WO2021223325A1 - 管外法沉积工艺中固废石英粉末的回收及再利用方法 - Google Patents

管外法沉积工艺中固废石英粉末的回收及再利用方法 Download PDF

Info

Publication number
WO2021223325A1
WO2021223325A1 PCT/CN2020/102937 CN2020102937W WO2021223325A1 WO 2021223325 A1 WO2021223325 A1 WO 2021223325A1 CN 2020102937 W CN2020102937 W CN 2020102937W WO 2021223325 A1 WO2021223325 A1 WO 2021223325A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz powder
tail
quartz
gas
optical fiber
Prior art date
Application number
PCT/CN2020/102937
Other languages
English (en)
French (fr)
Inventor
陈宏达
王龙飞
李凡
眭立洪
罗詠淋
Original Assignee
江苏永鼎光纤科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏永鼎光纤科技有限公司 filed Critical 江苏永鼎光纤科技有限公司
Priority to US17/923,927 priority Critical patent/US20230167016A1/en
Publication of WO2021223325A1 publication Critical patent/WO2021223325A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • C03B37/01245Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down by drawing and collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01248Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by collapsing without drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0126Means for supporting, rotating, translating the rod, tube or preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01846Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/024Chemical treatment of cullet or glass fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments

Definitions

  • the invention belongs to the technical field of optical fibers, and specifically relates to a method for recovering and reusing solid waste quartz powder in an out-of-tube deposition process.
  • optical fiber preform When manufacturing optical fibers, the purified raw materials must first be made into a glass rod that meets certain requirements, which is called “optical fiber preform.”
  • the core layer has a low refractive index (n1) and the outer layer is a cladding layer with a low refractive index (n2), which should have a refractive index distribution and geometric dimensions that meet the requirements.
  • a typical optical fiber preform has a diameter of about 10-25nm and a length of about 60-120nm.
  • optical fiber preforms In the communication optical fiber preparation process, one of the important contents is the preparation of optical fiber preforms.
  • the manufacturing of optical fiber preforms is divided into core rod manufacturing and cladding manufacturing.
  • a cladding is deposited on the outside of the core rod to prepare an optical fiber preform.
  • the technologies used to prepare optical fiber preforms mainly include in-tube method represented by plasma chemical vapor deposition (PCVD) and improved chemical vapor deposition (MCVD), and axial vapor deposition (VAD) and external vapor deposition.
  • Out-of-tube method represented by deposition method (OVD).
  • the outer cladding layer is manufactured mainly by direct OVD synthesis and quartz sleeve assembly.
  • the exhaust gas treatment equipment will not only extract the reaction waste gas, but also extract a certain reaction product, that is, nano-silica powder.
  • a nano-silica powder cake with relatively low water content and low salt content can be obtained. These particles are directly discharged into the air and will cause dust pollution.
  • the main waste disposal method is landfill, but the landfill method still causes certain harm to the environment, especially the soil, and wastes resources.
  • the treatment of exhaust gas in the deposition process of optical fiber preforms is mainly divided into two types: wet and dry.
  • the collected sediment tail gas is currently commonly used in the preparation of white carbon black.
  • the tube preform is composed of a pre-prepared mandrel and a tube.
  • the tube is vacuum drawn from the end of the tube tail handle and melted in a drawing furnace or an extension furnace to finally become an optical fiber or an optical fiber preform.
  • the structure diagram of the casing preform is shown in Figure 1.
  • the core rod of the tube preform includes a core layer and an inner cladding.
  • the inner cladding is silica glass with a certain doping and refractive index adjustment.
  • the tube is used as the outer layer of the optical fiber preform.
  • the outer cladding is generally pure silica glass. .
  • the light guide structure of the entire optical fiber preform is mainly realized by the design of the core rod, so the preparation of the core rod is very demanding. However, for some deposition processes, it is difficult to prepare core rods with low attenuation and superior bending resistance, and it is difficult to directly implement the tube rod process.
  • the SiO 2 in the tail gas of the optical fiber preform is prepared by deposition outside the collecting tube and used as a raw material to prepare the optical fiber preform, turning waste into treasure, which can reduce costs and solve the problem of environmental pollution.
  • SiO 2 in the off-gas from the process of preparing optical fiber preforms by deposition outside the tube it is not suitable to be used directly as raw materials to prepare optical fiber preforms. Therefore, how to recover these SiO 2 to meet the requirements of reuse is an urgent need in this field. problem.
  • Chinese patent CN109553294A provides a method for manufacturing optical fiber preforms based on VAD or OVD process solid waste as raw materials, which specifically includes coaxially arranging target rods, core rods and quartz plates from top to bottom, fixedly connecting them, and placing them in a quartz tube Medium; Introduce the SiO 2 particles collected in the exhaust gas of the VAD or OVD process into the 1PVA solution and stir them evenly, then put them into a quartz crucible and grind them into powder by drying, pour the above particles into the quartz tube, cover the quartz pressure plate, and apply pressure , The embryo body is prepared by dry pressing, and the embryo body is put into the quartz reaction tube set in the sintering furnace, and it is made to meet the standard requirements of the optical fiber preform through the process of oxidation, dehydration and sintering.
