有IGBT功率模块、IPM功率模块及SiC功率模块。IGBT功率模块是以绝缘栅双极型晶体管构成的功率模块。由于IGBT功率模块为MOSFET结构,IGBT功率模块的栅极通过一层氧化膜与发射极实现电隔离,具有出色的器件性能。广泛应用于伺服电机,变频器,变频家电等领域。而IPM智能功率模块是以IGBT为内核的先进混合集成功率部件,由高速低功耗管芯和优化的栅极驱动电路,以及快速保护电路构成。
现有的功率模块通常包括双面覆铜陶瓷板(DBC,Direct Bonding Copper)及焊接于双面覆铜陶瓷板上的功率芯片,其双面覆铜陶瓷板热阻占***总体热阻一半以上,严重限制了功率模块***的散热能力,影响了功率芯片的正常工作。因此,如何提升功能模块的散热能力成为了亟待解决的问题。
发明内容
本发明的主要目的在于提供一种功率模块,旨在提高功率模块的散热能力,提升功率模块的稳定性,以使功率芯片维持正常的工作状态。
为实现上述目的,本发明提出一种一种功率模块,所述功率模块包括:
基板,所述基板开设有进液口、出液口及连通所述进液口与所述出液口的冷却液通道;
功率芯片,安装于所述基板上;
外壳,所述基板和所述功率芯片均封装于所述外壳内。
进一步地,所述基板包括第一子基板及与所述第一子基板相对设置的第二子基板;
所述第一子基板具有第一贴合面,所述第一贴合面上设有连通其两侧侧壁的第一冷却液槽,所述第二子基板具有第二贴合面,所述第二贴合面上对应所述第一冷却液槽的位置设置有连通其两侧侧壁的第二冷却液槽,所述第一子基板的第一贴合面与所述第二子基板的第二贴合面通过焊接贴合,以形成所述进液口、所述出液口、及所述冷却液通道;
或者,所述第一子基板和所述第二子基板中至少一个设有两个开口及连通两个所述开口的空腔,以形成所述进液口、所述出液口、及所述冷却液通道;
其中,所述功率芯片包括第一功率芯片及第二功率芯片,所述第一功率芯片设置于所述第一子基板背向所述冷却液通道的一侧,所述第二功率芯片设置于所述第二子基板背向所述冷却液通道的一侧。
进一步地,所述进液口及所述出液口安装有管接头。
进一步地,所述冷却液通道的数量为多个,多个所述冷却液通道均设置于所述基板的内部。
进一步地,所述功率模块还包括:
双面覆铜陶瓷板,安装于所述基板上并靠近所述功率芯片设置,所述双面覆铜陶瓷板具有层叠设置的上铜层、陶瓷层和下铜层,所述双面覆铜陶瓷板的下铜层贴合安装于所述基板上,所述双面覆铜陶瓷板的上铜层上设置有控制电路,所述控制电路包括控制芯片,所述控制芯片与所述功率芯片通过所述上铜层和连接件连接。
进一步地,所述功率芯片为多个,多个所述功率芯片分别安装于所述基板上,所述上铜层具有对应连接所述控制芯片的多条线路,多个所述功率芯片通过连接件与所述多条线路一一对应连接。
进一步地,每一所述功率芯片具有三个电极,其中两个所述电极设于所述功率芯片的正面,另一所述电极设于所述功率芯片的背面;
所述外壳上伸出设置有多个引脚,多个所述引脚至少包括与所述功率芯片的三个电极一一对应的第一引脚、第二引脚和第三引脚;
其中,位于所述功率芯片正面的两个电极与所述双面覆铜陶瓷板的上铜层连接,位于所述功率芯片背面的电极贴设于所述基板上,所述第一引脚、所述第二引脚及第三引脚与所述双面覆铜陶瓷板的上铜层连接以形成所述功率模块的输入端子和输出端子。
进一步地,每一所述功率芯片具有三个电极,其中两个所述电极设于所述功率芯片的正面,另一所述电极设于所述功率芯片的背面;
所述外壳上伸出设置有多个引脚,多个所述引脚至少包括与所述功率芯片的三个电极一一对应的第一引脚、第二引脚和第三引脚;
其中,所述功率芯片与所述基板之间设置有铜连接层,所述铜连接层与所述基板通过焊接固定或者所述铜连接层与所述基板一体成型;
位于所述功率芯片正面的一个电极贴设于所述基板的铜连接层上,位于所述功率芯片正面的另一个电极与所述双面覆铜陶瓷板的上铜层连接,位于所述功率芯片背面的电极与所述上铜层通过连接件连接,所述第一引脚、所述第二引脚及所述第三引脚与所述上铜层连接,以形成所述功率模块的输入端子和输出端子。
进一步地,所述功率模块还包括温度传感器,所述温度传感器安装于所述基板上;
所述温度传感器,用于检测所述功率芯片和/或所述基板的工作温度并将所述工作温度发送至所述冷却液循环***的控制器,以在所述控制器的控制下调节冷却液的进液温度、流速或进出液的压力差。
进一步地,所述功率模块为IGBT功率模块、IPM功率模块或SiC功率模块。
有益效果
