WO2021223310A1 - 一种钢桥疲劳裂纹监测装置及方法 - Google Patents

一种钢桥疲劳裂纹监测装置及方法 Download PDF

Info

Publication number
WO2021223310A1
WO2021223310A1 PCT/CN2020/098255 CN2020098255W WO2021223310A1 WO 2021223310 A1 WO2021223310 A1 WO 2021223310A1 CN 2020098255 W CN2020098255 W CN 2020098255W WO 2021223310 A1 WO2021223310 A1 WO 2021223310A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
positioning
crack
monitoring device
steel bridge
Prior art date
Application number
PCT/CN2020/098255
Other languages
English (en)
French (fr)
Inventor
王贤强
张建东
吴赞平
刘朵
徐海虹
林毅
华春丽
李�昊
杨羿
杜元
陈欣
张东亮
孙敏
黄健华
Original Assignee
苏交科集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏交科集团股份有限公司 filed Critical 苏交科集团股份有限公司
Publication of WO2021223310A1 publication Critical patent/WO2021223310A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/105Number of transducers two or more emitters, two or more receivers

Definitions

  • This application relates to the technical field of fatigue crack monitoring of steel bridges, and in particular to a device and method for monitoring fatigue cracks of steel bridges.
  • Fatigue cracks of steel bridges refer to cracks that are caused by repeated vehicle loads during the operation of steel structure bridges. It has a large potential safety hazard and is one of the main diseases of steel bridges. Because fatigue cracks will enter a rapid growth period after initiation, the growth of fatigue cracks will seriously affect the service life of steel structure bridges.
  • the detection of fatigue cracks in steel bridges usually uses ultrasonic, magnetic powder, magnetic flux and other methods for regular inspections.
  • regular inspections can only detect the periodic static results of the cracks, but cannot understand the continuous development of fatigue cracks during the detection period. Condition. Therefore, the development of a fatigue crack monitoring device and method is of great significance for real-time monitoring of fatigue crack morphology changes and ensuring the safety of steel bridge operations.
  • the technical problem to be solved by this application is to provide a device and method for monitoring fatigue cracks of steel bridges, so as to realize real-time dynamic tracking of steel bridge cracks.
  • the present application adopts a steel bridge fatigue crack monitoring device on the one hand, including: a sliding guide rod; a positioning mechanism, the positioning mechanism is provided with a first positioning buckle, and the positioning mechanism is provided with at least two , The first positioning buckles on the two positioning mechanisms are sleeved on the sliding guide rod, and the bottom of the positioning mechanism is fixedly connected to the surface of the steel plate at the fatigue crack; and a monitoring mechanism, the monitoring mechanism having a first Two positioning buckles and TOFD probes, the second positioning buckles are sleeved on the sliding guide rods, the TOFD probes are connected with the second positioning buckles, and the monitoring mechanism is provided with two, two The bottom of the TOFD probe is in contact with the steel plates on both sides of the crack; wherein the positions of the positioning mechanism and the monitoring mechanism on the sliding guide rod are adjustable, and the two positioning mechanisms are arranged on the sliding guide rod. At both ends, the two monitoring mechanisms are arranged inside the two positioning mechanisms.
  • first positioning buckle and the second positioning buckle both have fasteners, and when the fasteners are fastened, the positions of the first positioning buckle and the second positioning buckle are fixed .
  • the positioning mechanism further includes a connecting rod and a base, wherein: one end of the connecting rod is connected with the first positioning buckle, and the other end is connected with the base; the bottom of the base is flat, Used for connection with the surface of the steel plate.
  • the base is a switch-type magnetic base.
  • the monitoring mechanism further includes a probe holder, and the probe holder is hinged to the TOFD probe.
  • the monitoring mechanism further includes a guide tube and a compression spring, wherein: the guide tube is fixedly connected to the second positioning buckle, and the upper half of the probe holder is relatively slidably arranged on the guide In the tube; the compression spring is arranged in the guide tube, one end of which is fixedly connected to the second positioning buckle, and the other end is connected to the probe holder.
  • the bottom of the guide tube is provided with a limit block for restricting the probe holder from falling off.
  • Another aspect of the present application provides a method for monitoring fatigue cracks of steel bridges.
