WO2021223267A1 - 气相沉积装置 - Google Patents

气相沉积装置 Download PDF

Info

Publication number
WO2021223267A1
WO2021223267A1 PCT/CN2020/091207 CN2020091207W WO2021223267A1 WO 2021223267 A1 WO2021223267 A1 WO 2021223267A1 CN 2020091207 W CN2020091207 W CN 2020091207W WO 2021223267 A1 WO2021223267 A1 WO 2021223267A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction
gas channel
vapor deposition
outlet
Prior art date
Application number
PCT/CN2020/091207
Other languages
English (en)
French (fr)
Inventor
王质武
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/768,539 priority Critical patent/US20230052532A1/en
Publication of WO2021223267A1 publication Critical patent/WO2021223267A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas

Definitions

  • This application relates to the field of display technology, and in particular to a vapor deposition device.
  • Plasma Enhanced Chemical Vapor eposition (PECVD) equipment will not only deposit the desired film on the substrate during the film formation process, but also leave certain products on the inner wall of the chamber. When accumulated to a certain amount, peeling will occur, which will increase the possibility of particle problems in the product.
  • the chamber will be cleaned after the product has accumulated to a certain thickness, but the cleaning gas used in the cleaning process can easily make the inner wall of the chamber rough and affect the uniformity of film formation. Therefore, regular maintenance is required to ensure the quality of the film, but this will affect the utilization rate of the machine.
  • the embodiment of the present application provides a vapor deposition apparatus, which can reduce the probability of the occurrence of residual products in the reaction chamber, and improve the uniformity of film formation and the utilization rate of the machine.
  • the embodiment of the present application provides a vapor deposition device, including: a reaction chamber, a gas spray device, and a cleaning gas channel;
  • the gas spray device includes a reaction gas channel, and the reaction gas channel includes an outlet communicating with the reaction chamber;
  • the cleaning gas channel and the reaction gas channel are spaced apart.
  • the cleaning gas channel is located below the outlet of the reaction gas channel.
  • the reaction gas channel includes a first reaction gas channel and a second reaction gas channel that are spaced apart; the first reaction gas channel includes a first outlet communicating with the reaction chamber, and The second reaction gas channel includes a second outlet communicating with the reaction chamber, and the cleaning gas channel is located below the first outlet and the second outlet.
  • the vapor deposition device further includes a back plate, the back plate is located above the gas spray device, and the back plate is connected to the outside of the reaction chamber and is connected to the reaction gas.
  • the passage communicates with the air inlet.
  • the first reaction gas channel communicates with the outside of the reaction chamber, and the first gas enters the reaction chamber through the first outlet of the first reaction gas channel;
  • the second reaction gas channel is in communication with the outside of the reaction chamber, and the second gas enters the reaction chamber through the second outlet of the second reaction gas channel.
  • the vapor deposition apparatus further includes a back plate, the back plate is located above the gas spray device, and the back plate includes a back plate that communicates with the outside of the reaction chamber and is connected to the second A first gas inlet hole communicating with a reaction gas channel; and a second gas inlet hole communicating with the outside of the reaction chamber and communicating with the second reaction gas channel.
  • the size of the first reaction gas channel is greater than or equal to 0.2 mm and less than or equal to 0.6 mm.
  • the size of the second reaction gas channel is greater than or equal to 0.2 mm and less than or equal to 0.6 mm.
  • the first outlet may be one or a combination of a circle, a strip, and a polygon.
  • the second outlet may be one or a combination of a circle, a strip, and a polygon.
  • the first gas includes one of an oxidizing gas or a reducing gas.
  • the second gas includes the other of an oxidizing gas or a reducing gas.
  • the oxidizing gas includes oxygen and nitrous oxide; and the reducing gas includes silane and phosphine.
  • cleaning gas enters the reaction chamber through the cleaning gas channel, and the cleaning gas includes nitrogen trifluoride and argon.
  • the size of the reaction gas channel is greater than or equal to 0.2 mm and less than or equal to 0.6 mm.
  • the size of the reaction gas channel is equal to 0.3 mm.
  • the vapor deposition apparatus further includes a stage arranged opposite to the outlet.
  • the vapor deposition apparatus includes: a reaction chamber, a gas spray device, and a cleaning gas channel; the gas spray device includes a reaction gas channel, and the reaction gas channel includes a communication The outlet of the reaction chamber; the cleaning gas channel and the reaction gas channel are arranged at intervals, which can reduce the probability of residual products in the reaction chamber and improve the uniformity of film formation and the utilization rate of the machine.
  • FIGS. 1A to 1B are schematic structural diagrams of vapor deposition apparatuses provided by embodiments of the application;
  • FIGS. 2A to 2B are schematic diagrams of the structure of the gas spray device provided by the embodiments of the application.
  • FIGS. 1A to 1B are schematic structural diagrams of the vapor deposition apparatus provided by the embodiments of the application, as shown in FIGS. 2A to 2B, which are the components of the gas spray device provided by the embodiments of the application.
  • the vapor deposition device includes: a reaction chamber 101, a gas spray device 102, and a cleaning gas channel 103;
  • the gas spray device 102 includes a reaction gas channel 1021, and the reaction gas channel 1021 includes an outlet 1022 communicating with the reaction chamber 101;
