WO2021223402A1 - 一种空调控制方法、空调内机、遥控器及*** - Google Patents

一种空调控制方法、空调内机、遥控器及*** Download PDF

Info

Publication number
WO2021223402A1
WO2021223402A1 PCT/CN2020/130601 CN2020130601W WO2021223402A1 WO 2021223402 A1 WO2021223402 A1 WO 2021223402A1 CN 2020130601 W CN2020130601 W CN 2020130601W WO 2021223402 A1 WO2021223402 A1 WO 2021223402A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
air conditioner
trajectory
position coordinates
remote control
Prior art date
Application number
PCT/CN2020/130601
Other languages
English (en)
French (fr)
Inventor
李文博
陈会敏
杜亮
吴洪金
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021223402A1 publication Critical patent/WO2021223402A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1426Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre characterised by actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants

Definitions

  • the invention relates to the technical field of air conditioners, in particular to an air conditioner control method, an air conditioner internal machine, a remote controller and a system.
  • the air conditioner is one of the most common electrical appliances in daily life. If the user wants to make the air conditioner blow air towards the user during the use of the air conditioner, the user needs to use the remote control to manually adjust the pendulum and guide plate of the air conditioner.
  • the air supply direction of the air conditioner internal unit but this method requires the user to constantly feel the air supply direction of the air conditioner internal unit and constantly adjust the pendulum and guide plate through the remote control. It takes a long time to adjust the air supply direction of the air conditioner internal unit. The user experience is poor.
  • the embodiments of the present invention provide an air conditioner control method, an internal air conditioner, a remote controller, and a system to solve the problems of long adjustment time and low user experience in the existing way of adjusting the air supply direction.
  • the first aspect of the embodiments of the present invention discloses an air conditioner control method, the method is suitable for an air conditioner internal unit, and the method includes:
  • the relative position coordinates of the remote control relative to the internal air conditioner are determined, and the second position coordinates are relative to the internal air conditioner.
  • the air supply trajectory set includes a plurality of air supply trajectories, and different air supply trajectories correspond to different air supply directions;
  • the air supply direction of the internal air conditioner is adjusted.
  • each air supply trajectory corresponds to a curved surface equation
  • the determining that the air supply trajectory corresponding to the relative position coordinate in the preset air supply trajectory set is the final air supply trajectory includes:
  • the air supply trajectory whose calculated value of the equation is less than the threshold is the final air supply trajectory
  • the air supply trajectory corresponding to the smallest calculated value of the equation is determined to be the final air supply trajectory.
  • the adjusting the air supply direction of the internal air conditioner according to the final air supply trajectory includes:
  • the guide plate of the internal air conditioner is adjusted according to the angle of the guide plate, and the swing blade of the internal air conditioner is adjusted according to the angle of the swing blade.
  • a second aspect of the embodiments of the present invention discloses an air conditioning control method, the method is suitable for a remote control, and the method includes:
  • the first position coordinates are sent to the air conditioner internal unit, so that the air conditioner internal unit adjusts the air conditioner internal unit according to the first position coordinates, the pre-acquired second position coordinates, and the preset air supply trajectory set.
  • the air supply direction, the second position coordinate is the coordinate of the internal air conditioner relative to the room, the air supply trajectory set includes a plurality of air supply trajectories, and different air supply trajectories correspond to different air supply directions.
  • the detecting the first position coordinates of the remote control includes:
  • a horizontal direction is perpendicular to the second horizontal direction;
  • the first position coordinates of the remote control are determined by using the distance between the remote control and the wall in the vertical direction, the first horizontal direction and the second horizontal direction.
  • an air conditioner internal machine is disclosed, and the air conditioner internal machine includes:
  • a receiving unit configured to receive a first position coordinate sent by a remote control, where the first position coordinate is a coordinate of the remote control relative to the room;
  • the first determining unit is configured to determine the relative position coordinates of the remote control relative to the internal air conditioner based on the first position coordinates and the second position coordinates of the internal air conditioner acquired in advance, the second position coordinates Is the coordinate of the internal air conditioner relative to the room;
  • the second determining unit is configured to determine that the air supply trajectory corresponding to the relative position coordinates in the preset air supply trajectory set is the final air supply trajectory, and the air supply trajectory set includes multiple air supply trajectories, and different air supply trajectories The trajectory corresponds to different air supply directions;
  • the processing unit is configured to adjust the air supply direction of the internal air conditioner according to the final air supply trajectory.
  • each air supply trajectory corresponds to a curved surface equation
  • the second determining unit includes:
  • the calculation module is configured to determine the equation calculation value corresponding to the curved surface equation of the air supply trajectory for each air supply trajectory in the preset air supply trajectory set according to the relative position coordinates;
  • the determining module is used to determine the number of air supply trajectories whose calculated value of the equation is less than the threshold value, and if the number of air supply trajectories whose calculated value of the equation is less than the threshold value is one, determine the number of air supply trajectories whose calculated value of the equation is less than the threshold value.
  • the wind trajectory is the final air supply trajectory, and if the number of air supply trajectories whose calculated value of the equation is less than the threshold is greater than one, the air supply trajectory corresponding to the smallest calculated value of the equation is determined to be the final air supply trajectory.
  • the processing unit is specifically configured to: determine the guide plate angle and the swing blade angle corresponding to the final air supply trajectory, adjust the guide plate of the air conditioner internal unit according to the guide plate angle, and adjust according to the swing blade angle The swing leaf of the internal air conditioner.
  • a remote control is disclosed, and the remote control includes:
  • a detecting unit configured to detect a first position coordinate of the remote control, where the first position coordinate is a coordinate of the remote control relative to the room;
  • the sending unit is configured to send the first position coordinates to the air conditioner internal unit, so that the air conditioner internal unit adjusts the air conditioner according to the first position coordinates, the pre-acquired second position coordinates, and the preset air supply trajectory set.
  • the air supply direction of the internal air conditioner, the second position coordinates are the coordinates of the internal air conditioner relative to the room, the air supply trajectory set includes multiple air supply trajectories, and different air supply trajectories correspond to different air supply trajectories. Wind direction.
  • a fifth aspect of the embodiments of the present invention discloses an air conditioner control system.
  • the system includes: the internal air conditioner disclosed in the third aspect of the embodiments of the present invention and the remote control disclosed in the fourth aspect of the embodiments of the present invention.
  • An air conditioner control method, an air conditioner internal unit, a remote control and a system provided based on the above embodiments of the present invention.
  • the method is: The second position coordinates of the internal air conditioner determine the relative position coordinates of the remote control relative to the internal air conditioner; the internal air conditioner determines the air supply trajectory corresponding to the relative position coordinates in the preset air supply trajectory set as the final air supply trajectory, and Adjust the air supply direction of the internal air conditioner according to the final air supply trajectory.
  • the relative position coordinates of the remote control relative to the air conditioner internal unit are used to determine the final air supply trajectory from the air supply trajectory set, and the air supply direction of the air conditioner internal unit is adjusted according to the final air supply trajectory, so that the air supply of the air conditioner internal unit
  • the wind direction is aimed at the remote control, and the user does not need to adjust the swing blade and guide plate of the air conditioner through the remote control, which saves the user the time to adjust the air supply direction and improves the user experience.
  • FIG. 1 is a flowchart of an air conditioning control method provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a remote controller detecting a first position coordinate according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the curved surface of the curved surface equation corresponding to the air supply trajectory provided by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the air conditioner internal machine according to an embodiment of the present invention using the final air supply trajectory to adjust the air supply direction;
  • Figure 5 is a flowchart of determining the final air supply trajectory provided by an embodiment of the present invention.
  • Figure 6 is a structural block diagram of an internal air conditioner provided by an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a remote control provided by an embodiment of the present invention.
  • Fig. 8 is a structural block diagram of an air conditioning control system provided by an embodiment of the present invention.
  • the terms “include”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes no Other elements clearly listed, or also include elements inherent to this process, method, article, or equipment. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other identical elements in the process, method, article, or equipment that includes the element.
  • the embodiments of the present invention provide an air conditioner control method, an internal air conditioner, a remote controller, and a system.
  • the internal air conditioner uses the relative position coordinates of the remote controller relative to the internal air conditioner to determine the final air supply trajectory from the set of air supply trajectories, And adjust the air supply direction of the internal air conditioner according to the final air supply trajectory, so as to save the user's time to adjust the air supply direction and improve the user's experience.
  • the air-conditioning control method includes the following steps:
  • Step S101 the remote control detects the coordinates of the first position of the remote control.
  • remote controllers involved in the embodiments of the present invention include, but are not limited to: air conditioner remote controls, universal remote controls, and mobile terminals with remote control functions (such as smart phones) that are matched with internal air conditioners. There is no specific limitation on the type of remote control.