  • the application of the above-mentioned device for monitoring fatigue cracks of steel bridges includes the following steps:
  • the TOFD probe emits or receives sound wave signals
  • the condition of the crack is judged.
  • the monitoring device when a number of monitoring devices are arranged at the fatigue crack in the step, the monitoring device at least includes a first monitoring device located at the two ends of the fatigue crack and a second monitoring device located at the middle of the fatigue crack.
  • the through wave received at the first monitoring device disappears, it represents the forward expansion of the fatigue crack; the depth of the extended cracking fatigue crack is determined by the diffracted wave signal at the lower tip of the crack and its time difference; the second monitoring device According to the diffracted wave signal at the tip of the crack and its time difference, the depth change of the fatigue crack is determined.
  • the beneficial effect of the present application is that the present application realizes real-time monitoring of cracks through the positioning mechanism and the monitoring mechanism provided on the sliding guide rod.
  • By setting up multiple monitoring devices at both ends and the middle of the crack it is possible to monitor the changes in the length and depth of the crack, thereby realizing real-time dynamic tracking of steel bridge cracks, identifying structural risks in time, and implementing preventive maintenance measures.
  • Fig. 1 is a schematic structural diagram of a fatigue crack monitoring device for a steel bridge in an embodiment of the application
  • Figure 2 is a schematic structural diagram of a positioning mechanism in an embodiment of the application.
  • Figure 3 is a schematic diagram of the structure of a monitoring agency in an embodiment of the application.
  • Fig. 4 is a working principle diagram of a fatigue crack monitoring device for a steel bridge in an embodiment of the application
  • Figure 5 is a layout diagram of the monitoring device when monitoring fatigue cracks in an embodiment of the application.
  • Fig. 6 is a flowchart of a method for monitoring fatigue cracks of a steel bridge in an embodiment of the application.
  • Fastener; 341. Limit block.
  • Ultrasonic Time-of-Flight Diffraction is an ultrasonic monitoring method that monitors defects by using the diffraction waves emitted by sound waves at the "end angles" and "end points" of the internal defects of the specimen. It can realize defect monitoring, quantification and positioning. It has the advantages of strong detection ability, high positioning accuracy, simple operation, digital storage, safety and environmental protection.
  • the fatigue crack monitoring device for steel bridges as shown in Figures 1 to 4 includes:
  • the positioning mechanism 20 has first positioning buckles 21 on the positioning mechanism 20, and at least two positioning mechanisms 20 are provided.
  • the first positioning buckles 21 on the two positioning mechanisms 20 are sleeved on the sliding guide rod 10, and the bottom of the positioning mechanism 20 Fixed connection with the surface of the steel plate at the fatigue crack; and
  • the monitoring mechanism 30 has a second positioning buckle 31 and a TOFD probe 32, the second positioning buckle 31 is sleeved on the sliding guide bar 10, the TOFD probe 32 is connected to the second positioning buckle 31, and the monitoring mechanism 30 There are two, the bottom of the two TOFD probes 32 is in contact with the steel plates on both sides of the crack;
  • the positions of the positioning mechanism 20 and the monitoring mechanism 30 on the sliding guide rod 10 can be adjusted, the two positioning mechanisms 20 are arranged at both ends of the sliding guide rod 10, and the two monitoring mechanisms 30 are arranged inside the two positioning mechanisms 20.
  • the cross section of the sliding guide rod 10 is circular or other regular shapes, which facilitates the movement of the first positioning buckle 21 and the second positioning buckle 31, through the movable arrangement of the first positioning buckle 21 and the second positioning buckle 31 It can improve the applicability of the device and is suitable for fatigue cracks of various shapes; by using the TOFD probe to transmit and receive diffracted waves, determine the depth of the crack, which is convenient to grasp the crack dynamics in real time.
  • the first positioning buckle 21 and the second positioning buckle 31 each have a fastener 231.
  • the fastener 231 here can specifically be the fit of a bolt and a nut.
  • the fastener 231 is a bolt, which passes through the side wall of the buckle and contacts the outer wall of the sliding guide rod 10, and the position of the buckle on the sliding guide rod 10 is fixed by squeezing the top of the bolt.