在本发明的技术方案中,由于该功率模块的基板开设有进液口、出液口及连通进液口与出液口的冷却液通道,功率芯片安装于基板上,基板、DBC和功率芯片均封装于外壳内,其中,进液口用于连通冷却液循环***的排液端,出液口用于连通冷却液循环***的进液端,并且在冷却液循环***驱动下,冷却液经进液口至冷却液通道向出液口循环流动,冷却液经过基板将其热量带走,从而提高了功率模块的散 热能力,也提升了稳定性,以使功率芯片维持正常工作状态,并提升了功率芯片的载流能力和使用寿命。
附图说明
图1为功率芯片的故障率与结温之间的关系曲线图;
图2为本发明功率模块一实施例的结构示意图;
图3为图2的纵向剖面图;
图4为图2的横向剖面图;
图5为本发明IGBT功率模块一实施例的剖视图;
图6为图5另一部位的剖视图;
图7为本发明IGBT功率模块另一实施例的剖视图;
图8为本发明功率模块一实施例中基板的结构示意图及剖视图;
图9为本发明功率模块一实施例中管接头的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 基板 110 第一子基板
200 功率芯片 120 第二子基板
300 外壳 101 进液口
103 冷却液通道 102 出液口
400 管接头 131 下铜层
132 陶瓷层 133 上铜层
111 焊料层 112 铜连接层
104 连接件 E 发射极
130 双面覆铜陶瓷板 C 集电极
140 控制芯片 G 栅极
具体实施方式
本发明目的的实现、功能特点及优点将结合实施例,以下参照附图做进一步说明。
功率模块是功率电力电子器件按一定的功能组合再灌封成的一 个模块。其中,较为常见的有IGBT功率模块、IPM功率模块和SiC功率模块。IGBT功率模块是以绝缘栅双极型晶体管构成的功率模块。由于IGBT功率模块为MOSFET结构,IGBT功率模块的栅极通过一层氧化膜与发射极实现电隔离,具有出色的器件性能。广泛应用于伺服电机,变频器,变频家电等领域。而IPM智能功率模块是以IGBT为内核的先进混合集成功率部件,由高速低功耗管芯和优化的栅极驱动电路,以及快速保护电路构成。
现有的功率模块通常包括双面覆铜陶瓷板(DBC,Direct Bonding Copper)及焊接于双面覆铜陶瓷板上的功率芯片,其双面覆铜陶瓷板热阻占***总体热阻一半以上,严重限制了功率模块***的散热能力,影响了功率芯片的正常工作。
此外,参考图1,图1为功率芯片的故障率与结温之间的关系曲线图,由图可知:结温越低,故障率越低。因此,有效地控制半导体功率芯片结温,可以明显降低故障率。降低产品故障率,可增加其可靠性,延长产品使用寿命。
为了提升功率模块的散热性能,本发明提出一种功率模块,适用于各种半导体器件,尤其是具有IGBT功率模块、IPM功率模块或SiC功率模块的电子元器件,此处不限。
参照图2至图8,在本发明一实施例中,该功率模块包括基板100、功率芯片200及外壳300,基板100开设有进液口101、出液口102及连通进液口101与出液口102的冷却液通道103,功率芯片200安装于基板100上,基板100及功率芯片200封装于外壳300内。其中,外壳300为塑封料,通过封装形成。基板100的材质通常为铜板,铜板本身具有良好的导热性能,能将功率芯片200等发热器件的热量通过热传导的方式传递给经过基板100的冷却液,冷却液再经出液口102排出并将热量带走。
值得一提的是,在本实施例中,不限于对单个功率芯片200进行液冷处理,基板100上可设置多个功率芯片200、传感器等电子元器件,基板100也可设置为多个,此处,对各类芯片、电子元器件及基板100的数量不做限定。
需要说明的是,进液口101用于连通冷却液循环***的排液端,出液口102用于连通冷却液循环***的进液端,并且在冷却液循环***驱动下冷却液经进液口101至冷却液通道103向出液口102循环流动。
本发明通过在该功率模块的基板100开设进液口101、出液口102及连通进液口101与出液口102的冷却液通道103,功率芯片200安装于基板100上,和功率芯片200均封装于外壳内,其中,进液口101用于连通冷却液循环***的排液端,出液口102用于连通冷却液循环***的进液端,并且在冷却液循环***驱动下冷却液经进液口101至冷却液通道103向出液口102循环流动,冷却液经过基板100将其热量带走,从而提高了功率模块的散热能力,也提升了稳定性,以使功率芯片200维持正常的工作状态,并提升了功率芯片的载流能力和使用寿命。