  • the cleaning gas channel 103 and the reaction gas channel 102 are spaced apart, so that the cleaning gas 1043 can directly enter the reaction chamber 101 through the cleaning gas channel 103, so as to prevent the cleaning gas 1043 from being in the reaction chamber.
  • the gas spray device in the cavity 101 or equipment such as the back plate 107 causes etching, which affects the film formation quality and the utilization rate of the machine.
  • the cleaning gas 1043 includes nitrogen trifluoride and argon.
  • the vapor deposition apparatus can pass the cleaning gas 1043 into the reaction chamber 101 after 5 to 15 film forming processes, so as to remove the products remaining in the reaction chamber 101 during the film forming process and ensure all The cleanliness of the reaction chamber 101 is described.
  • the cleaning gas channel 103 is located below the outlet 1022 of the reaction gas channel 102, so that the cleaning gas can directly enter the reaction through the cleaning gas channel 103.
  • the number of inspections and repairs required for the gas spray device or the back plate in the reaction cavity 101 to be etched is reduced, and the utilization rate of the machine is improved.
  • the outlet 1022 is set directly opposite to the carrier 105.
  • the substrate 106 is placed on the carrier 105, and the reaction gas flowing through the reaction gas channel 1021 undergoes a film forming reaction on the surface of the substrate 106.
  • the size of the reaction gas channel 1021 is greater than or equal to 0.2 mm and less than or equal to 0.6 mm; further, the size of the reaction gas channel 1021 is equal to 0.3 mm.
  • the reaction gas channel 1021 includes a first reaction gas channel 1021a and a second reaction gas channel 1021b that are spaced apart; the first reaction gas channel 1021a includes a first outlet 1022a connected to the reaction chamber 101, so The second reaction gas channel 1021b includes a second outlet 1022b communicating with the reaction chamber 101, and the cleaning gas channel 103 is located below the first outlet 1022a and the second outlet 1022b, so as to improve the machine operation At the same time, it is ensured that when reactant gas enters the reaction chamber 101, parasites appear in the non-film forming area of the reaction chamber 101, which affects the film forming accuracy.
  • the non-film forming area refers to an area in the reaction chamber 101 excluding the substrate 106 placed on the stage 105.
  • the first reaction gas passage 1021a communicates with the outside of the reaction chamber 101, and the first gas 1041 enters the reaction chamber 101 through the first outlet 1022a of the first reaction gas passage 1021a; the second reaction gas The passage 1021b communicates with the outside of the reaction chamber 101, the second gas 1042 enters the reaction chamber 101 through the second outlet 1022b of the second reaction gas passage 1021b, the first outlet 1022a and the second outlet 1022b is set directly opposite to the carrier 105, and the first gas 1041 and the second gas 1042 undergo a film-forming reaction on the surface of the substrate 106.
  • the first reaction gas channel 1021a and the second reaction gas channel 1021b are arranged at intervals, so that the first gas 1041 and the second gas 1042 can be prevented from flowing through the same reaction gas channel, so that the first gas
  • the chemical reaction between 1041 and the second gas 1042 can only occur after flowing out of the first outlet 1022a and the second outlet 1022b, so as to reduce the probability of generating parasites in the non-film forming area of the reaction chamber 101. Avoid parasites falling off during the film forming process and generating particles.
  • the bottom of the reaction chamber 101 will be continuously pumped, so the first gas 1041 and the second gas 1042 will not flow back to the first reaction gas channel 1021a and the second gas The second reaction gas channel 1021b.
  • the first gas 1041 includes one of an oxidizing gas or a reducing gas; the second gas 1042 includes the other of an oxidizing gas or a reducing gas.
  • the oxidizing gas includes oxygen and nitrous oxide; the reducing gas includes silane and phosphine.
  • first gas 1041 and the second gas 1042 flowing through the first reaction gas channel 1021a and the second reaction gas channel 1021b may also be mixed gases.
  • first gas When 1041 and the second gas 1042 are mixed gases it is necessary to ensure that no chemical reaction occurs between the gases flowing through the same reaction gas channel 1021 to block the reaction gas channel 1021 or cause safety accidents.
  • the first gas 1041 when the first gas 1041 is a mixed gas, it is necessary to ensure that the first gas 1041 flowing through the first reactive gas channel 1021a does not undergo chemical reactions, blocking the first reactive gas channel 1021a or Cause a safety accident; similarly, when the second gas 1042 is a mixed gas, it is necessary to ensure that the second gas 1042 flowing through the second reaction gas channel 1021b will not undergo a chemical reaction to block the first gas The second reaction gas channel 1021b may not cause a safety accident.
  • the channel size when the two reaction gas channels 1021 are arranged will be smaller than the channel size when one reaction gas channel 1021 is provided; specifically, the channel size of the first reaction gas channel 1021a is greater than or equal to 0.2 mm and less than or Equal to 0.6mm; further, the channel size of the first reaction gas channel 1021a is equal to 0.3mm; similarly, the channel size of the second reaction gas channel 1021b is greater than or equal to 0.2mm and less than or equal to 0.6mm Further, the channel size of the second reaction gas channel 1021b is equal to 0.3mm.
  • the distribution can be more uniform to improve the uniformity of film formation.
  • the first outlet 1022a can be one or more combinations of a circle, a strip, and a polygon; similarly, the second outlet 1022b can It is one or more combinations of circles, bars, and polygons.
  • the shape of the first outlet 1022a and the second outlet 1022b may be the same, that is, the first outlet 1022a and the second outlet 1022b are both circular or polygonal shapes; the first outlet 1022a and the second outlet 1022b
