WO2021220687A1 - Hydrophobic silica gel for energy-ray-curable coating material matting - Google Patents

Hydrophobic silica gel for energy-ray-curable coating material matting Download PDF

Info

Publication number
WO2021220687A1
WO2021220687A1 PCT/JP2021/012760 JP2021012760W WO2021220687A1 WO 2021220687 A1 WO2021220687 A1 WO 2021220687A1 JP 2021012760 W JP2021012760 W JP 2021012760W WO 2021220687 A1 WO2021220687 A1 WO 2021220687A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica gel
hydrophobic silica
pore volume
range
compression
Prior art date
Application number
PCT/JP2021/012760
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 古城
英紀 中上
雄祐 福永
Original Assignee
東ソー・シリカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー・シリカ株式会社 filed Critical 東ソー・シリカ株式会社
Priority to CN202180013998.7A priority Critical patent/CN115135727B/en
Priority to JP2022517559A priority patent/JP7369862B2/en
Priority to KR1020227027753A priority patent/KR20230002288A/en
Publication of WO2021220687A1 publication Critical patent/WO2021220687A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/159Coating or hydrophobisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/42Gloss-reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume

Definitions

  • the present invention relates to hydrophobic silica gel for matting energy ray-curable paints. More specifically, the present invention relates to hydrophobic silica gel surface-treated with silicone oil, which is used as a matting agent for paints that are cured by energy rays such as ultraviolet rays (UV) and electron beams (EB).
  • energy rays such as ultraviolet rays (UV) and electron beams (EB).
  • Energy ray-curable paints have advantages such as excellent coating film strength and quick-curing properties, and can reduce the amount of solvent. Therefore, in recent years, the amount of energy ray-curable paints used has increased in place of conventional paints that use solvents. There is.
  • Silica matting agents used in conventional paints that use solvents have achieved a matting effect by creating irregularities on the surface by taking advantage of the fact that the film thickness differs greatly between painting and film formation after solvent volatilization. ..
  • the decrease in film thickness during painting and film formation is small. Therefore, the silica matting agent conventionally used has not been able to exert a sufficient matting effect.
  • WAX-treated silica has been proposed as a solution to this problem.
  • the WAX-treated silica described in Patent Document 1 is silica having a pore volume of at least 1.5 cm 3 / g and surface-treated with 5.6 to 15% by weight of WAX having a melting point of less than 85 ° C.
  • the WAX-treated silica described in Patent Document 2 is silica having a median particle size of 2 to 12 ⁇ m and surface-treated with 15 to 30% by weight of WAX. Both exhibit high matting performance and excellent sedimentation stability in energy ray-curable paints.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-512124 (WO97 / 08250)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-522219 (WO01 / 00217) The entire description of Patent Documents 1 and 2 is incorporated herein by reference in particular.
  • matte coating films containing silica in order to hide uneven molding and scratches on the base and protect the surface while achieving a high-class appearance. in use.
  • improvement of chemical resistance and scratch resistance has also been required.
  • the wax-treated silicas of Patent Documents 1 and 2 have insufficient chemical resistance and scratch resistance.
  • WAX-treated silica When the WAX-treated silica is blended into a paint, when the paint temperature rises, the wax elutes and deteriorates the appearance.
  • WAX when the paint is stored for a long period of time, WAX is eluted, and there is a concern that the physical characteristics and appearance of the paint film may be deteriorated.
  • hydrophobic silica gel which is a matting agent suitable for energy ray-curable paints and has excellent chemical resistance and scratch resistance in addition to matting performance.
  • the film thickness of the coating film formed by using the energy ray-curable coating film is usually about 5 to 40 ⁇ m, and the particle size of silica gel is set to, for example, 5 so that the coating film having this film thickness can exhibit matting performance. Adjust to about 20 ⁇ m.
  • hydrophobic silica gel surface-treated with silicone oil has fewer surface silanol groups than silica gel untreated. Therefore, there is another problem essential for paints, that is, floculate is not formed in a solvent, sedimentation stability is poor, and hard cake is formed. It was also found that this point can be improved by controlling the hydrophobizing treatment conditions within a predetermined range, and that chemical resistance and sedimentation stability can be balanced.
  • the present inventors have found that it is possible to provide an energy ray-curable paint matting hydrophobic silica gel having excellent chemical resistance, scratch resistance and sedimentation stability in addition to matting performance.
  • the invention was completed.
  • the present invention is as follows.
  • the pore volume measured by the nitrogen adsorption / desorption method is in the range of 0.6 to 2 ml / g.
  • Hydrophobic silica gel for energy ray curable paint matting which has a volume / pre-compression pore volume) in the range of 0.8 to 1.5.
  • an energy ray-curable paint matting hydrophobic silica gel having excellent chemical resistance, scratch resistance and sedimentation stability in addition to matting performance.
  • FIG. 1 shows the mercury pore distribution of the hydrophobic silica gel of Example 1.
  • FIG. 2 shows the mercury pore distribution of the hydrophobic silica gel of Comparative Example 1.
  • the present invention is a hydrophobic silica gel surface-treated with silicone oil.
  • the pore volume measured by the nitrogen adsorption / desorption method is in the range of 0.6 to 2 ml / g.
  • the M value is in the range of 5 to 40 vol%, and (3) the ratio of the pore volume of 109 nm or less after compression to the pore volume of 109 nm or less before compression at a pressure of 260 MPa (pores after compression). Volume / pre-compression pore volume) is in the range 0.8-1.5.
  • Energy ray curable paint Hydrophobic silica gel for matting is provided.
  • the hydrophobic silica gel of the present invention is silica gel whose surface is treated with silicone oil, and can be obtained by treating the surface of silica gel with silicone oil.
  • the silica gel is a known silica gel produced by a known method, and the silicone oil for surface treatment can also be a known silicone oil.
  • the hydrophobic silica gel having the above-mentioned properties (1) to (3) is a novel hydrophobic silica gel, and by satisfying these physical properties, it can be a silica suitable for matting an energy ray-curable paint. ..
  • the hydrophobic silica gel of the present invention has a pore volume in the range of 0.6 to 2 ml / g measured by the nitrogen adsorption / desorption method. Within this range, excellent matting performance and scratch resistance are exhibited.
  • the pore volume is smaller than 0.6 ml / g, the silica pores are too small and the matting performance is greatly deteriorated.
  • the pore size also tends to increase, and when the pore volume exceeds 2 ml / g, the pores become too large, the silica secondary particle agglutination structure becomes weak, and the scratch resistance deteriorates. do. It is preferably in the range of 0.7 to 1.8 ml / g, more preferably 0.8 to 1.6 ml / g.
  • the method for measuring the pore volume by the nitrogen adsorption / desorption method will be described in Examples.
  • the hydrophobic silica gel of the present invention has an M value in the range of 5 to 40 vol%.
  • the method for measuring the M value will be described in Examples, but the M value is an index indicating the degree of hydrophobicity of the hydrophobic silica gel depending on the methanol concentration of the aqueous methanol solution in which the hydrophobic silica gel can be suspended.
  • the M value in this range that is, the degree of hydrophobicity in this range, the chemical resistance is excellent as compared with the WAX-treated silica described in Patent Documents 1 and 2, and it is difficult to hard cake and redispersibility is achieved. Excellent.
  • the M value is less than 5 vol%, the desired chemical resistance cannot be obtained, and if the M value exceeds 40 vol%, precipitation tends to occur with time, and redispersion becomes difficult.
  • the M value is 40 vol% or less, the residual amount of silanol groups is larger than that of the existing hydrophobic silica gel having an M value of more than 40 vol%, and since floculate is formed in the paint, it is difficult to make a hard cake.
  • the M value is preferably 10 to 35 vol%, more preferably 15 to 30 vol%.
  • the ratio of the pore volume of 109 nm or less after compression to the pore volume of 109 nm or less before compression at a pressure of 260 MPa (pore volume after compression / pore volume before compression).
  • it is in the range of 0.80 to 1.5.
  • the ratio of the pore volume of 109 nm or less after compression to the pore volume of 109 nm or less before compression is in the above range.
  • the pore volume of 109 nm or less indicates the pore structure from the surface to the inside of the secondary particle agglomerates of silica, and the higher the value, the more voids of the secondary particle agglomerates.
  • the pore volume of silica increases, the density per silica secondary particle decreases, and the number of silica secondary particles per unit weight increases.
  • the strength of the secondary particle agglomeration structure constituting the pores of 109 nm or less can be evaluated.
  • the pore volume of 109 nm or less is measured when the pressure is increased from 0 MPa to 400 MPa by the mercury intrusion method.
  • a method for measuring a pore volume of 109 nm or less by a mercury intrusion method will be described in Examples.
  • the pore volume ratio before and after compression of 0.8 to 1.5 indicates that the secondary particle agglomeration structure of silica particles is maintained even after compression of 260 MPa and is strong. That is, hydrophobic silica gel having a pore volume ratio of 0.8 to 1.5 before and after compression is excellent in scratch resistance.
  • the lower limit of the pore volume ratio before and after compression is preferably 0.85, more preferably 0.9.
  • the upper limit of the pore volume ratio before and after compression is 1.5, and it is practically difficult to provide hydrophobic silica gel exceeding 1.5.
  • the upper limit of the pore volume ratio before and after compression is preferably 1.4, more preferably 1.3, still more preferably 1.2, and most preferably 1.1.
  • the hydrophobic silica gel of the present invention preferably has a D50 value measured by a laser diffraction method in the range of 5 to 20 ⁇ m.
  • the D50 value measured by the laser diffraction method is in the range of 5 to 20 ⁇ m, it is possible to impart appropriate unevenness to the coating film with respect to the film thickness of a general coating film and exhibit matting performance.
  • the method for measuring the volume average particle size by the laser diffraction method will be described in Examples.
  • Hydrophobic silica gel having a D50 value of less than 5 ⁇ m tends to have low matting performance, and if it is larger than 20 ⁇ m, the surface of the coating film becomes rough and the design is impaired, so that it may not be suitable for matting use.
  • the hydrophobic silica gel of the present invention preferably has a DBA adsorption amount in the range of 30 to 180 mmol / kg.
  • the amount of DBA adsorbed is within the above range, the precipitation property in the paint can be controlled while improving the chemical resistance characteristic of the hydrophobic silica gel. If it is less than 30 mmol / kg, there are few silanol groups on the surface of the hydrophobic silica gel, and the silica gels cannot be floculated with each other, so that they precipitate and cannot be redispersed. When it is larger than 180 mmol / kg, the hydrophobic state of the hydrophobic silica gel is weak and the effect of improving chemical resistance is reduced.
  • the amount of DBA adsorbed is preferably 40 to 170 mmol / kg, more preferably 50 mmol / kg to 160 mmol / kg, and even more preferably 60 to 140 mmol / kg.
  • the hydrophobic silica gel of the present invention preferably has a maximum particle size in the range of 15 to 70 ⁇ m as measured by a laser diffraction method.
  • the maximum particle size is in this range, appropriate unevenness can be imparted to the matte coating film.
  • the maximum particle size measured by the laser diffraction method is less than 15 ⁇ m, the matting performance tends to be low. If it is larger than 70 ⁇ m, the surface of the coating film becomes rough and the design is impaired, so that it may not be suitable for matting use.
  • the maximum particle size measured by the laser diffraction method is more preferably in the range of 15 to 65 ⁇ m.
  • the ratio D90 / D50 of the particle size D90 value to the D50 value measured by the laser diffraction method is preferably in the range of less than 1.8.
  • D90 / D50 is in the range of less than 1.8, it has a sharp particle size distribution and the matting performance becomes better.
  • the ratio D90 / D50 of the D90 value to the D50 value of the particle size measured by the laser diffraction method is 1.8 or more, the particle size becomes broad and the matting performance is relatively low. More preferably, D90 / D50 is in the range of less than 1.7.
  • Hydrophobic silica gel is known in fields other than those for energy ray-curable paints.
  • these conventional hydrophobic silica gels have a large particle size and a strong secondary particle agglomeration structure, they precipitate in a relatively short time, especially in a paint containing a weak solvent having a polar group or a reactive monomer. Therefore, conventional hydrophobic silica gel has not been used in energy ray-curable paints.
  • the energy ray-curable coating material in the present invention is a coating material containing a reactive monomer, an organic solvent and a photopolymerization initiator.