  • the remote control detects the coordinates of the remote control relative to the room (the room where the internal air conditioner is located) through its own sensor (such as an ultrasonic sensor), and the coordinates detected by the remote control are the first position coordinates ( The coordinates of the remote control relative to the room).
  • the remote control transmits ultrasonic waves in the vertical direction, the first horizontal direction and the second horizontal direction through the ultrasonic sensor, and records the first time when the ultrasonic waves start to be transmitted in the vertical direction, the first horizontal direction and the second horizontal direction respectively.
  • a horizontal direction is perpendicular to the second horizontal direction.
  • the ultrasonic wave when propagated in the air, it will be reflected back when it hits the wall.
  • the wall surface, the wall surface in the first horizontal direction, and the wall surface in the second horizontal direction will be reflected back.
  • the distance between the transmitting point and the wall can be determined by the time of transmitting the ultrasonic wave and the time of receiving the reflected wave.
  • the first time and the second time are used to determine the distance between the remote control and the wall in the vertical direction, the first horizontal direction and the second horizontal direction.
  • the first time of the ultrasonic wave and the second time of receiving the reflected wave in the vertical direction are used to determine the distance between the remote control and the wall in the vertical direction.
  • the second time of the reflected wave is to determine the distance between the remote control and the wall in the first horizontal direction.
  • the first time when the ultrasonic wave is transmitted in the second horizontal direction and the second time when the reflected wave in the second horizontal direction is received are used to determine the remote control.
  • the first position coordinates (three-dimensional coordinates) of the remote control are determined.
  • FIG. 2 the schematic diagram of the remote controller detecting the first position coordinates shown in FIG. 2 is used as an example. It should be noted that FIG. 2 is only used for illustration.
  • the remote control passes the ultrasonic sensor in the vertical upward direction (vertical direction), horizontal forward direction (first horizontal direction) and horizontal right direction ( The second horizontal direction) emit ultrasonic waves, and record the first time when the ultrasonic waves are emitted.
  • the remote control records the second time when it receives the reflected waves in the vertical upward direction, horizontal forward direction, and horizontal right direction, and uses the propagation speed of the ultrasonic wave in the air, the first time and the second time to determine the remote control’s The coordinates of the first location.
  • the distance Z y from the remote control to the ceiling of the room can be determined.
  • the distance X y between the remote control and the wall on the right side of the room (horizontal to the right) can be determined
  • the distance Y y between the remote control and the wall in the front of the room horizontal forward direction
  • the coordinates of the first position of the remote control are (X y , Y y , Z y ).
  • Step S102 the remote controller sends the first position coordinates to the internal air conditioner.
  • step S102 after the remote controller detects the first position coordinates, the remote controller sends the first position coordinates to the internal air conditioner.
  • Step S103 The internal air conditioner determines the relative position coordinates of the remote control relative to the internal air conditioner according to the first position coordinates and the second position coordinates of the internal air conditioner acquired in advance.
  • the position of the internal air conditioner in the room is fixed, so the internal air conditioner detects the coordinates of the internal air conditioner relative to the room in advance, and the pre-detected coordinates of the internal air conditioner are the second position coordinates (three-dimensional coordinates).
  • the second position coordinates are the coordinates of the internal air conditioner relative to the room.
  • step S103 the center of the air outlet of the internal air conditioner is taken as the origin of the three-dimensional Cartesian coordinate system (0, 0, 0), and the internal air conditioner passes through the first position coordinates and the second position coordinates. , You can determine the relative position coordinates of the remote control relative to the internal air conditioner.
  • the relative position coordinates of the remote control relative to the internal air conditioner are (X y -X k, Y y -Y k , Z y -Z k), to (X 1, Y 1, Z 1) represented by (X y -Xk, Y y -Yk , Z y -Zk).
  • Step S104 the air conditioner internal unit determines that the air supply trajectory corresponding to the relative position coordinates in the preset air supply trajectory set is the final air supply trajectory.
  • the swing blades of the internal air conditioner can swing at different angles (swing blade angles) to send air to different positions on the left and right. That is to say, through the combination of different swing blade angles and different guide plate angles, multiple air supply trajectories can be obtained, and different air supply trajectories correspond to different air supply directions, that is, each air supply trajectory has its own corresponding air supply direction, swing Blade angle and guide angle.
  • a set of air supply trajectories is constructed, and the set of air supply trajectories includes multiple air supply trajectories.
  • the air supply trajectory is a curved surface, that is, different air supply trajectories are different curved surfaces, that is, different air supply trajectories can be expressed by different curved surfaces. Since the curved surface is composed of different coordinate points, the curved surface can be represented by the curved surface equation, that is, each air supply trajectory corresponds to a curved surface equation.
  • FIG. 3 is only for example.
  • the area corresponding to the air supply trajectory For each air supply trajectory, determine the area corresponding to the air supply trajectory (for example, the area is simulated by wind field simulation software), and extract n three-dimensional data points from the area, and fit the n three-dimensional data points into one
  • the curved surface equation, the curved surface corresponding to the curved surface equation is the air supply trajectory, and the curved surface diagram corresponding to the curved surface equation is shown in FIG. 3.
  • step S104 In the process of implementing step S104, it can be seen from the above content that each curved surface is composed of multiple coordinate points. Therefore, the air conditioner internal machine uses the relative position coordinates to determine the air supply trajectory corresponding to the relative position coordinates in the air supply trajectory set. For the final air supply trajectory.
  • the air supply trajectory corresponding to the relative position coordinate means that the relative position coordinate is located on the curved surface corresponding to the air supply trajectory, or the relative position coordinate is within a certain range of the curved surface corresponding to the air supply trajectory.
  • Step S105 the air conditioner internal unit adjusts the air supply direction of the air conditioner internal unit according to the final air supply trajectory.
  • each air supply trajectory has a corresponding guide plate angle and swing blade angle. Therefore, in the process of implementing step S105, the air conditioner internal machine determines the guide plate angle and swing blade angle corresponding to the final air supply trajectory.
  • the inner unit adjusts the guide plate of the air conditioner inner unit according to the guide plate angle corresponding to the final air supply trajectory, so that the angle of the guide plate is the guide plate angle. Let the angle of the swing leaf be the swing leaf angle.
  • the air supply trajectory of the internal air conditioner unit is consistent with the final air supply trajectory, so that the air supply direction of the internal air conditioner unit is aligned with the remote control.
  • buttons triggered by a separate button or a combination of buttons
  • the button function is used to activate the "directional air supply" function of the internal air conditioner.
  • the user triggers the button function of the "directional air supply" of the internal air conditioner through the remote control (the remote control and the internal air conditioner obtain the corresponding trigger instruction), the remote control detects the first position coordinates and sends the first position coordinates to Air conditioner inside machine.
  • the air conditioner internal machine determines the relative position coordinates (X 1 , Y 1 , Z 1 ) of the remote control relative to the air conditioner internal machine according to the first position coordinates and the second position coordinates, and the air conditioner internal machine determines the final air supply corresponding to the relative position coordinates
  • the air conditioner internal unit adjusts the swing blade angle to the left 30 degrees and the guide plate angle to the upper 40 degrees.
  • the air supply direction of the air conditioner internal unit is aligned with the remote controller, and the air conditioner internal unit uses the final air supply trajectory to adjust the air supply direction as shown in Figure 4.
  • the final air supply trajectory is a curved surface in space
  • the final air supply trajectory shown in FIG. 4 is the projection curve of the corresponding curved surface in space.
  • the remote controller detects the first position coordinates and sends them to the internal air conditioner.
  • the internal air conditioner determines the relative position coordinates of the remote control relative to the internal air conditioner according to the first position coordinates and the second position coordinates obtained in advance.
  • the air conditioner internal unit determines the final air supply trajectory from the set of air supply trajectories according to the relative position coordinates, and adjusts the air supply direction of the air conditioner internal unit according to the final air supply trajectory, so that the air supply direction of the air conditioner internal unit is aligned with the remote control.
  • the user adjusts the swing blade and guide plate of the air conditioner through the remote control, which saves the user the time to adjust the air supply direction and improves the user's experience.
  • the above-mentioned embodiment of the present invention refers to the process of determining the final air supply trajectory involved in step S104 in FIG. , Including the following steps:
  • Step S501 For each air supply trajectory in the preset air supply trajectory set, the internal air conditioner determines the equation calculation value corresponding to the curved surface equation of the air supply trajectory according to the relative position coordinates.
  • each air supply trajectory corresponds to a curve equation.
  • the air conditioner internal unit uses the relative position coordinates to determine the air supply trajectory The calculated value of the equation corresponding to the curved surface equation of, through the foregoing method, the calculated value of the equation corresponding to the curved surface equation of each air supply trajectory is obtained.
  • Step S502 the air conditioner internal machine determines the number of air supply trajectories whose calculation value of the equation is less than the threshold value.