在一实施例中,参考图3及图4,该基板100包括第一子基板110及与第一子基板110相对设置的第二子基板120,第一子基板110具有第一贴合面,第一贴合面上设有连通其两侧侧壁的第一冷却液槽,第二子基板120具有第二贴合面,第二贴合面上对应第一冷却液槽的位置设置有连通其两侧侧壁的第二冷却液槽,第一子基板110的第一贴合面与第二子基板120的第二贴合面贴合,以形成进液口101、出液口102及冷却液通道103。其中,功率芯片200包括第一功率芯片及第二功率芯片,第一功率芯片设置于第一子基板110背向冷却液通道103的一侧、第二功率芯片设置于第二子基板120背向冷却液通道103的一侧。在本实施例中,基板100为分体式的结构,第一子基板110与第二子基板120可通过焊接固定在一起,便于功率模块的加工制造,提升生产效率。
此外,在一些实施例中,为了实现更好的密封性能,第一子基板110和第二子基板120中至少一个设有两个开口(分设于两侧侧壁上)及连通两个开口的空腔,以形成进液口101、出液口102及冷却液通道103。当然,也可以是单个基板100的结构设置,此处不限。
进一步地,主要参考图2及图4,进液口101及出液口102安装 有管接头400,两个管接头400分别用于连接冷却液循环***的排液端和进液端。管接头400可嵌设于外壳300内并与进液口101或出液口102连通,如此,可方便功率模块连接冷却液循环***,同时也实现了较好的密封性能,从而避免冷却液泄漏。
参考图8及图9,图8为本发明功率模块一实施例中基板的结构示意图及剖视图,图9为本发明功率模块一实施例中管接头的结构示意图。在本实施例中,基板100具有足够的承载能力且设置有较大空间的冷却液通道103,管接头900与基板100之间具有良好的密封性能,能避免冷却液泄露,从而使功率模块达到更好的散热性能。需要说明的是,基板100上保留有的连接孔(图中发射极E的安装处)是用于功率模块机械固定。
为了实现更好的散热效果,在本实施例中,冷却液通道103的数量为多个,多个冷却液通道103可间隔均匀地设置于基板100内部。每一冷却液通道103的截面规格可设置为1.2mm×1.2mm或1.5mm×1.5mm,当然,此处可根据功率模块的散热需求进行设置,可在散热需求较大的部位设置更大规格的冷却液通道103或者增设多组冷却液通道103,在散热需求较小的部位设置较小规格的冷却液通道103或不设置冷却液通道103,以满足基板100一定的承重能力并实现较好的冷却效果。需要说明的是,多个冷却液通道103可设置成共用同一进液口101及同一出液口102,也可分别独立设置对应的进液口101及出液口102,此处,对进液口101及出液口102的数量不做限定。
需要说明的是,本发明的功率模块可以是IGBT功率模块、IPM功率模块或SiC功率模块等,下面将对IGBT功率模块的结构进行详细地介绍,并不代表本发明仅适用于IGBT功率模块。
参考图5,在一实施例中,基板100为铜板,功率模块还包括双面覆铜陶瓷板130,该双面覆铜陶瓷板130安装于基板100上并靠近功率芯片200设置,双面覆铜陶瓷板130具有层叠设置的上铜层133、陶瓷层132和下铜层131,双面覆铜陶瓷板130的下铜层131贴合安装于基板100上,双面覆铜陶瓷板130的上铜层133上设置有控制电 路,控制电路包括控制芯片140,控制芯片140与功率芯片200通过上铜层133和连接件104连接。其中,控制芯片140用于控制功率芯片200开启或关停相应的工作。一般,在双面覆铜陶瓷板130的上铜层133还设置有与该控制芯片140连接的无源元件、传感器及其他小功率的芯片等,以组成控制电路。
双面覆铜陶瓷板130由下铜层131、陶瓷层132及上铜层133复合形成,下铜层131通过焊料焊接于基板100上,上铜层133通过腐蚀形成***布线线路,以供安装控制芯片140、无源元件和传感器等控制电路的电子元器件,从而形成多功能控制功率模块。
在一些实施例中,功率芯片200的数量为多个,多个功率芯片200分别安装于基板100上,上铜层133具有对应连接控制芯片140的多条线路,多个功率芯片200通过连接件104与多条线路一一对应连接。