  • the reactive monomer, organic solvent and photopolymerization initiator are not limited and may be known materials. Further, components other than the reactive monomer, the organic solvent and the photopolymerization initiator can be appropriately contained.
  • the reactive monomer is, for example, a reactive monomer having a polar group
  • examples of the reactive monomer having a polar group include methyl carbitol acrylate, 2-ethylhexyl acrylate, phenyl acrylate, C9-phenyl acrylate, and 1,9-nonane.
  • organic solvent examples include esters such as ethyl acetate and butyl acetate, alcohols such as ethanol and methanol, ketones such as acetone and methyl ethyl ketone, dimethyl ether and diethyl ether, as typical examples of weak solvents having polar groups.
  • esters such as ethyl acetate and butyl acetate
  • alcohols such as ethanol and methanol
  • ketones such as acetone and methyl ethyl ketone
  • dimethyl ether and diethyl ether dimethyl ether and diethyl ether
  • silica particles having a large particle diameter and a strong secondary particle agglomeration structure are provided with an optimum hydrophobic state to maintain a good precipitated state even in an energy ray-curable paint. It is supposed to be.
  • the hydrophobic silica gel for matting energy ray-curable paint of the present invention is suitably used as a matting agent for energy ray-curable paint.
  • an energy ray-curable paint containing a weak solvent having a low viscosity and easily settling is highly effective, but the effect is not limited to this.
  • the silicone oil for surface treatment for the hydrophobic silica gel of the present invention is not particularly limited as long as it can be mixed with silica gel. It is common to use commercially available dimethyl silicone oil (commonly known as straight silicone oil) containing only methyl and phenyl groups, but other modified types with an organic substituent on the silicon atom. Silicone oil can also be used. As examples of substituents, many modified types of silicone oils are commercially available, including polyethers, epoxies, amines, and carboxyl groups. Examples of the modified type silicone oil include the following products.
  • Silicone oils having a kinematic viscosity of 1 to 500 centimeters Stokes include, for example, the following products.
  • ⁇ Silicone oil manufactured by Toray Dow Corning> SH200-1cs, 1.5cs, 2cs, 3cs, 5cs, 10cs, 20cs, 50cs, 100cs, 200cs, 350cs, 500cs
  • the method for producing the raw material silica gel for the hydrophobic silica gel of the present invention will be described.
  • the silica gel used in the present invention has a pore structure in a step of drying a silica hydrogel to produce silica gel in order to provide a hydrophobic silica gel having a desired pore volume and post-compression pore volume / pre-compression pore volume. Is controlled.
  • the silica hydrogel used in the production method of the present invention may be obtained by a conventional method.
  • an aqueous alkali metal silicate solution such as sodium silicate, potassium silicate, and lithium silicate is reacted with a mineral acid such as sulfuric acid, hydrochloric acid, and nitric acid under an excess acid to obtain a uniform silica hydrosol.
  • a mineral acid such as sulfuric acid, hydrochloric acid, and nitric acid under an excess acid
  • the obtained silica hydrosol is gelled, crushed, and washed with water.
  • sodium hydroxide or an aqueous ammonia solution may be added and heated for the purpose of removing by-product salts and, if necessary, reducing the specific surface area, and hydrothermal treatment may be performed.
  • a static dryer For drying, a static dryer, a band dryer, a paddle dryer, a fluidized dryer, etc. are generally used, but the drying is not limited to this.
  • the drying temperature is not particularly limited, but when uniform drying is performed at an average drying rate in the above range, it is appropriate to perform uniform drying at 100 to 300 ° C.
  • Drying of silica hydrogel is performed in consideration of the viewpoint of pore structure control for providing hydrophobic silica gel having a desired pore volume and post-compression pore volume / pre-compression pore volume. From this point of view, it is preferable that the silica gel is dried by a dryer typified by a static dryer or a fluidized dryer, which can control the drying rate, to obtain silica gel.
  • the water content of silica gel after drying is preferably in the range of, for example, 3 to 10% (mass basis).
  • the silica gel thus obtained can be pulverized and classified for the purpose of further adjusting the average particle size.
  • the pulverization can be performed by a known method, for example, a method using a roll mill, a ball mill, a hammer mill, a pin mill, a jet mill or the like. Further, the classification is performed using a wind power classifier such as a micron separator, a centrifugal force classifier, or the like, and silica gel having a desired average particle size can be obtained. At this time, it is not necessary to match the target average particle size, but by approaching the target particle size, it becomes easy to adjust the particle size after hydrophobization.
  • a method using a high-speed flow mixer such as a Henschel mixer is preferable for uniform treatment. ..
  • the method is not limited to this method.
  • the amount of the surface treatment agent used for the treatment of silica gel is adjusted so as to obtain a desired M value. Further, in order to adjust the amount of DBA adsorbed, the amount of the surface treatment agent used for the treatment of silica gel is adjusted.
  • Hydrophobicization is performed by mixing the surface treatment agent and silica gel and then performing heat treatment under the conditions of 200 to 600 ° C.
  • the heat treatment may be performed by any method as long as a uniform heat treatment can be performed for a certain period of time. As the heat treatment time, it is sufficient that a desired hydrophobic state can be obtained, and 1 to 24 hours is exemplified as a guide. After the heat treatment, crushing and classification can be performed if necessary.
  • Physical property measurement method M value Prepare a mixed solution with water in which the concentration of methanol is changed at intervals of 5 vol%, and put 5 ml of this in a test tube having a volume of 10 ml. Next, 0.1 to 0.2 g of a hydrophobic silica gel sample as a test powder is added, shaken and allowed to stand, and then the concentration of the minimum methanol in which the powder is suspended is observed and used as the M value.
  • DBA Adsorption Amount 250 mg of a dry sample of a hydrophobic silica gel sample is precisely weighed, 50 ml of a di-n-butylamine solution of N / 500 (petroleum benzine solvent) is added thereto, and the mixture is left at 20 ° C. for about 2 hours.
  • N / 500 molecular weight
  • To 25 ml of this supernatant 5 ml of chloroform and 2 to 3 drops of an indicator (crystal violet) are added, and titration is performed with an N / 100 perchloric acid solution (anhydrous acetate solvent) until the purple color turns blue. Let it be A ml.
  • DBA adsorption amount (mmol / kg) 80 (BA) f
  • f is the titer of the N / 100 perchloric acid solution.
  • isopropyl alcohol (refractive index: 1.38) was used as a solvent.
  • Pore volume measured by nitrogen adsorption / desorption method Pore radius range of 1.6 to 100 nm by Barret-Joiner-Halenda method (BJH method) using Belsolp max, a high-precision gas / steam adsorption amount measuring device manufactured by Nippon Bell Co., Ltd.
  • the total pore volume ( VP ) of was measured.
  • the measurement result is the pore volume on the desorption side (measured from the one with the larger pore volume).
  • Table 1 shows the composition table of the UV paint.
  • Formulation Oligomer NK Oligo UA-1100H manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • Monomer DPHA manufactured by Daisel Ornex
  • Photopolymerization Initiator 1 BASF Ormirad 184
  • Photopolymerization Initiator 2 BASF Ormirad TPO H
  • Leveling agent BYK-UV-3570 manufactured by BYK Chemie
  • a coating film having a coating film thickness of 15 ⁇ m was obtained by performing UV irradiation twice with a UV irradiation device under the condition of an output of 2 kW, an irradiation distance of 200 mm and a conveyor speed of 210 cm / min.
  • Abrasion resistance test Using a Gakushin type friction fastness tester AB-301 manufactured by Tester Sangyo Co., Ltd., a weight of 500 g and canvas No. 6 were used to observe the state of the coating film after 5000 reciprocations.
  • the Rz value (10-point average surface roughness) of the coating film surface before and after the wear test was measured at a magnification of 50 times using an ultra-depth shape measuring microscope VK8500 manufactured by KEYENCE.
  • the Rz values before and after the wear test were measured at three points each, and the average difference in Rz was defined as
  • silica gel hydrosol was obtained by mixing using a mixing nozzle under the condition that the amount of excess sulfuric acid in the sol was 6 wt%. This hydrosol was hydrothermally treated at 90 ° C. for 3 to 5 hours at pH 7.0, then washed with water, dried, and pulverized and classified to have a BET specific surface area of 470 to 530 m 2 / g, and D50 measured by laser diffraction. Silica gel having a value of 10.4 to 15.1 ⁇ m was obtained.
  • Example 1 Using silica gel with a BET specific surface area of 500 m 2 / g and a D50 value of 14.5 ⁇ m measured by laser diffraction as the raw material silica, silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) has a BET specific surface area of 100 m 2 / g. It was added to 3.0 parts, and mixed with a Henchel mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes to homogenize. After mixing was filled in a ceramic sagger having an inner volume of 10,000 cm 3, 320 ° C. in a continuous heating furnace, heat treatment is performed for 8 hours to obtain a hydrophobic silica gel.
  • silicone oil KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 2 Using silica gel with a BET specific surface area of 530 m 2 / g and a D50 value of 13.6 ⁇ m measured by laser diffraction as the raw material silica, silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) has a BET specific surface area of 100 m 2 / g. It was added to make 3.4 parts, and mixed with a Henshell mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes to homogenize. After mixing, heat treatment was performed at 350 ° C. for 4 hours in a static heating furnace to obtain hydrophobic silica gel.
  • silicone oil KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 3 Using silica gel with a BET specific surface area of 470 m 2 / g and a D50 value of 15.1 ⁇ m measured by laser diffraction as the raw material silica, silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) has a BET specific surface area of 100 m 2 / g. It was added so as to form 3.2 parts, and mixed with a Henshell mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes to homogenize. After mixing, heat treatment was performed at 380 ° C. for 7 hours in a static heating furnace to obtain hydrophobic silica gel.
  • silicone oil KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 4 Using silica gel with a BET specific surface area of 490 m 2 / g and a D50 value of 11.0 ⁇ m measured by laser diffraction as the raw material silica, silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) has a BET specific surface area of 100 m 2 / g.
  • silicone oil KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.
  • 3.1 parts were added and mixed with a Henshell mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes to homogenize. After mixing, heat treatment was performed at 330 ° C. for 6 hours in a static heating furnace to obtain hydrophobic silica gel.
  • Example 5 As the raw material silica, silica gel having a BET specific surface area of 500 m 2 / g and a D50 value of 10.4 ⁇ m measured by a laser diffraction method was used, and hydrophobic gel silica was obtained by the same method as in Example 1. Then, the obtained hydrophobic gel silica was pulverized and classified, and the particle size was adjusted so that the particle size distribution D50 value by the laser diffraction method was 5.8 ⁇ m to obtain hydrophobic silica gel.
  • Example 1 The measurement results of Examples 1 to 5 are shown in Table 2. In addition, the mercury pore volume distribution before and after compression of Example 1 is shown in FIG.
  • Hydrophobic silica gel was obtained by the same procedure as in Example 1 except that silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to a BET specific surface area of 100 m 2 / g so as to be 5.0 parts. .. Hydrophobic silica gel with a large particle size and a high M value (55 vol%) was inferior in sedimentation stability.
  • silicone oil KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Reference example 2 Commercial product Nippon SS-50B (manufactured by Tosoh Silica Co., Ltd.) Since the particle size is small, the sedimentation stability is excellent, but the matting performance is inferior.
  • Comparative Example 1 Commercially available product NIPGEL AY-460 (manufactured by Tosoh Silica Co., Ltd.) WAX-treated gel silica This WAX-treated silica was inferior in transparency and chemical resistance to the hydrophobic silica gel of the present invention.
  • Table 3 shows the measurement results of Reference Examples and Comparative Examples 1 and 2. Further, FIG. 2 shows the mercury pore volume distribution before and after compression of Comparative Example 1.
  • the present invention is useful in the field of hydrophobic silica gel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to a hydrophobic silica gel that has been surface-treated by a silicone oil, wherein the hydrophobic silica gel for energy-ray-curable coating material matting is such that the pore volume measured by a nitrogen adsorption/desorption method is in the range of 0.6-2 mL/g, the M value is in the range of 5-40 vol%, and the ratio (pore volume after compression/pore volume before compression) of the pore volume for a pore radius of 109 nm or less after compression at a pressure of 260 MPa to the pore volume for a pore radius of 109 nm or less before said compression is in the range of 0.8-1.5. According to the present invention, it is possible to provide a hydrophobic silica gel for energy-ray-curable coating material matting that has exceptional chemical resistance, scratch resistance, and sedimentation stability in addition to matting performance.