  • the threshold is set in advance, and when the equation calculation value of an air supply trajectory is less than the threshold, it means that the relative position coordinates are within a certain range of the curved surface of the air supply trajectory.
  • the relative position coordinates may be on the curved surface of one air supply trajectory or within a certain range of the curved surface of one air supply trajectory, or may be within a certain range of the curved surfaces of multiple air supply trajectories.
  • the relative position coordinates on the surface of the air supply trajectory means that the relative position coordinates are used to calculate the equation corresponding to the surface equation of the air supply trajectory.
  • the calculated value is 0, that is, for an air supply trajectory, if the relative position is used
  • the equation calculated value F (X, Y, Z) obtained by the coordinate calculation is 0, and the relative position coordinate is on the curved surface of the air supply trajectory.
  • the internal air conditioner determines the number of air supply trajectories whose equation calculation value is less than the threshold.
  • Step S503 If the number of air supply trajectories whose calculated equation value is less than the threshold is one, the air conditioner internal machine determines that the air supply trajectory whose calculated equation value is less than the threshold is the final air supply trajectory.
  • step S503 if the calculated value of the equation is less than the threshold (at this time, the calculated value of the equation may also be equal to 0), the number of air supply trajectories is 1, then the air conditioner internal machine determines that the air supply trajectory is the final air supply Trajectory.
  • Step S504 If the number of air supply trajectories whose calculated equation value is less than the threshold is greater than one, the air conditioner internal machine determines that the air supply trajectory corresponding to the smallest equation calculated value is the final air supply trajectory.
  • step S504 if the number of air supply trajectories whose calculation value of the equation is less than the threshold is greater than one, the air conditioner internal machine determines the one corresponding to the smallest equation calculation value from all the air supply trajectories whose calculation value of the equation is less than the threshold value.
  • the air supply trajectory is the final air supply trajectory.
  • the threshold value is a
  • the relative position coordinates are within a certain range of the surface F1 (X, Y, Z) and the surface F2 (X, Y, Z).
  • the air supply trajectory corresponding to (X, Y, Z) is the final air supply trajectory. If c is less than b, the air supply trajectory corresponding to the curved surface F2 (X, Y, Z) is determined to be the final air supply trajectory.
  • the air conditioner internal unit delivers air according to a preset air delivery method (for example, left and right swing air).
  • the air conditioner internal machine determines the equation calculation value corresponding to the curved surface equation of each air supply trajectory according to the relative position coordinates.
  • the air conditioner internal unit uses the threshold and all equation calculation values to determine the final air supply trajectory from all air supply trajectories, and adjusts the air supply direction of the air conditioner internal unit according to the final air supply trajectory, so as to save the user time and improve the air supply direction. User experience.
  • the embodiment of the present invention also provides a structural block diagram of an air conditioner internal machine.
  • the air conditioner internal machine includes: a receiving unit 601 and a first determining unit 602.
  • the receiving unit 601 is configured to receive the first position coordinates sent by the remote control, where the first position coordinates are the coordinates of the remote control relative to the room.
  • the first determining unit 602 is configured to determine the relative position coordinates of the remote control relative to the internal air conditioner according to the first position coordinates and the second position coordinates of the internal air conditioner acquired in advance.
  • the second position coordinates are the relative position coordinates of the internal air conditioner relative to the room. coordinate of.
  • the second determining unit 603 is configured to determine that the air supply trajectory corresponding to the relative position coordinates in the preset air supply trajectory set is the final air supply trajectory.
  • the air supply trajectory set includes multiple air supply trajectories, and different air supply trajectories correspond to different Direction of air supply.
  • the processing unit 604 is configured to adjust the air supply direction of the internal air conditioner according to the final air supply trajectory.
  • the processing unit 604 is specifically configured to determine the guide plate angle and swing blade angle corresponding to the final air supply trajectory, adjust the guide plate of the air conditioner internal unit according to the guide plate angle, and adjust the swing blade of the air conditioner internal unit according to the swing blade angle.
  • the internal air conditioner determines the relative position coordinates of the remote controller relative to the internal air conditioner according to the first position coordinates sent by the remote control and the second position coordinates obtained in advance.
  • the air conditioner internal unit determines the final air supply trajectory from the set of air supply trajectories according to the relative position coordinates, and adjusts the air supply direction of the air conditioner internal unit according to the final air supply trajectory, so that the air supply direction of the air conditioner internal unit is aligned with the remote control.
  • the user adjusts the pendulum and guide plate of the internal air conditioner through the remote control, which saves the user the time to adjust the air supply direction and improves the user experience.
  • each air supply trajectory corresponds to a curved surface equation
  • the second determination unit 603 includes a calculation module and a determination module, and the execution principle of each module is as follows.
  • the calculation module is used to determine the equation calculation value corresponding to the curved surface equation of the air supply trajectory according to the relative position coordinates for each air supply trajectory in the preset air supply trajectory set.
  • the determination module is used to determine the number of air supply trajectories whose calculated equation value is less than the threshold value. If the number of air supply trajectories whose calculated equation value is less than the threshold value is one, determine the air supply trajectory whose calculated equation value is less than the threshold value as the final supply air. Trajectory, if the number of air supply trajectories whose calculation value of the equation is less than the threshold is greater than one, the air supply trajectory corresponding to the smallest equation calculation value is determined as the final air supply trajectory.
  • the internal air conditioner determines the equation calculation value corresponding to the curved surface equation of each air supply trajectory according to the relative position coordinates.
  • the air conditioner internal unit uses the threshold value and all equation calculation values to determine the final air supply trajectory from all air supply trajectories, and adjusts the air supply direction of the air conditioner internal unit according to the final air supply trajectory to save the user time and improve the air supply direction adjustment User experience.
  • the embodiment of the present invention also provides a structural block diagram of a remote control.
  • the remote control includes a detection unit 701 and a sending unit 702;
  • the detection unit 701 is configured to detect a first position coordinate of the remote control, where the first position coordinate is a coordinate of the remote control relative to the room.
  • the sending unit 702 is configured to send the first position coordinates to the air conditioner internal unit, so that the air conditioner internal unit adjusts the air supply of the air conditioner internal unit according to the first position coordinates, the second position coordinates obtained in advance, and the preset air supply trajectory set Direction, the second position coordinate is the coordinate of the internal air conditioner relative to the room, the air supply trajectory set includes multiple air supply trajectories, and different air supply trajectories correspond to different air supply directions.
  • the detection unit 701 includes: a processing module, a recording module, a first determining module, and a second determining module, and the execution principle of each module is as follows.
  • the processing module is used to transmit ultrasonic waves in the vertical direction, the first horizontal direction and the second horizontal direction respectively, and respectively record the first time when the ultrasonic waves start to be transmitted in the vertical direction, the first horizontal direction and the second horizontal direction, and the first horizontal direction It is perpendicular to the second horizontal direction.
  • the recording module is used to separately record the second time when the reflected wave in the vertical direction, the first horizontal direction and the second horizontal direction are received.
  • the first determining module is configured to use the first time and the second time to determine the distance between the remote control and the wall in the vertical direction, the first horizontal direction, and the second horizontal direction.
  • the second determining module is used to determine the first position coordinates of the remote control by using the distance between the remote control and the wall in the vertical direction, the first horizontal direction and the second horizontal direction.
  • the remote controller detects the first position coordinates and sends them to the air conditioner internal unit, so that the air conditioner internal unit determines the final air supply trajectory according to the first position coordinates, the second position coordinates and the air supply trajectory set
  • the final air supply trajectory adjusts the air supply direction of the air conditioner internal unit, so that the air supply direction of the air conditioner internal unit is aligned with the remote control, and the user does not need to adjust the swing blade and guide plate of the air conditioner internal unit through the remote control, saving users time to adjust the air supply direction And improve the user experience.
  • the embodiment of the present invention also provides a structural block diagram of an air conditioning control system.
  • the air conditioning control system includes: an internal air conditioner 801 and a remote control 802 .
  • the embodiments of the present invention provide an air conditioner control method, an air conditioner internal unit, a remote controller, and a system.
  • the air conditioner internal unit uses the relative position coordinates of the remote controller relative to the air conditioner internal unit to determine the final delivery from the set of air supply trajectories. Wind trajectory, and adjust the air supply direction of the air conditioner internal unit according to the final air supply trajectory, so that the air supply direction of the air conditioner internal unit is aligned with the remote control, and the user does not need to adjust the pendulum and guide plate of the air conditioner internal unit through the remote control, saving users adjustment The air supply direction time and improve the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调控制方法,该方法为:空调内机接收遥控器发送的第一位置坐标,并根据第一位置坐标和预先获取的空调内机的第二位置坐标,确定遥控器相对于空调内机的相对位置坐标;空调内机确定预设的送风轨迹集合中与相对位置坐标对应的送风轨迹为最终送风轨迹,并根据最终送风轨迹调整空调内机的送风方向。还包括一种空调内机、遥控器及空调控制***。