  • the method described in the patent cannot dope the prepared quartz product to form a region with a certain optical function, and due to the use of PVA, there may be a certain amount of carbon residue, which affects the tensile strength of the preform after being made into an optical fiber .
  • the technical problem to be solved by the present invention is to solve the above-mentioned problems in the prior art.
  • the present invention provides a method for recovering solid waste silica powder in the process of preparing optical fiber preforms by deposition outside the tube, and combining the process of optical fiber preform sleeves, The method of using the recovered quartz powder to prepare the functional quartz cladding in the optical fiber preform.
  • the present invention provides a method for recovering solid waste quartz powder in the process of preparing optical fiber preforms by deposition outside the tube, which includes the following steps:
  • step (3) Drying: the quartz powder obtained in step (2) is placed in a dryer lined with high-purity quartz, and dried until the water content is less than 2%;
  • Pre-dewatering Put the ground quartz powder in a sealed container, and pass in a nitrogen-chlorine mixture containing 15% to 25% chlorine.
  • the reaction temperature of the quartz powder obtained from the exhaust gas treatment in the deposition of the collected optical fiber preform in the hydrochloric acid solution in step (1) is 40°C-60°C, and the reaction time is 2 to 4 hours;
  • the quartz powder after draining the surface acid solution is cleaned with pure water 3 times or more. For example, the number of washings can be increased if the collection conditions are poor; preferably, the mass concentration of the hydrochloric acid solution is 5%-10%.
  • drying temperature in step (3) is 70°C to 85°C.
  • step (4) the quartz powder after drying in step (3) is placed in a high-purity quartz-lined device and calcined at 400°C to 600°C for 20 to 30 minutes, and then heated at 200°C to 300°C. °C for 6-12 hours; for example, when the calcination temperature is higher, such as 600°C, the 200°C ⁇ 300°C holding time can be shortened to 6 hours. On the contrary, if the calcination temperature is low, the corresponding holding time should be extended .
  • step (6) the ground quartz powder is placed in a sealed container, and a mixture of nitrogen and chlorine containing 15% to 25% chlorine is passed in and kept at 50 to 60°C for no less than 12 hours, for example, the average particle diameter Above 0.5mm can be increased to 24 hours.
  • the second aspect of the present invention also provides a method for preparing an optical fiber preform containing a functional silica cladding, which includes the following steps:
  • (S1) Assembly of the preform The cladding sleeve with tail shank and the mandrel with tail shank are assembled after pickling. After the assembly is completed, the gap between the cladding sleeve and the core rod is filled in the gap between the cladding sleeve and the core rod of the present invention.
  • Quartz powder prepared by exhaust gas treatment then fill the tail pipe with a high-purity quartz column; preferably, the high-purity quartz column refers to a high-purity quartz column with a special structure, for example, as shown in FIG. 5 There is a hole in the middle and a quartz column with a longitudinal shallow groove on the surface at one end;
  • step (S2) is installed at the outlet of the exhaust port, and a valve is installed at the rear, and the positive pressure and negative pressure can be displayed.
  • a valve is installed on the air port, and there are three sealing rings, which are respectively fixed at the end of the mandrel tail handle, the end of the tail high-purity quartz column and the end of the sleeve tail handle from the inside to the outside, forming two located on the mandrel tail handle and the tail height.
  • the two annular gaps between the pure quartz columns and between the tail high-purity quartz column and the casing tail handle are slotted on the outer surface of the other end of the tail high-purity quartz column, so that the two annular gaps can be in contact with the quartz powder area.
  • the doping treatment of the quartz powder includes: closing the valve of the gas outlet, passing a mixed gas composed of doping gas, helium, argon or nitrogen to the inlet, and continuing to pass Enter the gas, and then slowly put the preform into the heating furnace, and slowly raise the temperature to 1200°C to 1400°C to fully react the doping gas with the quartz powder; preferably, the doping gas is silicon tetrachloride or tetrafluoroethylene Silicone.
  • the melting and shrinking sintering method described in step (S3) includes: after the doping gas and the quartz powder are fully reacted, the temperature is gradually lowered to 600-800°C, the gas extraction valve is opened, and the inside of the preform is extracted under negative pressure. Then, open the valve on the inlet side, and supply helium or a mixture of helium and doping gas into the preform. After the pressure is stable, the temperature is gradually increased to the melting temperature, and the cladding casing is passed through The doped quartz powder and the core rod are melted and sintered into a complete transparent glass rod;
  • the doping gas in step (S3) is silicon tetrachloride or silicon tetrafluoride.
  • step (S3) different doping gases have different effects.
  • Silicon tetrafluoride is introduced to produce a functional cladding with a lower refractive index than that of undoped silica glass; silicon tetrachloride is introduced to produce A functional cladding with a higher refractive index than undoped silica glass.
  • the refractive index profile of a functional cladding optical fiber preform prepared by doping with silicon tetrachloride is shown in Figure 6;
  • the schematic diagram of the rate profile is shown in Figure 7.