  • the shape of the second outlet 1022b may be different, that is, the first outlet 1022a is one or a combination of a circle or a polygon, and the second outlet 1022b is the other or another combination of a circle or a polygon.
  • the shape of the first outlet 1022a at different positions may also be different.
  • the shape of the second outlet 1022b at different positions may also be different.
  • the size of the first outlet 1022a at different positions may also be different.
  • the size of the second outlet 1022b at different positions may also be different.
  • the first outlet 1022a and the second outlet 1022b may be arranged in a circular shape, and the first outlet 1022a and the second outlet 1022b are alternately arranged Further, a plurality of the first outlets 1022a are arranged in a circle to form a first virtual circle 1022c, and a plurality of the second outlets 1022b are arranged in a circle to form a second virtual circle 1022d, and the first virtual circle 1022c and the The second virtual circles 1022d are alternately arranged.
  • the first outlet 1022a is a combination of a circle and a polygon
  • the second outlet 1022b is a circle.
  • the shape settings of the first outlet 1022a and the second outlet 1022b can be selected according to actual conditions, and this application will not give an example one by one. Those in the art can choose the first outlet 1022a according to actual conditions. And the shape of the second outlet 1022b.
  • the size of the first outlet 1022a may be equal to the channel size of the first reaction gas channel 1021a, or not equal to the channel size of the first reaction gas channel 1021a, as shown in FIG. 2B, part of the first outlet 1022a
  • the size of is larger than the size of the first reaction gas channel 1021a. That is, if the first outlet 1022a is circular, the diameter of the first outlet 1022a is greater than or equal to 0.2 mm and less than or equal to 0.6 mm; further, the diameter of the first outlet 1022a is equal to 0.3 mm.
  • the width of the first outlet 1022a in the top view angle is greater than or equal to 0.2 mm and less than or equal to 0.6 mm; further, the width of the first outlet 1022a in the top view angle Equal to 0.3mm.
  • the size of the second outlet 1022b can be obtained, which will not be repeated here.
  • the first reaction gas channel 1021a and the second reaction gas channel 1021b become smaller, and the sizes of the first outlet 1022a and the second outlet 1022b become smaller, the first When the gas with a low flow rate among the gas 1041 and the second gas 1042 enters the reaction chamber 101, the distribution can be more uniform, and the uniformity of film formation can be improved.
  • the vapor deposition apparatus further includes a back plate 107, the back plate 107 is located above the gas spray device 102, the back plate 107 is connected to the outside of the reaction chamber 101 and
  • the gas inlet hole 1071 connected to the reaction gas channel 1021 allows the reaction gas to directly enter the reaction chamber 101, and can prevent the back plate 107 from being etched by the cleaning gas 1043, reducing the number of maintenance and improving the machine The utilization rate of the station.
  • the back plate 107 includes the back plate 107 that is connected to the outside of the reaction chamber 101 and is connected to the first reaction gas channel 101.
  • one of the gas inlet holes communicating with the first reaction gas channel 1021a or the second reaction gas channel 1021b and communicating with the outside of the reaction chamber 101 may be provided on the side of the reaction chamber 101; specifically As shown in FIG. 1B, the back plate 107 includes a first air inlet 1071a communicating with the outside of the reaction chamber 101 and communicating with the first reaction gas channel 1021a, and the side of the reaction chamber 101 includes The second gas inlet hole 1071b communicates with the outside of the reaction chamber 101 and communicates with the second reaction gas channel 1021b.
  • the reaction gas channel 1021 includes a first reaction gas channel 1021a and a second reaction gas channel 1021b that are spaced apart; the first reaction gas channel 1021a includes a first reaction gas channel 1021a connected to the reaction chamber 101 An outlet 1022a, and the second reaction gas channel 1021b includes a second outlet 1022b connected to the reaction chamber 101. It is conceivable that the reaction gas channel 1021 may also include a third reaction gas channel and a fourth reaction gas channel that are spaced apart from the first reaction gas channel 1021a and the second reaction gas channel 1021b.
  • the third reaction gas channel includes a third outlet that communicates with the reaction chamber 101
  • the fourth reaction gas channel includes a fourth outlet that communicates with the reaction chamber 101 and other outlets
  • the cleaning gas channel 103 is located at the first outlet. 1022a, the second outlet 1022b, the third outlet, the fourth outlet, and other outlets, to improve the machine utilization rate while ensuring that the reaction gas is prevented from entering the reaction chamber 101.
  • Parasites appear in the non-film-forming area of the reaction chamber 101, which affects the film-forming accuracy.
  • the set number of the reaction gas channels 1021 can be adjusted according to actual needs, which will not be repeated in this application, and those skilled in the art can make adjustments according to actual needs.
  • the vapor deposition apparatus includes: a reaction chamber 101, a gas spray device 102, and a cleaning gas channel 103; the gas spray device 102 includes a reaction gas channel 1021, and the reaction gas channel 1021 includes a communication
  • the outlet 1022 of the reaction chamber; the cleaning gas channel 103 and the reaction gas channel 102 are spaced apart, which can reduce the occurrence of residual products in the reaction chamber 101, and improve the uniformity of film formation and the operation of the machine Rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种气相沉积装置,包括:反应腔(101)、气体喷淋装置(102),以及清洗气体通道(103);气体喷淋装置(102)包括反应气体通道(1021),反应气体通道(1021)包括连通反应腔的出口(1022);清洗气体通道(103)与反应气体通道(1021)间隔设置。