  • the positioning mechanism 20 further includes a connecting rod 22 and a base 23, wherein:
  • One end of the connecting rod 22 is connected with the first positioning buckle 21, and the other end is connected with the base 23;
  • the bottom of the base 23 is a flat surface and is used for connection with the surface of the steel plate.
  • the connection between the base 23 and the steel bridge deck can be adhesive bonding, welding, or other fixing methods.
  • the base 23 is a switch-type magnetic base. Since the steel plate is a ferromagnetic material, it can be adsorbed by a magnet, and the switch-type magnetic base is arranged to facilitate the fixing and disassembly of the base 23, the adjustment of the base 23, and the accuracy of monitoring.
  • the monitoring mechanism 30 further includes a probe holder 33, and the probe holder 33 is hinged with the TOFD probe 32.
  • the angle of the bottom surface of the TOFD probe 32 can be adjusted, and the angle of the TOFD probe 32 can be adjusted to the vertical contact with the steel plate; when the surface of the steel plate is not flat, the angle of the TOFD probe can be adjusted to achieve the maximum Fit the area to improve the accuracy of monitoring.
  • a coupling agent which is butter, paraffin, etc.
  • the monitoring mechanism 30 also includes a guide tube 34 and a compression spring 35, wherein:
  • the guide tube 34 is fixedly connected to the second positioning buckle 31, and the upper half of the probe holder 33 is relatively slidably arranged in the guide tube 34;
  • the compression spring 35 is arranged in the guide tube 34, one end of which is fixedly connected to the second positioning buckle 31, and the other end is connected to the probe holder 33.
  • the compression spring 35 and the guide tube 34 are arranged so that the compression spring 35 exerts downward pressure on the probe holder 33 along the direction of the guide tube 34, so that the TOFD probe 32 maintains the pressure on the surface of the steel plate.
  • the monitoring effect is improved.
  • the limit block 341 is arranged at the bottom of the guide tube 34, and its restricted size is larger than the sliding rod in the middle of the probe holder 33 and smaller than the size of the top of the probe holder 33, so as to prevent the probe holder 33 from falling off the guide pipe 34.
  • the embodiment of the present application also provides a method for monitoring fatigue cracks of a steel bridge, using the above-mentioned fatigue crack monitoring device for a steel bridge, as shown in FIG. 5 and FIG. 6, including the following steps:
  • S40 Determine the condition of the crack based on the through wave and the diffracted wave from the crack tip.
  • the TOFD probes 32 are respectively arranged on both sides of the crack, as shown in FIG. 4 and FIG. 5, so as to monitor the fatigue crack at the location.
  • the monitoring device at least includes the first monitoring device 100 located at the two ends of the fatigue crack and the first monitoring device 100 located at the middle position of the fatigue crack.
  • the second monitoring device 200 What needs to be pointed out here is that the two end points means that the first monitoring device 100 is placed in front of the end point, that is, fatigue cracks cannot be monitored at the beginning of the monitoring.
  • the purpose is to monitor the dynamics of the cracks in the length direction of the cracks.
  • the function of the second monitoring device 200 placed in the middle position is to monitor the depth of the crack.
  • the second monitoring device 200 needs to adjust the relative distance of the monitoring device along the sliding guide rod to realize the monitoring of the fatigue cracks in the middle.
  • the through wave received at the first monitoring device 100 disappears, it means that the fatigue crack is expanding forward; the depth of the extended cracking fatigue crack is determined according to the diffracted wave signal at the bottom of the crack and its time difference; the second monitoring device 200 is based on the crack The diffracted wave signal at the lower tip and its time difference determine the depth change of the fatigue crack.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Bridges Or Land Bridges (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本申请涉及钢桥疲劳裂纹监测技术领域,尤其涉及一种钢桥疲劳裂纹监测装置,包括:滑动导杆;定位机构,具有第一定位卡扣,设置有至少两个,两定位机构上的第一定位卡扣套设在滑动导杆上,底部与疲劳裂纹处的钢板表面固定连接;及监测机构,具有第二定位卡扣和TOFD探头,第二定位卡扣套设在滑动导杆上,TOFD探头与第二定位卡扣连接,两TOFD探头底部与裂缝两侧的钢板接触。本申请通过设置在滑动导杆上的定位机构和监测机构实现了对裂纹的实时监测。通过在裂纹的两端和中间位置设置多个监测装置,可以监测裂纹的长度方向和深度方向的变化,实现钢桥裂纹的实时动态跟踪,提高钢桥的耐久性和运营安全性。本申请还请求保护一种钢桥疲劳裂纹监测方法。