  • the third aspect of the present invention also provides an optical fiber preform, which is prepared by the foregoing method of the present invention.
  • the present invention provides a method for recovering the deposited waste quartz powder during the production process of optical fiber preforms.
  • the recovered quartz powder can meet the optical performance requirements for the preparation of functional cladding optical fiber preforms, such as
  • the functional cladding regions with increased or decreased refractive index appear in FIGS. 6 and 7, and the method provided by the present invention can reduce production costs while also solving the problem of environmental pollution.
  • the vitrified quartz prepared in the later stage will contain higher -OH, which makes the optical fiber After the preform is made into an optical fiber, there is a relatively high level of attenuation coefficient at 1383nm.
  • the inventors finally used a 15%-25% chlorine nitrogen and chlorine mixture to pre-dehydrate the ground quartz powder, which can significantly reduce
  • the hydroxyl group in vitrified silica overcomes the technical problem of the high attenuation coefficient of 1383nm after the optical fiber preform is made into the optical fiber.
  • the method provided by the present invention can avoid multiple deposition operations, and can simplify the manufacturing difficulty of the preform core rod.
  • the present invention also provides a method to simplify the manufacturing difficulty of some special structure preforms, for example, ultra-low loss G652 optical fiber preforms, G654 optical fiber preforms and G657 optical fiber preforms.
  • some special structure preforms for example, ultra-low loss G652 optical fiber preforms, G654 optical fiber preforms and G657 optical fiber preforms.
  • the method for preparing optical fiber preforms containing functional silica cladding provided by the present invention can solve this problem. problem.
  • Figure 1 is a schematic diagram of the structure of the casing preform
  • Figure 2 is a schematic diagram of the components of the preform before assembly
  • Fig. 3 is a schematic diagram of the preform after the components in Fig. 2 are assembled and filled with quartz powder;
  • Figure 4 is a schematic diagram of the combined structure of the tail cover of the preform
  • Figure 5 is a schematic diagram of grooves on the surface of a high-purity quartz column
  • FIG. 6 is a schematic view of a refractive index profile of a functional cladding optical fiber preform prepared by using silicon tetrachloride doping in Example 2 of the present application;
  • Example 7 is a schematic diagram of the emissivity profile of a functional cladding optical fiber preform prepared by using silicon tetrafluoride doping in Example 2 of the present application;
  • Fig. 8 is a flow chart of the processing method of tail gas quartz powder in Example 1 of the present application.
  • the high-purity quartz powder in the present invention refers to quartz powder with a purity of not less than 99.999%
  • the high-purity quartz column refers to a quartz column made of quartz whose material properties meet or exceed the GE214 standard. Unless specifically explained, other terms involved in the present invention are interpreted according to the conventional meaning in the art.
  • the quartz powder collected from the exhaust gas treatment is placed in a 5%-10% concentration of hydrochloric acid solution and reacted at 50°C for 2 to 4 hours to remove metal ions and other pollutants that may exist during the collection process (the collection conditions are more severe)
  • the concentration of hydrochloric acid and the reaction time can be appropriately increased), and the reaction liquid is allowed to settle to gradually precipitate the quartz powder.
  • After draining the surface water use a centrifugal device to separate the quartz powder, and use a high-purity quartz-lined dryer to dry the powder at a temperature of 80°C until the water content is less than 2%.
  • the high-purity quartz lining equipment is calcined at 400-600°C for 20-30 minutes, and then kept at 200°C for 12 hours (it can be shortened to 6 hours when the calcination temperature is higher). Take out the calcined product and place it in a high-purity quartz-lined device for crushing and grinding (the average particle diameter is preferably controlled in the range of 0.2-0.5mm, and it can also be relaxed to 1mm).
  • the quartz powder After replacing the chlorine in the sealed container with argon or nitrogen, the quartz powder can be used for the preparation of functional cladding.
  • the quartz cladding sleeve and the pre-designed mandrel After pickling the quartz cladding sleeve and the pre-designed mandrel, they are assembled in a hundred-level clean space. After the assembly is completed, the gap between the cladding sleeve and the mandrel is filled with the method prepared in Example 1 Quartz powder.
  • Three sealing rings are respectively fixed at the end of the mandrel tail handle, the end of the tail high-purity quartz column and the end of the sleeve tail handle from the inside to the outside, forming two between the mandrel tail handle and the tail high-purity quartz column and the tail high-purity
  • the two annular gaps between the quartz column and the tail shank of the casing are slotted on the outer surface of the other end of the high-purity quartz column at the tail, as shown in Figure 5, so that the two annular gaps can communicate with the quartz powder area.
  • Silicon tetrafluoride is used to generate a functional cladding with a lower refractive index than that of undoped silica glass; silicon tetrachloride is used to generate a functional cladding with a higher refractive index than that of undoped silica glass.
  • Schematic diagrams of the refractive index profile distribution of the prepared optical fiber preform are shown in Figures 6 and 7, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