Description

气相沉积装置 技术领域
本申请涉及显示技术领域,尤其涉及一种气相沉积装置。
背景技术
等离子体增强化学的气相沉积(Plasma Enhanced Chemical Vapor eposition ,PECVD)装置在成膜制程中除会在基板上沉积出所期望的薄膜外,在腔室的内壁中也会残留一定的生成物,生成物累计至一定量后会出现剥离,导致产品出现微粒问题的可能性增加。为保证产品的质量,会在生成物累计至一定厚度后对腔室进行清洗处理,但清洗处理采用的清洗气体易使腔室内壁变得粗糙,影响成膜的均匀性。因此,需定期检修才能保证成膜质量,但这会影响机台的稼动率。
技术问题
本申请实施例提供一种气相沉积装置,可以降低反应腔内残留生成物出现的机率,提高成膜的均匀性及机台的稼动率。
技术解决方案
本申请实施例提供一种气相沉积装置,包括:反应腔、气体喷淋装置,以及清洗气体通道;
所述气体喷淋装置包括反应气体通道,所述反应气体通道包括连通所述反应腔的出口;
所述清洗气体通道与所述反应气体通道间隔设置。
在所述的气相沉积装置中,所述清洗气体通道位于所述反应气体通道的所述出口的下方。
在所述的气相沉积装置中,所述反应气体通道包括间隔设置的第一反应气体通道和第二反应气体通道;所述第一反应气体通道包括连通所述反应腔的第一出口,所述第二反应气体通道包括连通所述反应腔的第二出口,所述清洗气体通道位于所述第一出口和所述第二出口的下方。
在所述的气相沉积装置中,所述气相沉积装置还包括背板,所述背板位于所述气体喷淋装置上方,所述背板具有与所述反应腔外部连通且与所述反应气体通道连通的进气孔。
在所述的气相沉积装置中,所述第一反应气体通道与所述反应腔外部连通,第一气体通过所述第一反应气体通道的所述第一出口进入所述反应腔;所述第二反应气体通道与所述反应腔外部连通,第二气体通过所述第二反应气体通道的所述第二出口进入所述反应腔。
在所述的气相沉积装置中,所述气相沉积装置还包括背板,所述背板位于所述气体喷淋装置上方,所述背板上包括与所述反应腔外部连通且与所述第一反应气体通道连通的第一进气孔;以及与所述反应腔外部连通且与所述第二反应气体通道连通的第二进气孔。
在所述的气相沉积装置中,所述第一反应气体通道的尺寸为大于或等于0.2mm且小于或等于0.6mm。
在所述的气相沉积装置中,所述第二反应气体通道的尺寸为大于或等于0.2mm且小于或等于0.6mm。
在所述的气相沉积装置中,在俯视图视角下,所述第一出口可以为圆形、条形、多边形的其中一种或多种组合。
在所述的气相沉积装置中,在俯视图视角下,所述第二出口可以为圆形、条形、多边形的其中一种或多种组合。
在所述的气相沉积装置中,所述第一气体包括氧化性气体或还原性气体的其中之一。
在所述的气相沉积装置中,所述第二气体包括氧化性气体或还原性气体的其中另一。
在所述的气相沉积装置中,所述氧化性气体包括氧气、一氧化二氮;所述还原性气体包括硅烷、磷化氢。
在所述的气相沉积装置中,清洗气体通过所述清洗气体通道进入所述反应腔,所述清洗气体包括三氟化氮、氩气。
在所述的气相沉积装置中,所述反应气体通道的尺寸为大于或等于0.2mm且小于或等于0.6mm。
在所述的气相沉积装置中,所述反应气体通道的尺寸等于0.3mm。
在所述的气相沉积装置中,还包括正对所述出口设置的载台。
有益效果
相较于现有技术,本申请实施例提供的气相沉积装置,包括:反应腔、气体喷淋装置,以及清洗气体通道;所述气体喷淋装置包括反应气体通道,所述反应气体通道包括连通所述反应腔的出口;所述清洗气体通道与所述反应气体通道间隔设置,可以降低所述反应腔内残留生成物出现的机率,提高成膜的均匀性及机台的稼动率。
附图说明
图1A~图1B为本申请的实施例提供的气相沉积装置的结构示意图;
图2A~图2B为本申请的实施例提供的气体喷淋装置的结构示意图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
具体地,请参阅图1A~图1B,其为本申请的实施例提供的气相沉积装置的结构示意图,如图2A~图2B所示,其为本申请的实施例提供的气体喷淋装置的结构示意图。所述气相沉积装置包括:反应腔101、气体喷淋装置102,以及清洗气体通道103;
所述气体喷淋装置102包括反应气体通道1021,所述反应气体通道1021包括连通所述反应腔101的出口1022;
所述清洗气体通道103与所述反应气体通道102间隔设置,以使清洗气体1043可以直接通过所述清洗气体通道103进入所述反应腔101内,以避免所述清洗气体1043对位于所述反应腔101内的所述气体喷淋装置或背板107等设备造成刻蚀,影响成膜质量及机台的稼动率。
其中,所述清洗气体1043包括三氟化氮、氩气。所述气相沉积装置可在5~15次成膜制程后向所述反应腔101内通入所述清洗气体1043,以去除成膜制程中残留在所述反应腔101内的生成物,确保所述反应腔101的清洁程度。
具体地,请继续参阅图1A~图1B,所述清洗气体通道103位于所述反应气体通道102的所述出口1022的下方,以使清洗气体可以直接由所述清洗气体通道103进入所述反应腔101内,减少所述反应腔101内的所述气体喷淋装置或背板等设备被刻蚀而需要的检修次数,提高机台的稼动率。