Description

エネルギー線硬化型塗料艶消し用疎水性シリカゲルEnergy ray curable paint Hydrophobic silica gel for matting
 本発明は、エネルギー線硬化型塗料艶消し用疎水性シリカゲルに関する。より詳しくは、本発明は、紫外線(UV)や電子線(EB)などのエネルギー線により硬化する塗料の艶消し剤として使用されるシリコーンオイルで表面処理された疎水性シリカゲルに関する。
関連出願の相互参照
 本出願は、2020年4月28日出願の日本特願2020-079708号の優先権を主張し、その全記載は、ここに特に開示として援用される。
The present invention relates to hydrophobic silica gel for matting energy ray-curable paints. More specifically, the present invention relates to hydrophobic silica gel surface-treated with silicone oil, which is used as a matting agent for paints that are cured by energy rays such as ultraviolet rays (UV) and electron beams (EB).
Cross-reference to related applications This application claims the priority of Japanese Patent Application No. 2020-079708 filed on April 28, 2020, the entire description of which is incorporated herein by reference in particular.
 エネルギー線硬化型塗料は、塗膜強度及び速硬化性に優れ、低溶剤化が可能である等の利点があることから、近年、溶剤を使用する従来型塗料にとって代わりその使用量が増加している。 Energy ray-curable paints have advantages such as excellent coating film strength and quick-curing properties, and can reduce the amount of solvent. Therefore, in recent years, the amount of energy ray-curable paints used has increased in place of conventional paints that use solvents. There is.
 溶剤を使用する従来型塗料でのシリカ艶消し剤は、塗装時と溶剤揮発後の製膜時で膜厚が大きく異なることを利用して表面に凹凸を作り、艶消し効果を実現させていた。しかし、エネルギー線硬化型塗料の場合、塗装時と製膜時の膜厚の減少が少ない。そのため、従来から使用されていたシリカ艶消し剤では十分な艶消し効果を発揮できなかった。 Silica matting agents used in conventional paints that use solvents have achieved a matting effect by creating irregularities on the surface by taking advantage of the fact that the film thickness differs greatly between painting and film formation after solvent volatilization. .. However, in the case of the energy ray-curable paint, the decrease in film thickness during painting and film formation is small. Therefore, the silica matting agent conventionally used has not been able to exert a sufficient matting effect.
 この問題を解決するものとしてWAX処理シリカが提案されている。特許文献1に記載のWAX処理シリカは、少なくとも1.5cm/gの細孔容積を持つシリカに融点が85℃未満のWAXを5.6~15重量%、表面処理したシリカである。特許文献2に記載のWAX処理シリカは、2~12μmのメジアン粒子径を持つシリカに15~30重量%のWAXを表面処理したシリカである。いずれもエネルギー線硬化型塗料において高い艶消し性能及び優れた沈降安定性を発揮する。 WAX-treated silica has been proposed as a solution to this problem. The WAX-treated silica described in Patent Document 1 is silica having a pore volume of at least 1.5 cm 3 / g and surface-treated with 5.6 to 15% by weight of WAX having a melting point of less than 85 ° C. The WAX-treated silica described in Patent Document 2 is silica having a median particle size of 2 to 12 μm and surface-treated with 15 to 30% by weight of WAX. Both exhibit high matting performance and excellent sedimentation stability in energy ray-curable paints.
特許文献1:特表平11-512124号公報(WO97/08250)
特許文献2:特表2003-522219号公報(WO01/004217)
特許文献1及び2の全記載は、それぞれ、ここに特に開示として援用される。
Patent Document 1: Japanese Patent Application Laid-Open No. 11-512124 (WO97 / 08250)
Patent Document 2: Japanese Patent Application Laid-Open No. 2003-522219 (WO01 / 00217)
The entire description of Patent Documents 1 and 2 is incorporated herein by reference in particular.
 最近のエネルギー線硬化型塗料の急速な普及に伴い、艶消し性能以外の性能に対する要求も高まってきている。特に電子機器や家電製品、フローリングのトップコート用としては、下地の成形ムラや傷を隠して表面を保護しつつ高級感のある見た目を実現させるために、シリカを配合した艶消し塗膜が多く使用されている。この用途では、艶消し性能に加えて、耐薬品性及び耐傷性の向上も求められるようになった。 With the recent rapid spread of energy ray-curable paints, the demand for performance other than matte performance is increasing. Especially for electronic devices, home appliances, and top coats for flooring, there are many matte coating films containing silica in order to hide uneven molding and scratches on the base and protect the surface while achieving a high-class appearance. in use. In this application, in addition to matting performance, improvement of chemical resistance and scratch resistance has also been required.
 しかしながら、特許文献1及び2のWAX処理シリカは、耐薬品性及び耐傷性が不十分であった。前記WAX処理シリカは、塗料へ配合する際、塗料温度が上がるとWAXが溶出して外観を悪化させる。あるいは、塗料を長期保存するとWAXが溶出し、塗膜物性や外観の悪化が懸念された。 However, the wax-treated silicas of Patent Documents 1 and 2 have insufficient chemical resistance and scratch resistance. When the WAX-treated silica is blended into a paint, when the paint temperature rises, the wax elutes and deteriorates the appearance. Alternatively, when the paint is stored for a long period of time, WAX is eluted, and there is a concern that the physical characteristics and appearance of the paint film may be deteriorated.
 そこで本発明者らは、エネルギー線硬化型塗料用に適した艶消し剤であって、艶消し性能に加えて、耐薬品性及び耐傷性にも優れた疎水性シリカゲルについて鋭意検討を行った。 Therefore, the present inventors diligently studied hydrophobic silica gel, which is a matting agent suitable for energy ray-curable paints and has excellent chemical resistance and scratch resistance in addition to matting performance.
 その結果、塗膜の耐傷性の問題は、強固な二次粒子凝集構造を有するシリカゲルを用いることで解消できることを見出した。その一方で、そのようなシリカゲルは、耐薬品性に難点があったため、シリカゲルの表面をシリコーンオイルで疎水化処理することにより問題を解決しようとした。エネルギー線硬化型塗料を用いて形成した塗膜の膜厚は、通常5~40μm程度であり、この膜厚の塗膜で艶消し性能を発揮できるように、シリカゲルの粒子径を、例えば、5~20μm程度に調整する。 As a result, it was found that the problem of scratch resistance of the coating film can be solved by using silica gel having a strong secondary particle agglomeration structure. On the other hand, such silica gel has a problem in chemical resistance, so an attempt was made to solve the problem by hydrophobizing the surface of the silica gel with silicone oil. The film thickness of the coating film formed by using the energy ray-curable coating film is usually about 5 to 40 μm, and the particle size of silica gel is set to, for example, 5 so that the coating film having this film thickness can exhibit matting performance. Adjust to about 20 μm.
 ところが、シリコーンオイルで表面処理した疎水性シリカゲルは、表面シラノール基が未処理のシリカゲルに比べて少ない。そのため、溶剤中ではフロキュレートを作らず、沈降安定性が悪くハードケーク化するという、塗料用として本質的な別の問題が生じた。この点は、疎水化処理条件を所定の範囲に制御することで改善でき、かつ耐薬品性と沈降安定性のバランスをとることができることも見出した。 However, hydrophobic silica gel surface-treated with silicone oil has fewer surface silanol groups than silica gel untreated. Therefore, there is another problem essential for paints, that is, floculate is not formed in a solvent, sedimentation stability is poor, and hard cake is formed. It was also found that this point can be improved by controlling the hydrophobizing treatment conditions within a predetermined range, and that chemical resistance and sedimentation stability can be balanced.
 本発明者らは、これらの知見により、艶消し性能に加えて、耐薬品性、耐傷性及び沈降安定性に優れたエネルギー線硬化型塗料艶消し用疎水性シリカゲルを提供できることを見出して、本発明を完成するに至った。 Based on these findings, the present inventors have found that it is possible to provide an energy ray-curable paint matting hydrophobic silica gel having excellent chemical resistance, scratch resistance and sedimentation stability in addition to matting performance. The invention was completed.
 本発明は、以下の通りである。
[1]シリコーンオイルで表面処理された疎水性シリカゲルであって、
窒素吸脱着法で測定された細孔容積が0.6~2ml/gの範囲であり、
M値が5~40vol%の範囲であり、かつ
圧力260MPaでの圧縮前の細孔半径109nm以下の細孔容積に対する前記圧縮後の細孔半径109nm以下の細孔容積の比(圧縮後細孔容積/圧縮前細孔容積)が、0.8~1.5の範囲である、エネルギー線硬化型塗料艶消し用疎水性シリカゲル。
[2]前記疎水性シリカゲルは、レーザー回折法で測定された体積平均粒子径D50値が5~20μmの範囲である、[1]に記載の疎水性シリカゲル。
[3]前記疎水性シリカゲルは、DBA吸着量が30~180mmol/kgの範囲である、[1]又は[2]に記載の疎水性シリカゲル。
[4]前記疎水性シリカゲルは、レーザー回折法で測定された最大粒子径が15~70μmの範囲である、[1]~[3]のいずれか1項に記載の疎水性シリカゲル。
[5]前記疎水性シリカゲルは、レーザー回折法で測定されたD50値に対するD90値の比(D90/D50)が1.8未満である、[1]~[4]のいずれか1項に記載の疎水性シリカゲル。
The present invention is as follows.
[1] Hydrophobic silica gel surface-treated with silicone oil.
The pore volume measured by the nitrogen adsorption / desorption method is in the range of 0.6 to 2 ml / g.
The ratio of the pore volume after compression to the pore volume of 109 nm or less before compression at a pressure of 260 MPa and the M value in the range of 5 to 40 vol% (pores after compression). Hydrophobic silica gel for energy ray curable paint matting, which has a volume / pre-compression pore volume) in the range of 0.8 to 1.5.
[2] The hydrophobic silica gel according to [1], wherein the hydrophobic silica gel has a volume average particle diameter D50 value in the range of 5 to 20 μm measured by a laser diffraction method.
[3] The hydrophobic silica gel according to [1] or [2], wherein the hydrophobic silica gel has a DBA adsorption amount in the range of 30 to 180 mmol / kg.
[4] The hydrophobic silica gel according to any one of [1] to [3], wherein the hydrophobic silica gel has a maximum particle size in the range of 15 to 70 μm measured by a laser diffraction method.
[5] The hydrophobic silica gel according to any one of [1] to [4], wherein the ratio of the D90 value (D90 / D50) to the D50 value measured by the laser diffraction method is less than 1.8. Hydrophobic silica gel.
 本発明によれば、艶消し性能に加えて、耐薬品性、耐傷性及び沈降安定性に優れたエネルギー線硬化型塗料艶消し用疎水性シリカゲルを提供できる。 According to the present invention, it is possible to provide an energy ray-curable paint matting hydrophobic silica gel having excellent chemical resistance, scratch resistance and sedimentation stability in addition to matting performance.
図1は、実施例1の疎水性シリカゲルの水銀細孔分布を示す。FIG. 1 shows the mercury pore distribution of the hydrophobic silica gel of Example 1. 図2は、比較例1の疎水性シリカゲルの水銀細孔分布を示す。FIG. 2 shows the mercury pore distribution of the hydrophobic silica gel of Comparative Example 1.
<疎水性シリカゲル>
 本発明は、シリコーンオイルで表面処理された疎水性シリカゲルであって、
(1)窒素吸脱着法で測定された細孔容積が0.6~2ml/gの範囲であり、
(2)M値が5~40vol%の範囲であり、かつ
(3)圧力260MPaでの圧縮前の109nm以下の細孔容積に対する前記圧縮後の109nm以下の細孔容積の比(圧縮後細孔容積/圧縮前細孔容積)が、0.8~1.5の範囲である、
エネルギー線硬化型塗料艶消し用疎水性シリカゲルに関する。
<Hydrophobic silica gel>
The present invention is a hydrophobic silica gel surface-treated with silicone oil.
(1) The pore volume measured by the nitrogen adsorption / desorption method is in the range of 0.6 to 2 ml / g.