一种管外法沉积工艺中固废石英粉末的回收及再利用方法,该方法所回收的石英粉末能够满足用于制备含功能性包层光纤预制棒对光学性能的要求,降低生产成本,同时还解决了环境污染问;还提供了将回收的石英粉末用于制备光纤预制棒的方法,所述方法能够降低简化预制棒芯棒的制造难度,简化了部分特殊结构预制棒的制造难度。

Description

管外法沉积工艺中固废石英粉末的回收及再利用方法 技术领域
本发明属于光纤技术领域,具体涉及一种管外法沉积工艺中固废石英粉末的回收及再利用方法。
背景技术
制造光纤时,必须先将经过提纯的原料制成一根满足一定要求的玻璃棒,称之为“光纤预制棒”,光纤预制棒是拉制光纤的原始棒体材料,其内层为高折射率(n1)的芯层,外层为低折射率(n2)的包层,应具有符合要求的折射率分布与几何尺寸。典型的光纤预制棒直径约为10~25nm,长度约为60~120nm。
在通信光纤制备过程中,重要内容之一是光纤预制棒的制备,光纤预制棒的制造分为芯棒制造与外包层制造,即先制造芯棒(包括芯层和光学包层),再在芯棒外面沉积包层而制得光纤预制棒。目前,用于制备光纤预制棒的技术主要有以等离子体化学气相沉积法(PCVD)和改进的化学气相沉积法(MCVD)为代表的管内法和以轴向气相沉积法(VAD)和外气相沉积法((OVD)为代表的管外法。外包层制造以直接OVD合成和石英套管组装为主。
在利用管外法沉积制备光纤预制棒时,由于需要抽取沉积腔中的反应废气,需要利用尾气处理设备向沉积腔体提供一定负压。在该抽取过程中,尾气处理设备不但会抽走反应废气,同时也会抽取出一定的反应生成物,即纳米二氧化硅粉末。在使用布袋除尘型的干式尾气 处理设备时,能够得到相对含水量、含盐量都较低的纳米二氧化硅粉饼,这些颗粒直接排放到空气中会造成粉尘污染。目前废料主要处理方式是填埋,但填埋方式,仍然会对环境特别是土壤造成一定的危害,且浪费资源。
目前光纤预制棒沉积过程中尾气的处理主要分为湿式和干式两种。收集的沉积尾气目前通常用于制备白炭黑。
使用套管法制备光纤预制棒,可以使光纤预制棒的制造工艺实现从一步法到二步法的转变,以提高生产效率。套管预制棒由预先制备好的芯棒和套管组成,通过从套管尾柄末端进行真空抽取,并于拉丝炉或延伸炉中进行融缩操作,最终成为光纤或光纤预制棒。套管预制棒的结构示意图如图1所示。
套管预制棒的芯棒包含芯层和内包层,其中内包层为进行一定掺杂调整折射率后的石英玻璃,而套管则作为光纤预制棒的外包层,该外包层一般为纯石英玻璃。整根光纤预制棒的导光结构主要依靠芯棒的设计来实现,所以对于芯棒的制备要求很高。但是,对于一些沉积工艺来说,制备低衰减、超强抗弯曲的芯棒是存在困难的,很难直接通过套管棒工艺实现。
收集管外法沉积制备光纤预制棒尾气中的SiO 2,将其作为原料制备光纤预制棒,变废为宝,既能降低成本,又能解决环境污染问题。但是由于管外法沉积制备光纤预制棒工艺尾气中SiO 2纯度低,不适合直接作为原料制备光纤预制棒,因此如何回收这些SiO 2使其能够满足再利用的要求,是本领域急需要解决的问题。
中国专利CN109553294A提供了一种基于VAD或OVD工艺固废为原料的光纤预制棒的制造方法,具体包括从上至下同轴设置靶棒、芯棒和石英板且固定连接,并放入石英管中;将VAD或OVD工艺尾气中收集的SiO 2颗导入1PVA溶液中搅拌均匀,通过烘干放入石英坩埚中研磨成粉,将上述颗粒倒入石英管中,盖上石英压板,并施加压力,干压成型制得胚体,将胚体放入设置在烧结炉中的石英反应管内,通过氧化、脱水和烧结的工艺制成满足光纤预制棒标准要求。但是该专利所述的方法无法对制备的石英制品进行掺杂,以形成有一定光学功能的区域,并且由于使用PVA,可能会存在一定量碳残留,影响预制棒制作成光纤后的拉伸强度。
目前尚未有文献报道如何将沉积尾气搜集到的石英粉末用于制备光纤预制棒的功能性包层。
发明内容
本发明要解决的技术问题是针对上述现有技术中存在的问题,本发明提供一种管外法沉积制备光纤预制棒工艺中固废石英粉末的回收方法,以及结合光纤预制棒套管工艺,将回收的石英粉末用于制备光纤预制棒中的功能型石英包层的方法。
本发明解决其技术问题所采用的技术方案是:首先本发明提供了一种管外法沉积制备光纤预制棒工艺中固废石英粉末的回收方法,包括以下步骤:
(1)酸洗:将搜集的光纤预制棒沉积尾气处理所得的石英粉末 置于盐酸溶液中进行反应,然后沉淀出石英粉末,排去表层酸液后使用纯水清洗;
(2)分离:将步骤(1)得到的纯水稀释后的石英粉除去表层水,然后离心,分离出石英粉末;
(3)烘干:将步骤(2)得到的石英粉末置于高纯石英内衬的干燥器内,烘干至含水量低于2%;
(4)煅烧:将步骤(3)烘干后的石英粉末置于高纯石英内衬的设备内进行煅烧;