所述出口1022正对载台105设置,在成膜制程中,基板106放置于所述载台105上,流经所述反应气体通道1021的反应气体在所述基板106表面发生成膜反应。
所述反应气体通道1021的尺寸为大于或等于0.2mm且小于或等于0.6mm;进一步地,所述反应气体通道1021的尺寸等于0.3mm。
更进一步地,所述反应气体通道1021包括间隔设置的第一反应气体通道1021a和第二反应气体通道1021b;所述第一反应气体通道1021a包括连通所述反应腔101的第一出口1022a,所述第二反应气体通道1021b包括连通所述反应腔101的第二出口1022b,所述清洗气体通道103位于所述第一出口1022a和所述第二出口1022b的下方,以在提高机台稼动率的同时,保证避免反应气体进入所述反应腔101时,在所述反应腔101的非成膜区域出现寄生物,影响成膜精度。其中,所述非成膜区域指所述反应腔101中除所述载台105上放置所述基板106以外的区域。
所述第一反应气体通道1021a与所述反应腔101外部连通,第一气体1041通过所述第一反应气体通道1021a的所述第一出口1022a进入所述反应腔101;所述第二反应气体通道1021b与所述反应腔101外部连通,第二气体1042通过所述第二反应气体通道1021b的所述第二出口1022b进入所述反应腔101,所述第一出口1022a和所述第二出口1022b正对所述载台105设置,所述第一气体1041与所述第二气体1042在所述基板106表面发生成膜反应。
通过所述第一反应气体通道1021a和所述第二反应气体通道1021b相互间隔设置,可以避免所述第一气体1041与所述第二气体1042流经同一反应气体通道,使得所述第一气体1041与所述第二气体1042只能在流出所述第一出口1022a和所述第二出口1022b后才能发生化学反应,以此降低所述反应腔101的非成膜区域生成寄生物的机率,避免成膜制程中出现寄生物脱落,产生微粒的问题。
此外,在成膜制程中,所述反应腔101底部会不断的抽气,所以所述第一气体1041与所述第二气体1042不会回流至所述第一反应气体通道1021a和所述第二反应气体通道1021b中。
所述第一气体1041包括氧化性气体或还原性气体的其中之一;所述第二气体1042包括氧化性气体或还原性气体的其中另一。
具体地,所述氧化性气体包括氧气、一氧化二氮;所述还原性气体包括硅烷、磷化氢。
除此之外,流经所述第一反应气体通道1021a和所述第二反应气体通道1021b的所述第一气体1041及所述第二气体1042也可为混合气体,当所述第一气体1041及所述第二气体1042为混合气体时,需保证流经同一所述反应气体通道1021内的气体之间不会发生化学反应阻塞所述反应气体通道1021或不会造成安全事故。即当所述第一气体1041为混合气体时,需保证流经所述第一反应气体通道1021a内的所述第一气体1041不会发生化学反应阻塞所述第一反应气体通道1021a或不会引起安全事故;与之相似地,当所述第二气体1042为混合气体时,需保证流经所述第二反应气体通道1021b内的所述第二气体1042不会发生化学反应阻塞所述第二反应气体通道1021b或不会引起安全事故。
由于所述第一气体1041与所述第二气体1042分别经由不同的所述反应气体通道1021流入所述反应腔101内,所以,在所述气体喷淋装置102尺寸不变的情况下,设置两条所述反应气体通道1021时的通道尺寸会小于设置一条所述反应气体通道1021时的通道尺寸;具体地,所述第一反应气体通道1021a的通道尺寸为大于或等于0.2mm且小于或等于0.6mm;进一步地,所述第一反应气体通道1021a的通道尺寸等于0.3mm;与之相似地,所述第二反应气体通道1021b的通道尺寸为大于或等于0.2mm且小于或等于0.6mm;进一步地,所述第二反应气体通道1021b的通道尺寸等于0.3mm。
随着所述第一反应气体通道1021a和所述第二反应气体通道1021b的通道尺寸的变细,所述第一气体1041与所述第二气体1042中流量偏低的一个进入所述反应腔101时可以分布的更均匀,以提高成膜的均匀性。
请继续参阅图2A~图2B,在俯视图视角下,所述第一出口1022a可以为圆形、条形、多边形的其中一种或多种组合;与之相似地,所述第二出口1022b可以为圆形、条形、多边形的其中一种或多种组合。所述第一出口1022a和所述第二出口1022b的形状可以相同,即所述第一出口1022a和所述第二出口1022b均为圆形或多边形等形状;所述第一出口1022a和所述第二出口1022b的形状可以不同,即所述第一出口1022a为圆形或多边形的其中一种或组合,所述第二出口1022b为圆形或多边形的其中另一或另一组合。
此外,根据所述第一出口1022a距所述气体喷淋装置102的中心位置O的距离的不同,位于不同位置处的所述第一出口1022a的形状也可不同。与之相似地,根据所述第二出口1022b距所述气体喷淋装置102的中心位置O的距离的不同,位于不同位置处的所述第二出口1022b的形状也可不同。