(2) The M value is in the range of 5 to 40 vol%, and (3) the ratio of the pore volume of 109 nm or less after compression to the pore volume of 109 nm or less before compression at a pressure of 260 MPa (pores after compression). Volume / pre-compression pore volume) is in the range 0.8-1.5.
Energy ray curable paint Hydrophobic silica gel for matting.
 本発明の疎水性シリカゲルは、シリカゲルの表面をシリコーンオイルで処理されたシリカであり、シリカゲルの表面をシリコーンオイルで処理することで得られる。シリカゲルは、公知の方法で製造される公知のシリカゲルであり、表面処理用のシリコーンオイルも公知のシリコーンオイルであることができる。但し、上記(1)~(3)の特性を有する疎水性シリカゲルは、新規な疎水性シリカゲルであり、これらの物性を満足することで、エネルギー線硬化型塗料艶消し用に適したシリカとなり得る。 The hydrophobic silica gel of the present invention is silica gel whose surface is treated with silicone oil, and can be obtained by treating the surface of silica gel with silicone oil. The silica gel is a known silica gel produced by a known method, and the silicone oil for surface treatment can also be a known silicone oil. However, the hydrophobic silica gel having the above-mentioned properties (1) to (3) is a novel hydrophobic silica gel, and by satisfying these physical properties, it can be a silica suitable for matting an energy ray-curable paint. ..
(1)本発明の疎水性シリカゲルは、窒素吸脱着法で測定された細孔容積が0.6~2ml/gの範囲である。この範囲であることで、優れた艶消し性能と耐傷性を発揮する。細孔容積が0.6ml/gより小さい場合、シリカの細孔が少な過ぎて、艶消し性能の低下が大きい。細孔容積が増すと細孔の大きさも大きくなる傾向があり、細孔容積が2ml/gを超える場合、細孔が大きくなり過ぎて、シリカ二次粒子凝集構造が弱くなり、耐傷性が悪化する。好ましくは0.7~1.8ml/g、より好ましくは0.8~1.6ml/gの範囲である。窒素吸脱着法による細孔容積の測定方法は実施例で説明する。 (1) The hydrophobic silica gel of the present invention has a pore volume in the range of 0.6 to 2 ml / g measured by the nitrogen adsorption / desorption method. Within this range, excellent matting performance and scratch resistance are exhibited. When the pore volume is smaller than 0.6 ml / g, the silica pores are too small and the matting performance is greatly deteriorated. As the pore volume increases, the pore size also tends to increase, and when the pore volume exceeds 2 ml / g, the pores become too large, the silica secondary particle agglutination structure becomes weak, and the scratch resistance deteriorates. do. It is preferably in the range of 0.7 to 1.8 ml / g, more preferably 0.8 to 1.6 ml / g. The method for measuring the pore volume by the nitrogen adsorption / desorption method will be described in Examples.
(2)本発明の疎水性シリカゲルは、M値が5~40vol%の範囲である。M値の測定方法は実施例で説明するが、M値は、疎水性シリカゲルが懸濁し得るメタノール水溶液のメタノール濃度により、疎水性シリカゲルの疎水化度を示す指標である。M値がこの範囲であること、すなわちこの範囲の疎水化度であることで、特許文献1及び2に記載のWAX処理シリカに比べ、耐薬品性に優れ、かつハードケーク化しにくく再分散性に優れる。M値が5vol%未満の場合では所望の耐薬品性が得られず、M値が40vol%を超えると経時沈澱しやすくなる為、再分散しにくくなる。M値40vol%以下では、既存のM値40vol%超の疎水性シリカゲルに比べシラノール基の残存量が多く、塗料中でフロキュレートを作るため、ハードケーク化しにくい。M値は、好ましくは10~35vol%、より好ましくは15~30vol%である。 (2) The hydrophobic silica gel of the present invention has an M value in the range of 5 to 40 vol%. The method for measuring the M value will be described in Examples, but the M value is an index indicating the degree of hydrophobicity of the hydrophobic silica gel depending on the methanol concentration of the aqueous methanol solution in which the hydrophobic silica gel can be suspended. By having the M value in this range, that is, the degree of hydrophobicity in this range, the chemical resistance is excellent as compared with the WAX-treated silica described in Patent Documents 1 and 2, and it is difficult to hard cake and redispersibility is achieved. Excellent. If the M value is less than 5 vol%, the desired chemical resistance cannot be obtained, and if the M value exceeds 40 vol%, precipitation tends to occur with time, and redispersion becomes difficult. When the M value is 40 vol% or less, the residual amount of silanol groups is larger than that of the existing hydrophobic silica gel having an M value of more than 40 vol%, and since floculate is formed in the paint, it is difficult to make a hard cake. The M value is preferably 10 to 35 vol%, more preferably 15 to 30 vol%.
(3)本発明の疎水性シリカゲルは、圧力260MPaでの圧縮前の109nm以下の細孔容積に対する前記圧縮後の109nm以下の細孔容積の比(圧縮後細孔容積/圧縮前細孔容積)が、0.80~1.5の範囲である。疎水性シリカゲルをプレス機により圧縮すると、シリカの種類および圧縮の圧力に応じて、シリカ粒子の二次粒子凝集構造が崩壊し、大きい細孔から消滅していく。本発明の疎水性シリカゲルは、260MPaの圧力で圧縮した時に、圧縮前の109nm以下の細孔容積に対する圧縮後の109nm以下の細孔容積の比が、上記範囲にある。109nm以下の細孔容積は、シリカの二次粒子凝集体の表面~内部の細孔構造を示しており、数値が高いほど二次粒子凝集体の空隙が多くなる。シリカの細孔容積が大きくなるほど、シリカ二次粒子一個あたりの密度が小さくなり、単位重量当たりのシリカ二次粒子個数が多くなる。つまり、同じ粒子径のシリカを塗料に同量配合する場合、シリカの細孔容積が大きくなるほど艶消し性能が高くなる。一方で、細孔容積が大きくなるほど、シリカ一次粒子同士の接点が少なくなるため、二次粒子凝集構造は弱くなる。 (3) In the hydrophobic silica gel of the present invention, the ratio of the pore volume of 109 nm or less after compression to the pore volume of 109 nm or less before compression at a pressure of 260 MPa (pore volume after compression / pore volume before compression). However, it is in the range of 0.80 to 1.5. When the hydrophobic silica gel is compressed by a press machine, the secondary particle agglomeration structure of the silica particles collapses and disappears from the large pores depending on the type of silica and the compression pressure. When the hydrophobic silica gel of the present invention is compressed at a pressure of 260 MPa, the ratio of the pore volume of 109 nm or less after compression to the pore volume of 109 nm or less before compression is in the above range. The pore volume of 109 nm or less indicates the pore structure from the surface to the inside of the secondary particle agglomerates of silica, and the higher the value, the more voids of the secondary particle agglomerates. As the pore volume of silica increases, the density per silica secondary particle decreases, and the number of silica secondary particles per unit weight increases. That is, when the same amount of silica having the same particle size is blended in the paint, the larger the pore volume of silica, the higher the matting performance. On the other hand, as the pore volume increases, the number of contacts between the silica primary particles decreases, so that the secondary particle agglomeration structure becomes weaker.
 圧縮圧力を260MPaとすることで、109nm以下の細孔を構成する二次粒子凝集構造の強度を評価できる。109nm以下の細孔容積は、水銀圧入法により、0MPaから400MPaまで昇圧したときに計測される。水銀圧入法による109nm以下の細孔容積の測定方法は実施例において説明する。 By setting the compression pressure to 260 MPa, the strength of the secondary particle agglomeration structure constituting the pores of 109 nm or less can be evaluated. The pore volume of 109 nm or less is measured when the pressure is increased from 0 MPa to 400 MPa by the mercury intrusion method. A method for measuring a pore volume of 109 nm or less by a mercury intrusion method will be described in Examples.
 前記圧縮前後の細孔容積比が0.8~1.5であることは、260MPaの圧縮後もシリカ粒子の二次粒子凝集構造が維持されており、強固であることを示す。つまり、圧縮前後の細孔容積比が0.8~1.5である疎水性シリカゲルは、耐傷性に優れる。圧縮前後の細孔容積比の下限は、好ましくは0.85、より好ましくは0.9である。圧縮前後の細孔容積比の上限は1.5であり、1.5を超える疎水性シリカゲルを提供することは現実的には難しい。圧縮前後の細孔容積比の上限は、好ましくは1.4、より好ましくは1.3、さらに好ましくは1.2、最も好ましくは1.1である。 The pore volume ratio before and after compression of 0.8 to 1.5 indicates that the secondary particle agglomeration structure of silica particles is maintained even after compression of 260 MPa and is strong. That is, hydrophobic silica gel having a pore volume ratio of 0.8 to 1.5 before and after compression is excellent in scratch resistance. The lower limit of the pore volume ratio before and after compression is preferably 0.85, more preferably 0.9. The upper limit of the pore volume ratio before and after compression is 1.5, and it is practically difficult to provide hydrophobic silica gel exceeding 1.5. The upper limit of the pore volume ratio before and after compression is preferably 1.4, more preferably 1.3, still more preferably 1.2, and most preferably 1.1.
(4)本発明の疎水性シリカゲルは、レーザー回折法で測定されたD50値が5~20μmの範囲であることが好ましい。レーザー回折法で測定されたD50値が5~20μmの範囲であることで、一般的な塗膜の膜厚に対して、塗膜に適切な凹凸を付与して艶消し性能を発揮できる。レーザー回折法による体積平均粒子径の測定方法は実施例で説明する。D50値が5μm未満の疎水性シリカゲルは、艶消し性能が低くなる傾向があり、20μmより大きい場合、塗膜表面がざらつき、意匠を損なうため艶消し用途には適さない場合がある。 (4) The hydrophobic silica gel of the present invention preferably has a D50 value measured by a laser diffraction method in the range of 5 to 20 μm. When the D50 value measured by the laser diffraction method is in the range of 5 to 20 μm, it is possible to impart appropriate unevenness to the coating film with respect to the film thickness of a general coating film and exhibit matting performance. The method for measuring the volume average particle size by the laser diffraction method will be described in Examples. Hydrophobic silica gel having a D50 value of less than 5 μm tends to have low matting performance, and if it is larger than 20 μm, the surface of the coating film becomes rough and the design is impaired, so that it may not be suitable for matting use.
(5)本発明の疎水性シリカゲルは、DBA吸着量が30~180mmol/kgの範囲であることが好ましい。DBA吸着量が上記範囲にあることで、疎水性シリカゲルの特徴である耐薬品性を向上させながら、塗料中での沈澱性を制御できる。30mmol/kg未満の場合、疎水性シリカゲル表面のシラノール基が少なく、シリカ同士のフロキュレートが作られないため、沈澱し再分散できなくなる。180mmol/kgより大きい場合、疎水性シリカゲルの疎水化状態が弱く耐薬品性の向上効果が小さくなる。DBA吸着量は、好ましくは40~170mmol/kg、より好ましくは50mmol/kg~160mmol/kg、さらに好ましくは60~140mmol/kgである。 (5) The hydrophobic silica gel of the present invention preferably has a DBA adsorption amount in the range of 30 to 180 mmol / kg. When the amount of DBA adsorbed is within the above range, the precipitation property in the paint can be controlled while improving the chemical resistance characteristic of the hydrophobic silica gel. If it is less than 30 mmol / kg, there are few silanol groups on the surface of the hydrophobic silica gel, and the silica gels cannot be floculated with each other, so that they precipitate and cannot be redispersed. When it is larger than 180 mmol / kg, the hydrophobic state of the hydrophobic silica gel is weak and the effect of improving chemical resistance is reduced. The amount of DBA adsorbed is preferably 40 to 170 mmol / kg, more preferably 50 mmol / kg to 160 mmol / kg, and even more preferably 60 to 140 mmol / kg.