进一步地,在一实施例中,结合图3及图6,每一功率芯片200具有三个电极,其中两个电极设于功率芯片200的正面,另一电极设于功率芯片200的背面。外壳300上伸出设置有多个引脚,多个引脚至少包括与功率芯片200的三个电极一一对应的第一引脚、第二引脚和第三引脚(图3中的从外壳300引出的集电极C和栅极G)。其中,位于功率芯片200正面的两个电极与双面覆铜陶瓷板130的上铜层133连接,位于功率芯片200背面的电极贴设于基板100上,第一引脚、第二引脚及第三引脚与双面覆铜陶瓷板130的上铜层133连接以形成功率模块的输入端子和输出端子。输入端子和输出端子(引脚)可依据功率模块设计及应用需要,可以设置三个及三个以上。此处,对其数量不做限定
在本实施例中,功率芯片200与基板100之间可通过焊接固定,双面覆铜陶瓷板130的下铜层131与基板100之间可通过焊接固定,以形成了图示的焊料层111。
在另一实施例中,结合图3及图7,为了使功率芯片200的高度设置的更为合理,以便于封装功率芯片200,功率芯片200与基板100之间设置有用于垫高功率芯片200的铜连接层112,铜连接层112与 基板100通过焊接固定或者铜连接层112与基板100一体成型,成为基板100的一个部分。每一功率芯片200具有三个电极,其中两个电极设于功率芯片200的正面,另一电极设于功率芯片200的背面。
外壳300上伸出设置有多个引脚,多个引脚至少包括与功率芯片200的三个电极一一对应的第一引脚、第二引脚和第三引脚(图3中的从外壳300引出的集电极C和栅极G)。
其中,位于功率芯片200正面的一个电极贴设于基板100的铜连接层112上,位于功率芯片200正面的另一个电极与双面覆铜陶瓷板130的上铜层133连接,位于功率芯片200背面的电极与上铜层133通过连接件104连接,第一引脚、第二引脚及第三引脚与上铜层133连接,以形成功率模块的输入端子和输出端子。输入端子和输出端子(引脚)可依据功率模块设计及应用需要,可以设置三个及三个以上。此处,对其数量不做限定
在本实施例中,铜连接层112与基板100可以是一体成型制造,也可以是通过焊接等方式贴合的分体式结构。本发明选用铜作为其连接层是由于铜具有良好的导热性能,当然,也可采用其他具有较好导热性能的导电金属作为连接层,此处不做限定。
需要说明的是,上述的连接件104可以是金属线、金属排或其它连接器件,此处不限。上述的电极可以是功率芯片200的集电极C、栅极G或发射极E,没有一对一的限定关系。
此外,当功率芯片200的集电极C接基板100,需要采用油等绝缘液体作为冷却液,以避免冷却液循环***短路的问题。当功率芯片200的发射极E接基板100时,可考虑直接使用水作为冷却液循环***的冷却液。
在本实施例中,功率芯片200与基板100、功率芯片200与双面覆铜陶瓷板130的上铜层133第一段1331之间可通过焊接固定,双面覆铜陶瓷板130的下铜层131与基板100之间可通过焊接固定,以形成了图示的焊料层111。
需要说明的是,上述所提及的上铜层133、下铜层131、铜连接层112及陶瓷层132等均存在其他材料的等效替换,并不限定所采用 的材料。
在一些实施例中,功率模块还包括温度传感器(图未示出),温度传感器安装于基板100上并与冷却液循环***的控制器连接。温度传感器用于检测功率芯片200和/或基板100的工作温度并将工作温度发送至冷却液循环***的控制器,以在控制器的控制下调节冷却液的进液温度、流速或进出液的压力差等等参数。
可以理解的是,该功率模块通过设置温度传感器实现了对功率芯片200或基板100实时的工作温度的监测,根据功率芯片200正常工作温度范围,在冷却液循环***的控制下调节冷却液的进液温度、流速或进出液的压力差等,从而对功率芯片200的实际工作温度进行调整,以使其始终保持在正常工作状态。
综上所述,本发明的功率模块相对现有技术来说具有以下优点:
1、基板100内部的液冷***可以强制冷却,散热能力是传统封装热传导方式的N倍;
2、可以通过控制冷却液循环***的进水温度、进出水压力,有效调节功率芯片200的工作温度,使其保持在一个高效的工作温区;
3、可以保证功率芯片200、双面覆铜陶瓷板130、基板100等之间的温度差异在较为合理的范围,降低因温度变化、材料热膨胀系数差异等,带来的各层材料之间的内应力;
4、可以有效控制功率芯片200结温,消除结温过高,降低产品失效率,影响使用寿命的风险;
5、有效控制功率芯片200结温,还可以大幅提升功率模块***承载能力。
以上所述仅为本发明的可选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种功率模块,其特征在于,所述功率模块包括:
    基板,所述基板开设有进液口、出液口及连通所述进液口与所述出液口的冷却液通道;
    功率芯片,安装于所述基板上;
    外壳,所述基板和所述功率芯片均封装于所述外壳内。
  2. 如权利要求1所述的功率模块,其特征在于,所述基板包括第一子基板及与所述第一子基板相对设置的第二子基板;
    所述第一子基板具有第一贴合面,所述第一贴合面上设有连通其两侧侧壁的第一冷却液槽,所述第二子基板具有第二贴合面,所述第二贴合面上对应所述第一冷却液槽的位置设置有连通其两侧侧壁的第二冷却液槽,所述第一子基板的第一贴合面与所述第二子基板的第二贴合面通过焊接贴合,以形成所述进液口、所述出液口、及所述冷却液通道;
    或者,所述第一子基板和所述第二子基板中至少一个设有两个开口及连通两个所述开口的空腔,以形成所述进液口、所述出液口、及所述冷却液通道;
    其中,所述功率芯片包括第一功率芯片及第二功率芯片,所述第一功率芯片设置于所述第一子基板背向所述冷却液通道的一侧,所述第二功率芯片设置于所述第二子基板背向所述冷却液通道的一侧。
  3. 如权利要求1所述的功率模块,其特征在于,所述进液口及所述出液口安装有管接头。
  4. 如权利要求1所述的功率模块,其特征在于,所述冷却液通道的数量为多个,多个所述冷却液通道均设置于所述基板的内部。
  5. 如权利要求1-4任一项所述的功率模块,其特征在于,所述功率模块还包括温度传感器,所述温度传感器安装于所述基板上;
    所述温度传感器,用于检测所述功率芯片和/或所述基板的工作温度并将所述工作温度发送至所述冷却液循环***的控制器,以在所述控制器的控制下调节冷却液的进液温度、流速或进出液的压力差。
  6. 如权利要求1-4任一项所述的功率模块,其特征在于,所述功率模块还包括:
    双面覆铜陶瓷板,安装于所述基板上并靠近所述功率芯片设置,所述双面覆铜陶瓷板具有层叠设置的上铜层、陶瓷层和下铜层,所述双面覆铜陶瓷板的下铜层贴合安装于所述基板上,所述双面覆铜陶瓷板的上铜层上设置有控制电路,所述控制电路包括控制芯片,所述控制芯片与所述功率芯片通过所述上铜层和连接件连接。
  7. 如权利要求6所述的功率模块,其特征在于,所述功率芯片为多个,多个所述功率芯片分别安装于所述基板上,所述上铜层具有对应连接所述控制芯片的多条线路,多个所述功率芯片通过连接件与所述多条线路一一对应连接。
  8. 如权利要求7所述的功率模块,其特征在于,每一所述功率芯片具有三个电极,其中两个所述电极设于所述功率芯片的正面,另一所述电极设于所述功率芯片的背面;
    所述外壳上伸出设置有多个引脚,多个所述引脚至少包括与所述功率芯片的三个电极一一对应的第一引脚、第二引脚和第三引脚;
    其中,位于所述功率芯片正面的两个电极与所述双面覆铜陶瓷板的上铜层连接,位于所述功率芯片背面的电极贴设于所述基板上,所述第一引脚、所述第二引脚及第三引脚与所述双面覆铜陶瓷板的上铜层连接以形成所述功率模块的输入端子和输出端子。
  9. 如权利要求7所述的功率模块,其特征在于,每一所述功率芯片具有三个电极,其中两个所述电极设于所述功率芯片的正面,另一所述电极设于所述功率芯片的背面;
    所述外壳上伸出设置有多个引脚,多个所述引脚至少包括与所述功率芯片的三个电极一一对应的第一引脚、第二引脚和第三引脚;
    其中,所述功率芯片与所述基板之间设置有铜连接层,所述铜连接层与所述基板通过焊接固定或者所述铜连接层与所述基板一体成型;
    位于所述功率芯片正面的一个电极贴设于所述基板上的铜连接层上,位于所述功率芯片正面的另一个电极与所述双面覆铜陶瓷板的 上铜层连接,位于所述功率芯片背面的电极与所述上铜层通过连接件连接,所述第一引脚、所述第二引脚及所述第三引脚与所述上铜层连接,以形成所述功率模块的输入端子和输出端子。
  10. 如权利要求1所述的功率模块,其特征在于,所述功率模块为IGBT功率模块、IPM功率模块或SiC功率模块。
PCT/CN2021/091814 2020-05-06 2021-05-04 一种功率模块 WO2021223695A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010376381.9 2020-05-06
CN202010376381.9A CN111540723A (zh) 2020-05-06 2020-05-06 功率半导体器件