进一步地,根据所述第一出口1022a距所述气体喷淋装置102的中心位置O的距离的不同,位于不同位置处的所述第一出口1022a的尺寸也可不同。与之相似地,根据所述第二出口1022b距所述气体喷淋装置102的中心位置O的距离的不同,位于不同位置处的所述第二出口1022b的尺寸也可不同
具体地,请参阅图2A所示,在俯视视角下,所述第一出口1022a和所述第二出口1022b可设置为圆形,且所述第一出口1022a与所述第二出口1022b交替设置,进一步地,多个所述第一出口1022a呈圆周设置形成第一虚拟圆1022c,多个所述第二出口1022b呈圆周设置形成第二虚拟圆1022d,所述第一虚拟圆1022c与所述第二虚拟圆1022d交替设置。
请参阅图2B,在俯视视角下,所述第一出口1022a为圆形与多边形的组合形状,所述第二出口1022b设置为圆形。所述第一出口1022a与所述第二出口1022b的形状设置可根据实际情况进行选择,本申请对此不再进行一一举例说明,本领域相关人员可根据实际情况选择所述第一出口1022a与所述第二出口1022b的形状。
所述第一出口1022a的尺寸可等于所述第一反应气体通道1021a的通道尺寸,也可不等于所述第一反应气体通道1021a的通道尺寸,如图2B所示,部分所述第一出口1022a的尺寸大于所述第一反应气体通道1021a的尺寸。即若所述第一出口1022a为圆形,则所述第一出口1022a的直径大于或等于0.2mm且小于或等于0.6mm;进一步地,所述第一出口1022a的直径等于0.3mm。若所述第一出口1022a为多边形,则所述第一出口1022a在俯视视角下的宽度大于或等于0.2mm且小于或等于0.6mm;进一步地,所述第一出口1022a在俯视视角下的宽度等于0.3mm。与之相似地,可以得到所述第二出口1022b的尺寸,在此不再进行赘述。
在所述第一反应气体通道1021a和所述第二反应气体通道1021b的通道尺寸的变细,所述第一出口1022a与所述第二出口1022b的尺寸变小的情况下,所述第一气体1041与所述第二气体1042中流量偏低的气体进入所述反应腔101时可以分布的更均匀,可以提高成膜的均匀性。
请继续参阅图1A和图1B,所述气相沉积装置还包括背板107,所述背板107位于所述气体喷淋装置102上方,所述背板107具有与所述反应腔101外部连通且与所述反应气体通道1021连通的进气孔1071,以使反应气体直接进入所述反应腔101,且可避免所述背板107被所述清洗气体1043刻蚀,减少检修的次数,提高机台的稼动率。
进一步地,当所述反应气体通道1021包括间隔设置的第一反应气体通道1021a和第二反应气体通道1021b时,所述背板107上包括与所述反应腔101外部连通且与所述第一反应气体通道1021a连通的第一进气孔1071a;以及与所述反应腔101外部连通且与所述第二反应气体通道1021b连通的第二进气孔1071b。
此外,与所述第一反应气体通道1021a或所述第二反应气体通道1021b连通且与所述反应腔101外部连通的其中一个进气孔可设置在所述反应腔101的侧部;具体地,如图1B所示,所述背板107上包括与所述反应腔101外部连通且与所述第一反应气体通道1021a连通的第一进气孔1071a,所述反应腔101的侧部包括与所述反应腔101外部连通且与所述第二反应气体通道1021b连通的第二进气孔1071b。
本申请中的实施例只给出所述反应气体通道1021包括间隔设置的第一反应气体通道1021a和第二反应气体通道1021b;所述第一反应气体通道1021a包括连通所述反应腔101的第一出口1022a,所述第二反应气体通道1021b包括连通所述反应腔101的第二出口1022b的情形。可以想到的,所述反应气体通道1021还可以包括与所述第一反应气体通道1021a和第二反应气体通道1021b间隔设置的第三反应气体通道及第四反应气体通道等反应气体通道,所述第三反应气体通道包括连通所述反应腔101的第三出口,所述第四反应气体通道包括连通所述反应腔101的第四出口等出口,所述清洗气体通道103位于所述第一出口1022a、所述第二出口1022b、所述第三出口、所述第四出口等出口的下方,以在提高机台稼动率的同时,保证避免反应气体进入所述反应腔101时,在所述反应腔101的非成膜区域出现寄生物,影响成膜精度。所述反应气体通道1021的设置数目可根据实际的需要进行调整,对此本申请不再进行赘述,本领域的相关技术人员可结合实际需要进行调整。
本申请实施例提供的气相沉积装置,包括:反应腔101、气体喷淋装置102,以及清洗气体通道103;所述气体喷淋装置102包括反应气体通道1021,所述反应气体通道1021包括连通所述反应腔的出口1022;所述清洗气体通道103与所述反应气体通道102间隔设置,可以降低所述反应腔101内残留生成物的出现机率,提高成膜的均匀性及机台的稼动率。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的气相沉积装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (17)