(5)破碎:取出煅烧成品,置于高纯石英内衬的设备中破碎研磨至平均颗粒直径为0.2~1mm,优选0.2~0.5mm;
(6)预除水:将研磨后的石英粉末置于密封容器中,通入含有15%~25%氯气的氮氯混合气。
上述方法,其中,步骤(1)所述将搜集的光纤预制棒沉积中尾气处理所得的石英粉末置于盐酸溶液中进行反应的反应温度为40℃-60℃,反应时间为2~4小时;排去表层酸液后的石英粉末用纯水清洗3次或3次以上,例如,搜集条件恶劣的可以增加洗涤的次数;优选地,所述盐酸溶液质量浓度为5%~10%。
进一步的,其中步骤(3)所述烘干温度为70℃~85℃。
进一步的,其中步骤(4)所述将步骤(3)烘干后的石英粉末置于高纯石英内衬的设备内进行400℃~600℃煅烧20~30分钟,然后再以200℃~300℃保温6~12小时;例如,当煅烧温度较高时如600℃时,200℃~300℃保温时间可缩短至6小时,相反的,如果煅烧温度低时, 相应的保温时间,就要延长。
进一步的,其中步骤(6)将研磨后的石英粉末置于密封容器中,通入含有15%~25%氯气的氮氯混合气于50~60℃保温不低于12小时,例如平均颗粒直径在0.5mm以上的可提高至24小时。
本发明的第二方面,还提供了一种含有功能性石英包层的光纤预制棒的制备方法,包括以下步骤:
(S1)预制棒的组装:将带尾柄的包层套管和带尾柄的芯棒酸洗后进行组装,组装完成后,在包层套管和芯棒的间隙内填入本发明前述尾气处理制备的石英粉末;然后再在尾管内填入高纯石英柱;优选地,所述的高纯石英柱是指具有特殊结构的高纯石英柱,例如,如附图5中所示的中间带孔,一端有表面开纵向浅槽的石英柱;
(S2)安装尾部盖板:在预制棒尾柄末端安装带有气压表、进气口、抽气口和特氟龙密封圈的尾部盖板,用以固定芯棒位置;
(S3)将预制棒挂至融缩设备上,对石英粉末进行掺杂处理,然后融缩烧结得到透明玻璃棒。
上述含有功能性石英包层的光纤预制棒的制备方法,其中,步骤(S2)所述气压表安装于抽气口出口位置,后部安装阀门,其正压与负压均可显示,所述进气口上安装有阀门,所述密封圈有三个,从内到外分别固定在芯棒尾柄末端、尾部高纯石英柱末端和套管尾柄末端,形成两个位于芯棒尾柄与尾部高纯石英柱之间和尾部高纯石英柱与套管尾柄之间的两个环形间隙,通过在尾部高纯石英柱的另一端外表面开槽,使得两个环形间隙均能与石英粉末区域联通。
进一步的,其中步骤(S3)所述对石英粉末进行掺杂处理包括:关闭出气口的阀门,向进气口通入由掺杂气体,氦气,氩气或氮气组成的混合气体,持续通入气体,然后将预制棒缓慢放入加热炉中,缓慢升温至1200℃~1400℃使掺杂气体与石英粉末进行充分反应;优选地,其中所述掺杂气体为四氯化硅或四氟化硅。
进一步的,其中,步骤(S3)所述的融缩烧结方法包括:将掺杂气体与石英粉末进行充分反应后,逐步降温至600~800℃,打开抽气阀门,负压抽取预制棒内部的混合气体,然后打开进气端阀门,向预制棒内部供入氦气或氦气与掺杂气体的混合气,待压力表示数稳定后,逐步升温至融缩温度,将包层套管、经过掺杂的石英粉末和芯棒融缩烧结为完整的透明玻璃棒;
优选地,其中步骤(S3)所述掺杂气体为四氯化硅或四氟化硅。
其中步骤(S3),不同的掺杂气体的效果不同,通入四氟化硅是为了生成比无掺杂的石英玻璃折射率更低的功能性包层;通入四氯化硅是为了生成比无掺杂石英玻璃折射率更高的功能性包层。例如,使用四氯化硅掺杂制备成的功能性包层光纤预制棒折射率剖面分布示意如图6所示;使用四氟化硅掺杂制备成的含功能性包层光纤预制棒的射率剖面示意图如图7所示。
本发明第三方面还提供了一种光纤预制棒,其由本发明前述方法制备得到。
本发明的有益效果是:
第一、本发明提供了一种回收光纤预制棒生产过程的沉积废料石 英粉末的方法,该方法所回收的石英粉末能够满足用于制备含功能性包层光纤预制棒对光学性能的要求,如图6和图7中出现的折射率抬高或者降低的功能性包层区域,并且,本发明提供的方法能够降低生产成本,同时还解决了环境污染问题。
本发明人发现将搜集得到的沉积废料,通过酸洗、离心分离、烘干、煅烧、破碎、研磨后得到石英粉末,在后期制备成的玻璃化石英中会含有较高的-OH,使得光纤预制棒制成光纤后存在较高的1383nm衰减系数水平,通过大量试验研究,发明人最终通过将研磨后的石英粉末采用15%~25%氯气的氮氯混合气进行预除水,能够显著降低玻璃化石英中的羟基,从而克服光纤预制棒制成光纤后存在较高的1383nm衰减系数水的技术问题。
第二、现有技术对于有复杂折射率剖面设计的(多层不同折射率),且对掺杂剂有一定掺杂浓度要求的光纤预制棒芯层的设计,难以通过VAD或者OVD设备进行一次沉积成型,本发明提供的方法可避免进行多次沉积的操作,能够简化预制棒芯棒的制造难度。