Description

一种空调控制方法、空调内机、遥控器及***
本申请基于申请号为202010641421.8、申请日为2020年07月06日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调技术领域,具体涉及一种空调控制方法、空调内机、遥控器及***。
背景技术
空调是日常生活中最为常见的电器之一,用户在使用空调的过程中若想使空调内机朝着用户自身送风,需要用户使用遥控器手动调整空调内机的摆叶和导板,从而调整空调内机的送风方向,但是此种方式需要用户不断感受空调内机的送风方向并不断通过遥控器调整摆叶和导板,需要较长的时间才能调整好空调内机的送风方向,用户的使用体验较差。
发明内容
有鉴于此,本发明实施例提供一种空调控制方法、空调内机、遥控器及***,以解决现有调整送风方向的方式存在的调整时间长和用户使用体验低等问题。
为实现上述目的,本发明实施例提供如下技术方案:
本发明实施例第一方面公开一种空调控制方法,所述方法适用于空调内机,所述方法包括:
接收遥控器发送的第一位置坐标,所述第一位置坐标为所述遥控器相对于房间的坐标;
根据所述第一位置坐标和预先获取的空调内机的第二位置坐标,确定所述遥控器相对于所述空调内机的相对位置坐标,所述第二位置坐标为所述空调内机相对于所述房间的坐标;
确定预设的送风轨迹集合中与所述相对位置坐标对应的送风轨迹为最终送风轨迹,所述送风轨迹集合中包括多个送风轨迹,不同送风轨迹对应不同送风方向;
根据所述最终送风轨迹,调整所述空调内机的送风方向。
优选的,每个送风轨迹对应一曲面方程,所述确定预设的送风轨迹集合中与所述相对位置坐标对应的送风轨迹为最终送风轨迹,包括:
针对预设的送风轨迹集合中的每一送风轨迹,根据所述相对位置坐标,确定所述送风轨迹的曲面方程对应的方程计算值;
确定所述方程计算值小于阈值的送风轨迹的个数;
若所述方程计算值小于阈值的送风轨迹的个数为1个,确定所述方程计算值小于阈值 的送风轨迹为最终送风轨迹;
若所述方程计算值小于阈值的送风轨迹的个数大于1个,确定最小的所述方程计算值对应的送风轨迹为所述最终送风轨迹。
优选的,所述根据所述最终送风轨迹,调整所述空调内机的送风方向,包括:
确定与所述最终送风轨迹对应的导板角度和摆叶角度;
根据所述导板角度调整所述空调内机的导板,以及根据所述摆叶角度调整所述空调内机的摆叶。
本发明实施例第二方面公开一种空调控制方法,所述方法适用于遥控器,所述方法包括:
检测遥控器的第一位置坐标,所述第一位置坐标为所述遥控器相对于房间的坐标;
将所述第一位置坐标发送给空调内机,使所述空调内机根据所述第一位置坐标、预先获取的第二位置坐标和预设的送风轨迹集合,调整所述空调内机的送风方向,所述第二位置坐标为所述空调内机相对于所述房间的坐标,所述送风轨迹集合中包括多个送风轨迹,不同送风轨迹对应不同送风方向。
优选的,所述检测遥控器的第一位置坐标,包括:
分别向垂直方向、第一水平方向和第二水平方向发射超声波,并分别记录开始向所述垂直方向、所述第一水平方向和所述第二水平方向发射超声波的第一时间,所述第一水平方向与所述第二水平方向垂直;
分别记录接收到所述垂直方向、所述第一水平方向和所述第二水平方向的反射波的第二时间;
利用所述第一时间和所述第二时间,确定遥控器距离所述垂直方向、所述第一水平方向和所述第二水平方向的墙面的距离;
利用所述遥控器距离所述垂直方向、所述第一水平方向和所述第二水平方向的墙面的距离,确定所述遥控器的第一位置坐标。
本发明实施例第三方面公开一种空调内机,所述空调内机包括:
接收单元,用于接收遥控器发送的第一位置坐标,所述第一位置坐标为所述遥控器相对于房间的坐标;
第一确定单元,用于根据所述第一位置坐标和预先获取的空调内机的第二位置坐标,确定所述遥控器相对于所述空调内机的相对位置坐标,所述第二位置坐标为所述空调内机相对于所述房间的坐标;
第二确定单元,用于确定预设的送风轨迹集合中与所述相对位置坐标对应的送风轨迹为最终送风轨迹,所述送风轨迹集合中包括多个送风轨迹,不同送风轨迹对应不同送风方向;
处理单元,用于根据所述最终送风轨迹,调整所述空调内机的送风方向。
优选的,每个送风轨迹对应一曲面方程,所述第二确定单元包括:
计算模块,用于针对预设的送风轨迹集合中的每一送风轨迹,根据所述相对位置坐标,确定所述送风轨迹的曲面方程对应的方程计算值;
确定模块,用于确定所述方程计算值小于阈值的送风轨迹的个数,若所述方程计算值小于阈值的送风轨迹的个数为1个,确定所述方程计算值小于阈值的送风轨迹为最终送风轨迹,若所述方程计算值小于阈值的送风轨迹的个数大于1个,确定最小的所述方程计算值对应的送风轨迹为所述最终送风轨迹。
优选的,所述处理单元具体用于:确定与所述最终送风轨迹对应的导板角度和摆叶角度,根据所述导板角度调整所述空调内机的导板,以及根据所述摆叶角度调整所述空调内机的摆叶。
本发明实施例第四方面公开一种遥控器,所述遥控器包括:
检测单元,用于检测遥控器的第一位置坐标,所述第一位置坐标为所述遥控器相对于房间的坐标;
发送单元,用于将所述第一位置坐标发送给空调内机,使所述空调内机根据所述第一位置坐标、预先获取的第二位置坐标和预设的送风轨迹集合,调整所述空调内机的送风方向,所述第二位置坐标为所述空调内机相对于所述房间的坐标,所述送风轨迹集合中包括多个送风轨迹,不同送风轨迹对应不同送风方向。
本发明实施例第五方面公开一种空调控制***,所述***包括:本发明实施例第三方面公开的空调内机和本发明实施例第四方面公开的遥控器。
基于上述本发明实施例提供的一种空调控制方法、空调内机、遥控器及***,该方法为:空调内机接收遥控器发送的第一位置坐标,并根据第一位置坐标和预先获取的空调内机的第二位置坐标,确定遥控器相对于空调内机的相对位置坐标;空调内机确定预设的送风轨迹集合中与相对位置坐标对应的送风轨迹为最终送风轨迹,并根据最终送风轨迹调整空调内机的送风方向。本方案中,利用遥控器相对于空调内机的相对位置坐标,从送风轨迹集合中确定最终送风轨迹,并根据最终送风轨迹调整空调内机的送风方向,使空调内机的送风方向对准遥控器,不需要用户通过遥控器调整空调内机的摆叶和导板,节约用户调整送风方向的时间和提高用户的使用体验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种空调控制方法的流程图;
图2为本发明实施例提供的遥控器检测第一位置坐标的示意图;
图3为本发明实施例提供的送风轨迹对应的曲面方程的曲面示意图;
图4为本发明实施例提供的空调内机利用最终送风轨迹调整送风方向的示意图;
图5为本发明实施例提供的确定最终送风轨迹的流程图;
图6为本发明实施例提供的一种空调内机的结构框图;
图7为本发明实施例提供的一种遥控器的结构框图;
图8为本发明实施例提供的一种空调控制***的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
由背景技术可知,用户在需要空调内机朝着用户自身送风时,用户需要通过遥控器手动调整空调内机的摆叶和导板,从而调整空调内机的送风方向,但是前述调整送风方向的方式需要较长的时间才能调整好空调内机的送风方向,用户的使用体验较差。
因此,本发明实施例提供一种空调控制方法、空调内机、遥控器及***,空调内机利用遥控器相对于空调内机的相对位置坐标,从送风轨迹集合中确定最终送风轨迹,并根据最终送风轨迹调整空调内机的送风方向,以节约用户调整送风方向的时间和提高用户的使用体验。