  1. 一种气相沉积装置,其中,包括:反应腔、气体喷淋装置,以及清洗气体通道;
    所述气体喷淋装置包括反应气体通道,所述反应气体通道包括连通所述反应腔的出口;
    所述清洗气体通道与所述反应气体通道间隔设置。
  2. 根据权利要求1所述的气相沉积装置,其中,所述清洗气体通道位于所述反应气体通道的所述出口的下方。
  3. 根据权利要求2所述的气相沉积装置,其中,所述反应气体通道包括间隔设置的第一反应气体通道和第二反应气体通道;所述第一反应气体通道包括连通所述反应腔的第一出口,所述第二反应气体通道包括连通所述反应腔的第二出口,所述清洗气体通道位于所述第一出口和所述第二出口的下方。
  4. 根据权利要求1所述的气相沉积装置,其中,所述气相沉积装置还包括背板,所述背板位于所述气体喷淋装置上方,所述背板具有与所述反应腔外部连通且与所述反应气体通道连通的进气孔。
  5. 根据权利要求3所述的气相沉积装置,其中,所述第一反应气体通道与所述反应腔外部连通,第一气体通过所述第一反应气体通道的所述第一出口进入所述反应腔;所述第二反应气体通道与所述反应腔外部连通,第二气体通过所述第二反应气体通道的所述第二出口进入所述反应腔。
  6. 根据权利要求3所述的气相沉积装置,其中,所述气相沉积装置还包括背板,所述背板位于所述气体喷淋装置上方,所述背板上包括与所述反应腔外部连通且与所述第一反应气体通道连通的第一进气孔;以及与所述反应腔外部连通且与所述第二反应气体通道连通的第二进气孔。
  7. 根据权利要求3所述的气相沉积装置,其中,所述第一反应气体通道的尺寸为大于或等于0.2mm且小于或等于0.6mm。
  8. 根据权利要求3所述的气相沉积装置,其中,所述第二反应气体通道的尺寸为大于或等于0.2mm且小于或等于0.6mm。
  9. 根据权利要求3所述的气相沉积装置,其中,在俯视图视角下,所述第一出口可以为圆形、条形、多边形的其中一种或多种组合。
  10. 根据权利要求3所述的气相沉积装置,其中,在俯视图视角下,所述第二出口可以为圆形、条形、多边形的其中一种或多种组合。
  11. 根据权利要求5所述的气相沉积装置,其中,所述第一气体包括氧化性气体或还原性气体的其中之一。
  12. 根据权利要求11所述的气相沉积装置,其中,所述第二气体包括氧化性气体或还原性气体的其中另一。
  13. 根据权利要求12所述的气相沉积装置,其中,所述氧化性气体包括氧气、一氧化二氮;所述还原性气体包括硅烷、磷化氢。
  14. 根据权利要求1所述的气相沉积装置,其中,清洗气体通过所述清洗气体通道进入所述反应腔,所述清洗气体包括三氟化氮、氩气。
  15. 根据权利要求1所述的气相沉积装置,其中,所述反应气体通道的尺寸为大于或等于0.2mm且小于或等于0.6mm。
  16. 根据权利要求15所述的气相沉积装置,其中,所述反应气体通道的尺寸等于0.3mm。
  17. 根据权利要求1所述的气相沉积装置,其中,还包括正对所述出口设置的载台。
PCT/CN2020/091207 2020-05-08 2020-05-20 气相沉积装置 WO2021223267A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/768,539 US20230052532A1 (en) 2020-05-08 2020-05-20 Vapor deposition apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010380106.4 2020-05-08
CN202010380106.4A CN111501024A (zh) 2020-05-08 2020-05-08 气相沉积装置