第三、本发明还提供简化了部分特殊结构预制棒的制造难度的方法,例如,超低损耗的G652光纤预制棒、G654光纤预制棒和G657光纤预制棒,为了实现其光学特性,需要设置某些低折射率区域或者高折射率区域,在普通VAD或者OVD工艺中难以提高掺杂浓度或难以实现掺杂,而本发明提供的含有功能性石英包层的光纤预制棒的制备方法能够解决该问题。
附图说明
下面结合附图和实施例对本申请的技术方案进一步说明。
图1是套管预制棒结构示意图;
图2是预制棒组装前的部件示意图;
图3是图2中各部件组装完成并填充石英粉末后的预制棒示意图;
图4是预制棒尾部盖板组合结构示意图;
图5是高纯石英柱表面开槽示意图;
图6是本申请实施例2使用四氯化硅掺杂制备成的含功能性包层光纤预制棒的折射率剖面示意图;
图7是本申请实施例2使用四氟化硅掺杂制备成的含功能性包层光纤预制棒的射率剖面示意图;
图8是本申请实施例1尾气石英粉末的处理方法的流程图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。本发明所述高纯石英粉末是指纯度不低于99.999%的石英粉末,所述高纯石英柱是指材料特性满足或高于GE214标准的石英制成的石英柱。本发明所涉及其他术语除非特别解释,均按照本领域常规含义解释。
实施例1干式处理尾气的石英粉末的回收处理方法
将尾气处理搜集所得的石英粉末置于5%~10%浓度的盐酸溶液中,以50℃温度反应2~4小时,以除去搜集过程中可能存在的金属离子等污染物(搜集条件较为恶劣的可以适当提高盐酸浓度和反应时间),静置反应液体,使石英粉末逐步沉淀。排去表层酸洗酸液后使用灌入 纯水,清洗并静置,重复3~5次(搜集条件恶劣的可以增加稀释洗涤的次数)。排去表层水后使用离心设备分离出石英粉末,并于高纯石英内衬的干燥器内,使用80℃温度烘干粉末至含水量低于2%。
随后至于高纯石英内衬的设备内进行400~600℃煅烧20~30分钟,随后以200℃保温12小时(煅烧温度较高时可缩短至6小时)。取出煅烧成品,置于高纯石英内衬的设备中破碎研磨(平均颗粒直径控制在0.2~0.5mm范围较佳,也可放宽至1mm)。
将研磨后的石英粉末块置于密封容器中,通入含有20%氯气的氮氯混合气,50℃保温12小时以上(平均颗粒直径在0.5mm以上的可提高至24小时)。
通过氩气或氮气置换密封容器中的氯气后,该石英粉末可供功能性包层制备使用。
上述制备方法流程图如附图8所示。
实施例2含功能性包层的光纤预制棒的制备
将石英包层套管和预先设计好的芯棒进行酸洗后,在百级洁净空间内进行组装,组装完成后,在包层套管和芯棒的间隙内填入实施例1方法制备的石英粉末。
预制棒组装完成后,在其尾柄末端安装上带有气压表(正压与负压均可显示,安装于抽气口出口位置,后部安装阀门)、进气口(需安装阀门)、抽气口和特氟龙密封圈的尾部盖板,用以固定芯棒位置。盖板内部通以冷却水进行冷却,盖板结构如图4所示
三个密封圈从内到外分别固定在芯棒尾柄末端、尾部高纯石英柱 末端和套管尾柄末端,形成两个位于芯棒尾柄与尾部高纯石英柱之间和尾部高纯石英柱与套管尾柄之间的两个环形间隙,通过在尾部高纯石英柱的另一端外表面开槽,如图5,使得两个环形间隙均能与石英粉末区域联通。
在安装完尾部盖板后,将预制棒挂设至融缩设备上,关闭出气口的阀门,向进气口通入掺杂气体(可使用四氯化硅或四氟化硅)、氦气、其他惰性气体(氩气、氮气等)按一定比例混合的混合气体。持续通入气体,并观察抽气口处气压表的正压示数,达到工艺需求的压力后关闭进气口。随后将预制棒缓慢下降放入加热炉中,缓慢升温至1200℃至1400℃(该温度视需掺杂的掺杂源、需要的掺杂浓度等工艺要求确定),维持温度一定时间以保证掺杂剂进行充分反应。随后逐步降温至800℃,打开抽气阀门,以一定负压抽取预制棒内部的混合气体,当达到一定工艺压力后,打开进气端阀门,向预制棒内部供入氦气(或氦气与掺杂气体的混合气),待压力表示数稳定后,逐步升温至融缩温度,将包层套管、经过掺杂的石英粉末和芯棒融缩烧结为完整的透明玻璃棒。
该过程中,不同的掺杂气体的效果不同。通入四氟化硅是为了生成比无掺杂的石英玻璃折射率更低的功能性包层;通入四氯化硅是为了生成比无掺杂石英玻璃折射率更高的功能性包层。制备所得的光纤预制棒折射率剖面分布示意图分别如图6和7所示。
以上述依据本申请的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多 样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (11)