参见图1,示出了本发明实施例提供的一种空调控制方法的流程图,该空调控制方法包括以下步骤:
步骤S101:遥控器检测遥控器的第一位置坐标。
需要说明的是,本发明实施例中所涉及的遥控器的类型包括但并不限于:与空调内机配套的空调遥控器、万能遥控器和具有遥控器功能的移动终端(比如智能手机),在此对于遥控器的类型不做具体限定。
在具体实现步骤S101的过程中,遥控器通过自身的传感器(比如超声波传感器)检测遥控器相对于房间(空调内机所在的房间)的坐标,遥控器检测得到的坐标即为第一位置坐标(遥控器相对于房间的坐标)。
遥控器获取第一位置坐标的具体方式如下:
遥控器通过超声波传感器,分别向垂直方向、第一水平方向和第二水平方向发射超声波,并分别记录开始向垂直方向、第一水平方向和第二水平方向发射超声波的第一时间, 其中,第一水平方向与第二水平方向垂直。
需要说明的是,超声波在空气中传播时碰到墙面会反射回来,也就是说,遥控器在向垂直方向、第一水平方向和第二水平方向发射超声波时,当超声波碰到垂直方向的墙面、第一水平方向的墙面和第二水平方向的墙面时会反射回来。
分别记录接收到垂直方向、第一水平方向和第二水平方向的反射波的第二时间,即记录接收到垂直方向的反射波的时间、记录接收到第一水平方向的反射波的时间和记录接收到第二水平方向的反射波的时间。
需要说明的是,由于超声波在空气中的传播速度可知,因此可通过发射超声波的时间和接收反射波的时间,确定发射点距墙面的距离。
也就是说,结合超声波在空气中的传播速度,利用第一时间和第二时间,确定遥控器距离垂直方向、第一水平方向和第二水平方向的墙面的距离,即利用向垂直方向发射超声波的第一时间和接收到垂直方向的反射波的第二时间,确定遥控器距离垂直方向的墙面的距离,利用向第一水平方向发射超声波的第一时间和接收到第一水平方向的反射波的第二时间,确定遥控器距离第一水平方向的墙面的距离,利用向第二水平方向发射超声波的第一时间和接收到第二水平方向的反射波的第二时间,确定遥控器距离第二水平方向的墙面的距离。
利用遥控器距离垂直方向的墙面的距离、第一水平方向的墙面的距离和第二水平方向的墙面的距离,确定遥控器的第一位置坐标(三维坐标)。
为更好解释说明遥控器如何检测第一位置坐标的过程,通过图2示出的遥控器检测第一位置坐标的示意图进行举例说明,需要说明的是,图2仅用于举例说明。
假设该遥控器的超声波传感器设置在遥控器顶部,如图2所示,遥控器通过超声波传感器向竖直向上方向(垂直方向)、水平向前方向(第一水平方向)和水平向右方向(第二水平方向)发射超声波,并记录发射超声波的第一时间。
遥控器分别记录接收到竖直向上方向、水平向前方向和水平向右方向的反射波的第二时间,并利用超声波在空气中的传播速度、第一时间和第二时间,确定遥控器的第一位置坐标。
比如:利用超声波在空气中的传播速度、向竖直向上方向发射超声波的第一时间和接收到竖直向上方向的反射波的第二时间,即可确定得到遥控器距离房间天花板的距离Z y,同理,通过上述方式,可确定得到遥控器距离房间右边(水平向右方向)墙面的距离X y,以及确定遥控器距离房间前边(水平向前方向)墙面的距离Y y,也就是说,遥控器的第一位置坐标为(X y,Y y,Z y)。
步骤S102:遥控器将第一位置坐标发送给空调内机。
在具体实现步骤S102的过程中,遥控器检测得到第一位置坐标后,遥控器将第一位置坐标发送给空调内机。
步骤S103:空调内机根据第一位置坐标和预先获取的空调内机的第二位置坐标,确 定遥控器相对于空调内机的相对位置坐标。
需要说明的是,空调内机在房间的位置是固定的,因此空调内机预先检测空调内机相对于房间的坐标,空调内机预先检测得到的坐标即为第二位置坐标(三维坐标),也就是说,第二位置坐标为空调内机相对于房间的坐标。
进一步需要说明的是,空调内机检测得到第二位置坐标的方式,可参见上述本发明实施例步骤S101中遥控器检测第一位置坐标的内容,在此不再进行赘述。
在具体实现步骤S103的过程中,需要说明的是,以空调内机的出风口中心作为三维笛卡尔坐标系原点(0,0,0),空调内机通过第一位置坐标和第二位置坐标,即可确定遥控器相对于空调内机的相对位置坐标。
比如:假设第一位置坐标为(X y,Y y,Z y),第二位置坐标为(X k,Y k,Z k),则遥控器相对于空调内机的相对位置坐标为(X y-X k,Y y-Y k,Z y-Z k),以(X 1,Y 1,Z 1)表示(X y-Xk,Y y-Yk,Z y-Zk)。
步骤S104:空调内机确定预设的送风轨迹集合中与相对位置坐标对应的送风轨迹为最终送风轨迹。
需要说明的是,空调内机的摆叶左右摆动不同角度(摆叶角度)可以向左右不同位置送风,空调内机的导板上下摆动不同角度(导板角度)可以向上下不同位置送风,也就是说,通过不同的摆叶角度和不同的导板角度进行组合,可得到多个送风轨迹,不同送风轨迹对应不同送风方向,即每个送风轨迹存在自身对应的送风方向、摆叶角度和导板角度。
利用上述得到的多个送风轨迹,构建送风轨迹集合,该送风轨迹集合中包括多个送风轨迹。
可以理解的是,送风轨迹为曲面,也就是不同的送风轨迹为不同的曲面,即可以通过不同的曲面表示不同的送风轨迹。由于曲面是由不同的坐标点组成的,因此可以利用曲面方程表示曲面,即每个送风轨迹对应一曲面方程。
为更好解释说明上述关于通过曲面表示送风轨迹的内容,通过图3示出的送风轨迹对应的曲面方程的曲面示意图进行举例说明,需要说明的是,图3仅用于举例。
针对每一个送风轨迹,确定该送风轨迹对应的区域(比如通过风场模拟软件模拟得到该区域),并从该区域中提取出n个三维数据点,将n个三维数据点拟合成曲面方程,该曲面方程对应的曲面即为该送风轨迹,该曲面方程对应的曲面示意图如图3所示。
在具体实现步骤S104的过程中,由上述内容可知,每一曲面由多个坐标点组成,因此,空调内机利用相对位置坐标,确定送风轨迹集合中与该相对位置坐标对应的送风轨迹为最终送风轨迹。
可以理解的是,与相对位置坐标对应的送风轨迹是指:该相对位置坐标位于该送风轨迹对应的曲面上,或者,该相对位置坐标在该送风轨迹对应的曲面的一定范围内。
步骤S105:空调内机根据最终送风轨迹,调整空调内机的送风方向。
由前述内容可知,每一送风轨迹都存在对应的导板角度和摆叶角度,因此在具体实现 步骤S105的过程中,空调内机确定与最终送风轨迹对应的导板角度和摆叶角度,空调内机根据与最终送风轨迹对应的导板角度调整空调内机的导板,使导板的角度为该导板角度,空调内机根据与最终送风轨迹对应的摆叶角度调整空调内机的摆叶,使摆叶的角度为该摆叶角度。
通过上述调整,使空调内机的送风轨迹与最终送风轨迹一致,从而使空调内机的送风方向对准遥控器。
为更好解释说明上述步骤S101至步骤S105中的内容,结合图4示出的内容,通过以下示例进行举例说明。
需要说明的是,预先在遥控器中设置一按键功能(可通过单独设置的按键触发或者通过组合按键触发),该按键功能用于启动空调内机的“定向送风”功能。
用户通过遥控器触发用于启动空调内机的“定向送风”的按键功能(遥控器和空调内机获取到相应的触发指令),遥控器检测第一位置坐标并将第一位置坐标发送给空调内机。空调内机根据第一位置坐标和第二位置坐标确定遥控器相对于空调内机的相对位置坐标(X 1,Y 1,Z 1),空调内机确定与该相对位置坐标对应的最终送风轨迹的曲面方程为F(X,Y,Z)=A 1+B 1X 3+C 1Y 3+D 1Z 3,其中,F表示曲面,A、B、C和D为曲面方程的系数,需要说明的是,不同的送风轨迹对应不同的A、B、C和D。