Publications (1)

Publication Number Publication Date
WO2021223695A1 true WO2021223695A1 (zh) 2021-11-11

Family

ID=71970528

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/091813 WO2021223694A1 (zh) 2020-05-06 2021-05-04 一种功率半导体器件
PCT/CN2021/091814 WO2021223695A1 (zh) 2020-05-06 2021-05-04 一种功率模块

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091813 WO2021223694A1 (zh) 2020-05-06 2021-05-04 一种功率半导体器件

Country Status (2)

Country Link
CN (1) CN111540723A (zh)
WO (2) WO2021223694A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540723A (zh) * 2020-05-06 2020-08-14 晏新海 功率半导体器件
CN116314069B (zh) * 2023-05-23 2023-11-03 深圳市秀武电子有限公司 一种mos半导体功率器件及其封装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101277A (ja) * 2001-09-26 2003-04-04 Toyota Motor Corp 発熱素子冷却用構造体及びその製造方法
JP2006303290A (ja) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp 半導体装置
JP2009177038A (ja) * 2008-01-28 2009-08-06 Hitachi Ltd パワー半導体モジュール
CN101593655A (zh) * 2009-07-17 2009-12-02 威海新佳电子有限公司 一种pdp功率集成模块及其制作方法
US20130010425A1 (en) * 2011-07-08 2013-01-10 Samsung Electro-Mechanics Co., Ltd. Power module package and method for manufacturing the same
CN111540717A (zh) * 2020-05-06 2020-08-14 晏新海 功率模块