(6)本発明の疎水性シリカゲルは、レーザー回折法で測定された最大粒子径が15~70μmの範囲であることが好ましい。最大粒子径がこの範囲にあることで、適切な凹凸を艶消し塗膜に付与できる。レーザー回折法で測定された最大粒子径が15μm未満の場合、艶消し性能が低くなる傾向がある。70μmより大きい場合、塗膜表面がざらつき、意匠を損なうため艶消し用途には適さない場合がある。レーザー回折法で測定された最大粒子径は、より好ましくは15~65μmの範囲である。 (6) The hydrophobic silica gel of the present invention preferably has a maximum particle size in the range of 15 to 70 μm as measured by a laser diffraction method. When the maximum particle size is in this range, appropriate unevenness can be imparted to the matte coating film. When the maximum particle size measured by the laser diffraction method is less than 15 μm, the matting performance tends to be low. If it is larger than 70 μm, the surface of the coating film becomes rough and the design is impaired, so that it may not be suitable for matting use. The maximum particle size measured by the laser diffraction method is more preferably in the range of 15 to 65 μm.
(7)本発明の疎水性シリカゲルは、レーザー回折法で測定された粒子径のD90値とD50値の比D90/D50が1.8未満の範囲であることが好ましい。D90/D50が1.8未満の範囲であることでシャープな粒度分布を持ち、艶消し性能がより良好となる。レーザー回折法で測定された粒子径のD90値とD50値の比D90/D50が1.8以上の場合、粒子径がブロードとなり、艶消し性能は相対的に低い。より好ましくはD90/D50が1.7未満の範囲である。 (7) In the hydrophobic silica gel of the present invention, the ratio D90 / D50 of the particle size D90 value to the D50 value measured by the laser diffraction method is preferably in the range of less than 1.8. When D90 / D50 is in the range of less than 1.8, it has a sharp particle size distribution and the matting performance becomes better. When the ratio D90 / D50 of the D90 value to the D50 value of the particle size measured by the laser diffraction method is 1.8 or more, the particle size becomes broad and the matting performance is relatively low. More preferably, D90 / D50 is in the range of less than 1.7.
<エネルギー線硬化型塗料>
 疎水性シリカゲルは、エネルギー線硬化型塗料用以外の分野では知られている。しかし、これら従来の疎水性シリカゲルは、大粒子径で強固な二次粒子凝集構造を持つため、特に極性基を持つ弱溶剤や反応性モノマーを配合した塗料において、比較的短時間で沈澱する。そのため、従来の疎水性シリカゲルはエネルギー線硬化型塗料に使用されていなかった。
<Energy ray curable paint>
Hydrophobic silica gel is known in fields other than those for energy ray-curable paints. However, since these conventional hydrophobic silica gels have a large particle size and a strong secondary particle agglomeration structure, they precipitate in a relatively short time, especially in a paint containing a weak solvent having a polar group or a reactive monomer. Therefore, conventional hydrophobic silica gel has not been used in energy ray-curable paints.
 本発明におけるエネルギー線硬化型塗料は、反応性モノマー、有機溶剤及び光重合開始剤を含む塗料である。反応性モノマー、有機溶剤及び光重合開始剤に関しては、限定はなく、公知の材料であることができる。さらに反応性モノマー、有機溶剤及び光重合開始剤以外の成分も適宜含有することができる。 The energy ray-curable coating material in the present invention is a coating material containing a reactive monomer, an organic solvent and a photopolymerization initiator. The reactive monomer, organic solvent and photopolymerization initiator are not limited and may be known materials. Further, components other than the reactive monomer, the organic solvent and the photopolymerization initiator can be appropriately contained.
 反応性モノマーは、例えば、極性基を持つ反応性モノマーであり、極性基を持つ反応性モノマーとしては、メチルカルビトールアクリレート、2-エチルヘキシルアクリレート、フェニルアクリレート、C9-フェニルアクリレート、1,9-ノナンジオールジアクリレート、トリプロピレングリコールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート等がある。 The reactive monomer is, for example, a reactive monomer having a polar group, and examples of the reactive monomer having a polar group include methyl carbitol acrylate, 2-ethylhexyl acrylate, phenyl acrylate, C9-phenyl acrylate, and 1,9-nonane. There are diol diacrylate, tripropylene glycol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate and the like.
 有機溶剤は、例えば、極性基を持つ弱溶剤の代表例として、酢酸エチル、酢酸ブチルのようなエステル類やエタノール、メタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ジメチルエーテル、ジエチルエーテル等のエーテル類等がある。 Examples of the organic solvent include esters such as ethyl acetate and butyl acetate, alcohols such as ethanol and methanol, ketones such as acetone and methyl ethyl ketone, dimethyl ether and diethyl ether, as typical examples of weak solvents having polar groups. There are ethers and the like.
 本発明は、大粒子径で強固な二次粒子凝集構造を持つシリカ粒子に、最適な疎水化状態を付与することで、エネルギー線硬化型塗料においても良好な沈澱状態を保つことを最大の特徴としている。 The greatest feature of the present invention is that silica particles having a large particle diameter and a strong secondary particle agglomeration structure are provided with an optimum hydrophobic state to maintain a good precipitated state even in an energy ray-curable paint. It is supposed to be.
 本発明のエネルギー線硬化型塗料艶消し用疎水性シリカゲルは、エネルギー線硬化型塗料の艶消し剤として好適に使用される。中でも、粘度が低く沈澱しやすい弱溶剤を配合したエネルギー線硬化型塗料で効果が高いが、これに限定するものではない。 The hydrophobic silica gel for matting energy ray-curable paint of the present invention is suitably used as a matting agent for energy ray-curable paint. Among them, an energy ray-curable paint containing a weak solvent having a low viscosity and easily settling is highly effective, but the effect is not limited to this.
<シリコーンオイル>
 本発明の疎水性シリカゲルのための表面処理用のシリコーンオイルは、シリカゲルと混合できるものであれば特に制限されない。メチル基、フェニル基のみを備えた市販のジメチルシリコーンオイル(通称:ストレートシリコーンオイル)を使用するのが、一般的であるが、他にも珪素原子に有機性の置換基を備えた変性タイプのシリコーンオイルも使用することが出来る。置換基の例としては、ポリエーテル、エポキシ、アミン類、カルボキシル基をはじめ、多くの変性タイプのシリコーンオイルが市販されている。変性タイプのシリコーンオイルとしては、例えば、以下の製品を挙げることが出来る。
<Silicone oil>
The silicone oil for surface treatment for the hydrophobic silica gel of the present invention is not particularly limited as long as it can be mixed with silica gel. It is common to use commercially available dimethyl silicone oil (commonly known as straight silicone oil) containing only methyl and phenyl groups, but other modified types with an organic substituent on the silicon atom. Silicone oil can also be used. As examples of substituents, many modified types of silicone oils are commercially available, including polyethers, epoxies, amines, and carboxyl groups. Examples of the modified type silicone oil include the following products.
<信越化学工業社製 変性シリコーンオイル>
 KF-868, 865, 859, 393, 250, 889, 2001, 2004, 99, 9901, 8010, 8012, 8008, 105, 6000, 6001, 6002, 6003, 6123, 2200, 9701, 2012, 857, 8001, 858, 351A, 353, 354L, 355A, 945, 640, 642, 643, 644, 6020, 6204, 6011, 6015, 6017, 412, 413, 414, 4003, 4917, 7235B, 50, 53, 54, 54SS, X-22-343, 2000, 2046, 4741, 4039, 4015, 161A, 161B, 9490, 163, 163A, 163B, 163C, 169AS, 169B, 164, 164AS, 164A, 164B, 164C, 164E, 4952, 4272, 167B, 167C, 162C, 5841, 2445, 1602, 168AS, 168A, 168B, 173BX, 173DX, 170BX, 170DX, 176DX, 176GX-A, 174ASX, 174BX, 2426, 2475, 3710, 2516, 821, 822, 7322, 3265
<Modified silicone oil manufactured by Shin-Etsu Chemical Co., Ltd.>
KF-868, 865, 859, 393, 250, 889, 2001, 2004, 99, 9901, 8010, 8012, 8008, 105, 6000, 6001, 6002, 6003, 6123, 2200, 9701, 2012, 857, 8001, 858, 351A, 353, 354L, 355A, 945, 640, 642, 643, 644, 6020, 6204, 6011, 6015, 6017, 412, 413, 414, 4003, 4917, 7235B, 50, 53, 54, 54SS, X-22-343, 2000, 2046, 4741, 4039, 4015, 161A, 161B, 9490, 163, 163A, 163B, 163C, 169AS, 169B, 164, 164AS, 164A, 164B, 164C, 164E, 4952, 4272, 167B, 167C, 162C, 5841, 2445, 1602, 168AS, 168A, 168B, 173BX, 173DX, 170BX, 170DX, 176DX, 176GX-A, 174ASX, 174BX, 2426, 2475, 3710, 2516, 821, 822, 7322, 3265
<東レ・ダウコーニング社製 変性シリコーンオイル>
 SF 8417, BY 16-205, BY 16-213, BY 16-871, BY 16-893, SF 8411, BY 16-880, SF 8427, BY 16-201, SF 8428, BY 16-846, SF 8419, FS 1265, SH 510, SH 550, SH 710, SH 8400, FZ-77, L-7604
<Modified silicone oil manufactured by Toray Dow Corning>
SF 8417, BY 16-205, BY 16-213, BY 16-871, BY 16-893, SF 8411, BY 16-880, SF 8427, BY 16-201, SF 8428, BY 16-846, SF 8419, FS 1265, SH 510, SH 550, SH 710, SH 8400, FZ-77, L-7604
<モメンティブ・パフォーマンス・マテリアルズ社製 変性シリコーンオイル>
 TSF4440, 4441, 4445, 4446, 4452, 4460, 4700, 4701, XF42-B0970
<Modified silicone oil manufactured by Momentive Performance Materials>
TSF4440, 4441, 4445, 4446, 4452, 4460, 4700, 4701, XF42-B0970
<ワッカー・ケミー社製 変性シリコーンオイル>
 L03, 033, 066, L653, 655, 656, 662, WT1250, 65000VP, AP100, 150, 200, 500, AR20, 200
<Modified silicone oil manufactured by Wacker Chemie>
L03, 033, 066, L653, 655, 656, 662, WT1250, 65000VP, AP100, 150, 200, 500, AR20, 200
 粘度が高いシリコーンオイルを使用する場合、溶媒等で希釈する必要があるため、一般的には動粘度1~500センチストークス程度の粘度を持つシリコーンオイルが好適に使用される。動粘度1~500センチストークスであるシリコーンオイルは、例えば、以下の製品を挙げることができる。 When using a silicone oil having a high viscosity, it is necessary to dilute it with a solvent or the like. Therefore, in general, a silicone oil having a viscosity of about 1 to 500 cm Stokes is preferably used. Silicone oils having a kinematic viscosity of 1 to 500 centimeters Stokes include, for example, the following products.
<信越化学工業社製 シリコーンオイル>
 KF-96-1cs, 1.5cs, 2.0cs, 5.0cs, 10cs, 20cs, 30cs, 50cs, 100cs, 200cs, 300cs, 350cs, 500cs
<Silicone oil manufactured by Shin-Etsu Chemical Co., Ltd.>
KF-96-1cs, 1.5cs, 2.0cs, 5.0cs, 10cs, 20cs, 30cs, 50cs, 100cs, 200cs, 300cs, 350cs, 500cs
<東レ・ダウコーニング社製 シリコーンオイル>
 SH200-1cs, 1.5cs, 2cs, 3cs, 5cs, 10cs, 20cs, 50cs, 100cs, 200cs, 350cs, 500cs
<Silicone oil manufactured by Toray Dow Corning>
SH200-1cs, 1.5cs, 2cs, 3cs, 5cs, 10cs, 20cs, 50cs, 100cs, 200cs, 350cs, 500cs
<モメンティブ・パフォーマンス・マテリアルズ社製 シリコーンオイル>
 TSF451-5A, 10, 20, 30, 50, 100, 200, 300, 350, 500
<Silicone oil manufactured by Momentive Performance Materials>
TSF451-5A, 10, 20, 30, 50, 100, 200, 300, 350, 500
<ワッカー・ケミー社製 シリコーンオイル>
 AK 1, 10, 35, 50, 100, 350, 500
<Silicone oil manufactured by Wacker Chemie>
AK 1, 10, 35, 50, 100, 350, 500
<シリカゲル>