假设最终送风轨迹对应的摆叶角度为左30度,最终送风轨迹对应的导板角度为上40度,空调内机将摆叶角度调整至左30度,以及将导板角度调整为上40度,使空调内机的送风方向对准遥控器,空调内机利用最终送风轨迹调整送风方向的示意图如图4所示。
需要说明的是,最终送风轨迹在空间中为曲面,图4中所示意的最终送风轨迹为其对应的曲面在空间的投影曲线。
在本发明实施例中,遥控器检测第一位置坐标并将其发送给空调内机。空调内机根据第一位置坐标和预先获取的第二位置坐标,确定遥控器相对于空调内机的相对位置坐标。空调内机根据相对位置坐标,从送风轨迹集合中确定最终送风轨迹,并根据最终送风轨迹调整空调内机的送风方向,使空调内机的送风方向对准遥控器,不需要用户通过遥控器调整空调内机的摆叶和导板,节约用户调整送风方向的时间和提高用户的使用体验。
上述本发明实施例图1步骤S104涉及的确定最终送风轨迹的过程,每个送风轨迹对应一曲面方程,参见图5,示出了本发明实施例提供的确定最终送风轨迹的流程图,包括以下步骤:
步骤S501:针对预设的送风轨迹集合中的每一送风轨迹,空调内机根据相对位置坐标,确定送风轨迹的曲面方程对应的方程计算值。
由前述内容可知,每个送风轨迹对应一曲线方程,在具体实现步骤S501的过程中,针对送风轨迹集合中的每一送风轨迹,空调内机利用相对位置坐标,确定该送风轨迹的曲面方程对应的方程计算值,通过前述方式,得到每个送风轨迹的曲面方程对应的方程计算 值。
步骤S502:空调内机确定方程计算值小于阈值的送风轨迹的个数。
需要说明的是,预先设置阈值,当一送风轨迹的方程计算值小于阈值时,表示相对位置坐标在该送风轨迹的曲面的一定范围内。
可以理解的是,相对位置坐标可能在一个送风轨迹的曲面上或在一个送风轨迹的曲面的一定范围内,也可能在多个送风轨迹的曲面的一定范围内。
当出现相对位置坐标在多个送风轨迹的曲面的一定范围内时,需要从前述多个送风轨迹中选择一送风轨迹作为最终送风轨迹。
需要说明的是,相对位置坐标在送风轨迹的曲面上是指:利用相对位置坐标,计算该送风轨迹的曲面方程对应的方程计算值为0,即对于一送风轨迹,若利用相对位置坐标计算得到的方程计算值F(X,Y,Z)为0,则相对位置坐标在该送风轨迹的曲面上。
在具体实现步骤S502的过程中,空调内机确定得到每个送风轨迹的方程计算值后,确定方程计算值小于阈值的送风轨迹的个数。
步骤S503:若方程计算值小于阈值的送风轨迹的个数为1个,空调内机确定方程计算值小于阈值的送风轨迹为最终送风轨迹。
在具体实现步骤S503的过程中,若方程计算值小于阈值(此时方程计算值也可能等于0)的送风轨迹的个数为1个,则空调内机确定该送风轨迹为最终送风轨迹。
步骤S504:若方程计算值小于阈值的送风轨迹的个数大于1个,空调内机确定最小的方程计算值对应的送风轨迹为最终送风轨迹。
在具体实现步骤S504的过程中,若方程计算值小于阈值的送风轨迹的个数大于1个,空调内机从方程计算值小于阈值的所有送风轨迹中,确定最小的方程计算值对应的送风轨迹为最终送风轨迹。
比如:假设阈值为a,当F(X,Y,Z)小于a时,指示相对位置坐标在曲面的一定范围内,方程计算值小于阈值的送风轨迹有两个,分别为曲面F1(X,Y,Z)=b和曲面F2(X,Y,Z)=c,其中b和c均小于a,b和c为方程计算值。
也就是说,相对位置坐标在曲面F1(X,Y,Z)和曲面F2(X,Y,Z)的一定范围内,此时比较b和c的大小,若b小于c,则确定曲面F1(X,Y,Z)对应的送风轨迹为最终送风轨迹,若c小于b,则确定曲面F2(X,Y,Z)对应的送风轨迹为最终送风轨迹。
需要说明的是,若b=c,空调内机根据预设送风方式送风(比如左右摆风)。
在本发明实施例中,空调内机根据相对位置坐标,确定每个送风轨迹的曲面方程对应的方程计算值。空调内机利用阈值和所有的方程计算值,从所有送风轨迹中确定最终送风轨迹,并根据最终送风轨迹调整空调内机的送风方向,以节约用户调整送风方向的时间和提高用户的使用体验。
与上述本发明实施例提供的一种空调控制方法相对应,参见图6,本发明实施例还提 供了一种空调内机的结构框图,该空调内机包括:接收单元601、第一确定单元602、第二确定单元603和处理单元604;
接收单元601,用于接收遥控器发送的第一位置坐标,第一位置坐标为遥控器相对于房间的坐标。
第一确定单元602,用于根据第一位置坐标和预先获取的空调内机的第二位置坐标,确定遥控器相对于空调内机的相对位置坐标,第二位置坐标为空调内机相对于房间的坐标。
第二确定单元603,用于确定预设的送风轨迹集合中与相对位置坐标对应的送风轨迹为最终送风轨迹,送风轨迹集合中包括多个送风轨迹,不同送风轨迹对应不同送风方向。
处理单元604,用于根据最终送风轨迹,调整空调内机的送风方向。
在具体实现中,处理单元604具体用于:确定与最终送风轨迹对应的导板角度和摆叶角度,根据导板角度调整空调内机的导板,以及根据摆叶角度调整空调内机的摆叶。
在本发明实施例中,空调内机根据遥控器发送的第一位置坐标和预先获取的第二位置坐标,确定遥控器相对于空调内机的相对位置坐标。空调内机根据相对位置坐标,从送风轨迹集合中确定最终送风轨迹,并根据最终送风轨迹调整空调内机的送风方向,使空调内机的送风方向对准遥控器,不需要用户通过遥控器调整空调内机的摆叶和导板,节约用户调整送风方向的时间和提高用户的使用体验。
优选的,结合图6示出的内容,每个送风轨迹对应一曲面方程,第二确定单元603包括计算模块和确定模块,各个模块的执行原理如下。
计算模块,用于针对预设的送风轨迹集合中的每一送风轨迹,根据相对位置坐标,确定送风轨迹的曲面方程对应的方程计算值。
确定模块,用于确定方程计算值小于阈值的送风轨迹的个数,若方程计算值小于阈值的送风轨迹的个数为1个,确定方程计算值小于阈值的送风轨迹为最终送风轨迹,若方程计算值小于阈值的送风轨迹的个数大于1个,确定最小的方程计算值对应的送风轨迹为最终送风轨迹。
在本发明实施例中,空调内机根据相对位置坐标,确定每个送风轨迹的曲面方程对应的方程计算值。空调内机利用阈值和所有的方程计算值,从所有送风轨迹中确定最终送风轨迹,并根据最终送风轨迹调整空调内机的送风方向,以节约用户调整送风方向的时间和提高用户的使用体验。
与上述本发明实施例提供的一种空调控制方法相对应,参见图7,本发明实施例还提供了一种遥控器的结构框图,该遥控器包括:检测单元701和发送单元702;
检测单元701,用于检测遥控器的第一位置坐标,第一位置坐标为遥控器相对于房间的坐标。
发送单元702,用于将第一位置坐标发送给空调内机,使空调内机根据第一位置坐标、预先获取的第二位置坐标和预设的送风轨迹集合,调整空调内机的送风方向,第二位置坐标为空调内机相对于房间的坐标,送风轨迹集合中包括多个送风轨迹,不同送风轨迹对应不同送风方向。
优选的,结合图7示出的内容,检测单元701包括:处理模块、记录模块、第一确定模块和第二确定模块,各个模块的执行原理如下。
处理模块,用于分别向垂直方向、第一水平方向和第二水平方向发射超声波,并分别记录开始向垂直方向、第一水平方向和第二水平方向发射超声波的第一时间,第一水平方向与第二水平方向垂直。
记录模块,用于分别记录接收到垂直方向、第一水平方向和第二水平方向的反射波的第二时间。