Publications (1)

Publication Number Publication Date
WO2021223267A1 true WO2021223267A1 (zh) 2021-11-11

Family

ID=71869830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091207 WO2021223267A1 (zh) 2020-05-08 2020-05-20 气相沉积装置

Country Status (3)

Country Link
US (1) US20230052532A1 (zh)
CN (1) CN111501024A (zh)
WO (1) WO2021223267A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220119943A1 (en) * 2020-10-21 2022-04-21 Industrial Technology Research Institute Deposition apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200411719A (en) * 2002-08-30 2004-07-01 Tokyo Electron Ltd Substrate processing device and cleaning method thereof
CN101195193A (zh) * 2006-10-06 2008-06-11 索尼株式会社 激光加工设备及方法、基板及其和显示设备的制造方法
US20110253044A1 (en) * 2010-04-14 2011-10-20 Applied Materials, Inc. Showerhead assembly with metrology port purge
CN103098175A (zh) * 2010-08-16 2013-05-08 应用材料公司 具有气体注射分配装置的喷头组件
CN105200396A (zh) * 2014-06-18 2015-12-30 中微半导体设备(上海)有限公司 一种mocvd设备及其中寄生颗粒的清除方法
CN105274497A (zh) * 2014-06-24 2016-01-27 株式会社日立国际电气 衬底处理装置及半导体器件的制造方法
CN107240562A (zh) * 2016-03-29 2017-10-10 株式会社日立国际电气 衬底处理装置及半导体装置的制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360098B2 (ja) * 1995-04-20 2002-12-24 東京エレクトロン株式会社 処理装置のシャワーヘッド構造
TW283250B (en) * 1995-07-10 1996-08-11 Watkins Johnson Co Plasma enhanced chemical processing reactor and method
US7482283B2 (en) * 2000-12-12 2009-01-27 Tokyo Electron Limited Thin film forming method and thin film forming device
JP3924483B2 (ja) * 2001-03-19 2007-06-06 アイピーエス リミテッド 化学気相蒸着装置
EP1804274A3 (en) * 2001-03-28 2007-07-18 Tadahiro Ohmi Plasma processing apparatus
US7789965B2 (en) * 2006-09-19 2010-09-07 Asm Japan K.K. Method of cleaning UV irradiation chamber
KR100855002B1 (ko) * 2007-05-23 2008-08-28 삼성전자주식회사 플라즈마 이온 주입시스템
KR20090078538A (ko) * 2008-01-15 2009-07-20 삼성전기주식회사 샤워 헤드와 이를 구비하는 화학 기상 증착 장치
WO2011031521A2 (en) * 2009-08-27 2011-03-17 Applied Materials, Inc. Method of decontamination of process chamber after in-situ chamber clean
US8910644B2 (en) * 2010-06-18 2014-12-16 Applied Materials, Inc. Method and apparatus for inducing turbulent flow of a processing chamber cleaning gas
US10316409B2 (en) * 2012-12-21 2019-06-11 Novellus Systems, Inc. Radical source design for remote plasma atomic layer deposition
US9677176B2 (en) * 2013-07-03 2017-06-13 Novellus Systems, Inc. Multi-plenum, dual-temperature showerhead
US20150380221A1 (en) * 2014-06-30 2015-12-31 Applied Materials, Inc. Hole Pattern For Uniform Illumination Of Workpiece Below A Capacitively Coupled Plasma Source
KR101812707B1 (ko) * 2016-05-23 2017-12-27 (주)에스티아이 챔버 세정 시스템
US10546729B2 (en) * 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
CN113396240A (zh) * 2019-03-11 2021-09-14 应用材料公司 用于基板处理腔室的盖组件设备及方法
US20220333245A1 (en) * 2021-04-20 2022-10-20 Applied Materials, Inc. Systems, methods, and apparatus for applying a bias voltage to an ion blocker plate during substrate processing operations

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200411719A (en) * 2002-08-30 2004-07-01 Tokyo Electron Ltd Substrate processing device and cleaning method thereof
CN101195193A (zh) * 2006-10-06 2008-06-11 索尼株式会社 激光加工设备及方法、基板及其和显示设备的制造方法
US20110253044A1 (en) * 2010-04-14 2011-10-20 Applied Materials, Inc. Showerhead assembly with metrology port purge
CN103098175A (zh) * 2010-08-16 2013-05-08 应用材料公司 具有气体注射分配装置的喷头组件
CN105200396A (zh) * 2014-06-18 2015-12-30 中微半导体设备(上海)有限公司 一种mocvd设备及其中寄生颗粒的清除方法
CN105274497A (zh) * 2014-06-24 2016-01-27 株式会社日立国际电气 衬底处理装置及半导体器件的制造方法
CN107240562A (zh) * 2016-03-29 2017-10-10 株式会社日立国际电气 衬底处理装置及半导体装置的制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220119943A1 (en) * 2020-10-21 2022-04-21 Industrial Technology Research Institute Deposition apparatus
US11680316B2 (en) * 2020-10-21 2023-06-20 Industrial Technology Research Institute Deposition apparatus

Also Published As

Publication number Publication date
CN111501024A (zh) 2020-08-07
US20230052532A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP4273932B2 (ja) 表面波励起プラズマcvd装置
TWI283437B (en) Gas distribution showerhead
JP5804059B2 (ja) プラズマ処理装置
JP2003324072A (ja) 半導体製造装置
CN111424260B (zh) 具有高效清洁能力的化学气相沉积设备及半导体工艺方法
WO2009089794A1 (en) Plasma processing equipment and gas distribution apparatus thereof
JPH09181065A (ja) 堆積チャンバ
JP2001023955A (ja) プラズマ処理装置
US20140023796A1 (en) Plasma cvd apparatus, plasma cvd method, reactive sputtering apparatus, and reactive sputtering method
CN103184433A (zh) 气体扩散均匀化装置及使用该装置的等离子体工艺设备
WO2021223267A1 (zh) 气相沉积装置
CN202643920U (zh) 气体扩散均匀化装置及使用该装置的等离子体工艺设备
EP1926840A1 (en) Apparatus and process for surface treatment of substrate using an activated reactive gas
TWI417417B (zh) 無電極與薄膜污染之大面積大氣電漿鍍膜裝置
JP2004342331A (ja) プラズマ放電電極及びプラズマ放電処理方法
JP4413154B2 (ja) プラズマ処理装置
US20180258531A1 (en) Diffuser design for flowable cvd
CN117203749A (zh) 均匀的原位清洗和沉积
JP2004186404A (ja) プラズマ処理装置
US20220122851A1 (en) Gas mixer to enable rps purging
US20200043704A1 (en) Gas box for cvd chamber
TWI844439B (zh) 均勻的原位清洗及沉積
CN221398037U (zh) 原子层沉积装置
TWI810553B (zh) 具有邊緣流體控制的面板
TWM652835U (zh) 原子層沉積裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934682

Country of ref document: EP

Kind code of ref document: A1