Description

一种钢桥疲劳裂纹监测装置及方法
本申请要求于2020年5月8日提交至中国国家知识产权局、申请号为202010382743.5、发明名称为“一种钢桥疲劳裂纹监测装置及方法”的专利申请的优先权。
技术领域
本申请涉及钢桥疲劳裂纹监测技术领域,尤其涉及一种钢桥疲劳裂纹监测装置及方法。
背景技术
钢桥疲劳裂纹是指钢结构桥梁运营过程中在车辆荷载反复作用下产生的裂纹,其具有较大的安全隐患,是钢桥主要病害之一。因为疲劳裂纹萌生之后会进入快速扩展期,疲劳裂纹的扩展会严重影响钢结构桥梁的使用寿命。
现有技术中,钢桥疲劳裂纹的检测多采用超声波、磁粉、磁通量等方法进行定期检测,然而定期检测只能检测到裂缝的周期性静态结果,却无法了解检测空档期的疲劳裂缝连续发展情况。因此,研发一种疲劳裂纹监测装置及方法对于实时监测疲劳裂缝形态变化,保障钢桥运营安全具有重要意义。
鉴于上述问题的存在,本设计人基于从事此类产品工程应用多年丰富的实务经验及专业知识,并配合学理的运用,积极加以研究创新,以期创设一种钢桥疲劳裂纹监测装置及方法,使其更具有实用性。
发明内容
本申请所要解决的技术问题是:提供一种钢桥疲劳裂纹监测装置及方法,实现钢桥裂纹的实时动态跟踪。
为了达到上述目的,本申请一方面采用了一种钢桥疲劳裂纹监测装置,包括:滑动导杆;定位机构,所述定位机构上具有第一定位卡扣,所述定位机构设置有至少两个,两所述定位机构上的所述第一定位卡扣套设在所述滑动导杆上,所述定位机构底部与疲劳裂纹处的钢板表面固定连接;及监测机构,所述监测机构具有第二定位卡扣和TOFD探头,所述第二定位卡扣套设在所述滑动导杆上,所述TOFD探头与所述第二定位卡扣连接,并且所述监测机构设置有两个,两所述TOFD探头底部与裂缝两侧的钢板接触;其中,所述定位机构与所述监测机构在所述滑动导杆上的位置可调节设置,两所述定位机构设置在所述滑动导杆的两端,两所述监测机构设置在两所述定位机构内侧。
进一步地,所述第一定位卡扣和第二定位卡扣上均具有紧固件,当所述紧固件紧固时,所述第一定位卡扣和第二定位卡扣的位置被固定。
进一步地,所述定位机构还包括连杆和基座,其中:所述连杆与一端与所述第一定位卡扣连接,另一端与所述基座连接;所述基座底部为平面,用于与钢板表面的连接。
进一步地,所述基座为开关式磁力座。
进一步地,所述监测机构还包括探头支架,所述探头支架与所述TOFD探头铰接。
进一步地,所述监测机构还包括导向管和压缩弹簧,其中:所述导向管固接在所述第二定位卡扣上,所述探头支架的上半部分可相对滑动地设置在所述导向管内;所述压缩弹簧设置在所述导向管内,其一端固接在所述第二定位卡扣上,另一端与所述探头支架连接。
进一步地,所述导向管底部设置有用于限制所述探头支架脱落的限位块。
本申请另一方面提供了一种钢桥疲劳裂纹监测方法,应用上述的钢桥疲劳裂纹监测装置,包括以下步骤:
布置若干监测装置于疲劳裂纹处;
调整若干所述监测装置,使得若干所述监测装置与其所在处疲劳裂纹垂直;
开启若干所述监测装置,使得TOFD探头发射或者接收声波信号;
根据直通波、裂纹尖端衍射波,判定裂纹的情况。
进一步地,在步骤布置若干监测装置于疲劳裂纹处时,所述监测装置至少包括位于疲劳裂纹两端点处的第一监测装置和位于疲劳裂纹中间位置处的第二监测装置。
进一步地,当所述第一监测装置处接收的直通波消失,则代表疲劳裂纹向前扩展;通过裂纹下尖端衍射波信号及其时差,确定扩展开裂疲劳裂纹的深度;所述第二监测装置根据裂纹下尖端衍射波信号及其时差,确定疲劳裂纹的深度变化。