第一确定模块,用于利用第一时间和第二时间,确定遥控器距离垂直方向、第一水平方向和第二水平方向的墙面的距离。
第二确定模块,用于利用遥控器距离垂直方向、第一水平方向和第二水平方向的墙面的距离,确定遥控器的第一位置坐标。
在本发明实施例中,遥控器检测第一位置坐标并将其发送给空调内机,使空调内机根据第一位置坐标、第二位置坐标和送风轨迹集合确定最终送风轨迹,并根据最终送风轨迹调整空调内机的送风方向,使空调内机的送风方向对准遥控器,不需要用户通过遥控器调整空调内机的摆叶和导板,节约用户调整送风方向的时间和提高用户的使用体验。
与上述本发明实施例提供的一种空调控制方法相对应,参见图8,本发明实施例还提供了一种空调控制***的结构框图,该空调控制***包括:空调内机801和遥控器802。
空调内机801的执行原理参见上述本发明实施例图6示出的内容,遥控器802的执行原理参见上述本发明实施例图7示出的内容。
综上所述,本发明实施例提供一种空调控制方法、空调内机、遥控器及***,空调内机利用遥控器相对于空调内机的相对位置坐标,从送风轨迹集合中确定最终送风轨迹,并根据最终送风轨迹调整空调内机的送风方向,使空调内机的送风方向对准遥控器,不需要用户通过遥控器调整空调内机的摆叶和导板,节约用户调整送风方向的时间和提高用户的使用体验。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于***或***实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的***及***实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或 者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种空调控制方法,其特征在于,所述方法适用于空调内机,所述方法包括:
    接收遥控器发送的第一位置坐标,所述第一位置坐标为所述遥控器相对于房间的坐标;
    根据所述第一位置坐标和预先获取的空调内机的第二位置坐标,确定所述遥控器相对于所述空调内机的相对位置坐标,所述第二位置坐标为所述空调内机相对于所述房间的坐标;
    确定预设的送风轨迹集合中与所述相对位置坐标对应的送风轨迹为最终送风轨迹,所述送风轨迹集合中包括多个送风轨迹,不同送风轨迹对应不同送风方向;
    根据所述最终送风轨迹,调整所述空调内机的送风方向。
  2. 根据权利要求1所述的方法,其特征在于,每个送风轨迹对应一曲面方程,所述确定预设的送风轨迹集合中与所述相对位置坐标对应的送风轨迹为最终送风轨迹,包括:
    针对预设的送风轨迹集合中的每一送风轨迹,根据所述相对位置坐标,确定所述送风轨迹的曲面方程对应的方程计算值;
    确定所述方程计算值小于阈值的送风轨迹的个数;
    若所述方程计算值小于阈值的送风轨迹的个数为1个,确定所述方程计算值小于阈值的送风轨迹为最终送风轨迹;
    若所述方程计算值小于阈值的送风轨迹的个数大于1个,确定最小的所述方程计算值对应的送风轨迹为所述最终送风轨迹。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述最终送风轨迹,调整所述空调内机的送风方向,包括:
    确定与所述最终送风轨迹对应的导板角度和摆叶角度;
    根据所述导板角度调整所述空调内机的导板,以及根据所述摆叶角度调整所述空调内机的摆叶。
  4. 一种空调控制方法,其特征在于,所述方法适用于遥控器,所述方法包括:
    检测遥控器的第一位置坐标,所述第一位置坐标为所述遥控器相对于房间的坐标;
    将所述第一位置坐标发送给空调内机,使所述空调内机根据所述第一位置坐标、预先获取的第二位置坐标和预设的送风轨迹集合,调整所述空调内机的送风方向,所述第二位置坐标为所述空调内机相对于所述房间的坐标,所述送风轨迹集合中包括多个送风轨迹,不同送风轨迹对应不同送风方向。
  5. 根据权利要求4所述的方法,其特征在于,所述检测遥控器的第一位置坐标,包括:
    分别向垂直方向、第一水平方向和第二水平方向发射超声波,并分别记录开始向所述垂直方向、所述第一水平方向和所述第二水平方向发射超声波的第一时间,所述第一水平方向与所述第二水平方向垂直;
    分别记录接收到所述垂直方向、所述第一水平方向和所述第二水平方向的反射波的第二时间;
    利用所述第一时间和所述第二时间,确定遥控器距离所述垂直方向、所述第一水平方向和所述第二水平方向的墙面的距离;
    利用所述遥控器距离所述垂直方向、所述第一水平方向和所述第二水平方向的墙面的距离,确定所述遥控器的第一位置坐标。
  6. 一种空调内机,其特征在于,所述空调内机包括:
    接收单元,用于接收遥控器发送的第一位置坐标,所述第一位置坐标为所述遥控器相对于房间的坐标;
    第一确定单元,用于根据所述第一位置坐标和预先获取的空调内机的第二位置坐标,确定所述遥控器相对于所述空调内机的相对位置坐标,所述第二位置坐标为所述空调内机相对于所述房间的坐标;
    第二确定单元,用于确定预设的送风轨迹集合中与所述相对位置坐标对应的送风轨迹为最终送风轨迹,所述送风轨迹集合中包括多个送风轨迹,不同送风轨迹对应不同送风方向;
    处理单元,用于根据所述最终送风轨迹,调整所述空调内机的送风方向。
  7. 根据权利要求6所述的空调内机,其特征在于,每个送风轨迹对应一曲面方程,所述第二确定单元包括:
    计算模块,用于针对预设的送风轨迹集合中的每一送风轨迹,根据所述相对位置坐标,确定所述送风轨迹的曲面方程对应的方程计算值;
    确定模块,用于确定所述方程计算值小于阈值的送风轨迹的个数,若所述方程计算值小于阈值的送风轨迹的个数为1个,确定所述方程计算值小于阈值的送风轨迹为最终送风轨迹,若所述方程计算值小于阈值的送风轨迹的个数大于1个,确定最小的所述方程计算值对应的送风轨迹为所述最终送风轨迹。
  8. 根据权利要求6所述的空调内机,其特征在于,所述处理单元具体用于:确定与所述最终送风轨迹对应的导板角度和摆叶角度,根据所述导板角度调整所述空调内机的导板,以及根据所述摆叶角度调整所述空调内机的摆叶。
  9. 一种遥控器,其特征在于,所述遥控器包括:
    检测单元,用于检测遥控器的第一位置坐标,所述第一位置坐标为所述遥控器相对于房间的坐标;
    发送单元,用于将所述第一位置坐标发送给空调内机,使所述空调内机根据所述第一位置坐标、预先获取的第二位置坐标和预设的送风轨迹集合,调整所述空调内机的送风方向,所述第二位置坐标为所述空调内机相对于所述房间的坐标,所述送风轨迹集合中包括多个送风轨迹,不同送风轨迹对应不同送风方向。
  10. 一种空调控制***,其特征在于,所述***包括:权利要求6至权利要求8中任 一所述的空调内机和权利要求9所述的遥控器。
PCT/CN2020/130601 2020-07-06 2020-11-20 一种空调控制方法、空调内机、遥控器及*** WO2021223402A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010641421.8A CN113899057B (zh) 2020-07-06 2020-07-06 一种空调控制方法、空调内机、遥控器及***
CN202010641421.8 2020-07-06