 本発明の疎水性シリカゲルの原料シリカゲルの製造方法について説明する。本発明で用いるシリカゲルは、所望の細孔容積及び圧縮後細孔容積/圧縮前細孔容積を有する疎水性シリカゲルを提供するために、シリカヒドロゲルを乾燥しシリカゲルを製造する工程で、細孔構造がコントロールされる。まず、本発明の製造方法に用いられるシリカヒドロゲルは、常法により得られたものでよい。即ち、珪酸ナトリウム、珪酸カリウム、珪酸リチウム等の珪酸アルカリ金属塩水溶液と硫酸、塩酸、硝酸等の鉱酸とを酸過剰下において反応し均一なシリカヒドロゾルを得る。次に得られたシリカヒドロゾルをゲル化させた後、解砕し、水洗する。水洗工程では、副生塩を除去すると共に必要があれば比表面積を下げる目的で水酸化ナトリウムやアンモニア水溶液を添加、加熱し水熱処理を行っても良い。
<Silica gel>
The method for producing the raw material silica gel for the hydrophobic silica gel of the present invention will be described. The silica gel used in the present invention has a pore structure in a step of drying a silica hydrogel to produce silica gel in order to provide a hydrophobic silica gel having a desired pore volume and post-compression pore volume / pre-compression pore volume. Is controlled. First, the silica hydrogel used in the production method of the present invention may be obtained by a conventional method. That is, an aqueous alkali metal silicate solution such as sodium silicate, potassium silicate, and lithium silicate is reacted with a mineral acid such as sulfuric acid, hydrochloric acid, and nitric acid under an excess acid to obtain a uniform silica hydrosol. Next, the obtained silica hydrosol is gelled, crushed, and washed with water. In the water washing step, sodium hydroxide or an aqueous ammonia solution may be added and heated for the purpose of removing by-product salts and, if necessary, reducing the specific surface area, and hydrothermal treatment may be performed.
 乾燥には、一般に静置乾燥機、バンドドライヤー、パドルドライヤー、流動乾燥機等が使用されるが、これに限定されるものではない。乾燥温度は特に限定されるものではないが、上記範囲の平均乾燥速度で均一な乾燥を行う場合、100~300℃で行うのが適当である。 For drying, a static dryer, a band dryer, a paddle dryer, a fluidized dryer, etc. are generally used, but the drying is not limited to this. The drying temperature is not particularly limited, but when uniform drying is performed at an average drying rate in the above range, it is appropriate to perform uniform drying at 100 to 300 ° C.
 シリカヒドロゲルの乾燥は、所望の細孔容積及び圧縮後細孔容積/圧縮前細孔容積を有する疎水性シリカゲルを提供するための細孔構造コントロールという観点を考慮して行う。この観点から、シリカヒドロゲルの乾燥は、静置乾燥機、流動乾燥機に代表される乾燥速度をコントロールできる乾燥機により行いシリカゲルとすることが好ましい。乾燥後のシリカゲルの含水量は、例えば、3~10%(質量基準)の範囲であることが適当である。 Drying of silica hydrogel is performed in consideration of the viewpoint of pore structure control for providing hydrophobic silica gel having a desired pore volume and post-compression pore volume / pre-compression pore volume. From this point of view, it is preferable that the silica gel is dried by a dryer typified by a static dryer or a fluidized dryer, which can control the drying rate, to obtain silica gel. The water content of silica gel after drying is preferably in the range of, for example, 3 to 10% (mass basis).
 このようにして得られたシリカゲルは、さらに平均粒子径を調整する目的で、粉砕及び分級をすることができる。粉砕は、公知の方法、例えばロールミル、ボールミル、ハンマーミル、ピンミル、ジェットミル等を用いる方法により行うことができる。さらに、分級は、ミクロンセパレーターのような風力分級機、又は遠心力分級機等を用いて行い、所望の平均粒子径を有するシリカゲルを得ることができる。この時、目標の平均粒子径に合わせる必要はないが、目標の粒度に近づけておくことで、疎水化後の粒度調節が容易となる。 The silica gel thus obtained can be pulverized and classified for the purpose of further adjusting the average particle size. The pulverization can be performed by a known method, for example, a method using a roll mill, a ball mill, a hammer mill, a pin mill, a jet mill or the like. Further, the classification is performed using a wind power classifier such as a micron separator, a centrifugal force classifier, or the like, and silica gel having a desired average particle size can be obtained. At this time, it is not necessary to match the target average particle size, but by approaching the target particle size, it becomes easy to adjust the particle size after hydrophobization.
 本発明のエネルギー線硬化型塗料艶消し用疎水性シリカゲルを得るための表面処理剤によるシリカゲルの表面処理法としては、均一処理を行うため、ヘンシェルミキサー等の高速流動混合機等を用いる方法が好ましい。但し、この方法に限られるものではない。シリカゲルの処理に用いる表面処理剤の量は、所望のM値が得られるように調整する。さらに、DBA吸着量の調整のためにも、シリカゲルの処理に用いる表面処理剤の量を調整する。 As a surface treatment method for silica gel with a surface treatment agent for obtaining hydrophobic silica gel for matting energy ray-curable paint of the present invention, a method using a high-speed flow mixer such as a Henschel mixer is preferable for uniform treatment. .. However, the method is not limited to this method. The amount of the surface treatment agent used for the treatment of silica gel is adjusted so as to obtain a desired M value. Further, in order to adjust the amount of DBA adsorbed, the amount of the surface treatment agent used for the treatment of silica gel is adjusted.
 表面処理剤とシリカゲルを混合後、200~600℃の条件で熱処理を行うことで、疎水化が行われる。熱処理は、均一な熱処理を一定時間行えれば、方法は問わない。熱処理時間としては、所望の疎水化状態が得られれば良いが、目安として1~24時間が例示される。熱処理後、必要があれば粉砕、分級を行うこともできる。 Hydrophobicization is performed by mixing the surface treatment agent and silica gel and then performing heat treatment under the conditions of 200 to 600 ° C. The heat treatment may be performed by any method as long as a uniform heat treatment can be performed for a certain period of time. As the heat treatment time, it is sufficient that a desired hydrophobic state can be obtained, and 1 to 24 hours is exemplified as a guide. After the heat treatment, crushing and classification can be performed if necessary.
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are examples of the present invention, and the present invention is not intended to be limited to the examples.
物性測定方法
M値
 メタノールの濃度を5vol%の間隔で変化させた水との混合溶液を調製し、これを容積10mlの試験管に5ml入れる。次いで供試粉体である疎水性シリカゲル試料を0.1~0.2g入れ、振り混ぜ静置した後、粉体が懸濁する最小のメタノールの濃度を観察し、これをM値とする。
Physical property measurement method M value Prepare a mixed solution with water in which the concentration of methanol is changed at intervals of 5 vol%, and put 5 ml of this in a test tube having a volume of 10 ml. Next, 0.1 to 0.2 g of a hydrophobic silica gel sample as a test powder is added, shaken and allowed to stand, and then the concentration of the minimum methanol in which the powder is suspended is observed and used as the M value.
DBA吸着量
 疎水性シリカゲル試料の乾燥試料250mgを精秤し、これにN/500のジ-n-ブチルアミン溶液(石油ベンジン溶媒)50mlを加え、20℃で約2時間放置する。この上澄液25mlにクロロホルム5ml、指示薬(クリスタルバイオレット)2~3滴を加え、紫色が青色に変わるまでN/100の過塩素酸溶液(無水酢酸溶媒)で滴定し、この時の滴定値をA mlとする。
 別にブランクを行ないB mlとし、次式によってDBA吸着量を算出した。
DBA吸着量(mmol/kg)=80(B-A)f
 ただし、fはN/100の過塩素酸溶液の力価
DBA Adsorption Amount 250 mg of a dry sample of a hydrophobic silica gel sample is precisely weighed, 50 ml of a di-n-butylamine solution of N / 500 (petroleum benzine solvent) is added thereto, and the mixture is left at 20 ° C. for about 2 hours. To 25 ml of this supernatant, 5 ml of chloroform and 2 to 3 drops of an indicator (crystal violet) are added, and titration is performed with an N / 100 perchloric acid solution (anhydrous acetate solvent) until the purple color turns blue. Let it be A ml.
Separately, a blank was performed to obtain B ml, and the amount of DBA adsorbed was calculated by the following formula.
DBA adsorption amount (mmol / kg) = 80 (BA) f
However, f is the titer of the N / 100 perchloric acid solution.
粒子径(D50値、D90値、最大粒子径)
 マイクロトラック・ベル社製 レーザー回折式粒度分布測定装置 マイクロトラックMT-3000IIを用いて、疎水性シリカゲル試料の粒度分布における体積積算値の50%の値(D50値)、下位から90%の値(D90値)、及び検出された最大粒子径(最大粒子径)を求めた。なお、溶媒としてイソプロピルアルコール(屈折率:1.38)を使用した。
Particle size (D50 value, D90 value, maximum particle size)
50% value (D50 value) of the volume integration value in the particle size distribution of the hydrophobic silica gel sample, 90% value from the bottom (D50 value) using the laser diffraction type particle size distribution measuring device Microtrack MT-3000II manufactured by Microtrac Bell. The D90 value) and the detected maximum particle size (maximum particle size) were determined. In addition, isopropyl alcohol (refractive index: 1.38) was used as a solvent.
窒素吸脱着法で測定された細孔容積
 日本ベル社製 高精度ガス/蒸気吸着量測定装置 Belsorp maxを用いてBarret-Joyner-Halenda法(BJH法)により細孔半径1.6~100nmの範囲の全細孔容積(V)を測定した。なお、測定結果は脱着側の(細孔容積が大きいほうから測定した)細孔容積である。
Pore volume measured by nitrogen adsorption / desorption method Pore radius range of 1.6 to 100 nm by Barret-Joiner-Halenda method (BJH method) using Belsolp max, a high-precision gas / steam adsorption amount measuring device manufactured by Nippon Bell Co., Ltd. The total pore volume ( VP ) of was measured. The measurement result is the pore volume on the desorption side (measured from the one with the larger pore volume).
水銀圧入法で測定された細孔容積
 Thermo社製 水銀ポロシメーター PASCAL440を使用し、0MPaから400MPaに昇圧して細孔容積が測定される。圧力と水銀導入量が測定され、それぞれの値が出力される。水銀とシリカの接触角は140°を使用した。この測定条件での水銀圧入法により、細孔半径109nm以下の細孔容積を求めた。
Pore volume measured by the mercury intrusion method Using a mercury porosimeter PASCAL440 manufactured by Thermo, the pore volume is measured by boosting the pressure from 0 MPa to 400 MPa. The pressure and the amount of mercury introduced are measured, and the respective values are output. The contact angle between mercury and silica was 140 °. The pore volume having a pore radius of 109 nm or less was determined by the mercury press-fitting method under these measurement conditions.
水銀細孔容積測定用試料の前処理(プレス機による圧縮) 
前川試験機製作所社製 ブリケッティングプレスを使用した。
Pretreatment of sample for mercury pore volume measurement (compression by press)
A briquetting press manufactured by Maekawa Testing Machine Mfg. Co., Ltd. was used.
プレス機による圧縮方法
 疎水性シリカゲル試料約2gを40mmφのダイに詰め、油圧プレス機で約5tの荷重を掛け、予備圧縮を行う。予備圧縮した試料をダイから取り出し、乳鉢で軽く粉砕する。31mmφの塩ビ製枠に粉砕した試料を詰め、20tの荷重を掛け、10秒圧縮し、圧縮後の疎水性シリカゲル試料を得た。
Compression method by press machine Approximately 2 g of hydrophobic silica gel sample is packed in a die of 40 mmφ, and a load of approximately 5 ton is applied by a hydraulic press to perform precompression. Remove the precompressed sample from the die and lightly grind it in a mortar. The crushed sample was packed in a 31 mmφ PVC frame, loaded with 20 tons, and compressed for 10 seconds to obtain a compressed hydrophobic silica gel sample.
塗膜調製法(UV塗料試験)
 UV塗料の配合表を表1に示す。
配合
Figure JPOXMLDOC01-appb-T000001