本申请的有益效果为:本申请通过设置在滑动导杆上的定位机构和监测机构实现了对裂纹的实时监测。通过在裂纹的两端和中间位置设置多个监测装置,可以监测裂纹的长度方向和深度方向的变化,从而实现了钢桥裂纹的实时动态跟踪,及时辨识结构风险,实施预防性养护措施,从而提高钢桥的使用寿命和运营安全。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中钢桥疲劳裂纹监测装置的结构示意图;
图2为本申请实施例中定位机构的结构示意图;
图3为本申请实施例中监测机构的结构示意图;
图4为本申请实施例中钢桥疲劳裂纹监测装置的工作原理图;
图5为本申请实施例中监测疲劳裂纹时的监测装置布置图;
图6为本申请实施例中钢桥疲劳裂纹监测方法的流程图。
附图标记:10、滑动导杆;20、定位机构;21、第一定位卡扣;22、连杆;23、基座;30、监测机构;31、第二定位卡扣;32、TOFD探头;33、探头支架;34、导向管;35、压缩弹簧;100、第一监测装置;200、第二监测装置;231、紧固件;341、限位块。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
超声波衍射时差法(TOFD)是通过利用声波在试件内部缺陷的“端角”和“端点”处发出的衍射波来监测缺陷的一种超声监测方法,可以实现缺陷监测、定量和定位,具有检出能力强、定位精度高、操作简便、数字化存储、安全环保等优势。
如图1至4所示的钢桥疲劳裂纹监测装置,包括:
滑动导杆10;
定位机构20,定位机构20上具有第一定位卡扣21,定位机构20设置有至少两个,两定位机构20上的第一定位卡扣21套设在滑动导杆10上,定位机构20底部与疲劳裂纹处的钢板表面固定连接;及
监测机构30,监测机构30具有第二定位卡扣31和TOFD探头32,第二定位卡扣31套设在滑动导杆10上,TOFD探头32与第二定位卡扣31连接,并且监测机构30设置有两个,两TOFD探头32底部与裂缝两侧的钢板接触;
其中,定位机构20与监测机构30在滑动导杆10上的位置可调节设置,两定位机构20设置在滑动导杆10的两端,两监测机构30设置在两定位机构20内侧。
滑动导杆10的横截面为圆形或者其他规则形状,便于第一定位卡扣21和第二定位卡扣31的移动,通过第一定位卡扣21和第二定位卡扣31的可移动设置,可以提高装置的适用性,适用于各种形状的疲劳裂纹;通过使用TOFD探头发射与接收衍射波,确定裂纹的深度,便于实时把握裂纹动态。
在本申请实施例中,第一定位卡扣21和第二定位卡扣31上均具有紧固件231,当紧固件231紧固时,第一定位卡扣21和第二定位卡扣31的位置被固定。这里的紧固件231具体可以是螺栓和螺母的配合,通过穿设在设置有开口间隙的卡扣上,通过螺母在螺栓上的拧紧使得开口间隙变小,从而将卡扣牢固的固定在滑动导杆10上;或者,紧固件231为螺栓,通过穿 过卡扣侧壁与滑动导杆10的外壁接触,通过螺栓顶部的挤压使得卡扣在滑动导杆10上的位置固定。
请参照图2,定位机构20还包括连杆22和基座23,其中:
连杆22一端与第一定位卡扣21连接,另一端与基座23连接;
基座23底部为平面,用于与钢板表面的连接。这里基座23与钢桥面的连接方式可以是用胶粘接或者是焊接或者其他固定形式均可。
作为上述实施例的优选,基座23为开关式磁力座。由于钢板为铁磁性材料,可以被磁铁吸附,通过开关式磁力座的设置,便于基座23的固定和拆卸,便于基座23的调整,提高监测的精度。