Publications (1)

Publication Number Publication Date
WO2021223402A1 true WO2021223402A1 (zh) 2021-11-11

Family

ID=78467759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130601 WO2021223402A1 (zh) 2020-07-06 2020-11-20 一种空调控制方法、空调内机、遥控器及***

Country Status (2)

Country Link
CN (1) CN113899057B (zh)
WO (1) WO2021223402A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145127A (ja) * 1995-11-27 1997-06-06 Toshiba Corp 空気調和装置
JP2004116837A (ja) * 2002-09-25 2004-04-15 Sharp Corp 空気調和方法および該方法にて居室を空気調和する住宅
CN104456825A (zh) * 2013-09-18 2015-03-25 珠海格力电器股份有限公司 空调区域送风控制方法和装置
CN105444338A (zh) * 2014-08-26 2016-03-30 海信(山东)空调有限公司 一种控制空调送风的方法及装置
CN105465966A (zh) * 2015-12-31 2016-04-06 广东美的制冷设备有限公司 空调送风控制方法及装置
CN105698357A (zh) * 2016-02-26 2016-06-22 北京小米移动软件有限公司 空调摆风角度的调整方法和装置
CN106032928A (zh) * 2015-03-18 2016-10-19 青岛海尔智能技术研发有限公司 一种空调定位送风方法
CN107246704A (zh) * 2017-02-20 2017-10-13 珠海格力电器股份有限公司 空调器智能送风控制方法及装置
CN110878981A (zh) * 2018-09-05 2020-03-13 合肥海尔空调器有限公司 空调器及其控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100360B2 (ja) * 1988-06-17 1994-12-12 松下電器産業株式会社 空気調和機の風向制御装置
JP2012107837A (ja) * 2010-11-19 2012-06-07 Hitachi Appliances Inc 空気調和機
CN103940025B (zh) * 2014-03-05 2017-05-10 美的集团股份有限公司 一种空调风门控制方法、一种遥控器及空调器
CN106369753B (zh) * 2016-09-12 2019-05-14 珠海格力电器股份有限公司 一种空调器及其控制方法和装置
CN207214365U (zh) * 2017-07-28 2018-04-10 合肥华凌股份有限公司 空调控制***
CN110864411B (zh) * 2018-08-28 2021-06-11 青岛海尔空调器有限总公司 一种空调器控制方法和空调器
CN109539510A (zh) * 2018-11-08 2019-03-29 青岛海尔空调器有限总公司 空调器送风位置的控制方法
CN109682023B (zh) * 2018-12-18 2021-11-05 广东美的暖通设备有限公司 空调送风轨迹的显示方法、装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145127A (ja) * 1995-11-27 1997-06-06 Toshiba Corp 空気調和装置
JP2004116837A (ja) * 2002-09-25 2004-04-15 Sharp Corp 空気調和方法および該方法にて居室を空気調和する住宅
CN104456825A (zh) * 2013-09-18 2015-03-25 珠海格力电器股份有限公司 空调区域送风控制方法和装置
CN105444338A (zh) * 2014-08-26 2016-03-30 海信(山东)空调有限公司 一种控制空调送风的方法及装置
CN106032928A (zh) * 2015-03-18 2016-10-19 青岛海尔智能技术研发有限公司 一种空调定位送风方法
CN105465966A (zh) * 2015-12-31 2016-04-06 广东美的制冷设备有限公司 空调送风控制方法及装置
CN105698357A (zh) * 2016-02-26 2016-06-22 北京小米移动软件有限公司 空调摆风角度的调整方法和装置
CN107246704A (zh) * 2017-02-20 2017-10-13 珠海格力电器股份有限公司 空调器智能送风控制方法及装置
CN110878981A (zh) * 2018-09-05 2020-03-13 合肥海尔空调器有限公司 空调器及其控制方法

Also Published As

Publication number Publication date
CN113899057B (zh) 2022-11-18
CN113899057A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
CN109682023B (zh) 空调送风轨迹的显示方法、装置
US10365004B2 (en) Control method and communication device
CN105571046B (zh) 空调出风状态调节方法及室内机
CN106052037B (zh) 空调器摆风的控制方法和控制装置
CN110594943B (zh) 一种基于声源定位控制空调的方法及***
CN107525238A (zh) 空调器控制方法、红外信号收发器及空调器
CN105783181A (zh) 空调器送风控制方法及装置
WO2021203710A1 (zh) 一种空调的送风控制方法及***
WO2023024648A1 (zh) 用于控制空调的方法及装置、空调
JP2009019860A (ja) 空調システム及び電磁波等発振等装置位置特定システム
WO2020052167A1 (zh) 空调吹风广角确定方法、装置以及空调
CN106765972B (zh) 空调器随身感控制方法和装置
US10072867B2 (en) Air-conditioning control system using sound waves
WO2021223402A1 (zh) 一种空调控制方法、空调内机、遥控器及***
CN108895603A (zh) 送风设备及其送风控制方法、装置和可读存储介质
CN111780232A (zh) 一种空调器
CN108954722A (zh) 一种具有景深识别功能的空调及应用于该空调的送风方法
CN109557951A (zh) 电视机角度的调节方法、电视机以及计算机可读存储介质
WO2021084647A1 (ja) 空調システム及び制御装置
CN108415679A (zh) 设备及其触摸控制方法
JP2019095154A (ja) 空気調和システム
CN113803861A (zh) 空调器及其空调控制方法、控制装置和可读存储介质
CN114484780A (zh) 空调器及其控制方法、控制装置和可读存储介质
JP7136575B2 (ja) 空調システム及び制御方法
JP4401323B2 (ja) 空調制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934819

Country of ref document: EP

Kind code of ref document: A1