  1. 一种管外法沉积工艺中固废石英粉末的回收方法,其特征在于,包括以下步骤:
    (1)酸洗:将搜集的光纤预制棒沉积尾气处理所得的石英粉末置于盐酸溶液中进行反应,然后沉淀出石英粉末,排去表层酸液后使用纯水清洗;
    (2)分离:将步骤(1)得到的纯水稀释后的石英粉排去表层水,然后离心,分离出石英粉末;
    (3)烘干:将步骤(2)得到的石英粉末置于高纯石英内衬的干燥器内,烘干至含水量低于2%;
    (4)煅烧:将步骤(3)烘干后的石英粉末置于高纯石英内衬的设备内进行煅烧;
    (5)破碎:取出煅烧成品,置于高纯石英内衬的设备中破碎研磨至平均颗粒直径为0.2~1mm;
    (6)预除水:将研磨后的石英粉末置于密封容器中,通入含有15%~25%氯气的氮氯混合气。
  2. 根据权利要求1所述的回收方法,其特征在于,步骤(1)所述将搜集的光纤预制棒沉积过程中尾气处理所得的石英粉末置于盐酸溶液中进行反应的反应温度为40℃~60℃,反应时间为2~4小时;排去表层酸液后的石英粉末用纯水清洗3次或3次以上。
  3. 根据权利要求1所述方法,其特征在于,步骤(3)所述烘干温度为70℃~85℃。
  4. 根据权利要求1所述方法,其特征在于,步骤(4)所述将步 骤(3)烘干后的石英粉末置于高纯石英内衬的设备内进行400~600℃煅烧20~30分钟,然后再以200℃~300℃保温6~12小时。
  5. 根据权利要求1所述方法,其特征在于,步骤(6)将研磨后的石英粉末置于密封容器中,通入含有15%~25%氯气的氮氯混合气于50~60℃保温不低于12小时。
  6. 一种含有功能性石英包层的光纤预制棒的制备方法,其特征在于,包括以下步骤:
    (S1)光纤预制棒的组装:将带尾柄的包层套管和带尾柄的芯棒酸洗后进行组装,组装完成后,在包层套管和芯棒的间隙内填入权利要求1~5任一项所述方法制备的石英粉末;然后再在尾管内填入高纯石英柱;
    (S2)安装尾部盖板:在预制棒尾柄末端安装带有气压表、进气口、抽气口和特氟龙密封圈的尾部盖板,用以固定芯棒位置;
    (S3)将光纤预制棒挂至融缩设备上,对石英粉末进行掺杂处理,然后,融缩烧结得到透明玻璃棒。
  7. 根据权利要求6所述方法,其特征在于,步骤(S2)所述气压表安装于抽气口出口位置,后部安装阀门,其正压与负压均可显示,所述进气口上安装有阀门,所述密封圈有三个,从内到外分别固定在芯棒尾柄末端、尾部高纯石英柱末端和套管尾柄末端,形成两个位于芯棒尾柄与尾部高纯石英柱之间和尾部高纯石英柱与套管尾柄之间的两个环形间隙,通过在尾部高纯石英柱另一端外表面开槽,使得两个环形间隙均能与石英粉末区域联通。
  8. 根据权利要求6所述方法,其特征在于,步骤(S3)所述对石英粉末进行掺杂处理包括:关闭出气口的阀门,向进气口通入由掺杂气体、氦气、氩气或氮气组成的混合气体,持续通入气体,然后将预制棒缓慢放入加热炉中,缓慢升温至1200℃~1400℃使掺杂气体与石英粉末进行充分反应。
  9. 根据权利要求8所述方法,其特征在于,步骤(S3)所述融缩烧结方法包括:掺杂气体与石英粉末进行充分反应后,逐步降温至600~800℃,打开抽气阀门,负压抽取预制棒内部的混合气体,然后打开进气端阀门,向预制棒内部供入氦气或氦气与掺杂气体的混合气,待压力表示数稳定后,逐步升温至融缩温度,将包层套管、经过掺杂的石英粉末和芯棒融缩烧结为完整的透明玻璃棒。
  10. 根据权利要求8~9任一项所述方法,其特征在于,所述掺杂气体为四氯化硅或四氟化硅。
  11. 一种权利要求6~10任一项所述方法制备的光纤预制棒。
PCT/CN2020/102937 2020-05-08 2020-07-20 管外法沉积工艺中固废石英粉末的回收及再利用方法 WO2021223325A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/923,927 US20230167016A1 (en) 2020-05-08 2020-07-20 Recovery and reuse method of quartz powder waste in outside-of-tube deposition process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010380533.2A CN111470767B (zh) 2020-05-08 2020-05-08 管外法沉积工艺中固废石英粉末的回收及再利用方法
CN202010380533.2 2020-05-08