为了实现TOFD探头与桥面的贴合,监测机构30还包括探头支架33,探头支架33与TOFD探头32铰接。通过探头支架33与TOFD探头32的铰接设置,使得TOFD探头32底面的角度可调节,调整TOFD探头32角度与钢板的垂直接触;在钢板表面不平整时,通过TOFD探头的角度调整,实现最大的贴合面积,提高监测的精准性。这里需要指出的是,在具体探测时,为了保证界面耦合,减少声波耗散,TOFD探头32和钢板间接触面需要涂耦合剂,耦合剂为黄油、石蜡等。
由于TOFD探头32监测时要贴紧底面,通过耦合剂与钢板接触,需保证一定的接触压力。为此,请参照图3,监测机构30还包括导向管34和压缩弹簧35,其中:
导向管34固接在第二定位卡扣31上,探头支架33的上半部分可相对滑动地设置在导向管34内;
压缩弹簧35设置在导向管34内,其一端固接在第二定位卡扣31上,另一端与探头支架33连接。通过上述设置,保证TOFD探头32与钢板间保持一定接触压力;
在上述实施例中,通过压缩弹簧35和导向管34的设置,使得压缩弹簧35沿着导向管34的方向给予探头支架33朝向下方的压力,从而使得TOFD探头32保持与钢板表面的压力,提高了监测效果。
进一步地,为了防止探头支架33从导向管34中脱落,请继续参照图3,导向管34底部设置有用于限制探头支架33脱落的限位块341。限位块341设置在导向管34底部,其限制的尺寸大于探头支架33中部的滑杆,小于探头支架33顶部的尺寸,从而防止探头支架33从导向管34中脱落。
本申请实施例还提供一种钢桥疲劳裂纹监测方法,应用上述钢桥疲劳裂纹监测装置,如图5和图6所示,包括以下步骤:
S10:布置若干监测装置于疲劳裂纹处;
S20:调整若干监测装置,使得若干监测装置与其所在处的疲劳裂纹垂直;
S30:开启若干监测装置,使得TOFD探头发射或者接收声波信号;
S40:根据直通波、裂纹尖端衍射波,判定裂纹的情况。
这里需要指出的是,在布置监测装置时,将TOFD探头32分别设置在裂纹两侧,如图4和图5所示,以便于对其所在处的疲劳裂纹进行监测。
在本申请实施例中,请继续参照图5,在步骤S10布置若干监测装置于疲劳裂纹处时,监测装置至少包括位于疲劳裂纹两端点处的第一监测装置100和位于疲劳裂纹中间位置处的第二监测装置200。这里需要指出的是,两端点处是指把第一监测装置100放置在端点前,即在开始监测时是监测不到疲劳裂纹的,其目的就是在裂纹的长度方向对裂纹的动态进行监测,而放置在中间位置处的第二监测装置200的作用在于监测裂纹的深度。第二监测装置200需要沿滑动导杆调整监测装置的相对距离,实现中部疲劳裂缝的可监测。
具体地,当第一监测装置100处接收的直通波消失,则代表疲劳裂纹向前扩展;根据裂纹下尖端衍射波信号及其时差,确定扩展开裂疲劳裂纹的深度;第二监测装置200根据裂纹下尖端衍射波信号及其时差,确定疲劳裂纹的深度变化。通过第一监测装置100和第二监测装置200的布置,能够实现对疲劳裂纹的长度以及深度方向动态的实时监控,提高了钢桥梁的安全性能。
本行业的技术人员应该了解,本申请不受上述实施例的限制,上述实施例和说明书中描述的只是说明本申请的原理,在不脱离本申请精神和范围的前提下,本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请范围内。本申请要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