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000057810A (ko) * 1999-01-28 2000-09-25 가나이 쓰토무 반도체 장치
US6794740B1 (en) * 2003-03-13 2004-09-21 Amkor Technology, Inc. Leadframe package for semiconductor devices
JP2005302951A (ja) * 2004-04-09 2005-10-27 Toshiba Corp 電力用半導体装置パッケージ
US8358017B2 (en) * 2008-05-15 2013-01-22 Gem Services, Inc. Semiconductor package featuring flip-chip die sandwiched between metal layers
CN201904332U (zh) * 2010-11-15 2011-07-20 深圳市威怡电气有限公司 一种应用于升压转换器的功率模块
US9929076B2 (en) * 2011-04-21 2018-03-27 Alpha And Omega Semiconductor Incorporated Semiconductor package of a flipped MOSFET chip and a multi-based die paddle with top surface groove-divided multiple connecting areas for connection to the flipped MOSFET electrodes
CN102201449B (zh) * 2011-05-27 2013-01-09 电子科技大学 一种功率mos器件低热阻封装结构
CN102903692B (zh) * 2011-07-26 2015-05-27 万国半导体股份有限公司 应用双层引线框架的堆叠式功率半导体器件及其制备方法
US9196577B2 (en) * 2014-01-09 2015-11-24 Infineon Technologies Ag Semiconductor packaging arrangement
CN111540723A (zh) * 2020-05-06 2020-08-14 晏新海 功率半导体器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101277A (ja) * 2001-09-26 2003-04-04 Toyota Motor Corp 発熱素子冷却用構造体及びその製造方法
JP2006303290A (ja) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp 半導体装置
JP2009177038A (ja) * 2008-01-28 2009-08-06 Hitachi Ltd パワー半導体モジュール
CN101593655A (zh) * 2009-07-17 2009-12-02 威海新佳电子有限公司 一种pdp功率集成模块及其制作方法
US20130010425A1 (en) * 2011-07-08 2013-01-10 Samsung Electro-Mechanics Co., Ltd. Power module package and method for manufacturing the same
CN111540717A (zh) * 2020-05-06 2020-08-14 晏新海 功率模块

Also Published As

Publication number Publication date
CN111540723A (zh) 2020-08-14
WO2021223694A1 (zh) 2021-11-11

Similar Documents

Publication Publication Date Title
US7547966B2 (en) Power semiconductor module
US11139278B2 (en) Low parasitic inductance power module and double-faced heat-dissipation low parasitic inductance power module
CN107112306B (zh) 具有一个或多个散热器的电子组件
CN107112307B (zh) 具有一个或多个散热器的电子组件
US20070236883A1 (en) Electronics assembly having heat sink substrate disposed in cooling vessel
WO2021223695A1 (zh) 一种功率模块
CN111540730B (zh) 基于导电金属夹扣互连的多芯片宽禁带功率模块封装结构
WO2021179352A1 (zh) 基于石墨烯基封装衬板的大功率ipm的结构及加工工艺
CN104303299A (zh) 半导体装置的制造方法及半导体装置
JP2004128099A (ja) 水冷インバータ
CN111540717B (zh) 一种功率模块
WO2023221999A1 (zh) 一种电源变换器、内埋集成器件单元、高散热高频功率模组及其制作方法
CN113838821A (zh) 一种用于SiC平面封装结构的散热件及其制备方法
CN104767396A (zh) 智能功率模块及其制造方法
WO2020105556A1 (ja) 半導体装置、電力変換装置及び半導体装置の製造方法
CN217182187U (zh) 一种功率模块封装结构
US20220418088A1 (en) Power module with housed power semiconductors for controllable electrical power supply of a consumer, and method for producing same
CN112786548A (zh) 一种改善双面液冷散热器均温性的结构
CN113539991A (zh) 冷却功率半导体模块的冷却装置和生产冷却装置的方法
CN208861980U (zh) 功率模块组件、功率半导体模块和车辆
CN221102072U (zh) 功率芯片的封装结构和功率模块
CN219842983U (zh) 功率半导体模块组件及车辆
CN220823352U (zh) 散热电路以及电机驱动电路
CN215644461U (zh) 一种功率模块及电子设备
CN210349815U (zh) 基于微小级别ssop封装的散热型智能功率控制结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800706

Country of ref document: EP

Kind code of ref document: A1