Publications (1)

Publication Number Publication Date
WO2021223325A1 true WO2021223325A1 (zh) 2021-11-11

Family

ID=71757337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102937 WO2021223325A1 (zh) 2020-05-08 2020-07-20 管外法沉积工艺中固废石英粉末的回收及再利用方法

Country Status (3)

Country Link
US (1) US20230167016A1 (zh)
CN (1) CN111470767B (zh)
WO (1) WO2021223325A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745392B (zh) * 2022-12-07 2024-04-05 中国工程物理研究院激光聚变研究中心 一种mcvd尾灰回收再制备稀土掺杂光纤预制棒的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1989078A (zh) * 2004-04-27 2007-06-27 达特怀勒光纤光学股份有限公司 用于制造光纤的方法、用于制造光纤的预制件、光纤和设备
CN102285758A (zh) * 2011-08-01 2011-12-21 江苏亨通光电股份有限公司 一种大尺寸光纤预制棒的生产方法
CN102325730A (zh) * 2009-02-22 2012-01-18 西里特克光纤公司 用于生产和加工预制件的方法、预制件和光纤
CN103449455A (zh) * 2013-08-30 2013-12-18 连云港市弘扬石英制品有限公司 一种以低品位石英矿为原料生产高品质石英砂的方法
CN104556070A (zh) * 2014-12-26 2015-04-29 中天科技精密材料有限公司 一种回收高纯二氧化硅的方法及装置
US20160257599A1 (en) * 2015-03-06 2016-09-08 Ofs Fitel, Llc Easy removal of a thin-walled tube in a powder-in-tube (pit) process
CN109553294A (zh) * 2018-11-16 2019-04-02 法尔胜泓昇集团有限公司 一种基于vad或ovd工艺固废为原料的光纤预制棒的制造方法
CN109665713A (zh) * 2019-01-29 2019-04-23 江苏永鼎股份有限公司 一种低水峰大尺寸光纤预制棒及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645923A (en) * 1987-06-29 1989-01-10 Sumitomo Electric Industries Production of preform for optical fiber
CN101538113B (zh) * 2009-04-27 2011-08-03 中天科技精密材料有限公司 微间隙套管光纤预制棒的制备方法及其拉制光纤的方法
CN102173572B (zh) * 2011-03-23 2013-07-03 中天科技精密材料有限公司 一种全合成超大尺寸超低水峰光纤预制棒制造方法及其制造设备
CN104986947B (zh) * 2015-07-13 2018-03-16 江苏圣达石英制品有限公司 一种光敏石英管制备方法
CN105036554B (zh) * 2015-07-13 2017-10-24 江苏圣达石英制品有限公司 一种光敏石英管的制备方法
CN105585017B (zh) * 2016-03-09 2017-12-15 衢州市鼎盛化工科技有限公司 高纯度二氧化硅的工业化生产方法
CN109437209B (zh) * 2018-07-26 2020-05-05 浙江工业大学 一种从自然界沙子中提取SiO2的方法
CN110510620B (zh) * 2019-09-11 2021-08-24 江苏凯达石英股份有限公司 高纯石英砂尾矿的提纯方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1989078A (zh) * 2004-04-27 2007-06-27 达特怀勒光纤光学股份有限公司 用于制造光纤的方法、用于制造光纤的预制件、光纤和设备
CN102325730A (zh) * 2009-02-22 2012-01-18 西里特克光纤公司 用于生产和加工预制件的方法、预制件和光纤
CN102285758A (zh) * 2011-08-01 2011-12-21 江苏亨通光电股份有限公司 一种大尺寸光纤预制棒的生产方法
CN103449455A (zh) * 2013-08-30 2013-12-18 连云港市弘扬石英制品有限公司 一种以低品位石英矿为原料生产高品质石英砂的方法
CN104556070A (zh) * 2014-12-26 2015-04-29 中天科技精密材料有限公司 一种回收高纯二氧化硅的方法及装置
US20160257599A1 (en) * 2015-03-06 2016-09-08 Ofs Fitel, Llc Easy removal of a thin-walled tube in a powder-in-tube (pit) process
CN109553294A (zh) * 2018-11-16 2019-04-02 法尔胜泓昇集团有限公司 一种基于vad或ovd工艺固废为原料的光纤预制棒的制造方法
CN109665713A (zh) * 2019-01-29 2019-04-23 江苏永鼎股份有限公司 一种低水峰大尺寸光纤预制棒及其制造方法

Also Published As

Publication number Publication date
CN111470767A (zh) 2020-07-31
CN111470767B (zh) 2022-07-05
US20230167016A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
AU632240B2 (en) Method for manufacturing a silica glass base material
US20240034667A1 (en) Method for making halogen doped optical element
CN105198201B (zh) 一种石英玻璃预制件的制备方法
WO2021223325A1 (zh) 管外法沉积工艺中固废石英粉末的回收及再利用方法
CN1030221A (zh) 光导纤维制作方法
WO2018036142A1 (zh) 一种光纤预制棒套管烧结装置及其烧结方法
CN101781087A (zh) 一种疏松体光纤预制棒一体化烧结脱气的设备及其方法
CN109665713A (zh) 一种低水峰大尺寸光纤预制棒及其制造方法
WO2020155707A1 (zh) 一种大尺寸低损耗的光纤预制棒及其制备方法
CN110204190A (zh) 一种超低损耗单模光纤的制造方法及装置
JPH05351B2 (zh)
WO2021223326A1 (zh) 含有功能性石英包层的光纤预制棒及其制备方法
CN112174511B (zh) 一种光纤预制棒疏松体的烧结装置及其应用方法
JP5046753B2 (ja) 光ファイバ母材の製造方法及びその装置
CN104529148A (zh) 一种光纤粉末疏松棒体的脱水装置及方法
CN209338627U (zh) 一种金属锂渣回收处理设备
JPS5858299B2 (ja) 低損失光ファイバ用多孔質母材の脱水焼結方法
CN208604020U (zh) 一种光纤预制棒的脱气装置
JPS61201637A (ja) 光フアイバ用母材の製造方法
CN202543037U (zh) 一种气相沉积合成炉
JPH09169535A (ja) 光ファイバの製造方法
KR950006186B1 (ko) 광파이버용 유리모재의 제조방법
CN214193051U (zh) 一种光纤预制棒疏松体的烧结装置
CN112094049A (zh) 制备稀土离子掺杂光纤预制棒的方法、装置及产品
CN115745392B (zh) 一种mcvd尾灰回收再制备稀土掺杂光纤预制棒的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934518

Country of ref document: EP

Kind code of ref document: A1