オリゴマー:新中村化学工業社製 NKオリゴ UA-1100H
モノマー:ダイセル・オルネクス社製 DPHA
光重合開始剤1:BASF社製 Ormirad 184
光重合開始剤2:BASF社製 Ormirad TPO H
レベリング剤:BYK Chemie社製 BYK-UV-3570
Coating film preparation method (UV paint test)
Table 1 shows the composition table of the UV paint.
Formulation
Figure JPOXMLDOC01-appb-T000001

Oligomer: NK Oligo UA-1100H manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
Monomer: DPHA manufactured by Daisel Ornex
Photopolymerization Initiator 1: BASF Ormirad 184
Photopolymerization Initiator 2: BASF Ormirad TPO H
Leveling agent: BYK-UV-3570 manufactured by BYK Chemie
ミキサー:プライミクス社製 ラボ・リューション
スプレーガン:アネスト岩田社製 重力型スプレーガン W-101-132G
UV照射装置:アイグラフィックス社製 アイグランデージ ECS-4011GX
 光源として水銀ランプを使用した。
Mixer: Primix Lab Solution Spray Gun: Anest Iwata Gravity Spray Gun W-101-132G
UV irradiation device: Eye Grandage ECS-4011GX manufactured by Eye Graphics Co., Ltd.
A mercury lamp was used as the light source.
配合手順
(1)配合物のうち(a)を200mlディスポーザブルカップに計量し、500rpmで5分混合する。
(2)配合物(b)を計量し、500rpmで攪拌中の(a)に投入する。
(3)粉体が塗料中に入り込んだら、回転数を1,000rpmに上昇させ、30min攪拌する。
Formulation Procedure (1) Of the formulations, (a) is weighed in a 200 ml disposable cup and mixed at 500 rpm for 5 minutes.
(2) The compound (b) is weighed and charged into (a) being stirred at 500 rpm.
(3) When the powder gets into the paint, the rotation speed is increased to 1,000 rpm and the mixture is stirred for 30 minutes.
塗装手順
(1)スプレーガンに配合した塗料を充填する。
(2)ABS樹脂板(黒)に塗装する。
(3)5分室温で静置(セッティング)する。
(4)5分80℃のオーブンで乾燥する。
(5)UV照射装置にて出力2kw 照射距離200mm コンベア速度210cm/minの条件で2回UV照射を行い硬化させ、塗膜厚15μmの塗膜を得た。
Painting procedure (1) Fill the paint mixed in the spray gun.
(2) Paint on the ABS resin plate (black).
(3) Let stand (set) at room temperature for 5 minutes.
(4) Dry in an oven at 80 ° C for 5 minutes.
(5) A coating film having a coating film thickness of 15 μm was obtained by performing UV irradiation twice with a UV irradiation device under the condition of an output of 2 kW, an irradiation distance of 200 mm and a conveyor speed of 210 cm / min.
グロス値測定
 日本電色工業社製 グロスメーター VG7000を使用し、60°グロス値を測定した。60°グロス値が39以下を優、40~49を良、50~59を可、60以上を不可と判定した。
Gross value measurement A 60 ° gloss value was measured using a gloss meter VG7000 manufactured by Nippon Denshoku Kogyo Co., Ltd. It was judged that the 60 ° gloss value of 39 or less was excellent, 40 to 49 was good, 50 to 59 was acceptable, and 60 or more was not acceptable.
透明性
 コニカミノルタ社製 分光測色計CM-5を用いてABS板(黒)に塗布した塗膜のL*の値を使用し、13以下を優、13を超え15以下を良、15を超え18以下を可、18を超えるものを不可とした。
Transparency Using the L * value of the coating film applied to the ABS plate (black) using the Konica Minolta spectrocolorimeter CM-5, 13 or less is excellent, 13 or more and 15 or less is good, and 15 is used. More than 18 is allowed, and more than 18 is not allowed.
耐摩耗試験
 テスター産業社製 学振式摩擦堅牢度試験機AB-301を使用し、加重500g、帆布6号を用いて5000往復後の塗膜状態を観察した。キーエンス社製 超深度形状測定顕微鏡 VK8500を使用し、倍率50倍で、摩耗試験前後の塗膜表面のRz値(10点平均表面粗さ)を測定した。摩耗試験前後のRz値は各3か所で測定し、平均したRzの差を|ΔRz|とした。摩耗試験前後の差(|ΔRz|)が小さいほど傷がついていないと判断し、0.5以下を優、0.5を超え1以下を良、1を超え1.5以下を可、1.5を超えるものを不可と判定した。
Abrasion resistance test Using a Gakushin type friction fastness tester AB-301 manufactured by Tester Sangyo Co., Ltd., a weight of 500 g and canvas No. 6 were used to observe the state of the coating film after 5000 reciprocations. The Rz value (10-point average surface roughness) of the coating film surface before and after the wear test was measured at a magnification of 50 times using an ultra-depth shape measuring microscope VK8500 manufactured by KEYENCE. The Rz values before and after the wear test were measured at three points each, and the average difference in Rz was defined as | ΔRz |. The smaller the difference (| ΔRz |) before and after the wear test, the less scratched it is, and 0.5 or less is excellent, 0.5 or more and 1 or less is good, and 1 or more and 1.5 or less is acceptable. Those exceeding 5 were judged to be unacceptable.
耐薬品性
 5%NaOHに浸漬 2hr後の塗膜状態を観察した。
色差測定
コニカミノルタ社製 分光測色計CM-5を使用し耐薬品性試験前後の塗膜のΔEを測定した。ΔEの計算式を数1に示す。
 ΔEが小さいほど、耐薬品性が良好となる。4.0以下を可、4.0を超え3.5以下を良、3.5を超え3以下を優と判断した。
Chemical resistance The state of the coating film after 2 hours of immersion in 5% NaOH was observed.
Color difference measurement ΔE of the coating film before and after the chemical resistance test was measured using a spectrocolorimeter CM-5 manufactured by Konica Minolta. The formula for calculating ΔE is shown in Equation 1.
The smaller ΔE, the better the chemical resistance. It was judged that 4.0 or less was acceptable, 4.0 or more and 3.5 or less was good, and 3.5 or more and 3 or less was excellent.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
再分散性試験
酢酸エチル:トルエン=1:1の溶剤50gに対し、疎水性シリカゲル試料2gを配合し、50mlメスシリンダーに50ml入れ、静置した。30min後、1秒に1回の速度で上下反転させ再分散を行い、沈澱物が再分散するのに要した回数を測定した。10回以下を優、11以上30回以下を良、31回以上50回以下を可、50回を超えるものを不可とした。
Redispersibility test 2 g of a hydrophobic silica gel sample was mixed with 50 g of a solvent of ethyl acetate: toluene = 1: 1 and 50 ml was placed in a 50 ml graduated cylinder and allowed to stand. After 30 minutes, the precipitate was redispersed by turning it upside down at a rate of once per second, and the number of times required for the precipitate to redisperse was measured. 10 times or less was excellent, 11 or more and 30 times or less was good, 31 times or more and 50 times or less was acceptable, and those exceeding 50 times were not acceptable.
原料シリカゲルの調製
 ケイ酸ナトリウム(SiO濃度25wt%、SiO/NaOモル比3.3)と硫酸(HSO 2wt%)をケイ酸ナトリウム流量約15L/分と硫酸をシリカヒドロゾル中の過剰硫酸量が6wt%となる条件で混合ノズルを用いて混合しシリカヒドロゾルを得た。このヒドロゾルをpH7.0で90℃、3~5時間の水熱処理を行った後、水洗、乾燥、粉砕分級を行うことでBET比表面積470~530m/g、レーザー回折法で測定されたD50値が10.4~15.1μmのシリカゲルを得た。
Preparation of sodium silicate raw material silica gel (SiO 2 concentration 25wt%, SiO 2 / Na 2 O molar ratio 3.3) to a sulfuric acid sodium (H 2 SO 4 2wt%) silicate flow rate of about 15L / min and sulfuric Shirikahidoro A silica gel hydrosol was obtained by mixing using a mixing nozzle under the condition that the amount of excess sulfuric acid in the sol was 6 wt%. This hydrosol was hydrothermally treated at 90 ° C. for 3 to 5 hours at pH 7.0, then washed with water, dried, and pulverized and classified to have a BET specific surface area of 470 to 530 m 2 / g, and D50 measured by laser diffraction. Silica gel having a value of 10.4 to 15.1 μm was obtained.
実施例1
 原料シリカとしてBET比表面積500m/g、レーザー回折法で測定されたD50値が14.5μmのシリカゲルを使用し、シリコーンオイル(KF96-50cs 信越化学社製)をBET比表面積100m/gに対し3.0部となるよう添加し、ヘンシェルミキサー(三井鉱山社製)で10分混合を行い均一化した。混合した後、内容積10,000cmのセラミック製匣鉢に充填し、連続式加熱炉にて320℃、8時間の熱処理を行い、疎水性シリカゲルを得た。
Example 1
Using silica gel with a BET specific surface area of 500 m 2 / g and a D50 value of 14.5 μm measured by laser diffraction as the raw material silica, silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) has a BET specific surface area of 100 m 2 / g. It was added to 3.0 parts, and mixed with a Henchel mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes to homogenize. After mixing was filled in a ceramic sagger having an inner volume of 10,000 cm 3, 320 ° C. in a continuous heating furnace, heat treatment is performed for 8 hours to obtain a hydrophobic silica gel.
実施例2
 原料シリカとしてBET比表面積530m/g、レーザー回折法で測定されたD50値が13.6μmのシリカゲルを使用し、シリコーンオイル(KF96-50cs 信越化学社製)をBET比表面積100m/gに対し3.4部となるよう添加し、ヘンシェルミキサー(三井鉱山社製)で10分混合を行い均一化した。
 混合した後、静置式加熱炉にて350℃、4時間の熱処理を行い、疎水性シリカゲルを得た。
Example 2
Using silica gel with a BET specific surface area of 530 m 2 / g and a D50 value of 13.6 μm measured by laser diffraction as the raw material silica, silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) has a BET specific surface area of 100 m 2 / g. It was added to make 3.4 parts, and mixed with a Henshell mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes to homogenize.
After mixing, heat treatment was performed at 350 ° C. for 4 hours in a static heating furnace to obtain hydrophobic silica gel.
実施例3
 原料シリカとしてBET比表面積470m/g、レーザー回折法で測定されたD50値が15.1μmのシリカゲルを使用し、シリコーンオイル(KF96-50cs 信越化学社製)をBET比表面積100m/gに対し3.2部となるよう添加し、ヘンシェルミキサー(三井鉱山社製)で10分混合を行い均一化した。混合した後、静置式加熱炉にて380℃、7時間の熱処理を行い、疎水性シリカゲルを得た。
Example 3
Using silica gel with a BET specific surface area of 470 m 2 / g and a D50 value of 15.1 μm measured by laser diffraction as the raw material silica, silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) has a BET specific surface area of 100 m 2 / g. It was added so as to form 3.2 parts, and mixed with a Henshell mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes to homogenize. After mixing, heat treatment was performed at 380 ° C. for 7 hours in a static heating furnace to obtain hydrophobic silica gel.
実施例4
 原料シリカとしてBET比表面積490m/g、レーザー回折法で測定されたD50値が11.0μmのシリカゲルを使用し、シリコーンオイル(KF96-50cs 信越化学社製)をBET比表面積100m/gに対し3.1部となるよう添加し、ヘンシェルミキサー(三井鉱山社製)で10分混合を行い均一化した。混合した後、静置式加熱炉にて330℃、6時間の熱処理を行い、疎水性シリカゲルを得た。
Example 4
Using silica gel with a BET specific surface area of 490 m 2 / g and a D50 value of 11.0 μm measured by laser diffraction as the raw material silica, silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) has a BET specific surface area of 100 m 2 / g. On the other hand, 3.1 parts were added and mixed with a Henshell mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes to homogenize. After mixing, heat treatment was performed at 330 ° C. for 6 hours in a static heating furnace to obtain hydrophobic silica gel.
実施例5
 原料シリカとしてBET比表面積500m/g、レーザー回折法で測定されたD50値が10.4μmのシリカゲルを使用し、実施例1と同様の方法で疎水性ゲルシリカを得た。その後、得られた疎水性ゲルシリカを粉砕、分級を行いレーザー回折法による粒度分布D50値を5.8μmになるよう粒度を調整し、疎水性シリカゲルを得た。
Example 5
As the raw material silica, silica gel having a BET specific surface area of 500 m 2 / g and a D50 value of 10.4 μm measured by a laser diffraction method was used, and hydrophobic gel silica was obtained by the same method as in Example 1. Then, the obtained hydrophobic gel silica was pulverized and classified, and the particle size was adjusted so that the particle size distribution D50 value by the laser diffraction method was 5.8 μm to obtain hydrophobic silica gel.
 実施例1~5の測定結果を表2に示す。また、実施例1の圧縮前と圧縮後の水銀細孔容積分布を図1に示す。
Figure JPOXMLDOC01-appb-T000003
The measurement results of Examples 1 to 5 are shown in Table 2. In addition, the mercury pore volume distribution before and after compression of Example 1 is shown in FIG.
Figure JPOXMLDOC01-appb-T000003
参考例1
 シリコーンオイル(KF96-50cs 信越化学社製)をBET比表面積100m/gに対し5.0部となるよう添加した以外は実施例1と同様の手順で処理を行い、疎水性シリカゲルを得た。大粒子径で高いM値(55vol%)を持つ疎水性シリカゲルでは、沈降安定性が劣った。
Reference example 1
Hydrophobic silica gel was obtained by the same procedure as in Example 1 except that silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) was added to a BET specific surface area of 100 m 2 / g so as to be 5.0 parts. .. Hydrophobic silica gel with a large particle size and a high M value (55 vol%) was inferior in sedimentation stability.
参考例2
市販品 Nipsil SS-50B(東ソー・シリカ社製)
 粒子径は小さいので沈降安定性には優れるが、艶消し性能が劣った。
Reference example 2
Commercial product Nippon SS-50B (manufactured by Tosoh Silica Co., Ltd.)
Since the particle size is small, the sedimentation stability is excellent, but the matting performance is inferior.
比較例1
市販品 NIPGEL AY-460(東ソー・シリカ社製) WAX処理ゲルシリカ
 このWAX処理シリカは、本発明の疎水性シリカゲルに比べて、透明性及び耐薬品性が劣った。
Comparative Example 1
Commercially available product NIPGEL AY-460 (manufactured by Tosoh Silica Co., Ltd.) WAX-treated gel silica This WAX-treated silica was inferior in transparency and chemical resistance to the hydrophobic silica gel of the present invention.
 参考例、比較例1~2の測定結果を表3に示す。また、比較例1の圧縮前と圧縮後の水銀細孔容積分布を図2に示す。
Figure JPOXMLDOC01-appb-T000004
Table 3 shows the measurement results of Reference Examples and Comparative Examples 1 and 2. Further, FIG. 2 shows the mercury pore volume distribution before and after compression of Comparative Example 1.
Figure JPOXMLDOC01-appb-T000004
 本発明は、疎水性シリカゲルに関する分野に有用である。
 