  1. 一种钢桥疲劳裂纹监测装置,其中,包括:
    滑动导杆(10);
    定位机构(20),所述定位机构(20)上具有第一定位卡扣(21),所述定位机构(20)设置有至少两个,两所述定位机构(20)上的所述第一定位卡扣(21)套设在所述滑动导杆(10)上,所述定位机构(20)底部与疲劳裂纹处的钢板表面固定连接;及
    监测机构(30),所述监测机构(30)具有第二定位卡扣(31)和TOFD探头(32),所述第二定位卡扣(31)套设在所述滑动导杆(10)上,所述TOFD探头(32)与所述第二定位卡扣(31)连接,并且所述监测机构(30)设置有两个,两所述TOFD探头(32)底部与裂缝两侧的钢板接触;
    其中,所述定位机构(20)与所述监测机构(30)在所述滑动导杆(10)上的位置可调节设置,两所述定位机构(20)设置在所述滑动导杆(10)的两端,两所述监测机构(30)设置在两所述定位机构(20)内侧。
  2. 根据权利要求1所述的钢桥疲劳裂纹监测装置,其中,所述第一定位卡扣(21)和第二定位卡扣(31)上均具有紧固件(231),当所述紧固件(231)紧固时,所述第一定位卡扣(21)和第二定位卡扣(31)的位置被固定。
  3. 根据权利要求1所述的钢桥疲劳裂纹监测装置,其中,所述定位机构(20)还包括连杆(22)和基座(23),其中:
    所述连杆(22)与一端与所述第一定位卡扣(21)连接,另一端与所述基座(23)连接;
    所述基座(23)底部为平面,用于与钢板表面的连接。
  4. 根据权利要求3所述的钢桥疲劳裂纹监测装置,其中,所述基座(23)为开关式磁力座。
  5. 根据权利要求4所述的钢桥疲劳裂纹监测装置,其中,所述监测机构(30)还包括探头支架(33),所述探头支架(33)与所述TOFD探头(32)铰接。
  6. 根据权利要求5所述的钢桥疲劳裂纹监测装置,其中,所述监测机构(30)还包括导向管(34)和压缩弹簧(35),其中:
    所述导向管(34)固接在所述第二定位卡扣(31)上,所述探头支架(33)的上半部分可相对滑动地设置在所述导向管(34)内;
    所述压缩弹簧(35)设置在所述导向管(34)内,其一端固接在所述第二定位卡扣(31)上,另一端与所述探头支架(33)连接。
  7. 根据权利要求6所述的钢桥疲劳裂纹监测装置,其中,所述导向管(34)底部设置有用于限制所述探头支架(33)脱落的限位块(341)。
  8. 一种钢桥疲劳裂纹监测方法,应用如权利要求1至7中任一项所述的钢桥疲劳裂纹监测装置,其中,包括以下步骤:
    布置若干监测装置于疲劳裂纹处;
    调整若干所述监测装置,使得若干所述监测装置与其所在处疲劳裂纹垂直;
    开启若干所述监测装置,使得TOFD探头发射或者接收声波信号;
    根据直通波、裂纹尖端衍射波,判定裂纹的情况。
  9. 根据权利要求8所述的钢桥疲劳裂纹监测方法,其中,在步骤布置若干监测装置于疲劳裂纹处时,所述监测装置至少包括位于疲劳裂纹两端点处的第一监测装置(100)和位于疲劳裂纹中间位置处的第二监测装置(200)。
  10. 根据权利要求9所述的钢桥疲劳裂纹监测方法,其中,
    当所述第一监测装置(100)处接收的直通波消失,则代表疲劳裂纹向前扩展;
    通过裂纹下尖端衍射波信号及其时差,确定扩展开裂疲劳裂纹的深度;
    所述第二监测装置(200)根据裂纹下尖端衍射波信号及其时差,确定疲劳裂纹的深度变化。
PCT/CN2020/098255 2020-05-08 2020-06-24 一种钢桥疲劳裂纹监测装置及方法 WO2021223310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010382743.5 2020-05-08
CN202010382743.5A CN111537620A (zh) 2020-05-08 2020-05-08 一种钢桥疲劳裂纹监测装置及方法