The present invention is useful in the field of hydrophobic silica gel.

Claims (5)

  1. シリコーンオイルで表面処理された疎水性シリカゲルであって、
    窒素吸脱着法で測定された細孔容積が0.6~2ml/gの範囲であり、
    M値が5~40vol%の範囲であり、かつ
    圧力260MPaでの圧縮前の細孔半径109nm以下の細孔容積に対する前記圧縮後の細孔半径109nm以下の細孔容積の比(圧縮後細孔容積/圧縮前細孔容積)が、0.8~1.5の範囲である、エネルギー線硬化型塗料艶消し用疎水性シリカゲル。
    Hydrophobic silica gel surface-treated with silicone oil
    The pore volume measured by the nitrogen adsorption / desorption method is in the range of 0.6 to 2 ml / g.
    The ratio of the pore volume after compression to the pore volume of 109 nm or less before compression at a pressure of 260 MPa and the M value in the range of 5 to 40 vol% (pores after compression). Hydrophobic silica gel for energy ray curable paint matting, which has a volume / pre-compression pore volume) in the range of 0.8 to 1.5.
  2. 前記疎水性シリカゲルは、レーザー回折法で測定された体積平均粒子径D50値が5~20μmの範囲である、請求項1に記載の疎水性シリカゲル。 The hydrophobic silica gel according to claim 1, wherein the hydrophobic silica gel has a volume average particle diameter D50 value in the range of 5 to 20 μm measured by a laser diffraction method.
  3. 前記疎水性シリカゲルは、DBA吸着量が30~180mmol/kgの範囲である、請求項1又は2に記載の疎水性シリカゲル。 The hydrophobic silica gel according to claim 1 or 2, wherein the hydrophobic silica gel has a DBA adsorption amount in the range of 30 to 180 mmol / kg.
  4. 前記疎水性シリカゲルは、レーザー回折法で測定された最大粒子径が15~70μmの範囲である、請求項1~3のいずれか1項に記載の疎水性シリカゲル。 The hydrophobic silica gel according to any one of claims 1 to 3, wherein the hydrophobic silica gel has a maximum particle size in the range of 15 to 70 μm measured by a laser diffraction method.
  5. 前記疎水性シリカゲルは、レーザー回折法で測定されたD50値に対するD90値の比(D90/D50)が1.8未満である、請求項1~4のいずれか1項に記載の疎水性シリカゲル。
     
    The hydrophobic silica gel according to any one of claims 1 to 4, wherein the ratio of the D90 value (D90 / D50) to the D50 value measured by the laser diffraction method is less than 1.8.
PCT/JP2021/012760 2020-04-28 2021-03-26 Hydrophobic silica gel for energy-ray-curable coating material matting WO2021220687A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180013998.7A CN115135727B (en) 2020-04-28 2021-03-26 Hydrophobic silica gel for extinction of energy ray solidified paint
JP2022517559A JP7369862B2 (en) 2020-04-28 2021-03-26 Hydrophobic silica gel for energy beam curable paint matting
KR1020227027753A KR20230002288A (en) 2020-04-28 2021-03-26 Hydrophobic silica gel for polishing energy ray curing type paint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020079708 2020-04-28
JP2020-079708 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021220687A1 true WO2021220687A1 (en) 2021-11-04

Family

ID=78373470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012760 WO2021220687A1 (en) 2020-04-28 2021-03-26 Hydrophobic silica gel for energy-ray-curable coating material matting

Country Status (4)

Country Link
JP (1) JP7369862B2 (en)
KR (1) KR20230002288A (en)
CN (1) CN115135727B (en)
WO (1) WO2021220687A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268717A (en) * 2006-03-30 2007-10-18 Dainippon Printing Co Ltd Decorative sheet and decorative plate using the sheet
JP2009078952A (en) * 2007-09-27 2009-04-16 Agc Si-Tech Co Ltd Porous inorganic powder having excellent re-dispersibility in water-based medium and method of manufacturing the same
JP2013203804A (en) * 2012-03-27 2013-10-07 Tokuyama Corp Aerogel and matting agent comprising the same
JP2014128977A (en) * 2014-01-30 2014-07-10 Dainippon Printing Co Ltd Decorative sheet
JP2015163600A (en) * 2014-01-29 2015-09-10 日揮触媒化成株式会社 Surface-treated porous inorganic oxide particles, production method thereof, and cosmetic comprising particles thereof
JP2018002987A (en) * 2016-07-08 2018-01-11 中国塗料株式会社 Photocurable resin composition, cured coat formed from the composition and base material with coat, and method for producing cured coat and base material with coat
JP2018184583A (en) * 2017-02-07 2018-11-22 Dicグラフィックス株式会社 Coating composition, and decorative sheet prepared therewith
JP2019163358A (en) * 2018-03-19 2019-09-26 日本ポリプロ株式会社 Polypropylene-based resin composition, and laminate and biaxially oriented polypropylene film formed from the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9517607D0 (en) 1995-08-29 1995-11-01 Unilever Plc Silica products and uv curable systems
KR100425356B1 (en) * 1997-11-21 2004-03-31 아사히 가세이 가부시키가이샤 Mesoporous silica, process for the preparation of the same, and use thereof
JP3974248B2 (en) * 1998-02-18 2007-09-12 株式会社ブリヂストン Rubber composition and pneumatic tire using the same
JP4671568B2 (en) 1999-04-13 2011-04-20 グレース・ゲーエムベーハー・ウント・コムパニー・カーゲー Matting agent for radiation curable coatings
AU2001236020A1 (en) * 2000-09-22 2002-04-02 Kawamura Institute Of Chemical Research Very small chemical device and flow rate adjusting method therefor
US20030157011A1 (en) * 2001-11-27 2003-08-21 Yutaka Mori Silica and method for producing the same
JP4176395B2 (en) * 2002-06-20 2008-11-05 旭化成建材株式会社 Manufacturing method of low specific gravity calcium silicate hardened body
JP5232517B2 (en) * 2008-03-28 2013-07-10 ニチアス株式会社 Silcagel, production method thereof, silica gel-supported paper and silica gel element
JP5912742B2 (en) * 2012-03-27 2016-04-27 テルモ株式会社 Method for producing porous membrane
JP6487785B2 (en) * 2015-06-12 2019-03-20 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcement filling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268717A (en) * 2006-03-30 2007-10-18 Dainippon Printing Co Ltd Decorative sheet and decorative plate using the sheet
JP2009078952A (en) * 2007-09-27 2009-04-16 Agc Si-Tech Co Ltd Porous inorganic powder having excellent re-dispersibility in water-based medium and method of manufacturing the same
JP2013203804A (en) * 2012-03-27 2013-10-07 Tokuyama Corp Aerogel and matting agent comprising the same
JP2015163600A (en) * 2014-01-29 2015-09-10 日揮触媒化成株式会社 Surface-treated porous inorganic oxide particles, production method thereof, and cosmetic comprising particles thereof
JP2014128977A (en) * 2014-01-30 2014-07-10 Dainippon Printing Co Ltd Decorative sheet
JP2018002987A (en) * 2016-07-08 2018-01-11 中国塗料株式会社 Photocurable resin composition, cured coat formed from the composition and base material with coat, and method for producing cured coat and base material with coat
JP2018184583A (en) * 2017-02-07 2018-11-22 Dicグラフィックス株式会社 Coating composition, and decorative sheet prepared therewith
JP2019163358A (en) * 2018-03-19 2019-09-26 日本ポリプロ株式会社 Polypropylene-based resin composition, and laminate and biaxially oriented polypropylene film formed from the same

Also Published As

Publication number Publication date
CN115135727A (en) 2022-09-30
CN115135727B (en) 2023-07-18
KR20230002288A (en) 2023-01-05
JP7369862B2 (en) 2023-10-26
JPWO2021220687A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
Camenzind et al. Flame-made nanoparticles for nanocomposites
US7553889B2 (en) Surface-modified precipitated silicas
WO2004052786A1 (en) Titanium oxide particles having useful properties and method for production thereof
WO2006094876A2 (en) Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof
KR20010034188A (en) Powder Coating Composition
Sheng et al. In situ preparation of hydrophobic CaCO3 in the presence of sodium oleate
EP2167588A1 (en) Highly disperse metal oxides having a high positive surface charge
US9067782B2 (en) Inorganic pigment compositions comprising surface-modified nanoparticles, and methods of making
JP2019002008A (en) Aqueous heat insulation coating and composition thereof
JPH09208438A (en) Dispersing element of titanium dioxide and silicone fine particle
JP5042529B2 (en) Fine particle-containing composition and method for producing the same
JP2014028947A (en) Thermal resistant yellow water-containing iron oxide pigment and manufacturing method thereof, coating material and resin composition using thermal resistant yellow water-containing iron oxide pigment
WO2021220687A1 (en) Hydrophobic silica gel for energy-ray-curable coating material matting
Jesionowski et al. Effect of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane surface modification and CI Acid Red 18 dye adsorption on the physicochemical properties of silica precipitated in an emulsion route, used as a pigment and a filler in acrylic paints
TWI673235B (en) Monoclinic zirconia-based nano particle and preparation method thereof
KR20020006701A (en) Surface treated barium sulfate and method of preparing the same
JP4407789B2 (en) Modified carbon black particle powder and method for producing the same, paint and resin composition containing the modified carbon black particle powder
EP2512650A2 (en) Method for producing encapsulated metal colloids as inorganic pigments
JP4438925B2 (en) Modified carbon black particle powder and method for producing the same, paint and resin composition containing the modified carbon black particle powder
JP6064338B2 (en) Method for producing a nonpolar organic solvent dispersion of titanium oxide
WO2018079378A1 (en) Barium sulfate powder and resin composition comprising same
Werner et al. Effect of surface modification on physicochemical properties of precipitated sodium–aluminium silicate, used as a pigment in acrylic dispersion paints
JP2008273759A (en) Zinc oxide and method for producing the same and ultraviolet shielding composition using the same
WO2021246191A1 (en) Surface-treated hydrous silicic acid for paint matting and method for producing same
JPH0789721A (en) Spherical conductive titanium compound and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517559

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795550

Country of ref document: EP

Kind code of ref document: A1