Publications (1)

Publication Number Publication Date
WO2021223310A1 true WO2021223310A1 (zh) 2021-11-11

Family

ID=71980337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098255 WO2021223310A1 (zh) 2020-05-08 2020-06-24 一种钢桥疲劳裂纹监测装置及方法

Country Status (2)

Country Link
CN (1) CN111537620A (zh)
WO (1) WO2021223310A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235820A (zh) * 2021-12-21 2022-03-25 山东省交通科学研究院 一种桥梁裂缝自动检测装置及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104125B2 (en) * 2002-04-05 2006-09-12 Vetco Gray Inc. Internal riser inspection device and methods of using same
CN203479763U (zh) * 2013-11-29 2014-03-12 广东汕头超声电子股份有限公司 Tofd检测双通道扫查器
CN207662845U (zh) * 2017-12-25 2018-07-27 陕西工业职业技术学院 一种基于磁记忆的可伸缩多探头便携式检测装置
CN207689439U (zh) * 2018-01-06 2018-08-03 青岛宏海焊接技术检测有限公司 一种使用便利的tofd超声检测装置
JP2020030070A (ja) * 2018-08-21 2020-02-27 三菱日立パワーシステムズ検査株式会社 超音波探傷方法及び探傷装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424664B (zh) * 2008-12-05 2011-06-22 中国铁道科学研究院金属及化学研究所 钢轨踏面裂纹超声波检测装置及检测方法
CN102486470B (zh) * 2010-12-02 2014-08-27 核动力运行研究所 无损探伤超声探头万向节托盘
CN202182874U (zh) * 2011-08-22 2012-04-04 南通友联数码技术开发有限公司 超声衍射时差法组合式扫查架
CN103149252B (zh) * 2013-03-01 2015-10-07 河海大学 一种电阻式钢桥疲劳裂纹检测装置
CN103940626B (zh) * 2014-04-01 2016-06-01 上海交通大学 在役正交异性钢桥面板疲劳开裂后剩余使用寿命评估方法
CN207379981U (zh) * 2017-11-08 2018-05-18 厦门市鑫精准科技检测有限公司 一种衍射时差法超声检测扫查架

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104125B2 (en) * 2002-04-05 2006-09-12 Vetco Gray Inc. Internal riser inspection device and methods of using same
CN203479763U (zh) * 2013-11-29 2014-03-12 广东汕头超声电子股份有限公司 Tofd检测双通道扫查器
CN207662845U (zh) * 2017-12-25 2018-07-27 陕西工业职业技术学院 一种基于磁记忆的可伸缩多探头便携式检测装置
CN207689439U (zh) * 2018-01-06 2018-08-03 青岛宏海焊接技术检测有限公司 一种使用便利的tofd超声检测装置
JP2020030070A (ja) * 2018-08-21 2020-02-27 三菱日立パワーシステムズ検査株式会社 超音波探傷方法及び探傷装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235820A (zh) * 2021-12-21 2022-03-25 山东省交通科学研究院 一种桥梁裂缝自动检测装置及检测方法

Also Published As

Publication number Publication date
CN111537620A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
Nakamura et al. Mode conversion behavior of SH guided wave in a tapered plate
WO2021223310A1 (zh) 一种钢桥疲劳裂纹监测装置及方法
CN202330369U (zh) 搅拌摩擦焊接接头超声检测对比试块
WO2014180262A1 (zh) 一种钢箱梁u肋角焊缝的超声相控阵检测方法
CN202101973U (zh) 大口径无缝钢管超声波自动化探伤设备
KR100777239B1 (ko) 자동 가변 입사각 초음파 탐촉자
CN1508540A (zh) 钢轨在线超声波探伤方法及其装置
NL2020322B1 (en) A kind of test system for testing the life of pipeline elbow with variable parameters
CN212060067U (zh) 基于tofd的钢桥疲劳裂纹监测装置
Stephen Condition monitoring of bolted joints
CN210398207U (zh) 一种测量仪器的固定装置
CN210604509U (zh) 提升超声探头声场有效覆盖范围的超声检测楔块
RU134132U1 (ru) Устройство контроля рельсов
Sun et al. Quantitative damage evaluation of LY225 steel under monotonic tensile loading based on acoustic emission entropy
CN203117167U (zh) 公路钢桥用超声波检测装置
JP2007512529A5 (zh)
CN202453330U (zh) 管道超声波检测对比试块
CN201392327Y (zh) 用于轨道焊缝探伤的扫查装置
US8176788B2 (en) System and method of ultrasonic inspection
CN114878693A (zh) 一种便携式相控阵超声波扫查装置及其扫查方法
CN203964886U (zh) 一种压电超声法高温管道壁厚腐蚀在线监测装置
CN102183583A (zh) 利用回波现场测量在用玻璃钢螺纹拉杆轴向声速的方法
CN203849218U (zh) 一种衍射时差法探头楔块结构
CN216816557U (zh) 一种市政桥梁底座检测装置
CN103884779A (zh) 一种钢板超声波人工检测用探头支架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934653

Country of ref document: EP

Kind code of ref document: A1